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Abstract

We study the Cauchy initial-value problem for the Benjamin-Ono equation in

the zero-dispersion limit, and we establish the existence of this limit in a certain

weak sense by developing an appropriate analogue of the method invented by

Lax and Levermore to analyze the corresponding limit for the Korteweg–de Vries

equation. © 2010 Wiley Periodicals, Inc.
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1 Introduction
The Benjamin-Ono (BO) equation

(1.1)
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FIGURE 1.1. The evolution of a pulse under the BO equation. Top row:

" D 0:04. Bottom row: " D 0:02. In both cases the initial condition is

the same: u0.x/ D 2.1C x2/�1.

where " > 0 is a constant and H is the Hilbert transform operator defined by the

Cauchy principal value integral

(1.2) HŒf �.x/ WD 1

�

«
R

f .y/

y � x dy

is a model for weakly nonlinear dispersive waves on the interface between two ideal

immiscible fluids, one of which may be considered to be infinitely deep. Applica-

tions include the modeling of internal waves in deep water [1, 4, 7, 29], and also the

modeling of atmospheric waves like the dramatic “morning glory” phenomenon of

northeastern Australia [30]. The relevant Cauchy problem is to determine the solu-

tion u".x; t/ of (1.1) subject to a suitable initial condition u".x; 0/ D u0.x/ given

for all x 2 R.

The parameter " > 0 is a measure of the relative strength of the dispersive and

nonlinear effects in the system. In many applications one thinks of " as a small

parameter in part because numerical experiments show that in this situation the

finite-time formation of a shock wave (gradient catastrophe) in the formal limiting

equation (obtained simply by setting " D 0 in (1.1)) is dispersively regularized by

the generation of a smoothly modulated train of approximately periodic traveling

waves, which correspond to so-called undular bores, frequently observed in the

evolution of physical internal waves. Snapshots from the solution of a Cauchy

problem for (1.1) illustrating the averted shock and onset of an undular bore are

shown in Figure 1.1. These figures clearly show that the mathematical description
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of the undular bore consists of waves of amplitude independent of " and wavelength

approximately proportional to ". We refer to the asymptotic analysis of the solution

of the Cauchy problem with "-independent initial data u0.x/ in the limit " # 0 as

the zero-dispersion limit.

1.1 A Related Problem and Its History
A more famous nonlinear dispersive wave equation is the Korteweg–de Vries

(KdV) equation

(1.3)
@v"
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D 0; x 2 R; t > 0;

a model for long surface waves on shallow water among a wide variety of other

physical phenomena. When " > 0 is small, this equation displays qualitatively

similar behavior to that just illustrated for the BO equation: the dispersive term

arrests the shock in the " D 0 equation with the formation of a train of waves of

amplitude approximately independent of " and wavelength proportional to ".

The modeling of the zero-dispersion limit for the KdV equation has a long his-

tory going back to the work of Whitham [32], who used the method of averaging

to propose a nonlinear hyperbolic system of three partial differential equations to

describe the modulational variables (e.g., slowly varying amplitude, mean, and

wavelength of the wavetrain). Whitham noted that the system of modulation equa-

tions he obtained had the nongeneric property that by choosing special dependent

variables v1, v2, and v3, it could be written in so-called Riemann invariant form,

in which the three equations are only coupled through the characteristic velocities:

(1.4)
@vi

@t
C ci .v1; v2; v3/

@vi

@x
D 0; i D 1; 2; 3:

Later, Gurevich and Pitaevskii [14] considered the problem of patching together

solutions of Whitham’s modulational system with solutions of the formal limiting

equation (obtained by setting " D 0 in (1.3)) at two moving boundary points that

delineate the oscillation zone; their goal was to provide a reasonable global approx-

imation scheme for the solution of the initial value problem for the KdV equation

(1.3) in the zero-dispersion limit subject to given initial data v".x; 0/ D v0.x/

independent of ".

In the meantime, the KdV equation was discovered to be a completely inte-

grable system possessing a compatible structure now called a Lax pair and a co-

incident solution procedure for addressing the Cauchy (initial value) problem: the

inverse scattering transform. This development suggested that the methodology

invented by Whitham could perhaps be placed on a completely rigorous math-

ematical footing. After the exact periodic (and quasi-periodic) solutions of the

KdV equation (1.3) were given a spectral interpretation by Its and Matveev [15]

and Dubrovin, Matveev, and Novikov [11], the Whitham modulation equations

themselves were reinterpreted within the framework of integrability by Flaschka,

Forest, and McLaughlin [12]. (In particular, this work made clear why Whitham’s
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equations could be placed in Riemann invariant form; it is a consequence of inte-

grability.)

The task that remained in the use of integrable machinery to study the zero-

dispersion limit of the KdV equation was to rigorously analyze the Cauchy prob-

lem using the inverse scattering transform. The first step in this program was taken

by Lax and Levermore [20], who considered positive initial data v0.x/ rapidly

decaying to 0 for large jxj. They used Wentzel-Kramer-Brillouin (WKB) meth-

ods to argue that the Schrödinger operator with potential �v0.x/ that arises in the

scattering theory is approximately reflectionless in the limit " # 0. On an ad hoc

basis they replaced the true scattering data by its WKB analogue, retaining only

contributions from a set of N."/ � "�1 discrete eigenvalues. These eigenvalues

are approximated by a Bohr-Sommerfeld quantization rule, which amounts to re-

placing the solution v".x; t/ of the Cauchy problem with another solution Qv".x; t/

of (1.3) having "-dependent initial data close to v0. In this situation, the inverse

scattering procedure reduces to finite-dimensional (of dimension N."/) linear al-

gebra, and in fact the solution obtained by Cramer’s rule can be reduced to the

determinantal formula

(1.5) Qv".x; t/ D 2"2 @2

@x2
log.�.x; t//; �.x; t/ D det.I C G.x; t//;

where G.x; t/ is a positive-definite real symmetric matrix of dimension N."/ �
N."/. Lax and Levermore then established the existence of the limit, uniform

on compact subsets of the .x; t/-plane, of 2"2 log.�.x; t// as " # 0. This yields

weak convergence of Qv".x; t/ by differentiation of the limit function with respect

to x. The Lax-Levermore method is to expand the determinant �.x; t/ in principal

minors indexed by subsets of the set of eigenvalues; noting that each term is posi-

tive, they showed that the sum of terms is asymptotically dominated by its largest

term, and they further approximated this discrete optimization problem with an

"-independent (limiting) convex variational problem, explicitly parametrized by x

and t , for measures. The weak zero-dispersion limit of the Cauchy problem for

the KdV equation is therefore encoded implicitly in the solution of this variational

problem. The Lax-Levermore method reproduces the specified initial data v0.x/

at t D 0 as " # 0, which establishes validity, in a certain sense, of the WKB-based

spectral approximation procedure in the first step.

Later, Venakides [31] was able to extend the method of Lax and Levermore to

higher order, capturing the form of the oscillations that are averaged out in the weak

limit. This work at last made clear that the solution of the Cauchy problem for the

KdV equation with smooth, "-independent initial data v0.x/ really does generate

after some fixed breaking time a train of high-frequency waves of exactly the kind

originally considered without complete justification by Whitham. More recently

the powerful steepest-descent method for matrix Riemann-Hilbert problems de-

veloped by Deift and Zhou was used to analyze the zero-dispersion limit for the

KdV equation [8]. This technique is best viewed as a tool for converting weak
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asymptotics (the solution of the Lax-Levermore variational problem) into strong

asymptotics (an improvement of the Venakides asymptotics in which the phase of

the waveform is accurate to very high order).

1.2 Zero-Dispersion Limit of the Benjamin-Ono Equation
It turns out that the BO equation (1.1) is also an integrable equation in the sense

that it has a representation as the compatibility condition of an overdetermined Lax

pair of linear problems [2]. In fact, both BO and KdV equations may be viewed

as limiting cases (as depth of a fluid layer tends to infinity and zero, respectively)

of the so-called intermediate long-wave equation [18], itself an integrable system

for arbitrary layer depth. However, the integrable structure of the BO equation is

markedly different from that of the KdV equation. In particular, the nonlocality in

the equation due to the presence of the Hilbert transform is mirrored in a certain

nonlocality of the scattering and inverse scattering problems. In place of the spec-

tral theory of the self-adjoint Schrödinger (Sturm-Liouville) differential operator,

one has to work with the spectral theory of the nonlocal operator

(1.6) L WD �i" @
@x

� CC ı u" ı CC; CCŒf �.x/ WD lim
ı#0

1

2�i

Z
R

f .y/

y � x � iı dy:

Here the operator CC is the self-adjoint orthogonal projection from L2.R/ onto the

Hardy space of the upper half-plane, the Hilbert space on which L is self-adjoint,

and u" denotes the operator of multiplication by u". � ; t /.
Certainly a key step forward in the theory of the zero-dispersion limit was taken

by Dobrokhotov and Krichever [9], who noted that the second (time evolution)

equation in the Lax pair for the BO equation (see (2.2) below) is simply a time-

dependent Schrödinger equation whose potential is a function with an analytic

continuation from the real x-axis into the upper half-plane; they were able to adapt

a pre-existing construction of “integrable” potentials for this equation to the appro-

priate Hardy-space setting. This allowed them to construct, from the Lax pair, a

large family of periodic traveling wave solutions of the BO equation (1.1), along

with quasi-periodic generalizations. Remarkably, unlike the corresponding exact

solutions of the KdV equation (1.3), which are highly transcendental objects con-

structed from Riemann theta functions of hyperelliptic curves of arbitrary genus,

the periodic and quasi-periodic solutions of the BO equation turn out to be simple

rational functions of P exponential phases ei.kj x�!j t/=".

In the same paper, Dobrokhotov and Krichever also carried out for the BO equa-

tion the analogue of the calculation of Flaschka, Forest, and McLaughlin [12], de-

riving by multiphase averaging a system of equations governing the modulational

variables for a slowly varying train of P -phase waves. Here we arrive at a sec-

ond remarkable fact: not only can the modulation equations be written in Riemann
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invariant form, they are completely diagonal:

(1.7)
@ui

@t
C 2ui @u

i

@x
D 0; i D 1; 2; : : : ; 2P C 1

(the case of P D 1 corresponds to simple traveling waves). This again should

be contrasted with the situation for the KdV equation in which the characteristic

velocities not only provide coupling among the fields but also are transcendental

functions of the fields written in terms of ratios of complete hyperelliptic integrals.

The analogue for the BO equation of the matching procedure developed by

Gurevich and Pitaevskii [14] to describe the evolution of a dispersive shock was

independently described by Matsuno [25, 26] and by Jorge, Minzoni, and Smyth

[16]. This matching procedure provides a reasonable approach to the Cauchy prob-

lem for the Benjamin-Ono equation (1.1) with fixed initial data u".x; 0/ D u0.x/

when " � 1, but it is based on formal asymptotics. In [25, p. 7939], Matsuno

writes:

From a rigorously mathematical point of view, however, the var-

ious results presented in this paper should be justified on the ba-

sis of an exact method of solution such as [the inverse scattering

transform], or an analog of the Lax-Levermore theory for the KdV

equation.

It is our intention in this paper to provide exactly such a justification, by devel-

oping a new method that does for the BO Cauchy problem exactly what the Lax-

Levermore method does for the KdV Cauchy problem.

The main result of our analysis is remarkably easy to state, but first we need

to recall some basic facts concerning the equation obtained from (1.1) simply

by setting " D 0. Recall that while for general sufficiently smooth initial data

uB.x; 0/ D u0.x/ the inviscid Burgers equation

(1.8)
@uB

@t
C 2uB @u

B

@x
D 0

does not have a global solution as a function due to gradient catastrophe (shock for-

mation) in finite time, it does have a global solution as a real multisheeted surface

over the .x; t/-plane; indeed, this is the construction of the method of character-

istics. The sheets of this surface are obtained as the real solutions of the implicit

equation

(1.9) uB D u0.x � 2uBt /;

and by implicit differentiation it is easy to verify that away from singularities each

sheet of the surface is a function uB D uB.x; t/ that satisfies (1.8). A simple con-

sequence of the implicit function theorem is that for sufficiently small jt j there is a

unique solution of (1.9) for all x 2 R. New sheets of the multivalued solution are

born from breaking points in the .x; t/-plane that are in one-to-one correspondence

with generic inflection points � of u0 for which u0
0.�/ ¤ 0 but u00

0.�/ D 0. If � 2 R
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FIGURE 1.2. Except along the caustic curves x D x�
�
.t/ and x D

xC
�
.t/, the number of solutions of (1.9) is of the form 2P C 1, and these

solutions are simple roots. For this figure, u0.x/ WD 2.1C x2/�1.

is such a point, then the corresponding breaking point is given by

(1.10) .x� ; t�/ WD
�
� � u0.�/

u0
0.�/

;� 1

2u0
0.�/

�
:

Each such breaking point is the location of a pitchfork bifurcation for uB with

respect to t holding x� 2u0.�/t D � fixed, with two new branches emerging as jt j
increases. Thus, assuming that u0

0 is a bounded function of total integral zero, the

solution of the Cauchy problem for (1.8) is classical for

(1.11) T� WD � 1

2maxx2R u
0
0.x/

< t < � 1

2minx2R u
0
0.x/

DW TC:

Note that under our assumptions on u0
0 we have T� < 0 < TC. Also, T� is the

supremum of all t� < 0 while TC is the infimum of all t� > 0. When we consider

the Cauchy problem for t > 0, we will refer to T WD TC as the breaking time.

For t=t� > 1 there are caustic curves x�
�
.t/ < xC

�
.t/ with limiting values

as t ! t� given by x�
�
.t�/ D xC

�
.t�/ D x� that bound the triple-folded region

emerging from .x� ; t�/. The caustic curves correspond to double roots of (1.9),

and crossing one of them at a generic point results in a change in the number of

sheets by exactly 2. Except along the union of the caustic curves and the breaking

points from which they emerge, the number of solutions of (1.9) is always odd, and

all are simple roots. See Figure 1.2.

For the initial data u0.x/ D 2.1C x2/�1 used in Figure 1.1, the breaking time

before which there is a unique solution for all x 2 R and after which there is an

expanding interval in which there are three solutions, is exactly T D 2
p
3=9 �

0:3849. Snapshots of the evolution of the multivalued solution of (1.8) for this

initial data are shown in Figure 1.3. Our result is then the following:
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FIGURE 1.3. The multivalued solution (black) of (1.8) and the signed

sum of branches (red) corresponding to u0.x/ D 2.1 C x2/�1. Left:

t D 0. Middle: t D 1. Right: t D 2. Before the breaking time as well as

afterwards but outside the oscillation interval there is only one solution

branch and hence no difference between the red and black curves.

THEOREM 1.1 Let uB
0.x; t/ < uB

1.x; t/ < � � � < uB
2P.x;t/

.x; t/ be the branches of
the multivalued (method of characteristics) solution of the inviscid Burgers equa-
tion (1.8) subject to an admissible initial condition uB.x; 0/ D u0.x/. Then the
weak L2.R/ (in x/ limit of Qu".x; t/ is given by

(1.12) wx�lim
"#0

Qu".x; t/ D
2P.x;t/X

nD0

.�1/nuB
n.x; t/;

uniformly for t in arbitrary bounded intervals. Note that the right-hand side ex-
tends by continuity to the caustic curves.

The signed sum of branches that is the weak limit is illustrated with red curves

in Figure 1.3 for the same initial data as in Figure 1.1. Of course, convergence in

the weak L2.R/ (in x) topology means that for every v 2 L2.R/, we have

(1.13) lim
"#0

Z
R

Qu".x; t/v.x/dx D
Z
R

�2P.x;t/X
nD0

.�1/nuB
n.x; t/

�
v.x/dx

with the limit being uniform with respect to t in arbitrary bounded intervals. Thus

the weak limit essentially smooths out the rapid oscillations seen in Figure 1.1 and

(if we think of v as the indicator function of a mesoscale interval) represents a kind

of local average in x. What it means for an initial condition to be admissible will

be explained later (see Definition 3.1). Here Qu".x; t/ is not exactly the solution of

the Cauchy problem for the BO equation (1.1) with fixed initial data u0.x/, but it

is for every " > 0 an exact solution of (1.1) that satisfies an "-dependent initial

condition that converges (in the strong L2 sense; see Corollary 1.2 below) to u0.�/
as " # 0. See Definition 3.3 for more details. This modification of the initial data

is an analogue of the replacement of the true scattering data by its reflectionless

WKB approximation in the Lax-Levermore theory.
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For t before the breaking time T for Burgers’ equation, the weak limit guaran-

teed by Theorem 1.1 may be strengthened as follows.

COROLLARY 1.2 Suppose that 0 � t < T so that P.x; t/ D 0 for all x 2 R
(that is, the solution uB D uB

0.x; t/ of Burgers’ equation with initial data u0.x/ is
classical). Then

(1.14) lim
"#0

Qu".x; t/ D uB
0.x; t/

with the limit being in the (strong) L2.Rx/ topology.

