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PREFACE

This dissertation is an outgrowth of the author's major work
done in the past seven years on the hodograph method in space mechanics.
The main text is arranged in three parts: Part I deals with the funda-
mentals of the hodograph method, illustrated with a number of elementary
examples; Part II presents the application of the hodograph method to
the analysis of the ballistic trajectories between two terminal points
in space; and Part III is an extension of Part II to the optimization of
these trajectories. The materials in Part I are based on the author's
three earlier papers published in the years 1960 - 61 when the author
was in Taiwan, China. Those in Part II are based on the author's recent
work done at the University of Michigan, which has been first published
by the University as a technical report in September 1964, and then
issued by the National Aeronautics and Space Administration as a NASA
contractor's report in January 1965. Part III consists of the author's
most recent and w:published work on this subject done at this University.
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Professors Harm Buning, Donald T. Greenwood, Arnold M. Kuethe, Alfred C.
Robinson, and C. J. Titus for their careful preliminary review of the
draft of this dissertation. Special thanks are due to Professor Buning,
whose keen interest in the author's work, whose many stimulating discus-
sions with the author, and whose close follow of the development from
the early stagesup to the present presentation have been most inspiring
and helpful; and to Professor Greenwood, whose thorough reading of the
manuscript and constructive suggestions were of great value in the final

preparation of this dissertation. The author feels particularly indebted
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to Professor Arnocld M. Kuethe and Dr, David T. Williams, my former
teacher and Professor at this University, for their personal encourage-
ment, without which the compilation of this work as a doctoral disserta-
tion would have never been attempted.

Acknowledgement is also due to the National Long-range Science
Development Commission, Republic of China, for its support of the author's
early work in Taiwan; and to the National Aeronautics and Space Adminis-
tration, U. S. A, for its grant which enabled the author to continue
his work in this country. Finally the kind assistance and genial co-
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NOMENCLATURE

semitransversal axis, the constraining hyperbola (Figure III-1lc).

semimajor axis, elliptic orbit; or semitransversal axis, hyper-
bolic orbit.

semiconjugate axis, the constraining hyperbola (Figure III-lc).

semiminor axis, elliptic orbit; or semiconjugate axis, hyper-
bolic orbit.

focus-to-center distance, the constraining hyperbola (Figure III-1c).
focus-to-center distance, the Keplerian conic.
parameters defined by Equations (15,12).

base altitude or the perpendicular distance from the field center
to the chord Q7 Qp of the base triangle (Figure II-la).

eccentricity, the constraining hyperbola.
hyperbolic anomaly (Equation (5.11)).

constraining function

Newtonian gravitational constant (Equation (1.1)).
angular momentum per unit reduced mass.

an invariant of the orthogonality quartic, defined by Equation

(14.18).

an invariant of the orthogonality quartic, defined by Equation

(14.18).

Godal's compatibility constant.
orbital energy per unit reduced mass.
chord length.

gravitating mass of the field.

orthogonal projection of the orbital velocity wvector on the local
radial axis (Part III).

mass of the space vehicle.

z/rl (Part II).
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x|

g_

T

dimensionless orthogonal radial projection M/VSl'
M/Vgs.

orthogonal projection of the orbital velocity vector on the local
chordal axis.

It

dimensionless orthogonal radial projection

i

distance ratio = rg/rl.
N/V31-

N/Vgo.

dimensionless orthogonal chordal projection

il

i

dimensionless orthogonal chordal projection
radial distance from the field center.
dr/dt.

semilatus rectum.

rh/p.

rh/p,

semi-perimeter of the base triangle = % (rg + o + £).

time of orbital flight from the pericenter to any orbital point.

’ag/u for elliptic or hyperbolic orbit; /;M3/u for parabolic

orbit.
potential function.
speed.

velocity vector.

escape speed = ‘/2u/r.
circular speed = J u;r.

residual speed.

dimensionless speed = Vh/p.

dimensionless velocity vector = 'VE/H.

critical coordinates, defined by Equations(lS.S).

displacement coordinates defined in Figure I-2a; or general rec-
tangular coordinates (Appendix C).

velocity coordinates, inertial frame, = dx/dt, dy/dt.
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X, ﬂ dimensionless velocity coordinates = kh/u , &h/u.

a eccentric anomaly, elliptic or hyperbolic,

p inclination of the orbital velocity vector with the x-axis.

Y half-angle between the asymptotes, hyperbolic orbit (Figure I-ka).
A discriminant of the orthogonality quartic (Equation (14.17)).
A change of velocity between two orbital points.

&V impulsive change of velocity at a point.

AV nondimensional impulsive change of velocity = Eﬁ/V51-

AT nondimensional impulsive change of velocity = 57/V82.

) inclination of the line of origins (Figure II-1).

€ orbital eccentricity.

£, X parameters, defined by Equation (9.20)

1 parameter, defined by Equation (10.11).

o) true anomaly.

o de/dt.

K dimensionless Godal's compatibility constant = K/Vg;.

k dimensionless Godal's compatibility constant = K/Vgo.

A speed parameter. = V/V*

M G(M+m).

Vv dimensionless speed = V/VSl.

v dimensionless velocity vector = v/VSl'

v value of v on the boundary Lame (Equation (14.22)).

v dimensionless speed = V/Vqy.

7 dimensionless velocity vector ='V7V82.

0 distance of the optimum origin from the radical center (T) in the
v -plane (Figure III-12).

o’ distance of the optimum origin from the initial terminal in the

T -plane (Figure III-15b).
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included angle between the local radial and chordal axes, or the
exterior angle of the base triangle (Figure III-1).

period, elliptic motion.
auxiliary angle defined in Figures (II-5), (II—6>, and (II-7).

path angle with respect to the minimum energy direction (Figure
III-1c).

path angle with respect to the local horizon.

) base angle, the interior angle of the base triangle at the ter-
minal point (Figure II-la).

i angle of separation, or the vertex angle, the interior angle of
the base triangle at the field center ( = range angle, normal
trajectory).

1 2n - ¥ ( = range angle, complementary trajectory).

w auxiliary angle defined in Figure II-3 (Part II).

w the inclination of the initial velocity vector to the plane of
the transfer trajectory (Figure III-19).

w a parametric angle defined by Equations(C-l), Appendix C.

superscripts

* critical condition,.

complementary trajectory (Part II).

nondimensionalization with reference to the final terminal (Qo)
(Part III).

point symmetrical with the orbital point with respect to the apsi-
dal axis (Figures I-3, I-k, I-5).

point symmetrical with the orbital point with respect to the minor
axis (elliptic orbit) or the conjugate axis (hyperbolic orbit)
(Figures I-3 and I-k4).

point symmetrical with the orbital point with respect to the center
of the conic (Figures I-3 and I-L).

Subscripts

apocenter

pertaining to high half-plane (defined in Figure III-2), or high
trajectory.
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*%

points at infinity, hyperbolic orbit.

pertaining to low half-plane (defined in Figure III-2) or
low trajectory.

lower limit.

end points of the latus rectum.

end points of the minor axis, elliptic orbit.
pericenter,

UPPER LIMIT,

direction of the base altitude (Figure III-3).
index.

optimum condition.

pertaining to Zﬁ (or Zi).

chordal and radial pair of directions (Figure II-&).
in-plane and out-plane components (Figure III-19).
radial and transversal pair of directions (Figure I-2a).
general oblique coordinate directions.

outward directions of the interior and exterior angle bisectors
of the base triangle (Figure III-3).

initial condition.

initial terminal.

final terminal.

low trajectory (Part II).

high trajectory (Part II).

positive half-plane defined in Figure III-2.
negative half-plane defined in Figure III-2,
condition at infinity.

minimum energy (Part II only).

ortho-point, or orthogonal solution in Chapters 14 and 15 and
optimum condition elsewhere in Part III.

absolute minimum distance solution (Chapter 15).
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INTRODUCTION

Historical Sketch

The hodograph, as Sir Williams R. Hamilton(g) put it, is the
locus of the end of the velocity vector of a moving body drawn from a
common origin. In modern language a hodograph is the path of a moving
point in the velocity space. The idea of hodograph was originated by
Mobius(l) in 1840, and the fact that the hodograph for the motion in a
Newtonian gravity field is a perfect circle was discovered by Hamilton(Q)
in 1846. Several theorems concerning the characteristics of the motion
in a central force field were deduced from this Law of Circular Hodograph,
as he called it, and contained in his brilliant papers presented at the
Royal Irish Academy during the years l8h6—47.(2’5’u) An analytical
treatment of this subject is also found in his classical work on gua-
ternions published later.(5) However, it is strange to see that, despite
its elegance and simplicity, Hamilton's Hodograph Theory has not been
followed up since then either in classical mechanics or in celestial
mechanics until very recently. During this period, while the hodograph
transformation had found its application in gas dynamics through the ef-
forts of Busemann, Chaplygin, von Karman etc. and played an important
role in the treatment of the compressible flow, problems in the mechanics
of a central force field were still dealt with almost exclusively in
the physical space while Hamilton's Hodograph Theory remained in ob-
scurity.

The recent interest in the hodograph method in the field of
space mechanics, it seems, did not begin until after Russia's Sputnik
had gone into orbit. With the opening of the new space era new problems

-1-



o.
in space flight have been arising continually, providing new challenges
to the old problem of Kepler, and the classical orbital hodograph began
to receive the due attention from current workers in this field. The

polar hodograph of orbital motion:L

was introduced by Sun in 1960 at the
Second International Symposium on Rockets and Astronautics in Tokyo in

an article(7> in which he extended Hamilton's Law of Circular Hodograph

to & non-inertial frame, and worked out the hodograph analysis for the
three main types of the Keplerian orbit, the elliptic, the parabolic,

and the hyperbolic. From then on he has been continually developing this
polar hodograph as well as the Hamiltonian version, their fundamentals

and their applications, resulting in several published papers(75 9, 12, 19)
which form a part of this dissertation. During about the same period arti-
cles on the same subject written by a number of contemporary authors also
appeared in the technical literature, notably the work of Altman, Pistiner,
and Paul of the United States of America  and Pesék of Czechoslovakia

(see e.g., References 8. 11, 13-18, 20, and 21). Paul's work(8) is essen-
tially of the graphical nature, and Pesek's published work on this subject
(1ike Reference 17) is rather scarce. The major work in this country on
the same subject was done mainly by Altman and Pistiner. Thelr pioneer
work on the hodograph for elliptic orbit appeared in a series of papers,
notably References 10, 11,13 published in 1961, and later = broader
treatment of the hodograph mapping of the orbital conics was found in

Reference 14, Recent publications indicate that Altman's work(20’21>

L Unaware of the connection between the classical circular hodograph and
Hamilton, it was referred to as the "conventional hodograph,'" while
the polar version was called the "special hodograph" in Sun's early
writings, like References 7 and 8, etc.



-3-
has well advanced into the realm of Hodographic Transformation Theory
which might open a new era in the analytical study of orbital mechanics.
Finally, it is to be mentioned that Boksenbom's short article on graphi-
cal trajectory analysis(6) which was published in December, 1959, con=-
tained actually some elements of the hodograph mapping although no

particular reference to it was stated.

Purpose and Scope of the Present Study

As implied in Hamilton's pioneering writing(g) the entire
Keplerian Mechanics may well be developed from hodograph analysis. In
fact he succeeded in deducing that the Keplerian orbit is a conic directly
from his Law of Circular Hodograph. However, the present study will be
aimed at the solution of current problems in space flight by using the
hodograph method.

It is generally known that Kepler's problem has been well
solved analytically ever since Newton's time; even the subsequent appli-
cation of the Hamilton-Jacobi equation to Kepler's problem in space
added only some elegance to the method of solution, but not much to its
contents. However, the importance of further exploration of the char-
acteristics of such a motion cannot be overlooked. First, despite its
inadequacy in describing the motion of a space vehicle in the presence
of various perturbing forces, the Keplerian orbit is the reference orbit
or trajectory in almost all the problems of unpowered, or ballistic
flight, on which all approximations or refinements are based. Second,

despite the fact that the Keplerian motion is amenable to complete
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analysis the present knowledge of the dynamic characteristics of such
a motion is not as adequate as generally believed. This situation is
more evident when special constraining conditions are involved as in
the new problems in present space flight, which are usually not in the
realm of Celestial Mechanics. For example, the simple and interesting
orbital characteristics manifested in Godal's terminal compatibility
condition$57) which forms an analytical basis for most orbital transfer
problems, is rather a recent contribution. In view of these facts the
further exploration of the characteristic of the basic orbit as repre-
sented by the Keplerian model with particular reference to the various
constraining conditions appearing in current problems like the terminal
constraints, the optimization requirement, and so on, will constitute
an essential step toward the analytical solution of such problems. And
to this end the hodograph method which offers a geometric approach to
the problem by transforming all the Keplerian orbits into circles is
obviously an efficient tool to use. It is with this in mind that the
present study has been motivated. More specifically the main study has
been as follows:

(1) To develop adequate correlations between the orbital
plane and the hodograph plane in an inertial as well as a non-
inertial frame so that problems may be analyzed in a suitable hodo-
graph plane instead of the physical plane.

(2) To apply the hodograph analysis to current proklems
s0 as to have an insight of the situation to find its golution or
to obtain some conclusions on the solution through the geometrical

approach.
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In the following, Part I will be devoted to the fundamentals
concerning the hodograph geometry and its kinematic significance for both
the Hamiltonian version and the polar version, which will form the back-
ground for any hodograph analysis within the realm of Keplerian motion;
and, in Parts II and III the application of the hodograph methcd to two
specific problems will be given. The first application is the hodograph
analysis of the family of trajectories which pass through two fixed but
arbitrary terminal points in space. The second one is the optimization
of such trajectories for minimum initial impulse when an arbitrary ini-
tial velocity vector is prescribed. The first is one of the basic prob-
lems encountered in space flight, and in this example the use of the
dimensionless hodograph for the treatment of a family of infinite number
of trajectories will be fully illustrated. The second one is an immediate
extension of the first.

Within the limited scope of this dissertation the material will
be confined to the velocity hodograph (as defined in the preceding sec-
tion) for the Keplerian motion only. The extension of the present devel-
opment to the acceleration hodograph, and the potentialities of the hodo-
graph approach to the analysis of the non-Keplerian motions will be brief-

ly discussed in the final chapter.



PART I

FUNDAMENTALS OF THE HODOGRAPH METHOD



1. PRELIMINARIES ON KEPLERIAN MOTION

1.1 Fundamental Assumptions

Throughout this paper, the motion of the space vehicle will
be regarded as Keplerian. The fundamental assumptions underlying a
Keplerian Motion may be listed as follows:

(1) The gravity field is central and Newtonian, that is, its

field potential is given by

u(r) = &2 (1.1)
where
M = the gravitating mass of the field
m = the mass of the vehicle
r = the separation distance
G = the Newtonian gravitation constant

(2) The vehicle is at such a tremendous distance from the
center of the field as compared with its own dimensions, that it may
be regarded as a point-mass,

(3) ©No disturbing forces present.

(4) The impulse applied to the vehicle is instantaneous
if any.

(5) The vehicle speed relative to the field center may be
much higher than the escape speed but is far below the speed of light,

so that the relativistic effect may be neglected.
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1.2 Some Basic Formulas and General Remarks

Since the analytical solution of Kepler's problem is well-
known, only a recapitulation of a few basic formulas and definitions
with some brief remarks will suffice here. By placing the origin of
the coordinate system atthe field center, and considering the motion of

the vehicle relative to this center, the equation of motion is

T = - ﬁ% T (1.2)
where

b= G(M+m) (1.3)

Such a motion will take place in a plane determined by the field cen-
ter and the initial position and velocity of the vehicle; and the path

of the wvehicle in the plane of motion is a conic given by

=1 + ¢ cose (1.4)

=

where © 1is the true anomaly, e and r are the eccentricity and

the semilatus rectum of the conic respectively given by

Frm—

\;1 + 2k( (1.5)

m
]

2)2
KL

h?/u (1.6)

T

with h and k being the angular momentum and the orbital energy of the mo-
tion respectively, both referring to a unit reduced mass of the 2-body sys-
tem.l'l In the following, such a path of motion will generally be called
the Keplerian orbit. Whenever specific terminal points are to be emphasized,

it will be referred to as the Keplerian trajectory. In any case it may

1.1 Reduced mass = mM/(M+m)
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be called simply the Keplerian conic, The plane of motion will be
called the orbital plane or the trajectory plane, The relations
between the geometric elements of a Keplerian conic and the orbital
velocity at any orbital point have been given in References 35 and
36 and they are summarized in Appendix A for reference.

A Keplerian conic is usually classified according to its

eccentricity as follows:

e <1 ellipse
e =1 parabola
e >1 hyperbola

In particular, when € = 0O, the conic becomes a circle, a special case
of ellipse. 1In any case one of the foci of a Keplerian conic coincides
with the field center. The second focus of a parabola is being con-
sidered as at infinity; while the two foci coincide in the case a cir-
cle. Besides, a Keplerian hyperbola refers only to the concave branch
of a geometrical hyperbola, since this is the only branch that can be
realized in a central gravity field.

It is to be noted that the usual practice of classifying a
Keplerian conic according to its eccentricity as outlined above may
run into difficulties when the conic degenerates. For example, a
Keplerian ellipse may degenerate into a line segment, and a Keplerian
parabola or hyperbola may degenerate into a straight line, and they
will all have their eccentricities equal to unity. This is the case
encountered in a vertical shoot. A better way of classification is
to use either the orbital energy k, or the speed parameter, A, which,

as introduced in References 35 and 36 is defined as

Spu— (1.7)
NA

P
(i

5|
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where V¥ and Vg are the local escape speed and the local circular

speed respectively, given by

vk = J2 Vg = /%E (1.8)

These two parameters A and k are related through the energy inte-

gral,
-1= —= (1.9)

By using A or k, a Keplerian conic may be classified as follows:

A<1 (k<0) ellipse

A=1 (k=0) parabola

A>1 (k>0) hyperbola
In particular,

Vs

k= =-=— ircle
( 5 ) circ

There is no ambiguity in such a classification even when the conic
degenerates. The dimensionless parameter A\ 1s especially convenient
in formulating nondimensional equations, and it will be extensively

used in such formulations in the subsequent development.



2. THE HODOGRAPH EQUATIONS

In Reference 2, Hamilton proved his Law of Circular Hodo=-
graph without referring to a particular coordinate system except it
is understood to be an inertial one. In the following a formal deri-
vation of the hodograph equation for the polar version will be given
first, and then the transformation to the Hamiltonian version will

follow.

2.1 The Polar Hodograph Equation

Consider the velocity components in the local radial and

transversal directions respectively:

V. =T (2.1)
V@ =I'é
The momentum integral gives

Vg = h (2.2)

and the vis viva integral gives

Iv2 J B
5 - (2.3)
where

Ve = vi + vg (2.4)

and h and k are the angular momentum and orbital energy respec-
tively, which are the constants of the motion. Eliminating T from
Equations (2.2) and (2.3) and using Equation (2.4) yields the hodo-

graph equation,

)" = (%)2 + 2k (2.5)

-11-
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which may be put in the alternate form,
A %)2= (e 1) (2. 58)
through the orbital relation (1.5)
Thus the hodograph in the Ve Vg DPlane is a circle
regardless of the magnitude of € or the type of the orbit. As seen

from Equation (2.5a) such a polar hodograph circle has its center on

the Vg-axis, and is characterized by the two parameters,

]

Origin-to-center distance %

(2.6)

Radius =€ B
h

the ratio of which gives the orbital eccentricity. Consequently the
hodograph origin will be outside the hodograph circle if the orbit is
elliptic, inside the circle if it is hyperbolic, and on the circumfer-
ence if it is parabolic. The geometry of the polar hodograph for the
three types of the Keplerian orbit is shown in Figure I-1. In the
particular case of a circular orbit (e = 0) the polar hodograph circle
shrinks to its centerpoint.

It is to be noted that the velocity-coordinate system em-
ployed here is a local system attached to the orbiting mass instead
of being fixed in an inertial frame like that in the Hamiltonian hodo-
graph. The foregoing derivation shows that Hamilton's Law of Circular
Hodograph for an inertial frame may well be extended to such a non=-
inertial frame. It is in fact a direct consequence of the two first
integrals of the equation of motion, the momentum integral and the

vis viva integral.
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Finally some sign convention in connection with the polar
hodograph should be mentioned. For convenience Vg will be taken
positive in the direction of motion, and so is h,g'l while Vi
will be taken positive if it directs away from the field center, and
negative 1if towards it. It is to be noted that, in deriving Equation
(2.5) we have virtually assumed h #£0 . Such a condition will be
generally assumed throughout the following analysis. When h = 0,

Vg Wwill vanish at every orbital point according to the momentum
integral (2.2), and we have a straight orbit. Special treatment

will be given to such degenerate cases when they arise later in

particular problems.

2.2 The Hamiltonian Hodograph Eguation

As mentioned earlier, the Hamiltonian hodograph refers to
an inertial frame. ZFor convenience let us choose a righthand rec-
tangular coordinate system (x,y) fixed in the orbit plane with its
origin at the field center and its x-axis coinciding with the
apsidal axis of the orbit and pointing toward the pericenter, so
that its y-axis is along the latus rectum. Then proceeding from

the polar hodograph equation (2.5a) and using the transformation

Vy = X cos6 + y s5ind
: : (2.7)
Vg = =X sinG + y cos6
we obtain
2 . 2 2
r(-eb =k (2.8)

2.1 guch a convention is possible only when only one orbit is being
cgnsidered. If two or more coplanar orbits are under considera-
tion, V@ and hence h may be positive or negative.
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which is the equation for the Hamiltonian hodograph in rectangular coordi-
nates, It is evident that it is a circle in the k,&-plane with its cen-

ter on the y-axis , and characterized by the parameters

Origin-to-center distance

€5
(2.9)
Radius

1

|
h

the ratio of which is again the orbital eccentricity. It is interesting to
see that, by merely interchanging the origin-to-center distance and the radius
of the circle we may transform the polar hodograph to Hamiltonian hodo-

graph and vice versa. Evidently the hodograph origin will be inside the
Hamiltonian hodograph circle if the orbit is elliptic, outside the circle if
it is hyperbolic, and on the circumference if it is parabolic. Thus the
Hamiltonian hodograph and the polar hodograph are identical in the case

of a parabolic orbit (e = 1). For a circular orbit (e = 0) the Hamiltonian
circle is centered at the origin. The geometry of the Hamiltonian hodo-

graph for the three principal types of the Keplerian orbit is shown in

Figure I-1,



3. CORRELIATION BETWEEN THE ORBITAL PIANE AND THE HODOGRAPH PLANE

As a basic characteristic of the Keplerian motion there is an
unique velocity vector at each orbital point on a given orbit, and vice
versa. It follows that there is a one-to-one correspondence between the
position vector T in the physical space and the velocity vector V in
the velocity space. Thus the hodographic representation of a Keplerian
orbit may be regarded as a mapping of the orbit in the orbital plane on-
to the hodograph plane. Every orbital point @ has an unique hodograph
image (which is the tip of the corresponding velocity vector and will also
be designated as @ so long as no confusion arises) in the hodograph
plane, and vice versa. Consequently, to each geometrical element in the
hodograph some physical significance concerning the orbit can be attached;
and conversely, each orbital element, geometric or dynamic, can be repre-
sented by a geometrical element or a combination of the geometrical ele-
ments of the hodograph. The establishment of such correlations between
the orbital plane and the hodograph plane is thus a pre-requisite for
the use of the orbital hodographs as means for the solution of orbital
problems. In the following, such correlation will be first established
for a Keplerian orbit in general, and then for each of the three princi-

pal types of the orbit, the elliptic, the parabolic, and the hyperbolic.

3.1 General Correlations

The correlations between the orbital elements and the geometri-
cal elements in the circular hodograph in either the k,&- or the f, ré-plane
can be easily established from the geometrical construction of the hodo-

graph and the definition of these orbital elements with the aid of a few

-16-
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basic orbital relations. These principal correlations for a general
.1
Keplerian orbit are depicted in Figure I-2.5 A few essential correla-

tion rules for each version of the hodograph will be given below.

On the Hamiltonian Hodograph (see Figure I-2b)

(H-1) Directly from the hodograph construction the orbital velocity and

its x, y-components are given by

T -0
¥, - 0% (5.1)
Vy = QY

with its inclination to the apsidal axis,

B =4 04 (3.2)
where the point Q on the hodograph circle is the image of the orbital
point Q@ in the physical plane.

(H-2) For the radial and transversal velocity components, we observe

from the definition of a hodograph (see Introduction, p. 1) that the tan-
gential direction at any point on a hodograph is in the direction of the
local acceleration, and in a central field this must be the local radial
direction. This is, in fact, the basis on which Hamilton proved his Law

of the Circular Hodograph,(g) and constitutes the fundamental characteristic
of the Hamiltonian hodograph. It enables us to establish immediately that
the radius CQ of the hodograph circle at the point Q is in the local trans-
versal direction, and consequently by completing the right triangle 0SQ

in the hodograph plane we find

-y — —_

Vrp =05, Ve =35Q (3.3)

3.1

The auxiliary circle in each hodograph plane is drawn to facilitate
the geometrical constructions.
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TABIE I-1

GENERAL: CORRELATIONS BETWEEN THE ORBITAL PLANE AND THE HODOGRAPH PLANES

Orbital Element x-y Plane r-ro Plane Remark
- ~) -
1 |Orbital Velocity v 0Q 0Q
— - —
2 x=-component Vo 0X 0):6
- - - -
3 y~-component Vy | OY = XQ XQ
- - - — :
L r-component v, 0S SQ SQlre-axis
;? - -
5 6-component ) SQ 0S
6 |Inclination Angle B | 9 x0Q ¥ %x0Q
7 | T+ue Anomaly 2] ¥ PCQ 4 PCQ
8 |Path Angle ¢ | 4 cqo J coQ
9 |Eccentricity € 0c/cQ cQ/oC
N or tangent
10 |Local Circular Speed V% Q-OE = Qr2 | 0Q°OE = 0C- 03 to auxiliary
circle at T
5| — 0B10Q (x-y)
11 |Local Speed Ratio  A° | BQ/2 CO 0B/2 0C 59155 (3-r)
12 jRadial Distance r . VR
—_— =2 — = — —
O0Q’E 0Q°0OE 0C-0S
13 |Angular Momentum J b/CQ 1/0C
Notes: 1) For the symbols, see Figure I-2.

2) The positive directions of the angular measurements in the
orbital plane are arbitrarily chosen as indicated in Figure
I-2 (a) and the corresponding directions in the hodograph

plane are shown in Figure I-2 (b) and (c).




