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CHAPTER I
1,1 THE PROBLEM

At the present time we know relatively little about
the structures and the atomic motions in glassy materials.
This situation is perhaps best i1llustrated by consldering
the vitreous phase of silicon dioxide. No glass has been
studied more extensively than vitreous silica and yet, even
the short range orlentations of the atoms in this substance
remain 1n doubt. For a description of its long range
structure one can choose from a varlety of vaguely-worded
theories which seem to have one common characteristic -

a strong aversion to quantitative detail. Attempts to
describe the dynamics of the atoms in vitreous silica have
teen fustrated by a number of factors: 1i.) the uncertainty
about the structure of the glass, 11.) unsatisfactory and,
in some lnstances, contradictory data from Raman, infrared,
and neutron scattering studies, and 11i.) the lack of an
adequate theoretical treatment of the dynamics of a
noncrystalline solid.

The following work is a study of the structure and
the atomic motions in vitreous silica by neutron scattering

techniques,



1.2 THE DEFINITION OF A GLASS

There are many different definitions of glass in the
literature. For example, Morey (1) defines glass as "an
inorganic substance in a condition which is continuous with,
and analogous to, the liquid state of that substance, but
which, as the result of being cooled from a fused condition,
has attained so high a degree of viscosity as to be for all
practical purposes rigld." The same 1deas are expressed
more concisely in the American Soclety for Testing Materials
(2) definition: "Glass is an inorganic product of fusion
which has cooled to rigld condition without crystallizing."”
klthough these statements convey the idea that glass 1s a
solid, there 1s no description of the structure of this
substance.

One also finds thermodynamically oriented definitions
(3)(4) which omit any reference to the geometry of the
atoms in the system. Stevels (5) suggests that glass
may be defined as "a solid system obtained from & liquid
system without first order phase transitions." This can
be demonstrated with an entropy-temperature relationship
of the type shown in Figure 1. Starting at the high
temperature end of the dlagram one can see that as the
1iquid is cooled through the freezing point (Tf) it may
elther freeze into a crystalline solid, with a discontinuous
or "first order" transition at this temperature, or it may

continue as a supercooled liquld below Tf. This means that
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the system stlll has the features of a liquid, but from a
thermodynamic point of view, it is metastable. In the
supercooled region the temperature is still so high that
the rate of change in the configuration of the system is
st1ll large compared with the rate of cooling.

If the cooling proceeds along the liquidus line, the
supercooled liquld then passes the stiffenling or glass
pcint Tg (having attsined & viscosity of the order of

13 . 1014 poise) and 1s hence called a stabilized glass,

10
provided the cooling 1is slow enough to guarantee
continuation of the metastatle thermodynamic equilibrium,
The rate of change in the configuration of the system is
then small compared to the rate of cooling; the
configuration 1s sald to bte "frozen in" and the system shows
the typical features of a solid.

According to Mackenzie (6), the above definitions are
unsatisfactory because a.) they are restricted to inorganic
materials only and thus automatlcally rule out the glassy
organic polymers, and b.) they are restricted to a single
method for the preparation of a glass, namely, from the
cooling of a liguid. Although the cooling of a 1liguid in
the absence of crystallization is the most common method
of preparing a glass, 1t 1s well known that glasses may
also be formed by the direct condensatlion of a vapor and

other technlques such as shock wave treatment and neutron

bombardment of crystals (7).
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The definitlion proposed by Mackenzie (6) appears to be
the most relevant to the followlng discussion since it deals
specifically with the nature of the structure of a glass:
"any isotroplic materiesl, whether it be inorganic or organic,
in which three-dlmensional atomic periodicity is ebsent and
the viscoslity of which 1s greater than about lolu polse,
may be described as a glass. By three-dimenslonal
periodicity we lmply & long-range order, dependent on the
material 1in question, of greater than say, 20 angstrom units
(R).»

Since this work is confined to the study of one of the
multitude of materials covered by the above definitlons,
in the following pasges it has been convenient to use the

term "glass" as a synonym for vitreous sllica,



1.3 THE STRUCTURE OF VITREOUS SILICA
1.3.1 INTRODUCTION

Although the current concepts of the atomic structure
of vitreous silica are derived from a varliety of experimental
data, no single body of data has had a greater impact on
the development of the various models and hypotheses which
will be discussed in the following pages thaﬁ that obtained
by the x-ray diffraction technlque. During the first quarter
of this century, prior to the discovery of the x-ray.
diffraction phenomena and its development as an investigative
tool, speculations concerning the structure of glass were
based on similarities between glasses and other systems such
as colloids, crystals, and solutions. Since little or no
detailed knowledge of the atomic srrangement in these systems
was avallable at the time, it 1s hardly surprising that the
results of such comparisons were ambiguous and led to
erroneous conclusions. Attempts to infer the structure of
vitreous silica from the results of thermodynamic
measurements were equally unproductive since such data was
expressed in terms of a few simple variables and susceptible
to many different interpretations. The x-ray diffraction
investigations provided the flrst direct experimental
structure data. Although it has not been possible to
trenslate this data into a precisely defined model, the
nature of the short range atomic order in vitreous sillca
has been clarified.