It should be pointed out that the weak limit formula (1.12) is much more explicit

than the corresponding formula found by Lax and Levermore [20] for the weak

zero-dispersion limit of the Cauchy problem for the KdV equation. Indeed, the

latter requires the solution, for each x and t , of a constrained functional variational

problem, which can be solved in closed form only for the simplest initial data.

As we will now see, there are several classical wave propagation problems whose

asymptotic behavior can be reduced to the multivalued solution of Burgers’ equa-

tion; however, even these simple problems involve more complicated schemes for

combining the solution branches than that exhibited in the simple formula (1.12).

After we introduce the necessary framework for our study (the inverse scattering

transform for the BO equation) in Section 2, we will analyze the direct scattering

map in the zero-dispersion limit in Section 3. Then we will prove Theorem 1.1

and Corollary 1.2 in Section 4 by carrying out a detailed analysis of the inverse

scattering map applied to the asymptotic formulae for scattering data obtained in

Section 3. In Section 5 we will illustrate our results with numerical calculations and

address the relation between Qu".x; t/ and the true solution u".x; t/ of the Cauchy

problem for the BO equation with initial data u0. We compare the zero-dispersion

asymptotics of the BO equation with some elementary examples from linear and

nonlinear wave theory in Section 6, and some comments about our continuing work

can be found in the conclusion, Section 7.

2 Relevant Aspects of the Inverse Scattering Transform
for the BO Cauchy Problem

2.1 The Lax Pair for the BO Equation and Its Basic Properties
The Lax pair [2], whose compatibility condition is the BO equation (1.1), con-

sists of the two equations

i"
@wC
@x

C �.wC � w�/ D �u"w
C;(2.1)

i"
@w˙
@t

� 2i�" @w
˙

@x
C "2 @

2w˙
@x2

� 2iC˙
�
"
@u"

@x

�
w˙ D 0;(2.2)

where � 2 C is a spectral parameter, u" D u".x; t/ is a solution of (1.1), and

w˙ D w˙.x; t I�/ are functions that are required to be, for each fixed t and �,



214 P. D. MILLER AND Z. XU

the boundary values on the real x-axis of functions analytic in the upper (C) and

lower (�) half complex x-plane. Also, ˙C˙ D 1
2
I � 1

2
iH are the orthogonal and

complementary (CC � C� D I, the Plemelj formula) projections from L2.R/ onto

its upper and lower Hardy subspaces H˙.R/. From the point of view of the inverse

scattering transform, i.e., using the Lax pair as a tool to solve the Cauchy problem,

equation (2.1) may be considered for fixed time t and defines the scattering data

associated with u".x; t/ at time t . The functionw� may be viewed as a kind of La-

grange multiplier present to satisfy the constraint that wC be an “upper” function.

In fact, if w˙ 2 H˙.R/, then by applying CC to (2.1) and using the projective

identities CCŒwC� D wC and CCŒw�� D 0, (2.1) can be written in the form of an

eigenvalue problem

(2.3) LwC D �wC; wC 2 HC.R/;
where L is the nonlocal self-adjoint operator (1.6). Equation (2.2) determines the

(trivial, as we will recall) time dependence of the scattering data.

2.2 Scattering Data
The theory of the inverse scattering transform solution of the Cauchy problem

for the BO equation was first developed by Fokas and Ablowitz [13]. Certain an-

alytical details of the theory were clarified by Coifman and Wickerhauser [6], and

more recently Kaup and Matsuno [17] found conditions on the scattering data con-

sistent with real-valued solutions of (1.1). As an operator on HC.R/, the essential

spectrum of L is the positive real �-axis (for suitable u", L is a relatively compact

perturbation of the “free” operator corresponding to u" 	 0). For each fixed t and

each real � > 0, there exists a unique solution wC D M of (2.1) with the property

that (remarkably, despite the nonlocal nature of the problem) it is determined by

its asymptotic behavior as x ! �1 on the real line: M.x; t I�/ D 1 C o.1/ as

x ! �1. As the problem is nonlocal, M cannot be characterized by a Volterra-

type integral equation, but Fokas and Ablowitz [13] gave a Fredholm-type equation

whose unique solution is M . The reflection coefficient for the problem is then de-

fined for positive real � by the formula [13, 17]

(2.4) ˇ.�; t/ WD i

"

Z
R

u".x; t/M.x; t I�/e�i�x=" dx; � > 0:

For each fixed x and t the function M.x; t I�/ can be shown to be the boundary

value taken on the positive half-line � 2 RC from the upper half �-plane of a func-

tionW.x; t I�/ that is meromorphic in the complex �-plane with RC (a branch cut)

deleted. Fokas and Ablowitz refer to the boundary value taken byW.x; t I�/ on the

positive half-line from the lower half-plane as N.x; t I�/. The poles of W.x; t I�/
are all on the negative real �-axis (by self-adjointness of L) and correspond to the

point spectrum of L. It turns out that one of the consequences of the Lax pair equa-

tion (2.2) is that the point spectrum is independent of time t . In [13] it is shown

that in the generic case when �n < 0 is a simple pole of W , the first two terms in
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the Laurent expansion of W at � D �n are both proportional to the same function

ˆn. � ; t / 2 HC.R/, which is an eigenfunction of L with eigenvalue � D �n. The

ratio of these two terms is in fact linear in x:

(2.5) W.x; t I�/ D �i" ˆn.x; t/

� � �n
C.xC˛n.t//ˆn.x; t/CO.���n/; � ! �n:

Kaup and Matsuno [17] showed that for real u", the complex-valued phase shift

˛n.t/ may be written in the form

(2.6) ˛n.t/ D �n.t/ � i

2�n
; �n.t/ 2 R:

The set of scattering data corresponding to the potential u". � ; t / then consists of


 the reflection coefficient ˇ.�; t/ for � > 0 (we write ˇ.�/ for ˇ.�; 0/),


 the negative discrete eigenvalues f�ngN
nD1, �1 < �2 < � � � < �N < 0, and


 the real phase constants f�n.t/gN
nD1 (we write �n for �n.0/).

2.3 Time Dependence of Scattering Data
and the Inverse Scattering Transform

As time varies, one may expect the scattering data to vary, but the time depen-

dence as implied by (2.2) turns out to be very simple. As pointed out above, the

discrete eigenvalues f�ngN
nD1 are constants of the motion, and Fokas and Ablowitz

[13] showed that

(2.7) ˇ.�; t/ D ˇ.�/ei�2t="; � > 0;

and

(2.8) �n.t/ D �n C 2�nt; n D 1; 2; : : : ; N:

The inverse scattering procedure for solving the Cauchy problem for the BO

equation with suitable real initial data u0.x/ is then to calculate the scattering data

at time t D 0 from u0, evolve the scattering data forward in time t by the ex-

plicit formulae (2.7) and (2.8), and then solve the inverse problem of constructing

u". � ; t / from the scattering data at time t . Generally, this requires solving a scalar

Riemann-Hilbert problem for W.x; t I�/ in the complex �-plane. This Riemann-

Hilbert problem is quite interesting as it involves a jump condition across the con-

tinuous spectrum � > 0 in which the boundary value from above,W D M.x; t I�/,
is proportional to an integral from �0 D 0 to �0 D � of the boundary value from be-

low, W D N.x; t I�0/. Thus the jump condition is nonlocal, a fact that makes the

inverse problem almost completely analogous to the direct problem (2.1), which

after integration becomes a nonlocal Riemann-Hilbert problem of exactly the same

type in the complex x-plane. This fact should perhaps be contrasted with the situa-

tion for the KdV equation, where the direct and inverse problems are of quite differ-

ent natures. This remarkable symmetry between the forward and inverse problems

for the BO equation is a theme that will be touched upon again in this paper in

some detail.
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2.4 Reflectionless Inverse Scattering Transform
If ˇ.�/ 	 0 (i.e., the problem is reflectionless), then the boundary values taken

by W.x; t I�/ on the positive half-line agree, so W.x; t I�/ is a meromorphic func-

tion on the whole complex �-plane with simple poles at the negative real eigen-

values. Condition (2.5) and the normalization condition that W.x; t I�/ ! 1 as

� ! 1 then provides sufficient information to reconstruct W.x; t I�/ from the

discrete data f�ngN
nD1 and f�ngN

nD1. Via a partial fractions ansatz for W.x; t I�/,
this amounts to a solving a linear algebra problem in dimension N . Once W is

determined in this way, one obtains CCŒu". � ; t /� by the formula

(2.9) CCŒu". � ; t /�.x/ D lim
�!1

�.1 �W.x; t I�//:
Since u" is real, one then has

(2.10) u".x; t/ D 2RefCCŒu". � ; t /�.x/g:
This procedure clearly leads to a determinantal formula for u".x; t/ in the reflec-

tionless case. It turns out to be the same (multisoliton) formula that Matsuno [21]

had obtained, before the relevant inverse scattering transform was discovered, by

applying Hirota’s bilinear method to the BO equation:

(2.11) u".x; t/ D 2"
@

@x
Imflog.�".x; t//g;

with the “tau function”

(2.12) �".x; t/ WD det.I C i"�1A"/;

where A" D A".x; t/ is an N � N Hermitian matrix with constant off-diagonal

elements

(2.13) Anm WD 2i"
p
�n�m

�n � �m
; n ¤ m;

and diagonal elements depending explicitly on x and t ,

(2.14) Ann WD �2�n.x C 2�nt C �n/:

In (2.13) we mean the positive square root of the positive product �n�m. For the

purposes of this paper, we will only require this reflectionless version of the inverse

scattering transform.

In his paper [21], Matsuno noted that regardless of the value of N , the com-

plex determinant �".x; t/ satisfies the real equation (Hirota bilinear form of the BO

equation)

(2.15)

�
i"
@�"

@t
C 2"2 @

2�"

@x2

�
��

" C
�

�i" @�
�
"

@t
C 2"2 @

2��
"

@x2

�
�" D

"
@

@x

�
"
@�"

@x
��

" C "
@��

"

@x
�"

�
:
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The terms on the left-hand side should be compared with the linear Schrödinger

equation (this connection is explored further in Section 6.2). If one makes a formal

WKB ansatz of the form �".x; t/ D A.x; t/eiS.x;t/=", then the terms on the right-

hand side of (2.15) are formally small compared with those on the left-hand side,

and to leading order in " (2.15) simply reduces to the inviscid Burgers equation

(1.8) with uB D 2@S=@x (as is consistent with (2.11)).

2.5 Conservation Laws and Trace Formulae
As with the KdV equation, the time evolution of the BO equation preserves

an infinite number of functionals of u". These were first found by Nakamura [28].

The equivalent representation of these functionals in terms of the time-independent

portion of the scattering data, i.e., the eigenvalues f�ngN
nD1 and the modulus of the

reflection coefficient jˇ.�/j2 for � > 0, was obtained by Kaup and Matsuno [17].

These identities amount to a hierarchy of trace formulae for the operator L.

The conservation laws take the form dIk=dt D 0, k D 1; 2; 3; : : : . The inte-

grals Ik may be generated by the following recursive procedure: first set �1 WD 1

and then define

(2.16) �kC1.x; t/ WD CCŒu". � ; t /�k. � ; t /�.x/C i"
@�k

@x
.x; t/; k D 1; 2; 3; : : : :

Then, the integrals of motion are

(2.17) Ik.t/ WD
Z
R

u".x; t/�k.x; t/dx; k D 1; 2; 3; : : : :

The equivalent spectral representation given in [17] is

Ik.t/ D 2�"

NX
nD1

.��n/
k�1

C .�1/k"
2�

Z C1

0

jˇ.�/j2�k�2 d�; k D 1; 2; 3; : : : :

(2.18)

In view of the results presented in Section 2.3, the latter representation makes clear

the fact that dIk=dt D 0.

The first two conserved quantities are quite simple, and in fact they are the only

ones in the hierarchy having local densities:

(2.19) I1 WD
Z
R

u".x; t/dx and I2 WD 1

2

Z
R

u".x; t/
2 dx:

3 Scattering Data in the Zero-Dispersion Limit
In this section we consider the following problem. Given a suitable function

u0.x/ representing the initial condition for the BO equation, we wish to determine

an asymptotic approximation, valid when " > 0 is small, to the scattering data

fˇ.�/; f�ngN
nD1; f�ngN

nD1g corresponding to u0. Even though u0 is held fixed as
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" tends to zero, the scattering data will depend on " as this parameter appears in

equation (2.1). As the operator L is nonlocal, we cannot rely on the WKB method

as is so useful for analysis of differential operators (for example, the analysis of Lax

and Levermore [20] was based on the WKB analysis of the Schrödinger operator

that arises in the scattering theory for the KdV equation).

3.1 Admissible Initial Conditions
The type of initial data for the BO equation (1.1) that we will consider for the

rest of this paper is the following. Many of these conditions are imposed for our

convenience; we make no claim that they are necessary.

DEFINITION 3.1 A function u0 W R ! R will be called an admissible initial
condition if it has the following properties:


 Smoothness: u0 2 C 3.R/.

 Positivity: u0.x/ > 0 for all x 2 R.


 Existence of a unique critical point: There is a unique point x0 2 R for

which u0
0.x0/ D 0. Moreover,

(3.1) u00
0.x0/ < 0;

making x0 the global, nondegenerate maximizer of u0.


 Tail behavior: limx!˙1 u0.x/ D 0 and

(3.2) lim
x!˙1 jxjqC1u0

0.x/ D C˙ for some q > 1,

where CC < 0 and C� > 0 are constants. These two conditions together

imply that an admissible initial condition u0 also satisfies

(3.3) lim
x!˙1 jxjqu0.x/ D �C˙

q
:


 Inflection points: In each bounded interval there exist at most finitely many

points x D � at which u00
0.�/ D 0, and each is a simple inflection point:

u000
0 .�/ ¤ 0.

Corresponding to an admissible initial condition u0 we define a positive con-

stant L by

(3.4) L WD max
x2R

u0.x/;

and we let the mass M be defined by

(3.5) M WD 1

2�

Z
R

u0.x/dx:

Note that the mass is guaranteed to be finite according to (3.3) since u0 is bounded.

Also, if u0 is an admissible initial condition, we can define turning points x˙ W
Œ�L; 0/ ! R that are two monotone branches of the inverse function of u0:

u0.x˙.�// D �� and x�.�/ � x0 � xC.�/ for �L � � < 0. See Figure 3.1.
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FIGURE 3.1. The graph of an admissible initial condition and the turn-

ing points x˙.�/.

3.2 Matsuno’s Method
In two papers [22, 23], Matsuno proposed a remarkable method to approximate,

in the limit " # 0, the time-independent components of the scattering data for

suitable u0. His method was based on the conservation laws for the quantities

(2.17). With the use of the more recently obtained trace formulae equating Ik as

given by (2.17) with the equivalent formulae (2.18) [17], several heuristic aspects

of the original method given in [22, 23] can be placed on more rigorous footing.

The first key observation made in [22, 23] is that if u0 is a smooth function

independent of ", then by evaluating the integrals Ik.t/ at time t D 0, one sees that

they have limiting values as " # 0. These limits may be obtained simply by solving

the recurrence relation (2.16) with " D 0:

(3.6)

lim
"#0

Ik D
Z
R

u0.x/CCŒu0CCŒu0CCŒ� � �u0CCŒu0� � � � ���.x/dx;

k D 1; 2; 3; : : : ;

where the Cauchy projector CC occurs k � 1 times in the integrand. With the use

of an identity valid for reasonable complex-valued functions u0.�/ and suggested

by comparing the conserved quantities generated from the Kaup-Matsuno iteration

scheme (2.16) with those generated via the older scheme of Nakamura [28], one

sees that the right-hand side of (3.6) can be equivalently written in the simple form

(3.7) lim
"#0

Ik D 1

k

Z
R

u0.x/
k dx; k D 1; 2; 3; : : : :

A direct proof of the equivalence of (3.6) and (3.7) is given in the Appendix. On

the basis of heuristic physical arguments, in [22, 23] Matsuno supposed that for
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smooth positive initial data u0, all moments of the reflection coefficient remain

bounded as " # 0. Adopting this hypothesis, a comparison of (3.7) with (2.18)

then shows that

(3.8) lim
"#0

"

NX
nD1

.��n/
k�1 D 1

2�k

Z
R

u0.x/
k dx; k D 1; 2; 3; : : : :

In particular, taking k D 1 one obtains

(3.9) lim
"#0

"N D M;

where the mass M is defined by (3.5), so the number of eigenvalues is asymptoti-

cally proportional to 1=".

These calculations suggest that the normalized counting measure of eigenvalues

may have a limit in a certain sense as " # 0, perhaps as an absolutely continuous

measure with density F.�/. Matsuno calculated this density by replacing the left-

hand side of (3.8) with an integral against the unknown density F.�/:

(3.10)

Z 0

�1
.��/k�1F.�/d� D 1

2�k

Z
R

u0.x/
k dx; k D 1; 2; 3; : : : :

The problem that remains is then the classical one of constructing the density F.�/

from its moments, which are known if the initial condition u0 is given.

