
  1 

Designing representations of trigonometry instruction 

to study the rationality of community college teaching  

Vilma Mesa - Patricio Herbst 

University of Michigan 
Corresponding Author: 

Vilma Mesa 

3111 SEB School of Education 

610 East University Ann Arbor, MI 48109-1259 

e-mail: vmesa@umich.edu 

phone: 734 647 0628 

Abstract 

We describe the process followed to design representations of mathematics teaching in a community college. The 

end product sought are animated videos to be used in investigating the practical rationality that community college 

instructors use to justify norms of the didactical contract or possible departures from those norms. We have chosen 

to work within the trigonometry course, in the context of an instructional situation, “finding the values of 

trigonometric functions,” and specifically on a case of this situation that occurs as instructors and students are 

working on examples on the board. We describe the design of the material needed to produce the animations: (1) 

identifying an instructional situation, (2) identifying norms of the contract that are key in that situation, (3) selecting 

or creating a scenario that illustrates those norms, (4) proposing alternative scenarios that instantiate breaches of 

those norms, and (5) anticipating justifications or rebuttals for the breaches that could be found in instructors’ 

reactions. We illustrate the interplay of contextual and theoretical elements as we make decisions and state 

hypothesis about the situation that will be prototyped.  

Keywords: Representation of teaching, community colleges, trigonometry, didactical contract, 

classroom interaction, teacher thinking, teaching practice 
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1  Introduction 

Herbst and Chazan (2003a) argued that video representations of teaching can be seen not only as 

cases of practice but also as probes on the rationality that practitioners use in practice, in the 

same way that Rorschach blots can be probes on the thinking of a patient. Since that publication, 

and in the context of the Thought Experiments in Mathematics Teaching [ThEMaT] project, they 

have developed a new kind of representation of teaching—animations of classroom scenarios, 

deliberately designed to probe some of the unspoken norms of classroom practice (Herbst and 

Chazan, 2003b). Herbst and Miyakawa (2008) provided some details of how those animations 

are produced to be prototypes of models of instructional situations: Instructional situations are 

identified and then modeled by hypothesizing the norms or tacit responsibilities of classroom 

participants in a situation; scenarios are then created that fulfill some of those norms but breach 

others; finally those scenarios are prototyped in a cartoon animation. Herbst, Nachlieli and 

Chazan (in press) have shown how such animations can elicit data that informs about the 

rationality of teaching. 

This paper describes how we applied those ideas in an instrument design process that could 

be conceived as a case of design research (Kelly 2004). Usual applications of design research in 

mathematics education (e.g., Cobb 2000) start from making hypotheses about students’ ways of 

knowing and engage in creating materials (curriculum or technology) that are hypothesized to be 

capable of bringing those ways of knowing to the surface where they can be probed. The 

research process feeds from the initial use of those materials, tailoring the revisions of those 

materials to achieve the ends that those materials are being designed for (Cobb, Confrey, 

diSessa, Lehrer and Schauble 2003). This knowledge is then used to re-engineer the materials 

and the process starts again. Rather than designing curriculum or a learning technology we 
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design a research instrument; because this instrument is used as part of a technique to elicit 

something teachers are hypothesized to have (practical rationality) and because we know from 

prior research the form this rationality takes when elicited (modally qualified, occasionally 

justified stories that present and ponder alternatives to a given scenario; see Herbst et al. in 

press), it seems reasonable to implement a research and development process similar to that used 

to design educational materials. In this paper, we present the first step of this process; we 

illustrate the steps involved in designing a research tool—animations of classroom interaction in 

trigonometry classes at a community college—to test hypotheses about the norms that regulate 

the didactical contract of these classrooms. We use a corpus of trigonometry lessons from a 

community college in the Midwest of the United States to hypothesize the instructors’ rationality 

behind the norms of the didactical contract that governs the interactions between instructors and 

students while solving examples on the board. We anticipate events that might breach those 

norms were they to happen in a classroom, and then use such breaching events as the bare bones 

of three stories that we later represent using an animation of cartoon characters.  

2  Context: Trigonometry at Community Colleges 

The animations are meant to be representations of trigonometry teaching that occurs in a typical 

U. S. community college. Community colleges are tertiary institutions that offer the first two 

years of a college education; such coursework might be sufficient to ensure a paraprofessional 

job or to transfer to a four-year institution where students can finish a college degree. In addition, 

the community colleges offer certification in vocational and technical areas, continuous 

education and enrichment courses. In recent years, these institutions have assumed the major 

responsibility for offering remediation courses for students who intend to start a college degree 
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(Bailey and Morest 2006); the courses also give credit for adults who want to obtain a high-

school diploma.  

Community colleges are an important site for probing the process of representing 

instruction. Similar to K-12 schools but different from other higher-education institutions, 

community colleges have an open access policy for admissions; a content-specific placement 

exam determines in which classes students should enroll. For this reason, any given class can 

have a wide variation in student characteristics in terms of their academic background (from 

unfinished high school to an advanced degree in a different field), goals (vocational or technical 

certificate, transfer, enrichment), present occupation (e.g., blue collar, clerical, management, 

unemployed), age, socioeconomic status, race and ethnicity, physical ability, and type (full/part 

time) and duration of enrollment. Unlike K-12 schools, attendance is not mandatory and students 

pay tuition, but because of substantial support from the community, state and Federal 

government (around 70%), the cost per credit is relatively low compared to private, for-profit, or 

other four-year institutions. To sustain operations, community colleges seek to keep low 

operating costs, which, in combination with enrollment uncertainty translate to a ratio of about 4 

to 1 part-time to full-time instructors and results in wide variation of instructor preparation, 

commitment, goals, and teaching approaches (Keim and Biletzky 1999; Schuetz 2002). Students 

who do not achieve the passing grade for the course must repeat it until they attain a satisfactory 

grade. By the time students take the trigonometry course, they might have completed between 

one and three mathematics courses at the college.  

