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Abstract
Background: Septic shock is a heterogeneous syndrome within which probably exist several biological subclasses.
Discovery and identification of septic shock subclasses could provide the foundation for the design of more specifically
targeted therapies. Herein we tested the hypothesis that pediatric septic shock subclasses can be discovered through
genome-wide expression profiling.

Methods: Genome-wide expression profiling was conducted using whole blood-derived RNA from 98 children with
septic shock, followed by a series of bioinformatic approaches targeted at subclass discovery and characterization.

Results: Three putative subclasses (subclasses A, B, and C) were initially identified based on an empiric, discovery-
oriented expression filter and unsupervised hierarchical clustering. Statistical comparison of the three putative subclasses
(analysis of variance, Bonferonni correction, P < 0.05) identified 6,934 differentially regulated genes. K-means clustering
of these 6,934 genes generated 10 coordinately regulated gene clusters corresponding to multiple signaling and metabolic
pathways, all of which were differentially regulated across the three subclasses. Leave one out cross-validation
procedures indentified 100 genes having the strongest predictive values for subclass identification. Forty-four of these
100 genes corresponded to signaling pathways relevant to the adaptive immune system and glucocorticoid receptor
signaling, the majority of which were repressed in subclass A patients. Subclass A patients were also characterized by
repression of genes corresponding to zinc-related biology. Phenotypic analyses revealed that subclass A patients were
younger, had a higher illness severity, and a higher mortality rate than patients in subclasses B and C.

Conclusion: Genome-wide expression profiling can identify pediatric septic shock subclasses having clinically relevant
phenotypes.
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Background
While septic shock is fundamentally an infection-based
disease entity, it is not a singular, homogenous disease in
the traditional sense. Rather, septic shock is more akin to
a syndrome or a broad, heterogeneous disease classifica-
tion within which likely exist several disease subclasses.
The concept of septic shock subclasses is clinically rele-
vant in that potentially it could have major implications
for the design of more specifically targeted therapies [1].

Physiology-based subclassifications of septic shock are
well recognized and have clear implications for hemody-
namic management [2-4]. More recently, there have been
attempts to biologically subclassify patients with septic
shock using blood-derived biomarkers. For example, a
previous clinical trial centered on an anti-tumor necrosis
factor antibody strategy used serum interleukin-6 concen-
trations to identify and stratify septic shock patients with
a higher severity of illness, ostensibly to select a patient
population that could potentially derive a greater benefit
from immune modulation therapy [5,6]. We recently
identified a subclass of children with septic shock having
a high probability of survival with standard care based on
admission serum interleukin-8 levels [7]. While the ease
of this type of patient subclassification is clinically appeal-
ing, it is overly simplistic from a biological standpoint
given the complexity and heterogeneity of septic shock
[1].

A potentially more comprehensive approach to subclassi-
fication of septic shock involves genome-wide expression
profiling based on microarray technology and bioinfor-
matics [8]. Our previous genome-wide expression studies
demonstrated and validated that pediatric septic shock is
characterized by early, persistent, and concomitant repres-
sion of gene programs corresponding to the adaptive
immune system and to zinc-related biology [9-13]. Herein
we tested the hypothesis that pediatric septic shock sub-
classes can be discovered through genome-wide expres-
sion profiling.

Methods
Patients
The study protocol was approved by the individual Insti-
tutional Review Boards of each participating institution
(N = 11 institutions). Children ≤10 years of age admitted
to the pediatric intensive care unit and meeting published,
pediatric-specific criteria for septic shock were eligible for
the study [14]. Controls were recruited from the ambula-
tory departments of participating institutions using the
following exclusion criteria: a recent febrile illness (within
2 weeks), recent use of anti-inflammatory medications
(within 2 weeks), or any history of chronic or acute dis-
ease even remotely associated with inflammation. The
median age (intra-quartile range (IQR)) for the control

cohort (N = 32) was 1.6 years (0.2 to 3.7 years). There
were 19 males and 13 females in the control cohort.

Sample and data collection
After obtaining informed consent from parents or legal
guardians, blood samples were obtained within 24 hours
of initial presentation to the pediatric intensive care unit
with septic shock. Severity of illness was calculated using
the pediatric risk of mortality (PRISM) III score [15].
Organ failure was defined using pediatric-specific criteria
[14,16]. Annotated clinical and laboratory data were col-
lected daily while in the pediatric intensive care unit. Clin-
ical, laboratory, and biological data were entered and
stored using a web-based database developed locally.