(H-3) It follows directly from the rules (H-1) and (H-2) that the true
anomaly is given by the central angle made by the radius CQ with the
y-axis, i.e.,

6 =9 PCQ (3.4)
and the path angle with reference to the transversal direction or the
local horizon is given by the angle included between CQ and 0Q, i.e.,

g=¢ Cqo (3.5)
The positive direction of each of these angular measurements including
that of B has been indicated in Figure I-2 (a) and (b) in consistence
with the sign conventions of the various velocity components.

(H-4) The orbital eccentricity has already been shown by the ratio of
the origin-to-center distance to the radius of the hodograph circle, i.e.,

e = 0C/CQ (3.6)

(H-5) The local circular speed at any orbital point Q can be obtained
from the hodograph by simply drawing a tangent from its image point @Q
on the hodograph circle to the auxiliary circle at T, giving

Vg = QT (3.7)
A proof is given in Appendix B.
(H-6) With Vg thus determined the speed parameter A is also deter-
mined since according to definition A = V/V* = V/.JEVS . However, since
usually it is xg which occurs frequently in orbit analysis, a direct
method for its graphical determination is to drop a line OB from the hodo-
graph origin perpendicular to the velocity 0§, meeting CQ or its ex-

tension at B,then we have

o O
Q||
3|8l

e
W
&

A proof is also given in Appendix
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(H-7) Since the circular speed is uniquely related to the radial dis-
tance of the orbital point from the center of the field through the
formula V§ = p/r , the latter can be determined once the former is found.
Thus, with the field constant p known, the value of r may be deter-

mined from

-
r o= g (3.9)

(H-8) Directly from the hodograph equation, the angular momentum of the
orbital motion is given by the radius of the Hamiltonian hodograph circle
according to
h = 4= .10
= (5.10)

All these rules are summarized in Table I-1.

On the Polar Hodograph (see Figure I-2¢)

(P-1) By its construction the polar hodograph gives directly the orbital

velocity and its radial and transversal components,

7V = 0q
v, = 59 (3.11)
Vg =08

as viewed from the local reference frame. Its path angle is given by

¢ = < coq (3.12)
(P-2) sSimilar to the Hamiltonian hodograph the true anamoly is given by
the central angle made by the radius CQ with the 6 - axis, i.e.,

6 =< PCQ (3.13)
A proof is given in Appendix B.
(P-3) Tt follows from rule (P-2) that the x, y-components of the orbital

velocity can be obtained from the polar hodograph by completing the right
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triangle 0XQ, giving

Vy = 0X , Vo = XQ (3.14)
Thus while the tangential direction along a Hamiltonian hodograph points

in the local radial direction; that along a polar hodograph points in the

constant direction (in the inertial space) - the direction of the apsidal axis.
(P-4) Directly from rule (P-3) we see that the inclination of the orbi-
tal velocity vector to the apsidal axis of the orbit is given by the
angle between the vector ‘65 and the tangent to the polar hodograph
circle at Q , or we may write

p =9 x0q (3.15)
(P-5) The orbital eccentricity, as mentioned before, is given by the

ratio

e = TQ/TC (5.16)

(P-6) The local circular speed at any orbital point is given by the

geometrical mean of the origin-to-center distance and the @-component

of the orbital velocity at that point, that is,”"°

o

v, =0C " 0S (3.17)

(P-7) The speed parameter X\ at any orbital point Q may be found
from the polar hodograph by drawing a line from the image point Q on the

hodograph circle perpendicular to the velocity vector O0Q, meeting the

ré-axis at B, givingB'2

o 1 0B
M =3 = (3.18)

(P-8) Following Rule (P-6) the radial distance at any orbital point

Q may be found from the polar hodograph according to

r o= —H
—O-G . —S— (3'19)

5+2 The proofs of Rules (P-6) and (P-7) are similar to those of the Rules

(H-5) and (H-6) respectively as shown in Appendix B, and are there-
fore omitted.
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(P-9) 1In contrast with the Hamiltonian hodograph the angular momentum
of the orbital motion is now given by the origin-to-center distance in

the polar hodograph according to

h = %5 (3.20)

All these rules are also summarized in Table I-1.

Finally it is well to note that the hodograph circle is symme-
trical with respect to the &-axis in the i-& plane, or the re -axis in
the r-r0 plane. Consequently, at the orbital points symmetrically situ-
ated with respect to the apsidal axis, the magnitudes of the orbital
velocities, and their &-components and @-components are identical respec-
tively, while their i-components and i-components are equal in magnitudes

but opposite in sign.

3.2 The Elliptic Orbit (see Figure I-3)

The hodograph circle for an elliptic orbit encloses the origin
in the k-& plane, cutting each axis at two distinct points. The intersec-
tion points on &—axis, P and A, give the images of the pericenter and apo-
center of the orbit respectively; while those on x-axis give the images of
the ends of the minor axis, N and N'. However, in r-r® plane, the hodograph
circle lies entirely above the f—axis, meeting it at no real points. While
the intersection points on rd -axis give the images of the two apses, the
points where the radial lines from the origin touch the hodograph circle
(which are also the intersection points of the auxiliary circle and the
hodograph circle) give the images of the ends of the minor axis. In both
hodograph planes, the image of the ends of the latus rectum are located

midway between P and A. A glance at either hodograph shows clearly
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that
Vp = OP = Vpay (3.21)

Vp = OA = Vpin (3.22)

| By el = 3 oM0 = 18] (3.23)

Besides the particular points mentioned above, it is to be
noted that each radial line from the origin may cut the hodograph in two
distinet points, which, in the x-y plane correspond to the extremities of a
diameter of the ellipse; and, in the r-10 plane, the orbital points symme-
trically situated with respect to the minor axis. Let Q', Q" and Q'
be the points symmetrical with the orbital point @ with respect to the
major axis, the minor axis, and the center of the ellipse respectively
(Figure I-3a), the corresponding images in each hodograph plane are shown
in Figure I-3b and c.

The principal geometricel elements of the orbit, such as the
semi-axes a and b, the semi-latus rectum ;, the peri-and-apo-radii rp
and rp, may be found from the hodograph by applying the general corre=-
lation formula (3.9 or 3.19), and recalling their definitions. The results
are given in Table I-2.

Finally, with the semi-major axis, a, found from the hodograph,
the orbital energy k for a unit orbiting mass is also determined since

k=-B -1 5F (3.24)
2a 2

The graphical determination of the eccentric anomaly for an elliptic or-

bit, will be given in Chapter 5.
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3.3 The Hyperbolic Orbit (See Figure I-k4)

The hodograph circle in i—& plane for an hyperbolic orbit lies
entirely above the i—axis; while that in the »-r® plane encloses the
origin. However, as mentioned in Section 1.2, in a central gravity field,
only the concave branch of the hyperbola can be realized, consequently,
only a part of the hodograph circle gives the image of the physical or-
bit. As shown in Figure I-4, while a mass particle moves along an hyper-
bolic orbit from negative infinity to positive infinity via the peri-
center, the velocity vector describes a circular arc from I' to I via P
(full 1line in Figure I-4), where P is the image of the pericenter of the
hyperbola, and I and I', the images of the points at infinity. 1In
X-¥ plane, I and I' are the points where the radial lines from the
origin touch the hodograph circle (which are also the intersection points
of the auxiliary circle and the hodograph circle); and, in the r-10 plane,
they are the points where the hodograph circle cuts the r-axis. The cir-
cular arc I'AT in either hodograph plane (dotted line) corresponds to
the image of the convex branch of the hyperbola (dottéd line), which has
physical meaning in a central repulsive field but not a gravity field.

A discussion of this branch is found in Reference 12 (Section X).

With our attention fixed on the full line part =ither hodo-

graph shows clearly that

Vp=0P=V, (3.25)
VI, I' = 0I = V3, (3.26)
1,1l =2 =18l _ (3.27)
Br =17 -7 = Bpax (3.28)

Brr =7 = Puin (3.29)
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Furthermore, in analogy with the elliptic orbit, all the principal
orbital elements of the hyperbolic orbit may be found from the hodograph,
and the results for both orbits are quite similar, with the point I
(or I') on the hyperbolic orbit plays the counter-part of the point N
(or N') on an elliptic orbit. For example, the corresponding formula

for the orbital energy of an hyperbolic orbit is

_o
k = % o1 (3.30)

Finally it is to be noted here that, although the apocenter A 1lies now
on the fictitious branch of the hyperbola, the quantity "apocenter radius"
still plays an important role as a geometrical parameter of the orbit, and
the part of the hodograph circle which corresponds to this branch may be
employed to develop the orbital relations if needed since it satisfies

the hodograph equations (2.5, 2.8) just as well if r is taken as nega-
tive. All these results are listed in Table I-2. For the eccentric

anomaly of a hyperbolic orbit, see Chapter D.

3.4 The Parabolic Orbit (see Figure I-5)

The hodograph for a parabolic orbit is the simplest of all
three. It is a circle tangent to the x-axis at the origin in i-& plane,
and tangent to the r-axis at the origin in r-ro plane. In fact, the
hodograph circles are identical in both planes, with the direct conse-
quence

Vy =-Vp, Vy=Vg (3.31)

As shown in Figure 5, the pericenter of the orbit is mapped

into the point P on y- or r6-axis, and the points at infinity are
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mapped into the single point, the origin. A glance of the hodograph

shows that
Vp = 0P =V (3.32)
Ve =0 =V (3.33)
It also shows that, at every point,
g=Le (3.34)

2

which is a peculiar feature of the parabolic orbit; and in particular,

at either end of the latus rectum, we have
1P| =3 (3.35)

As the parabolic orbit is the limiting case of an elliptic or
hyperbolic orbit as its major axis approaches infinity, all formulas pre-
viously deduced for either one may be applied to parabolic orbit. The

results are also summarized in Table I-2.



L. SOME ELEMENTARY APPLICATIONS OF THE ORBITAL HODOGRAPH

4.1 The Exploration of Orbital Characteristics

As seen in the preceding chapter the characteristics of the
Keplerian motion exhibit themselves quite naturally following the develop-
ment of the orbital hodographs. To mention a few more, the hodograph
in either plane shows that there is a maximum path angle (magnitude)
for each elliptic orbit, and it occurs at either end of the minor axis.

It also shows that, at every orbital point

< < relliptic
1 . il s .
A g 1, ¢ == €] if the orbit is | parabolic
> - hyperbolic

Such a manifestation of the orbital characteristics through the geometry
of the hodograph is probably the most fundamental asset of the orbital
hodograph as means of studying such motions. In fact it was with this
in mind Hamilton introduced his circular hodograph. Probably one of the
best examples is provided by the "invariant two-body velocity components
theorem" which has been proved in classical mechanics (see for example,
Reference 29) but brought to attention only very recently.(MB)AS) As

16)

demonstrated in Pesek's short note( it is so self-evident in the hodo-
graph plane that its proof is almost trivial. To further illustrate such
applications an additional example is given below.

Consider a Hamiltonian hodograph as shown in Figure I-6a, the
change of velocity between two orbital points Q; and Qo 1is given by
QIQQ . Let us draw CH perpendicular to Q1Qp, then by elementary

geometry the central angle Q;CQp 1s bisected by CH. Now 1f we turn

the lines CQ; , CQp and CH each through 90°, then CQp and CQp

-32-
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will point in the radial directions of r{ and r, respectively, while
the line CH coincides with @Q;Qp. Thus we may draw the conclusion
that the vector change between the velocities at any two orbital points
on a Keplerian orbit is parallel to the bisector of the angle between
the radius vectors at these two points, a theorem proved analytically
in Reference 37. This is true regardless of the type of the Keplerian
orbit. Furthermore, the geometry of the hodograph shows that along a
given Keplerian orbit the magnitude of the velocity change depends only
on the angle of separation ({) of the two orbital points, or the change
of the true anomaly, but not the position of these two points respec-
tively. Such a velocity change is given directly by the hodograph as

AV =2 Esin ¥ (k.1)
h 2

It is interesting to note that the same geometry is retained in
the polar hodograph as shown in Figure I-6b; however, a different inter-
pretation is needed. The vector Qzaé now is not the true change of
orbital velocity, but the apparent velocity change observed in the local
frame, or the vehicle frame. The hodograph geometry shows that its di-
rection is parallel to the bisector of the two apparent directions of
the apsidal axis (or any other reference axis fixed in the inertial frame)
as observed in this local frame at the orbital points Q1 and Qp re-
spectively. The magnitude of this apparent velocity change also depends
on the angle of separation only, and the ratio of this apparent change
to its absolute change is evidently same as the ratio of the radius of
the polar hodograph circle to that of the Hamiltonian hodograph circle,
that is

(av)

: (AV) =¢ : 1 (M,Q)

app. abs.
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where ¢ 1s the orbital eccentricity. ZFrom this equation we observe
that, for the same angle of separation, the magnitude of the absolute
change of velocity is greater than that of the apparent change on an
elliptic orbit, but smaller than that on a hyperbolic orbit, while on
a parabolic orbit they are equal.

More observations on the orbital characteristics from the hodo-
graph geometry will be found in the later development in this dissertation.

Also many more illustrations are found in References 7, 9, and 12.

4.2 Derivation of Orbital Relations

As pointed out in the beginning of Chapter 3, to each geometri-
cal element in the hodograph plane we may attach some dynamic significance;
consequently, to each geometrical relation in the hodograph plane there is
a corresponding dynamic relation for the motion. By applying this princi-
ple of duality many orbital relations can be readily found from the hodo-
graph. A few examples will be given below.

e

the tricagle 004 in the xy-plane (Figure I-2b), and

S~

SESIROLSN

apply the Law of Cosines, giving

0G° = TQe + OC° + 20Q * OC cos6 (4.3)

®=\/g: oC = ¢

in accordance with Equations (1.6, 2.9 ), the foregoing equation gives

Writing
(4. 1)

)

immediately

ve =B (1+ € + 2¢ cos6) (4.5)
T

which expresses the speed at any orbital point in terms of the true

anomaly and the orbital constants € and r . This holds for a
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Keplerian orbit in general. DNow if we write, in k—& plane, for an
elliptic orbit
cq =

(Vp + Vp), 0OC ==(Vp - Vp) (4.6)

P
N

the application of the same Cosine Law to the same triangle 0CQ will
lead to
L2

> _
Ve =50

2 2 _ vl
+ U+ (VP VA) cos6 ) (L.7)
which expresses the orbital velocity in terms of the true anomaly and the

maximum and minimum orbital speeds. The corresponding expression for an

hyperbolic orbit may be obtained in the same way by writing

_ BLE R

Q=P o G227 (14.8)
2Vp 2Vp
giving
v = E%E[V% + Vﬁ - (V% - Vi) cos6 | (4.9)
P

A1l Equations (4.5), (4.7), and (4.9) can be obtained from the polar
hodograph Jjust as well, since the triangles 0CQ in both hodograph planes
are in Tact identical.

In many simple cases the derivations are so trivial that the
orbital relations can almost be written down immediately from a glance
of the hodograph. For example, the geometry of the Hamiltonian hodograph

(Figure I-2b) enables one to write readily

V, =YQ = - K sine
* h
vy = oC + CY = % (e + cosB) (k.10)

while the polar hodograph (Figure I-2c) gives

V. = SQ =e¢ K sine
h

+ CS = % (1 + ¢ cosB) (k.11)

1
gl

Vo
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In fact many such simple relations have been written down in the previous
analysis of the orbital hodographs in Chapter 3. Few more examples will

be given in the next chapter, and still more are found in References T,

9, and 12.



5. THE DIMENSIONLESS HODOGRAPHS AND THEIR APPLICATIONS

5.1 The Dimensionless Hodographs

The hodographs may be rendered dimensionless by using the non-

dimensional velocity coordinates defined as

® . Q .

L = _11 X, %.—_—— E Yy (5'1)
o) H

R="1, @a="51 (5.2)
o M

This amounts to changing the scale of the hodograph by a factor h/u
without altering its configuration. By introducing these new velocity
coordinates into Equations (2.5a) and (2.8) we obtain the hodograph
equations in the dimensionless form,

Hamiltonian version:

&Ly (G- o -1 (5.3)
Polar version:
R+ (RS -1)2 =2 (5.4)

Consequently, the hodographin theXxy-plane is invariably a unit circle
with its center-to-origin distance equal to ejwhile in theaiqu}.plane it
is a circle of radius e with its center-to-origin distance invariably
equal to unity. The dimensionless hodographs, Hamiltonian and polar,
for each of the three types of orbits are depicted in Figure I-7. It is
to be noted that, in such dimensionless hodographs, while the angles
still have the same physical significance as those in the ordinary
hodographs, the line elements represent no longer the velocities, but
the ratios of various orbital elements as indicated in Figure I-7. As

these ratios follow directly from the previous correlation rules and the

-38-
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usual orbital relations, their derivations will be omitted. Such dimen-
sionless hodographs are simple in construction, and especially useful
in showing the nondimensional elements (geometric or dynamic) of the
orbit and their mutual relations. The uses of the dimensionless hodo-
graphs in determining the eccentric anomalies, time of flight, etc. will

be illustrated in the following sections.

5.2 The Eccentric Anomalies in the Dimensionless Hodographs

A, The Elliptic Eccentric Anomaly

The eccentric anomaly « at a point @ on an elliptic orbit
may be defined analytically by the equation,

ccos o =1 - (5.5)

]

where a 1is the semimajor axis of the orbit. A geometrical construction
for o in the physical plane is depicted in Figure I-8a.

In a dimensionless polar hodograph we may obtain the angle «
corresponding to any arbitrary orbital point @ as follows: draw from
the image point @ on the hodograph circle in the 0& J{@-plame the line
QB perpendicular to 0Q and intersecting thed{é-axis at B, and then
erect the line BD, meeting the hodograph circle at D, giving (see
Figure I-8b)

a = ¥ BCD (5.6P)
It is to be noted that such a construction is always possible since the
point B cannot be outside the hodograph circle in the case of an ellip-
tic orbit. Furthermore, of the two points, where the line BD meets
the hodograph circle, the point on the same side of thE(xéﬁaxis with the
point Q should be chosen consistent with the definition of « in

the physical plane. A proof of formula (5.6P) is given in Appendix B.
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A little different geometric construction will enable one to find
the eccentric anomaly in a dimensionless Hamiltonian hodograph as follows:

draw first the line QB from the point Q in the Dﬁﬂj-plane perpendicular

to 0Q as usual, and then describe a circular arc Bb with C as cen-
ter, intersecting the auxiliary circle at b, and finally joining b and
C, meeting the hodograph circle at D, giving (Figure I-8c)

o = PCD (5.6H)
Alternately, @ may be found by drawing in the &/‘jplane another auxiliary
circle of radius ¢ and center C, and rotating CB in the direction of
© (counterclockwise on arc PMA, and clockwise on arc PM'A) until it meets
the za-axis at e, and then erecting ef perpendicular to @}-axis, in-
tersecting the second auxiliary circle at f, giving

a = ¢ ecf (5.6'H)
The proof of the formulas (5.6H) and (5.6'H) are given in Appendix B.
In fact, this second method of construction brings the same geometry in
the polar hodograph to the Hamiltonian hodograph. This alternate method
of construction is preferavic chough o 1iLile mors pnvrolwved, a8 o ouh-
fusion will arise if we remember the rule that the arm CB 1is always
rotated in the direction of 6, and that the pocints T (or D) and Q are
always on the same side of @he’g -axis consistent with the definition

of o . It will be seen later that the second auxiliary circle drawn is

also helpful in the determination of the time of flight.

B. The Hyperbolic Eccentric Anomaly

In analogy with an elliptic orbit an eccentric anomaly o for
a hyperbolic orbit may be defined by

eseca =1+ g (5.7)
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where a 1is the semitransversal axis of the hyperbola. This real
angle is called by Deutsch the hyperbolic anomaly in Reference Lo

and will be referred to here as the hyperbolic eccentric anomaly or
the eccentric anomaly for an hyperbolic orbit, and will be denoted
by the same symbol « . Its geometrical construction in the physical
plane is depicted in Figure I-Oa.

To obtain « from the dimensionless polar hodograph we draw
the line QB perpendicular to 0Q as before (note here the point B
cannot be inside the hodograph circle since the orbit is hyperbolic),
and from B draw the line tangent to the hodograph circle at D, giving
again (see Figure I-Ob)

o = J BCD (5.8p)
where D 1is the point of tangency on the same side of the r-axis with
the point O consistent with the definition of ¢ in the physical
plane. A proof of formula (5.8P) is given in Appendix B.

Similarly, we may obtain « for a hyperbolic orbit from the
dimensionless Hamiltonian hodograph by describing in the j@g-plane a
circular arc Bb with C as center, intersecting the ;%—axis at b,
and then joining b and C, meeting the hodograph circle at D, giving
(Figure I-9c)

a = ¢ PCD (5.8H)
The proof is also given in Appendix . B. To avoid confusion, it is well
to remember that the points § and b (or B) are always on the opposite
side of 'y -axis, and that Q and D, on the same side in accordance

with the definition of «.
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5.5 Determination of the Time of Orbital Flight
from the Dimensionless Hodographs

The time of flight from the pericenter to an arbitrary orbital

point along an elliptic orbit is given by Kepler's equation,

%‘z a - ¢ sin o (5.9)

where

T= | & (5.10)

0

The corresponding equation for the hyperbolic flight is usually given 1n
celestial mechanics by the standard form,

t =¢sinh F-F (5.11)
YII

where T 1is defined by the same Equation (5.9) and F is an orbital
variable comparable to the eccentric anomaly for elliptic motion. How=-
ever, to facilitate the graphical determination of the time of flight the
hyperbolic eccentric anomaly «& will be used instead of F, and Equation
(5.11) takes the alternate form

L.etana - 1n tan (% + %) (5.12)

For parabolic flight the corresponding equation may be written

t o lian © (1 4+ Ltan® 9 (5.13)

M+

where & is the true anomaly, and T 1is defined in anaioyy with Equation

(5.10) by

T = |2 (5.10a)

With o and 6 determined from the hodograph, the dimension-
less time of flight t/T can be easily expressed in terms of the geo-

metrical elements of the dimensionless hodograph, Hamiltonian or polar.
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The results are summarized below:

TABLE I-3

DETERMINATION OF THE DIMENSIONLESS TIME OF ORBITAL FLIGHT,
t/T FROM THE DIMENSIONLESS HODOGRAPHS

Conversion to Hodograph Elements
Orbit Formula e
0:10? é-Hodograph ﬂj Y -Hodograph
Elliptic o - € sinx z).PCD-E (5.14P) | XPcp-Te (5.14H)
) ) Q. n) |1, MH Sy M
Hyperbolic | € tano-1n tan(2 + E) PA-1n-g (5.15P) Ob-1n T (5.15H)
Parabolic % tan g(} + % tan® %9 % CR(1 + % CRQ) (5.16)

(see Figures I-8, 9 for elliptic and hyperbolic orbit, Figure 7
for parabolic orbit.)
All conversion formulas listed here follow from the correlation
formulas in the previous section, and the general correlations in Section
3.1. A proof for the formulas for hyperbolic flight is given in Appendix
B; while the rest are self-evident.

The dimensionless time of orbital flight between two arbi-
trary points on a Keplerian orbit with a separation angle not greater
than 2x follows directly from Table I-3. ©Such a graphical determination
with the accompanying correlation formulas are depicted in Figure I-10.

If absolute time is required, the dimensionless time thus
obtained is to be multiplied by the constant T, which may also be deter-

mined from the hodograph according to Table I-2:
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L/ 0N (Elliptic)
T= 4 /0P (Hyperbolic)  (5.17)
p/663 (Parabolic)

where the quantities aﬁ, Bf; and OC are to be measured in the true

velocity scale.

5.4 Derivation of the Dimensionless Orbital Relations

The dimensionless hodographs are especially convenient for the
derivation of the orbital relations in the nondimensional form. For ex-
ample, a glance at the geometry of triangle O0CQ in either the 2%)%-
hodograph or the d%d{@-hodograph (Figure I-7) enables one to write readily

the following relations among the three principal angles 6, ¢, and P

tan ¢ =:(§§) - _€sind (5.18)
1 + € cos®
or € + cose
tan P =:(§%).° =7 Tsine (5.19)
Y
sin ¢ = (Eﬁ)either = - ¢ cos B (5.20)

which hold for the Keplerian orbit in general. Furthermore, remember
that the line 0Q now represents the dimensionless quantity hV/p which
may also be written as

6@ = 2k2cos¢
as shown by the hodograph (either plane), the application of the Cosine
Law to the triangle 0CQ again now yields for a Keplerian orbit

@ =1 - B2(1-2°) cosY (5.21)
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which is an important formule in determining ti:ccrhitaleccentricity
from the burnout condition defined by A and ¢ .
Dimensionless relations involving the eccentric anomalies may
also be easily obtained from the dimensionless hodographs. For example,
consider an elliptic orbit and note from the dimensionless polar hodo-

graph(Figure I-7) that CB:0C = E@:Eﬁ, and that

CB=¢cosa, OC=1,

E = cos ¢, and EQ = \/62 - sin® ¢

It follows immediately that

2 _ 5in2 -2
cos Q = v e sinZ § or sina = 2[i:é— tan ¢ (5.22)
€ cos ¢ €

Furthermore by noting from the diagram that

— —_—
N

B - OB - OC and OB = 0q-/0S = 08 + 84,08

Q

a relation between the anomalies © and o 1is found to be

cos o = &+ €OS8 (5.23)

1l + ¢ cos@
Same procedures applied to the hyperbolic orbit will lead to similar
results.

In fact many interesting orbital characteristics can also be
obtained from the dimensionless hodographs, and even the purely geometri-
cal relations for a conic can be obtained from the hodograph in a rather
simple way. However, no comprehensive presentation of such derivations
is attempted in this dissertation. Numerous such examples are found in
References 7, .9, 12, and in particular, a vast collection of the orbital
relations in the nondimensional form with brief indications of their

geometrical derivations is available in Reference 9 (Appendix D).



