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ABSTRACT

A practical method for the solution of Prandtl-Meyer flow of a real gas
in equilibrium is presented. The concept of an equivalent ideal flow is intro-
duced and the exact solution of the Prandtl-Meyer flow of an ideal gas is
utilized to reduce the bulk of graphical work needed for the solution of a real
flow. A few typical key-charts for this method are developed for equilibrium
air and from these charts the behavior of equilibrium air in a Prandtl-Meyer
flow is briefly reviewed. Several numerical examples illustrating the appli-

cation of this method are included in the appendix.
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a'*

>

NOMENCLATURE

speed of sound
critical speed of sound
enthalpy per unit mass
Mach number, V/a
dimensionless velocity, V/a*
pressure
radial distance
gas constant
entropy per unit mass
absolute temperature
speed
radial component of velocity
transversal component of velocity
Mach angle
ratio of specific heats, cp/cV
deflection angle, defined in Fig, 1
polar angle, defined ir: Fig. 1
density

2h

flow parameter = 1+ )
o2

average value of )., defined by Eq. (C-1)
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Subscripts

ideal flow
reference condition
isentropic

stagnation corndition



L. INTRODUCTION

The problem of supersonic flow through a centered expansion wave,
known as Prandtl-Meyer flow, has been solved analytically for the case of
én ideal gas by L. Prandtl1 and Th. Meyer2 in the early nineteen hundreds,
and hodographs and tables have been extensively developed since them& 46,7
However, when the real gas effects are to be taken into account (such as the
variation of specific heats with temperature, dissociation, ionization, arnd
so on), analytical solutions have not been available, and the solution ¢f such
problems has to rely heavily on numerical approximations and graphical
means. As a great variety of real gases and flow conditions are encountered
in present-day engineering, a tremendous amount of numerical and graphical
work will be expected.

The purpose of this report is to solve the problem of Prandtl-Meyer flow
of & real gas by correlating it with an equivalent 1deal flow, a concept which
will be introduced below. Through such a correlation it will be showr. that
the solution of the real flow problems may be obtained from that of an ideal
flow, so that the existing aralytical solution for the ideal case may be utilized,

and the graphical and numerical work necessary for the real flow problems

will be greatly reduced.



I. ANALYSIS

With the gas assumed in local thermodynamic equilibrium throughout
its expansion around a convex sharp corner, it is expected that all physical
properties of the gas will be constant along the radial lires emanating from
the corner since the boundary conditions define no characterisvic length in

C ) 1,5 ) .
such a problem according to Prardtl's argument and the resulting flow
is therefore of the Prandtl-Meyer type. Under such assumptions :he flow
is isentropic and the following equatiors hold rot only for an 1deal gas bu

for a real gas as well:

av

a V.o 4
g2,y | om on 2)
2\ r g t 8

since they are based on the conservatior of mass, momentum, and energy

only, hence independent of the equation of state of the particular gas vnder

consideration. The geometry of such a flow is shown i Fig. 1.
Eliminating Vé from Eqs. (1) and (2) results in Heims' equatior * for

the radial velocity Vr’

*First introduced by Heims, Steve P, in Ref. 10 with a slightly differemnt
notation.
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where the parameter A is defined by

A comparison of Eq. (3) with the corresponding equation for an ideal gas,
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Upon substituting the new variable 9i for 8, Eq. (3) reduces to
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which is exactly of the same form as Eq. (3a). Thus, as a consequernce of

such a transformation, we arrive at

Vr - Vri (7)

if we take hti =h . That is, the radial velocity along the radial line of polar

¢
angle § in the real flow is the same in magnitude as that in the flow of an

ideal gas of the same stagnation enthalpy along the corresponding radial line
of polar angle 01 defined by Eq. (5). The fictitious flow of an ideal gas associ-
ated with a real gas flow in the sense of Eq. (7) will be referred to as the
equivalent ideal Prandtl-Meyer flow (or ideal flow for short) wherein the

polar angles of the corresponding radial lines along which the radial compo-

nenis of the gas velocities in the two flows are equal (in magnitude) are re-

lated through Eq. (5).