RNA extraction and microarray hybridization
The data and protocols described in this manuscript are
compliant with the minimum information about a micro-
array experiment (MIAME) and are deposited in the
National Center for Biotechnology Information Gene
Expression Omnibus (GEO) under accession number
GSE13904 (GEO, http://www.ncbi.nlm.nih.gov/geo/).
All of the controls and 67 of the patients with septic shock
have been previously reported in analyses addressing
completely different questions than that addressed in the
current study [9,11-13]. An additional 31 patients in the
septic shock cohort have not been previously reported.
Total RNA was isolated from whole blood samples using
the PaxGene™ blood RNA system (PreAnalytiX, Qiagen/
Becton Dickson, Valencia, CA, USA) according the manu-
facturer's specifications. Microarray hybridization was
performed by the Affymetrix Gene Chip Core facility at
the Cincinnati Children's Hospital Research Foundation
as previously described using the Human Genome U133
Plus 2.0 GeneChip (Affymetrix, Santa Clara, CA, USA)
[9,11-13].

Data analysis
Analyses were performed using one patient sample per
chip. Image files were captured using an Affymetrix Gene-
Chip Scanner 3000. CEL files were subsequently preproc-
essed using robust multiple-array average (RMA)
normalization and GeneSpring GX 7.3 software (Agilent
Technologies, Palo Alto, CA, USA). All signal intensity-
based data were used after RMA normalization, which
specifically suppresses all but significant variation among
lower intensity probe sets [17]. All chips representing
patient samples were then normalized to the respective
median values of the controls. Lists of differentially regu-
lated genes were generated using a series of expression and
statistical filters embedded in the GeneSpring GX 7.3 soft-
ware. Further details regarding these filters will be pro-
vided in the Results section.

Gene lists of differentially expressed genes were primarily
analyzed using the Ingenuity Pathways Analysis (IPA)
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application (Ingenuity Systems, Redwood City, CA, USA)
that provides a tool for discovery of signaling pathways
and gene networks within the uploaded gene lists as pre-
viously described [12,18]. Adjunct analyses of gene lists
were performed using the National Institutes of Health
Database for Annotation, Visualization and Integrated
Discovery (DAVID) [19]. Both applications are based on
the established biomedical literature and use specific
approaches to estimate significance (P values) based on
non-redundant representations of the microarray chip
and to convert the uploaded gene lists to gene lists con-
taining a single value per gene. The P values provide an
estimate of the probability that a given enrichment is
present by chance alone and are derived using corrections
for multiple comparisons.

Results
Initial identification of putative septic shock subclasses
The first step toward identification of septic shock sub-
classes involved derivation of an initial working list of
genes differentially regulated between patients with septic
shock (N = 98) and controls (N = 32). The initial working
list was derived using an empiric, discovery-oriented
expression filter designed to select genes that were
increased or decreased ≥2-fold in at least 25%, but not
more than 50% of patients with septic shock, relative to
the median of controls. This expression filter yielded a
working list of 6,099 genes that were subjected to unsu-
pervised hierarchical clustering as shown in Figure 1. An a
priori decision was made to identify the putative major
septic shock subclasses based on the first- and second-
order branching patterns of the condition tree (top of Fig-
ure 1). Using this strategy, Figure 1 suggested the existence
of three major septic subclasses that we arbitrarily desig-
nated as subclasses A, B, and C.

Differential gene expression across septic shock subclasses
To determine if there are significant differences in gene
expression across the putative septic shock subclasses, we
carried out a statistical test using a three-group analysis of
variance (ANOVA), all genes on the microarray (54,641),
and the three putative subclasses as the comparison
groups. When we applied a Benjamini-Hochberg false dis-
covery rate of 0.1% the resulting gene list consisted of
more than 20,000 genes. While this result suggests that
the three putative septic shock classes have highly signifi-
cant differences in gene expression, a working gene list of
more than 20,000 genes is excessively large for practical
analysis. Accordingly, we applied a more stringent correc-
tion for multiple comparisons (Bonferroni; P < 0.05) and
thus generated a working list of 6,934 genes differentially
regulated between the three putative septic shock sub-
classes.