Matsuno showed that, remarkably, this moment problem can be solved explic-

itly. He introduced the characteristic function (Fourier transform) of F ,

(3.11) yF .�/ WD
Z 0

�1
F.�/e�i�� d�;

in terms of which the moment relations (3.10) become

(3.12)
dk�1 yF
d�k�1

.0/ D ik�1

2�k

Z
R

u0.x/
k dx; k D 1; 2; 3; : : : :

Recalling the constants L and M defined by (3.4) and (3.5) respectively, it is easy

to obtain the estimate

(3.13)

ˇ̌̌
ˇ 1

.k � 1/Š
dk�1 yF
d�k�1

.0/

ˇ̌̌
ˇ � MLk�1

kŠ
;
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from which it follows that yF .�/ is an entire function and hence is equal to its Taylor

series about � D 0:

yF .�/ D
1X

kD1

1

.k � 1/Š
dk�1 yF
d�k�1

.0/�k�1 D
1X

kD1

.i�/k�1

2�kŠ

Z
R

u0.x/
k dx

D 1

2�i�

1X
kD1

Z
R

Œi�u0.x/�
k

kŠ
dx:

(3.14)

The combined sum and integral is absolutely convergent for all � 2 C, so the order

of operations may be reversed:

yF .�/ D 1

2�i�

Z
R

� 1X
kD1

Œi�u0.x/�
k

kŠ

�
dx

D 1

��

Z
R

ei�u0.x/=2 sin

�
1

2
�u0.x/

�
dx:

(3.15)

By Fourier inversion,

F.�/ D 1

2�
lim

R"1

Z CR

�R

yF .�/ei�� d�

D lim
R"1

Z CR

�R

Z
R

ei�.�Cu0.x/=2/

2�2�
sin

�
1

2
�u0.x/

�
dx d�:

(3.16)

Applying Fubini’s theorem to reverse the order of integration and then passing

to the limit R " 1, we can evaluate the integral over � as the indicator function of

an interval:

(3.17) F.�/ D 1

2�

Z
R

�Œ�u0.x/;0�.�/dx:

This formula shows that F.�/ 	 0 for � > 0 or � < �L. By a “layer cake”

argument we may simplify this formula for � 2 .�L; 0/ as

(3.18) F.�/ D 1

2�

Z
fx2R; u0.x/>��g

dx; �L < � < 0:

This is Matsuno’s remarkable result. We have presented Matsuno’s method in

some detail because it turns out that a key calculation in our analysis of the inverse
problem in the zero-dispersion limit reduces to almost the same steps, as we will

see shortly. This is worth emphasizing because it provides further evidence that for

the BO equation, scattering and inverse scattering are mathematically very similar

operations.



222 P. D. MILLER AND Z. XU

Matsuno’s formula (3.18) could perhaps be compared with the Weyl formula

that gives the density of eigenvalues of the self-adjoint Schrödinger operator in the

zero-dispersion theory of the KdV equation [20]; aside from a constant factor the

Weyl formula replaces the unit integrand in (3.18) with the positive square rootp
u0.x/C �. So, if u0 is an admissible initial condition with tail decay parameter

q > 2, then the Weyl density is finite at � D �L and � D 0 while the Matsuno

density vanishes at � D �L and blows up as � " 0. This suggests that a typical

initial condition will generate a much larger number of broad, low-amplitude, and

slowly moving solitons under the BO equation than under the KdV equation when

the dispersion is small.

While quite severe hypotheses on u0 are required for all of the arguments to go

through, formula (3.18) makes sense under much weaker conditions. In particular,

we may interpret (3.18) for an admissible initial condition, in which case we may

express F.�/ directly in terms of the turning points x˙.�/:

(3.19) F.�/ WD 1

2�
.xC.�/ � x�.�//; �L � � < 0:

We take (3.19) as a definition valid for admissible initial conditions u0. Note that

(3.20)

Z 0

�L

F.�/d� D M;

where the mass M is defined by (3.5).

3.3 Formula for Phase Constants
The WKB methods applied by Lax and Levermore [20] to the analysis of the

Schrödinger equation in the forward problem for the zero-dispersion limit of the

KdV equation were sufficiently powerful to provide asymptotic formulae for both

the discrete spectrum (via Bohr-Sommerfeld quantization of the Weyl formula that

is the analogue in the KdV theory of the function F.�/ obtained by Matsuno) and

also for the “norming constants” that in the KdV theory are the analogues of the

phase constants f�ngN
nD1 in the BO theory. However, we have not found a way

to apply these methods to the nonlocal operator L, and unfortunately Matsuno’s

method does not provide approximations of the phase constants f�ngN
nD1 since

they do not enter into the trace formulae.

Our contribution to the theory of the spectral analysis of the nonlocal operator

L in the zero-dispersion limit is to provide a new asymptotic formula for the phase

constants. It is difficult to motivate the formula as it arises from the analysis of

the inverse problem that we will describe in the next section, but it is nonetheless

quite easy to present. If � < 0 is an eigenvalue of L with potential u given by an

admissible initial condition u0, then our approximation to the corresponding phase

constant is given in terms of the turning points x˙.�/ as follows:

(3.21) � � �.�/ WD �1
2
.xC.�/C x�.�//; �L � � < 0:
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Remark 3.2. Our choice of �.�/ in terms of u0 is specifically designed to ensure

the convergence of Qu".x; t/ (to be defined precisely in Definition 3.3 below) at

t D 0 to the given "-independent initial condition u0.

3.4 Modification of the Cauchy Data
Based on the above considerations, we may now make very precise definitions

of formal (not rigorously justified) approximations of the scattering data corre-

sponding to an admissible condition u0. The first approximation is to neglect the

reflection coefficient by setting

(3.22) Q̌.�/ WD 0; � > 0:

Next we define the exact number of approximate eigenvalues (hopefully also the

approximate number of exact eigenvalues) by setting

(3.23) N."/ WD
�
M

"

�
;

which in particular implies that

(3.24) lim
"#0

"N."/ D M:

Then we define approximations to the eigenvalues themselves as an ordered set

of numbers fQ�ngN."/
nD1 � .�L; 0/ obtained by quantizing the Matsuno eigenvalue

density given by (3.19):

(3.25)

Z Q�n

�L

F.�/d� D "

�
n � 1

2

�
; n D 1; 2; : : : ; N."/:

Finally, we define approximations to the corresponding phase constants as numbers

f Q�ngN."/
nD1 given precisely by

(3.26) Q�n WD �. Q�n/; n D 1; 2; : : : ; N."/:

where �.�/ is defined by (3.21).

Now in our analysis of the Cauchy problem for the BO equation with admissible

initial data u0 we take a sideways step that is not a priori justified: we simply

replace the true solution u".x; t/ of the Cauchy problem with a family Qu".x; t/

of exact solutions of the BO equation (1.1) with the property that for each " > 0

the scattering data for Qu".x; t/ at time t D 0 is exactly the approximate scattering

data just defined. This step was also an important part of the method of Lax and

Levermore [20]. We formalize this modification of the initial data in the following

definition.

DEFINITION 3.3 Let u0 be an admissible initial condition. Then, by Qu".x; t/ we

mean the exact solution of the BO equation (1.1) given for each " > 0 by the

reflectionless inverse scattering formula

(3.27) Qu".x; t/ WD 2"
@

@x
Imflog. Q�".x; t//g;



224 P. D. MILLER AND Z. XU

where

(3.28) Q�".x; t/ WD det.I C i"�1 QA"/

and where QA" D QA".x; t/ is an N."/ �N."/ Hermitian matrix with elements

(3.29) QAnm WD 2i"

q
Q�n

Q�m

Q�n � Q�m

; n ¤ m;

and

(3.30) QAnn WD �2 Q�n.x C 2 Q�nt C Q�n/ D �2 Q�n.x C 2 Q�n C �. Q�n//:

Here the number N."/ is defined by (3.23), and the components of the scattering

data fQ�ngN."/
nD1 and f Q�ngN."/

nD1 are given explicitly by (3.25) and (3.26), respectively.

While it is not the case that Qu".x; 0/ D u0.x/ in general, the relevance of this

definition in connection with the Cauchy problem with initial condition u0 is a

consequence of Corollary 1.2, which guarantees convergence in the mean square

sense of Qu". � ; 0/ to u0.�/ as " # 0.

The proof of Theorem 1.1 will be given below in Section 4. Before embarking

on that we note that Definition 3.1 implies a number of properties of the functions

F and � that will be useful later, so we take the opportunity to record these here.

Note that F and � will frequently occur in the context of the following functions:

(3.31) D.�I x; t/ WD �2�.x C 2�t C �.�//; �L < � < 0;
and

(3.32) '.�/ WD
p

��F.�/; �L < � < 0:
LEMMA 3.4 Let u0 be an admissible initial condition with decay exponent q > 1,
and let F W Œ�L; 0/ ! R be defined by (3.19) and � W Œ�L; 0/ ! R be defined
by (3.21). Then F and � both belong to C 1.�L; 0/, and F and F 0 are strictly
positive on this open interval. Also, there exists a sufficiently small constant ı > 0
and positive constants C�L and C0 such that

(3.33)
1

2
C�L

p
LC � < F.�/ < C�L

p
LC �

and

(3.34)
1

4

C�Lp
LC �

< F 0.�/ < 1

2

C�Lp
LC �

both hold for �L < � < �LC ı, while

(3.35)
1

2
C0.��/�1=q < F.�/ < C0.��/�1=q

and

(3.36)
1

2

C0

q
.��/�1=q�1 < F 0.�/ < C0

q
.��/�1=q�1
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both hold for �ı < � < 0. Also,

(3.37) j�.�/C x0j � �F.�/ and j� 0.�/j � �F 0.�/; �L � � < 0;

inequalities that when combined with (3.33)–(3.36) imply obvious upper bounds
for j�.�/C x0j and j� 0.�/j.

In particular, these estimates show that F.�/ is integrable, '.�/ and D.�I x; t/
(and hence also �x˙.�/) are bounded, and '.�/ is Hölder-continuous with expo-
nent �

2
with 	 D min.1

2
; 1 � 1

q
/ 2 .0; 1/, while D. � I x; t/ is Hölder-continuous

with exponent 	 uniformly for .x; t/ in compact sets on .�L; 0/.
PROOF: The turning points x˙.�/ are clearly of class C 1.�L; 0/; by definition

we have xC.�/ > x0 > x�.�/ on this open interval, and moreover xC.�/ is strictly

increasing while x�.�/ is strictly decreasing on .�L; 0/. These facts immediately

imply the desired basic smoothness properties of F and � , and the positivity and

monotonicity of F , as well as the inequalities (3.37).

Since u0.x0/ D L and u0
0.x0/ D 0, the C 2.R/ function u0 satisfies

(3.38) lim
x!x0

u0.x/ � L
.x � x0/2

D u00
0.x0/

2
and lim

x!x0

u0
0.x/

x � x0
D u00

0.x0/:

Using (3.38) together with the inequality u00
0.x0/ < 0, we see from the definition

of x˙.�/ as branches of the inverse function of u0 that

lim
�#�L

˙.x˙.�/ � x0/p
LC �

D
s

2

�u00
0.x0/

;

lim
�#�L

˙x 0̇ .�/
p
LC � D

s
1

�2u00
0.x0/

:

(3.39)

Using these relations in (3.19) and (3.21) establishes the existence of the limits

lim
�#�L

F.�/p
LC �

D 1

�

s
2

�u00
0.x0/

;

lim
�#�L

F 0.�/
p
LC � D 1

2�

s
2

�u00
0.x0/

;

(3.40)

which prove the two-sided estimates (3.33) and (3.34).

Next, note that the decay conditions (3.2) and (3.3) for u0 and its derivative

together imply that

lim
�"0

x˙.�/.��/1=q D ˙
�

�C˙
q

�1=q

;

lim
�"0

x 0̇ .��/1=qC1 D ˙1

q

�
�C˙
q

�1=q

;

(3.41)
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where �C˙ are the positive constants in (3.2) and (3.3). It follows from (3.19) that

(3.42) lim
�"0

F.�/.��/1=q D 1

2�

��
�CC
q

�1=q

C
�
C�
q

�1=q�
;

which proves (3.35) and

(3.43) lim
�"0

F 0.�/.��/ 1
q

C1 D 1

2�q

��
�CC
q

�1=q

C
�
C�
q

�1=q�
;

which proves (3.36). �

4 Inverse Scattering Problem in the Zero-Dispersion Limit
In this section, we provide the proofs of Theorem 1.1 and of Corollary 1.2.

4.1 Basic Strategy: Outline of Proof of Theorem 1.1
According to Definition 3.3, Qu".x; t/ is expressed in terms of the determinant Q�"

as follows:

(4.1) Qu".x; t/ D @ QU"

@x
.x; t/; QU".x; t/ D 2" Imflog. Q�".x; t//g:

As the logarithm of a complex-valued quantity is involved, QU".x; t/ is only defined

modulo 4�" for each .x; t/, and naturally one should choose the appropriate branch

for each .x; t/ to achieve continuity. We do this concretely in equation (4.3) below.

At this very early point our analysis must take a very different path than that

followed by Lax and Levermore [20] in their study of the zero-dispersion limit for

the KdV equation. Indeed, the expansion of Q�" in principal minors that is at the

heart of the Lax-Levermore method would be a poor choice in this situation. One

reason for this is simply that the principal-minors expansion of Q�".x; t/ consists of

complex-valued terms of indefinite phase, so the sum cannot be easily estimated

by its largest term. But a more important reason is that formula (4.1) for QU".x; t/

involves not log. Q�"/ but rather Imflog. Q�"/g; that is, we require an estimate of the

phase of the determinant and are not interested in its magnitude.

So instead of expanding the determinant as a sum, we write it as a product. Let

f˛ngN."/
nD1 be the real eigenvalues of QA".x; t/. Then the corresponding eigenvalues

of I C i"�1 QA".x; t/ are of course f1 C i"�1˛ngN."/
nD1 , so we may expand Q�" as a

product over eigenvalues in the form

(4.2) Q�".x; t/ D
N."/Y
nD1

.1C i"�1˛n/:

This yields a suggestive formula for QU".x; t/ in terms of the eigenvalues of QA":

(4.3) QU".x; t/ WD "

N."/X
nD1

2 arctan."�1˛n/:
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FIGURE 4.1. Histograms of eigenvalues of QA" corresponding to the ini-

tial condition u0.x/ WD 2.1 C x2/�1, x D 5, and t D 2, normalized

to have total area M D 1, compared with the density G.˛I x; t/ of the

limiting absolutely continuous measure 
.

Here ��=2 < arctan.�/ < �=2, so in particular by this definition we have made

an unambiguous choice of the branch of the logarithm. This formula seems at first

not to be of much use because, unlike the principal minor determinants in the Lax-

Levermore method, which can be written explicitly in terms of the matrix elements,

the eigenvalues of QA" are only implicitly known. However, numerical experiments

suggest that some structure emerges in the limit " # 0. Indeed, the plots shown

in Figure 4.1 provide good evidence that the normalized (to mass M ) counting

measures 
" given for " > 0 by

(4.4) 
" WD M

N."/

N."/X
nD1

ı˛n
; f˛ngN."/

nD1 eigenvalues of QA";

might converge in some sense to a measure 
 having a density G.˛I x; t/. This

convergence suggests further that formula (4.3) could be interpreted as a Riemann

sum for the integral of � sgn.˛/ (the pointwise limit as " # 0 of the summand)

against the limiting measure 
. We will prove that indeed QU".x; t/ converges,

uniformly with respect to x and t in compact sets, to a limit function U.x; t/ given

by such an integral in the limit " # 0.

To obtain an effective formula for U.x; t/, we need to analyze the asymptotic

behavior of the measures 
". This part of our analysis is modeled after the work

of Wigner [33, 34] on the statistical distribution of eigenvalues of random Hermit-

ian matrices with independent and identically distributed matrix elements. Like

Wigner, we use the method of moments because while the measures themselves
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are not easy to express in terms of the matrix elements, their moments are. Indeed,

the moments are expressed in terms of traces of powers of QA" in the following way:

(4.5)

Z
R

˛p d
".˛/ D M

N."/

N."/X
nD1

˛p
n D M

N."/
tr. QAp

" /; p D 0; 1; 2; : : : :

We prove the existence of the limit of the right-hand side in equation (4.5) as " # 0
for every p using the fact that for small " the matrix QA" concentrates near the

diagonal, where it can be approximated by the product of a diagonal matrix and

the Toeplitz matrix corresponding to the symbol f .�/ WD i.� � �/, 0 < � < 2�

(of singular Fisher-Hartwig type due to jump discontinuities). The result of this

asymptotic analysis of moments is the following proposition, the proof of which

will be given in Section 4.2.

PROPOSITION 4.1 For each nonnegative integer p,

(4.6) lim
"#0

Z
R

˛p d
".˛/ D Qp;

with the limit being uniform with respect to .x; t/ in any compact set where

Qp WD 1

2�.p C 1/

Z 0

�L

�
.x C 2�t � x�.�//pC1

� .x C 2�t � xC.�//pC1
�
.�2�/p d�:

(4.7)

Given these limiting moments, the next task is to establish the existence of a

corresponding limiting measure 
 with these moments and to prove the existence

of the limit QU".x; t/ ! U.x; t/. A remarkable feature of this analysis is that the

solution of the moment problem for
 is carried out by virtually the same procedure

as Matsuno used to obtain the function F.�/ from u0 (see Section 3.2). Our result

is the following proposition, which will be proved in all details in Section 4.3.