6. SOME GENERAL REMARKS ON THE HODOGRAPH METHOD

6.1 The Construction of the Orbital Hodograph

A polar hodograph circle can be drawn if two points on the cir-
cle are known, since its center is invariably on the ré—axis. Thus two
observations on the velocity vector in the vehicle frame will‘enable one
to draw the orbital hodograph. Of course these two points should not be
situated symmetrically with respect to the local horizontal axis. The same
is true for the Hamiltonian hodograph if the orientation of the apsidal
axls of the orbit in the inertial space is given. However, as this ori-
entation is in general not known a priori, three observations on the
velocity vectors in an inertial frame are needed to draw the Hamiltonian
hodograph since it takes three points to determine a circle. It is in-
teresting to note that once a polar hodograph is drawn, the corresponding
Hamiltonian hodograph is determined, and vice versa, since by merely in-
terchanging the hodograph circle and its origin-to-center distance, one
form of the hodograph is transformed into another, a fact mentioned
earlier in Section 2.2,

Alternately the hodograph circle can be drawn if its radius
and its origin-to-center distance are known. These two hodographic para-
meters can be expressed in various ways, some of which are shown in Table
I-4 for reference., It is important to note, among these various expres-
sions, there are only two independent orbital elements (geometric and/or
dynamic) are involved in a given Newbonian field. Thus two such elements
are suffice to determine the hodograph, consistent with the well-
known fact that a Keplerian motion is completely determined by two of its
crbital elements independent of each other. The construction of the di-
mensionless hodograph is even simpler since only one ortital element,

€ 1is involved.

-50-
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6.2 The Basic Advantages and Main Applications of the Hodograph Method

The basic advantage of the hodograph method stems from the cir-
cularity of the orbital hodograph, the Hamiltonian version or the polar
version. As discussed in the previous section, such a hodograph circle
can be easily determined from the observations or known conditions, and
once the hodograph circle is drawn, the Keplerian motion is completely
determined, and all the principal orbital elements, constants as well
as variables, can be found by geometrical constructions or simple calcula-
tions through the application of the proper correlation formulas presented
in Chapters 3 and 5. Thus as a first application the hodograph method
servesas simple graphical means for the determination of orbital or tra-
jectory elements. However, what is more important is its use as an analy-
tical tool. More specifically such uses are as follows:

(1) The orbital hodograph exhibits clearly and naturally the particular
features of the motion through its circular geometry. This makes it the
best tool for exploring the orbital characteristics and derivation of
mgny orbital relations, as illustrated in Chapters 4 and 5. In this
connection the highly suggestive nature of the orbital hodograph by its
simple geometry is worth special appreciation as it may easily lead to
the discovery of new characteristics or new orbital relations which are
not likely to be unmasked when viewed in the physical space. A few such
examples are scattered in References 7, 9, 12 and a few more will be found
in the later part of this dissertation.

(2) By mapping a Keplerian orbit in the physical space into a cir-

cle in the hodograph space, it virtually transforms a dynamic problem

to a geometric problem involving essentially circles, and thus it offers
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a geometric approach to every such problem it deals with. Owing to the
simplicity of the circular geometry, problems which are complicated in
the physical space is usually simpler in the hodograph space, and.
those which are simple in the physical space often become so obvious
in the hodograph space that their solutions can be readily found by ele-
mentary means. Many examples illustrating the use of the orbital hodo-
graphs, Hamiltonian and polar, for the solution of some elementary orbit
and trajectory problems have been given in author's early writings.(7’ 9, 12
More detailed hodograph analysis for the specific problems will be illus-
trated by two examples given in the subsequent parts IT and II1 respec-
tively.
(3) It offers a unified treatment of the three types of the Keplerian
orbit or trajectory encountered in space flight, the elliptic, the para-
bolic, and the hyperbolic, since the difference among these three types
are no more than the positions of their hodograph circles relative to the
hodograph origin. Thus the hodograph method is especially
useful when

a. General theorems on the Keplerian motion are to be developed.

b. Characteristics of different types of the Keplerian orbit

are to be compared.
c. Various types of the Keplerian orbits or trajectories are
involved in the same problem.

As shown in Chapters 3 to 5 many results derived from the hodograph are val-
id for a Keplerian orbit in general without the necessity of a separate proof
for each of the three types of the orbit; and whenever they exhibit some ap-
parently different characters, their analogy can easily be made and their

corresponding formulas be established without difficulty by simply observing
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the differences in their hodograph geometry. All these illustrate the
advantages of the hodograph method regarding items a and b. The advan-
tage regarding item c¢ will be seen in Parts I and II when specific pro-

blems are being analyzed.

0.3 The Hamiltonian Hodograph versus the Polar Hodograph

Basically, the Hamiltonian hodograph describes the motion in an
inertia frame, while the polar hodograph, the motion in a non-inertial
frame, the vehicle frame. For example, a polar hodograph yields direct-
ly the radial and transversal velocity components of the motion which are
the local vertical and horizontal components observed in the vehicle frame.
The fact that these are usually the velocity components of interest in
space flight makes the polar hodograph very useful. However, this same
information can also be obtained from the Hamiltonian hodograph by simple
geometrical construction according to the correlation rules. Similarly,
the velocity components in an inertial frame like VX and Vy can also
be obtained from the polar hodograph. Thus, whenever only one orbital
point is concerned,the use of either type of the hodograph is optional,
depending on the particular problem at hand. However, when two or more
orbital points are concerned then the Hamiltonian hodograph is preferable
when the absolute motion is concerned: and the polar version is prefer-
able if the apparent motion is of interest. It is worthy to note that
even in such cases the essgential features of the geometry in one versionare
usually preserved in the other; only the physical interpretations are
different. A typical example of this sort has been given in Section 4.1
concerning the velocity change between two orbital points. As indicated

by this example, to each relation concerning the absolute motion in a
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Hamiltonian hodograph there is a corresponding relation in the polar hodo-
graph concerning the apparent motion. This may also be regarded as a prin-
ciple of duality relating the absolute Keplerian motion to the apparent
Keplerian motion of a space vehicle.

Finally with the dimensionless velocity coordinates introduced
in Section 5.1 the Hamiltonian hodographic transformation maps all Keplerian
orbits into a unit circle, while the polar hodographic transformation maps
all such orbits into a family of concentric circles. Such a nondimension-
al mapping is of special help in dealing with a number of Keplerian orbits
or trajectories at the same time. The use of the dimensionless polar hodo-
graph for trajectory analysis has been given in Reference 9 (pp. 386-396),
and the use of the dimensionless Hamiltonian hodograph for such analysis

will be fully illustrated in Part IL.



PART II

HODOGRAPH ANALYSIS OF THE BALLISTIC TRAJECTORIES BETWEEN

TWO TERMINAL POINTS IN SPACE
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7. INTRODUCTORY REMARKS

The science of -exterior ballistics has been one of the well-
developed old subjects of applied mechanics. However, the extension from
the artillery trajectory over a flat earth to the space trajectory in a
central gravity field is rather a recent advance. Some pioneering work
in this direction appeared in Cranz's work in the 1920's like Reference
26, in which he introduced the elements of the Keplerian motion into his
trajectory analysis, and thus marked the beginning of linking the celestial
mechanics to the subject of ballistics. It seems that Cranz's early work
had not been further developed along this line until the late 1940's when
the long-range ballistic missiles were under development. From then on
numerous articles and books on this subject appeared frequently in the
technical literature, from the early fragmentary treatment by Barker,
Blitzer, Hart etc. (see e.g. References 31, 32) to the later authorita-
tive work by Wheelon(34), Ehricke(ag) and so on. In almost all of this
literature one common feature is that the elliptic trajectory was the
center of attention, and another is that the treatment was mostly given
to the symmetrical case in which the initial and the final terminals were
assumed to be equi-distant. from the field center. In 1961 the author
did the similar analysis(9) by using the polar hodograph in the non-

3h)

dimensional form instead of the usual Wheelon's hit equation;( and
later, by using the dimensionless hodograph of the Hamiltonian ver-
sion, it was extended to the unsymmetrical case and to all three types
of Keplerian trajectories.(l9) The essential part of this later
analysis will be presented in the following as the first example of
applying the hodograph method to the analysis of a specific problem

in space flight. It will also pave the way for the further analysis

of the optimization problem to be presented in Part III.
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8. THE HODOGRAPHIC REPRESENTATION AND A GENERAL SURVEY OF
THE SYSTEM OF TWO-TERMINAL TRAJECTORIES

8.1 General Considerations

In a central force field all free-flight trajectories passing
through two fixed terminal points, Q) and Qo will lié in the same plane
determined by the three points Q;, Qp, and the field center O. The tri-
angle 0Q1Qp will be called the base triangle; the line Q)Qp, the chord;
and the interior angle at O, the vertex angle, or the angle of separation.
The departure velocity vector to achieve such a trajectory will necessarily
be coplanar with the base triangle, while either its magnitude or its di-
rection in the trajectory plane may be arbitrary. Thus in a given force
field the geometry of the base triangle together with the departure speed
or the departure path angle completely determine the trajectory.S'O

To insure that the base triangle does not degenérate,the vertex
angle { here is assumed to be between zero and x. A typical base tri-
angle and several such Keplerian trajectories are depicted in Figure II-la.
The geometry of such a trajectory system in the physical plane has been
analyzed to some details by Battin.(55) The purpose of this section is
to represent such a system in the hodograph plane so as to form the basis
for subsequent analysis.

It is to be noted that, with two given terminals, a vehicle
starting from one terminal may reach the other in either direction around
the field center. Thus the system of two-terminal trajectories may be
divided into two groups: the one with a common range angle equal to the
vertex angle { which is less than =z, and the other with a common range

angle ' = 2x-y which is greater than x. The first group is usually

8.0 The solution may not be unique, see Section 8.3.
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the one of interest in most practical problems, and will be called the
normal group, while the second, its complement. In fact each member of
ohe group will find its complement in the other, the two forming a com-
plete Keplerian conic. However, if the trajectory is parabolic or hyper-
bolic, then its complement, being open between the terminals, can hardiy
be regarded as a trajectory in the ordinary sense, and will be referred
to as an unrealistic trajectory for convenience. In the following the
main analysis will be concerned with the trajectory system of the normal
group with its range angle equal to ¢ < x . However, as we will see,
the information so obtained may be easily adapted to its complementary
group if needed. The boundary case of ¥ = x will be treated separately

later.

8.2 The Hodographic Representation

Based on the principle of the dimensionless hodographic mapping
given in Section 5.1 it is clear that all Keplerian conics are represented
in the dimensionless i)‘g -plane by a unit circle, and the images of all
the two-terminal trajectories of a common range angle V| are given by
the same arc of this circle, subtending a central angle  Dbetween the
radii CQ; and CQy which are 90° in advance (in the direction of mo-
tion) to the radius vector 0Q; and 0Q, in the physical plane respec-
tively (Figure I-1b); the points Q1 and Qp on the circle are there-
fore the images of the terminal points. To complete the construction of
such a hodograph one merely needs to locate the origin of the hodograph
for each particular trajectory under consideration.

At first sight it seems there might be a wide scattering of

such possible origins in the hodograph plane corresponding to the
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infinitely many possible Kbplerian trajectories leading from Q to
Qo through the same range angle V. However, a careful analysis shows
that the distribution of such origins is linear. The proof is as
follows:

With reference to Figure II-2 and the general correlations
given in Section 3.1 (see Rule H-6), the hodograph origin of the tra-
Jectory with an arbitrary departure speed parameter A} , and the cor-
responding approach speed parameter Ao will lie on both .auxiliary
circles (called speed circles) with radii X% and kg , tangent internally
to the unit hodograph circle at Q; and Qp vrespectively, and therefore it is
at their intersection OI or OII . The two speed parameters kl and

Ao are connected by

2
1-A T
—Z==:n (8.1)
l-}\.l I'l

according to Equation (1.9). Now draw the lines tangent to the_ hodograph
circle at Q@ and Q2 respectively, intersecting at T . Then the
three lines 01077 , TQ; and TQ are the radical axes of the two

speed circles and the hodograph circle taken in pairs, therefore, they

8.1 That is, the line

are concurrent with T as their radical center.
07017 also passes through the point T . Furthermore, from geometry

the line 010pp 1s perpendicular to the line of centers GG, . But,
the line G1Go 1s perpendicular to the chord Q1Qp in the physical
plane since the triangles CGyGo (hodograph plane) and 0Q1Qy (physical

plane) are similar. Consequently OIOII is parallel to the chord QlQQ'

8.1

*" See any standard text on Higher Geometry, e.g., Reference 28.
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With terminals Q and Qy given, T 1is a fixed point, and the chord
Qng is in a fixed direction, thus the line through OIOII is a fixed
straight line, irrespective of the departure speed given by A7 . In
other words, the intersection of any pair of speed circles, and there-
fore all the possible hodograph origins will lie on this same line,
which will be called the line of origins. This completes the proof. It
evidently applies to either group.

Based on the foregoing analysis the hodograph images of all
two-terminal trajectories of one group may be represented in the dimen-
sionless hodograph plane by a unit circular arc together with the straight
line which passes through the intersection of the tangents to the unit
circle at Q@ and Q , and is parallel to the chord Q3Qp in the physi-
cal plane, as shown in Figure II-lb. Each particular point on this line
corresponds to a particular trajectory in the physical plane, and the se-
lection of a particular trajectory to suit some specific purpose is no
more than the selection of a certain particular point on this line.

Thus in comparison with the complexity of the trajectory geometry in the
physical plane the situation in the hodograph plane is far simpler.

It is worth to note that, the hodograph for the complementary
group may be obtained by turning that for the normal group through 180°.
Thus information concerning the former may be obtained directly from
the hodograph for the latter, and a separate construction for the com-
plementary group is often unnecessary. Besides, as the geometry of the
hodograph shows, the angles between the line of origins and the two tan-
gents TQ and TQ, are equal to the base angles ¢ and ¢, of the

base triangle at Q1 and Qp respectively, and the inclination of the
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line of origins with the centerline CT is given by

(o4
1l
N o

(@2 - $l) (8.2)

VANI AV,

whence & = O according as Py

AV
2]
n

95 (or rp

VIA

8.3 A General Survey

Based on the foregoing hodographic representation we may now
make a general survey on the nature of the system of the two-terminal
Keplerian trajectories associated with an arbitrary base triangle. We
will first consider the normal group.

As seen from the hodograph construction, for a given base tri-
angle, there is a departure speed for which the speed circle will tan-
gent to the line of origins. This is the minimum speed below which no
such terminal-to-terminal trajectory is possible. The trajectory cor-
responding to the minimum speed is known as the minimum energy trajec-
tory; its hodograph origin is given by the point of tangency O, .

When the departure speed exceeds this minimum value, the speed
circle will meet the line of origins in two distinct points such as O
and OII in Figure II-2, giving two distinct trajectories corresponding
to the same departure speed. Such trajectories will be referred to as
the conjugate trajectories for short, and the corresponding origins, OI
and O11 , the conjugate origins. As the hodograph shows, conjugate tra-
jectories have different initial path angles: the one with the low path
angle as that assoclated with 0O 1s known as the low trajectory; and

the one with the high path angle as that associated with O the high

T’
trajectory. More precisely, the one with its path angle below that for

the minimum energy trajectory at the same terminal will be classified
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as the low trajectory; and the one with its path angle over that, the
high trajectory. For brevity the corresponding origins in the hodo-
graph plane will also be called low and high accordingly.

With reference to Figure II-2, when the departure speed parame-
ter is less than unity, the origin is within .the hodograph circle, and
the trajectory is elliptic. As the departure speed increases from its
minimum value, the conjugate origins O and Orp move toward the
points DI and DII respectively. At each Bf the points Dt and DII
the speed parameter is 1, both trajectories become parabolic. However,
it is to be noted that, of this conjugate parabolic pair the high one
with its hodograph origin at DII will have its point at infinity
(vhich has Dyp as its hodograph image) interposed between the terminals
Q) and Q 1in the assumed direction of motion, indicating that such a
trajectory is physically unrealistic. This is in fact the limiting tra-
jectory which the high elliptic trajectories approach when the initial
speed approaches that of escape. As the departure speed further in-
creases, the conjugate origins move from Dt and Dyy outward respec-
tively, and the trajectories become hyperbolic. On the low trajectory
side as the origin moves outward from Dy toward infinity, the eccen-
tricity increases without bound, the trajectory approaches the chord
line, and in the limit it degenerates into the chord @Q;Q, . This is
of course physically impossible since it requires an infinite departure
speed. On the high side, as the origin moves outward from Dyr toward
the point T, the eccentricity increases toward CT as its limit, and
the two asymptotes of the trajectory hyperbola approach the radii 0Q;

and 0Qp 1in the physical plane respectively. However, Just like the
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parabolic case, these high hyperbolic trajectories are unrealistic
since their points at infinity are interposed between the terminal
points. In the limit when the origin is at T, the trajectory de-
generates into the broken line segment Qpo0Q; implying again an in-
finite departure speed, and thus the trajectory is not only unrealis-
tic but also physically impossible. If the origin moves beyond T,
the trajectory will be the far branch of a hyperbola which can be
realized in a central repulsion field,&v2 but not in a gravity field.
These various situations are summarized in Table II-1.

Thus in conclusion, for a given base triangle in a Newtonian
gravity field the line of origins in the dimensionless hodograph plane
starts from the point T and extends toward infinity in the direction
of the chord line (QlQQ) in the physical plane; and the origins of all
realistic trajectories lie in the open interval from DI via DII to
infinity.- Furthermore, the conjugate origins are separated by the point
Ox with all the low origins situated at its right Side, and all the
high origins, its left side (Figure II-2); thus the points in the inter-
val O*DI and O*_DII are the mutually conjugate elliptic origins;
while those in the intervals Dp to infinity, and Dyp to T are the
mutually conjugate hyperbolic origins; and there is one and only one
pair of conjugate parabolic origins, the points Dy and Dyt .

All the foregoing findings for a normal group may be easily
adapted to its complement if we note the following:

(1) The complement of a high trajectory in one group is a low

trajectory in the other;

8.2 See Reference 12, Section X, pp. 908-909.
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TABLE II-1

LOCATION OF THE HODOGRAPH ORIGIN AND THE NATURE OF THE
TWO-TERMINAL TRAJECTORY (RANGE = ¥ < x)

The Corresponding Trajectory

T

Nt infinity

straight line

(9,9,

Location of the Type Nature
Hodograph Origin

Between Ox and D elliptic low, realistic

Between Ox and DT | elliptic high, realistic

AT O* ' elliptic minimum energy, realistic
At Dt parabolic low, realistic

At DT parabolic high, unrealistic

D1 to infinity hyperbolic low, realistic

Dy to T hyperbolic high, unrealistic

infinite speed, physically
impossible

At T broken line infinite speed, physically
(Q0Q7) impossible
Beyond T hyperbolic realistic in a central repul-

sion field, but not in a
gravity field

(2) An elliptic trajectory in one group and its complement in
the other are both realistic; while the complement of a realistic para-
bolic or hyperbolic trajectory of one group is unrealistic in the other.

" and, when a parabolic

Thus by interchanging the words "high" and "low,'
or a hyperbolic trajectory is concerned, interchanging the words realistic

and unrealistic, a similar table for the complementary group may be con-

structed from Table IT-l. For the benefit of later development it is also



-68-
worth to note the following additional relations between a trajectory
(realistic or unrealistic) and its complement:
(5) All geometrical elements of the two are identical since
they are of the same Keplerian conic;
(M) All terminal quantities which involve directions are equal

in magnitude but opposite in sign, e.g.

V. +Vi =0, ¢ +¢ =0 (8.3)

In the light of the foregoing analysis we see that in the physi-
cal plane (Figure II-3a) the elliptic trajectories of the normal group are
all confined in the infinite region (A), while the realistic hyperbolic
trajectories of the same group are all confined in the finite region (B).
Similarly, elliptic trajectories and the realistic hyperbolic trajectories
of the complementary group are all confined in the regioﬁs (A") and (B'")
respectively. The two conjugate parabolas and the three sides of the base
triangle form the boundaries of these regions as shown in Figure II-3a.
Consequently, the trajectories of both groups associated with a fixed
base triangle all lie outside this triangle; and the boundary of this
triangle form the limiting trajectories when the speed increases indefi-

nitely.8'5

8.4 Limits of Variation of the Trajectory Elements

It is interesting to note that, of the infinitely many Keplerian

trajectories associated with a given base triangle, there exist certain

8.5

It can be shown that the trajectories will all lie within the base
triangle if the field is a central repulsive one.
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limits for the possible variations of some of the trajectory elements.
As generally known and pointed out earlier, there is a minimum value for
the initial terminal speed below which no such a trajectory is possible.
Consequently there are corresponding limits for the orbital energy,
major axis, and the final terminal speed respectively. An examination
of the hodograph shows that there exists also a least eccentricity which
the trajectory can attain. It is given by the perpendicular distance
CE in Figure II-3d since the eccentricity is always equal to the origin-
to-center distance in the ﬁ:/y -plane (see Section 5.1). Directly from

the geometry of the hodograph one finds

= CE = CT|sin 8| = sec g |sin L (oo = 97)] (8.4)

€ >

min

which, after some trigonometric simplifications, reduces to

_Imrp| |1 (8.4a)

min
yA m

where m 1is defined by

m =2 - Ji-2n cos ¥ + n° (8.5)
Tl

Thus a circular trajectory is possible only when ry =T, and the
greater the numerical difference between the terminal distances, the
greater will be the least eccentricity, for a given chord length.

As observed earlier, when the initial speed increases indefi-
nitely the eccentricity of the realistic trajectories of the normal group
increases without bound while that of the complementary group approaches
CT as limit. Thus for such a group there is an upper limit for the
hyperbolic eccentricity

ey, = CT = sec g (8.6)
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which depends only on the vertex angle of the base triangle, not on

the terminal distances. This limiting value itself will approach infini-
ty when  approaches g .

Furthermore, the hodograph shows that although the departure
speed may increases indefinitely, the corresponding path angle can only
vary within two definite limits. For the normal group the upper limit
is given by the angle CQ1Dyy which the departure path angle ofithe
high elliptic trajectory approaches when the departure speed approaches
parabolic. From the hodograph geometry this angle is found to be

($)yy, = 2 Cadrp = = (x + 01- 0) (8.7)

where,

-1 l-n
m

w = cos'l € . = COoS
min

(8.8)

The lower limit is the path angle for the straight line trajectory

Q1Qp which the hyperbolic trajectory approaches. Obviously it 1is

(¢1)LL =¢ - g . (8.9)

Consequently all possible directions of departure are confined in the

angular region (a1) as shown in Figure II-3b, with an included angle

Ay = By - By = - = (o + o) (8.10)

The path angle at the final terminal is likewise limited, and all the
possible directions of approach are confined in the angular regions (ag)
in Figure II-%b. Similar regions exist for the complementary group.
Consequently, with a given configuration of the base triangle, there are
certain forbidden regions for the direction of departure as those marked
(b1) and (c1); and certain forbidden regions for the direction of approach

as those marked (bo) and (co). These limits of variation and the total
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included angle of eacl region are listed in Table II-2. It is to be noted
that, as shown in the table, the regions for possible departure for the
normal and the complementary groups have equal included angles, and it
can also be verified from the hodograph that they are symmetrically
oriented with respect to the bisector of the base angle at the initial
terminal; the same is true for the regions of possible approach at the
final terminal. Furthermore, the included angle of the inner forbidden
region of departure (cl) and that of the outer forbidden region of ap-
proach (bg) are equal respectively to the base angles at the correspond-
ing terminals; while the included ang:.:s of the outer forbidden region
of departure (by) and the inner forbidden region of approach (cp) are
supplementary to each other. In view of Equation (8.4) and Table II-2,
we may say that for a given vertex angle +V, the smaller the difference
between the base angles, the larger will be the outer forbidden region
of departure and the smaller will be the inner forbidden region of ap-
proach. In the symmetrical case, ¢ = Po, T] = ré, the included angle
of the outer forbidden region of departure reaches its maximum and that
of the inner forbidden region of approach reaches its minimum, both
equal to 90°.

Finally we observe that the apsidal axes of the present system
of trajectories are also confined in certain regions as tabulated below
(see also Figure 3c). Of the four boundary axes, OXpy and OXppp are
the apsidal axes of the two parabolic trajectories respectively, while
OXDI and OX»II are those of the limiting hyperbolic trajectories of
infinite departure speed respectively. Their directions may be obtained

directly from those of the corresponding 9 -axes in the hodograph plane.
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Evidently, 0% is perpendicular to the chord @Q,Q, , and OXDII

bisects the vertex angle V .

REGIONS FOR APSIDAL AXES (

TABLE II-3

84)

POSITIVE PORTIONS™®

Trajectories Boundary Axes Included Angle
Elliptic OXDI and OXDII A @e = 20
Hyperbolic

Normal Group OXpr and OX,T A6y = X -w
2
Complementary Group OXDII and Oxwl A @ﬁ = % + P - W

8.4

Defined in Figure I-2a.



9. CHARACTERISTICS OF THE CONJUGATE TRAJECTORIES

9.1 The Chordal and Radial Components of the Terminal Velocities

The characteristics of the two-terminal trajectories can be
best analyzed by using the chordal and radial components of the terminal
velocities. As introduced by Godal in Reference 37 they are the compo-
nents in the chordal and radial directions respectively as depicted in
Figure II-lba. A method of determining such components in the hodograph
will be introduced below.

As shown in Figure II-hb, if 0 is the origin of the hodograph,
then from the proof given in Section 8.2, OT is in the chordal direc-
tion, while by construction TQ; and TQ are in the radial directions
at Q and Qy respectively. Thus in the k&-plane, that 1s, if we
take the radius of the hodograph circle as u/h instead of unity, the
hodograpn gives the terminal velocities

Vi = 0QL, Vo = 0Q (9.1)

with their chordal and radial components

Vgi = 0T ’ _vil = E@i

VEE = 65’ <vﬁ2 = ﬁi& 9:2)
from which we deduce immediately that

Voo = Vo, VR = Ve (9.3)

The second relation stems from the fact that the two tangents T@i and
Tﬁg aré equal in length. Thus along the same trajectory the chordal
components of the terminal velocities are identical in magnitude and
direction, while the radial components are equal in magnitude. Hence
if we are dealing with their magnitudes only, the subscripts 1 and 2 are

unnecessary and will be dropped hereafter.

...75 -
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Furthermore, the hodograph geometry shows that

_CQtan ¥ = B tan ¥
VR £Q tan s =5 tan s (9,&)

With the angular momentum expressed as
h = Vcd (9-5)

where d 1s the perpendicular distance from the field center to the
chord Q1Qe (to be called the base altitude for shor), Equation (9.4)
becomes

VaVg = i tan

M b

(9.6)

Thus the product of the chordal and radial components of either terminal
velocity is constant for all trajectories passing through the given
terminal points.

Equations (9.3) and (9.6) are known as Godal's compatibility
conditions, which were analytically derived in Reference 37. They follow
immediately from the present hodograph construction. These simple rela-

tions will be useful in the analyses that follow.