I[II. CORRELATION BETWEEN THE REAL FLOW AND THE IDEAL FLOW

With the basic correlation between the real Prandtl-Meyer flow and its
equivalent ideal flow established in Eqs. (5) and (7) it is a simple matter to
deduce the relations between other gas properties along the corresponding
radial lines. For example, the corresponding transversal components of
the flow velocities are related by

av_ dv_do. A
6 - "de “de, s =5 Vi (8)




The correlation between other properties may be deduced in the same manner.

A summary of such formulas is given below:

Table 1. Correlation Between the Real and Ideal Prandtl-Meyer Flows

Flow Parameter Correlation Formula
Velocity, radial Vr = Vri (7)
A,i)
Velocity, transversal Vg = (7; Vei (8)
; )\i
Local speed of sound as=|+la (9)
/\1
Mach angle tan a = Y tan @ (10)
2 A 2 2
Mach number M =1+ )s—) (Mi - 1) (11)
i
2
Local enthalpy h = 1—'—10“—2 h, (12)
1- l/ki ‘

Thus once the correspondence between 6 and 91 is established, all principal
flow parameters in the real flow can be obtained from the corresponding
quantities in the équivalent ideal flow by simple calculations through these
correlation formulas. (A summary of the analytical solution and a short table

for the ideal flow will be found in Appendices A and B.)

6



So far no attempt has been made to correlate directly the corresponding
local flow deflections 6 and Gi as it is more involved. However, with the polar
angle 6 and the local Mach angle a determined, the local deflection in the real

flow may be simply calculated from

6:6+a-% (13)

which is evident from the geometry of the flow (see Fig, 1).

Now it remains to integrate the differential relation (5) between 6 and ¢ -
In the absence of suitable analytical formulas the integration can only be
effected graphically. Before proceeding with such an integration we recall

from the analytic solution for an ideal Prandtl-Meyer flow,

1 p
a; = Vé)i = A—,;\/th cos (Gi/)\i) (14)

which when,combined with the correlation formula (9), gives

-1 Xa

V2h,

t

(15)

g.= A, COS
i i

This equation provides a principal linkage between the condition in the real
flow and the corresponding polar angle in the ideal flow, and enables one to

effect the integration of Eq. (5) according to the procedure suggested below.



For a specified stagnation condition defined by ht and s,

1) Assume a series of values of local enthalpy, h < ht along the
constant entropy line, and find the corresponding local speed of
sound from the proper chart (e. g., the Mollier chart) or table
for the real gas under consideration;

2) Calculate A according to Eq. (4) and then 6, according to Eq.
(15):

3) Plot ) versus 6'i and carry out the graphical integration accord-
ing to

9.
1
A
6 f i‘idgi (5a)
0

It is to be noted that both 6 and Gi are measured from the Mach line M =1
by definition; and in principle, any ideal gas, monatomic or polyatomic,
may be taken as the reference gas in the ideal flow irrespective of the
rature of the real gas under consideration.

As an illustration, some typical correlation charts for 6 and 6 "
6 and 51 have been worked out for equilibrium air by the present method
with a diatomic gas as the reference gas. The results together with the
A VS, Gi curves from which these correlation charts were obtained are
shown in Figs. 2 to 4. Some typical examples showing the use of these

charts for the solution of practical problems are given in Appendix D.



As further illustrations, the variation of the local properties of equilibrium
air (temperature ratio, pressure ratio, density ratio, and Mach number)
through the Prandtl-Meyer expansion as obtained from these basic charts
are presented in Figs. 5to 8. The corresponding quantities for an ideal
diatomic gas given by the analytical solution are also shown for comparison

purpose.

IV. THE PRANDTL-MEYER FLOW OF EQUILIBRIUM AIR

Based on the graphs presented in Figs. 2 to 8, a few observations on
the Prandtl-Meyer flow of equilibrium air may now be made.

The relation between the corresponding real and ideal polar angles is
nearly linear at a constant stagnation condition. The slope of such a line
(de/ d@i) changes in going from one isentropic line to another, the higher
the entropy the higher the slope; but it remains practically constant for
different stagnation enthalpy. This is due to the fact that the parameter x
of the real gas changes considerably with entropy but very little with enthalpy.
With the help of the Mollier char’t9 the variation of A with enthalpy and entropy
for equilibrium air is shown in Fig. 9. An empirical formula for the average
slope of the 6 - 91 curve for equilibrium air is given in Appendix C.