Trigonometry is one of the mathematical domains conventionally taught in community 

colleges, either as a separate course or incorporated into other courses that are prerequisites to 

calculus (Lutzer, Maxwell and Rodi 2007). The course can be perceived as a skills- and 
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knowledge-building course, in which the purpose is to ensure that students demonstrate 

competence in solving standard problems of trigonometry and familiarity with the definition and 

properties of the trigonometric functions. In the college where we collected the intact classroom 

data, the course has a guiding textbook (Barnett, Ziegler and Byleen 2006) and a master syllabus 

that outlines the knowledge for which students and instructors are held accountable.  

3  Theoretical and Methodological Underpinnings 

We define now theoretical and methodological constructs that are key for the design process: the 

didactical contract, the instructional situation, and the breaching experiments. 

3.1  The Didactical Contract 

Our observations of trigonometry classes suggest that there are default norms1 for how teacher 

and students relate to each other and in relationship to the knowledge at stake; these norms 

articulate a didactical contract for this course: Like any didactical contract, the contract states 

that the teacher needs to teach the knowledge at stake to the students and the students need to 

learn it from the teacher (Brousseau and Otte 1991). The particular way the contract is executed 

in a given class could be modeled in terms of specific norms: tacit regulations that appear to 

underpin how teacher and students interact about content. One such norm, that we have observed 

enacted recurrently in trigonometry classes is that it is the prerogative and the duty of the 

instructor to say that students have learned a specific item of knowledge but that to make such 

attestation the teacher needs to rely on some evidence on the part of students (e.g., the 

completion of some task). The need for this exchange to happen between specific kinds of work 

                                                 
1Defaults, or behaviors that if present would go without saying. Alternatively, “norm” denotes 
tacit obligations of the teacher and the student regarding the exchange they are enacting (Herbst 
2006; Herbst and Chazan 2003; Herbst and Miyakawa 2008; Herbst et al. in press). 
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on the part of students and an attestation on the part of the teacher is a key norm of the contract 

(and a norm that is present in most contracts). Another norm, possibly derived from the former, 

is that the teacher needs to give students opportunities to learn to do tasks similar to those in 

which their learning of the knowledge at stake will be attested. This takes us to the core of what 

we want to understand in trigonometry classes and to the design of the instrument with which we 

will do that. When instructors present examples to students, they are creating opportunities for 

students to learn to do similar tasks and by involving students in the solution of the example 

instructors can attest that their students are indeed learning what they are teaching. Thus, the core 

question that we want to answer with the tool that we are designing is, How much and what 

kinds of student participation do instructors perceive as feasible to handle when they work 

through examples at the board?  

Calls for reform in mathematics instruction at the two-year college level (Blair 2006) 

emphasize the importance of student participation in instructional processes, and in particular, of 

engaging students in classroom talk, because such engagement can make possible that students 

learn from their peers and that the teacher tailor subsequent instruction. Understanding the 

rationality with which community college instructors relate to instruction that creates more 

opportunity for students’ participation in an instructional situation (when this is not the norm) 

can inform policies and curriculum that seek to improve instructional practices. 

3.2  The Instructional Situation 

In order to proceed with the design of the animations the design process requires identifying an 

instructional situation that would frame the classroom interaction to be prototyped. An 

instructional situation can be described as a set of norms that regulate the work of the teacher and 
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the learners over a specific object of knowledge; a situation activates specific normative ways in 

which tasks are presented and how the work over time on those tasks is divided between the 

teacher and the students (Herbst 2006). The situation further elaborates the norms of the contract 

for the specifics of the knowledge at stake. 

To say that a situation frames an exchange between the specific work on a specific task 

and the knowledge goals specified in the contract means that rather than having to engage anew 

in negotiating how the contract applies to the task at hand, students and teacher act as if they 

knew what they have to do. The usually tacit knowledge of what they have to do and when is 

what we refer to as the instructional situation. In the case at hand, we locate in the identified 

situation our investigation of the norms of the didactical contract, based on the expectation that 

even if those norms apply across several items of knowledge at stake, they will be realized 

within the particulars of an instructional exchange.  

3.3  Breaching Experiments 

The goal of our design process is to produce a representation of teaching, specifically a 

classroom story prototyped as an animation of cartoon characters that shows an instance of the 

instructional situation “finding the values of trigonometric functions.” To be able to use one such 

representation to elicit elements of the rationality that practitioners use to sustain such 

instructional situation we implement a methodological hypothesis derived from the 

ethnomethodological notion of breaching experiment (Garfinkel and Sacks 1970). The 

methodological hypothesis says that a representation of teaching that reproduces most of the 

norms of an instructional situation but that breaches one of those norms can elicit practitioner’s 

behaviors in which they are likely to accept that the episode represents the instructional situation 



  8 

of interest and also repair (notice, recommend modify, etc.) the tasks of teaching or studenting 

whose norms have been breached in the episode. 