The phenomena of x-ray diffractlon by crystals was

-6~
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discovered in 1912 by Max von Laue (8) and his colleagues.
This dlscovery, which was cited as pronf of the wave nature
of x-rays, was soon applied to the study of the structures
of crystalline sollds by W.H.Bragg (9) and his followers.
Shortly thereafter, in 1915, Debye (10) and Ehrenfest (11)
independently postulated that noncrystalline systems

should also possess characteristic diffraction patterns
from which certain conclusions concerning the distribution
of the electrons in these systems could be drawn. However,
in the following decade, most of those working in this field
concentrated on investligations of crystalline solids and
the relatlively few studies of noncrystalline systems were
confined mostly to liquids.

In the late 1920's x-ray diffraction studies of vitreous
silica were reported by Parmelee, Clark, and Badger (12) and
Clark and Amberg (13). Parmelee, et.al. argued that the
diffuse, liquid-like diffraction pattern of vitreous silica
which they observed was indicative of an inciplent
crystallization, Clark and Amberg interpreted simlilar data
as indicating that the S10, molecule is the unit of
structure in vitreous silica, the molecules being arranged
end to end 1in long chains, the chains grouped into bundles.
Both of these interpretations were of a highly speculative
nature and totally devold of any quantitative information.

The results of diffraction studies of the crystalllne

silicas, which began around 1926, forced investigators to
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abandon the established idea that the silicas, crystalline
and vitreous, were made up of indiviiual S10, molecules.
In spite of the variety and apparent complexity of the
crystalline silicas, the diffraction studies indicated
that every silicon atom in the crystalline silicas has
the same environment, four nearest neighbor oxygen atoms
arranged in a tetrahedral configuration., Furthermore, it
was determined that the 510, tetrahedra (with one exception)
are jJoined together at the vertices by means of.31-0-Si
bridges and that the crystalline polymorphs of silica differ
only in the relative arrangement of the nelghboring tetrahedra
in space (14),

The crystallographic data provided the basis for the
two major models of the structure of vitreous sllica, the
crystallite model and the continuous random network model.
The development of these two models, which took-place in
the ten year period between 1930 and 1940, is detalled in the

following pages.



1.3.2 THE DISCRETE CRYSTALLITE MODEL (1930)

The early photographic records of the scattering of
x-rays by vitreous silica consisted of ill-defined and
unsymmetrical shadow-tands. (The intensity of the'x-ray
scattering was determlned by a microphotometer measurement
of the film.) The x-ray diffraction pattern of vitreous
silica obtained by Randall, Rooksby, and Cooper (15)
consisted primarily of a broad diffuse band centered at a
momentum transfer of 1.5 3'1. A second barely discernible
band was observed at a larger momentum transfer.

In their analysis the authors noted that the dominant
feature of thelr vitreous diffraction pattern was observed
at very nearly the same momentum transfer as the intense
(111) Bragg reflection of the crystalline silica low
cristobalite. Thls correspondence suggested a connection
between the crystelline and glassy states. Since it was
well known that the breadth of the lines in the diffraction
pattern of a powdered crystal increase as the size of the
powder particles decrease, Randall, et.al. concluded that
the broad diffuse diffraction band of vitreous silica could
be attributed to the presence of extremely small crystals
(crystallites) of cristobelite. In fact, it was suggested
that these cristobalite crystallites make up approximately
elghty percent of the total volume of vitreous silica.

The average linear dimension of the crystallites was

estimated by means of the Scherrer (16) line width-particle

=Qme



size relationship:

2Viin 2)/w A

L cos §

I-1 Wi =

where w* is the width of the diffraction maximum at half
maximum intensity, A.is the wavelength of the monochromatic
x-rays, @ , one half of the scattering angle, and L is the
length of the edge of the averaged sized particle in the
scattering system. (The particles are assumed to be cubical
in shape and to belong to the cubic system.) The
application of Equation I-1 to Randall's data 1ﬁdicated that
the average crystallite dimension was 15 - 20 R.

The fact that tridymite, esnother crystalline polymorph
of silica, had a diffraction pattern very similar to that of
cristobalite was noted. However, since tridymite 1s rarely
found in the natural state and is not easlly produced by
artificial means, the authors concluded that it was unlikely
that the crystallites would have this structure.