9.2 The ConJjugate Relations

By definition, conjugate trajectories are those having the same
initial and final terminal points, same departure speed, and the same
range angle. (This implies that they are of the same group.) The proof
of the existence of the line of origins has already revealed the existence
of a pair of conjugate trajectories for a given base triangle and an arbi-
trary departure speed (> Vx), and lends itself a method of construcing
such a conjugate pair in the hodograph plane by simply drawing the speed
circle of radius Ki according to the given speed and finding its inter-

sections with the line of origins, which are then the conjugate origins.
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With the origins thus determined the elements of each of the conjugate
pair may then be found in the usual manner according to the correlation
rules in Chapters 3 and 5. The general geometry of such a hodograph is
shown in Figure II-2; and a typical conjugate pair of each type of the
Keplerian trajectories of a normal group and their hodbgraph images are
shown in Figures II-5 to II-T7.

Based on such hodographic representation we may now proceed
to examine some of the essential features of the conjugate trajectories.
With reference to Figure II-2 the geometry of the hodograph gives

TO; - TOpp = Tq) - TQ, (9.7)
However, in a dimensionless hodograph we have by definition

h hyt

— g —  hpp
T0p = —=Vop , TOrp = VoI

" "
Ta1 = ;l Vrr o T =7 VR

and furthermore, from the hodograph geometry,
T‘Q-’l = TQ—E = tan "211'{ (9'9)

Substituting Equations(9.8) and (9.9) into (9.7) and making use of
Equation (9.5) yields

Vor * Vorr = Ve * Vepr = & ten g (9.10)

Thus for fixed terminal points the product of the conjugate chordal com-
ponents of the terminal velocity and that of the conjugate radial compo-
nents are identical, both equal to the same constant, determined by the
geometry of the base triangle.

Furthermore, combining Equations (9.10) and (9.6) gives the

reciprocal relations,

Vor =Vrrr > Vrr = Verz (9.11)
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That is, by merely interchanging the chordal and radial components of
the velocity at either terminal we may change the trajectory to its
conjugate.

Next, since the angular momentum is directly proportional to
the terminal chordal component, it follows immediately from Equations
(9.10) and (9.5) that the conjugate angular momenta are related by

hy + hyp = ud tan g (9.12)

Furthermore, as the latus rectum of the trajectory conic is determined
by the angular momentum according to Equation (1.6), Equation (9.12)
leads to

1+ Trp = &8 tan® iﬁ (9.13)

The above equations show that in a given gravity field the
product of each pair of the conjugate elements, Vo, Vg, h, and F, is a
constant, depending on the geometry of the base triangle, but independent
of the initial terminal speed, and hence the choice of trajectory. In
the case of the product of latus recta it is also independent of the field
strength u . PFurthermore, as these products involve no other geometrical
parameters than ¢ and d, base triangles of different configurations
will have the same values of these conjugate products as long as they
have the same vertex angle and the same base altitude.

Finally as shown in Figure II-5, 6, and 7 the hodograph gives
the conjugate patl: angles at the initial terminal Q; for either type
of the trajectory,

Prr =3 cq0 , Pirr = J CQO1T (9.1%)

Based on the sign convention for the angular measurement of ¢ defined

in Figure I-2 and the geometry of the hodograph (Figure II-5) it is
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seen that, for an elliptic trajectory,
4 Q07 = = (I CO10s = 4 07G1Gn)
1¥I = 5 1¥2 I71V2
1
¥ €011 = 5 (9 Co1Gp + 9 01161 0p)

By the similarity of the triangles CG1Go in the hodograph plane and
0Q1Q in the physical plane, the angle CG1Gy, may be identified as
the base angle o7 ; and by hodograph construction the angles 071G Go
and O17G1Go are equal in magnitude, which will be denoted by o -

Thus the foregoing relations may be written as

-1 -
(9.15)
ror = % () + 07)
from which we deduce immediately
b1+ P =1 (9.16-1)

Evidently, similar relation holds at the final terminal Q2 , that is

QSQI + fégII = ¢ (9.16-2)

An examination of the hodograph geometry for the hyperbolic
case (Figure II-6) shows that Equation (9.15) also holds if we define
¢, to be x - < 07GiGo . Both definitions for ¢ become identical
for the parabolic case (Figure II-7) in which the points G and Go
coincide with € (the center of the hodograph circle), and the limit-
ing direction of GyGo is given by the line through C and perpendicu-
lar to the line of origins. Consequently Equatiors (9.16) are also valid
for the hyperbolic and parabolic cases. Thus in conclusion, the alge-

braic sum of the conjugate path angles at either terminal is equal to



-8l
the Dbase angle of the base triangle at that terminal. Since for
fixed terminal points, . and ¢, are constants; we may say that
algebraic sum of the conjugate path angles at either terminal is a
constant, independent of the terminal speed, hence the choice of tra-
Jectory. This conclusion has been previously established in Reference
9 for the symmetric, elliptic case, the present analysis shows that it
carries over to the general case not necessarily symmetric, and cover-
ing all three types of the Keplerian trajectories even though the high
trajectory is not realistic in the hyperbolic or parabolic case.
Finally, it is obvious that the conjugate trajectories, being
of the same departure speed, will have the same orbital energy, the same
magnitude of the major-axis, and the same speed at the final terminal.

A1l these conjugate relations are summarized in Table II-L.

TABLE II-4

SUMMARY OF CONJUGATE RELATIONS

Formulas
The Reciprocal Relations Ver = Vrrr + Vorr= Vrr (9.11)
VCIVCII = VRIVRII = g tan g (9.10)
The Constant Product Formulas hhyr = pd tan g (9.12)
Trpp =42 taneg (9.13)

Br+ ¢1II =9

The Constant Sum Formulaes (9.16)
Bor + Borz = %2

Other Relations Vir = Virr  (by definition)
Vo1 = Vorr
ky =kpg (9:17)
&I = aII

NOTE: All these relations hold for a conjugate pair of trajec~
tories of either the normal group or the complementary
group. Change of signs of the path angles in Equation
(9.16) is needed for the complementary group.
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9.3 The Principal Elements of the Conjugate Trajectories

In ballistic missile problems or problems of interplanetary
flight it is usually desirable to determine the trajectory elements
for an arbitrary departure speed V, when the range ¢ and the termi-
nal distances 1ry and rp, are prescribed, that is when the base tri-
angle is given. The hodograph construction described in Section 9.1 has
already provided a simple graphical means for the determination of such
elements. If analytical expressions are sought, we may easily proceed
from the geometry of the hodograph.

A simple way for such derivation is again to start from the
chordal and radial components of the terminal velocity. Let us first
consider the trajectories of the normal group. As the hodograph shows
(Figure II-L), for a given departure speed V; these two components
are related by

2

2 2
Vo + Vg =V + 2V, Vg cos @ (9.18)

Combining it with the compatibility condition (9.6) yields the pair of

solutions

(¢ F x)

AS] o

VC =
) (9.19)
Vg =35t + %)
where the upper sign corresponds to the high trajectory of the conjugate
pair and the lower sign, the low trajectory (this double-sign conven-
tion will be followed through in Part II), and the parameters ¢ and X

are defined by,

]

2
\/Vl + dEE tan }21{ c032 gi
(9.20)
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With these formulas as basis, other trajectory elements

follow immediately from the general orbital relations. For example,

h = Vcd = g’-(g F X) (9'21)
_h _a :
Vo1 = H = E(g F X) (9.22)
vV
cos By = V%L _.Erivl(g T X) (9.23)
Fo b2 %E(g Fx)° (9.24)
M v

11/2

2
€ = [1-05(1-25) cos® 117" = {1 - Q%rz(l-xf)(gxx)ﬂ (9.25)

and so on. By using the trigonometric relations among the geometrical
elements of the base triangle, the trajectory elements given by the fore-
going formulas may all be expressed in terms of the three independent
elements of the base triangle, ¥, @7, and ry, together with the departure
speed. The results are summarized in column 1, Table II-5. For conven-
lence, all speeds have been expressed in the dimensionless forﬁ of speed
parameters. The transition from the present set of independent variables
to the more usual combination: ¥, n, r{, and Ay 1is straightforward
though tedious. To avoid long, cumbersome expressions, a redundant
variable m defined by Equation (8.5) is introduced, and the results
are given in column 2, Table II-5.

It is to be noted that, since Equations (9.6) and (9.18) on
which the present derivation is based, are independent of the type of
the trajectory, so are all the formulas shown in Table II-5. Finally
in line with the observations in Chapter 8 although the formulas here
stand for all three types of the Keplerian tiajectory, they may or may

not be realistic (gee footnote, Table II-5).
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Among these principal elements of the conjugate trajectories
the path angle ¢l deserves particular attention since it determines
the correct direction of departure for an arbitrary speed. However, formu-
la (9.23) may result in some ambiguity in finding the angle yﬁl from its
cosine since ﬁl may be either positive or negative. An alternative
formula for bl obtained directly from Equation (9.15) with the aid of

the hodograph geometry is

~

2
- -1 1- 1-A
Py = L | cogt lmmcos ¥ | gl 20 7 (1-n cos y)(1-27) (9.26a)
2 L m - m k%
= %. L@l + cos~t ( i% tan g sin @ - cos @l)} (9.26D)

Under the assumption O < ¥ < 5 we have 0 < ¢ < nw and O < ¢ < 5, Thus either
of the above expressions givesa unique value of ¢l for each of the conjugate
pair without ambiguity. Like Equation (9.23), expression (9.26a) or

(9.26b) holds regardless of the type of the trajectory even though it may
not be realistic.

Evidently all formulas of this section may apply to the comple-
mentary group with a change of sign for the path angle and interchange of
the upper and lower signs in the double-sign convention. The dependence
of the path angle and the trajectory eccentricity on the range angle, the
distance ratio, and the departure speed are shown graphically in Figures
IT-14 and II-15.

Very often the maximum and minimum radial distances on the tra-
jectory are of interest. One should be aware of the fact that, since the
trajectory is only a part of the Keplerian conic, the two apses may or
may not lie on the trajectory, and consequently the maximum and minimum
radial distances may or may not be given by the apocenter and pericenter

distances. In the hodograph plane this is indicated by whether
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or not the Zk-axis (the line through O and C) will cross the arc
ézbg » the hodograph image of the trajectory; and this is in turn de-
termined by the location of the hodograph origin relative to the two
key points H; and Ho , the intersections of the line of origins
with the radii 0Q; and 0Qy (or their extensions) respectively. An
examination of the hodograph will help to clarify the situation and
the criteria obtained are summarized in Table II-6. Thus in a normal
group it is possible to have either the apocenter or the pericenter
alone, or none of them, but never both lying on the trajectory. In
case the apocenter or the pericenter does not lie on the trajectory,
then the maximum or minimum distances, instead of being given by rp
or rp will be either r; or rp itself. It is to be noted that

same criteria of Table II-6 may apply to the complementary group if

we interchange the letters A and P.

TABLE II-6

HODOGRAPHIC CRITERIA FOR THE OCCURRENCE OF THE APSES ON THE TRAJECTORY (¥ < x)

(a) n<l (b)n=| (¢) n>l

Line of
Origins

Occurrence of Apsis Location of the Hodograph Origin

on the Trajectory n<l n=1 n>1

A, not P Between Dy1 and H; | Between Di1 and C | Between Dyt and Hp
P, not A Beyond Ho Beyond C Beyond H;

Neither A nor P Between H; and Hp -—— Between H; and Ho




10. ANALYSIS OF SOME PARTICULAR TRAJECTORIES

The trajectory analysis made so far has been of a general nature,

a brief analysis for some of the particular trajectories is now in order.

10.1 The Minimum Energy Trajectory

Since the minimum energy trajectory is fairly well—known,lo
only a few supplementary remarks will be sufficient.

In line with the concept of conjugate trajectories a minimum
energy trajectory may be viewed as the one conjugate to itself. By using
this concept all formulas for the minimum energy trajectory follow immedi-
ately from the previous conjugate relations. For example, setting VCI =

v =V

CIT v

v Vg, in (9.10) we find

Cx 2 RI = YRII

v =V = (v

10.1
oy Ry (10.1)

1/2 1/2 L y\L/2
oot =(VriVmrr) = (d tan 2)

Thus the minimum energy trajectory is characterized by the fact that the
chordal and radial components of either terminal velocity are identical

in magnitude, both equal to the geometrical mean of any conjugate pair of
either the chordal components or the radial components, with the same
and d . Formula (10.1) is in fact self-evident from the geometry of the
hodograph since in the present case (see Figure II-8) the speed circle at
Ql_ is tangent to both the line of origin and the line T Q1 and the two
tangents drawn from an exterior point to a circle are necessarily equal.
This simple fact enables one to locate the optimum origin Oy in the hodo-
graph plane for the minimum energy trajectory by simply layiﬁg off TOx =

T Q1 on the line of origins.

10.1 See for example References 9, 12, 34, L2,

-90-
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Likewise by using the same concept we deduce

hy = (hIhII)l/2 - {pd tan g— 1/2 (10.2)
__ /2
Ty = (rlrg) = d tan g (10.3)
1 1
¢1* =2 (¢11 " ¢lII) =2 %
(10.14)
_ 1 _ L
bo, == Wor* Porr) = 2 %

Thus the optimum values of the angular momentum and latus rectum for min-
imum energy trajectory are the geometrical means of any conjugate pairs

of the angular momenta and latus recta respectively for the same range
angle V¥ and the base altitude d ; while the optimum ferminal path angle
is the arithmetic mean of any conjugate pair of the terminal path angle
for the same base angle at the terminal poinﬁ, and is equal to one half of
this base angle. The last statement on the path angle, in fact, amounts
to saying: the optimum direction of departure for a minimum energy tra-
jectory always bisects a pair of conjugate directions of departure and

the same is true for the resulting direction of approach. In parti-
cular, the optimum direction bisects the external angle at the cor-
responding terminal since the chordal and radial directions at either
terminal are such a conjugate pair; thus the optimum direction and

the bisector of the base angle at the same terminal are perpendicular

to each other. It is interesting to note here that the direction of opti-

mum departure is determined by the initial base angle alone. Consequently
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this direction will remain fixed if the final terminal moves along the chord
line., This is in analogy’with an artillery trajectory over a flat earth.
Imagine a target point is in the same horizontal plane as the initial ﬁoint,
then o, = 90° , and Equation (10.4) gives the optimum direction of depar-
ture at 45° with the local horizon just like the artillery case, althoﬁgh
the force field considered here is central instead of uniform, and hence
the trajectory here is elliptic instead of parabolic.

The optimum departure speed parameter for the minimum energy tra-
jectory is given by the hodograph as the radius of the speed circle at Q1
which is tangent to the line of origins, and the geometry of the hodograph

(Figure II-8) shows that

kl 2 . tan < tan ?l (10.5)
* o -
which simplifies to
2 ) 7
My = - — (10.6)

where s 1s the half-perimeter of the base triangle, defined by

w0
il
M|

(r{ + rp + 1) (10.7)

The minimum energy and the corresponding semimajor axis then found to be

ke =E (7 -1) =-E (10.8)
r S
1
and
b L
_ = = 10.¢
Ay 2Ly 5 ( 9)

Thus, in a given gravity field, while the angular momentum and the latus

rectum of a minimum energy trajectory are determined by V¥ and d alone,
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the orbital energy and the major axis depend only on the perimeter of
the base triangle.

Following the foregoing formulas all other elements of a mini-
mum energy trajectory may be easily obtained from the general orbital
relations. Of course all formulas and conclusions in this section hold
for a normal group or its complement as well except for a change of sign
in the path angle, since the minimum energy trajectories of the two groups
are of the same Keplerian ellipse.

In regard to the occurrence of the apses, it is to be noted
that, for a normal group the apocenter of a minimum energy trajectory
always lies on the trajectory while its pericenter does not, since the
optimum origin O, in such a case always lies between the points Hj (or Hg)
and D17 (see Table II-6). Thus for such a trajectory the apocenter is
actually the trajectory peak while the point of closest approach on the tra-
Jectory is elther Q; or Qp according as ry; < rp, or ry >rp . A similar
statement holds for a complementary group except that it is the pericenter
which always lies on the trajectory, not the apocenter. Sometimes the lo-
cation of such apses on the trajectory is of interest. By considering the
sirilarities of the triangles 0Q1Qc (physical plane) and CG Go (hodograph

plane) a little trigonometric manipulation yields

sin
tan =
WI cos ¥ + 0
(10.10)
tan llfg - Sin T
cos ¥ + ﬁ

where the angles V; and YV, are identified in Figure I1-8, and

2
N o= (sin c—;l / sin %) (10.11)
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which is a constant for a given base triangle. The above equations give
the location of the apocenter for a normal minimum energy trajectory or

the pericenter of its complement.

10.2 The Least Eccentric Trajectory and Its Conjugate

As shown in Section 8.4, there is akleast eccentric trajectory
for each fixed configuration of the base triangle. The hodograph origin
for suh a trajectory is given by the point E, the foot of the perpendicu-
lar drawn from the center of the hodograph circle to the line of origins,
and the least eccentricity is given by Equations (8.4) or (8.4a). The
dependence of €pin, on n and § 1is shown graphically in Figures 15a,
b, ¢, d as the least eccentricity line which forms the lower envelope for
all the eccentricity curves. Obviously with its hodograph origin located
at E, a least eccentric trajectory will have its apsidal axis parallel
to the chord lines Q;Qp 1in the physical plane, and consequently its
minor»axis will pass through the middle point of the chord Q1@ (Figure
II-9).

It can be shown that the trajectory conjugate to the least
eccentric one is the one having its hodograph origin located at F, where
the line of origins crosses the line QlQQ in the hodograph plane. This
trajectory ellipse will have the line Q;Qy as its diameter since the
terminal velocities are now pointing in the opposite directions. The
departure path angle to achieve this particular trajectory of a normal

group is, as seen from the hodograph,

¢lII = -¢QII = g_g (10.12)
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The conjugate path angle, which is the one to achieve the least eccentric

trajectory is then, according to Equations(9.16-1) and (10.12)

Prp = -y = %(@l - 9,) (10.13)

The initial speed ratio 1Ay required for both trajectories and the re-
sulting final speed ratio A, may be easily found by noting that the
speed ratios at the orbital points diametrically opposite on an elliptic

orbit are connected bylo'2

2 2
A+ A =1 (10.14)

which, when combined with the general relation (8.1), yields
2
A o= A = — (10.15)

The semimajor axis and the orbital energy of either trajectory are then

given by
a = %(rl 1) (10.16)
K = - —H— (10.17)
I‘l + I‘g

Thus the terminal speeds, the major axis, and the orbital energy of a
least eccentric trajectory or its conjugate all depend on rj and 1o

only, and independent of the vertex angle .

10.3 Other Trajectories

In addition to the few particular trajectories analyzed above
there are some other ones which might be of interest. For example, asso-
ciated with the point Hj , the intersection of the line of origins with
the radius 0Q; (or its extension, see Table II-6), the trajectory is

one of horizontal departure, since the departure path angle is zero as

10.2 gsee Reference 9, p. 17k.
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indicated by the hodograph. Such a trajectory will have its apsidal
axls coinciding with the initial terminal radius 0Q; 1n the physical
plane; and the point @ will be 1ts pericenter if ry <rp, , or apo-
center if rp > rpo . Similarly, associated with the point Hp , where
the line of origins crosses the radius 0Q, (or its extension) the tra-
Jectory will have its final path angle equal to zero. Its apsidal axis
will coincide with the final terminal radius 0Qy and the point Qp
will be its apocenter if r, > 1r; or pericenter if rp < r; . In the
latter case, if Qe is considered as the target point on a spherical
surface, the trajectory will be cotangential with the surface, and is
known in ballistics as the grazing trajectory. In reentry problems it
represents the limiting trajectory for reentry to be effected. The
principal elements of either the trajectory of horizontal departure or
the grazing trajectory may be easily obtained from the hodograph.

rGenerally speaking, particular trajectories of interest depend
on the particular problem at hand. Complete analysis of all these tra-
jectories is impossible, and their treatment will be left to the separate

studies of individual problems.



11. THE CASE OF 180 DEGREE RANGE

11.1 The Hodographic Representation and a General Survey

So far the analysis has been restricted to the case V¥ < =«
In the boundary case of 1V = m , the chordal and radial components of
the terminal velocities all become parallel, the radical center T re-
cedes to infinity, and the method of hodograph constrﬁction of Section
8.2 breaks down. However, the proof for the linear distribution of hodo-
graph origins still stands. With the terminal points @, and Q, lo-
cated on the hodograph circle as usual, obviously the line of origins
will be normal to the diameter Ql Q2 as shown in Figure II-10b. The
distance from the center of the hodograph circle to the line of origin
is still given by CE according to Equation (8.ka) which reduces to

|1-n|
- (11.1)
1+n

in the present case.
In the physical plane the base triangle degenerates into the

line segment Ql Q which becomes a focal chord; and the normal

o
group and its complement now have the same range angle V . In fact,
associated with a given chord Q]_ Q2 all distinctions between a normal
group and its complement disappear except in the direction of motion.
For convenience, however, the same terminology will be retained here by
referring to the group moving in the counterclockwise direction as nor-
mal, and the other its complement. The hodograph in Figure II-10b is
drawn for the normal group, and the corresponding hodograph for its com-
plement may be obtained by rotating Figure II-10b through 180° as usual.

Following the general survey of Section 8.3 and with reference to Figure

IT-10, all realistic trajectories will have thelr origins lying in the
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open interval from Dy via Dy to infinity. Furthermore, the symmetrical
nature of the hodograph shows that the conjugate trajectory conics are now
identical and symmetrically orientated with respect to the line Ql_ Qé ;
and in fact the conjugate of a trajectory is the reflection of its comple-
ment about Ql. Q2 . The inner forbidden region of departure and outef
forbidden region of approach both vanish; the axes of the two limiting hy-
perbolas both coincide with the normal to the line Ql Qo at 0, but point
in the opposite directions. The various regions and their included angles
are shown in Figure II-10a and Table II-7. A typical conjugate pair and
the corresponding hodograph are shown in Figures II-11 and II-12 for the
elliptic and hyperbolic cases respectively; for the parabolic case, see

Figure I1I-10.

11.2 The Characteristics of the Conjugate Trajectories and Their Principal

Elements
Although the chordal and radial velocity components are no longer
significant in dealing with the 180° range trajectories, the previously de-
rived conjugate relations are preserved, Of course the constant in Equa-
tion (9-6) or (9.10) goes to infinity as  approaches 1 ; however, the
constant in each of the Equations (9—12) and (9—13) does approach a finite

limit respectively. To see this we write the trigonometric identity

2
d . tan g— - 12 gipf % (11.2)
{
and find
2r_r
12
lim d . tan B = — (ll.3>
2 r-+ T
- 12

Consequently the conjugate relations (9.12) and (9.13) reduce to

2UT Y
hohooo o= 12 (11.4)
ry+ rp
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2.2
hr “r
— (11.5)
r.r =~
I"1I 2 ’
(rl+ rs)
for the present case. In fact, at this point we may go one step further;

since, as pointed out earlier, the conjugate trajectories are now of iden-

tical conics, we have

hp= hep , Tp= Tpp (11.6)

which, when combined with Equations (11.4) and (11.5), give immediately
the expressions for the angular momentum and the semi-latus rectum as

shown in Table II-5 (column 3).

Noting that P =05 = O when V¥ = n , the conjugate relations

(9.16) now becomes

(11.7)
Por * Porr -
which are also evident from the symmetry of the present hodograph. To

evaluate the terminal path angles we note from the hodograph that, in the

right triangles Q0B and @ 01E (Figures II-11, II-12),

2n

———— 2 or————
Q01 = 2N\7 cos ¢lI s Q01  cos i1 = nt 1

from which, by eliminating QIQI, we obtain

cos ¢lI. = xl n+l (11.8)
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And in view of Equation (11.7) we may write

(B - icos_1< = Fii) (11.9)

A similar expression stands for the conjugate values of ¢2 . Note that

the same results here may be obtained by setting ¥ = n in Equation (9.26a)
This shows that the formulas (9.26a,b) originally deduced for the case Y=n
hold also in the limiting case of V¥ = n . DNote here the special case of
parabolic flight. The geometry of the hodograph, Figure II-10(c), shows

that
‘¢l*| + ’¢2*‘ = -721 (ll.lo>

for either group. That is, the terminal velocities in a 180° parabolic
flight are normal to each other. Geometrically this implies that the two
tangents at the ends of a focal chord of a parabola are orthogonal. This
is in fact a geometrical property of a parabola.

Returning to the general case it is to be noted that, for a 180°
flight Dbetween fixed terminals, although the initial speed may be arbi-
trary, its ©-component is not. This can be seen from the hodograph,

Figures II-11, II-12, since

1
\ - = QB = 2 (11.11)
o1 > 1 N+l

which shows that xgl and consequently V@l is fixed by the terminal
distances alone, hence independent of the departure speed. The same is
true for V@2 .

Formulas for other trajectory elements may be likewise deduced
from the hodograph geometry of Figures II-10 etc. or by using appropriate

orbital relations. The results are summarized in column 3, Table II-5 and
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the dependence of some of the principal trajectory elements on the distance
ratio and the inital speed are shown graphically in Figures 14d and 15d.
It is worth noting from Table II-5 that , for { = n , in addition to the
©-components of the terminal velocities, the angular momentum and latus
rectum are also fixed by the terminal distances Ty and r, alone, hence
they are independent of the initial speed, or the particular choice of tra-
Jectory.

The criteria given in Table II-6 for the occurrence of apses on
the trajectory still stand for the present case. However, it is to be noted
that, as the present hodograph shows, the points Hy and Hp coincide at
E . This indicates that at least one of the two apses will lie on the tra-
Jectory, and both will be on the trajectory when the origin is at E ,

corresponding to the minimum energy trajectory.