PROPOSITION 4.2 Uniformly for .x; t/ in compact sets,

(4.8) lim
"#0

QU".x; t/ D U.x; t/;

where

(4.9) U.x; t/ WD
Z
R

� sgn.˛/d
.˛/

and
 is an absolutely continuous measure of massM with densityG.˛I x; t/ given
by

(4.10) G.˛I x; t/ WD � 1

4�

Z 0

�L

�Œ�2�.xC2�t�xC.�//;�2�.xC2�t�x�.�//�.˛/
d�

�
:

Here �Œa;b�.´/ denotes the indicator function of the interval Œa; b�.
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FIGURE 4.2. The region of integration �2�.x C 2�t � xC.�// < ˛ <

�2�.x C 2�t � x�.�// for u0.x/ D 2.1 C x2/�1 with t D 0:7. Left:

x D 2 (to the left of the oscillatory region for u".x; t/). Center: x D 2:5

(within the oscillatory region for u".x; t/). Right: x D 3 (to the right

of the oscillatory region for u".x; t/). The line ˛ D 0 of discontinuity

of the integrand is superimposed, and the intersections of the boundary

with this line are indicated with arrows.

The limiting measure 
 is the closest analogue in the zero-dispersion theory

of the BO equation of the equilibrium (or extremal) measure arising in the Lax-

Levermore theory of the KdV equation. But a significant difference is that in this

case the measure 
 is specified explicitly rather than implicitly as the solution of a

variational problem.

The region of integration in the double integral obtained by combining (4.10)

with (4.9) is illustrated for three different values of .x; t/ in Figure 4.2. The points

where the boundary curves of this region intersect the line ˛ D 0 (where the inte-

grand is discontinuous) obviously will play an important role in the differentiation

of U.x; t/ with respect to x. Moreover, these intersection points correspond (sim-

ply by changing the sign) to the branches of the multivalued solution of Burgers’

equation with initial data u0. This explains their appearance in the formula for the

weak limit of u".x; t/. All details of this calculation will be given in Section 4.4,

which will complete the proof of Theorem 1.1. Ingredients from this calculation

will also set the stage for the proof of Corollary 1.2, which will be given in Sec-

tion 4.5.

4.2 Asymptotics of Traces of Powers of QA": Proof of Proposition 4.1
Definition (3.25) implies that where F.�/ is bounded and bounded away from

zero, the numbers fQ�ngN."/
nD1 are locally nearly equally spaced, but they are more

dilute near the “soft edge” of the spectrum � D �L and denser near the “hard

edge” of the spectrum � D 0. Taking into account the soft edge behavior, we may

obtain a uniform estimate:

LEMMA 4.3 There is a constant C� > 0 independent of " such that

(4.11) j Q�n � Q�mj � C�"
2=3jn �mj2=3

holds for all n and m between 1 and N."/.

PROOF: Since F is a monotone increasing function with F.�L/ D 0, it is

bounded away from zero except in a right neighborhood of � D �L. Using the
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lower bound given in (3.33) from Lemma 3.4, we obtain a lower bound F.�/ �
C

p
LC � valid uniformly for �L < � < 0 with 0 < C � C�L=2. Then, using

definition (3.25), we have (assuming n � m without loss of generality)

"jn �mj D
Z Q�n

Q�m

F.�/d� � C

Z Q�n

Q�m

p
LC �d�

� C

Z jQ�n�Q�mj

0

p
� d� D 2C

3
j Q�n � Q�mj3=2;

(4.12)

so the desired inequality follows with C� WD .2C=3/�2=3. �

We decompose the matrix QA" into a sum QA" D D C H of its diagonal part

(4.13) D WD diag.D1;D2; : : : ;DN."//; Dk WD D. Q�kI x; t/;
where D.�I x; t/ is defined by (3.31), and its off-diagonal part H whose matrix

elements are given by

(4.14) Hnm D 2i"

q
Q�n

Q�m

Q�n � Q�m

for n ¤ m and Hnn D 0.

We also will soon need the quantities f'ngN."/
nD1 defined by

(4.15) 'n WD '. Q�n/; n D 1; 2; : : : ; N."/;

where '.�/ is given by (3.32).

LEMMA 4.4 There is a constant C' > 0 and for each R > 0 there is a constant
CD;R > 0 such that

(4.16) j'nj � C'

and

(4.17) sup
x2Ct2�R2

jDnj � CD;RI

both hold for all " > 0 and all n between 1 and N."/. Also,

(4.18) j'n � 'mj � C'"
�=3jn �mj�=3

and

(4.19) sup
x2Ct2�R2

jDn �Dmj � CD;R"
�=3jn �mj�=3I

both hold for all " > 0 and for all n and m between 1 and N."/. Here 	 is the
positive Hölder exponent of Lemma 3.4.
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PROOF: This is an easy consequence of the Hölder continuity of '.�/ and

D. � I x; t/ guaranteed by Lemma 3.4, and of the spacing estimate for the approx-

imate eigenvalues fQ�kgN."/

kD1
given in Lemma 4.3. In fact, since D is Hölder-

continuous with exponent 	 while ' has exponent 	=2, the most natural bound

for jDn � Dmj is proportional to "2�=3jn � mj2�=3, and to obtain (4.19) we use

the fact that "jn � mj � 2"N."/ is uniformly bounded to reduce the exponent

to 	=3. �
LEMMA 4.5 There is a constant CH > 0 such that

(4.20) j.n �m/Hnmj � CH

and

(4.21) j.n �m/Hnm � 2i'n'mj � CH "
�=3jn �mj�=3

both hold for all " > 0 and all n ¤ m between 1 and N."/. Again, 	 > 0 is the
Hölder exponent of Lemma 3.4.

PROOF: Suppose without loss of generality that n > m, implying that Q�m <
Q�n < 0. Then

�i.n �m/Hnm D 2

q
�Q�n

q
�Q�m

".n �m/
Q�n � Q�m

� .Œ�Q�n�C Œ�Q�m�/
".n �m/
Q�n � Q�m

D ".n �m/ � 2 Q�n
".n �m/
Q�n � Q�m

:

(4.22)

Now, recalling definition (3.25) of the numbers fQ�kgN."/

kD1
and applying the mean

value theorem, we may write the latter difference quotient as F.�/ for some � with
Q�m � � � Q�n, and since F is increasing we have F.�/ � F. Q�n/, so

(4.23) � i.n �m/Hnm � 2".n �m/ � 2 Q�nF. Q�n/ D 2".n �m/C 2'2
n;

where we have also replaced ".n �m/ with 2".n �m/.
On the other hand, we may write

(4.24) � i.n �m/Hnm D 2".n �m/
q

�Q�n

q
�Q�m C Q�m

Q�n � Q�m

� 2 Q�m
".n �m/
Q�n � Q�m

:

Again the difference quotient may be replaced by F.�/ � F. Q�m/, and since

(4.25)

q
�Q�n

q
�Q�m

Q�n � Q�m

D �
q

�Q�mq
Q�n C

q
Q�m

� �1;

we obtain

(4.26) � i.n �m/Hnm � �2".n �m/ � 2 Q�mF. Q�m/ D �2".n �m/C 2'2
m:
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Combining (4.23) and (4.26) gives

(4.27) j.n �m/Hnm � 2i'n'mj � 2"jn �mj C 2maxf'n; 'mgj'n � 'mj;
and then applying Lemma 4.4 we obtain

(4.28) j.n �m/Hnm � 2i'n'mj � 2"jn �mj C 2C 2
' "

�=3jn �mj�=3:

Now, 0 � "jn�mj � 2"N."/, and this upper bound has a limit as " # 0, so "jn�mj
is nonnegative and bounded. Since 	 � 3 we have therefore proved (4.21). Since

'n'm and "jn �mj are bounded, (4.20) then follows from (4.21). �

For any nonnegative integer power p, the pth moment of the measure 
" can be

written in terms of D and H with the use of (4.5):

(4.29)

Z
R

˛p d
".˛/ D
pX

j D0

Zpj ;

where Zpj contains the contribution to the trace coming from products of matrices

involving exactly j factors of H:

(4.30) Zpj WD M

N."/

X
d1Cd2C���CdsDp�j

h1Ch2C���ChsDj

tr.Dd1Hh1Dd2Hh2 � � � Dds Hhs /;

and where d1 � 0 and hs � 0, while dk > 0 for 2 � k � s and hk > 0

for 1 � k � s � 1. Since p is a fixed number, it will suffice to compute the limit

of Zpj as " # 0 for j D 0; 1; : : : ; p. Actually, it will be enough to consider even

values of j as the following result shows.

LEMMA 4.6 If j is an odd number, then Zpj D 0.

PROOF: Since tr.M/ D tr.MT/ for all square matrices A,

N."/

M
Zpj D

X
d1Cd2C���CdsDp�j

h1Ch2C���ChsDj

tr..Dd1Hh1 � � � Dds Hhs /T/

D .�1/j
X

d1Cd2C���CdsDp�j
h1Ch2C���ChsDj

tr.Hhs Dds � � � Hh1Dd1/

(4.31)

where in the second line we have used the facts that DT D D and HT D �H. By

relabeling the terms in the sum we therefore obtain

(4.32)
N."/

M
Zpj D .�1/j N."/

M
Zpj :

Since N."/ > 0 and M < 1, the desired result follows. �
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An important role will be played below by the Toeplitz (discrete convolution)

operator Tf W `2.Z/ ! `2.Z/ defined by

(4.33) .Tf c/n WD
X
m2Z

fn�mcm; fcmgm2Z 2 `2.Z/;

where ffngn2Z 2 `2.Z/ is the sequence

(4.34) fn WD
(
n�1; n ¤ 0;

0; n D 0:

LEMMA 4.7 For any even positive integer j , we have

(4.35)
X

n2;:::;nj 2Z

f�n2

hj �1Y
`D2

fn`�n`C1

i
fnj

D .i�/j

j C 1
;

where the .j � 1/-fold infinite sum converges absolutely.

PROOF: Note that since ffngn2Z 2 `2.Z/, fgngn2Z 2 `2.Z/ as well, where

gn WD jfnj for all n 2 Z. The corresponding Fourier series converge in the mean

square sense to functions f .�/ and g.�/ in L2.0; 2�/:

(4.36) f .�/ WD
X
n2Z

fne
in� D i.� � �/; 0 < � < 2�;

and

(4.37) g.�/ WD
X
n2Z

gne
in� D � log

	
2.1 � cos.�//



; 0 < � < 2�:

First we establish the absolute convergence of the series on the left-hand side of

(4.35). Using (4.33), observe that

(4.38)
X

n2;n3;:::;nj 2Z

jf�n2
j
hj �1Y

`D2

jfn`�n`C1
j
i
jfnj

j D .T j �1
g g/0

where Tg is the Toeplitz operator associated with the sequence fgngn2Z. Now, g.�/
has a logarithmic singularity at � D 0 .mod 2�/, but this is sufficiently mild that

g.�/m 2 L2.0; 2�/ � L1.0; 2�/ for any positive integer power m. Now for any

function k.�/ 2 L2.0; 2�/, the corresponding Fourier coefficients are

(4.39) kn WD 1

2�

Z 2�

0

k.�/e�in� d�;

so in particular we see that .T j �1
g g/0 is the average value of the function whose

Fourier coefficients are f.T j �1
g g/ngn2Z. But by the convolution theorem

(4.40) wn WD
X
m2Z

un�mvm ” w.�/ D u.�/v.�/;
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so it follows that

(4.41) .T j �1
g g/0 D 1

2�

Z 2�

0

g.�/j d�;

which is finite because g.�/j 2 L1Œ0; 2��.

Now we find the exact value of the .j � 1/-fold infinite sum by the same rea-

soning:

(4.42)
X

n2;:::;nj 2Z

f�n2

hj �1Y
`D2

fn`�n`C1

i
fnj

D .T j �1

f
f /0 D 1

2�

Z 2�

0

f .�/j d�;

and by direct calculation using (4.36),

(4.43)
1

2�

Z 2�

0

f .�/j d� D 1

2�

Z 2�

0

Œi.� � �/�j d� D .i�/j

j C 1

for j even (the integral vanishes by symmetry for j odd). �

Now we consider separately each of the terms in Zpj for j even.

LEMMA 4.8 If j is an even number and h1 C h2 C � � � C hs D j while d1 C d2 C
� � � C ds D p � j , then

(4.44) lim
"#0

M

N."/
tr.Dd1Hh1 � � � Dds Hhs / D

.2�/j

j C 1

Z 0

�L

D.�I x; t/p�j'.�/2jF.�/ d�;

with the limit being uniform with respect to .x; t/ in any compact set.

PROOF: Recalling the matrix elements Dn and Hnm of D and H, respectively,

we have

(4.45) tr.Dd1Hh1 � � � Dds Hhs / D
N."/X

a1;a2;:::;aj D1

h jY
iD1

Dmi
ai

ihj �1Y
`D1

Ha`a`C1

i
Haj a1

;

where the exponents m1; m2; : : : ; mj are given by

(4.46) mi WD

8̂<
:̂
d1; i D 1;

dbC1; i D 1C h1 C h2 C � � � C hb for some 0 < b < s;

0; otherwise:

Note that m1 Cm2 C � � � Cmj D d1 C d2 C � � � C ds D p � j .

Now, the matrix element Hnm is relatively small unless n � m, and this sug-

gests that the j -fold sum in (4.45) should concentrate near the diagonal, where

ak D a1 for all k. Making this precise, given any r > 0 we will first show that

(4.47) lim
"#0

ZOD."/ D 0;
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where

(4.48) ZOD."/ WD M

N."/

N."/X
a1;a2;:::;aj D1

9kWjak�a1j>"�r

h jY
iD1

Dmi
ai

ihj �1Y
`D1

Ha`a`C1

i
Haj a1

;

with the limit being uniform for .x; t/ in compact sets. Indeed, if x2 C t2 � R2,

then using (4.17) from Lemma 4.4 and (4.20) from Lemma 4.5, we obtain

jZOD."/j � MC
p�j
D;R C

j
H

N."/

N."/X
a1;a2;:::;aj D1

9kWjak�a1j>"�r

hj �1Y
`D1

jfa`�a`C1
j
i
jfaj �a1

j

D MC
p�j
D;R C

j
H

N."/

N."/X
a1D1

N."/X
a2;a3;:::;aj D1

9kWjak�a1j>"�r

hj �1Y
`D1

jfa`�a`C1
j
i
jfaj �a1

j

� MC
p�j
D;R C

j
H

N."/

N."/X
a1D1

X
a2;a3;:::;aj 2Z

9kWjak�a1j>"�r

hj �1Y
`D1

jfa`�a`C1
j
i
jfaj �a1

j:

(4.49)

With the inner sum extended over Zj �1 in this way, it becomes independent of

the outer sum index a1 as can be seen by the substitution nk D ak � a1 for k D
2; 3; : : : ; j . Thus

(4.50) jZOD."/j � MC
p�j
D;R C

j
H

X
n2;n3;:::;nj 2Z
9kWjnk j>"�r

jf�n2
j
hj �1Y

`D2

jfn`�n`C1
j
i
jfnj

j;

and the latter upper bound is of course independent of .x; t/ with x2 C t2 � R2

and tends to zero for r > 0 by Lemma 4.7.

It follows from (4.47) that

(4.51) lim
"#0

M

N."/
tr.Dd1Hh1 � � � Dds Hhs / D lim

"#0
ZD."/

where the diagonally concentrated terms are

(4.52) ZD."/ WD M

N."/

N."/X
a1;a2;:::;aj D1

8kWjak�a1j�"�r

h jY
iD1

Dmi
ai

ihj �1Y
`D1

Ha`a`C1

i
Haj a1

:

We will analyze ZD."/ under the additional assumption that r < 1.

The first step is show that if r < 1 each occurrence of Hnm in (4.52) may be

replaced by 2i'n'mfn�m without affecting the limiting value of ZD."/ as " # 0.