Other factors cited in faver of the cristobalite-like
structure included (a) the fact that cristcbalite 1is the
stable form of silica in the temperature range in which
glassy 8102 stiffens and (b) when vitreous silica is held at
a temperature of approximastely 1200°C, the devitrification
product 1is invariably crilstoballte.

Russian authors commonly credit the origin of the
crystallite hypothesis to A. A. Lebedev (17). 1In 1921,

Lebedev observed anomalies in such propertles as refraction
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and the thermal expansion of glass. This led him to

advance the hypothesis that glass contains crystallites in

a state of great dispersion. However, a different
crystalline polymorph of silica was favored in this

analysis. In concluding his paper, lebedev formulated his
views as follows: "... glass consists of an aggregation of
highly disperse crystals, among which are crystals of quartz,
in all probability not in pure form, but as solid solutlons

with some other substance ..."



1.3.3 2ZACHARIASEN'S CONTINUOUS RANDOM NETWORK MODEL (1932)

Shortly after the appearance of Randall's crystallite
hypothesis, W. H. Zachariasen (18) formulated a set of rules
governing the formation of oxide glasses. According to
Zacharlasen, 1if an oxide 1s to occur in the vitreous state,
its space lattice must satisfy the following conditions:

1.) Every oxygen ion must be bound to not more

than two catlouns.
2.) The number of oxygen ions surrounding the
same catlon must be three or four.
3.) The oxygen polyhedra adjacent to each other
must have common cormers but no common edges
or faces.
L,) Each oxygen polyhedron must share at least
three corners with nelighboring polyhedra.
The description of the atomic arrangement in glass derived
from these rules 1s known as the continuous random network
model.

Zacharlasen's baslc argument is contalned in the
following excerpt from his paper: "Slnce the mechanlcal
properties of glasses are directly comparable wlth those
of crystals over a wlde range of temperatures, it 1s loglcal
to assume that the atoms in glass are linked together by
forces essentlally the same as in crystals and that the
atoms are oscillating about definite equilibrium positions.

As in crystals, the atoms in glasses must form extended

-12-
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three dimenslonal networks. While the network is not
periodic and symmetrical as in crystals, it is not entirely
random dque to the fact that the inter-nuclear distances do
not sink below a given wminimum value. In the terminology of
crystals, the network in glass 1s characterized by an
infinitely large unit cell contalning an infinite number of
atoms. Because of the lack of periodicity no two atoms in
the glass are structurally equivalent, while in a crystal
lattice like that of sodium chloride all the sodium atoms
are equivalent as are the chlorine atoms."

Zachariasen observed that in the crystalline forms of
the oxldes Amon y, the oxygen atoms invariably form polyhedra
of one kind or another around the A atoms. Having
postulated that the interatomic forces in a crystal and a
glass are esséntially the same and that the energy of a
glass 1s comparable with that of the crystal, the logical
conclusion was that one should find essentlally the same
polyhedra of oxygen atoms around the atoms A in the glass
network.

In order to prevent the regular lining up of the
polyhedra when bullding the network, Zachariasen argued
that the linking of the polyhedra occurs only at the corners
(as opposed to the sides or faces of the polyhedra) and the
oxygen atoms are shared by no more than two polyhedra.
Furthermore, since the network ls three-dlmensional, he

argued that at least three corners of each oxygen polyhedra

must be shared.
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As noted in the introduction, in the crystalline
polymorphs of silica the quadrivalent Si+u cation is
surrounded by four oxygen atoms in a tetrahedral
configuration. Therefore, according to Zachariasen's
argument, the network in vitreous silica 1s made up of 5104
tetrahedra. The tetrahedra share corners with each other
in such a manner that an oxygen atom is linked to two
silicon atoms, and 1t 1s assumed that the relative
orientations of the tetrahedra may vary within rather wlde
limits,

One of the attractive features of this model was that
it seemed to provide an explanation of the remarkable
tendency of silicon dloxide to vitrify. The argument was
as follows: the fact that each oxygen must be shared
between two cations results in the formation of complex
aggregates in the melt. The atoms are already bound rather
tightly in these complex aggregates and on rapid cooling
there is not time for the atoms to disentangle themselves
and get properly ordered for forming a regular crystalline
structure. The sharing of each oxygen between only two
cations permits a great deal of flexibility in the jolning
together of the tetrahedral groups and as a result, the
rendom network 1s almost as stable as a crystalllne
arrangement.