11.3 The Minimum Energy Trajectory and the Least Eccentric Trajectory

When V¥ = n the minimum energy trajectory and the least eccen-
tric trajectory coincide, both have the point E as their hodograph ori-
gin (see Figure II-13). The trajectory is a half ellipse with its apsidal
axis coinciding with Q1Q2 , and the trajectory conic is the well-known
Hohmann ellipse. Thus a Hohmann's ellipse is not only the least energetic,
but also the least eccentric, among all trajectories of common terminals
with 180° range. From Equations (10.17) and (11.1) the orbital energy and

the eccentricity of a Hohmann's ellipse are found to be

9
k¥ Iw - P47, (11.12)
and
1-n
ex lwzﬂ = __’__.'_ (11.13)

14n
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Comparing these formulas with the corresponding general formulas
(10.8) and (8.4a), we see that, if the terminal distances are fixed,
but the range angle is allowed to vary, the energy of the Hohmann
ellipse is in fact the greatest among all the minimum energy ones;
while its eccentricity is the overall minimum in the entire trajec-
tory system. Other elements of the Hohmann ellipse can be easily

obtained from the hodograph as usual.
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12, SUMMARY OF FINDINGS

The main findings obtained in the present analysis may be sum-

marized as follows:

12.1 General Conclusions on the Two-Terminal Trajectory System

(1) For a system of two-terminal trajectories of the same range
angle, the locus of the hodograph origin in the dimensionless fiyé—plane
is a straight line parallel to the line connecting the terminal points in
the physical plane. This is true regardless of whether the range angle is
less than, greater than or equal to =n. (See Figures II-1b and II-10c)

(2) Of the infinitely many two-terminal trajectories associated
with a given base triangle in a given field:

a. Only two are parabolic, and all the realistic trajectories,
elliptic and hyperbolic, are confined in the region outside the base tri-
angle and bounded between the branches of the parabolas extending from each
terminal to infinity, with those of the normal grouﬁ all above the chord
or base <Q1_Q2) of the base triangle and the complementary group in the
rest of the region (see Figure II-3a).

b. There exist an upper.limit and a lower limit for the departure
path angle in each group beyond which no such a trajectory is possible;
consequently, there is a forbidden angular region for the directions of
departure at the initial terminal. A similar situation exists for the
directions of approach at the final terminal. The included angle of each
region is determined by the geometry of the base triangle (see Figure II-3
and Table II-2).

c. The positive portions of the elliptic apsidal axes, and those

of the hyperbolic apsidal axes are also confined in certain angular regions

-118-
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bounded by the apsidal axes of the two parabolic trajectories and the two
axes coinciding with the base altitude and the bisector of the vertex angle
¥ of the base triangle respectively. The included angle of each region

is also determined by the goemetry of the base triangle (see Figure II-3c and
Table II-3).

d. Besides the well-known minimum speed, there exists a least
elliptic eccentricity which the trajectory may attain, and an upper limit
for the hyperbolic eccentricity of the complementary group (see Equations
(8.4a) and (8.6)). There is no upper limit for the hyperbolic eccentricity

of the normal group.

12.2 On the Conjugate Trajectories

For a pair of conjugate trajectories associated with a given base
triangle and an arbitrary departure speed in a given field:

(l) The chordal and radial components of the terminal velocity
of one trajectory are equal to the radial and chordal components of the
terminal velocity of the other respectively (the reciprocal relation).

(2) The product of each conjugate pair of the following quantities
is a constant:

i. The chordal component of the terminal velocity.

ii., The radial component of the terminal velocity.

iii., The angular momentum.

iv. The latus rectum,
Fach constant depends on the vertex angie ¥ and the base altitude d
alone, hence independent of the departure speed, or the choice of the
trajectory pair.

(3) The sum of the conjugate path angles at either terminal

is a constant, equal to the base angle at that terminal.
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12.3 On the Minimum Energy Trajectory

A minimum energy trajectory is characterized by the following
features:

(1) The chordal and radial components of either terminal velo-
city are equal.

(2) The direction of motion at either terminal bisects any pair
of conjugate directions at that terminal. This direction dependé only on
the base angle at that terminal (see Equation (10.L4)).

(3) The chordal and radial components of the terminal velocity,
the angular momentum, and the latus rectum are the geometrical mean of the
conjugate pair of the corresponding quantities respectively associated

with a base triangle of the same vertex angle ¥ and base altitude 4.

12.4 On the Least Eccentric Trajectory

A least eccentric trajectory is characterized by the following
features:

(1) Tne apsidal axis of the trajectory ellipse is parallel to
the chord @1@o.

(2) The terminal speed parameters, the major axis, and the orbi-
tal energy all depend on the terminal distances only, hence are independent
of the range angle,

(3) The least eccentricity is proportional to the numerical dif-
ference between the terminal distances and inversely proportional to the

length of the chord (see Equation (8.k4a)).

12.5 On the Case of 180° Range (See also Section 12.6)
(1) The 6-components of the terminal velocities, the angular

momentum and the latus rectum are all fixed by the terminal distances 1y
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and rp alone, thus they are independent of the departure speed,
hence the choice of trajectory.

(2) General conclusions of 12.1 apply to the present case.
0f the forbidden regions, there exist only the outer one at the
initial terminal and the inner one at the final terminal (a special

case of 12.1(b)).

12.6 On the Hohmann Ellipse

(1) 1In a system of two-terminal trajectories of 180° range
the Hohmann ellipse has both the minimum orbital energy and the least
eccentricity.

(2) 1In a system of trajectories of two fixed terminal dis-
tances but varying range angle, the Hohmann ellipse has the overall

least eccentricity, but the greatest minimum energy.



PART TIT
HODOGRAPH ANALYSIS OF THE OPTIMIZATION OF THE TRANSFER

TRAJECTORIES BETWEEN TWO TERMINAL POINTS
FOR MINIMUM INITIAL IMPULSE
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13, INTRODUCTORY REMARKS

Following Part II the problem treated in this part is as follows:
Consider a space vehicle, initially at the point Q7 and having an ini-
tial velocity V& , to be transferred to a given point Qo Dby applying
an instantaneous impulse at Ql . The optimum transfer trajectory is de-
fined as the one which requires the minimum impulse, which is equivalent
to the minimum velocity increment at the initial terminal Qil . Problems
of this kind are often encountered in space flight whenever the primary
objective is to impact a destination planet, or to intercept any target at
a given point in space. Such problems have been previously treated by
Battin<33) and Stark(39) and, in particular Stark's work was essentially
an analysis in the hodograph plane. Numerical solutions have been found
in both works when the space vehicle is initally on a circular orbit.

The present study is in general in line with Part II in which
the family of all Keplerian trajectories between two fixed terminal
points have been analyzed., For the optimization of such trajectories
the geometrical approach in the hodograph plane by Stark will be used.
However, the investigation will emphasize on the analytical behavior
of such optimum equations rather than numerical details. Besides, the
chordal and radial velocity coordinates will be used instead of the usual
transversal and radial components employed by Stark. Such coordinates
will facilitate the analytical treatment, and enable the previous findings
in Part II to be readily utilized. In the following detailed treatment
will be given to the two-dimensional analysis followed by some brief remarks
on the three-dimensional case. Generalization of the present analysis to

other problems of impulsive orbital change will also be introduced.
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14. TWO-DIMENSIONAL ANALYSIS OF THE PROBLEM

14.1 Formulation of the Problem

As mentioned in Part II (Section 8.1) all transfer trajectories
between two terminal points Q]. and Q2 lie in the plane of the base
triangle OQl Q2 . Let us assume the initial velocity vector 6; also
lies in the plane, then the problem is two-dimensional. Consider an arbi-
trary transfer trajectory from @Q 1 to Q2 , and let 51 be the depart-
ure velocity at Ql along this trajectory (Figure III-la). As before
we will first restrict the vertex angle to be O <ty< 1t so that the base
triangle does not degenerate into a line segment. In such a case as shown
in Section 9.1  the departure velocity %1» must satisfy Godal's compat-

ibility conditionlu'l

Vg Vg = 3 tan % (14.1)

oE

The velocity increment vector is then

- - - X
AV = V-V (14.2)

with its magnitude given by

2 > . >
|&V] T = (Va-Va)™ + (Vg-Vgo)~ = 2 (Vo-Veo) (Vg -VRo)eosp, (14.3)

which simplifies to

> 2 2 2
|| = Vot Vp- 2NgVe- 2 MJVp+ Vo - 2 cos @ (14. 3a)

14,
bl VRl = VR2 according to Equation (9.3), hence no subscript (l or 2)

is attached here and in the latter part unless the direction is to be

particularly emphasized. See Section 9.1.

-12k4-
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where
K = £ tan L (1h.4)
My Vpo = Voo cosop Ny Voo = Vgo COSP, (14.5)
Thus the problem is to minimize [AN! under the constraint Equation (1Lk.1).
It is to be noted that the parameters M, and N, here have the physical

0 0

significance of being the orthogonal projections of the initial velocity vector
-
V, onto the Vpy - and V., - axes respectively, as is obvious from the

geometry of the velocity vectors shown in Figure III-1(b), (c).

14.2 The Constraining Hyperbola and the Orthogonality Condition

It is evident that the constraint equation (14.1) represents a
hyperbola in the hodograph plane with the chordal and radial directions at
Q1 as its two aéymptotic directions. Thus in order to insure that the
trajectory will pass through the terminal point QEE’ the tip of the depar-
ture velocity vector %1 has to be constrained on this hyperbola, which
in a given Newtonian gravity field is solely determined by the base triangle
OQ1Q2 . The problem is now reduced to finding the minimum distance from
the tip Q,O of the initial velocity vector ﬁg to the constraining hy-
perbola, and this requires the vector Aﬁ? to be normal to the hyperbola
(Figure ITI-1(c)). This is the approach used by Stark(39) in which he
employed the velocity coordinates Vg and V. to obtain an optimum equation
by such an orthogonality consideration. In present coordinates this con-
dition may be written

AV AVp, cOs @ [ dVv

AVg, - ANC* cos ¢ dVC



where

(1k.7)

and (dVR/dVC)* is to be evaluated along the constraining hyperbola. The
subscript * here indicates the point on the constraining hyperbola at
which the normal line passes through the point Q. Such a point will be
referred to as the ortho-point corresponding to Q() . From Equation (14.1)

we have, at any point on the hyperbola,
& .. £ (14.8)

By substituting Equation (14.7) into Equation (14.6) and making use of

Equation (14.8) the orthogonality condition becomes
2 2
Vex - NoVex = Ve - Mo Vmk (14.9)

Further eliminating VR* from Equations (14.9) and (14.1) yields an equa-

tion in the single variable V(yx :

vvoogvd o+ KM V. - = o (14.10-C)
Cx 0 Cx 0 'Cx

The corresponding equation in VR* is

v

1
(@]

bowvd o4 ok v K (14.10-R)

Ry 0O R« Ry

Both Equations (14.10-C) and (14.10-R) are of the fourth degree, and in
fact they are of the same form. They will be referred to as the orthogona-

lity quartics, and their solutions the orthogonality solutions. Either of
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them can be golved in closed form by standard method of algebra, or by nu-
merical approximations. ’With either of the unknown components Vox or VR
thus determined, the other component and the corresponding velocity incre-
ment ]AN’ can then be easily obtained from Equations (14.1) and (1k.3a)
and the principal elements of the transfer trajectory are then obtained from
usual orbital relations. However, it is to be noted that the real solution
of either Equation (14.10-C) or (14.10-R) is not unique since a quartic may
give 4, 2 or no real solution. Furthermore, the orthogonality condition
expressed by such a quartic is neither sufficient nor necessary for the
optimum solution of the problem. It is merely a necessary condition for
an interior extremem, and it may yield maxima, minima, or neither. And
even 1f it gives a local minimum, it may not be the absclute onej; and
even if it is absolute, the resulting trajectory may be unrealisticlu'2
(see Section 8.1). Thus instead of going into numerical solutions the
following vital questions are now posed:
(1) Under what condition will the orthogonality Eguation (14.10-C) or
(14.10-R) have a unique real solution, two, four or no real solutions?
(2) If multiple solutions exist, is there any simple rule for the selec-
tion of an absolute minimum?
(3) Under what condition will the resulting transfer trajectory be un-
realistic? And if so, how to choose a realistic optimum trajectory for
the problem?

These questions will be critically examined one by one in the
sections that follow. Before proceeding to answering these questions,

the dimensionless velocity parameter defined by

vEVNg =/ %1 (14.11)

4.2 ¢a1led "false optimum" by Stark in<39>.
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TABLE III-1

PRINCIPAL FORMULAS IN THE NONDIMENSIONAL FORM
FOR TERMINAL-TO-TERMINAL OPTIMUM TRANSFER

Compatibility Condition Vavg =K (1k.11)

2

Velocity Increment léwlg = v%+v§ =2 NV 2 M,V +V5=2k COS @y (1k.31)

The Orthogonality Equation

. 2 ~ 2 -
in v, 5 VR, ve, =~ Move, = VR , ~ MoR (14.9")
in v v4 -n v5 + kKM vy = K2 =0 (14.10'-C)
Cx Cx 0" Cx 0" Cx )
in v v4 -m v% + KNGV - k® =0 (14.10'-R)
R 4 R 4 OVR OVR 4
The Constant Product k = tan g csc ¢ (14. k)
The Orthogonal Projections m = (VR ) - (VC) cos @y
of the Initial Velocity Vector © © ©

(14.5")




=130~

.M 2S00 ¢ - ( z 2
(9T °41) — 080 —= o280 E) £q10TI3U00d
) Ty T
(6T 41) o 080 m c.m#‘ b4 W p2 o) 30UBESTP SNOOJ-03-II3U)
. ot 2 ... 2 z _
(4T°%T) 2 - m 2098 :. + .C\ m oog 7 300 3 umy N> ._..|e SO0 YA 2 q 81x8 9983n{uoco-Twag
(€T47) 008 Am + 1) c BEY:] < ueq g uey 2 IN urs WA Z v STX® TBSJISASUBIY-TWSS
g7 g1 ® T x® Tg
T_z u
wnﬂmowmuAH+ﬂv \
(@T41) T-U¥s Tp - Tp = x o saj09dmlss oyg
usam}aq aT3us pIpuToul
Aﬂa\m.m =)u ‘A Jo smiag ur T «p JO swIaq ul To “u JO SuLIa}
Butzequny ToquAs JUSWSTH

SBTNILIOL

(3 = Hala) VIOMMAJKH ONINTVMISNOD WHI 4O SINIWHTA TVOTMIAWOED TVIONTHA

S~III TILgVL




-131-

will now be introduced, and the principal equations developed so far, be
nondimensionalized as summarized in Table III-1.

Besides, formulas for the principal geometrical elements of the
constraining hyperbola are presented in Table III-2. Some essential fea-
tures of the constraining hyperbola worthy of noting are as follows.

(1) The conjugate and transversal axes of the hyperbola (vx,vC
-axes) are the bisectors of the interior and exterior angles at the ini-
tial terminal Ql. of the base triangle respectively. The Ve -axis 1is
in the direction of the minimum energy trajectory through the initial
terminal according to Section 10.1 and may be called the minimum energy
axis. The pair of directions (X,t) together with the pair of the asymptotic
directions (C, Rl) mentioned earlier and their respective normals to be
introduced later constitute the most important reference directions of the
present problem.

(2) The semi-transversal axis (A) of the constraining hyperbola
is the minimum velocity satisfying the constraint, and therefore, the de-
parture velocity along the minimum energy transfer trajectory as previous-
ly given by Equation (10.5) in Part II.

(3) Of the two branches of the hyperbola, the one on which Vo > 0,
and Vg > O 1is the constraint for the normal trajectories, and the
other one on which Vo< Oand Vg < O is the constraint for the comple-
mentary trajectories. These two branches correspond to the two lines of
origins in the nondimensional hodograph introduced in Part II (Figure II-1).

(h) Points on the hyperbola which are symmetrical with respect
to its transversal axis correspond to a pair of conjugate trajectories, and
will be called the conjugate points; points symmetrical with respect to the

origin correspond to a pair of complementary trajectories, and will be called



the complementary points. Consequently, points symmetrical with respect
to the conjugate axis correspond to a pair of trajectories one of which
is'the complementary of the conjugate of the other. Such a point pair
and their corresponding trajectories will be called a complementary-con-
Jugate pair for short.

For the convenience of later development the quadrants of the
hodograph plane bounded by the symmetrical axes of the constraining hy-
perbola will be referred to as positive (+) or negative (—) according as
it is on the positive or the negative side of the Vy -axis; and high
(1) or low (L) according as it is above or below the Ve -axis. The
parts of the constraining hyperbola and all velocity vectors will also
be so referred to according to the quadrant in which they lie. Such

subdivisions are depicted in Figure III-2,

Ve
A

(1I1) (1)
I+ H+
9) ’VX
L- H-
(III) (Iv)

Figure III-2. Quadrants in the Hodograph Plane.
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14.3 Criterion of the Nature of the Real Solutions and the Boundary Evolute

In order to examine the nature of the solutions of the orthogona-
lity quartic,either the V,, -equation (14.10-C) or the Vyg -equation
(14.10-R) may be used since they are identical in form and have essentially
the same discriminant. To fix the idea the following discussion will be

based on the V* -equation. The discriminant for such a quartic is given

C
by

A= 13 - 2757 (14.17)
where
1
I=1 k (mgng - bk)

(14.18)

_ 1 2,2 2
J = Z " (mg - )

(23)

By using Burnside's criteria together with Descaries' Rule of Signs
we arrive at the conclusions in the first two columns of Table III-3,
classifying the nature of the real roots. Since multiple roots of the
equation give identical solutions, they will be considered as one solu-
tion. From such considerations we arrive at the further conclusions in
column IV, Table III-3. The geometrical implication of such conclusions
may be seen as follows.

With the expressions(14.17) and (14.18) the boundary condition

A = 0 may be written

2 2.2
)

L(meng - un)3 - 27 k(mg - ng = 0 (14.19)

Now introduce the polar coordinates (v,®) for the velocity vector ¥
and express the parameters my, and ng for the initial velocity vector

as

&

vosin (?i + 0y)

e (14.20)
(2L - )
D O

o]
Il

o VoSin
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where & 1is the path angle referring to the minimum energy axis, which

is related to the usual path angle ¢ by
o = ¢ - 1 (14.21)

By substituting these expressions into the boundary Equation (14.19) we
obtain

[Vﬁz(cos 2@O—coswl) - 8&]3 - 5hk ;l+sin2@lsin22 9, =0 (14.22)

O

where v, 1s the magnitude of the initial vector v

o » Which satisfies

the boundary condition. This equation may be transformed into the fol-
lowing standard form in the rectangular coordinates (VX s VC)

2/3 2/3 4/3

(A'V'C) - (BVX) = C (14.23)

where the parameters A, B, and C have been given in Table III-3. From
Equation (14.23) this boundary curve is recognized as one form of the
Lamé curve,(BO) which in the present case is the evolute of the con-
straining hyperbola. Some essential features of this curve are as
follows (see Figure III-3):

(1) It is symmetrical with respect to both vy and Ve axes. Thus
the boundary Lamé and the constraining hyperbola are co-axial.

(2) It is bounded between the ve~ and vg-axes which are

normal to the asymptotic directions of the constraining hyperbola (the
radial and chordal directions) respectively.

(2) It has two portions, one on each side of the Vy -axis, and each por-
tion consists of two branches with a cusp (G, G') at its vertex given by

the coordinates

(Vb)G o = 2 Je  csc ?% , 0, = 0, x (1k.24)
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It is well-known that an evolute of a given curve is the enve-
lope of all normals of this curve, or conversely, the given curve is the
involute of its evolute. ©Since to find solutions of the orthogonality
quartic according to a pair of given values of m, and ng is equivalent
to drawing normals to the constraining hyperbola from a given point in the
hodograph plane, naturally its evolute should form the boundary separating
the regions in which different number of normals can be drawn. Directly
from the concept of an evolute and the geometry of the hyperbola we see
that

All points of intersections of the different normals to the

constraining hyperbola are in the regions beyond the bound-

ary Lamé, and no two normals to the hyperbola can intersect

in the region between the two portions of the boundary Lamé.

The latter region will be referred to as simple (8), while the former, non-
simple (N). For convenience various portions of these regions, together
with their boundaries, will be referred to as positive (+) or negative (-),
and high (H) or low (L), according to the quadrant in which they are locat-
ed, just as for the portions of the constraining hyperbola (Figure III-3).

With the foregoing understanding the conclusions previously de?
rived from algebraic considerations may now be stated in geometrical terms
as follows:

(1) Within the simple region one and only one normal can be drawn from
a given point to each branch of the hyperbola.

(2) Within the non-simple region four distinct normals can be drawn
from a given point, three to the nearer branch, and one to the farther

branch,
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(3) From any point on the boundary three distinct normals can be drawn :
two to the nearer branch, and one to the farther branch except at the cusp,
Where only one normal can be drawn to each branch, both coinciding with the
transversal axis.
Moreover, further examination of the geometry of a hyperbola shown that,
(L) The normals at points of the hyperbola in the same quadrant always
intersect in the adjacent quadrant on the opposite side of the transversal
axis of the hyperbola. (For example, two normals to the H+ part of the
constraining hyperbola can meet only in the I# portion of the N-region.
This property is especially useful in the later treatment of the present
problem; an analytical proof is given in Appendix C.)

Finally it is to be noted that for a given vertex angle V¥ the
distance of either cusp of the boundary Lamé from the origin, (Vé)

G,G

decreases with increasing ®p or n , and it has the limiting value

(gg)G,G' - Jér sec® g > \f§ when @17~9ﬁ-w (n —>w) (1k.25)
Thus multiple real solutions can occur only when the initial velocity or
orbit is hyperbolic. Furthermore, owing to the presence of the asymptotic
lines of the boundary LaméJ such a case cannot occur unless the initial
velocity vector is directed above the local horizon but below its conjugate
direction, the va -axis. A necessary and sufficient condition for the

occurrence of such multiple solutions may be precisely stated as follows:
- o ~
Vo > Vg and - —= < 0, <+ L (14.26)

where v, 1is given by Equation (14.22).



15. DETERMINATION OF THE OPTIMUM SOLUTION

15.1 The Absolute Minimum Solution and Its Determination

With the number of real and distinct solutions of the ortho-
gonality quartic determined, the next task is to select the one for
absolute minimum. For the time being let us disregard the question of
unrealistic trajectory, and consider only the geometrical problem of

determining the absolute minimum distance.l5‘l

Such questions of maxims
and minima can usually be settled by the second derivative test, and the
absolute minimum determined by comparing the quantity to be minimized at
these stationary points. However, it is simpler here to use a geometri-
cal approach outlined below:

A. From the symmetrical nature of the hyperbola, it is evi-
dent that the minimum distance solution demands the optimum point on the
constraining hyperbola to be in the same quadrant with the tip Q, of
the initial velocity vector. However, in view of the geometrical property
of the hyperbola given by item (4) of the previous section, there is one
and only one such a point on the constréining hyperbola in the same quad-
rant with the given point (see Figure III-4(1), (2), (3)) unless Qy is
on either of the symmetrical axes of the constraining hyperbola. This
is true whether the point Q, 1is in the simple or nonsimple region. Thus
when Qy 1is off the symmetrical axes, the choice is clear, and the abso-
lute minimum distance solution is unique. Furthermore, directly from

this co-quadrant requirement it can be inferred immediately that the tra-

jectory corresponding to such a solution always belongs to the same group

15-1 The absolute minimum distance solution will be indicated by the sub-

script %% whenever it is to be distinguished from the orthogonality
solution.

..139_
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(normal or complementary) and the same class (high or low) as the initial
velocity vector.

B. In case Qo lies on either of the symmetrical axes, then
it is on the border of two adjacent quadrants. In such a case the mini-
mum distance requirement is to have the optimum point in the half plane
of these two quadrants; and thus two solutions are possible.

(1) If Q, lies on the vy-axis, then the optimum point must be on the
same side of the vc-axis weolh Qg . The geometry in the hodograph plane
shows that Qy 1is in the simple region and equidistant from both branches
of the hyperbola. Thus there are two and only two normals which can be
drawn from Q,, one to each branch, and they are of equal length. Conse-
quently both ortho-points may be admitted, and there are two solutions

for absolute minimum diStance; The two corresponding trajectories re-
quire the same amount of Ay, and their departure velocities also have

the same magnitude. Obviously they constitute a complementary-conjugate
pair, one belongs to the normal group, and the other; the complementary
group. They will be either both high or both low according as the initial
velocity vector is high or low. This situation is depicted in Figure
III-4(4).

(2) 1If Qo lies on the vc-axis, then the optimum point must lie on the
same side of the vxfaxis. Now @Q, may be either in the simple region (S)
or the non-simple region ()

i Suppose (_ is in the S-region, that is, it lies between
two cusps, G and G', of the boundary Lame. Evidently the two and only
two ortho-points now coincide with the vertices (P and (P' of the hyper-

bola, and there is only one on the same side of the vy-axis with Q, .
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Thus the absolute minimum solution is again unique, and the correspond-
ing trajectory is the minimum energy one. It will belong to the same
group as the initial velocity vector. This situation is depicted in
Figure III-4(5).

ii, Suppose Q5 1is in the N-region, that is, it lies on the
parts of the vg—axis which are beyond the cusp points of the boundary
Lame in either direction. Then according to property (3) given in the pre-
vious section, there are three normals on the branch of the hyperbola
on the same side of the yx-axis. It is evident from the symmetry of the
hyperbola that among the three ortho-points, which are on the branch
nearer to the initial point Q,, one coincides with the vertex, while
the other two are of a conjugate pair, and equidistant from Qy - The
fourth ortho-point coincides with the other vertex. This situation is
depicted in Figure III-4(6). Evidently, the fourth point should be re-
jected, and the choice will be between the point Q*2 and either of the
points Q*l and Q*5 . It can be shown that it is always the point Qxo
which is at a farther distance. (This can be proved either by consider-
ing the present case as the limiting case of case A when @, moves to-
wards the vg-axis, or by solving the orthogonality quartic with mgy = )i g,
and comparing the distances since in this particular case the quartic ad-
mits a simple solution.) Consequently, both points Qx; and Qxz may
be admitted, and there are two solutions giving the same amount of Av .
The two corresponding trajectories are conjugate to each other, requiring
the same magnitude of departure velocity, and they are both of the same
group as the initial velocity vector. It is interesting to note here

that the minimum energy trajectory is no longer the optimum transfer
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trajectory even though the initial velocity is in that direction;
the two optimum directions are now inclined equally on either side of
the minimum energy direction instead of lying along it.

iii, Finally when the point Qg 1s at either cusp of the
boundary Lamé, then both conjugate points coincide witﬁ the nearer ver-
tex, and the minimum distance solution is again unique, and the corres-
ponding trajectory is again a minimum energy trajectory. This is the
same as case 1i.

In conclusion,

(1) Whenever the point Qg is not on the conjugate axis of
the hyperbola nor on the part of its transversal axis beyong the cusps
of its evolute, the absolute minimum distance solution is unigue. The
corresponding trajectory will belong to the same group and same class as
the initial velocity vector.

(2) Whenever Qg 1is on the conjugate axis of the constrain-
ing hyperbola there are two solutions with the same minimum distance.
The corresponding trajectories are a complementary-conjugate pair of the
same class as the initial velocity vector.

(3) Whenever Qg 1is on the transversal axis of the constrain-
ing hyperbola beyond the cusp points of the boundary Lame, there are again
two absolute minimum distance solutions. The corresponding trajectories
are a conjugate pair of the same group as the initial velocity vector.