Indeed, suppose we make this substitution j times in succession, each time keeping



236 P. D. MILLER AND Z. XU

track of the error using Lemma 4.5 along with the estimates (4.16) and (4.17) from

Lemma 4.4. Then defining KR > 0 by

(4.53) KR WD C
p�j
D;R

jX
kD1

.2C 2
' /

k�1C
j �kC1
H ;

we see that, for all j -tuples of integers a1; a2; : : : ; aj between 1 and N."/ satisfy-

ing jak � a1j � "�r for all k, the following inequality holds true:ˇ̌̌
ˇh

jY
iD1

Dmi
ai

ihj �1Y
`D1

Ha`a`C1

i
Haj a1

� .2i/j
h jY

iD1

Dmi
ai
'2

ai

ihj �1Y
`D1

fa`�a`C1

i
faj �a1

ˇ̌̌
ˇ

� KR"
.1�r/�=3

hj �1Y
`D1

jfa`�a`C1
j
i
jfaj �a1

j:

(4.54)

Therefore, if we define a modification of ZD."/ by

(4.55) ZI
D."/ WD .2i/jM

N."/

N."/X
a1;a2;:::;aj D1

8kWjak�a1j�"�r

h jY
iD1

Dmi
ai
'2

ai

ihj �1Y
`D1

fa`�a`C1

i
faj �a1

;

we have

jZD."/ �ZI
D."/j

� MKR"
.1�r/�=3

N."/

N."/X
a1;a2;:::;aj D1

8kWjak�a1j�"�r

hj �1Y
`D1

jfa`�a`C1
j
i
jfaj �a1

j

� MKR"
.1�r/�=3

N."/

N."/X
a1D1

� X
a2;a3;:::;aj 2Z

hj �1Y
`D1

jfa`�a`C1
j
i
jfaj �a1

j
�
:

(4.56)

By the substitution n` D a` � a1 one sees that the inner sum is independent of a1,

and it is finite by Lemma 4.7. Since 	 > 0 and r < 1, we therefore have

(4.57) lim
"#0

ZD."/ D lim
"#0

ZI
D."/

uniformly for x2 C t2 � R2.

The second step is to show that if r < 1 we may replace D
mi
ai
'2

ai
with D

mi
a1
'2

a1

for each i in (4.55) without changing the limiting value ofZI
D."/. Indeed, applying

Lemma 4.4 and defining a constant KI
R > 0 by

(4.58) KI
R WD .p C j /C

p�j
D;R C

2j
' ;
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we see that for all j -tuples of integers a1; a2; : : : ; aj between 1 andN."/ satisfying

jak � a1j � "�r for all k,

(4.59)

ˇ̌̌
ˇ

jY
iD1

Dmi
ai
'2

ai
�Dp�j

a1
'2j

a1

ˇ̌̌
ˇ � KI

R"
.1�r/�=3:

Hence, defining a subsequent modification of ZI
D."/ by

(4.60) ZII
D."/ WD

.2i/jM

N."/

N."/X
a1D1

Dp�j
a1

'2j
a1

N."/X
a2;a3;:::;aj D1

8kWjak�a1j�"�r

hj �1Y
`D1

fa`�a`C1

i
faj �a1

;

we see that

jZI
D."/ �ZII

D."/j

� 2jMKI
R"

.1�r/�=3

N."/

N."/X
a1D1

N."/X
a2;a3;:::;aj D1

8kjak�a1j�"�r

hj �1Y
`D1

jfa`�a`C1
j
i
jfaj �a1

j

� 2jMKI
R"

.1�r/�=3

N."/

N."/X
a1D1

� X
a2;a3;:::;aj 2Z

hj �1Y
`D1

jfa`�a`C1
j
i
jfaj �a1

j
�
;

(4.61)

and so exactly as before

(4.62) lim
"#0

ZI
D."/ D lim

"#0
ZII

D."/

uniformly for x2 C t2 � R2.

The third step is to show that if r < 1 one may neglect a small fraction of the

terms in the outer sum corresponding to a1 � 1 C "�r and a1 � N."/ � "�r

without changing the limiting value of ZII
D."/. Indeed, defining the index set

(4.63) S" WD fn 2 Z W 1C "�r < n < N."/ � "�rg;
and then setting

(4.64) ZIII
D ."/ WD

.2i/jM

N."/

X
a12S"

Dp�j
a1

'2j
a1

N."/X
a2;a3;:::aj D1

8kWjak�a1j�"�r

hj �1Y
`D1

fa`�a`C1

i
faj �a1

;
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we easily obtain from (4.16) and (4.17) in Lemma 4.4 that

jZII
D."/ �ZIII

D ."/j

� 2jMC
p�j
D;R C

2j
'

N."/

N."/X
a1D1
a1 62S"

N."/X
a2;a3;:::;aj D1

8kWjak�a1j�"�r

hj �1Y
`D1

jfa`�a`C1
j
i
jfaj �a1

j

� 2jMC
p�j
D;R C

2j
'

N."/

N."/X
a1D1

a1 62S"

X
a2;a3;:::;aj 2Z

hj �1Y
`D1

jfa`�a`C1
j
i
jfaj �a1

j:

(4.65)

But the inner sum is independent of a1 and is convergent by Lemma 4.7, and the

outer sum has O."�r/ terms while N."/ is proportional to "�1, so with r < 1 we

have

(4.66) lim
"#0

ZII
D."/ D lim

"#0
ZIII

D ."/

uniformly for x2 C t2 � R2.

The next step in analyzing ZD."/ is to deal with the inner sum in definition

(4.64) of ZIII
D ."/. Taking into account the conditions on a1 in the outer sum, it is

obvious that the conditions 1 � ak � N."/ are superfluous in the inner sum:

(4.67) ZIII
D ."/ D

.2i/jM

N."/

X
a12S"

Dp�j
a1

'2j
a1

X
a2;a3;:::;aj 2Z

8kWjak�a1j�"�r

hj �1Y
`D1

fa`�a`C1

i
faj �a1

:

By introducing the differences nk D ak � a1 it now becomes clear that the inner

sum is independent of a1:

(4.68) ZIII
D ."/ D
.2i/jM

N."/

� X
a12S"

Dp�j
a1

'2j
a1

�� X
n2;n3;:::;nj 2Z
8kWjnk j�"�r

f�n2

hj �1Y
`D2

fa`�a`C1

i
fnj

�
:

Now, according to Lemma 4.7, the latter sum has the limit .i�/j =.j C 1/ as " # 0
with r > 0, so

(4.69) lim
"#0

ZIII
D ."/ D lim

"#0
ZIV

D ."/;

uniformly for x2 C t2 � R2, where

(4.70) ZIV
D ."/ WD .2�/j

j C 1
� M

N."/

X
a12S"

Dp�j
a1

'2j
a1
:
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The final step in the analysis of ZD."/ is simply to evaluate the limit on the

right-hand side of (4.69) by recognizing the sum as a Riemann sum for an integral:

(4.71) lim
"#0

ZD."/ D lim
"#0

ZIV
D ."/ D .2�/j

j C 1

Z 0

�L

D.�I x; t/p�j'.�/2jF.�/d�:

Note that since the summand D
p�j
a1

'
2j
a1

is polynomial in x and t , the convergence

of the Riemann sum is uniform for .x; t/ in compact sets. Comparing with (4.51)

we see that the proof is complete. �
Now we may complete the proof of Proposition 4.1. Lemma 4.8 shows that each

of the terms in formula (4.30) for Zpj has the same limit as " # 0. Therefore, for

all even j ,

lim
"#0

Zpj D
X

d1Cd2C���CdsDp�j
h1Ch2C���ChsDj

.2�/j

j C 1

Z 0

�L

D.�I x; t/p�j'.�/2jF.�/d�

D
�
p

j

�
.2�/j

j C 1

Z 0

�L

D.�I x; t/p�j'.�/2jF.�/d�:

(4.72)

Combining this result with Lemma 4.6 and formula (4.29) for the pth moment, we

obtain

Qp D lim
"#0

Z
R

˛pd
".˛/

D
bp=2cX
kD0

 
p

2k

!
.2�/2k

2k C 1

Z 0

�L

D.�I x; t/p�2k'.�/4kF.�/d�;

(4.73)

uniformly for .x; t/ in compact sets. Now we apply the identity

(4.74)

bp=2cX
kD0

1

2k C 1

 
p

2k

!
a2kbp�2k D .b C a/pC1 � .b � a/pC1

2a.1C p/
;

which holds for any integer p � 0 and real numbers a and b. (This identity

can be most easily obtained by expanding the binomials on the right-hand side.)

Recalling definitions (3.31) and (3.32) of D.�I x; t/ and '.�/ and using the fact

that x˙.�/ D ˙�F.�/ � �.�/ then completes the proof of Proposition 4.1.

4.3 Convergence of Measures and Locally Uniform Convergence of QU":
Proof of Proposition 4.2

Recall the measures 
" defined by (4.4).

LEMMA 4.9 For each nonnegative integer p,

(4.75) lim
"#0

Z
R

˛p d
".˛/ D
Z
R

˛p d
.˛/
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where 
 is the absolutely continuous (with respect to Lebesgue measure on R/
measure defined by d
.˛/ D G.˛I x; t/d˛, and the compactly supported inte-
grable density function G.˛I x; t/ is given by (4.10). The limit is uniform with
respect to .x; t/ in compact sets. Also, like each 
", 
 is a measure with mass M .

PROOF: Recalling Proposition 4.1, we first show that the given measure 
 sat-

isfies

(4.76)

Z
R

˛p d
.˛/ D Qp;

where Qp is given by (4.7) for all nonnegative p 2 Z. Equivalently, we may con-

struct a measure with the desired moments as follows: the characteristic function

of the measure 
 is the Fourier transform

(4.77) yG.�I x; t/ WD
Z
R

G.˛I x; t/e�i˛� d˛;

and this function necessarily has the desired moments fQpg1
pD0 as its derivatives

at � D 0:

(4.78)
dp yG
d�p

.0I x; t/ D .�i/pQp:

So yG.�I x; t/ has the Taylor series

(4.79) yG.�I x; t/ D
1X

pD0

.�i�/p
pŠ

Qp:

Now from the obvious inequality jxC2�t�x˙.�/j � jx�x0jC2Ljt jC2�F.�/,
we obtain

jQpj � 1

�.p C 1/

Z 0

�L

.jx � x0j C 2Ljt j C 2�F.�//pC1.�2�/p d�

� 1

�.p C 1/

Z 0

�L

.2Ljx � x0j C 4L2jt j � 4��F.�//p

� .jx � x0j C 2Ljt j C 2�F.�//d�:

(4.80)

Also, from Lemma 3.4, there is a constant K > 0 such that 0 � ��F.�/ � K, so

for .x � x0/
2 C t2 � R2,

jQpj � .2LRC 4L2RC 4�K/p

�.p C 1/

Z 0

�L

.jx � x0j C 2Ljt j C 2�F.�//d�

� .LRC 2L2RC 2�M/

�.p C 1/
.2LRC 4L2RC 4�K/p

� 1

�
.LRC 2L2RC 2�M/.2LRC 4L2RC 4�K/p;

(4.81)
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where in the last step we used (3.20). This inequality implies that the Taylor series

(4.79) converges for all � 2 C to an entire function of exponential type.

Now we will sum the Taylor series (4.79) in closed form by substituting from

formula (4.7) and exchanging the order of summation and integration. Indeed,

since

(4.82)

1X
pD0

.�i�/p
pŠ

� .�2�/
p.x C 2�t � x˙.�//pC1

p C 1
D

e2i��ŒxC2�t�x˙.�/� � 1
2i��

;

we obtain the formula

(4.83) yG.�I x; t/ D
Z 0

�L

e2i��ŒxC2�t�x�.�/� � e2i��ŒxC2�t�xC.�/�

4�i��
d�:

Computing the inverse Fourier transform

(4.84) G.˛I x; t/ D 1

2�

Z
R

yG.�I x; t/ei˛� d�

by exchanging the order of integration leads directly to the claimed formula (4.10).

It is obvious that G.˛I x; t/ is a nonnegative function, and since by Lemma 3.4

inf
�L<�<0

�2�.x C 2�t � xC.�// > �1;

sup
�L<�<0

�2�.x C 2�t � x�.�// < C1;
(4.85)

for every .x; t/, it is clear that G.˛I x; t/ has compact support. It is also straight-

forward to verify that 
 has mass M :Z
R

d
.˛/ D
Z
R

G.˛I x; t/d˛

D � 1

4�

Z
R

Z 0

�L

�Œ�2�.xC2�t�xC.�//;�2�.xC2�t�x�.�//�.˛/
d�

�
d˛

D � 1

4�

Z 0

�L

1

�

Z
R

�Œ�2�.xC2�t�xC.�//;�2�.xC2�t�x�.�//�.˛/d˛ d�

D � 1

4�

Z 0

�L

1

�

Z �2�.xC2�t�x�.�//

�2�.xC2�t�xC.�//

d˛ d�

D
Z 0

�L

F.�/d�

D M;

(4.86)

according to (3.20). Therefore 
 is indeed an absolutely continuous, compactly

supported (nonnegative) measure of mass M . �
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Note that the reconstruction of the measure 
 from its moments is virtually the

same calculation as took place on the direct scattering side in our discussion of

Matsuno’s method in Section 3.2.

LEMMA 4.10 There is a compact interval � � R containing the support of all
of the measures f
"g">0 as well as that of the measure 
, and � may be chosen
independent of .x; t/ in any given compact set.

PROOF: Since 
 has compact support certainly contained within the interval

(4.87) inf
�L<�<0

Œ2�xC.�/� � 2Ljxj � 4L2jt j � ˛ �
sup

�L<�<0

Œ2�x�.�/�C 2Ljxj C 4L2jt j

that is clearly bounded uniformly for .x; t/ in any compact set, it is enough to show

that the support of 
" is uniformly bounded as " # 0. But by definition of 
" this is

equivalent to showing that the eigenvalue of A" with the largest magnitude remains

uniformly bounded as " # 0.

Since the matrix QA" is Hermitian, we have

(4.88) k QA"k2 D max
1�j �N."/

j j̨ j;

so to prove that the eigenvalue of QA" with the largest magnitude remains uniformly

bounded, it is completely equivalent to prove that the `2 (induced) matrix norm of
QA" is uniformly bounded as " # 0 independent of .x; t/ in any given compact set.

Recalling the decomposition QA" D D C H from the proof of Proposition 4.1

given in Section 4.2, the triangle inequality gives k QA"k2 � kDk2 C kHk2, and

since D is diagonal,

kDk2 D max
1�n�N."/

j2 Q�n.x C 2 Q�nt C �. Q�n//j
� sup

�L<�<0

j2�.x C 2�t C �.�//j

� sup
�L<�<0

j2��.�/j C 2Ljxj C 4L2jt j;
(4.89)

so since ��.�/ is bounded according to Lemma 3.4, and H is independent of x

and t , it is sufficient to show that kHk2 remains bounded as " # 0.

To estimate kHk2, we write H in the following form: H D BTB C E where

(4.90) B D diag
�
ei�=4

q
�2 Q�1F. Q�1/; : : : ; e

i�=4
q

�2 Q�N."/F. Q�N."//
�
;

and T is the N."/ � N."/ Toeplitz matrix with elements Tnm D fn�m, where the

sequence ffngn2Z is defined by (4.34). Of course E WD H � BTB. Therefore

kHk2 � kBk2
2 kTk2 C kEk2. Because B is diagonal,

(4.91) kBk2
2 � max

1�n�N."/
Œ�2 Q�nF. Q�n/� � sup

�L<�<0

Œ�2�F.�/�;



ZERO-DISPERSION LIMIT FOR BENJAMIN-ONO 243

which is finite by Lemma 3.4. The Toeplitz matrix T can be written as T D PTf P ,

where P is the orthogonal projection from `2.Z/ onto CN viewed as a subset

of `2.Z/ associated with components having indices f1; 2; : : : ; N."/g � Z, and

where Tf W `2.Z/ ! `2.Z/ is the Toeplitz operator defined by (4.33) from Sec-

tion 4.2. The `2.Z/ operator norm of P is clearly equal to one, and since

(4.92)
X
l2Z

fle
il� D i.� � �/; 0 < � < 2�;

the Pythagorean theorem in L2.0; 2�/ gives

X
n2Z

j.T c/nj2 D 1

2�

Z 2�

0

ˇ̌̌X
n2Z

.T c/nein�
ˇ̌̌2
d�

D 1

2�

Z 2�

0

ˇ̌̌X
n2Z

X
m2Z

fn�mcme
in�
ˇ̌̌2
d�

D 1

2�

Z 2�

0

ˇ̌̌X
m2Z

cme
im�

X
n2Z

fn�me
iŒn�m��

ˇ̌̌2
d�

D 1

2�

Z 2�

0

.� � �/2
ˇ̌̌X
m2Z

cme
im�

ˇ̌̌2
d�

� �2 1

2�

Z 2�

0

ˇ̌̌X
m2Z

cme
im�

ˇ̌̌2
d�

D �2
X
m2Z

jcmj2;

(4.93)

so the `2.Z/ operator norm of Tf is bounded by � . It follows that kHk2 � � C
kEk2, so it suffices to show that kEk2 remains bounded as " # 0.