A comparison of the equilibrium properties of air in a real flow with
an ideal flow shows that, within the range of the present plots, the temper-
ature ratio (T/ Tt) in a real flow is higher than that in an ideal flow at the

9



same angle of deflection (both measured from the initial direction M = 1);
and the same is true for the pressure ratio (p/ po)" The deviation of air
temperature in the real flow from that in an ideal flow of the same stagna-
tion temperature first increases and then decreases as the flow deflection
increases, with the maximum deviation occurring at some intermediate
deflection angle (Fig. 5). However, the pressure deviation between a real
flow and an ideal flow of the same stagnation pressure is small, and is
practically negligible at high flow deflections (Fig. 6).

In the case of density ratio, as Fig. 7 shows, the difference in the
real and ideal f10§vs is very little throughout the range of plotting. For
small flow deflection the air density in the real flow is slightly lower than
that in the ideal flow of the same stagnation density while for large deflec-
tion it is slightly higher. The two become identical at an intermediate flow
deflection of approximately 38° under the assumed stagnation condition.

Finally the Mach number in the real flow is lower than that in the
ideal flow at the same turning angle, and this deviation increases rapidly
as the air turns (Fig. 8). As we know, the maximum angle of turning in
an ideal flow has a theoretical limit of | (V(y + 1)/{y - 1) - 1] #/2, the
present plotting indicates that the equilibrium air may turn through a much

higher angle than an ideal diatomic gas.

10



V. DISCUSSION

1. As shown throughout the previous sections the parameter A plays
a vital role in the behavior of the Prandtl-Meyer type of gas flow. By

writing its defining Eq. (4) in the alternate form

it is seen that the square of A represents the ratio of the total energy to
the kinetic energy of the gas if the flow is critical, that is, V = a, under
the local condition defined by its enthalpy and entropy. Heim'’s equation
then shows that even. though a great variety of real gas effects are present
in the real flow, they enter the governing equation only through this param-
eter as long as the assumption of equilibrium flow is valid. Consequently,
the introduction of this parameter provides a simple approach to the anal-
ysis of Prandtl-Meyer flow despite the presence of apparently many diver-
sified real gas effects; and it also makes it possible to link the real gas
flow with an ideal gas flow which forms the basis of the present methoed

of solution.

A few typical curves showing the variation of X with the local enthalpy
and entropy have been presented in Fig. 9 for equilibrium air. In fact
lines of constant » may be added to a regular Mollier chart since it is a
local property of the gas. Such Mollier charts, if available, would be of
special value in assisting the solution of Prandtl-Meyer flow problems of

real gases,
11
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2. As Section III shows, by linking the real flow with its equivalent
ideal flow through the parameter ) the problem of finding the solution for
a real flow reduces to that for an ideal flow if the correspondence between
the real and ideal polar angles 6 and 91 is known. Thus the graphical work
necessary for such a solution is narrowed down to the graphical integration
of the single relation Aide = Ad@i from which the 6 vs. Qi charts may be
prepared. Once such charts are available, the method of solution consists
of merely finding the ideal solution according to 91 and converting it to the
real solution through the simple correlation formulas in the table of Sec-
tion IIL

Basically the 6 vs. Qi charts together with the 2 vs. 91 charts, consti-
tute the key charts needed in the present method. However, in view of the
fact that in many practical problems it is usually the local deflection angle
that is specified instead of the polar angle, correlation charts of 6 vs. Gi
such as those shown in Figs. 3-1 to 3-3 are often desired. Such charts
may be easily obtained from the 6 vs. éi chart through formula (13). Thus,
by using the equivalent ideal flow method, at most three types of correla-
tion charts are required; the 6 vs. 51’ 0 vs, 61, and A vs. Qi; and to pre-
pare these charts only one graphical integration is needed. In case of
equilibrium air the empiriczl formula in Appendix C may be used in the

absence of the 6 vs. Gi charts.

12



Finally it is to be noted that the graphical integration of the differen-
tial relation )\ide = )\9i on which the present method hinges can be effected
only when the equilibrium properties of the real gas under consideration
are known (either in the form of charts, tables, or empirical formulas).
investigations of such properties of various real gases are beyond the scope
of the present study.