In representing the give and take of interaction and eliciting practitioners’ comment on such 

interaction, one such story will allow investigations of how instructors manage the relationship 

between the contract that is established in the trigonometry class and the mathematical task a 

teacher and her students are occupied with. To design one such representation of teaching it is 

therefore important to make hypotheses about the norms that constitute the situation of interest to 

then choose which norms to uphold and which ones to breach.  

Herbst and Miyakawa (2008) noted that norms that regulate an instructional situation 

concern the exchange (what work is being done and what that work trades for), the division of 

labor (who has to do what), and the organization of time (in what order things need to be done, 

how long they take, etc.). As Herbst, Chen, Weiss and González (2009) have noted, the same 

instructional situation can regulate interactions in different activity types. For the case of finding 

the values of trigonometric functions, one of those activity types is that of the teacher showing an 

example on the board, another could be described as having students do individual seatwork 

problems. While activity types describe behavioral configurations of the class work, instructional 

situations describe the economy of knowledge achieved through class work. We target more 

general norms of the didactical contract, which are usually present in a particular activity type 

(doing examples at the board) that could be used in several situations; we choose one of those 

situations (finding the values of trigonometric functions) in order to apply the design process.  

We hypothesize that the norms that constitute the didactical contract and its instructional 

situations are sustained or justified by a practical rationality composed of dispositions to attend 

to a number of obligations: disciplinary, individual, interpersonal, and institutional (Herbst 
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2010). As we model the situation of determining the value of trigonometric functions with a view 

on creating animated prototypes, we consider not only the need for norms of exchange, division 

of labor, and organization of time, but also whether and how community college mathematics 

instructors could repair breaches of those norms on account of dispositions to fulfill one or more 

of those obligations.  

4  Seven Stages in the Design Process 

From earlier reports on how animated representations of teaching are constructed we have 

identified seven stages in the design process: (1) identifying an instructional situation, (2) 

identifying key norms of the situation, (3) selecting or creating a scenario that illustrates the 

current norms, (4) proposing alternative scenarios that instantiate breaches to those norms, (5) 

anticipating justifications or rejections for the breaches to be found in for instructors’ reactions 

(6) producing the prototype, and (7) testing the prototype. Next, we describe in detail the work 

we have done regarding the first five stages.  

We base the design work on a corpus that consists of audio recordings and field notes of 39 

trigonometry lessons taught by seven instructors (including five employed part-time) at a large 

Midwestern suburban community college in the United States. We have interviews in which 

these faculty members describe their views of teaching in the college and their approaches to 

teaching mathematics, and their students’ responses to an anonymous survey of achievement 

orientation goals (Mesa 2010a; Midgley, Maehr, Hruda, Anderman and Others 2000). Every 

instructor was observed at least three times teaching each course. From these observations we 

have the audio-recording of the lesson, data about who participates in the classes and how 

frequent that participation is, and syllabi for the courses, the examinations given in the observed 
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classes, homework assignments, and the textbooks used. We do not have data showing students’ 

independent work. 

4.1  Identifying the Instructional Situation 

The first stage in the design process consists of identifying the instructional situation that will be 

modeled. This choice is shaped by at least three considerations: the activity types and tasks that 

were observed in the trigonometry lessons, the knowledge at stake, and the anticipated final use 

of the animations.  

4.1.1 Activity Types and Tasks 

The teaching observed in this particular college had both commonalities across instructors and 

differences that appeared idiosyncratic to each of them. All instructors devoted some portion of 

their instructional time to present content to the students. The degree of student participation 

during content presentation varied depending on the type of course; compared to remedial 

courses, students in trigonometry classes asked or answered fewer questions (Mesa accepted). 

Other activities such as working with other students or solving open ended problems were 

infrequent: only two of the seven instructors teaching trigonometry asked students to work with 

others in pairs or small groups and one reserved on average 30 minutes of the class time for 

individual seat work. Technology (graphing calculator) was available in all the trigonometry 

classes; the calculator was used for graphing functions that had been drawn by hand, finding 

values of trigonometric functions, and performing complex computations.  

The presentation of new material was guided by a pre-established sequence and 

organization of topics dictated by the syllabus or the textbook and included invariably the 

resolution of an example, which may or may not come from the textbook. Because the first 
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author’s interest resides in understanding how teachers manage to include students’ participation 

in instruction and what are the qualities of the interaction, we focused on portions of sections in 

which instructors presented content using examples. There is substantial research on the role that 

examples play in mathematics teaching and learning, in particular their role in knowledge 

generation (Michener 1978; Watson and Mason 2005; Watson and Shipman 2008; Zaslavsky 

2005; Zhu and Simon 1987).  

Although other activity structures are also used in promoting student learning (e.g., seat 

work or work in small groups), we are interested here in the portions of instruction in which 

instructors illustrate concepts and procedures via examples that are solved at the board with 

participation of the students because this activity type can get at the contractual norms we are 

targeting, namely that teachers will elicit participation to corroborate that learning has happened. 

In our particular case, we focus on describing how the discussion of an example could play out in 

the situation of “finding values of trigonometric functions.” 