So far, we have exploited the special structure of the dominant parts of the matrix
QA" and applied correspondingly specialized norm estimates to these terms. The

error term E has less structure, but it is smaller; to estimate its norm it will be

sufficient to use the rather crude inequality kEk2 � kEkHS and work with the

Hilbert-Schmidt norm

(4.94) kEk2
HS WD

N."/X
nD1

N."/X
mD1

jEnmj2;

where the elements of E are explicitly given by

(4.95)
Enm WD 2i

"
"

q
Q�n

Q�m

Q�n � Q�m

�
q

Q�nF. Q�n/ Q�mF. Q�m/

n �m

#

for n ¤ m and Enn D 0.
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If we introduce continuous variables a WD .n � 1
2
/" and b WD .m � 1

2
/", then it

is easy to see that the square of the Hilbert-Schmidt norm of E is a Riemann sum

approximation of a certain double integral:

(4.96) lim
"#0

kEk2
HS D

“
Œ0;M�2

e0.a; b/da db;

provided the double integral exists, where

e0.a; b/ WD 4

� p
m�1.a/m�1.b/

m�1.a/ �m�1.b/

�
p
m�1.a/F.m�1.a//m�1.b/F.m�1.b//

a � b
�2

;

(4.97)

and wherem�1.�/ denotes the inverse function to the monotone functionm.�/ given

by

(4.98) m.�/ WD
Z �

�L

F.�0/d�0:

By changing variables to  D m�1.a/ and � D m�1.b/,

(4.99)

“
Œ0;M�2

e0.a; b/da db D
“

Œ�L;0�2

e.; �/d d�;

where

(4.100) e.; �/ WD 4

� p
�

 � � �
p
F./�F.�/

m./ �m.�/
�2

F./F.�/:

Note that since F � 0 by Lemma 3.4, e.; �/ � 0 for .; �/ 2 Œ�L; 0�2. To

complete the proof of the lemma, it is enough to show that the double integral on

the right-hand side of (4.99) is finite.

In order to estimate the double integral, we divide the square Œ�L; 0�2 into

polygonal regions as follows (see Figure 4.3):


 The square Œ�L;�L C ı�2 contains those ordered pairs .; �/ for which

both  and � are near the “soft edge” of the eigenvalue spectrum at �L.

We divide this square into diagonal and off-diagonal parts according to

whether . C L/=2 � � C L � 2. C L/ (the diagonal part, SD) or not

(the off-diagonal parts, SOD).


 The square Œ�ı; 0�2 contains those ordered pairs .; �/ for which both 

and � are near the “hard edge” of the eigenvalue spectrum at zero. We di-

vide this square into diagonal and off-diagonal parts according to whether

2 < � < =2 (the diagonal part,HD) or not (the off-diagonal partsHOD).
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FIGURE 4.3. The square Œ�L; 0�2 in the .; �/-plane is covered by the

six regions SD, SOD, BD, BOD, HD, and HOD.


 The remaining part of Œ�L; 0�2 contains those ordered pairs .; �/ for

which at least one of the coordinates lies in the “bulk” of the eigenvalue

spectrum, bounded away from both edges. This is divided into a diagonal

part BD and two off-diagonal parts BOD along two straight line segments

parallel to the diagonal as indicated in Figure 4.3.

Here the constant ı > 0 is as specified in Lemma 3.4. As e.; �/ D e.�; / it

will be enough to show integrability of e over the part of Œ�L; 0�2 with  < �, an

inequality that we will assume tacitly below.

First we consider integrating e.; �/ over the “off-diagonal” shaded regions

SOD, BOD, and HOD shown in Figure 4.3. An upper bound for e.; �/ useful in

these regions is easily obtained from the inequality .a � b/2 � 2a2 C 2b2:

(4.101)
e.; �/ � 8F./�F.�/

�
1

. � �/2 C F./F.�/

.m./ �m.�//2
�
;

.; �/ 2 .�L; 0/2:

Applying the mean value theorem to this estimate yields

(4.102) e.; �/ � 8F./�F.�/

. � �/2
�
1C F./F.�/

F.�/2

�
;
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where  � � � �. Finally, we obtain

e.; �/ � 8F./�F.�/

. � �/2
�
1C F.�/

F./

�

D 8F./�F.�/

. � �/2 C 8�F.�/

. � �/2 F.�/
(4.103)

since F is monotone increasing according to Lemma 3.4.

Now, for .; �/ 2 BOD, we have that  � � is bounded away from zero while by

Lemma 3.4 F./ and �F.�/ are bounded (and of course jj < L) while F.�/ is

integrable. Hence we easily conclude that e.; �/ is integrable on BOD.

If .; �/ 2 HOD with  < �, then we have the inequality

(4.104) . � �/2 D
��
� � 

2

�
C
�
�
2

��2

� 2

4
;

and also since both �ı <  < 0 and �ı < � < 0, we may use the upper bound

for F given in (3.35) from Lemma 3.4 to replace (4.103) with

(4.105) e.; �/ � 32C 2
0 .�/�1�1=q.��/1�1=q C 32C 2

0 .�/�1.��/1�2=q;

where C0 > 0 and q > 1 are the constants in (3.35). This estimate is easily seen

to be integrable on the component of HOD with  < � by direct calculation of the

iterated integrals.

If .; �/ 2 SOD with  < �, then we have the inequality

(4.106) . � �/2 D
��
�C L

2

�
C
�
�C L

2
� . C L/

��2

� .�C L/2

4
;

and also since both �L <  < �L C ı and �L < � < �L C ı we may use

the upper bound for F given in (3.33) from Lemma 3.4 along with the inequalities

jj < L and j�j < L to replace (4.103) with

(4.107) e.; �/ � 32L2C 2�L. C L/1=2.�C L/�3=2 C 32L2C 2�L.�C L/�1:

This upper bound is obviously integrable on the component of SOD with  < �.

Now we consider integrating e.; �/ over the “diagonal” unshaded regions SD,

BD, andHD shown in Figure 4.3. By the mean value theorem and the monotonicity

of F guaranteed by Lemma 3.4, we obtain an upper bound more useful when

 � �:

(4.108) e.; �/ � 4F./�F.�/

�
F./ � F.�/
m./ �m.�/

�2

; .; �/ 2 .�L; 0/2:
Again using the mean value theorem and monotonicity of F we may make the

upper bound larger for  < �:

(4.109) e.; �/ � 4�F.�/F 0.�/2
F./

;

where  � � � �.
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For .; �/ 2 BD with  < �, both  and � are bounded away from the soft and

hard edges of the eigenvalue spectrum, so Lemma 3.4 guarantees that F and F 0
are bounded, and F is also bounded away from zero by strict monotonicity and the

boundary condition F.�L/ D 0. It follows from (4.109) that e.; �/ is bounded

and hence integrable on BD.

If .; �/ 2 HD then we may use estimates (3.35) and (3.36) from Lemma 3.4 to

replace (4.109) with

e.; �/ � 8C 2
0

q2
.�/1C1=q.��/1�1=q.��/�2=q�2

� 8C 2
0

q2
.�/1C1=q.��/�1�3=q:

(4.110)

The double integral of this upper bound over the region HD with  < � is easily

computed by iterated integration and is clearly finite as a consequence of the fact

that q > 1.

Finally, if .; �/ 2 SD with  < �, then we may use estimates (3.33) and (3.34)

from Lemma 3.4 together with the inequalities jj < L and j�j < L to replace

(4.109) with

e.; �/ � 2L2C 2�L. C L/�1=2.�C L/1=2.� C L/�1

� 2L2C 2�L. C L/�3=2.�C L/1=2;
(4.111)

an upper bound that is clearly integrable over the part of SD with  < �. �

LEMMA 4.11 The measure 
" converges in the weak- sense to 
, uniformly
for .x; t/ in compact sets. That is, for each continuous function f W R ! C,

(4.112) lim
"#0

Z
R

f .˛/d
".˛/ D
Z
R

f .˛/d
.˛/;

with the limit being uniform with respect to .x; t/ in compact sets.

PROOF: According to Lemma 4.9, for each polynomial p.˛/ we have the fol-

lowing limit, uniform for .x; t/ in compact sets:

(4.113) lim
"#0

Z
R

p.˛/d
".˛/ D
Z
R

p.˛/d
.˛/:

But by Lemma 4.10 we can equivalently integrate over the compact interval �

(independent of .x; t/ in any given compact set) with the same result. Now by the

Weierstrass approximation theorem, given any continuous function f W R ! C

and any � > 0 there is a polynomial p
f
� .˛/ for which

(4.114) sup
�2�

jf .˛/ � pf
� .˛/j <

�

M
;
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so for any measure � of mass M with support in � (like 
" and 
),

(4.115)

ˇ̌̌
ˇ
Z
R

Œf .˛/ � pf
� .˛/�d�.˛/

ˇ̌̌
ˇ �

Z
�

jf .˛/ � pf
� .˛/jd�.˛/ < �:

Let ! > 0 be an arbitrarily small positive number. Then if we write

(4.116) �Œg� WD
Z
�

g.˛/d�.˛/;

we have ˇ̌̌
ˇ
Z
R

f .˛/d
".˛/ �
Z
R

f .˛/d
.˛/

ˇ̌̌
ˇ

D ˇ̌

"Œf � � 
Œf �

ˇ̌
D ˇ̌�


"

�
p

f

!=3

� � 
�pf

!=3

��C 
"

�
f � pf

!=3

� � 
�f � pf

!=3

�ˇ̌
� ˇ̌

"

�
p

f

!=3

� � 
�pf

!=3

�ˇ̌C ˇ̌

"

�
f � pf

!=3

�ˇ̌C ˇ̌


�
f � pf

!=3

�ˇ̌

<
ˇ̌

"

�
p

f

!=3

� � 
�pf

!=3

�ˇ̌C 2

3
!;

(4.117)

with the last inequality following from (4.115). But with ! > 0 fixed, (4.113)

implies that " > 0 may be chosen sufficiently small, independently of .x; t/ in any

given compact set, that

(4.118)
ˇ̌

"

�
p

f

!=3

� � 
�pf

!=3

�ˇ̌
<
1

3
!;

which implies

(4.119)

ˇ̌̌
ˇ
Z
R

f .˛/d
".˛/ �
Z
R

f .˛/d
.˛/

ˇ̌̌
ˇ < !

thereby completing the proof. �

Now we are in a position to complete the proof of Proposition 4.2. We begin

by writing QU".x; t/ as defined by (4.3) in terms of the normalized (to mass M )

counting measure 
":

(4.120) QU".x; t/ D
�
"N."/

M

� Z
R

2 arctan."�1˛/d
".˛/:

Define the continuous functions

(4.121) aC.˛/ WD � C 4H.�˛/ arctan.˛/; a�.˛/ WD �aC.�˛/; ˛ 2 R;
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FIGURE 4.4. The graphs of a�.˛/ < aC.˛/ (black) and several graphs

of 2 arctan."�1˛/ for " � 1 (gray).

where H.�/ denotes the Heaviside step function. It is then easy to check (see Fig-
ure 4.4) that for any E > 0,

(4.122) 0 < " � E H) a�.E�1˛/ � 2 arctan."�1˛/ � aC.E�1˛/; ˛ 2 R:

Therefore, for any E > 0 and all 0 < " < E,Z
R

a�.E�1˛/d
".˛/ �
Z
R

2 arctan."�1˛/d
".˛/

�
Z
R

aC.E�1˛/d
".˛/:

(4.123)

Using Lemma 4.11 we may pass to the limit " # 0 in the lower and upper bounds

to obtain

(4.124) lim inf
"#0

Z
R

2 arctan."�1˛/d
".˛/ �
Z
R

a�.E�1˛/d
.˛/

and also

(4.125) lim sup
"#0

Z
R

2 arctan."�1˛/d
".˛/ �
Z
R

aC.E�1˛/d
.˛/:

In these statements, E > 0 is an arbitrary parameter, and the limits are uniform

for .x; t/ in compact sets. But a˙.E�1˛/ are uniformly bounded functions that

both tend pointwise for ˛ ¤ 0 to the same limit function � sgn.�/ as E # 0,

while 
 is a fixed measure that is absolutely continuous with respect to Lebesgue

measure on R, so by the Lebesgue dominated convergence theorem,

(4.126) lim
E#0

Z
R

a˙.E�1˛/d
.˛/ D
Z
R

� sgn.˛/d
.˛/:
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By letting E # 0, it then follows from (4.124) and (4.125) that

(4.127) lim
"#0

Z
R

2 arctan."�1˛/d
".˛/ D
Z
R

� sgn.˛/d
.˛/

with the limit being uniform for .x; t/ in any given compact set. Finally, according

to (3.24), we have (independent of x and t )

(4.128) lim
"#0

"N."/

M
D 1;

so combining this result with (4.127) and noting that d
.˛/ D G.˛I x; t/d˛ com-

pletes the proof of Proposition 4.2.

4.4 Differentiation of QU": Burgers’ Equation, Weak Convergence of Qu", and
Completion of Proof of Theorem 1.1

Let � 2 D.R/ be a test function. Then by integration by parts and the uniform

convergence of QU".x; t/ to U.x; t/ on compact sets in the .x; t/-plane guaranteed

by Proposition 4.2,

lim
"#0

Z
R

Qu".x; t/�.x/dx D lim
"#0

Z
R

@ QU"

@x
.x; t/�.x/dx

D � lim
"#0

Z
R

QU".x; t/�
0.x/dx

D �
Z
R

U.x; t/�0.x/dx:

(4.129)

LEMMA 4.12 The limit function U.x; t/ is continuously differentiable with respect
to x, and if .x; t/ is a point for which there are 2P.x; t/C 1 solutions uB

0.x; t/ <

uB
1.x; t/ < � � � < uB

2P.x;t/
.x; t/ of the implicit equation (4.134),

(4.130)
@U

@x
.x; t/ D

2P.x;t/X
nD0

.�1/nuB
n.x; t/;

and the above formula is extended to nongeneric .x; t/ by continuity.

PROOF: Exchanging the order of integration in the double-integral formula

for U.x; t/ obtained by substituting d
.˛/ D G.˛I x; t/d˛ withG given by (4.10)

into (4.9), we obtain

(4.131) U.x; t/ D
Z 0

�L

J.�I x; t/d�;
where

(4.132) J.�I x; t/ WD � 1

4�

Z �2�.xC2�t�x�.�//

�2�.xC2�t�xC.�//

sgn.˛/d˛:
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Note that for � 2 Œ�L; 0� the upper limit of integration is greater than or equal to

the lower limit. Moreover, the integral in J.�I x; t/ is easily evaluated; for �L <

� < 0,

(4.133) J.�I x; t/ D

8̂<
:̂

��F.�/; x C 2�t � x�.�/ < 0;
x C 2�t C �.�/; x C 2�t � xC.�/ � 0 � x C 2�t � x�.�/;
�F.�/; x C 2�t � xC.�/ > 0:

It follows from the relations x˙.�/ D ˙�F.�/ � �.�/ that for an admissible

initial condition u0, J is a continuous function of x for each fixed t , uniformly with

respect to � 2 Œ�L; 0�, and hence also from (4.131) that U. � ; t / is continuous on R
for each t . To prove that U. � ; t / is continuously differentiable, it will therefore

suffice to establish continuous differentiability on the complement of a finite set of

points and that the resulting piecewise formula for @U=@x extends continuously to

the whole real line.

To use formula (4.133) in the representation (4.131), we therefore need to know

those points � 2 .�L; 0/ at which one of the two quantities x C 2�t � xC.�/ <
x C 2�t � x�.�/ changes sign. Under the variable substitution � D �uB, the

definition of the turning points x˙.�/ as branches of the inverse function of u0

implies that the union of solutions of the two equations x C 2�t � x˙.�/ D 0 is

exactly the totality of solutions of the implicit equation

(4.134) uB D u0.x � 2uBt /:

In other words, the transitional points � for formula (4.133) correspond under the

sign change uB D �� to the branches of the multivalued solution of Burgers’

equation

(4.135)
@uB

@t
C 2uB @u

B

@x
D 0

subject to the admissible initial condition uB.x; 0/ D u0.x/.

Note that admissibility of u0 implies (see Definition 3.1) that given any t 2 R

there exist only a finite number of breaking points .x� ; t�/ with t� in the closed in-

terval between 0 and t . Indeed, the breaking points correspond to values of � 2 R

for which u00
0.�/ D 0 but u000

0 .�/ ¤ 0, and the breaking times are t� D .�2u0
0.�//

�1;

since u0
0.�/ decays to zero for large �, bounded breaking times t� correspond to

bounded �, and there are only finitely many of these by hypothesis. Moreover,

each breaking point .x� ; t�/ generates a new fold in the solution surface lying be-

tween two caustic curves emerging in the direction of increasing jt j from .x� ; t�/,

and because u000.�/ ¤ 0 there are exactly two more sheets of the multivalued so-

lution of Burgers’ equation born within the fold as a result of a simple pitchfork

bifurcation. Therefore, the union of caustic curves and breaking points meets any
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line of constant t in the .x; t/-plane in a finite set of points fxcrit
j .t/g, and on every

connected component of the set St WD f.x; t/ W x 2 R n fxcrit
j .t/gg, there is a finite,

odd, and constant (with respect to x) number 2P.x; t/ C 1 of roots of equation

(4.134), and all roots are simple (and hence differentiable with respect to x).