Perhaps the most unsatisfactory feature of the
Zachariasen model is that it 1s so vague 1n describling the

manner in which large numbers of the SlO4 groups link
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together. For example, nothing 1s said about the nature of
the distribution or the mean value of the S1-0-Si bond
angles 1in the random network. Morey (19) took note of this
fact when he remarked: "This picture of the structure of
glass (Zacharlasen's) seems much more probable than that of
Randall, Rooksby, and Cooper but after all does it do wmuch
more than to say in the language of x-ray structure that

glass 1s an undercooled liquid?*



1.3.4 WARREN'S X-BAY STUDY OF THE STRUCTURE OF VITREOUS
SILICA (1934)

Zacharlasen's model received strong support from B. E.
Warren (20). Warren, like Randall, based his analysis on
the results of x-ray diffraction measurements and although
there was no discernible difference in the data published
by the two authors, Randall's crystallite interpretation
was rejected.

If glass is heated to a temperature between ’v1000°C
and 1?2300, it will begin to crystallize to cristobalite.
This crystallization is commonly called "devitrification”,
as it usually results 1n converting the transparent
homogeneous glass into a white chalky mass of mlnute
crystals (21). In his paper Warren polnted out the apparent
difficulty of interpreting the devitrification of glass in
terms of the crystallite model. He argued that if the
crystallite description were valid, the tiny cristoballte
crystals in a heated sample of vitreous sillca would act as
nucleation centers and slowly increase in size; the growth
of the crystallites would in turn be observed 1in a gradual
narrowing of the glass's characteristic broad diffraction
band. However, in his experiments Warren observed that the
transition from the broad diffraction band of vitreous
silica to the sherp (111) line of cristobalite 1in the
devitrification process was very abrupt.

Warren also suggested that because of the tiny size
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postulated for the crystallites, one would expect that the
width of tﬁe diffraction band should be extremely sensitive
to heat treatwent and the origin of the sample. He found,
however, that glass samples of different origin and those
subjected to heat treatment as drastic as possible without
producing devitrification, all showed btroad diffraction
bands of the same wldth. &lthough other criticisms of the
crystallite hypothesis were volced, those cited above were
considered to be the most serlous.

Warren concluded that the most attractive alternative
for the interpretation of his data was Zacharlasen's random
network model. His method of analysis was to choose a
particular spatial distribution of atoms, calculate the
corresponding theoretical scattering intensity curve, and
then compare the results of the calculation with the
experimental curve. The cholce of the theoretical atom
distribution wes governed by Zacharlasen's argument that the
interatomic spacings and coordinations 1ln vitreous silica
are essentially the same as those found in the crystalline
silicas. Therefore, the result of this analysls was a
model or spatial distribution in which each slilicon atom
is surrounded bty four oxygen atoms at a distance of 1.6 R
and each oxygen 1s shared between two silicon atoms. It
was assumed that each oxygen lies very nearly on the
straight line between the two silicone to which it 1s

bonded, i.e. the distance between the nearest nelghbor



sllicon atoms is 3.20 X. The relative orientations of the

SlOu

together were descrited as belng completely random. Warren

groups about the 180° S1-0-Si bonds linking them

thus carried the continuous random network model beyond
Zachariasen's description by becoming the first author to
specify a specific mean value for the tetrahedra linking
angles. Although no mention was made of the distributlon
of the S1-0-Si angles about this mean value, one was left
with the impression that any deviations from 180o were
small.

The atow spacings end coordinations 1in Warren's model
are listed in Table I-1. The agreement between his
experimental diffraction data and the diffraction pattern
calculated from this model was so satisfesctory, Warren
concluded that he had completely substantiated the random

network hypothesis.



TABLE I-1
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Radial Distribution of Atoms in the Warren Model (1934)

From O to: From Si to: Atom Pair
Spaiing
No. - Kind No. Kind (A)
2 Si 4 0] 1.60
6 @] 2.62
4 Si 3.20
6 Si 12 O 4.00
12 Si 5.20




1.3.5 THE MODERN CRYSTALLITE THEORY (1936)

Warrea's interpretation of his data and criticisms of
the crystallite hypothesis were disputed by N. N. Valenkov
and E. A, Porai-Koshits (22). Inprovements in the
resolution of the experimental apparatus and extension of
the x-ray measurements to larger scattering angles enabled
these authors to detect previously unobserved maxima in the
diffraction patterns of glasses. The presence of the
diffraction maxima at the larger scattering angles was
attributed to a greater degree of order 1ln the glass
structures than indicated by the random network hypothesls.
Valenkov and Porail-Koshits also reported that there was a
distinct difference in the diffractlion pattern of a glass
which they prepared frou a melt of low-quartz and one
prepared from low-cristobalite. The cbservation that the
structure of glass (and hence its diffraction pattern)
depends on the method of preparation appeared to be
compatible with the crystallite hypothesis and refuted
warren's contention that all glasses of a given chemlcal
composition have the same structure regardless of their
origin and subsequent heat treatment.