4.1.2 Knowledge at Stake 

One quite central category of knowledge at stake in trigonometry consists of statements of 

relationships between trigonometric functions (e.g., sin2θ + cos2θ = 1). One class of 

mathematical tasks in which students may demonstrate having knowledge of properties like 

those consists of determining the values of the trigonometric functions of specific (known and 

unknown) angles. For example they encounter tasks such as “determine the value of sin θ, tan θ, 

and sec θ given the values of cos θ, cot θ, and csc θ”. Thus, tasks of that kind create a context to 

teach and to learn the relationship between different trigonometric functions. Instructors thus 

need to officiate an exchange between students’ completion of these kinds of tasks and the 
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assertion that they have learned those relationships. We hypothesize that this instructional 

exchange between that kind of task and the object of study is framed by an instructional situation 

that we call “finding the values of trigonometric functions”. This situation frames the exchange 

between two terms: on the one hand the claim by the teacher that students have had the 

opportunity to learn basic trigonometric identities and on the other hand the interactive work that 

teacher and students do over tasks of calculating the values of selected trigonometric functions. 

Because our interest is in probing contractual norms, any situation would serve the purpose of 

providing content. We selected finding values of trigonometric functions because it is a recurrent 

theme in trigonometry, and it is revisited several times with the purpose of illustrating different 

ways to find those values: by using ratios on a unit circle, by using the calculator, by using 

identities, by using the formulas for the sum or difference of two angles, etc. 

4.1.3 Anticipated Final Use 

Our objective in the design of the animations is to create representations of teaching that 

showcase the activity structure of working through an example on the board but where some of 

the contractual norms hypothesized might be breached. Our intention is to use those animations 

in conversations with trigonometry instructors; we expect that in listening to their reactions to the 

breaches of those norms we will learn about the rationality that keeps those norms in place. We 

turn now to the description of those norms. 

4.2  Identifying Key Norms of the Didactical Contract  

An important characteristic of the interaction in these classes is that they are teacher-led. The 

instructor is responsible for presenting the material and solving examples on the board. Students 

are responsible for doing homework, showing up for class, asking questions whenever they do 
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not understand something, taking tests, and participating in class as demanded by the instructor. 

Students work under the following assumptions: that their teachers are there to help them gain 

competence with the material, that their teachers will press them to do challenging work, and that 

they themselves are capable of doing what it takes to be successful (Mesa 2010a). The instructors 

are very aware of the multiple demands that their students have on their time due to work and 

family responsibilities, and have learned to not take it personally when students stop coming to 

their class (Grubb and Associates 1999; Seidman 1985). Teachers are also aware of the “holes” 

that students have in their mathematical preparation that limit students’ opportunities to grasp all 

the needed notions and the limitations in time that they have to ensure students’ development of 

competence with the material. 

When attending to excerpts in which exemplification occurs, we notice the following:  

• Instructors rarely ask questions regarding the plausibility or correctness of a response or a 

final solution to a problem;  

• Instructors engage the students by asking questions about how to apply known 

procedures rather than asking them to decide what procedure to apply; 

• Instructors offer as examples problems that contain all the information needed to produce 

only one solution. 

These three aspects are related to strategies for controlling the work while working on 

particular problems, and thus they play a significant role in shaping mathematical conceptions 

(Balacheff and Gaudin 2010). As it has been identified elsewhere, examples in textbooks do not 

make these elements visible either (Mesa 2010b; Mesa and John 2009; Suh, Mesa, Blake and 

Whittemore 2010). Such work is also absent in the corpus of taught lessons, and thus exploring 
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the rationality for such absence is necessary. The three norms that we have identified are labeled, 

Justification, Control, and Set-up, and the three of them address various aspects of the control 

structure: 

1. No one is responsible for justifying steps on an example or for explaining why an answer 

makes sense; 

2. Students do not have control over what steps to follow when instructors solve examples 

on the board; 

3. The instructor always gives sufficient information to solve the problems given as 

examples.  

Those norms are contractual because they describe the division of labor over knowledge 

across many different objects of study. They are in particular instantiated in the situation of 

finding the values of trigonometric functions. An additional norm that cuts across these relates to 

students’ participation. Students need to participate in order to show their engagement with the 

lesson, to show that they have learned or that they are learning. The three norms listed above 

specify how their participation can happen: in particular it indicates that students’ participation is 

restricted to executing steps. Other conceivable forms of participation, such as proposing givens, 

justifying a step or an approach, or deciding what to do are out of bounds for their participation.  

4.3  Selecting or Creating a Scenario that Illustrates the Current Norms 

In selecting a scenario that could be used for breaching the norms, we attended to several 

features: length, content, amount of interaction, and location within the lesson. Main sources 

were the transcripts and field notes from observed lessons. We identified all transcripts that 

addressed “finding values of trigonometric functions” but avoided segments in which instructors 
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presented these examples while reviewing homework or answers to tests because we wanted to 

have specific information from a given class about what had been done before that could justify 

the use of any given strategy. We avoided examples that were under 2 minutes, as these usually 

did not give enough material to alter the patterns of participation, and those that were over 5 

minutes as these included more material than what would be needed for illustrating a particular 

norm. Amount of interaction and the types of questions that the instructors were asking were 

important also. We identified four possible scenarios and the one that we are discussing here, had 

the best entry points for breaching the norms in multiple ways.  