These 6,934 genes were then subjected to unsupervised
hierarchical clustering as shown in Figure 2. Based on the
first- and second-order branching patterns of the condi-
tion tree (top of Figure 2), the differential patterns of gene
expression demonstrate the existence of three major sub-
classes of patients with septic shock (subclasses A, B, and
C). Of the patients designated subclass A in Figure 1, 75%
belonged to subclass A in Figure 2; 82% of the patients
designated subclass B in Figure 1 belonged to subclass B
in Figure 2; 80% of the patients designated subclass C in
Figure 1 belonged to subclass C in Figure 2.

Further evidence for the existence of subclasses A, B, and
C was derived by conducting principal component analy-
sis based on the above 6,934 genes and the individual
patients in each of the subclasses indentified in Figure 2.
Principal component analysis is a mathematical vector
space transformation which allows for reduction of mul-
tidimensional data sets to lower dimensions (principle
components) accounting for variability in the data set
[20]. As shown in Figure 3, the principal component anal-
ysis based on three dimensions, accounting for 67.1% of
the variance in gene expression, provided a high degree of
separation between the three septic shock subclasses.

Unsupervised hierarchical clustering of 98 patients with sep-tic shock (horizontal dimension) and 6,099 genes (vertical dimension) derived from a discovery-oriented filtering approachFigure 1
Unsupervised hierarchical clustering of 98 patients 
with septic shock (horizontal dimension) and 6,099 
genes (vertical dimension) derived from a discovery-
oriented filtering approach. Both the condition tree 
(patient clustering) and the gene tree are based on the Pear-
son correlation similarity measurement. The first- and sec-
ond-order branching patterns of the condition tree were 
used to identify the putative septic shock classes and are 
colored for illustrative purposes based on three major puta-
tive septic shock subclasses.

FIG 1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.2

1.5

2.0

2.5

3.0

4.0

5.0

SUBCLASS A     SUBCLASS B            SUBCLASS C 
Page 3 of 12
(page number not for citation purposes)



BMC Medicine 2009, 7:34 http://www.biomedcentral.com/1741-7015/7/34
Thus, identifiable subclasses of patients with septic shock
exist based on genome-level expression patterns.

Clinical phenotypes of the septic shock subclasses
Table 1 provides the demographic and clinical character-
istics of the three septic shock subclasses identified in Fig-
ure 2. Patients in subclass A had a significantly higher
illness severity level (PRISM III score), a greater degree of
organ failure, and a higher mortality rate, compared with
patients in subclasses B and C. Patients in subclass A also
had a significantly higher incidence of documented
Gram-positive bacterial infection, compared with patients
in subclass C, and were significantly younger, compared
with patients in subclass B. A significantly greater propor-
tion of patients in subclass B received hydrocortisone for
cardiovascular shock compared with subclass C. None of
the other clinical characteristics listed in Table 1 were sig-
nificantly different between the three septic subclasses.
Thus, the three septic shock classes identified through dif-
ferential genome-wide expression patterns have signifi-
cant differences in clinically relevant phenotypes.

K-means clustering and pathway analysis
To derive further biological information from the 6,934
genes depicted in Figure 2, we next sought to identify
coordinately regulated gene clusters by conducting K-
means clustering based on a maximum return of 10 clus-

ters [21]. Figure 4 illustrates how the K-means clustering
algorithm arranged the 6,934 genes into 10 clusters of
coordinately regulated genes. All of the 6,934 genes are
represented in 1 of the 10 clusters, with no genes unclas-
sified.

The gene lists corresponding to each of the 10 clusters
depicted in Figure 4 were individually uploaded to the IPA
application and the analytical output was focused on
enrichment for genes corresponding to signaling and met-
abolic pathways. Table 2 provides the top five (based on
P values) signaling and metabolic pathways represented
in each cluster. All clusters were enriched for signaling and
metabolic pathways potentially relevant to the pathobiol-
ogy of septic shock. Thus, the 10 K-means clusters of coor-
dinately regulated genes that define septic shock
subclasses A, B, and C, are biologically plausible in that
they are broadly enriched for signaling and metabolic
pathways relevant to the pathobiology of septic shock.