In their analysis Valenkov and Porai-Koshits argued
that the Zachariasen-Warren hypothesis erroneously
suggested the existence of a sharp boundry between the
crystalline and glassy states. For example, to explain the

rapld nature of the devitrification event ;t was necessary
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to concelve of a process in which the continuous atomic
(lonic) network suddenly ruptures with each plece of the
original network forming a crystallization center. Valenkov
and Poral-Xoshits offered a different interpretation based
on the crystallite model: "The process of devitrification
(1.e. of crystallite growth) progresses very slowly at first
owing to the great viscosity of the glass and therefore has
small effect on the diffraction pattern; yet when the
crystallites have attalned a certain limiting size, the
growth of the crystalllites 1s much accelerated and therefore
the diffraction pattern in this period is changing if not
suddenly, still within a very short span of time." Thus,

in this interpretation there is no marked toundry between
the glassy and crystalline states because the growth of the
crystallites 1s continuous without any prevlious breaklng-up
of the atomic network.

Valenkov and Poral-Koshits's criticisms of the random
network model by no means indicated acceptance of the
crystallite model as postulated by Randall, et. al. The
suggestion that the structure of vitreous sllica consists
of a jumble of tiny crystals with sharp external boundaries
was consldered to be as unrealistic as the Zacharlasen-
warren model (Randall (23) himself had by this time
abandoned his original interpretation in favor of the random
network hypothesis.) The Valenkov - Porai-Koshlts version

of the crystallite hypothesis, which 1s summarized in the
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following excerpt from thelr paper, was significantly
different: " in vitreous silica crystallites of
cristobalite are present whose 'inner dimensions' are
somewhat higher than 10-12 R and whose outer portions are
strongly distorted produclng diffuse maxima of higher orders
as a result of diffuse scattering." Therefore, rather than
picturing the crystallites as extremely tiny crystals with
sharp external boundaries, the crystallites were consldered
to be regions of a continuous space network interconnected
bty their gradually distorting external portions.
Unfortunately, Valenkov and Poral-Koshits, like
Randall, et. al., chose to identify thelr model as the
crystallite theory of glass. This has created a great deal
of confusion in the literature since it 1s often difficult
to determine just which version of the crystallite theory
is being discussed in & given paper. Eckstein (24) explains
that this difficulty probably arises from the fact that the
term “crystallite" has different meanings 1ln the Russlan
and English languages; 1in Russlan the term denotes merely
a relatively well-ordered ("crystalloidic") region. The
suggestion by Urnes (25) that the Valenkov - Porai-Xoshits
model be denoted as the "modern" crystallite theory has

been adopted in this work,



1.3.6 WARREN'S 1936-1938 PUBLICATIONS

Warren was not swayed by the arguments of Valenkov and
Poral-Koshits and 1un subsequent papers reaffirmed his
support of the random network hypothesis (26)(27)(28).

Using the Bragg particle size equation (29) and the
width of the most prominent peak in his diffraction data,
Warren calculated an average crystallite dimension of 7.7 R.
This result, he contended, demonstrated the fallacy of the
crystallite hypothesis: "High cristobalite is cubic and low
cristoballte, pseudocubic, the cube edge of the unit cell of
both being 7.0 to 7.1 %. The particle-size determination
then demands that, on the basis of the crystallite theory,
we postulate thet the major part of the wmaterial is in the
form of cristoballite crystals scarcely lerger than one unit
cell. Since the term "crystal® means a form of matter in
which some unit of structure repeats itself identically at
regular intervals in three dimensions, it 1s stretching the
term so far that it loses all meaning to apply 1t to volumes
of the order of one unit cell. It 1s pointless, furthermore,
to argue that the true crystals are larger than 8 R tut that
the outer parts are sufficiently distorted to give the lower
experimental value., What one calculates from the particle-
size equation is the size of crystal sufficiently
undistorted to be called a crystal. It must be concluded
from the particle-size study that the use of the term

"ecrystal™ in connection with vitreous silica 1is an extension
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of the term beyond the point where it has any simple
meaning or significance.”

The gquestion of the bonding scheme in vitreous silica
was then considered: "For the sake of argument let us
continue to assume that vitreous silica consists of small
crystals of cristobalite. The next question to be answered
has to do with how these assumed crystallites Jjoin onto one
another. Is the glass an aggregation of these small
crystals with some kind of break in bonding between them or
1s the scheme of bonding perfectly continuous with no
breaks or voids?" Warren argued that the nature of the
bonding scheme in vitreous silica could be determined by a
study of the x-ray scattering intensity at small angles:
"Intense small-angle scattering is characteristic of
materials made up of small discrete particles with gaps and
volds between them. The absence of small-angle scatterling
is a direct indicatlion of a continuous medium."