Based on such geometrical analysis we may now form the follow-

ing "rules of thumb":
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Rules - Geometric

(1) Always choose the optimum point which is in the same
quadrant with the point @, whenever no ambiguity arises. (One and
only one solution.)

(2) If ambiguity does arise such as when the point Q, lies
on either of the symmetrical axes of the constraining hyperbola, always
choose the optimum point or points in the same half-plane with Qo ,
and the ones off the minimum energy axis if they are present.

As shown above the geometrical rule for the selection of the
absolute minimum solution is exceedingly simple. Such a geometrical
analysis may in turn guide the selection of the appropriate root from
the real solutions of the orthogonality quartic for an absolute minimum
without calculating the magnitudes of the corresponding Av's . In
view of the symmetry of the constraining hyperbola it is sufficient to
consider all the possible cases when Qg 1is in one certain quadrant,
say the second, and center our attention on the variation of ‘Ayl
with one variable, say vpx , when Qp 1s in this quadrant. The ge-
ometry of such cases are illustrated in Figure III-L(1) to (6), and the
corresponding variation of [Aw] with Vog and the nature of its
stationary points as obtained from usual algebraic analysis are also
graphically shown in Figure III-4 for each case, and are summarized in
Table III-4 for reference.

It is to be noted that the present restriction of Q5 in
quadrant II is equivalent to saying M, >m, and 770 > 0 in the ortho-
gonality quartic. Keeping this in mind and without going into algebraic

details, an examination of the geometry of the hodograph plane shows that:
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when Mgy ¥ o (Q, off the symmetrical axes), the optimum
point in the hodograph plane always correspondsto the highest root
voxl ©Of the orthogonality quartic (see Figure III-4 (1), (2), (3)).

When Wno =N o (Qo on vé-axis), the co-half-plane require-
ment from geometrical considerations indicates that the optimum root
Voxx must agree in sigh with the initial wvalue Vgo . Thus, un@er
the present assumption, only the positive roots need be considered.
The hodograph shows that there may be either one or three such roots
corresponding to the one or three orthopoints on the positive branch
of the constraining hyperbola. In the former case the only positive
root is necessarily the optimum one. 1In the latter case the geometry
of the hodograph shows that the pair of optimum points correspond to
the highest and the lowest roots respectively (see Figure III-4 (6)).
Thus both roots may be chosen. It is to be noted that the prerequi -
site to have Vogx 28ree in sign with Vgo hold in general whenever
Moy £7 4 -

When m, = - n g (QO on vx-axis), the two optimum points in
the hodograph plane, one on each'branch, correspond to the two and only
two real roots of the quartic, one positive and one negative (see Figure
III-4(4)). Thus again both roots may be chosen.

All the foregoing observations were made on the L; portion
of the constraining hyperbola. The symmetry of the hyperbola with its
conjugate axis shows that the same is true for the L- portion if we
take the magnitude of the root algebraically. Thus same conclusions
hold in the low-half plane where 7 o > Yo . In the high half plane,

we have Ny < W, . By the symmetrical nature of the hyperbola with
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its transversal axis, whatever is true for vg 1n the low plane is
equally true for vg in the high half-plane. Or, in view ofrthe re-
ciprocal relation between vy and vy (Equation (14.1)) we may say
that whatever is true for the largest vg (algebraic) in the low-half
plane is equally true for the smallest v (algebraic) in the high-
half plane. Based on such observations we may form some algebraic
rules of thumb as follows:

Rules - Algebraic

Consider the v, -equation (14.10-0)

(1) If M, ¥+ 7, » always choose the root which agrees
in sign with the initial value of Veo ; and if more than one such root
present, choose the largest one if Mg > M o and the smallest one if
No <My (one solution only).

(2) 1f My =M , choose both the largest and the smallest
roots which agree in sign with VCO (two solutions).

(3) 1If Mo = -Ng », only two real roots present, both may
be chosen, (two solutions).

The magnitudes of roots are being considered algebraically.
A1l rules (1) to (3) hold for the vpyg-equation (1L4.10-R) if we inter-
change the words “my and Mg,

15.2 Lines of Constant Optimum TraJjectory and Lines of Constant Velocity
Increment

Before we take up the question of unrealistic trajectories, it
is essential to note that when the tip Qg of the initial velocity vec-
tor moves along a straight line normal to the constraining hyperbola,

the absolute minimum point Q% remains intact, and consequently the



-148-

LINES OF CONSTANT
VELOCITY INCREMENT
(PARALLEL CURVES)

Figure III-5. Lines of Constant Optimum Transfer Trajectory and Lines of Constant
Optimum Velocity-Increment
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corresponding transfer trajectories are the same as long as Qp re-
mains in the same quadrant. Such a trajectory will be the optimum
trajectory for the present problem unless it is unrealistic. Thus the
part of the normal line intercepted by the symmetrical axes of the con-
straining hyperbola (e.g., line cd in Figure III-5) may be regarded as
a line of constant optimum trajectory. As soon as the normal line
crosses either axis the absolute minimum point will shift to the other
side of the axis and move along the constraining hyperbola resulting
in a different trajectory for each point on the extended part of the
normal line. Tt is to be noted that along a line of constant optimum
trajectory the velocity-increment required varies from point to point
depending on the position of Qy on this line, the farther Q, 1is
from the constraining hyperbola, the larger the velocity-increment
(absolute value) required.

In such a connection we may conceive that, when Q, moves
along a curve running parallel to the constraining hyperbola, the amount
of velocity increment required will remain the same while the optimum
transfer trajectory changes from point to point. Thus such parallel
curves may be regarded as lines of constant optimum velocity-increment.
As known in geometry, all these parallel curves have the same normal
lines and a common evolute. In the present case the boundary Lemé is
this common evolute, and each of the parallel curves, including the con-
straining hyperbola is its involute. Thus the lines of constant opti-
mum trajectory and the lines of constant velocity-increment are normal
to each other, forming an orthogonal net in the hodograph plane. Such

a net will be useful in developing hodographic charts for the present
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problem, which will be presented after the question of unrealistic
trajectories has been cleared up. For the time being it is to be
noted that such parallel curves though quite similar to the original
curve (the constraining hyperbola) when they are close to it, may
look radically different from it when they are farther from the
hyperbola, especially when they enter the nonsimple region. The
mathematic equation for the curves parallel to a hyperbola is in

(22)

general of the eighth degree. A few such typical curves are

shown in Figure III-6.

15.3 The Critical Condition and the Unrealistic Trajectories

From the foregoing consideration of the lines of constant
transfer trajectories it is evident that when the tip Qg of the
initial velocity vector moves along such a line which passes through
a critical point (v = Jé) on the constraining hyperbola, the absolute
minimum distance solution will call for a parabolic trajectory. Such
lines will be called the critical lines. Pigure III-7 shows the four
critical lines, one through each of the four critical points on the
constraining hyperbola, forming a critical circuit a-b-a'-b'-a. These
four critical points are given by the intersections of the hyperbola
with the critical circle cenfered at the hodograph origin and having
the radius V2 . When Q, moves along such a circuit, the trajec-
tory corresponding to the absolute minimum distance solution will first
be a parabola of the high class, and normal group when @, remains
on ab; and as soon as it passes the point b, the trajectory will shift

to its conjugate, and so forth.
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@ Hyperbolic Transfer (Realistic)

Ve

Constraining
Hyperbola

—Region of Unrealistic
— Transfer

CRITICAL CIRCLE

Radius = V2 /

RI

Initial hyperbolic orbit requires elliptic optimum

Initial elliptic orbit requires hyperbolic optimum

Initial elliptic orbit requires unrealistic optimum

Unrealistic region:no definite alternate realistic
optimum

Unreaclistic region: definite alternate realistic
optimum exists

Equi-critical-velocity -increment line

ECVI Line

Figure III-7. Regions in the Hodograph Plane and the Nature of the Optimum Transfer
Trajectory
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As seen from the hodograph geometry, as long as Qg 1is inside
the rhomboid-shaped region bounded by the four critical lines, the corre-
sponding absolute minimum point on the constraining hyperbola will remain
inside the critical circle, consequently the transfer trajectory will be
elliptic. This region will therefore be called the elliptic region.

When Qgp 1s on the boundary of this rhomboid and beyond, the correspond-
ing absolute minimum distance trajectory will first become parabolic and
then hyperbolic. Thus the regions beyond the critical boundaries are
hyperbolic regions. As shown in Section 8.3, a transfer trajectory be-
tween two fixed terminal points will be unrealistic only when it is para-
bolic or hyperbolic, and of the high class. Consequently the hyperbolic
region on the high side is the region for unrealistic optimum transfer,
and will be called the unrealistic region, while the hyperbolic region

on the low side, and the elliptic region in between are regions for realis-
tic optimum transfer, and will be called the realistic region. Thus the
boundary b-a'-b separates the region for hyperbolic transfer from that

for elliptic transfer, all realistic; while the boundary b'-a-b separates
the elliptic realistic region from that of unrealistic transfer. Hence
the two critical lines on the high side are in fact the‘barrier for a
reglistic optimum transfer, and will be referred to as the realistic bar-
rier. Beyond the vertices b and b' of the rhomboid aba'b' the realis-
tic and the unrealistic regions are further separated by the vg-axis,
which itself belongs to the realistic region. In short, the broken line
b'-a-b and the part of vg—axis beyond either b or b' form the en-
tire realistic barrier which divides the whole hodograph plane into two

main regions, the realistic region and the unrealistic region for the
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optimum transfer. With such a partition established in the hodograph
plane we may say that the absolute minimum distance solutions obtained
iﬂ the preceding analysis is actually the optimum solution of the prob-
lem whenever the tip Qo of the initial velocity vector lies in the
realistic region. It ceases to be the optimum only when‘ Qp 1s beyond
the realistic barrier, or on the boundary b'-a-b, excluding the two end
points b and b'. The various regions in the hodograph plane afe
shown in Figure III-T, and further divisions of the unrealistic region
will be presented in the next section.

It is interesting to note that the type of the optimum transfer
trajectory, whether elliptic, parabolic, or hyperbolic does not neces-
sarily agree with that of the initial velocity. The shaded region be-
yond the critical lines on the low side but within the critical circle
is the region where the initial velocity is elliptic, but the optimum
solution calls for a hyperbolic transfer. Similarly, the shaded region
beyond the critical circle but within the rhomboid is the region where
a hyperbolic initial velocity calls for an optimum elliptic transfer.

It is also evident from the hodograph that even an elliptic initial
velocity, if at sufficiently high path angle, may introduce an unrealis-
tic optimum. The geometrical criterion for an unrealistic optimum trans-
Ter obtained so far will be analytically formulated as follows.

First, we note that there always exist such critical points,
where v =:Jé, on the constraining hyperbola, since the minimum velocity
along this hyperbola is always elliptic as is evident from Equation (1k4.13),

Table III-2,

= A = Jé tan g tan%%<i¢é (15.1)

Ymin

since N
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The critical points are given by the intersection of the critical circle

5 2
vy vC =2 (15.2)

with the constraining hyperbola, whose equation in Vy vg-coordinates
is

2 \2
) - 3 - w3

By solving Equations (15.2) and (15.3) and using formulas (14.13) and

(14.14) the four critical points are found as follows:

v v¥

X o
1% + Jx* + Vy*
D% - \/5(* + \/_Y* (15'J+>
3% - Jx* - Jyx
J-l-* + \/3{* - \/—Y*

where
X¥ = 2 gsec v cos ?i cos L(W + @l)
2 2 2
(15.5)

— ¥ 01

. .1
2 sec — sin — sin = +
> 2 2(\lf 1)

The four points are numbered according to the gquadrant they are in (see
Figure III-7). The equation for the critical line through any of the

critical points may be written

dﬁ\}* (15.6)

ve - vz = -(VX - vi) <
- dVC /
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where (dVg/dVX)* is the slope of the constraining hyperbola at the

critical point, and is given by

* *
e X tan? %1 (15.7)
dVX VC 2

Substituting Equation (15.7) into Equation (15.6) and rearranging yields

al o 01

* cn2 FL * = % ¥
v¥y  sin + v¥y cosc — = v¥y 15.8
X 2 X 2 X (15:8)
which reduces to the polar form
.29 , ®
Vo vi cos © sin® ~L 4 v¥ sin o cos® = | = v;v* (15.9)
2 ¢ 2 d

by the coordinate transformation,

vy = Vo Sin 0

(15.10)
vg = Vg CO8 Oy

From Equation (15.9) and using Equations (15.4) and (15.5) we find the
magnitude vg of the initial velocity vector vV, on the critical

boundary a-b-a'-b'-a as summarized below (where the usual subscripts

H, etc. are used to indicate the quadrant where the tip of Qg lies):

along a-b
(0< oo < g (V°)§+ (Cy cos by + Cp 5in @) = 1 (15.11-1)
along b-a'
(- g < 0, < 0) (vo):+ (Cy cos @5 - Cp sin &) =1 (15.11-2)
along a'-b'
*
bngoos-g) (vo)y. (Cp cos &g + Cp sin 8) = -1 (15.11-3)
along b'-a
(B< oo <) (vo)E. (€1 cos &g - Cp sin &) = -1 (15.11-k)
COBB;P—l cos%
N —_— (15.22)
2 cos %(W+¢1)
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Recalling that the realistic barrier is along a'-a-b, a

criterion for unrealistic optimum transfer may now be stated as follows:

0 < ¢y < % PV > (vé)H+
(15.13)
% <o <o ovg > (vE)

Similarly, recalling that the realistic critical boundary is along
b-a'-b', and that realistic hyperbolic transfer exists along the vg-axis
beyond b and b', a criterion for parabolic and hyperbolic optimum

transfer is

70 *

"5S% <0 Vo 2 (VO)L+

X >0, > - v > (vE)go (15.1k4)
2

By setting vy = O in Equation (15.8) and using formulas (15.4),
(15.5) we find the distance from the origin to either corner point, b or

b',

Vo pr = ob = JE sec g cscBEL sin %(W + ¢7) (15.15)

It can be shown by comparing Equation (15.15) with Equation (1k.24) that,
V'b"bl > VG)G"

That is, the corners of the elliptic region always extend into the non-
simple regions. This should be expected since either point b or D'

is an intersection of two normals to the constraining hyperbola. This
situation implies that two realistic optimum solution exist in the ellip-

tic region when the initial velocity is in the minimum energy direction,
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and has the magnitude
vg,a' < Yo S Vp,b!

As discussed before, the optimum solution in such a case does not give
the minimum energy trajectory, but instead it gives a conjugate pair of.
two trajectories. And, within the present range of Vo they afe both
elliptic of course. The same situation exists when v > Vp,Db' except
that the optimum trajectory is now hyperbolic, and the realistic opti=-
mum solution is unique since its conjugate becomes unrealistic.

Finally, as the hodograph shows, there is a minimum initial
speed (V§>LL below which neither a critical nor an unrealistic optimum
can occur, for whatever the path angle may be. This is given by the
length of the perpendicular drawn from the origin to any of the critical

lines, e.g., the line segment oe in Figure III-7. From the trigonome-

try of the triangle oab, we find

¥ gin(y+o )
sec S1ln +
% - g StV (15.16)

3 @1 Sl

<LO ] ]
i — = — sin =(V¥+
sin cos (¢+®])+ cos” in =(y $])

)LL:

For example, if | = 60°, Q= 75° (corresponding to the transfer to a
*

target point at the distance ratio n = 1.366) we have (VO)LL = 1.22.

Besides, it 1s evident that unrealistic optimum cannot occur when the

initial velocity vector is in the low half-plane (@O < 0).

15.4 Choice of the Realistic Optimum Transfer Trajectory

From the preceding analysis the absolute minimum solution of
the orthogonality quartic is the optimum solution of the problem when-
ever the tip Qy of the initial velocity vector is in the realistic re-

gion, However, whenever Qy, 1s outside this region, the absolute minimum



-159-

solution is an unrealistic optimum, from the physical point of view,

and it remains to select a realistic optimum trajectory for the problem.
Such a selection will depend on whether the point Q, 1s in the simple
or nonsimple region of the hodograph plane.

A. Suppose Qg 1is in the simple region and off the vy -axis.
Then the absolute minimum distance solution is unique. In such a case
it is evident that the best choice will be the point on the constrain-
ing hyperbola sufficiently close to the critical point in the same quad-
rant with the initial point Q, but still within the elliptic region.
Thus, strictly speaking, there is no definite optimum solution for the
problem in this case. The transfer trajectory so chosen will neces-
sarily be highly eccentric, of the same class (high) and same group as
the initial velocity vector. If Qg 1is on the vy-axis, then the two
critical points on the realistic barrier, one on each side of the
vx-axis may be the reference points, and points close to either critical
point may be chosen.

B. Suppose @Q, 1is in the non-simple region. We recall that
in such a region three normals can be drawn from the point Qg to the
nearer branch of the constraining hyperbola. For definiteness let us
assume Qg 1is in the H+ portion of the region N (see Figure III-8).
Then the three ortho-points on the constraining hyperbola will be dis-
tributed as follows:

-Poi Branch of the +h i
Ortho-Point Constraining Hyperbola Nature of e Solution

*1 H+ Min., absolute, unrealistic
*2 I+ Maximum

*3 L+ Min., local, realistic
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Thus, besides the unrealistic minimum there is a second minimum for
consideration, which is realistic. Let ]Aw]5 and |Aw]* be the
velocity-increments required at the point 3 and the critical point
under consideration (e.g. point 1% in Figure III-8) respectively.
Then the choice will depend on the relative magnitudes of these two
quantities.

(1) If |&vlz < |[Av[*, then the optimum trajectory is de-
finite and unique, as given by the point *3.

(2) 1If ]Av15 > |Av]|¥* , then some point close to the criti-
cal point but within the elliptic region should be chosen. This case
is same as case A.

C. Suppose Qg 1is on the boundary Lamé, then the points
*2 and *3 coincide, giving neither minimum nor maximum, leaving the
unrealistic point *1 to be the only minimum solution. This case is
again same as case A.

In making the foregoing comparison, the concept of constant
velocity-increment introduced in Section 15.2 is helpful. It is to be
noted that while such lines are curves parallel to the constraining
hyperbola in the realistic region, they are concentric circles centered
at the reference critical point in the unrealistic region, since in
this latter region the velocity increment at the critical point is the
standard for comparison. The point in the unrealistic region at which

w5 = aw|¥
is then given by the intersection of such a circle with one of the
parallel curves of the same constant |Aw[ as illustrated in Figure

III-9. Of course only these intersections within the nonsimple region
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Line of Equi-Critical-Velocity-
P Increment

9
2
CRITICAL \%
CIRCLE
o o,
*3 . 1*'
g Unrealistic
2* ' Optimum
P
CONSTRAINING
HYPERBOLA

Figure III-9. Determination of the Boundary Point, |Av|; = [Avl’



-163-

are of interest at present. The locus of all such points of intersec-
tions in the unrealistic region will be called the line of equi-critical-
velocity-increment (E-C-V-I line for short), and there is one such line
on either side of the vy-axis. As shown in Figure III-7 these two lines
further divide the unrealistic region into the following subregions:
the one bounded by each E-C-V-I line and the VC-axis is the one in which
we have ’AW5{ < lAw[* and therefore the realistic optimum solution is
definite and unique; and the one bounded between these two lines is the
subregion in which either lAN5& > \Avl* or Avz does not exist,
therefore the realistic optimum solution of the problem is indefinite.
On the boundary \Aw5| = |Av|¥* the realistic optimum solution is also
definite and unique. The latter region falls entirely within the non-
simple region of course. From the geometry of the hodograph it can be
inferred that, whenever a definite realistic optimum solution exists
while the tip Q, of the initial velocity vector is in the unrealistic
region the optimum transfer trajectory will always be hyperbolic of the
low class, since each E-C-V-I line terminates at the corners b and b'
of the elliptic region respectively.

The foregoing analysis completes the discussion on the selec-
tion of the realistic optimum transfer trajectory for the problem. All
the previous conclusions on such selections are summarized in Table III-D.

15.5 Effects of the Initial Velocity Vector on the Optimum Solution:
Summary of Findings

As seen from the preceding analyses the optimum solution for
the problem is determined by the geometry of the base triangle and the

initial velocity vector. Based on the previous findings the effects of
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the initial velocity vector on the optimum solution for a given base
triangle may be summarized as follows:

(1) Corresponding to every initial velocity vector TV,
there exists at least one definite realistic optimum trajectory for
the problem provided by the orthogonality quartic unless the tip of
‘Vg exceeds the realistic barrier in the hodograph plane. Such a
barrier is analytically defined by Equation (15.1, 4).

(2) If such a limit is not exceeded, the initial velocity
vector 1s said to be in the realistic region, then the realistic opti-
mem solution is unique whenever 'Vb is not directed along the bisector
of either the interior or the exterior base angle at the initial termi-
nal.

If this is the case, then the optimum trajectory will be of
the same group and same class with the initial velocity vector 5% .
However, the type of the trajectory, whether elliptic, parabolic, or
hyperbolic, does not necessarily agree with that of V, , but is deter-
mined by the particular region in the hodograph plane in which its tip
Qo lies (see Table III-5 and Figure III-7).

(3) In a realistic region, if V. is directed along the in-
terior base angle bisector, then there are two optimum solutions for the
problem, corresponding to a complementary-conjugate pair of trajectories
of the same class with the initial velocity vector, and of the same type
which is determined by the region in which the tip QO lies.

(4) The minimum energy direction of departure is along the
exterior base angle bisector. If V, 1is directed along this direction,

then the optimum solution may be unique or not, depending on the
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magnitude of V5 or the location of its tip, Q5 . Consider 'VB in the
positive half of the hodograph plane (the half-plane above the vy -axis,
see Figure III-T):

(a) When Q, moves from the origin up to the cusp G of
the boundary Lamé along the minimum energy direction such that 0 < Vo < Vg
(where Vg 1is given by Equation (1k.2k)), the optimum solution is unique,
the trajectory is elliptic, and of minimum energy, and the velocity-
increment vector is to be directed along the minimum energy axis.

(b) When Qo moves between the cusp G and the point D,
where the boundary of the elliptic region meets the minimum energy axis
such that Vg <V, <V, (where Vy 1is given by Equation (15.15)), then
there are two optimum solutions for the problem corresponding to a con-
Jugate pair of trajectories of the same group with the initial velocity
vector. They are both elliptic, but no longer of minimum energy, and
the optimum directions for the velocity-increment vector deviate from
the minimum energy direction with equal inclinations on either side of
it even though the initial velocity vector is along that direction.

(c) When Q, moves further along the minimum energy direction
such that V_ >V, the realistic optimum is again unique. Like case (b)
the optimum AV 1s no longer in the minimum energy direction, and the
trajectory is no longer the minimum energy one. It is parabolic when
Vo = Vp , and hyperbolic when Vg > Vp .

Situations similar to the foregoing three cases (a) to (c)
exist when .V% is in the other half plane.

(5) Different initial velocity vectors may call for the same

optimum transfer trajectory. This statement is necessarily true when
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these velocity vectors all lie on the same normal line in the same quad-
rant in the realistic region.

(6) similarly, different initial velocity vectors may call
for the same amount of velocity increment. This statement is necessarily
true when these velocity vectors all lie in the realistic region and on
the curve parallel to the constraining hyperbola with the same common
distance on either side of it.

(7) No unrealistic optimum will arise when the initial
velocity is directed below the minimum energy direction regardless of
its magnitude, or when its magnitude is below the lower critical limit
(v3)1;, (eiven by Equation (15.16)) regardless of its direction.

(8) when the tip Qy of the initial velocity vector exceeds
the realistic barrier, it is said to be in the unrealistic region. 1In
such a region a definite realistic optimum solution can be found only
when Q, 1is inside or on the boundary of the strip bounded by the
vc-axis and the line of equi-critical-velocity-increment (see Figure
ITI-7). In such a subregion the realistic optimum trajectory is hyper-
bolic of the same group with the initial velocity vector, but of the
low class. Outside this subregion no definite optimum solution can be
found. The possible choice will be an elliptic one, of high eccentri-
city, close to the unrealistic parabolic trajectory given by the criti-

cal point or points nearer to Qg .



16. HODOGRAPHIC REPRESENTATION OF THE TWO-DIMENSIONAL
OPTIMUM TRANSFER

16.1 The Orthogonal Net in the Hodograph Plane and the Optimization Chart

As seen from the previous analysis the normal lines to the con-
straining hyperbola and its parallel curves form an orthogonal net in the
hodograph plane. ©Such a net may be looked upon as the curvilinear co-
ordinates of the initial velocity vector, and it forms naturally the basis
for the development of the optimization chart for the present problem.

A typical example of such a chart is shown in Figure III-10, which is con-
structed for the case of { = 60° and ¢, = 75° corresponding to a trans-
fer distance ratio of n = 1.366. As soon as the tip Q , of the initial
velocity vector is located on the chart, the optimum velocity increment
vector and the optimum departure velocity vector can be readily determined
by noting the normal line and the parallel curve passing through this ini-
~tial point Q . In case an unrealistic optimum arises it can be seen at once
from the chart, and in such a case a realistic optimum solution may also

be obtained directly from the chart by noting the sub—region(Ul or Us in
Figure III-10) in which the point Q_  is located, and the rules given
in Section 15.4. The type of the optimum transfer trajectory, elliptic,
parabolic, or hyperbolic, will be indicated by the region in which the
selected optimum point lies. To illustrate the use of this chart an example
is given below:

Consider a transfer from an initially circular orbit to a target point in
space at a distance ratio of rp = 1.306 ry , and with an angle of separa-

tion of 60°. By locating the initial point on the v -axis at v, = 1,

el o

we find the optimum solution from the chart (Figure III-10) approximately

as follows:

-168-
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It
Il

0.26 @ fp = 54.5°

Velocity-increment A\Y

1.16 @ & 10°

I
It

Departure velocity %

The transfer trajectory is elliptic.

While such a chart yields immediately the optimum solution cor-
responding to a specified initial velocity vector, it does not give directly
the principal elements of the transfer trajectory except its type. For
such information the hodograph circle for the transfer trajectory should
be constructed, and it will be presented in the next section. Finally it
is to be noted that although such a chart is constructed on the basis of
a hyperbolic constraint, it may well be applied when the departure velocity
1s constrained not on this hyperbola, but on any one of its parallel curves,
since all of them have common normals and the same Lamé as their involute.
The only change necessary is to shift the datum curve, on which 2Av =0 ,
from the hyperbola to the new constraining curve and to make corresponding
adjustment on the constant value of Av on each of the parallel curves.
Graphical techniques on the extensive use of such optimization charts, how-

ever, will not be elaborated here.