Leave on out cross-validation and top predictor gene 
derivation
The above data demonstrate the existence of septic shock
subclasses, in very broad terms, based on more than 6,000
differentially regulated genes and 10 K-means clusters
consisting of between 300 and 1,100 genes. Herein we
sought to refine the gene expression patterns that best dis-

Unsupervised hierarchical clustering of 98 patients with sep-tic shock (horizontal dimension) and 6,934 genes (vertical dimension) derived from a three group analysis of varianceFigure 2
Unsupervised hierarchical clustering of 98 patients 
with septic shock (horizontal dimension) and 6,934 
genes (vertical dimension) derived from a three 
group analysis of variance. Both the condition tree 
(patient clustering) and the gene tree are based on the Pear-
son correlation similarity measurement. The first- and sec-
ond-order branching patterns of the condition tree are 
colored for illustrative purposes based on septic shock sub-
classes A, B, and C.
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Three-dimensional principal component analysis (mean centering and scaling) based on the 6,934 genes illustrated in Figure 2Figure 3
Three-dimensional principal component analysis 
(mean centering and scaling) based on the 6,934 
genes illustrated in Figure 2. Individual patients are plot-
ted based on their respective positions along the three axes 
derived from principal component analysis. Patient subclassi-
fications are indicated by color.
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tinguish the three septic shock subclasses. We assumed
that the genes corresponding to the individual signaling
and metabolic pathways listed in Table 2 likely have the
most biological significance with regard to differentiating
the three septic shock subclasses. Accordingly, we
extracted the individual genes corresponding to these
pathways (307 total genes). These 307 genes were then
subjected to a leave one out cross-validation procedure
using the support vector machines algorithm and the
Fisher's exact test method of gene selection [22]. This
cross-validation procedure yielded 89 correct subclass pre-
dictions (subclass A, B, or C) out of 98 (91%).

From the 307 genes used in the cross-validation proce-
dure, we then extracted the top 100 genes based on sub-
class prediction strength. These top 100 most predictive
genes were then uploaded to the IPA application and the
analytical output was again focused on enrichment for
genes corresponding to signaling and metabolic path-
ways. The top five signaling pathways derived from this
analysis are shown in Table 3. All of these signaling path-

ways are relevant to the pathobiology of septic shock and
are particularly relevant to the adaptive immune system.

Forty-four of the top 100 predictive genes corresponded to
the top five signaling pathways shown in Table 3. These
44 genes (listed in Table 4) were subjected to hierarchical
clustering based on the median expression values for each
septic shock subclass, as shown in Figure 5. The gene
expression pattern depicted in Figure 5 demonstrates that
septic shock subclass A patients had generalized repres-
sion of these 44 genes, relative to subclasses B and C.
Thus, patients in septic shock subclass A, having a clinical
phenotype characterized by higher mortality, higher ill-
ness severity, and a higher degree of organ failure, are also
characterized by repression of genes corresponding to key
signaling pathways of the adaptive immune system.
Importantly, the median absolute lymphocyte counts per
mm3 (IQR) were not significantly different across the
three subclasses: subclass A 1,585 (788–2,854); subclass B
1,530 (601–2,947); and subclass C 2,610 (1,329–4095).

Table 1: Demographic and clinical data for the septic shock subclasses indentified in Figure 2.

Subclass A Subclass B Subclass C

Number of patients 28 45 25

Median age in years (IQR) 0.3 (0.1–2.7) 4.3 (1.9–7.3)1 2.0 (0.8–2.7)

Number of males/females 19/9 19/26 14/11

Number of deaths (%) 10 (36)2 5 (11) 3 (12)

Median pediatric risk of mortality (PRISM) score (IQR) 20.5 (12.5–32.5)2 15.0 (10.0–21.0) 15.0 (10.7–19.2)

Maximum number of organ failures (IQR)3 3 (3–4)2 2 (2–3) 2 (2–2)

Number with co-morbidity (%)4 10 (36) 20 (44) 11 (44)

Number with immune suppression (%)5 7 (25) 14 (31) 2 (8)

Number receiving hydrocortisone (%)6 8 (29) 22 (49)5 5(20)

Number with Gram-positive bacteria (%)7 11 (39)8 10 (22) 2 (8)

Number with Gram-negative bacteria (%) 3 (11) 9 (20) 8 (32)

Number with negative cultures (%) 11 (39) 24 (53) 10 (40)