3. Although this report deals with the equilibrium flow, same method
applies equally to the case of frozen flow. In suchacase the value of » is
frozen at its initial value and the real gas behaves as an ideal gas through-
out the flow. Consequently, the 6 vs. Gi relation is exactly linear, and a
direct application of ideal flow formulas is permitted with a proper choice

of the value of X.

13
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APPENDIX A

Analytical Solution for an Ideal Prandtl-Meyer Flow
Summary of Formulas*

{/

Flow velocity, radial Vr = \EH; sin N
v2h )
Flow velocity, transverse V” = cos +

T
Flow velocity, total Ve— V1+ 0% - 1) sin” -

Flow velocity, dimensionless M* = \/1 + (/\2 -1) sinz%J

2 2 1
A 3 —
1+ tan X

I

Mach number M

‘ B -11 fh
Mach angle a = tan : cot y
. -1 f
Deflection angle =16 -tan =~ X tan N
1 t
Temperature T=T, |l -—=]cos =
t 2 A
A
2
Enthalpy h = ht (1 - 1—2 cos2 -
A 1,2
— =y (/\ + 1)
2
1 2
Pressure p =D 1 - | cos 1
LA /
i S0
1 2 1 2
Density p=p |11--—=]cos -
t 2 A
)
T
Flow parameter A= \fzt 1

*For simplicity, all subscripts (i) for ideal flow have been omitted.
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APPENDIX B
A Short Table for the Prandtl-Meyer Flow of an Ideal Diatomic Gas

( = 1. 405)*

6% 6[°] al©] p/p, M M* /T,
0 0,00 90,00 0,527 1,000 1,000 0,832
1 23,72 67,28 0,477 1,084 1,068 0,808
2 30,04 61,96 0,449 1,133 1,107 0,794
3 34, 82 58,18 0,424 1,178 1,141 0,781
4 38,88 55,12 0,401 1,220 1,173  0,76¢
5 42,34 52,66 0,381 1,258 1,201 0,757
6 45, 42 50,58 0,363 1,295 1,227 0,747
7 48, 30 48,70 0,345 1,332 1,253 0,736
8 50, 93 47,07 0,329 1,366 1,276 0,726
9 53,46 45,54 0,313 1,401 1,299 0,716

10 55,84 44,16 0,298 1,435 1,322 0,706
11 58,16 42,84 0,284 1,470 1,344 0,696
12 60, 38 41,62 0,270 1,505 1,366 0,66
13 62, 49 40,51 0,257 1,539 1,387 0,676
14 64, 52 39,48 0,245 1,572 1,407 0,667
15 66, 53 38,47 0,233 1,608 1,428 0,657
16 68, 47 37,53 0,221 1,641 1,448 0,647
17 70,33 36,67 0,210 1,675 1,467 0,638
18 72,18 35,82 0,199 1,710 1,486 0,628
19 73,98 35,02 0,189 1,744 1,504 0,619
20 75,74 34,26 0,179 1,779 1,523 0,609
21 77, 49 33,51 0,170 1,815 1,541 0,600
22 79,20 32,80 0,161 1,850 1,559 0,591
23 80,90 32,10 0,153 1,884 1,516 0,582
" 24 82,55 31,45 0,145 1,918 1,592 0,573
25 84,20 30,80 0,137 1,954 1,609 0,564
26 85, 81 30,19 0,130 1,989 1,625 0,555
27 87, 42 29,5 0,123 2,025 1,641 0,546
28 89, 02 28,98 0,116 2,062 1,657 0,537
29 90,58 28,42 0,110 2,098 1,673 0,529
30 92,12 27,88 0,104 2,135 1,688 0,520
31 93,66 27,34 0,097 2,174 1,704 0,511
32 95,18 26,82 0,092 2,214 1,720 0,502
33 96,68 26,32 0,086 2,251 1,735 0,493
34 98,20 25,80 0,080 2,296 1,752 0,483
35 99, 67 25,33 0,075 2,339 1,767 0,474