16.2 The Construction of the Transfer Hodograph

With the optimum departure velocity vector determined analytically
or graphically, the hodograph for the transfer trajectory may be constructed
by using the terminal relations given in Section 9.1 or Part II,

—

VCl = VC2 , VRl = VR2 (9.3)

from which we see that once the hodograph image of the initial terminal

Q

1 is determined, so is that of the final terminal &, . In fact the

point Q2 in the hodograph plane is also constrained on a hyperbola de-

fined by
cVg = -K (16.1)
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CONSTRAINING
HYPERBOLA
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‘ (Initial Terminal)
CONSTRAINING ‘
HYPERBOLA “ '
(Final Terminal)
A VR}
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/ / TRANSFER TRAJECTORY

= Vg

Vy

Figure III-11. Construction of the Transfer Hodograph in the V-Plane
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which is Godal's compatibility condition applied at the second terminal,
the negative sign here signifies the fact that the vector V%Q is directed
in the negative direction of the local vertical at @, (see Figure II-L).
However, the construction of this second constraint is not necessary since
following Equation (9.3), the point Qo may be easily located in the
hodograph plane by completing the two velocity parallelograms with the com-
mon side Vg and the other sides of equal length Vi 1lying along the di-
rections of ;1 and ;; respectively as shown in Figure ITI-11. With the
two terminals on the transfer hodograph thus determined, the next step is
to locate the center of the hodograph circle. According to the general
correlation established in Section 3.1 of Part I this center must lie on
the local horizontal line at each terminal. Thus by drawing the lines
perpendicular to the local radial directions at Q1 and Qo respectively
we find their intersection at C , and by using C as center the hodograph
circle can be drawn to pass through the points Q‘l and @, .16‘1 This com-
pletes the construction, and the circular arc between the points Q7 and
sz extending a central angle ¥ represents the transfer trajectory.

The principal geometric as well as kinematic elements of the trajectory

can then be determined from the hodograph according to the correlations

given in Chapter 3.

e d
16.3 The Hodograph of Optimum Transfer Trajectories in the v -Plane.

5o far the analysis has been made exclusively in the '? -plane.
Such a hodograph, though nondimensionalized, is essentially different from

the dimensionless hodograph in the 7 -plane introduced in Section 5.1.

16.1 - -
Note here the vector V2 - Vl 18 in the direction of the bisector of

the vertex angle V¥ in the physical plane, see Section 4.1 of Part I.
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- —
To distinguish the two we will call them the v -hodograph and the v -hodo-
graph respectively according to their planes. In a ;’—plane the velocity
is nondimensionalized by dividing through by the circular speed at a

—
fixed point, which is a constant in the problem. Thus the v -hodograph

-
is in fact the same as the hodograph in the usual V -plane, except for the
scale of plotting. However, in the .g -plane the velocity is being divided
through by the parameter p/h which varies from one trajectory to another.
Such a nondimensionalization has the advantage of reducing the hodograph

of all Keplerian orbits into a unit circle, and it has been the basis for
the analysis in Part II. Having made the analysis and representation of the

.%
present problem in the v -plane, it is appropriate to introduce here the

hodographic representation of the same optimum solution of the problem in

-t

the v -plane.

According to Section 8.2, the locus of the hodograph origins in
the v ~-plane is a straight line for all two-terminal trajectories of the
same group. Thus, as pointed in Section 14.2, the two straight lines par-
allel to the chord of the base triangle shown in Figure II-1 are comparable
to the two branches of the constraining hyperbola in the ;>—plane, one
for each group. Thus while the tip of the departure velocity vector is
constrained on the two branches of the hyperbola in the ;a—plane, the
origin of the transfer hodograph is confined on these two straight lines
in the tg -plane. The portions of such a line on which the trajectories
are high or low, realistic or unrealistic have been given in Section 8.3
(see Table II-l).

Consider a normal group. Let O be an arbitrary point on the

straight line locus, and p 1ts distance from the radical center T as

shown in Figure III-12. Then by definition
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o = B Vg (16.2)
)

Comparing this with the definition of v given by Equation (lh.ll), and

noting here,

h = Vogd = Vgory sin @ (16.3)

we find the relation

o = vg sin N (16.4)

Thus corresponding to each optimum value of vk for a given base tri-
angle and a given initial velocity vector there is a unique value of pyx ,
from which the origin Ox of the optimum transfer hodograph is determined.
Such an origin will be called the optimum origin for the present problem,
and the locus of such origins in the jg -plane, the line of optimum origins,
or simply the Ox -locus. A typical example of such a locus for a constant
vertex angle V¥ is shown in Figure III-12(b). By substituting Equation
(16.14) into the orthogonality equation (14.10-C) we find the p, -equa-
tion

(p§ - tan?® g)g = py sin ®, (ngoy - mgtan %)2 (16.5)

where mg and ny are given by

Vo Sin B

1l

(16.6)

)
I

o v, sin (¢ - )

according to Equations (14.20) and (14.21). For constant V¥ such an equation
may be looked upon as the polar equation of the py -vector with the angle

¢, as the polar angle, and the directed tangent line TQ j; , its polar axis.
It represents the Oy -locus whenever the orthogonality Eguation (14.10)

yvields a realistic optimum solution. Some essential featrues of the py, -curves
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are to be noted as follows:

(l) It is bounded between the two tangent lines at QIL and Qg
on the hodograph circle since for a given vertex angle V¥ the angle ¢, can
only vary between O and -y,

(2) TFor a constant ¥ each value of the angle ¢, . corresponds
to a unique value of the distance ratio n . Thus the radial lines drawn
from the radical center T are also the lines of constant n .

(3) The point @ 1 lies on the pyx =-curve since the py -equa-

. . C ¥ 16.2
tion (165)1is satisfied by ¢; =0 and pyx = tan > there .
(k) The origin of the initial orbit as given by the initial
- - '
velocity vector Vg in the v -plane lies on the pyx =-curve, as its co-
ordinates also satisfy the oy -equation (16.5). The corresponding value

of ¢, and n at this point give the configuration of the base triangle

1
such that the initial orbit passes through the final terminal Qo , and
thus itself may be regarded as the optimum transfer trajectory.

(5) The point where the o, -curve intersects the hodograph cir-
cle 1s the critical point, and the portion of the curve beyond it is hyper-
bolic.

(6) TFrom the critical point beyond, the px -curve will be un-
realistic (corresponding to unrealistic optimum trajectories) if it is on
the high side, otherwise it is realistic.

(7) Wnen the 0y, -curve is unrealistic, 1t ceases to represent

the 0y -locus, and should be replaced by the arc of the hodograph circle

from that point beyond, or modified according to its corresponding realistic

16.2 This is true only when r is finite. The behavior of the py -curve

when ¢, =0 and 1 — e« will be discussed in Section 17.4.
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optimum value of Vox -

(8) The point where the Oy -locus meets the bounding line T Qp
gives the optimum transfer trajectory from Q 1 to infinity. ©Such a trans-
fer will be further discussed in Section 17.3.

Finally it is to be noted that the orthogonality principle does
not directly apply in a 23 -plane since the initial orbit or velocity and
the trajectory to be optimized are not represented by the same scale there.
However, it has the advantage over the ‘7 - or 5?—hodograph in that it shows
the totality of the optimum transfer trajectories for all possible config—
urations of the base triangle (given by the variable ¢, or n) under a given
vertex angle V¥ and a prescribed initial velocity vector (see Figure IIF12(a)).
Furthermore, unlike the -: -plane where a hodograph circle is to be drawn
for each transfer trajectory, the E)-hodograph enables one to use the same
arc of the unit circle for all transfer trajectories between the fixed ter-
minal points Ql and Q2 , and from which all the principal geometrical
as well as the kinematic elements of the transfer trajectory assoclated with
a particular optimum origin can be readily determined according to the cor-
relations presented in Chapters 3 and 5.

All the foregoing features are also true for the P, -curve or
the Oy -locus of the complementary group. Such a hodographic represent-
ation can be easily obtained by turning the corresponding hodograph for

the normal group through 180° according to Section 8.2.



17. ANALYSIS OF SOME PARTICULAR CASES

So far the analysis has been restricted to O < ¢ < &, and
rq and T both considered finite. An examination of each of these

extreme cases is now in order.

17.1 The Case ¥ = O

Physically this case corresponds to a vertical descent if
r; > rp and a vertical ascent if ry <r, . In elther case the base
triangle 0Q,Qy degenerates into a line segment with @Q; and Qy on
the same side of 0. The geometry in the physical plane and that in the
hodograph plane for each case are shown in Figure III-13. The constrain-
ing hyperbola also degenerates in each case, and its principal elements

are as follows:

Ty > Ty S Tp
(n < 1) (n>1)
o ¢ 0
A 0 2(1 - 1) (17.1)
n
B 2(3 -1) 0
n
[S] ® ln

(a) Vertical Descent: ry >ry (n < 1)
The degenerate constraining hyperbola is a straight line parallel
to the line 0Q1Qp in the physical plane. Consequently all normal lines

are parallel to the local horizontal at Q; and Q2 , the orthogonal net

-178-
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becomes rectangular, and the transfer trajectory is a vertical straight
line. The entire hodograph plane is divided into three main regions as
uéual: the hyperbolic region on the low side, the unrealistic region
on the high side, and the elliptic region between them. However, it is
to be noted that the usual closed elliptic region is now open since its
sides are parallel. Furthermore, as a straight line trajectory is iden-
tical to its conjugate, as well as its complementary-conJjugate, the opti-
mum solution is unique everywhere in the realistic region even on the
vrl,x-axis.
The optimum solution of the problem is very simple in this

particular case. As seen from the hodograph (Figure III-13) Q, is in
the realistic region whenever

vo sin py <2 (17.2-1a)
and the geometry of the hodograph gives readily the solution summarized
in Table III-6, column &. As seen from the hodograph the>optimum velocity-
increment vector in this region is everywhere in the local horizontal di-
rection. It is simply to nullify the horizontal component of the initial
velocity if any - a fact which is evident from physical considerations.
However, whenever

v, sin ﬁo Z'Jé (17.2-2a)

Qg is in the unrealistic region, the point on the vrl-axis close to
the critical point 1% but inside the elliptic region has to be chosen as
discussed in Section 15.4. No second choice is possible at present since
no evolute exists for a straight line and the hodograph plane is simple
everywhere. Conseguently, the optimum velocity increment vector is no

longer in the normal direction, and in addition to nullifying the
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horizontal component of the initial velocity, it has a vertical compo-
nent opposed to that of the initial velocity so as to keep the resultant
Vélocity below that for escape. The optimum solution in this case is
indefinite, and, as seen from the geometry in the hodograph plane it may
be written approximately as summarized in Table III-6, column b.
(b) Vertical Ascent: ry <r, (n>1)

This case looks similar to the previous one, but there are
some radical differences: 1) the constraining hyperbola degenerates
into two semi-infinite lines along the radial axis instead of a single
line as in case (a); and between the vertices (Y and (P' of these two
branches of the velocity constraint, there is a gap of length 2A where
no normal lines to the constraint line can be drawn, and consequently
the orthogonality principle cannot apply there; 2) trajectories of
the complementary group are out of the question since in such a trans-
fer all physically realistic trajectories must go in one direction only,
that is, from Q; to @ not through 0. Thus the negative porticn of
the degenerate constraining hyrerbola is meaningless. Consequently the
straight line normal to the positive branch of the constraining line at
its vertex v forms a realistic barrier instead of the usual critical

17.1

line. The geometry of the hodograph plane and various regions are

shown in Pigure ITII-13(b).

17.1

Note here in the region between the horizontal lines through P

and ®' there exists no optimum solution, realistic or unrealistic,
and in the region to the left of the horizontal line through P
(not shown in Figure III-13) the unrealistic solution consists of
elliptic trajectories in addition to the hyperbolic ones as en-
countered in the case of ¥ ¥ 0, owing to the consideration 2).
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As seen from the hodograph, whenever

v, sin B > A (17.2-1b)

Q, 1is in the realistic region, the solution is definite and unique, and

formulas are identical to those for case (a) in Table III-6. Whenever
vo sin fy < A (17.2-2b)

Qy, 1is in the unrealistic region, the orthogonality principle no longer
applies. In such a case the vertex (P should be chosen as the optimum

point, giving
a = 200 -1
=a = J201 - D)

opt. N (17.4-2p)

v

which is the minimum departure velocity for such a transfer (see item
(2) on the "Constraining Hyperbola', Section 14.2). Formulas for this

optimum solution are summarized in Table III-6, column b.

17.2 The Case ¥ = x

This case is of practical importance, and an analysis of all
possible trajectories for such 180° transfers has been presented in
Chapter 11, Part II. Like the previous case the base triangle degen-
erates again into a line segment but with the two terminal points on
the opposite sides of 0. The elements of the constraining hyperbola
have the following limiting values according to Eguations (14.12) to

(14.16), Table III-2:

g — X
A — [°n
n+1
(17.5)
B — 0
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Thus the constraining hyperbola degenerates into two straight lines
parallel to the Vpp-axis at the distance + A . Consequently, all
normal lines are again in the horizontal direction everywhere in the
hodograph plane, the orthogonal net is again rectangular, and the plane
is divided into the three regions, elliptic, hyperbolic, and unrealis-
tic, by the two critical lines just as in the case = 0, and ry > ro.
With the absence of the boundary Lamé the entire hodograph is again
simple, and a definite and unique optimum solution exists everywhere
in the realistic region except on the vyl -axis along which a comple-
mentary-conjugate pair of optimum solutions exist. The geometry in
the physical plane and that in the hodograph plane are shown in Figure
ITI-1k.

As seen from the hodograph, Q; 1s in the realistic region
whenever

2

sin ﬁo < — (17.6-1)

v n+1l

]

and in this region the optimum direction of Av 1is horizontal every-
where. The optimum solution can be readily obtained from the geometry

of the hodograph, and is summarized in Table III-7, column 1.

v, sin By > /r-j—l (17.6-2)

Qo 1s in the unrealistic region. Since no non-simple region exists,

Whenever

the only choice for the optimum is then the one close to the nearer
critical point, 1% or 4% 6 and remains in the elliptic region. The opti-
mum solution is again indefinite, and may be written approximately as

summarized in Table III-7, column 2.
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With Vix thus determined the hodograph for the transfer
trajectory can be constructed in the —VFplane by noting that for a
180° trajectory we have

Vol Vgp = B 1 (17.9)

a consequence of Equation (2.2). Thus once the image point Q; is
determined in the hodograph plane, so is the image point Qo . Since
the center of the hodograph circle is necessarily halfway between Ql
and Qp , the hodograph of the transfer trajectory is now completely
determined, as shown in Figure III-15(a). It is interesting to note
that, in a J-plane the center of the hodograph circle for such trans-
fer trajectories is constrained on a line also parallel to the Vp1-
axis and at a distance (l—n)/dqgaih+l) from it, which follows directly
from Equations (17.5) and (17.9).

In the 7v-plane the radical center T recedes to infinity,
and all constant-n-lines become parallel according to Section 11.1 of
Part II. Consequently, p, also tends to infinity and the py-equation
is no longer suitable for the description of the Oy-locus. In such a
case the use of an alternate coordinate system is necessary. A conveni-
ent choice 1s a rectangular system with 1ts axes colnciding with the
directed lines TQ; and QpQ; in the T -plane (which are in the
local horizontal and vertical directions at @Q; respectively). ILet
p; be the radius vector from the point Q; to the optimum origin O, ,

then evidently, (see Figure III-15(b)).

a—

Py = - P (17.10)
with their rectangular coordinates related
(py) == 0
*r r¥ (17.10a)
' — -
(p ) = De*

* 8
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Temporarily let us consider only the trajectories of the normal group,
that is we restrict v g to be non-negative (- % < ¢o < %) then di-

rectly from their definitions the components of v and v are related

by
0y = 2
(l?.ll)
Ly = VpVg
It follows that
2
v 2
—L =g (17.12)
Vg

But according to Equations (17.8-1) and (16.6) we have for realistic
optimum,

Vpyg = Vg sin féo = Nlp (l7.l§>

Substituting Equation (17.13) in Equation (17.12) gives

02 2 17.14
= S .
e M oy (17.14)

In terms of p' and pé , this becomes
T

(61" = -m (") (17.15)

¥ O ¥ 06

Thus the p;-equation is a parabola tangent to the y,j-axis at @
and having the vg;-axis as its axis of symmetry (see Figure III-15(b)).
Note that the line of optimum origins must pass through the initial
point Oo determined by the initial velocity vector E%, according
to Section 16.3. Thus the positive branch of this parabola corre-

sponds to initial velocity vectors at ﬁegative path angles (ﬁo < 0)
and will be designated as the low branch; while the negative branch

corresponds to those at positive path angles (ﬁo > 0) and will be
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designated as the high branch. The low branch therefore always gives
a realistic optimum, and its portion beyond the hodograph circle is the
hypérbolic portion. The high branch corresponds to a realistic optimum
only up to the critical point, and beyond that the optimum origin will
move closely around the circumference of the hodograph éircle,-but re-
main inside it.

It is to be noted that, when the initial velocity is directed
in the local horizontal direction (bo = 0), the p;-parabola degenerates
into the line Q;Qp, and all optimum transfer trajectories are realistic
and elliptic. As is evident from both the 75 -hodograph and the v-
hodograph, such an optimum transfer trajectory is always the Hohmann
transfer ellipse (the minimum energy ellipse with the line Q1Qy> 1n the
physical plane as its apsidal axis) independent of the magnitude of the
initial velocity wvector.

When the path angle of the initial velocity vector exceeds the
limit i.% , the optimum’solution calls for a trajectory of the comple-~
mentary group. The corresponding transfer hodograph can be easily ob-
tained by rotating the present one for the normal group through 180°

as usual (see Section 8.2).

17.3 The Case 1, —e (n 5e)

When 1, increases indefinitely while the angle 1 1is fixed,
the final terminal point @Qp recedes to infinity along a given direc-
tion, and the problem becomes an escape from a given point Q; along a
given asymptotic direction specified by . The base triangle is now

open with

P > -V, P -0 (17.16)
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and the principal elements of the constraining hyperbola have the
following limiting wvalues

o - ¥
A - V2

B - V2 tan g (37-17)

e - secg-

Besides, the boundary Lamé has its cusps G and G' given by
VG)GI -—)\/—2 Se02 g (17.18)

The geometry in the physical plane and that in the hodograph plane are
shown in Figure III-16(a) and (b). The minimum velocity along the con-
straining hyperbola, as given by A, is the escape speed; thus all possi-
ble transfer trajectories are hyperbolic, or at least parabolic, a fact
which is self evident. In the hodograph plane the critical circle now
touches the constraining hyperbola at its vertices % and ', and the
entire hodograph plane is divided into the realistic (all hyperbolic)
and the unrealistic regions by the vg-axis (see Figure III-16(b)).

It is to be noted that, although nonsimple regions exist in
the hodograph plane for the present case, no realistic conjugate opti-
mem solutions exist along the vg-axis since no elliptic region exists,
and the high half-plane is all unrealistic. Furthermore, a parabolic
trajectory should not be admitted as a solution since it has no definite
asymptotic direction as required by the problem. Thus whenever the tip
Qo of the initial velocity vector lies between the points G and G'

on the vg-axis, a point on the constraining hyperbola in the realistic
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region and close to the nearer critical point, (P 01'63' is to be chosen
as the optimum point. For points on the vg—axis beyond either G or
G', of course hyperbolic realistic optimum solutions always exist. A
simple criterion for realistic optimum transfer is then

=(

5 n=¥) (= < ¢, <0) : any v,

- S+ < B, <

17.19
ﬁso = ']2;(1'. =) (¢ = 0,-1) : v, > J2 sec? _g ( )

Note here that lines of equi-critical-velocity-increment exist in the
unrealistic region, and whenever Qg 1s in the unrealistic region a
choice of an optimum solution should be made according to the rules pre-
sented in Section 15.4. The optimum solution corresponding to a given
initial velocity vector cannot be readily written from the geometry in
the ;Lplane as was done in the previous particular cases. However, it
is given by the point where the line of the optimum origins meets the
line TQ in the ™ -plane as shown in Figure III-17(b), and essential
information concerning the transfer trajectory can be obtained from the
Tg-hodograph. For example, the eccentricity of the optimum trajectory

D — &
is given by OxC , its apsidal axis by the line normal to OxC , and

the residual velocity, the vector 5;6; .

The ¥V-hodograph can be constructed as usual. In this case
the point Qp in the hodograph plane can be easily located by drawing
a straight line passing through @ and parallel to the bisector of

the angle .17'2

The point where this line meets the v,j-axis gives
the point Q required (see Figure III-17(a)). The hodograph circle

will of course be tangent to the vy -axis.

17-2 gee footnote 16.1, p. 172,
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17.4 The Case r) 5= (n -0)

When r, increases indefinitely while ¥ remains fixed,
the initial terminal Ql recedes to infinity along a given direction.
With the presence of an initial velocity ‘VE , the problem may be in-
terpreted physically as changing an initial hyperbolic orbit with a
residual velocity equal to "V; into a new hyperbolic orbit so as to
reach the destination point from infinity along a given asymptotic di-
rection specified by V. The base triangle now is again open with

¢, -0, ¢y » m-y (17.20)

as shown in Figure III-18(a). Apparently, this case looks like the
previous one with an interchange of the positions of Qp and Q .
However, particular caution should be taken in that, while all the pre-
vious cases deal with the optimization at the initial terminal which is
at a finite distance from the field center, the present optimization is
at a point infinitely remote from it. The circular velocity Vg1 at
such a terminal tends to zero, and the nondimensionalization by divid-
ing through with Vg1 no longer applies. Instead, in the following
analysis all velocities will be nondimensionalized with respect to the
circular velocity Vgo at the final terminal Q , and the superscript
" will be used to designate such a nondimensionalization.

It is to be noted that the constant product K given by Godal's
compatibility Equation (14.1) remains constant and nonzero, and after the
present nondimensionalization it becomes

1

K = tan g cse @ (17.21)
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Consequently the constraining hyperbola in the v-plane is charac-

terized by

Q

- T

>
l

0

é -)\/_2secg-

e o o™

(17.22)

Thus the hyperbola degenerates again into a straight line parallel to
the local radial direction at Q; . All essential features of the geome -
try in the hodograph plane are the same as those in the case { = 0 and
r] > rpo , except that the critical circle now shrinks to a point, the
origin, since the critical velocity is zero at the terminal Q . Con-
sequently no elliptic region exists in the hodograph plane and the en-
tire plane is divided into the realistic (hyperbolic) and unrealistic
regions by the vel-axis along which the transfer is parabolic. Such a
situation should be expected of course, since no elliptic trajectory can
effect a transfer from infinite distance. For the same reason explained
in the previous section, a parabolic trajectory should not be admitted

as a solution; consequently the origin, which is the only critical point
at present, must be excluded from the realistic region. It follows that
Qy, 1s in the realistic region whenever ﬁo <0 and vy, >0 . The
geometry in the hodograph plane shows that the optimum velocity-increment
vector is to be directed in the direction normal to &Rl-axis everywhere
in this region, and the optimum solutioﬁ may be readily written as

follows:
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1

Velocity Increment (A”rl)opt. =0
\ \ (17.23)
(Awel)opt. = Vo COS ¢o
Residual velocity along ' ) ! .
the transfer trajectory <Vrl opt. = Vo Sin IZSo
' (17.24)
(Vel)opt. =0

When ﬁo >0 and vy, >0, Qg 1is in the unrealistic region, and with
the absence of the boundary Lame the choice is simple. The indefinite

solution is Jjust

(&), & o (17.25)

with the understanding that the optimum point so chosen should be close
to the origin but in the realistic region, and the optimum solution is
thus slightly hyperbolic.

Since no nonsimple region exists in the hodograph plane, the
optimum solution obtained so far would be expected to be unique, espe-

cially in the realistic region off the v 1 X-axis. However, this 1s

2

not the case. By following the thimum solution given by either Equa-
tions (17.23, 17.24 or 17.25) and using the usual orbital relations two
complementary-conjugate trajectories will be found satisfying the given
condition of the problem. It seems contradictory to the former asser-
tions made in Section 15.95 concerning the uniqueness of such solutions.
However, this apparent paradox may be explained by the fact that the
constraining line here actually is the limiting position of both branches
of‘the constraining hyperbola (one for each group of the transfer tra-
jectories) as the radial distance r1 tends to infinity. Consequently,

every point on this constraining line may be regarded as consisting of
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two coinciding points, one for each group, resulting in a complementary-
conjugate pair of optimum solutions. Physically, this is understandable
because the mere specifying the residual velocity vector of a hyperbolic
orbit in addition to a finite orbital point does not completely specify
the trajectory since it may approach this point along the same asymp-
totic direction on either side of its radius vector ?% . To completely
determine the trajectory the direction of its angular momentum vector
must be specified. Thus for such a problem there are in general two
solutions, and the choice will be the one whose angular momentum vector
agrees in direction with that of the initial orbit.

The peculiar situation discussed above may be easily clarified
by constructing the transfer trajectory hodograph. Before making such
a construction, it is essential to note that while the point Q) 1in the
hodograph plane is constrained on the &rl-axis, the point Qo 1is con-
strained on another hyperbola given by Godal's compatibility condition
for the terminal Qp

1 1 1

VoVR = - K (17.26)

which is not degeneratey since the chordal direction and the radius
vector ~§% intersect at an angle =z - ¥ which is neither zero

nor g . Thus with Q; determined from the optimum solution, the point
Qo may be located in the hodograph plane by drawing the straight line
through Ql and parallel to the bisector of the angle ¢ and finding
its intersection with the constraining hyperbola. In general, there

are two such points of intersection, one on each branch of the hyper-
bola, giving two solutions of the problem. It is easy to see from the

hodograph geometry that these two points (Q2I and Qpr 1in



~-200=-

Figure III-18(c)) are a complementary-conjugate pair since the line
joining them is parallel to the transversal axis of the hyperbola.
With the two possible points for @y thus determined, the remaining
construction is the same as that in Section 17.3. The resulting two
transfer trajectories in the hodograph plane and the physical plane
respectively are shown in Figure III-18(a) and (c).