1P < 0.05 versus subclasses A and C, Mann-Whitney.2P < 0.05 versus subclasses B and C, Chi-square.3Refers to the maximum number of organ 
failures during the initial 7 days of admission to the pediatric intensive care unit.4Refers to patients having any major diagnosis in addition to septic 
shock (for example, trauma, sickle cell disease, congenital heart disease, liver failure, and so on).5Refers to patients with immune deficiency 
secondary to an intrinsic documented defect of the immune system, or patients receiving immune-suppressive medications (for example, calcineurin 
inhibitors or high dose steroids).6For cardiovascular shock.7All bacterial culture data refer to samples obtained from bodily fluids that are normally 
sterile (that is, blood, urine, cerebral spinal fluid, broncho-alveolar lavage, and/or peritoneal fluid).8P < 0.05 versus subclass C, Chi-square. IQR = 
intra-quartile range.
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K-means clustering of 98 patients with septic shock (horizontal dimension) and the 6,934 genes (vertical dimension) shown in Figure 2Figure 4
K-means clustering of 98 patients with septic shock (horizontal dimension) and the 6,934 genes (vertical 
dimension) shown in Figure 2. The K-means clustering algorithm is based on 100 iterations, the Pearson correlation simi-
larity measurement, and a maximum return of 10 clusters. The first- and second-order branching patterns of the condition 
trees are colored for illustrative purposes based on septic shock subclasses A, B, and C.
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Table 2: Ingenuity Pathways Analysis-derived signaling pathways corresponding to the 10 individual K-means clusters depicted in 
Figure 4.

Pathway P value Number of genes

CLUSTER 1
Erythropoietin signaling 2.0E-8 14
B cell receptor signaling 2.6E-8 20
Leukocyte extravasation signaling 2.8E-8 23
Triggering receptor expressed on myeloid cells signaling 2.3E-7 12
Janus kinase (JAK)/signal transducers and activator of transcription (STAT) signaling 2.8E-7 12

CLUSTER 2
Interferon signaling 8.7E-5 5
Erythropoietin signaling 7.4E-4 6
Insulin receptor signaling 1.0E-3 8
B cell receptor signaling 2.3E-3 8
JAK/STAT signaling 2.7E-3 5

CLUSTER 3
Axon guidance signaling 1.8E-6 38
Methane metabolism 2.9E-3 4
Coagulation system 1.9E-2 5
Calcium signaling 2.0E-2 14
Glycine, serine, and threonine metabolism 2.9E-2 7

CLUSTER 4
One carbon pool by folate 2.4E-3 3
Protein ubiquitination pathway 2.4E-3 8
Interleukin-8 signaling 2.1E-4 6
Glucocorticoid receptor signaling 4.1E-2 7
Glycine, serine, and threonine metabolism 5.5E-2 3

CLUSTER 5
B cell receptor signaling 1.2E-5 11
Nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) signaling 6.9E-5 10
Retinoic acid receptor activation 1.2E-3 9
Peroxisome proliferator-activated receptor (PPARα)/retinoid × receptor (RXRα) activation 1.3E-3 9
PI3 kinase/Akt signaling 2.0E-3 7

CLUSTER 6
p38 mitogen-activated protein kinase (MAPK) signaling 7.3E-5 10
Toll-like receptor signaling 9.3E-4 6
PPARα/RXRα activation 2.2E-3 11
Ephrin receptor signaling 2.2E-3 11
Sphingolipid metabolism 2.8E-3 6

CLUSTER 7
Interleukin-4 signaling 1.4E-2 4
Antigen presentation pathway 1.5E-2 3
Glyoxylate and dicarboxylate metabolism 3.3E-2 2
B cell receptor signaling 5.2E-2 5
Citrate cycle 6.9E-2 2

CLUSTER 8
Epidermal growth factor signaling 8.3E-3 4
Wnt/β-catenin signaling 9.6E-3 8
Ceramide signaling 1.3E-2 5
Epidermal growth factor (ERK)/MAPK signaling 1.6E-2 8
Huntington's disease signaling 1.8E-2 9

CLUSTER 9
Death receptor signaling 1.4E-5 11
B cell receptor signaling 2.8E-5 17
Integrin signaling 5.1E-5 20
Huntington's disease signaling 7.0E-5 21
EGF signaling 2.1E-4 8

CLUSTER 10
T cell receptor signaling 2.7E-7 9
Natural killer cell signaling 5.4E-5 7
Chemokine signaling 3.0E-2 3
NF-κB signaling 4.4E-2 4
Stress-activated protein kinase/c-Jun NH2-terminal kinase signaling 5.3E-2 3
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Regulation of zinc biology-related genes across the septic 
shock subclasses
Our previous studies demonstrated that pediatric septic
shock is broadly characterized by large-scale repression of
genes that either depend on normal zinc homeostasis for
normal function or directly participate in zinc homeosta-
sis [9,11-13]. In the current analysis, we determined if
zinc biology-related genes were differentially regulated
across the three septic shock subclasses. The 10 K-means
clusters depicted in Figure 4 were interrogated for enrich-
ment of zinc biology-related annotations ('zinc', 'zinc fin-