Warren's measurements of the small angle diffraction
intensities of vitreous silica and drled silica gel are
shown in PFigure 2. (Dried silica gel (5102) has a hlghly
porous structure which 1s characterized by the unlformlty of
the size and arrangement of the pores. The average dlameter
of the pores is estimated to be 40 g (30).) The intensity
of scattering by the vitreous sllica appears to decrease
almost monotonically with decreasing momentum transfer.

This behavior is confirmed by more recent measurements by
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Weinbere (31). By way of contrast, the scattering intensity
from the silica gel passes through a mimimum at a momentum
transfer of approximately 0.8 X‘l and then sharply increases
to values higher than those observed at larger momentum
transfers, Therefore, Warren concluded: "The absence of
small angle scattering means that glass is a continuous
medium with no discrete particles or breaks in the scheme of
bonding." (It should be noted here that this criticism
applies only to the Randall version of the crystallite model
and 1s not applicable to the wmodern crystallite hypothesis
of Valenskov and Porai-foshits in which it 1s assumed that
there 1s a continuous bonding scheme between regions with
different degrees of ordering.)

Although the theoretical diffraction pattern derived in
his earlier paper agreed quite well wlth the experimental
data, Warren was troubled by the question of the uniqueness
of the assumed model. Obvliously what was needed was a method
of extracting structure information directly from the
diffraction data, a means of analysis independent of any
assumption as to the structure of the sample.

In the late 1220's Debye and Menke (32) and Zernike and
Prins (33) had shown that the radial distribution of atoms
in a liquid could be obtalned from a Fourier integral analysls
of the liquid diffraction pattern. In 1936 Warren and his
colleagues (27) demonstrated that the Fourler lnversion

method could be generalized to meke it applicable to the
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analysis of the diffraction pattern of a polyatomic
amorphous solid.

The radial distribution curve for vitreous silica
which Warren obtained from the inversion of his diffraction
data 1s shown in Figure 3. For a polyatomic system such
as sillicon dioxlde, thls curve can be interpreted as a
distribution of palrs of different atom types. The
position of a peak glves the atom palr spacing, the area
under the peak gives the number of atom pairs. In practice,
the identification of the particular atom pairs which gilve
rise to a given peak in the distribution curve 1is greatly
alded by correlation of the observed spacing with the
spacings of the atoms in crystalline forms of the same
substance. For example, the flrst peak in Figure 3 is
identifled with the nearest neighbor silicon and oxygen
atows. The observed 1,62 & spacing 1s quite close to the
silicon-oxygen spaclings found iu the crystalline silicas.

Warren was gratified to find that the results of the
Fourier analysis of his diffraction data agreed almost
exactly with his earlier synthesized model (Table I-1).
However, he added the following note of caution to his
remarks: "It should be emphasized that the x-ray study of
a glass gives information only on average quantities, 1t
tells nothing about the fine detalls of the structure and
the possibllity of small varlations in the structure.

Secondary structural features such as those which change
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Wwith annealing or conditloning, do not affect the x-ray
pattern sufficiently to be recognized. The x-ray studles
of glass mlght be sald to establish the flrst order
approximation to a picture of the structure and the fine

details must be filled in from other kinds of measurements."



1.3.7 CRITICISMS OF WARREN'S WORK

A number of authors have questioned Werren's
interpretation of his small-engle scattering data.
Normally, the small-angle scattering from particles whose
dimensions are less than a few thousand angstroms is
observed as a result of the relative isolation of the
particles, 1. e. one observes the scattering from
individual particles and the interparticle interference may
be neglected. 1In his analysis, Warren contrasted the small-
angle scattering of vitreous silica with that of silica gel.
Since the particles in silica gel are relatively well
separated, the intense small-angle scattering by this
substance 1s not surprising. However, the structure of
silica gel has llttle in common with the structure model of
vitreous silica proposed by Randall, et. al.

Debye (34) and Fournet (35) have shown that the
intensity of scattering at small angles decreases quite
markedly as the denslity of the particles of a powder
increases towards the limit of a compressed solid. The
densities of most amorphous phases of a glven substance
are only slightly less than those of the corresponding
crystalline phases, e.g. the densities of vitreous silica
and low-cristobalite are 2,20 g/cm3 and 2.30 g/cm3
respectively. PRienenstock and Bagley (36) point out that
the high relative density of the amorphous phase of silica

indicates that the crystallites, if they exlst, must be
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in close contact with thelr neighbors. Therefore,
intercrystallite Interference may be expected to play an
important role in the determination of the small-angle
scatterlng intensity.