36 101,13 24,87 0,071 2,378  1,7€1 0,466
37 102, 58 24,42 0,066 2,422 1,795 0,457
38 104, 02 23,98 0,062 2,466 1,810 0,448
39 105,46 23,54 0,058 2,508 1,824 0,440
40 106, 88 23,12 0,054 2,550 1,837 0,432

41 108, 30 22,70 0,051 2,595 1,851 0,423
42 109,71 22,29 0,047 2,640 1,864 0,415
43 111,11 21,89 0,044 2,689 1,878 0,406
44 112, 51 21,49 0,041 2,734 1,891 0,398
45 113,89 21,11 0,038 2,778 1,903 0,390
46 115,217 20,73 0,036 2,826 1,917 0,382
47 116, 63 20,37 0,033 2,873 1,928 0,374
48 118,00 20,00 0,031 2,920 1,939 0,367
49 119, 36 19,64 0,029 2,968 1,951 0,359
50 120,71 19,29 0,027 3,021 1,963 0,351

51 122, 07 18,93 0,025 3,074 1,975 0,343
52 123, 41 18,59 0,023 3,131 1,987 0,335
53 124,74 18,26 0,021 3,188 1,999 0,327
54 126, 03 17,97 0,019 3,350 2,012 0,319

129,32 219,32 0,00 0,000 o 2,437 0,000

(Taken from Ref. 7, p. 102)

*For simplicity, all subscripts (i) for ideal flow have been omitted.
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APPENDIX C

An Empirical Formula for the 6 vs. 61 Relation for Equilibrium Air

As shown in Figs. 2-1 to 2-3 the 4 vs. Gi relations for equilibrium
air are nearly linear under the given stagnation conditions. Such a rela-

tion may be approximated by

(C-1)

D
i
=
D>

where A is the average X over the range of plotting. The value of X may

be obtained either from the A vs. ei curve, or by directly measuring the
average slope of the 6 vs. Qi curve. By so doing we find that X is strongly
dependent on s/R, and only weakly dependent on ht/ RT, either dependence

being also nearly linear. An empirical formula is found to be

[>1

20,633+ .0172 (s/R) - 2. 00 (10)"* (h/RT ) + 1.20 (10)7° (h/RT ) (s/R)
i

>

(C-2)

which holds approximately for equilibrium air within the following range of

stagnation conditions:

ht/RT 203 to 303
0

s/R = 34to 59

il
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APPENDIX D

Numerical Examples

1. Equilibrium air is approaching a convex sharp corner at a Mach

number of 1 under the stagnation condition:

39

Find the Mach number, temperature, and pressure of the gas along the
radial line inclined at 10o from the initial flow direction as shown in Fig.

D-1. Find also the local flow deflection,

Q
I0° )

777777777

Figure D-|. Example I.

Solution: The poldar angle of the radial line is

6 =90° - 10° = 80°

From the correlation chart A (Fig. 2-2) we find

0
0= 58. 5
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The analytical solution of the ideal flow at this polar angle is found from

Appendix B (or A) to be
M, =1.475 L =20 6945 5, = 11.15

The local value of A as found from Fig. 4-2 is

A =3.372 or A%=11.37

The value of X for an ideal gas (diatomic) is

2
)\izx/'é or Ai = 6

The local Mach number in the real flow, according to formula (11) is given by

M2=1+—1136-§'—7-(104752- 1) = 3. 228

M=1.796
The ideal local enthalpy is given by

B,

— ! = (0. 6945) (253) = 175. 17

h, (h. ‘
h. | RT |
ol

i i
RT |h
o

-

The local enthalpy in the real flow is then calculated from correlation formula

(12):
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h__ 1137 4 o4
b .1
5
h., |}
h  h| N .
T b |- (1. 094) (175.7) = 192. 2

The corresponding temperature and pressure are then found from the

Mollier chartg:
T = 6725k p = 13.0 atm
To find the local flow deflection we first calculate

i -_].'._—-_1_—- — 0 7
sma—M 1.796—0' 5568 s a=33 50

Then by Eq. (13) we find
5 =0 +a-§=80°+ 33° 50" - 90° = 23° 50

The value of & could also be found from the 8§ vs. 6i chart (Fig. 3-2).