ger', 'zinc ion binding', 'metal binding', and 'metal ion
binding') by uploading the individual gene cluster lists to
the DAVID database. Cluster 8 was most significantly
enriched for these functional annotations with P values
ranging from 2.3E-5 to 9.7E-10 (data not shown). The
genes corresponding to these zinc biology-related func-
tional annotations were identified (181 genes) and sub-
jected to hierarchical clustering based on the median
expression values for each septic shock subclass, as shown
in Figure 6. The gene expression pattern depicted in Figure
6 demonstrates that septic shock subclass A patients had
generalized repression of these 181 zinc biology-related
genes, relative to subclasses B and C. Thus, our previous
observations regarding large-scale repression of zinc biol-
ogy-related genes appears to be a relatively unique feature
of patients in septic shock subclass A.

Discussion
Multiple clinical trials have been conducted in patients
with septic shock and most have been based on strategies
targeting various components of the immune or inflam-
matory system [23]. Despite being well supported by
quality preclinical data, the majority of these strategies
have failed when tested by way of randomized, placebo-
controlled trials. One major reason for these recurrent
failures is the broad heterogeneity intrinsic to the syn-
drome of septic shock [1]. That is, it is unlikely that any
single immune or inflammatory modulating therapy will
be beneficial to a heterogeneous group of patients with
septic shock. Thus, identification of septic shock sub-
classes could facilitate the design of more specifically tar-
geted clinical trials having a higher likelihood of
demonstrating efficacy.

Herein we have attempted to discover and identify pediat-
ric septic shock subclasses by leveraging the discovery
potential of high throughput genomics, a strategy that is
now well established in the field of cancer [24-29]. The
foundation of our data is a discovery-oriented expression
filter, which identified genes having at least two-fold

Table 3: Top five Ingenuity Pathways Analysis-derived signaling pathways corresponding to the top 100 predictor genes identified by 
leave one out cross-validation procedures.

Pathway P value Number of genes

B cell receptor signaling 2.1E-27 25

T cell receptor signaling 8.0E-16 15

Glucocorticoid receptor signaling 4.3E-15 20

Natural killer cell signaling 6.8E-14 14

Peroxisome proliferator-activated receptorα/retinoid × receptor activation 4.0E-12 15

Hierarchical clustering of the 44 genes shown in Table 4Figure 5
Hierarchical clustering of the 44 genes shown in 
Table 4. Each gene is colored by the median expression val-
ues for each of the respective septic shock subclasses, as 
labeled at the bottom of the figure.
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expression difference in between 25% to 50% of the septic
shock patients, relative to the median of controls. While
this strategy is certainly not the only valid approach to the
goals of our study, it allowed us to initially identify three
putative subclasses of patients with septic shock based on
unsupervised hierarchical clustering. The ability of this
strategy to effectively identify subgroups is well demon-
strated by the results of direct statistical testing, which
mandated the use of a correction for multiple compari-
sons procedure (Bonferroni) generally thought to be
overly stringent for microarray data [30,31]. The large
number of differentially regulated genes identified by

stringent, direct statistical testing strongly suggests that the
three putative septic shock subclasses are biologically
plausible.

The differentially regulated genes identified by direct sta-
tistical testing were able to distinguish three broad septic
shock subclasses when subjected to hierarchical clustering
and principal component analysis, thus further support-
ing the assertion of biological plausibility. K-means clus-
tering of these differentially regulated genes generated
coordinately regulated gene clusters corresponding to
multiple signaling and metabolic pathways relevant to the

Table 4: Forty-four genes corresponding to the signaling pathways in Table 3.