If t � 0, then by admissibility of u0 the quantity b�.�I x; t/ WD xC2�t�x�.�/
is strictly increasing as a function of � on the interval .�L; 0/, and therefore in

this interval there can exist at most one root of b�.�I x; t/, regardless of the value

of x 2 R. Moreover, b�.�I x; t/ ! C1 as � " 0, so there will be exactly one

root in .�L; 0/ if b�.�LI x; t/ D x � x0 � 2Lt < 0 and no root in .�L; 0/
if x � x0 � 2Lt > 0. Since bC.�I x; t/ WD x C 2�t � xC.�/ < b�.�I x; t/
for �L < � < 0, if x � x0 � 2Lt < 0, all roots of bC.�I x; t/ in .�L; 0/ must lie

to the right of the root of b�.�I x; t/. Thus, for x 2 St n fx0 C 2Ltg, we either

have

U.x; t/ D
Z 0

�uB
0

.x C 2�t C �.�//d�

C
P.x;t/X
pD1

�
�

Z �uB
2p�2

�uB
2p�1

F.�/d�C
Z �uB

2p�1

�uB
2p

.x C 2�t C �.�//d�

�

C �

Z �uB
2P.x;t/

�L

F.�/d�; x 2 St ; x > x0 C 2Lt;

(4.136)

in which case

uB
0.x; t/ < u

B
1.x; t/ < � � � < uB

2P.x;t/.x; t/

are all roots of bC.�uBI x; t/, or

U.x; t/ D
Z 0

�uB
0

.x C 2�t C �.�//d�

C
P.x;t/X
pD1

�
�

Z �uB
2p�2

�uB
2p�1

F.�/d�C
Z �uB

2p�1

�uB
2p

.x C 2�t C �.�//d�

�

� �
Z �uB

2P.x;t/

�L

F.�/d�; x 2 St ; x < x0 C 2Lt;

(4.137)

in which case

uB
0.x; t/ < u

B
1.x; t/ < � � � < uB

2P.x;t/�1.x; t/

are roots of bC.�uBI x; t/while the top branch uB
2P.x;t/

.x; t/with uB
2P.x;t/

.x; t/ >

uB
2P.x;t/�1

.x; t/ is a root of b�.�uBI x; t/. In both cases, the condition x 2 St
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guarantees that all roots are differentiable with respect to x, so we may calculate

@U=@x by Leibniz’ rule:

@U

@x
.x; t/ D bC.�uB

2P .x; t/I x; t/
@uB

2P

@x
.x; t/

C
2P �1X
nD0

.�1/nbC.�uB
n.x; t/I x; t/

@uB
n

@x
.x; t/

C
2PX

nD0

.�1/nuB
n.x; t/; x 2 St ; x > x0 C 2Lt;

(4.138)

or

@U

@x
.x; t/ D b�.�uB

2P .x; t/I x; t/
@uB

2P

@x
.x; t/

C
2P �1X
nD0

.�1/nbC.�uB
n.x; t/I x; t/

@uB
n

@x
.x; t/

C
2PX

nD0

.�1/nuB
n.x; t/; x 2 St ; x < x0 C 2Lt;

(4.139)

where in both cases P D P.x; t/ is a constant nonnegative integer on each con-

nected component of St . The terms on the first line in each of these formulae arise

from differentiating the limits of integration and using x˙.�/ D ˙�F.�/ � �.�/,
while the terms on the second line arise from the explicit partial differentiation of

the integrand xC 2�t C �.�/ with respect to x. It follows from our division of the

solutions of (4.134) among the roots of bC and b� that in both cases the terms on

the first line vanish identically, with the result that

(4.140)
@U

@x
.x; t/ D

2P.x;t/X
nD0

.�1/nuB
n.x; t/; x 2 St n fx0 C 2Ltg:

This expression is clearly continuous in x on each connected component of St n
fx0 C 2Ltg. Moreover, it extends continuously to the finite complement in Rx

(at fixed t � 0) because at caustic curves pairs of solution branches entering into

(4.140) with opposite signs simply coalesce. Therefore U. � ; t / is indeed contin-

uously differentiable for t � 0 and its derivative is given by the desired simple

formula (4.130). Virtually the same argument applies to t � 0 with the roles

of b˙.�I x; t/ reversed, and the resulting formula for @U=@x is the same. �

It follows from this result that we may integrate by parts in (4.129) and obtain

(4.141) lim
"#0

Z
R

Qu".x; t/�.x/dx D
Z
R

@U

@x
.x; t/�.x/dx
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for every test function � 2 D.R/. Now let v 2 L2.R/. Since D.R/ is dense in

L2.R/, for each 	 > 0 there exists a test function �� 2 D.R/ such that

(4.142) k�� � vk2
2 WD

Z
R

j�� .x/ � v.x/j2 dx < 	2:

Then, Z
R

�
Qu".x; t/ � @U

@x
.x; t/

�
v.x/dx

D
Z
R

�
Qu".x; t/ � @U

@x
.x; t/

�
�� .x/dx

C
Z
R

@U

@x
.x; t/Œ�� .x/ � v.x/�dx

�
Z
R

Qu".x; t/Œ�� .x/ � v.x/�dx:

(4.143)

Observe that, according to the definition (see Definition 3.3) of Qu".x; t/ in terms

of the modified scattering data, it follows from (2.19) and (2.18) that

(4.144)

Z
R

Qu".x; t/
2 dx D �4�"

N."/X
nD1

Q�n:

This Riemann sum converges as " # 0:

(4.145) lim
"#0

Z
R

Qu".x; t/
2 dx D �4�

Z 0

�L

�F.�/d� D
Z
R

u0.x/
2 dx;

where the second equality follows from the identities (3.10), which essentially de-

fine F.�/ in terms of the admissible initial condition u0. Therefore, k Qu". � ; t /k2 is

bounded for sufficiently small ", independently of t .

Also, @U=@x is independent of " and from formula (4.130) it is easy to check

that it is positive and bounded above by the constant L for all .x; t/. Therefore

(4.146)

@U@x . � ; t /


2

2

� L

Z
R

@U

@x
.x; t/dx:

By formula (4.130), the latter integral is equal to the area between the graph of the

multivalued solution curve for Burgers’ equation and the x-axis. Since points on

the graph at the same height move with the same speed, this area is independent of

time t , and hence we have

(4.147)

@U@x . � ; t /


2

2

� 2�LM;
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where the mass M is defined in terms of the initial condition u0 by (3.5). In fact,

for 0 � t < T , where T is the breaking time, it follows from the fact that @U=@x

as given by (4.130) reduces to the classical solution uB
0.x; t/ of Burgers’ equation

with initial data u0, which conserves exactly the L2.Rx/ norm, that

(4.148)

@U@x . � ; t /


2

2

D kuB
0 . � ; t /k2

2 D
Z
R

u0.x/
2 dx; 0 � t < T:

We will use this fact below in Section 4.5 when we prove Corollary 1.2. In any

case, these considerations show that for all " > 0 sufficiently small there exists a

constant K > 0 independent of t such that

(4.149)

@U@x . � ; t /


2

C k Qu". � ; t /k2 � K

holds for all t � 0.

Now, by Cauchy-Schwarz it follows thatˇ̌̌
ˇ
Z
R

@U

@x
.x; t/Œ�� .x/ � v.x/�dx

�
Z
R

Qu".x; t/Œ�� .x/ � v.x/�dx
ˇ̌̌
ˇ � Kk�� � vk2:

(4.150)

Given ! > 0 arbitrarily small, we then choose 	 D !=.2M/ and then (4.143)

implies that

(4.151)

ˇ̌̌
ˇ
Z
R

�
Qu".x; t/ � @U

@x
.x; t/

�
v.x/dx

ˇ̌̌
ˇ �

ˇ̌̌
ˇ
Z
R

�
Qu".x; t/ � @U

@x
.x; t/

�
�!=.2M/.x/dx

ˇ̌̌
ˇC !

2
:

Finally, since �!=.2M/ is a test function independent of ", we may use (4.141) to

choose " > 0 so small that the first term on the right-hand side is less than !=2.

This proves that

(4.152) wx�lim
"#0

Qu".x; t/ D @U

@x
.x; t/

(weak L2-convergence) uniformly for t in bounded intervals. Combining (4.130)

with (4.152) completes the proof of Theorem 1.1.
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4.5 Strong Convergence before Breaking: Proof of Corollary 1.2
To prove Corollary 1.2 we follow closely Lax and Levermore (see theorem 4.5

in part II of [20]). Starting from the identity

k Qu". � ; t / � uB
0. � ; t /k2

2 D
Z
R

Qu".x; t/
2 dx C

Z
R

uB
0.x; t/

2 dx

� 2
Z
R

Qu".x; t/u
B
0.x; t/dx;

(4.153)

we note that for 0 � t < T , where T is the breaking time, (4.145) and (4.148)

imply that

(4.154) lim
"#0

k Qu". � ; t / � uB
0. � ; t /k2

2 D

2

Z
R

u0.x/
2 dx � 2 lim

"#0

Z
R

Qu".x; t/u
B
0.x; t/dx:

But uB
0. � ; t / 2 L2.R/ is independent of ", so by Theorem 1.1,

(4.155) lim
"#0

Z
R

Qu".x; t/u
B
0.x; t/dx D

Z
R

uB
0.x; t/

2 dx D
Z
R

u0.x/
2 dx;

with the second equality following from (4.148) for 0 � t < T . Therefore

(4.156) lim
"#0

k Qu". � ; t / � uB
0. � ; t /k2 D 0

as desired, and the proof is complete.

5 Numerical Verification
To illustrate the weak convergence of Qu".x; t/ as guaranteed by Theorem 1.1 and

to attempt to empirically quantify the rate of convergence, we have directly used

the exact formula (4.3) for QU".x; t/, having first chosen the modified scattering

data corresponding to the admissible initial condition u0.x/ D 2.1 C x2/�1 as

specified in Definition 3.3, and compared the result for several different values of "

with the limiting formula (4.9) for U.x; t/.

Our results are shown in Figure 5.1. These plots clearly display the locally

uniform convergence specified in Proposition 4.2. An interesting feature is the

apparent regular “staircase” form of the graph of QU".x; t/ as a function of x; that

the steps have nearly equal height is a consequence of the fact that near the leading

edge of the oscillation zone for u" (which lies approximately in the range 4 < x <

16 in these plots) the undular bore wavetrain that is generated from the smooth
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FIGURE 5.1. Left: plots of QU".x; t/ (black) and its locally uniform limit

U.x; t/ (red) at t D 4 for various values of ". For these plots, u0.x/ WD
2.1C x2/�1. Right: corresponding plots of the error U.x; t/� QU".x; t/.

initial data resolves into a train of solitons of the BO equation, each of which has a

fixed mass proportional to " (independent of amplitude and velocity).

To the eye, the size of the error between QU".x; t/ and U.x; t/ appears to scale

with ". To confirm this more quantitatively, we collected numerical data from

several experiments, each performed with a different value of " at the fixed time

t D 4. The supremum norm, calculated over the interval �10 < x < 20, of the
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FIGURE 5.2. Circles: log10.k QU". � ; 4/ � U. � ; 4/k1/ for " D 1=25,

1=30, 1=35, 1=40, 1=45, 1=50, and 1=100, as a function of log10."/.

In red: The least squares linear fit.

error resulting from each of these experiments is plotted in Figure 5.2. On this plot

with logarithmic axes, the data points appear to lie along a straight line, and we

calculated the least squares linear fit to the data to be given by

(5.1) log10.k QU". � ; 4/ � U. � ; 4/k1/ D 0:988 log10."/C 0:523

where the slope and intercept are given to three significant digits. This strongly

suggests a linear rate of convergence in which the error is asymptotically propor-

tional to " as " # 0.

The initial data u0.x/ D 2.1 C x2/�1 was chosen for these experiments be-

cause it is the only initial condition (up to a constant multiple) for which the exact
scattering data is known for a sequence of values of " tending to zero. This is the

result of a calculation of Kodama, Ablowitz, and Satsuma [18], who showed that

if u0.x/ D 2.1 C x2/�1, then the reflection coefficient ˇ.�/ vanishes identically

if " D 1=N for any positive integer N . Moreover, there are in this case exactly N

eigenvalues �1 < �2 < � � � < �N of the operator L defined by (1.6), and they are

given implicitly by the equation

(5.2) LN

�
�2�n

"

�
D LN .�2N�n/ D 0;
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whereLN is the Laguerre polynomial of degreeN .1 The corresponding phase con-

stants �n all vanish exactly. The approximate eigenvalues determined from the ini-

tial condition u0 via formula (3.25) do not agree exactly with the scaled roots of the

Laguerre polynomial of degreeN (although the approximate phase constants agree

exactly with the true phase constants), so it is a worthwhile exercise to compare the

function Qu".x; t/ as specified by Definition 3.3 with the true solution u".x; t/ of

the Cauchy problem for the BO equation with initial data u0.x/ D 2.1 C x2/�1.

Of course, Corollary 1.2 guarantees strong convergence in L2 at t D 0 (that is,

Qu". � ; 0/ is L2-close to u0.�/), but this alone does not guarantee that Qu".x; t/ ap-

proximates u".x; t/ in any sense for t > 0. We made the comparison for several

values of " > 0 corresponding to a reflectionless exact solution of the Cauchy prob-

lem constructed2 from the determinantal formula (2.11) at the time t D 4, which is

well beyond the breaking time.

Our results are shown in Figure 5.3. These plots show that the modification

of the scattering data used to construct Qu".x; t/ results in a phase shift relative

to u".x; t/ that is proportional to ", the approximate wavelength of the oscilla-

tions in the undular bore structure. In particular, Qu".x; t/ does not remain close

to u".x; t/ after the breaking time in any strong sense, although it appears highly

likely that convergence is restored in the weak topology.

6 Comparison with Elementary Examples
The key role played in the zero-dispersion limit of the BO Cauchy problem by

the multivalued solution of equation (1.8) with the same initial data is reminiscent

of two basic example problems from the theory of linear and nonlinear waves.

6.1 Zero-Viscosity Limit of the Viscous Burgers Equation
The Burgers equation with viscosity " > 0 is the nonlinear wave equation

(6.1)
@w"

@t
C 2w"

@w"

@x
� " @

2w"

@x2
D 0; x 2 R; t > 0;

1 The asymptotic (N ! 1) density of zeros of the scaled Laguerre polynomial LN .�2N�/ is

well-known:

F.�/ D 1

�

r
2C �

�� ; �2 < � < 0;
a distribution also known in random matrix theory as the Marchenko-Pastur law. This asymptotic

formula agrees exactly with Matsuno’s formula for F.�/ in the case when u0.x/ D 2.1 C x2/�1,

which gives some independent justification for its validity.
2 In fact, this is the numerical method we used to create the plots in Figure 1.1. This has a tremen-

dous advantage over taking a more traditional numerical approach to the Cauchy problem for the BO

equation (that is, one involving time stepping) since the calculations necessary to find the solution

for any two given values of t are completely independent, so errors do not propagate (and to find

the solution for any given time t it is not necessary to perform any calculations at all for intervening

times from the initial instant). The only source of error in the use of the determinantal formula (2.11),

at least if the differentiation is carried out explicitly resulting in a sum of N determinants, is due to

roundoff.
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FIGURE 5.3. Left: plots of Qu".x; t/ (black) shown together with

u".x; t/ (red) for the initial data u0.x/ D 2.1Cx2/�1 shown for several

values of " at t D 4. Right: the error u".x; t/ � Qu".x; t/.

and we take fixed initial data w".x; 0/ D u0.x/. As is well-known, this Cauchy

problem is solved by the Cole-Hopf transformation, leading to the exact solution

formula

(6.2) w".x; t/ D 1

2t

R
R e

R.�Ix;t/=".x � �/d�R
R e

R.�Ix;t/=" d�
; t > 0;
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where the exponent function is defined as

(6.3) R.�I x; t/ WD �
Z �

0

u0.�/d� � .x � �/2
4t

:

One examines the asymptotic behavior in the limit " # 0 by using Laplace’s

method to analyze the integrals (see [27, sec. 3.6]). The dominant contributions

to the integrals come from neighborhoods of points � D �.x; t/ 2 R at which

R.�I x; t/ achieves its maximum value. The critical points of R satisfy � D x �
2u0.�/t . Writing uB D u0.�/ and applying u0 to both sides gives equation (1.9),

so the critical points correspond to the sheets of the multivalued solution of the

(inviscid) Burgers equation (1.8) with initial data u0. It is easy to check that if x

and t are such that there is just one sheet, then the unique critical point is the global

maximizer of R, and Laplace’s method gives the result that w".x; t/ converges

(strongly, pointwise in x and t ) to uB.x; t/.

On the other hand, if there are 2P C 1 > 1 sheets, then for generic .x; t/ ex-

actly one of them corresponds to the global maximum of R, and Laplace’s method

predicts that w".x; t/ will converge to the maximizing sheet. Shocks appear in the

small viscosity limit as curves in the .x; t/-plane along which there are jump dis-

continuities of the pointwise limit corresponding to sudden changes in the choice

of sheet that maximizes the exponent R.

To summarize, we have the formula

(6.4)

lim
"#0

w".x; t/ D uB
n.x; t/;

n D argmax
mD0;1;:::;2P.x;t/C1

R.x � 2uB
m.x; t/t I x; t/;

for .x; t/ not on a shock.