We take a segment halfway through a two-hour long class taught by a full time instructor. The 

lesson is at the beginning of a unit called “Identities” (Chapter 4 in the textbook) and it is within 

a section called “Fundamental identities and their use.” The unit comes after units on right 

triangle ratios (Chapter 1), trigonometric functions (Chapter 2), and graphing trigonometric 

functions (Chapter 3). Other sections in this chapter deal with verification of trigonometric 

identities, identities for sum, difference, co-functions, double and half angles, and product-sum 

and sum-product identities. Two more units, Inverse functions, equations and inequalities 

(Chapter 5), and Vectors (Chapter 6) would be covered after. The lesson was recorded in the 9th 

week of a 15-weeks semester. The instructor had written basic trigonometric functions in terms 

of other functions (e.g., 
  

€ 

tan x =
sin x
cos x

) and the Pythagorean identities (e.g., sin2x + cos2x = 1) and 

intended to use them to solve problems that had been answered previously using the unit circle. 

We use as reference a four-minutes episode in which she introduces how these identities are used 

with an example. The instructor frames the example in terms of an application of ideas and 

concepts that students have seen before; she suggests that things should be familiar to the 
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students and that identities will keep “things simple,” emphasizing the familiarity of the possible 

actions. The example is the following: 

If 

  

€ 

sin x = −
4
5

 and 

  

€ 

cot x = −
3
4

 use the fundamental identities to find the exact values of 

the remaining trigonometric functions of x. (Barnett et al. 2006, p. 220) 

She begins by asking which other two trigonometric functions can be derived immediately 

(“what are the two we automatically get for free? “) which she answers herself by giving the 

values for cosecant and tangent, presumably by using the definitions she wrote on the board 

(sin x = 1/csc x; cot x = 1/tan x). She calls attention to the sign of the two given functions next, 

and uses the knowledge on the sign of the functions in the different quadrants to conclude that 

the sin of cosine must be positive (“let’s say quadrants here. Sine is negative, so is tangent. What 

does that mean about cosine?”). In this exchange, however, a student answers the question 

incorrectly (“second”) to which the teacher reacts by giving the right response and a justification 

(“One and four, right? Because cosines are x-values”) and concluding that x must be in quadrant 

four (“We’re in quadrant four, aren’t we? We’re in quadrant four. Cosine is positive, sine is 

negative, so quadrant four.”). She remarks that this is an important piece of information that 

might be necessary in solving these problems (“we always need quadrant information to do this 

kind of thing”). She moves to find the value of cosine—so far we have been concerned with its 

sign and the position of the angle—and uses a Pythagorean identity on the board, 

  

€ 

sin2 x + cos2 x =1

, to find it. After the computations she obtains two values, a positive and a 

negative for the cosine. In this process, however, she publicly states that she “rewrote” 1 in  

  

€ 

16
25

+ cos2 x =1

 as 

€ 

25
25

, and that she used “common denominator” both references to 

manipulations that she might perceive as necessary to spell out for the students. The question 
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about which value of cosine is chosen is by now known, but she seeks an explanation (“Cosine is 

positive three-fifths, why? Why did we choose that?”), which a student restates as ‘it,’ 

(presumably the angle) being in quadrant four, which the teacher corroborates (“quadrant four 

forced that choice”). She then obtains secant by inverting cosine, mentions once more that the 

angle is in quadrant four and concludes by counting the identities. She ends by reassuring the 

students that the process was not very difficult (“We’re done, we got them all. That was okay, 

wasn’t it?”).  

In this episode, the teacher is in charge of the solution process; she is determining what needs to 

be done and when and asking for students’ input to fulfill the plan she has for the solution. That 

there is no room for departure is illustrated by how she answers her own questions when students 

do not propose an answer or when they respond incorrectly; incorrect responses are not 

addressed, but ignored. This also illustrates that she is the one responsible for asking questions. 

She uses information on the board, the focus of the lesson, but there is no reference to this in the 

solution. In addition, there is no time spent to discuss the justification for why each step in the 

process is justified, whether the answers make sense, or whether there could be other possible 

ways to find the solution to the problem. Finally, the problem leads to a unique set of 

trigonometric functions. Making assumptions or considering different cases, is not part of the 

work illustrated in trigonometry classes; as stated, the task is fully determined and solvable 

without ambiguity. The information provided is sufficient to solve the problem and there is in 

principle, no redundant or superfluous information. In the segment there are very few pauses that 

would allow students to reflect on particular steps or to think about questions the instructor poses 

which illustrates the role of the student as suppliers of correct information that feeds into the 

teachers’ plans for solution. Thus this episode illustrates well that no one is responsible for 
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justifying steps on an example or for explaining why an answer makes sense, that students do not 

have control over what steps to follow when instructors solve examples on the board, and that 

the instructor always gives sufficient information to solve the problems given as examples.   

4.4  Proposing Alternative Scenarios That Instantiate Breaches of the Norms 

We turn now to descriptions of scenarios that breach some of these norms.2 We have titled the 

altered scenarios to illustrate the focus of the norm to be breached, but in any given scenario 

there are more instances in which instructors might see a breach on other norms. Below we 

describe each scenario and give our explanation of why there is a breach and our hypothesis of 

how the instructors will react to it.  

4.4.1 Justification: “Why Does This Make Sense?”  

With this scenario we seek to breach the norm “No one (neither the teacher nor the students) is 

responsible for justifying steps on an example or for explaining why an answer makes sense.” 

Our interest in this aspect comes from a conviction that justification and making sense of the 

work are important aspects of mathematical work, independently of how basic that content may 

appear, and thus with the breaches we seek to find out why justification is not more prominently 

emphasized in these classrooms.  