Affymetrix number Genebank Gene symbol Description

242482_at AI682905 PRKAR1A Protein kinase, cAMP-dependent, regulatory, type I, α
241905_at AA579047 PIK3C2A Phosphoinositide-3-kinase, class 2, α polypeptide
239585_at AV735100 KAT2B K(lysine) actetyltransferase 2B
236561_at AV700621 TGFBR1 Transforming growth factor, β receptor I
236283_x_at AA287921 PAK2 p21 (CDKN1A)-activated kinase 2
230337_at AW241962 SOS1 Son of sevenless homolog 1 (Drosophila)
228343_at AA805754 POU2F2 POU domain, class 2, transcription factor 2
228173_at AA810695 GNAS GNAS complex locus
227131_at BG231756 MAP3K3 Mitogen-activated protein kinase kinase kinase 3
225927_at AA541479 MAP3K1 Mitogen-activated protein kinase kinase kinase 1
224994_at AA777512 CAMK2D Calcium/calmodulin-dependent protein kinase II δ
224621_at AA129773 MAPK1 Mitogen-activated protein kinase 1
221616_s_at AF077053 TAF9B TAF9B RNA polymerase II
219290_x_at NM_014395 DAPP1 Dual adaptor of phosphotyrosine and 3-phosphoinositides
218806_s_at AF118887 VAV3 vav 3 oncogene
216033_s_at S74774 FYN FYN oncogene related to SRC, FGR, YES
215605_at AU145806 NCOA2 Nuclear receptor coactivator 2
214322_at AA284757 CAMK2G Calcium/calmodulin-dependent protein kinase II γ
214032_at AI817942 ZAP70 Zeta-chain (TCR) associated protein kinase 70 kDa
213579_s_at AI459462 EP300 E1A binding protein p300
211711_s_at BC005821 PTEN Phosphatase and tensin homolog
211583_x_at AF031136 NCR3 Natural cytotoxicity triggering receptor 3
210992_x_at U90939 FCGR2C Fc fragment of IgG, low affinity IIc, receptor for (CD32)
210162_s_at U08015 NFATC1 Nuclear factor of activated T cells, calcineurin-dependent 1
210031_at J04132 CD247 CD247 molecule
209685_s_at M13975 PRKCB1 Protein kinase C, beta 1
207387_s_at NM_000167 GK Glycerol kinase
207238_s_at NM_002838 PTPRC Protein tyrosine phosphatase, receptor type, C
206854_s_at NM_003188 MAP3K7 Mitogen-activated protein kinase kinase kinase 7
205931_s_at NM_004904 CREB5 cAMP responsive element binding protein 5
205841_at NM_004972 JAK2 Janus kinase 2 (a protein tyrosine kinase)
205456_at NM_000733 CD3E CD3e molecule, epsilon (CD3-TCR complex)
204297_at NM_002647 PIK3C3 Phosphoinositide-3-kinase, class 3
203837_at NM_005923 MAP3K5 Mitogen-activated protein kinase kinase kinase 5
203561_at NM_021642 FCGR2A Fc fragment of IgG, low affinity IIa, receptor (CD32)
203266_s_at NM_003010 MAP2K4 Mitogen-activated protein kinase kinase 4
203140_at NM_001706 BCL6 B cell CLL/lymphoma 6 (zinc finger protein 51)
202789_at AL022394 PLCG1 Phospholipase C, gamma 1
202625_at AI356412 LYN v-yes-1 Yamaguchi sarcoma viral oncogene homolog
1568943_at BC027960 INPP5D Inositol polyphosphate-5-phosphatase, 145 kDa
1565703_at AL832789 SMAD4 SMAD, mothers against DPP homolog 4 (Drosophila)
1558732_at AK074900 MAP4K4 Mitogen-actvated protein kinase kinase kinase kinase 4
1558135_at BQ709323 TAF11 TAF11 RNA polymerase II
1557675_at BI496583 RAF1 V-raf-1 murine leukemia viral oncogene homolog 1
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pathobiology of septic shock. Importantly, the cluster
maps derived from K-means clustering demonstrate that
these signaling and metabolic pathways are differentially
regulated across the three subclasses, thus illustrating, at a
genomic level, the concept that any one specific immune
or inflammatory modulating therapeutic strategy will not
be applicable to a heterogeneous cohort of patients with
septic shock.

The three septic shock subclasses identified by expression
profiling differed significantly with respect to important
clinical phenotypes. Specifically, patients in subclass A
had a higher level of illness severity, a higher degree of
organ failure, and a higher mortality rate compared with
the other two subclasses. In addition, patients in subclass
A were younger than patients in subclass B. The largest
epidemiologic study of pediatric septic shock to date, by
Watson et al. [32], demonstrated that children between
the ages of 1 and 12 months had the highest mortality rate
(13.5%), when compared with other age groups. Thus,
the demonstration that the subclass having the highest
mortality rate is composed of younger children is consist-
ent with the existing epidemiologic literature. However,
the mortality rate of subclass A (36%) is substantially

higher than the overall mortality reported by Watson et al.
[32] (10.3%), as well as the overall mortality rate (17.3%)
reported in the largest pediatric septic shock interven-
tional trial to date [33]. In addition, the median ages
between patients in subclass A and C were not signifi-
cantly different. Thus, it is likely that the higher mortality
rate in subclass A is, at least in part, a direct manifestation
of the gene expression profile that identified the subclass,
rather than a simple artifact of having identified a subclass
that was significantly younger.