Finally it is to be noted that the py-equation (16.5) does
not hold for r] -« since it was formally derived on the basis of a
finite rj . Consequently the transfer trajectory in the 73-plane is
not given by the point Q; as in the case of ¢; —» O while 1y re-
mains finite. This is evident from physical considerations since the
residual velocity for a hyperbolic trajectory does not vanish. In such

a case we may express py alternately,
o, = bg sin g, (17.27)
and obtain the pgy-equation in the form

2
(02 - tan? )7 = o, sin gy Nopx ~th tan 5 (17.26)

which has been nondimensionalized with respect to the final ferminal in-
stead of the initial terminal, and thus it holds regardless of ry
being finite or infinite (but not for T —®). Recalling that for the
present case we have

P > wY, @ -0 (17.20)

and solving Equation (17.28) under these conditions, we £ingt7+3

173 Negative roots have been rejected since they correspond to
imaginary vpy's .
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= tan £+ 2m? s ‘/‘_2_21
Prlrye =tOR Z+ M siny (Lx J 1+ S5 sec” 5)  (17.29)
e

which gives a pair of solutions corresponding to the complementary-

conjugate hodograph circles in the V-plane. Note here by definition,

h Nioh
(O2)x = —F v, = = (17.30)
B p’ ﬁré
And in the _\; -plane we have
p*l = TQ + @0,= tan g - Vg (17.31)
I'l—-)°°
Combining Equations (17.30) and (17.31) gives
Y b
p*l = tang - =X (17.32)

r] - Vfﬁfé

Comparing Equations (17.29) and (17.32) yields immediately the pair of

optimum angular momenta

(hp or = - % Vo Th, sin ¥ (1 + J 1+ ;%g sec? g) (17.33)
(0]

That this is a complementary-conjugate pair can be verified by the fact
that

(h*>I : (h*)II = - pd tan g (17.34)

in conformity with the characteristics of the conjugate trajectories

presented in Section 9.2.



18. SOME GENERALIZATIONS

Based on the foregoing two-dimensional analysis, some generaliza-

tions may now be made.

18.1 The Orthogonality Principle and the Impulsive Change of Orbit

The orthogonality principle has been used by Stark without proof
in his formulation of the optimum condition for the present terminal-to-

(39)

terminal transfer problem It will be shown here that such a condition
is generally applicable to the minimization of the initial velocity-incre-

ment for all problems of impulsive orbital changes.

In general, in a problem‘of this class the new orbit to be genera-
ted by an instantaneous finite impulse will be required to meet certain pre-
scribed conditions which will in turn impose certain constraints on the new
orbital velocity at the point where the impulse is to be applied. Mathe-
matically such constraints may be expressed as

-

f.(ﬁ? E;) = 0 i=1....p (18.1)

1 )Vo)

In a three-dimensional velocity space this system of equations will in gen-
eral define a family of orbits or trajectories if the initial condition

- -

(VC 5 ro) is specified and p < 3 . If this is the case, then a choice of
the optimum trajectory is possible, and for the miﬁimum initial impulse
problem the quantity to be minimized is [AN’ which, in vector notation,
may be written

av|© - B A (18.2)

—-
With V1 constrained by Equations (18.1) a necessary condition for an in-

terior extremum of ‘AN} is

-202~



-203-
d |av| = 0 (18.3)

—_

Recalling that N =T - V% and here V, is a constant vector, differ-

entiating Equation (18.2) and using the condition (18.3) yields

AN-& = 0 (18.4)
where the vector av is the vectorial element along the velocity constraint
defined by Equations(18.1). By Equation (18.4) the two vectors AV and
&V are normal to each other. This formally establishes the orthogonality
principle. As no particular form of the constraint is specified here, it
is generally applicable to all impulsive change problems in which the in-
stantaneous velocity-increment . is to be minimized, and is not restricted
to the present problem of terminal-to-terminal transfer.

Geometrically, if p = 1 , the constraint Equation (83) may be
viewed as a surface in the velocity space on which the tip of the new or-
bital velocity is constrained; and if p = 2, the constraint will in gen-
eral be a space curve. In either case Equation (18.4) indicates that for
an interior extremum of |AN| , the velocity-increment vector is to be
directed normal to the constraining surface or the constraining curve
whichever applies. ©Such a general formulation and geometrical consider-
ations are especially helpful in the treatment of such optimization pro-

blems for the three dimensional case.

18.2 The Three Dimensional Case of Terminal-to-Terminal Transfer

When the initial velocity vector or the initial orbit is not
coplanar with the base triangle determined by the two fixed terminal points
and the field center, the problem becomes three dimensional. In such a case,

-
in addition to the usual terminal constraint for the in-plane component Vp
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-
of the terminal velocity V,

f(Vp) = 0 (18.5-1)

._)
we have an additional constraint for its out-plane component Vy,namely

Vy = O (18.5-2)

Thus the condition is exceedingly simple in the 3-dimensional case of this
particular problem, and, as previously presented, the constraint is still
a hyperbola in the plane of the base triangle, except that the velocity-

increment is now a vector lying in a plane normal to this hyperbola. This

vector may be expressed as

-
A\Y = Vp " Voo - VNo (18.6)
where
- -
vp = V (18.7)

in view of Equation (18.5-2), and the in-plane and out-plane components of

the initial velocity are given by

Voo =Vocosw Vg =V sinw (18.8)

__)
where o 1is the angle of inclination of V, with respect to the base tri-
angle plane, which is also the plane of the transfer trajectory. The ge-

ometry of such a 3-dimensional transfer is shown in Figure III-19. 1In
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view of the constant component —VNC in Equation (18.6) the orthogonality

Transfer Plane 0

Figure ITI-19. Geometry of 3-Dimensional Terminal-to-Terminal Transfer.

condition (18.4) is equivalent to demanding the in-plane component (ANP) =

Vp - VpO to be normal to the constraining hyperbola. Thus all of the pre-

vious analysis for the two-dimensional case applies if we replace Vo by

V. cosw

o ,and AV by AV . BSuch a reduction of the three-dimensional

b

case to the two-dimensional case has been mentioned in Starks work, and
some numerical solutions have been found(39). Thus no further
disucssion is needed here. Finally it is worth to mention that the tilt-
ing of an initial velocity vector with respect to the plane of the base
triangle may have the effect of changing the type of the optimum transfer
trajectory as compared with the case when it is in the transfer plane.
Thus an initial velocity vector may call for an hyperbolic transfer orbit
when it lies in the transfer plane, but it is quite possible that the same
velocity will call for an elliptic transfer trajectory if it is tilted up

though at a greater expense of the initial impulse. Such a situation is

evident from the optimization chart (Figure III-10).
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18.3 Impulsive Orbital Change Problems with Hyperbolic Constraint

The previous two-dimensional analysis for the two-terminal-trans-
fer problem was all based on the fact that the velocity constraint is fe-
presented in the hodograph plane by a hyperbola centered at the hodograph
origin. However, it i1s interesting to note that such abhyperbolic conétraint
is not only present in this particular problem, but is often encountered in
some other impulsive orbital change problems which are apparentl& unrelated.
For example in the problem of re-entry at a specified path angle, the pro-
blem of impulsive rotation of the apsidal axis of an initial orbit, and so
on, the formulation of the problem will in each case lead to some constraint
which is represented by a hyperbola in the hodograph plane. For such a pro-
blem there always exists two asymptotic directions, say (¢ s n), in the
hodograph plane, and by referring the velocity components to such directions

the constraint can always be reduced to the standard form

VE vy = const. (18.9)

which 1s comparable to Godal's compatibility condition for the two-terminal-
transfer problem. Consquently, with such velocity coordinates, which are
generally oblique, all basic formulations presented for the present trans-
fer problem are directly applicable to such problems in general. The only
differences will lie in the interpretation of the parameters involved (e.g.
kK , ¢ etc. which will in general have different physical significance in
different problems), but not in the form of these equations. For example,
the application of the orthogonality principle to such a problem will always
lead to the same form of quartic Equation (14.10-C) or (14.10-R) with the
same boundary Lamé given by Equation (1k.23). Thus not only the method of

analysis, but also the general conclusions obtained here hold for all problems
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of this class in general. Consequently the optimization chart developed
for the present problem may also be used for the solution of other pro-
blems with proper interpretation of the parameters involved like s 9,
etc. Thus it is extremely interesting to see how these appérently diver-
sified problems are interrelated through their common form of velocity
constraint, and how they share the common characteristics of such solutions.
However, owing to the limited scope and space of the present study, the

analysis of other individual problems will not be attempted here.



FINAL REMARKS AND DISCUSSION

With the fundamentals and some of the applications of the hodo-
graph method presented in Part I through Part III, a few remarks on the
various aspects of this method together with some discussions may now be
made,

As fully illustrated in these three parts, the orbital hodograph
offers:

(1) A clear manifestation of the dynamic characteristics of the motion.

(2) A unified view of the three different types of Keplerian orbits.

(3) A geometrical approach in the velocity space to every dynamic problem
of space flight.

(4) A direct path to the discovery of new theorems concerning the Keplerian
motion by the highly suggestive nature of the hodograph geometry.

Based on these advantages the main applications of the hodograph
method are:

(1) An analytical investigation of the characteristics of the motion and
formulation of the orbital relations.

(2) A unified treatment of Keplerian motion, in general or in particular
problems.

(3) A concise representation and simple treatment of the family of Keplerian
orbits or trajectories consisting of either a finite or an infinite number of
members (by using the dimensionless hodographs in the jg -plane).

(M). A graphical determination of the orbital or trajectory elements.

As pointed out earlier in Part I the circularity of the Keplerian
hodograph often renders a dynamic problem of the Keplerian motion readily

solvable by simply applying elementary geometry in the hodograph plane.

-208-
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This has been illustrated by the many examples provided in Parts I and II.
However, it is to be noted that the hodograph geometry may become more in-
volved when the problem becomes more complicated. This situation is illus-
trated by the optimization analysis presented in Part III in which a num-
ber of higher curves (like the boundary Lamé, the Ox -locus etc.) are en-
countered. Nevertheless, it can be said that, in comparison with the geome-
try in the physical space, the hodograph geometry usually is still sim-
pler and offers a better view of the dynamic situation of the problem.

With the advantages and applications of the hodograph method thus
reviewed, its limitation is also evident. Since the circular nature of the
orbital hodograph, Hamiltonian or polar, is a direct consequence of Newton's
inverse-square law of gravitation, and, as pointed out by Hamilton, 'no
other law of force would conduct the same result"(g), the present method
can only be well applied to the Keplerian motion. Any deviation from the
inverse-square law, or the presence of any other force, whether it comes
from atmospheric drag, or the presence of a third gravitating body, or any
other source, will upset Hamilton's Law of the Circular Hodograph and throw
out all the simplicity of the present method. However, this does not mean
the applicability of the hodograph method is restricted to the Keplerien
motion only. Before discussing this point further a few areas amenable to
immediate applications of the hodograph method within the realm of Keplerian
motion will be cited first:

(l) A general treatment of the problems. of impulsive orbital change.

The importance of this class of problems in space flight and a
general scheme for its hodographic treatment have been outlined in Chapter 18,
Part III. Under such a general treatment many problems of this class may

be readily solved as particular cases; those of current interest are, e.g.,
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a. Reentry at a specified direction

b. Reentry at a specified speed

c. Impulsive rotation of the orbital axis

d. Impulsive change of orbital eccentricity
and so on. For the optimum solution of these problems the essential pro-
cedures employed in the terminal-to-terminal transfer problems in Part III
are applicable.
(2) The problem of multiple - impulse orbital transfer

The optimization problem treated in Part III may be categorized
as a problem of single-impulse orbital transfer. The hodograph analysis
of this rather simple but basic problem may serve as a stepping stone to-
ward a better understanding of the more complicated problem of double-im-
pulse orbital transfer, in which an octic optimum equation(l5> is invol-
ved, and very little about it is analytically known. These basic analyses
may finally lead to a hodographic treatment of the general problem of an
N-impulse transfer. It is worth to mention that the hodograph method is
particularly suitable for the treatment of such transfer problems in its
capability of handling Keplerian‘conics in general without specifying the
types of the initial and final orbits or those of the intermmediate tra-
jectories if any.
(3) The Keplerian acceleration hodograph

An acceleration hodograph may be regarded as the hodograph of
hodograph, and is a logical extension of the concept of the velocity hodo-
graph. The Keplerian acceleration hodograph in an inertial frame has been

shown by Altman(17) to be a form of Limaconl and an analytical study of the

1 Strictly speaking, it is the graph of the square root of the gravitational
acceleration which assumes the form of a Limacon in an inertial refer-
ence frame.
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corresponding hodograph in & non-inertial frame comparable to the polar
version of the orbital velocity hodograph may likely be made. ©Such a de-
velopment may not be very necessary in the treatment of the Keplerian mo-
tion, since the inverse-square law of force, which is in direct proportion
to the acceleration, is well manifested by the circular velocity hodograph.
However, by using the Keplerian model the essential features of an acceler-
ation hodograph and its relation with the velocity hoaograph may be 1llus-
trated; and such a preliminary treatment may aid the development of the
general acceleration hodograph which will be useful in dealing with Non-
Keplerian motions to be discussed later.
(k) The Keplerian motion in a central repulsion field

The scope of the present study has been limited to the central
gravity field. However, it is to be noted that Hamilton's law the circular
hodograph holds also in a central repulsion field as long as it is govern-
ed by the inverse-square law., The same can be said about the polar hodo-
graph. Thus all the fundamentals presented in Part I for a central gravi-
ty field equally apply to a central repulsion field with a change of
sign of u . As shown in Chapter 3 of Part I, the hodograph circle for a
hyperbolic motion in fact consists of two parts: one for the motion in a
central attraction field, and the other, a central repulsion field. Thus
it is interesting to see that it takes both fields to complete the hodo-
graph circle for the hyperbolic motion, and the hodographic study of such
a motion in a central attraction field leads naturally to that in a central
repulsion field. ©So far no direct application of such a hodograph in space
flight problems can be seen since here we are concerned only with the gravi-

ty field, and very little work has been done on this subjectg. However,

2 See Section X of Reference (12).
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it can be conceived that, by the joint use of the hodograph for a central
repulsion field with that for a central attraction field, the geometry of
motion in a complicated force field may be built up in analogy with the
classical method of using sink and source to build up a flow field in
aerodynamics. After all one nevercan tell that such a repulsion field
will not be encountered in man's future space adventure. In any event -
the extension of the present hodograph method to include the Newtonian
central repulsion field is simple and straight-forward.

The afore-mentioned areas do not exhaust all the possibilities
of the application of the hodograph method within the frame of Keplerian
motion. They serve merely to illustrate the typical areas in which the
materials of the present development may be immediately applied. Before
closing, a few remarks on the potentialities of the hodograph method
for the analysis of the Non-Keplerian motions will be made.

Strictly speaking the Keplerian motion is a simple model for the
motion of a vehicle in space flight, and all such actual motions are non-
Keplerian. More specifically the non—Keplerian aspects are to be consider-
ed in the following classes of pfoblems:

A. The presence of perturbing forces in addition to a Newtonian

gravity field.

B. The presence of applied forces in addition to a Newtonian

gravity field.

C. The presence of more than one Newtonian field center.

D. The presence of Non-Newtonian force fields.

In class A the perturbing forces here refer to the limited sense
of being the uncontrolled ones like the aerodynamic force, the radiation

pressure, and so on. Problems of this class are known as the classical
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perturbation problems. When the perturbation is small, the perturbed mo-
tion, as suggested by Euler (1756), may be described by an osculating
conic at each instant. Consequently the instantaneous corresponding hodo-
graph is a circle of varying radius and varying origin-to—cénter distance,
and lying in a plane of varying orientation in the velocity space, all
being functions of time. Based on such concepts the fundamentals of the
Keplerian hodograph may still be applied and the perturbed orbit may be
well represented in the velocity space. By so doing a hodographic approach
to the perturbed problem is provided in addition to the many classical
technics employed in celestial mechanics.

The applied forces in class B refer to the controlled ones like
the thrust of the propulsion system, and problems of powered space flight
fall under this category. Class C constitutes the classical N-body pro-
blem, which has inspired astronomers and mathematicians for centuries; and
class D broadens the present theoretical basis of space mechanics to in-
clude non-Newtonian fields and relativistic effects., So far problems of
these three classes either have not been satisfactorially treated, or have
barely been touched by the classical methods in celestial mechanics and
astrodynamics, and a geometrical approach through the hodographic treat-
ment may provide a new outloock on these problems and hold the key to their
solutions. However, before the hodograph method can be successfully applied
to these problems a much broader analytical foundation for hodograph trans-
formation must first be firmly established. A recent research trend in this
field indicates such a new theory is in the making(20, 21), Tt seems the
establishment of the hodograph transformation theory with the development

of hodographs of higher orders is a reasonable direction for the future
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research in this field, and such a new theory, aided by differential geo-

metry, topology, and the related mathematics, may provide an effective
treatment of some of the afore-mentioned classes of problems in space

mechanics which has hitherto never been attained.
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APPENDIX A

INTER-RELATIONS BETWEEN THE GEOMETRIC PARAMETERS AND
THE DYNAMIC PARAMETERS OF THE KEPLERTAN ORBIT

TABLE A=l

CONVERSION OF GEOMETRIC PARAMETERS INTO DYNAMIC PARAMETERS

X, h )
Eccentricity € 1+ 2k2 \/l-u}\e(l-?\g)cos2 o)
9
- 2
Semi-latus Rectum r h” 2r 22 cos? ¢
3}
3 2 2 2
Pericenter Radius rp |- E(1- 1+ 2kh ) r(l - )ll'uk (1-17) cos® § )
2k e 2(1-22)
2 2 2
r(l + J1-0=(1-2%) cos
Apocenter Radius ry | (1 + ,l + Ekg ) ( QL ( ) 2
| 2k| n 2|1-22|
Semimajor or a r
Semitransverse Axis |2k| E!l-kgl
Semiminor or b h r A cos g

Semiconjugate Axis

[T1-22]

Center-Focus Distance

r 2 2 2
ST \/lfhl (1-2%) cos® ¢
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TABLE A-2

CONVERSION OF DYNAMIC PARAMETERS INTO GEOMETRIC PARAMETERS

;,- € a, € a, T
- - / a2 = -
v p(g + E___];) = J&(1+2€ cos6 + €2) ju(g T i),__ g 1+2¢ cosd+e 11(5 T _l_)
T by ¥ r a a -TT:EET____ r a
1 - Tj,h 1 5 —=
v = Jur = [E(1+e coso) = Juall-e] = j (1+e cos®) ur/r
Velocity at any ° r ‘/I' TJ al1-e2] ‘/
Orbital Point
(x,8) _ R —
’_e__r ez-l_jg ; j 2 5 a(l-¢ L A 2 _F =1
Vy H(r Tt ) = Ee sine " (;'—F%Z——lfra) = \/a—l{‘?ﬂ- esin® p,(}- }?+5)
-1 ¢ cose -1 e sin® =1 [ T/r
t € cos9 t £ sime
4 an l+e cos® 8 Ti¢ cose cos 2T 4
Velocity at Peri- |y H1+e l+e E14+ /17 E
center V, =0, § =0| P j;} ) a|l-c| ;( A
Velocity at Apo-
_center V. =0, # =0V, jﬁ(l-e) gl B [T
(Elliptic Orbit) r a lie ¥ a
Velocity at Ends Vag, " [E(1+¢2) b Le ‘/H(é T 1)
of Latus Rectum T a l-¢ r a
- x
r=r, 6 == =
2 ¢M,M' tan™t ¢ tan™! ¢ tan"} 1 T §
Velocity at Ends 5
of Minor Axis VN,N' }%(l-e ) E E
(Elliptic Orbit)
r =a -1 so=1 -1 -T
0 = cos'l(:'€) ¢N’N’ sin= e sin € sin ,’ 1+3
Velocity at Infinity P
(Hyperbolic Orbit) Vo Jﬂ-(e -1) \/E jE
7 a
v. =0, =2 T a
[ 2
2
2 lr, 2 1 -1 r 1 1-? r
A 1+25(f1) =1 4222 1F5. 21 -2 =5 r
*2 ?(E ) * 2 Tre cose ¥ 2a 2 l+e cos® 1F 28
2 1 1 1 T
) ?_;‘(l‘“‘i) §(l+e) 5(1 +J1F3)
2 1 1 1 r
Local Speed Ratio L E(l'e) E(l'e) 5(1 “Ji-3
2 1 1 - T
A MM E(l+€2) 5(l+52) 17 g;
22 1 1 1
n 2 : 5
22, m w »
Orbital Energy X B (2-1) TR T
T 2a 2a
Angular Momentum h [ur fpa\l-egl [ur
o= 3/2 3/2 >
Period T 2_“(1_12) 21 o / 2z 35/
(Mlliptic Orbit) Ji1-e Ju Jv

NOTE: Wherever double sign appears in this table, the upper sign is used for the elliptic orbit; the
lower sign, for the hyperbolic; either sign may be used for parabolic orbit



APPENDIX B

PROOFS OF SOME OF THE CORRELATION FORMULAS

1. Iocal circular speed (Rule H-5)

Formula
Vg = QT (3.7)
Proof We have from the geometry of the hodograph (Figure I-2a)
Q= Tq - 54 (B-1)

from the hodograph construction,

Q=+, 5=V, (2.7, 3.3)

Sk

and from the Momentum Integral,
h = I‘V@ (2’2)

Substituting Equations (2.7, 3.3) into Equation (B-1) and using Equation

(2.2) gives

T -2 (B-2)
that is

QT =V (3.7)

according to Equation (1.8)

2. Local speed parameter (Rule H-6)

Formula

2 _Bq
AT = = 3.8
e .8)
Proof We have from the hodograph geometry (Figure I-2a)
0" =Bq - 54 (B-2)

from the hodograph construction,

0Q =V (3.1)
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and from Rule (H-5)

Q2 =Cq - 5q = V2 (B-3)

By using these three equations and recalling the definition of A we

find

oTq 20Q'5q 2QF= ov@

Bo . 06 . 08 V2 _,2 (3.8)

3. True anomaly (Rule P-2)

Formula
6 = ¢ PCQ (3.13)
Proof From the orbital relations (see Table A-2,Appendix A)
v, = /Ij_ ¢ sind , Vg = /E_ (1 + € cose) (B-L4)
T T

we have, along a given orbit,

av._ = [E ¢ cose de , adv, = - \/II € sim de (B-5)
r T ° T

Thus the slope of the polar hodograph with respect to rO-axis is given

by

Consequently the slope of the radius CQ 1is tan® since CQ is normal

to the hodograph circle. This proves Equation (3.13).

4, Elliptic Eccentric Anomaly -oé,d{é-Plane

Formula
a =9 BCD (5.6P)
Proof From the defining equation

€ cosQ =1 =~

o
—
\J1
U1
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and the orbital relation (see Table A-2)

¥-o1-ZX (B-6) -
2a
eliminating r/a gives
€ cos o =22 -1 (B-7)

From the hodograph geometry and the correlation formula (3. 18) we have

€ cos BCD =CB = OB - OC = 22° - 1 (B-8)

Comparing Equations (B-7) and (B-8) gives Equation (5.6P).

5. Elliptic Eccentric Anomaly - Eiij -Plane

Formula

o = PCD = < eCf (5.6H, 5.6'H)
Proof By construction: < PCD =< o(Cb
It follows that

€ Ccos PCD = € cos oCb = cb = CB

Similarly we have by construction,

€ cos q&f = Ce = CB
But from the hodograph (see Figure I-8c) and using the correlation formula
(3.8 ) we have

T _ A _ o2

CB=BqQ-CQ=2\"~-1

Consequently,
A
€ cos PCD = € cos eCf = 2)3° - 1 (B-9)

Comparing Equation (B-9) with Equation (B-7) gives Equation (5.6H, 5.6'H)

6. Hyperbolic Eccentric Anomaly - O%H(Ké-Plane

Formula

o =< BCD (5.8P)
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Proof From the defining equation

€ sec o =1+ § (5.7)

and the orbital relation (see Table A-2)

22 =1+ X (B-10)

eliminating r/a gives

2

€ sec =2\ -1 (B-11)

From the hodograph geometry and the correlation formula (3.18), we have

S LT - 00 = o2

¢ sec BD =CB =0B - OC = 205 - 1 (B-12)

Comparing Equation (B-11) and (B-12) gives Equation (5.8P)

7. Hyperbolic Eccentric Anomaly = Stg}-Plane
Formula

a =< PCD (5.81H)
Proof By construction: < PCD = < 0Cb

It follows that

€ sec PﬁD = € sec O@b =Cb =C

As the hodograph geometry shows, here again we have

OB =BQ - Cq =22° - 1

and consequently,

2

e sec PCD = 22° - 1 (B-13)

Comparing Equation (B-13) with Equation (5.7) gives Equation (5.8H).

8. Time of Hyperbolic Flight - ® R©&-Hodograph

Formula
S .pq - 1n ME (5.15P)
T ™

Proof From the hodograph geometry we have

PAd = ¢ tan @ (B-14)
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and
CH = AC tan CAH = ¢ tan & (B-15)
Thus
ﬁ:TC+C—}f=e(l+tan%)
HM =CM -bﬁ:e(l-tan%)
and o
@=l+tan§=tan(g-+£) (B-16)
HM 1 - tan 2k

Substituting Equations (B-14) and (B-16) into Kepler's equation for
hyperbolic flight (5.12) we obtain Equation (5.15P).
The proof of the corresponding formula (5.15H) for ﬂ!}’a -

hodograph is entirely similar, and is therefore omitted.



APPENDIX C

THE INTERSECTING PROPERTY OF THE NORMALS OF A HYPERBOIA

Statement of the Property

Two normal lines at two distinct points on a hyperbola in the
same quadrant will always intersect in the adjacent quadrant on the oppo-
site side of the transversal axis of the hyperbola.

An Analytical Proof

Let the equation of the hyperbola be given by the parametric
equations

B tan w

"
I

(C-1)
A sec w

o
1l

Consider two normal lines at the points Q]_(wl) and  Q, QDE) on the hy-
perbola, and let their point of intersection be P(xP,yP). For definite-

ness let us assume
0<w <m,< = (c-2)
1 2 5

so that Q1 and Q2 are distinct and in the same quadrant I. Then we
are required to show that the point P is in the quadrant II (see Figure
C-1.)

Now the equation of the normal line at any point Q(w) on the

hyperbola may be written

Bxsecw+ Ay tan o = Ctan o sec o (C-3)

where

= A° + B® (C-k)
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Normals

HYPERBOLA

- X

0

Figure C-1. Intersection of the Normal
Lines to a Hyperbola

Thus for the point P we have

1

B x secw, + Ay tanw
b 1Y

C™ tan w., sec W,
1 1

1 1

B xpsec Wy + A yp tan o, = C2 tan wy sec w,

Solving for Xp and yp Wwe find

cos (l)2 - CO0S (Dl

(‘2
x, = — tan w; tan w, - .
B + sin wy - sin W)

EE tan w, - ftan wy
A

sin Wy - sin Wy
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from which we conclude under the assumption (C—2), that

x <0, y_ > 0

In other words, P 1is in the quadrant II.