An important feature of this task is the justification for why the cosine of the angle x has 

to be positive. There are at least three possible alternatives for the justification. The first 

alternative, which would be the one we would anticipate instructors would prefer is to return to 

the chart in which the signs of the functions have been identified, to see that cosine is always 

                                                 
2 Space considerations limit our use of the full transcripts. We render descriptions of the 
scenarios to convey an idea of their content. 
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positive in quadrants 1 and 4. To elicit this explanation we have the teacher in the altered 

scenario draw a circle on the Cartesian plane. In here, the signs of the functions are determined 

by the position of the sides that determine the angle. The circle might implicitly bring definitions 

of the trigonometric functions as ratios of lengths of sides of a right triangle rather than the 

definitions that were extended to the real numbers in the previous chapter. The second alternative 

includes finding the values of x for which sine x is -4/5. To elicit this explanation we have a 

student finding the arcsin of -4/5, avowedly with the calculator. The third alternative is to draw 

the graphs of the trigonometric functions on the same Cartesian plane and use them to locate the 

known values for sin x and cot x. Marking the possible angles on the number line might 

immediately illustrate the signs of all the trigonometric functions of an angle x that satisfies both 

conditions, and force the positive sign for cosine.  

We hypothesize that instructors would prefer the first alternative because it uses the 

content at stake. We believe that a scenario that includes finding arcsine with the calculator 

might be perceived as a very clever move from the student’s part, which would illustrate that the 

student had prior knowledge about inverse trigonometric functions (because these have not yet 

been covered). While watching the animation they might indicate that this is an unlikely move 

for students to make. But, instructors would likely value if a student brings that information to 

the discussion and expect that the instructor could say “that is a good idea; at the same time one 

has to be careful, as the calculator is giving you one of many possible values of x that satisfy the 

statement sin x = -4/5.” We hypothesize that a scenario using the graphs of the functions could 

also be seen as a clever move as it would connect the information from the previous chapter into 

the resolution of the problem. Instructors might appreciate the connection, but simultaneously 

worry that the example has not been solved using the content of the chapter. While 
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acknowledging the qualities of these alternatives, instructors would likely prefer a solution that 

uses the knowledge at stake so that they could attest students have learned said content, therefore 

confirming that they had fulfilled their obligation in the contract.  

In the original excerpt the instructor does not explicitly state why the angle must be in 

quadrant four, given the conditions of the problem. In the scenario just proposed, the instructor 

asks students to provide this justification. We hypothesize that usually neither teacher nor 

students are accountable to offer, or expected to require, a justification; and so the scenario 

proposed includes a breach of this norm. With this breach we direct attention to the importance 

to attend to how the definitions of the trigonometric functions enter into determining their sign 

and the connection with the magnitude of the angle they are functions of, beyond its location on 

the Cartesian plane. Adding a student using the calculator is another breach because it gives 

students a share of labor they don’t normally have—access to the calculator in this situation, as 

the task does not call for obtaining the value of the angle and because there is an assumption that 

the calculator does not produce ‘exact’ values. In addition, we are creating another opportunity to 

investigate how instructors handle the justification for why it is mathematically incorrect to 

propose that the arcsin(-4/5) is (just) one angle in quadrant four, and bring to the fore the 

extension of the definitions of trigonometric functions to the real numbers. We hypothesize that 

instructors may use this opportunity to remind students that it is problematic to take the 

calculator results at face value. 

The altered scenario also instantiates breaches of the contractual norms governing student 

participation, as we have several students proposing these alternatives. On the one hand, 

instructors might say that they like that students in the scenario participate without being 

prompted; they might attribute these interactions to personal characteristics of students (those 
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students are confident, not shy), to students’ perceptions about instructor’s authority (the 

instructor and not their peers must provide the necessary correct information), or to the particular 

questions that the instructor asks. They might find a student’s plea, “I’m so confused”, and his 

request for ‘starting over’ as an illustration that students expect the instructor to give the final 

correct procedure. A variation of the scenario excluding the plea might give us evidence that 

instructors perceive students as holding them accountable for the correct knowledge, if 

instructors say, “I am surprised they don’t say they are confused.” Thus we anticipate that the 

instructors will qualify this scenario as unlikely, and potentially generating too much uncertainty 

among the students which, in their view, may not be regarded as desirable or appropriate.  

4.4.2 Control: “Which Step Should We Do Now?”  

A second scenario is aimed at probing the hypothesized norm that students have no control over 

the choice or order of steps in the procedure. In this scenario the instructor is completely 

removed from the interaction and the students solve the problem using prior knowledge returning 

to the circle definitions of the functions. We anticipate that relinquishing control will not be seen 

as a feasible alternative, for two reasons. First, students are perceived as expecting the instructor 

to be in control, showing how things are done, and with the responsibility of explaining the 

content; in principle students react negatively to what other students have to say, because they do 

not see their peers as having authority or knowledge to do that (Cox, 2009). Second, there is too 

much material to cover and a very efficient way to handle it in reasonable time is for the 

instructor to illustrate the process so students can reproduce it later (Grubb and Associates 1999). 