Blenenstock and Bagley have calculated the intensity
of small-angle x-ray scattering from two crystallite models
which are deslgned to indicate the upper limits to the
actual scattering intensity. In each model it is assumed
that the electrons are all concentrated within the
crystallites so that there ls the greatest possible
difference tetween the electron density within the
crystallites and the space (or voids) between the
crystallites. In one model the voids consist of randomly
packed, non-overlapplng spherical shells, l.e. the void 1is
distributed more or less uniformly around each crystallite.
The other model recognizes the possibllity that a very
large portion of the surface of any crystallite can be in
contact with other crystallites. In this case, the volds
are considered to be spherical cevitles rather than
spherical shells.

The following results were reported: (a) for each
model, the scattered 1lntenslty per crystallite was very
much less than the scattering from an isolated crystallite,
(b) at high packing densities the marked decrease in
scattering intensity with increasing density was due only to

the diminuation of the total vold volume. The arrangement
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of volds and therefore the particular model have little
influence on the order of magnitude of the scattering, snd
(c) in the particular case of vitreous silica, the
calculated upper limits to the scattering from an array of
crystallites were of the same order of magnltude or less
than the scattering lntensities measured by Warren and
Weinterg. The calculated scattering intensity for a model
in which crystallites with the density of low-cristobalite
and an average linear dimension of 8 % are pecked to the
density of vitreous silica 1s shown in Figure 2.

Although Bienenstock and Bagley concluded that the
failure to observe small-angle scattering from vitreous
silica does not invalidate a discrete crystallite model,
they noted that thelr calculation does not, on the other
hend, offer any evidence for the existence of discrete
crystallites.

As noted in Section 1.3.6, Warren's application of the
Fourier inversion method provides the short range atom
spacings and coordination nuabers 1ndependent'6f any model
assumptions, However, there are many potential sources of
error in thls calculation.

The atom palr distribution curve shown 1in Filgure 3 is
obtained by evaluating the integral
zr [ LK)

™ 2
(o] fe

I-2 sin Kr dK

where K 1s the momentum transfer in the scattering event,
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I(K) 1s the structure dependent coherent scattering
intensity, and fe 1s the average structure factor per
electron., (The derivation of this expression 1s omitted
since the comparable expression for the neutron scattering
experiment will be derived in Chapter II.) There are

many problems involved in obtaining an accurate I(K)
function from the experiwmental data. The measurement of
the intensity of the x-ray scattering from an amorphous
substance of medlum-to-low scattering power such as vitreous
silica presents some difficulty, especially since strictly
monochromatic radiation must be employed. Cartz (37) has
noted that filtered x-rays, which are never perfectly.
monochromatic, have been used in many of the glass studles.
Another problem 1s that at large angles the scattering is
very weak, but it must be measured very accurately in order
to normalize the scattering latensitles.

Assuming that there are no protlems such as
fluoresence in the sample, the raw data must be corrected
for polarization effects, multiple scattering, and
absorption of the incldent and scattered radiation in the
sample. Even with these corrections, the data still
include the contributions from the incoherent (or Compton)
scattering.

The incoherent contributions are removed and the
coherent scattering intensity 1is normalized in the followilng

manner (38): The intensities of the structure independent
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coherent scattering and the lncoherent scattering,

2
identified as f(K)™ and I respectively, are computed

inc
from tabulated atomic scattering factors (39). It is
assumed that for large momentum transfers the correétcd
experimental data, Iexp , Will approximate the total
structure 1ndep§ndent scattering contribution, f(K)2+ Iy e
because the interatomic interference effects are no longer
significant. Thus, the experlmental scattering data 1is
normalized to an absolute intensity scale by ﬁatching the
calculated f(K)2+ Iinc curve with Iexp at the larger
scattering angles. Once thls normalization 1s accomplished,

one obtains the coherent structure dependent contribution

from the relationshlp:
2
1-3 I(K) = Iexp - f(K) - Ilnc

There are several sources Of error in thls
normalization. Consider, for example, the calculation of
the total structure independent scattering. The atomlc
scattering factor, £{K), is a function of the electron
density of the atom. Since the exact density function 1is
known only for the hydrogen atom, the scattering factors
for all other atoms must be approximated in some manner.
Various methods of approximating the total wave function
(and hence the electron density function) of an atow are
discussed in the literature; no less than slx dlfferent

methods of calculation are cited in the International
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Tables for X-ray Crystallography (39). An accurate
estimate of the electron distribution is also required to
calculate the incoherent (Compton) scattering contribution.
The actual curve fitting process is not without
difficulties. Henninger, et.al. (40) report that their
x-ray scattering intensity curve for vitreous silica
osclllates at the larger scattering angles and as a result,
it 1s hard to obtailn a satisfactory match with the smoothly