Based on leave one out cross-validation procedures and
subsequent extraction of the top 100 predictor genes, the
most distinguishing gene expression signature of the sub-
class A patients was repression of genes corresponding to
the adaptive immune system. This pattern of gene repres-
sion does not appear to be an artifact of lymphopenia, in
as much as the absolute lymphocyte counts were not sig-
nificantly different across the three subclasses. In addi-
tion, subclass A patients were characterized by repression
of genes corresponding to glucocorticoid receptor signal-
ing, an intriguing finding given the current controversies
surrounding glucocorticoid treatment in septic shock
[34]. Finally, our subanalysis focused on repression of
genes having zinc biology-related functional annotations
demonstrated that repression of zinc biology-related
genes was also a distinguishing feature of the subclass A
patients. Thus, we conclude that subclass A patients are
particularly distinguished from subclass B and C patients
by gene repression patterns corresponding to adaptive
immunity, glucocorticoid receptor signaling, and zinc-
related biology. This pattern of gene repression correlates
with higher illness severity, a greater degree of organ fail-
ure, and higher mortality in subclass A patients.

Since our data are based on whole blood-derived RNA, it
is possible that some of the gene expression patterns that
distinguish the three subclasses are a reflection of different
distributions of white blood cell populations, rather than
within-cell differences in gene expression. As stated above,
however, the absolute lymphocyte counts were not signif-
icantly different across the three subclasses, thus suggest-
ing that our data are not simply artifacts of differential
white blood cell populations. Nonetheless, we are cur-
rently in the process of directly addressing this important
question by generating expression data from leukocyte
subset-specific RNA.

The existing literature supports the biological plausibility
of our data at two broad levels. First, our conceptual
framework of the pathobiology of septic shock has
evolved over the last decade to include the concept of
immune paralysis [35-40]. Whereas septic shock has been
traditionally viewed as being a reflection of uncontrolled
hyper inflammation (an innate immunity problem), it is

Hierarchical clustering of the 181 genes corresponding to zinc biology-related functional annotations and derived from K-means cluster 8 shown in Figure 4Figure 6
Hierarchical clustering of the 181 genes correspond-
ing to zinc biology-related functional annotations and 
derived from K-means cluster 8 shown in Figure 4. 
Each gene is colored by the median expression values for 
each of the respective septic shock subclasses, as labeled at 
the bottom of the figure.
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now thought that septic shock also has a strong, perhaps
predominant, anti-inflammatory component that can be
manifest as immune suppression and the relative inability
to effectively clear an infectious challenge (an adaptive
immunity problem). The finding that subclass A patients
are characterized by repression of key adaptive immunity
genes is well in line with this concept.

Second, normal zinc homeostasis seems to be absolutely
critical for normal functioning of both the innate and
adaptive immune systems [41,42]. Thus, we have postu-
lated that abnormal zinc homeostasis may be linked to
adaptive immune dysfunction in children with septic
shock [10]. In support of this assertion, we previously
demonstrated that non-survivors of pediatric septic shock
had abnormally low serum zinc concentrations compared
with survivors [11]. Potential links between altered zinc
homeostasis, adaptive immune function, and septic shock
are the subject of ongoing work in our basic and transla-
tional research programs.

Conclusion
We have demonstrated the existence of three broad sub-
classes of children with septic shock based on gene expres-
sion profiling conducted within the first 24 hours of
admission to the intensive care unit with septic shock.
Broadly, the three subclasses demonstrate differential reg-
ulation of genes corresponding to multiple signaling and
metabolic pathways relevant to the pathobiology of septic
shock, thereby illustrating the important concepts of
patient heterogeneity at a genomic level and the need to
design more specifically targeted therapies. On a more
specific level, the three subclasses are characterized by dif-
ferential regulation of genes corresponding to the adap-
tive immune system and zinc-related biology, and these
patterns of gene regulation correlate with distinct and rel-
evant clinical phenotypes. Genome-level subclassification
of septic shock may one day allow for the design of more
specifically targeted therapies, and our data indicate that
the adaptive immune system and zinc homeostasis may
be appropriate targets to explore further.
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