Thus, one sees that for the zero-viscosity limit of the viscous Burgers equation,

different sheets of the multivalued solution of the formal limiting Cauchy prob-

lem (set " D 0) provide the strong limit of w".x; t/ for different x and t . How-

ever, the choice of sheet requires the solution of a discrete maximization problem

parametrized by x and t , making the limiting behavior harder to calculate than the

weak zero-dispersion limit of the BO equation.

6.2 Semiclassical Limit of the Free Linear Schrödinger Equation
In this problem, one considers the equation

(6.5) i"
@ "

@t
C 2"2 @

2 "

@x2
D 0; x 2 R; t > 0;

for small " > 0, subject to initial data of WKB form

(6.6)  ".x; 0/ D A.x/eiS.x/="
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with A and S real-valued and independent of ". For suitable A and S , the solution

to this problem can be written as an integral

(6.7)

 ".x; t/ D e�i�=4

p
8�"t

Z
R

eiI.�Ix;t/="A.�/d�;

t > 0; I.�I x; t/ WD S.�/C .x � �/2
8t

:

The dominant contributions to the solution are calculated via the method of sta-

tionary phase (see [27, sec. 5.6]), and these come from small neighborhoods of

points � satisfying I 0.�I x; t/ D 0, that is, solutions � of the implicit equation

� D x � 4S 0.�/t . Evaluating the function 2S 0.�/ on both sides of this equation

and making the substitution uB D 2S 0.�/, one arrives at the equivalent form (1.9)

where u0.x/ WD 2S 0.x/. Thus, the branches of the multivalued solution of Burg-

ers’ equation (1.8) with initial condition u0 correspond to stationary phase points �

that yield the leading term of the solution  ".x; t/ in the semiclassical limit " # 0.

Unlike in the analysis of Laplace-type integrals, where only the critical points cor-

responding to maxima matter in the limit, for oscillatory integrals all stationary

phase points contribute to the leading-order behavior, and therefore we have an

asymptotic representation of  ".x; t/ as a sum over branches uB
n.x; t/ of the mul-

tivalued solution of Burgers’ equation with initial data u0:

(6.8)  ".x; t/ D
2P.x;t/X

nD0

Mn.x; t/e
i�n.x;t I"/ CO."/; t > 0;

where Mn.x; t/ are slowly varying positive amplitudes given by

(6.9) Mn.x; t/ WD A.x � 2uB
n.x; t/t/

sˇ̌̌
ˇ1 � 2t @u

B
n

@x
.x; t/

ˇ̌̌
ˇ;

and �n.x; t I "/ are rapidly varying real phases given by

(6.10) �n.x; t I "/ WD 1

"
I.x�2uB

n.x; t/t I x; t/C
�

4

�
sgn

�
1�2t @u

B
n

@x
.x; t/

�
�1
�

for n D 0; 1; : : : ; 2P.x; t/.

A more explicit connection with the multivalued solution of Burgers’ equation

may be obtained by introducing the quantity

(6.11) w".x; t/ WD 2"
@

@x
Imflog. ".x; t//g;

which is the fluid velocity in Madelung’s interpretation of the wave function  "

as describing a quantum-corrected fluid motion. Under the condition that the er-

ror term in (6.8) becomes O.1/ after differentiation with respect to x, some easy
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calculations show that (6.8) implies

(6.12) w".x; t/ D Re

(P2P.x;t/
nD0 uB

n .x; t/Mn.x; t/e
i�n.x;t I"/P2P.x;t/

nD0 Mn.x; t/ei�n.x;t I"/

)
CO."/:

It is then easy to see that if P.x; t/ D 0, w".x; t/ converges strongly pointwise

to uB
0 .x; t/, the unique solution (for this x and t , anyway) of Burgers’ equation.

On the other hand, if P.x; t/ > 0, then there are interference effects among the

terms in the sums, and these lead to rapid oscillations with the effect that w".x; t/

no longer converges in the pointwise sense as " # 0.

However, it does converge in the weak topology. The weak limit may be com-

puted by multiphase averaging, which we illustrate in the case P.x; t/ D 1. The

procedure is to average the leading term in w".x; t/ over an interval in x centered

at the point of interest of radius, say, "p for some p 2 .0; 1/, and then pass to

the limit " # 0. This produces the desired local average over rapid oscillations of

wavelength or period proportional to ". Under an ergodic hypothesis that is valid

on a set of full measure in the .x; t/-plane, this procedure is equivalent to holding

uB
n and Mn fixed and averaging (with uniform measure) over the torus of relative

angles �1 WD �1 � �0 and �2 WD �2 � �0. The double integrals can be evaluated

explicitly, with the result that

(6.13) wx�lim
"#0

w".x; t/ D
2X

nD0

cn.x; t/u
B
n.x; t/;

where cn.x; t/, n D 0; 1; 2, are nonnegative weights having the property that

c0.x; t/C c1.x; t/C c2.x; t/ D 1.

Specifically, the coefficients only depend on x and t throughM0.x; t/,M1.x; t/,

and M2.x; t/. If any of these, say Mn, exceeds the sum of the other two, then

cn D 1 and the two other coefficients vanish. Thus the weak limit produces in

this case exactly the branch uB
n .x; t/ through multiphase averaging.3 On the other

hand, if none of the Mn exceeds the sum of the other two, then M0, M1, and M2

3 The strict inequality M0.x; t/ > M1.x; t/ C M2.x; t/ or a permutation thereof, defining this

situation, is an open condition on .x; t/ 2 R2, and therefore (depending on initial conditions) there

can exist open domains in the .x; t/-plane on which the weak limit of w".x; t/ is given by a single

branch of the solution of the inviscid Burgers equation whilew".x; t/ itself exhibits wild oscillations.

Interestingly, this is precisely the conjecture made by von Neumann regarding grid-scale oscilla-

tions observed in the numerical solution of Burgers’ equation via a finite-difference scheme (which

may be viewed as a dispersive regularization of the equation). While many model equations for finite-

difference schemes (the KdV equation is one example) do not yield such a simple interpretation of

the weak limit [19], it would seem that von Neumann’s conjecture can hold true if the Schrödinger

equation is viewed as a dispersive correction to Burgers’ equation.
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are the side lengths of a triangle, and the weak limit is a genuine weighted average

of the three branches, with weights proportional to the opposite angles:

c0 D 1

�
arccos

�
M 2

1 CM 2
2 �M 2

0

2M1M2

�
;

c1 D 1

�
arccos

�
M 2

0 CM 2
2 �M 2

1

2M0M2

�
;

c2 D 1

�
arccos

�
M 2

0 CM 2
1 �M 2

2

2M0M1

�
:

(6.14)

The most significant aspect of this analysis is that the weak limit depends on in-

formation other than just the initial condition u0 for Burgers’ equation since the

functions Mn.x; t/ also involve the initial wave function amplitude A. This makes

the evaluation of the weak limit a more complicated procedure than in the case of

the BO equation.

A further connection between the BO equation (1.1) and the linear Schrödinger

equation (6.5) in the zero-dispersion limit has already been pointed out in Sec-

tion 2.4.

7 Conclusion
In this paper, we have obtained the first rigorous results regarding the zero-

dispersion limit of the Cauchy problem for the BO equation. As suggested by the

formal multiphase averaging of modulated N -phase wavetrain solutions carried

out by Dobrokhotov and Krichever [9], the scalar inviscid Burgers’ equation and
its multivalued solution after wave breaking characterize the limit.

To analyze the BO Cauchy problem, we used a remarkable formula of Matsuno

[22, 23] for the density of eigenvalues of the nonlocal operator L appearing in the

scattering theory, and we have proposed a new asymptotic formula (3.21) for the

corresponding phase constants necessary to set up the inverse scattering problem.

We then developed an analogue of the Lax-Levermore method [20] to study the in-

verse scattering problem, and we obtained an explicit formula (4.10) for a measure


 with densityG.˛I x; t/ that is the BO equivalent of the extremal measure in Lax-

Levermore theory. By contrast with the KdV case, the formula we obtain for the

weak limit from this measure is remarkably simple and explicit, writing the weak

limit as a signed sum of branches of the multivalued solution of Burgers’ equation.

A useful generalization of the weak limit given in this paper is to consider the

weak limits of all of the variational derivatives

(7.1) Kn WD ıIn

ıu
; n D 3; 4; 5; : : : ;
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where the In is the nth conserved quantity given by (2.17). These functional gradi-

ents generate the Benjamin-Ono hierarchy as Hamiltonian equations of the form

(7.2)
@u

@tn
C @KnC2

@x
D 0; n D 1; 2; 3; : : : :

See [3] for more details.

It is a consequence of some concrete calculations that can be found in [24] that

at least for the first several values of n, the quantities Kn corresponding to the

solution Qu".x; t/ can be written in the determinantal form

(7.3) KnC2 D @

@tn
QU".x; t1; t2; : : : ; tn/

where after the differentiation t1 is set equal to t and all tk for k > 1 are set to zero

(to consider the evolution of KnC2 as Qu" varies according to the first BO equation,

(7.2) with n D 1). Here QU".x; t1; t2; : : : ; tn/ is given by (4.3) with each occurrence

of 2t in the expression �2 Q�k.x C 2 Q�kt / in the diagonal matrix elements of QA"

replaced by 2t1 � 3 Q�kt2 C 4 Q�2
k
t3 � 5 Q�3

k
t4 C � � � C .�1/nC1.n C 1/ Q�n�1

k
tn. It is

a reasonable conjecture that (7.3) in fact holds for all n � 1. Formulae for these

higher weak limits can also be obtained within the framework of our method and

will be published in a subsequent paper.

We are also currently investigating prospects for strengthening the limit after

wave breaking occurs. The goal here is to rigorously establish an asymptotic for-

mula for Qu".x; t/ that is valid pointwise for .x; t/ in the oscillation zone. Such a

formula should accurately resolve the microscopic (wavelength proportional to ")

oscillations, including finding the phase up to error terms that are bounded by a

vanishingly small fraction of the wavelength. One expects the asymptotic form of

the wavetrain to be given by the rational-exponential formulae found by Dobrokho-

tov and Krichever [9]. For the KdV equation such pointwise asymptotics have been

obtained [8] using the Deift-Zhou steepest-descent technique for matrix-valued

Riemann-Hilbert problems. We are working to extend this kind of methodology

to the context of scalar Riemann-Hilbert problems with nonlocal jump conditions,

as occurs in the inverse scattering transform (generally with nonvanishing reflec-

tion coefficient) for the BO equation.

It has been recently conjectured by Dubrovin [10] that near the earliest breaking

point .x� ; t�/ the solution of the Cauchy problem for quite general weakly dis-

persive Hamiltonian perturbations of Burgers’ equation should exhibit a universal

form expressed in terms of Painlevé transcendents. This conjecture has been con-

firmed for general initial data for the KdV equation (as a particular case of a pertur-

bation considered by Dubrovin) by Claeys and Grava [5]. It would be interesting

to determine by direct calculation of the solution near the breaking point .x� ; t�/

whether the BO equation should be considered to fall within the universality class

of equations conjectured by Dubrovin or whether the BO equation represents a new

universality class.
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Appendix: Proof of a Cauchy Integral Identity
Here we prove that whenever f 2 L1.R/ \ L1.R/, the identity

(A.1)

Z
R

f .x/CC
�
f CCŒf CCŒ� � � f CCŒf � � � � ��

�
.x/dx D 1

k

Z
R

f .x/k dx

holds for all k D 1; 2; 3; : : : , where the Cauchy projector CC defined in (1.6) occurs

k � 1 times in the integrand on the left-hand side.

Let Hk denote the left-hand side of (A.1). We write Hk in the form

(A.2) Hk D
Z
R

f .x/JC
k
.x/dx; k D 1; 2; 3; : : : ;

where the function JC
k
.x/ is given by the following recurrence relation:

(A.3) JC
1 .x/ WD 1I JC

kC1
.x/ WD CCŒfJC

k
�.x/; k D 1; 2; 3; : : : :

Clearly, JC
k
.x/ is an element of the Hardy space HC.R/ of the upper half-plane

for k > 1. A corresponding sequence of functions belonging to the Hardy space

H�.R/ of the lower half-plane for k > 1 is generated by the following recurrence:

(A.4) J�
1 .x/ WD 1; J�

kC1.x/ WD C�ŒfJ�
k �.x/; k D 1; 2; 3; : : : ;

where the operator C� is defined by

(A.5) C�Œf �.x/ WD lim
ı#0

1

2�i

Z
R

f .y/

y � x C iı
dy:

Therefore, we may equivalently express Hk in the form

(A.6) Hk D
Z
R

J�
1 .x/f .x/J

C
k
.x/dx; k D 1; 2; 3; : : : :

The Plemelj formula CC � C� D I yields that for any u; v 2 L2.R/,

(A.7)

Z
R

u.x/CCŒv�.x/dx C
Z
R

C�Œu�.x/v.x/dx D
Z
R

CCŒu�.x/CCŒv�.x/dx �
Z
R

C�Œu�.x/C�Œv�.x/dx;

and the latter two integrals vanish by deformation of the contours to infinity in the

respective half-planes of analyticity where the integrands are O.1=x2/. Therefore,

for 1 � s � k � 1,

(A.8)

Z
R

J�
s .x/f .x/J

C
kC1�s

.x/dx D �
Z
R

J�
sC1.x/f .x/J

C
k�s

.x/dx:
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Comparing this equation with (A.6), we infer that for any s in the range 1 � s � k,

Hk may also be written in the form

(A.9) Hk D .�1/s�1

Z
R

J�
s .x/f .x/J

C
kC1�s

.x/dx:

Averaging over s then gives

(A.10) Hk D 1

k

Z
R

f .x/Sk.x/dx

where Sk denotes the sum

(A.11) Sk.x/ WD
kX

j D1

.�1/k�jJC
j .x/J�

kC1�j .x/:

We will now give an inductive proof that Sk D f k�1 for k D 1; 2; 3; : : :

(from now on since we are no longer dealing with integrals, we suppress all x

dependence). It is obvious that S1 D 1, and it follows directly from the Plemelj

formula that S2 D f . We let k � 2 and invoke the inductive hypothesis that

Sm D f m�1 for m D 1; 2; : : : ; k. Extracting the last term in the sum and using

the recursion relation (A.4), we write SkC1 in the form

SkC1 D JC
kC1

C
kX

j D1

.�1/kC1�jJC
j J�

kC2�j

D JC
kC1

C
kX

j D1

.�1/kC1�jC�ŒfJ�
kC1�j �J

C
j :

(A.12)

We will now write the term JC
kC1

as a certain sum. Let 1 � s � k � 1. Then by

the Plemelj formula applied to fJ�
s ,

CCŒfJ�
s J

C
kC1�s

� D CCŒCCŒfJ�
s �J

C
kC1�s

� � CCŒC�ŒfJ�
s �J

C
kC1�s

�

D CCŒCCŒfJ�
s �J

C
kC1�s

� � CCŒJ�
sC1J

C
kC1�s

�;
(A.13)

where in the second line we have recalled the recursion relation (A.4). Now,

CCŒfJ�
s �J

C
kC1�s

2 HC.R/, on which the projection CC acts as the identity, so

(A.13) becomes

CCŒfJ�
s J

C
kC1�s

� D CCŒfJ�
s �J

C
kC1�s

� CCŒJ�
sC1J

C
kC1�s

�

D CCŒfJ�
s �J

C
kC1�s

� CCŒJ�
sC1CCŒfJC

k�s
��

D �CCŒfJ�
sC1J

C
k�s

�C CCŒfJ�
s �J

C
kC1�s

� CCŒJ�
sC1C�ŒfJC

k�s
��;

(A.14)
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where in the second line we have replaced JC
kC1�s

in the second term according

to the recursion relation (A.3), and in the third line we have applied the Plemelj

formula to fJC
k�s

. Now J�
sC1C�ŒfJC

k�s
� 2 H�.R/, the kernel of the projection

�CC, so (A.14) yields the recursion identity

(A.15) CCŒfJ�
s J

C
kC1�s

� D �CCŒfJ�
sC1J

C
k�s

�C CCŒfJ�
s �J

C
kC1�s

:

Recalling (A.3) and (A.4),

(A.16) CCŒfJ�
s J

C
kC1�s

� D JC
kC1

if s D 1

and

(A.17) CCŒfJ�
sC1J

C
k�s

� D CCŒfJ�
k �J

C
1 if s D k � 1:

From the recursion (A.15) and the boundary conditions (A.16)–(A.17), we obtain

the identity

(A.18) JC
kC1

D
kX

sD1

.�1/s�1CCŒfJ�
s �J

C
kC1�s

:

Changing the index of summation by j D k C 1 � s and substituting into (A.12)

yields

SkC1 D
kX

j D1

.�1/k�j .CCŒfJ�
kC1�j � � C�ŒfJ�

kC1�j �/J
C

j

D f

kX
j D1

.�1/k�jJC
j J�

kC1�j

D fSk

(A.19)

where in the second and third lines, respectively, we have used the Plemelj formula

and recalled definition (A.11) of Sk . Since by the inductive hypothesis Sm D
f m�1 for 1 � m � k, we have proved that Sk D f k�1 for all k � 1.

Substitution of Sk.x/ D f .x/k�1 into (A.10) then completes the proof of the

identity (A.1).
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