In this scenario, the students ‘solve’ the problem using relationships in the unit circle but the 

approach is of less value or import, because it does not use the content of the unit. The instructor 

will need to validate the solution given by the students or to reject it as inadequate for the 
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expected use of the new content. Thus, if the teacher gives control of the solution to the students 

he or she risks losing control of the exchange value of the problem/solution. In either case, we 

hypothesize, the instructors would make sure that in addition to the proposed solution, the 

students would also see how the new content is used. This process might require an investment 

of time that might put instructors behind their schedule and jeopardize their chances of covering 

the material. At the same time instructors might see that this is a good opportunity to make 

connections to other topics in the curriculum, which they may see as useful for creating robust 

understanding of these notions; they might in such case imagine that this knowledge could pay 

off later on. 

Instructors might appreciate having students propose or sort out alternatives because this 

is the kind of work that is required in more advanced mathematics. They might see why an 

instructor would like to teach that way, but say that trigonometry might be not the best place for 

doing this work. They might say that this course seeks to familiarize students with basic notions 

of trigonometry and develop their competence with fundamental procedures (e.g., as an 

instructor said in an interview “the course is about getting the procedures right and the skills up 

to snuff”) and see the students’ move as a response to their need of refreshing and rehearsing 

what they have learned and at the same time, unsure about how to use the new knowledge. 

Reasoning this way, the instructors would make a case for the need to showing the students how 

the work needs to be done, thus exposing this as a norm of the contract. 

We anticipate that instructors will take students’ bypassing of the new material as an 

opportunity to make connections between the old and the new ways of seeing the functions, 

saying something along the lines: “yes, that is a way to do this, and it is very good that you are 

using that information to solve the problem; but let me show you how we can arrive at the same 
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solution with these new identities” or they can ask whether the students could use the identities 

to solve the problem. We anticipate the instructors suggesting that the instructor in the scenario 

remind the students to use the new identities as they do their homework problems so they can 

practice and learn them; they would reiterate that they are the same thing, and in fact that it is the 

same content.  

4.4.3 Set Up: “Why Do We Have Two Answers?”  

With the third scenario we breach the hypothesized norm that trigonometry instructors (and, their 

textbooks) always give sufficient information to solve the exercises. We hypothesize that adding 

redundant information (e.g., the quadrant in which the angle is located) only makes the problem 

‘easier’ in the eyes of the instructor and eliminates the need for making that decision based on 

the signs of the two functional values given. We anticipate that breaching the norm by adding 

information may not be as interesting as doing so by reducing information. There are more 

opportunities for repair in the latter kind of breach.  

Thus in this scenario we give a problem that has insufficient information to generate a single set 

of values for the trigonometric identities (by removing cot x = -3/4). From our experience 

observing these classes, we know that this is an infrequent type of problem in class and in the 

textbook. Case analysis appears with problems involving absolute value and in some cases with 

problems involving quadratic polynomials. Multiple solutions appear later in the chapter when 

finding angles using inverse functions. In this scenario, we have the instructor avoiding calling 

attention to the assumption about the quadrant in which the angle is, in order to make the 

transcript look more fluid and more aligned with the idea of fulfilling illustrative purposes. We 

have added a student asking for a justification (“how do you know that the angle is in quadrant 
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four”) and also kept the instructor’s response direct (“I don’t”) and with an invitation for 

suggestions (“what should we do?”). We also have the students solving the other possible case to 

again remove the instructor from the interaction. As a last line we have a student ask “why do we 

have two answers? Which answer is correct,” a question that is meant to require the instructor to 

be explicit about why two cases are considered and for observers to take a stance about the 

problem itself: Is it appropriate to ask these types of questions at the beginning of the unit? Can 

students expect this sort of work in examinations? 

We anticipate instructors will enjoy the scenario, as it would be an unusual case in which 

students would need to make assumptions in order to be able to break through the impasse of 

having incomplete information. They would see it as a demanding task that would require paying 

attention to the conditions of the problem and an opportunity for students to be creative. At the 

same time, we anticipate that they will find the set up prone to creating confusion among some 

students. We hypothesize that the instructors might see this task as viable for the more confident 

students in the class or for those who might have experienced tasks with multiple solutions 

recently in their high school preparation. We anticipate the instructors might see this as a bold 

move on the part of the instructor that would target important knowledge in mathematics: how to 

deal with uncertainty, and would acknowledge this as an important goal to have. Instructors 

might suggest that such set up is more viable in calculus, with content in which the analysis of 

cases would be more natural (absolute value, initial value problems). We anticipate that 

instructors would keep in mind that these are trigonometry students, and might prefer to add the 

missing information in order to find a single set of functions; this repair to the task would 

confirm our hypothesized norm.  
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Alternatively, instructors might expect the teacher in the scenario to be more explicit 

about the need for having to consider two alternatives, rather than going over them without 

calling students’ attention about what she is about to do, that is, to be more explicit about her 

intentions in the process, rather than leaving students to figure out what is going on to their own 

devices. A student question such as “which is the answer?” would be used to legitimize students’ 

discomfort with having more than one set of plausible responses or the teacher’s lack of 

sensibility to the need to scaffold the process. These moves target the hypothesized contractual 

norm that examples solved on the board should reduce uncertainty and be clearly delineated, so 

that students can reproduce the work on their own. 