2. For the flow of example 1 find the Mach number, temperature, and
pressure of the gas when the local flow deflection is 60°.
Solution: The ideal flow deflection corresponding to 6 = 60° is found from

correlation chart B (Fig. 3-2).

5 = 31°
1
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and theideal gassolution (Appendix A or B) gives
M =2.174 , egle0s1l 0, = 93. 66°

The value of A is then found from Fig. 4-2.
M= 3,287

By using the correlation formulas (11) and (12) we calculate for the real flow,

9
M2=1+3‘Zg7 2.174% - 1) =7.711 , M=2.777
1. —1 5
h__ 3287 1 g9
h. L1
1 G

The local enthalpy in the real flow is thus given by

JL) h_i)
h.
1

hti
From the Mollier chart we find

'h
t

RT
0

= (1. 089) (0. 511) (253) = 140. 8

h
RT
0

T=5350°K , p=2.19atm

3. Same as example 1 except that the air is approaching the sharp

corner at Mach number 2.
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Figure D-2. Example 2.

Solution: To starf the calculation the local enthalpy of the air at the-initial
Mach number (M1 = 2) must be determined. This can be done graphically
with the help of the Mollier chart9 as follows:

Assume a series of values of h/RTO (< ht/RTo) and find the correspond-
ing value of ''a' along the constant entropy line (s/R = 39) in the Mollier
chart; calculate the flow velocity V from the energy equation V = m
and then the Mach number M = V/a; finally plot M vs. h and thus find from
the graph the value of h at the given Mach number (M1 =2).

For the present problem the result of such a plotting is shown in Fig.

D-3, from which
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41—
\
M2 3 P
h,/RT, = 253
2 s/R=39
. ]
180 190 200
h/RT,

Figure D-3. Isentropic Variation of Mach Number with Local Enthalpy.

From which we find

while the corresponding speed of sound is given by the Mollier chart9

—t

— = 5.025
a

The initial value of the parameter A is thus found from Eq. (4) or Fig. 9,

Al = 3. 366

The initial ideal polar angle is then found from Eq. (15), or Fig. 4-2,

0

(6,), = 62

l)i

and the corresponding polar angle, found from the correlation chart A
(Fig. 2-2),
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which, as we understand, is measured from the fictitious Mach line M = 1.

To find the polar angle of the 10° radial line we first calculate

. -1

= sin %: 300

1
1 M,

and then from the geometry of the flow (see Fig. D-2) we find

) 100 _ oc0 O 100 _ 100
92—_91+a1 10" =85 + 30 10 105

From now on the procedures are the same as thos in example 1.
The results are as follows:

o

Ideal flow: (6‘2)i =717 (Fig. 2-2)
(Mz)i = 1. 805 (Ideal solution,
Appendix A or B)
(hy)./h = 0. 603 (ditto)
Real flow: )‘“2 = 3. 335 (Fig. 4-2)
M, = 2. 277 (Eq. (11))
h,/RT_ = 166. 6 (Eq. (12))
T, = 6100°K (Mollier chart’)
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pz = 5,96 atm Mollier chart9

a, = sin" ! = 26° 3

L
2 M,

The flow deflection measured from the initial flow direction at M1 = 2 is,

from the geometry in Fig. D-2,

5y' = 26° 3' - 10° = 16° 3'

4, For the flow of example 3, find the Mach number, temperature,
and pressure of the gas when the local flow deflection is 60° from the initial
flow direction at M, = 2.

1

Solution: From example 3 we have

The initial flow deflection measured from the fictitious flow M = 1 is, by
Eq. (13),

5, = 85° + 30° - 90° = 25°

The corresponding local flow deflection is

5, = 25° + 60° = 85°

From now on the procedures are the same as those in example 2. The

results are as follows:
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Ideal flow: (5 )i = 46,7 (Fig. 3-2)

2

(M ; =,2,.859 (Appendix A or B)

9)

hy /0, = T, /T, = 0.376 (ditto)

6,, = 116.2 (ditto)
Real flow: Ay = 3. 291 (Fig. 4-2)
M, = 3.72 (Eq. (11))
hZ/RTO = 103. 5 (Eq. (12))
o} ) 9
T2 = 3990 K (Mollier chart”)

Py = 0. 288 atm (ditto)
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