We anticipate that instructors might consider giving tasks such as the one in the proposed 

scenario towards the end of the semester, during review, or when there is extra time for 

exploration. Instructors might like that the task allows for calling attention to conditions that 

would lead to single solutions; they might also suggest that instead of removing the value of 

cotangent, students be given the quadrant information. By giving the value of sin and the 

quadrant information the problem has a unique solution, but the process of determining the 

missing functions with the identities might be more complex. Because of the constraints in the 

curriculum, the emphasis on gaining proficiency with techniques, and the students’ attitudes 

towards problem solving, instructors might say that having a known structure and a 

straightforward problem would be better suited to rehearse the technical knowledge, and leave 

the more abstract process for a time in which students feel more confident.  
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4.5  Anticipating Justifications or Rejections for the Breaches  

Instructors might see the discipline of mathematics as a source of justification for the breaches 

proposed here because they target reasoning skills that are fundamental for mathematics. 

Justifying why a particular step makes sense, testing cases, and making assumptions, are all 

skills that are important as one develops mathematical proficiency. Seeing the discipline in this 

way might make the teachers justify all these breaches as instrumental for fulfilling these larger 

mathematical objectives. Perceptions of the role of the trigonometry course in the college 

curriculum as providing skills and technical knowledge for more advanced subjects (such as 

calculus or differential equations) might however justify not spending course time on extraneous 

activity—we deem this a disposition to respond to the institutional obligation (in this case as 

regards to the curriculum sequence and available time).  

Instructors might also justify the breaches on grounds that they enable meeting their 

obligation to students as individuals for example by acknowledging that students can bring prior 

knowledge from earlier experiences to bear on the solution in spite of the fact that such 

knowledge would be covered later in the term (e.g., students who took trigonometry in high 

school might have the idea of using arcsine). They might also accept the breach for participation 

on account that they enable meeting their obligation to the class as a group, for example by 

indicating that students need to be able to tell others what they think. They might praise the 

students for exhibiting these traits, as those are desirable for being successful in mathematics. 

Instructors might justify breaches on interpersonal grounds by indicating that instructors 

need to let these students speak during class as in these scenarios so the students learn to listen to 

each other’s ideas, so they can discern what is correct from what is wrong and be able to 

communicate this to the rest of the class politely.  
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Animations designed in this way and shown to experienced teachers have been successful 

in having teachers look past the appearances of the characters and focus on the practices they 

enact (Herbst and Chazan, 2006). While initial reactions may include chuckles or disbelief the 

scenarios contain sufficient similarities with the practices that teachers do that they are usually 

willing to bring their tacit knowledge of instruction to respond to the probes. Instructors 

observing the scenarios proposed here would either understand why these moves might be 

desirable to have, reject the situation by indicating that such interaction would not be what 

teachers would do when finding the values of trigonometric functions, or attempt to repair it by 

suggesting moves they would have done to make sure the work would be useable as an example 

for facilitating students’ work on their homework. 

We expect to be able to uncover the resources instructors have at their disposal for 

making decisions regarding how to manage similar scenarios. They would either align with or 

distance from the teacher in the scenario and in that process they would make explicit what they 

have that the animated teacher does not, or otherwise be curious about what the teacher did to get 

her students behaving in that way and whether it pays off at the end, that is, whether students are 

successful in the courses they take. 

Differently from K-12 teachers, the community colleges instructors might feel less pressure 

to attempt to engage students in classroom discussion, in spite of the prominence of such 

expectation in reform documents. The presence of adult students with heavy time constraints 

would appear as enough warrant to dispute the possibility that students can (or want to) engage 

in a mode of interaction that requires a radical break with their expectations about what college 

mathematics classrooms should look like. Research in other areas (e.g., Cox 2009) would give 

credence to the observation that community colleges students engage in learning practices that 
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are at odds with the intention of creating autonomous learners (Wheeler and Montgomery 2009) 

and that it is difficult and unrewarding for instructors to alter those attitudes. Likewise, 

community colleges instructors are likely to indicate their lack of conviction that attempts to 

change the norms of classroom interaction would give the students the needed tools for 

succeeding in the following courses: They see their primary goal as one of helping students 

move along (and simultaneously to determine who is ready to do so and who must wait) in terms 

of what students know about the material, how competent they are, and how they can 

demonstrate the mastery of the content. With the content perceived as mostly technical, they 

would sanction the repetition and modeling of known procedures as fundamental for students to 

gain familiarity with the material, which would eventually demonstrate they have mastered it.  

5  Conclusion 

The foregoing shows how the process of modeling an instructional situation and prototyping 

breached instances of it can be used to specify representations of teaching with which to study 

the practical rationality of community college mathematics instructors. Grounded in the teaching 

of trigonometry we identified the situation of “finding the values of trigonometric functions” and 

three contractual norms that apply in this situation. For each of those norms we indicated what a 

breach of that norm would consist of; we then modeled that breach by altering, in deliberate 

ways, a classroom transcript which is part of our data corpus. Each of the scenarios proposed 

embodies a designed breach of what is customary and how those breaches might lead to a 

desirable practice—that of increasing classroom discourse. The scripts so produced are then 

turned into voice tracks and each of the voice tracks overlaid with an animation of cartoon 

characters acting the scenarios. The animations can then be used to broker conversations with 
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community college instructors where we expect to find confirmation or refutation of the 

hypothesized reactions stated in here.  

“Design experiments are conjecture-driven tests” (Cobb, et al 2003, p. 10). This initial 

design of a research tool that probes community college instructors’ rationality in teaching 

trigonometry with examples will give us opportunities to test our conjectures about the norms of 

the didactical contract with groups of instructors. The data that we will collect would then allow 

us to formulate more specific conjectures that will then be probed further. If a particular 

conjecture is refuted, we will be able to formulate new ones to be tested, with the cycle starting 

over again. 
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