2
varying f(K) + I curve .,

inc

Other problems arise in the computation of the Fourler
trensform (Equation I-2). The accuracy of the I(K)
function almost always varies over the range of momentum
transfers for which 1t 1is measured. This 1s due to
differences in the counting statistics, angle’dependent
multiple scattering, ect.. However, the integration
indicated in Equation I-2 ignores this problem and employs
the scattering data in an indliscriminant manner. An error
in the measurement of the scattering intensity at a
nomentum traansfer of‘Ke will produce a ripple in the atom
peir distribution curve with a period of 2Tr/Ke' The
presence of the K term in the integrand of I-2 indicates
thet errors at the larger scattering angles where the
scattering intensity 1s low are magnified.

If the integration indicated in I-2 does not include

all K's for which the integrand is non-zero, as 1ls usually

the case, the resulting function will have a number of
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spurlous maxima and wminima. These spurious features may be
suppressed by multiplying the integrand of I-2 by a suitable
welghting function. The function eXp(~nD(2) is often used
for this purpose, with the coefficient n chosen so that the

integrand has a negligible value beyond K the upper

max’
limit of the experimental measurement. However, the use of
thls convergence factor can remove real as well as spurious
features from the pailr distribution curve.‘

The preceding 1s intended only to indicate some of the
problems the experimentallist faces in attempting to derive
an accurate pair distribution function from his scattering
data. Detalled discusslous of the sources and consequences
of various errors in the inversion process are found in
works ty Finbak (41), Klug and Alexander (42), Grjothelm (43)
and Riley (38).

The difficulty of ottalning an error-free distribution
function is not the only criticism of the Fourler inversion
method. A number of authors, especially the proponents of
the crystallite hypotheses, emphasize that even if there are
no errors, the calculation provides only a spherlcal average
of the dlstribﬁtion of atom pairs in the sample. Petrashen
and Poral-foshits (44) have argued that the derivation of
the Fourler transform relationship presupposes a random
structure and therefore, a choice between the random network

theory and the crystallite hypothesis cannot be based on

results obtained by the use of this method.



1.3.8 THE SYNTHESIS OF THE CRYSTALLITE AND RANDOM NETWORK
THEORIES

Most of the supporters of the random network and
crystallite hypotheses have recognized that neither model in
its more extreme form 1s consistent with the availlable
experimental data. Each is valld only to a certain degree,
and explalns only some of the properties and characteristics
of glass.

In 1941, Warren (45) reviewed his work of the previous
decade and acknowledged that "it would be incorrect to say
that the present random network theory of the structure
of glass has been unlquely established." It has been
difficult for the proponents of the random network theory
to lgnore the results of numerous experimental measurements
which seem to lundicate the presence of a greater degree
of order in the structure of vitreous silica than the
original version of the Zachariasen hypothesis would
suggest. Westbrook (46), for example, has studled the
variation of penetration hardness with temperature and found
that vitreous silica obtained from a melt of cristobalite
shows an 1fregular1ty near the high-low cristobalite
inversion (~272°C), while vitreous silica made from a melt
of quartz shows a simllar irregularlty near 5?3°C, the high-
low inversion temperature of quartz. German (47) reports
that the measurement of the dielectric constant of a

sample of vitreous silica as a function of temperature
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shows clear, reproducible steps at temperatures corresponding
to the high-low quartz, the high-low tridymite, and the high-
low cristobalite transitions. According to Eckstein (L8),
the anomallies which German observes are too marked to be
caused by traces of devitrification in the sample end she
suggests that they can be explained by "the apparent
coexistence of regions of cristobalite and low-quartz, or
high-quartz and tridymite structure (i.e. of paracrystalline
configurations corresponding to these lattices) in silica."
Evstropyev (49) notes that similar anomallies are observed
in the refractive index, the viscosity, and the thermal
expansion coefficient of vitreous silica at the temperatures
dorresponding to the polymorphic transition points of the
crystalline silicas.

On the other hand, the results of the diffraction
experiments and physical properties such as the absence
of a definite melting point and the viscosity-temperature
relationship can not be satisfactorily explalned if vitreous
silica 1s assumed to be an aggregation of minute crystals.

Valenkov and Porai-Koshits (Section 1.3.5) were the
first authbrs to suggest the logical and rather obvious step
of combining the features of toth a crystallite and a rendom
structure in a single model. The presence of regions with
crystal-like order could explain the correlations observed
between the physical properties of the vitreous and
crystalline phases of silica and yet, as Valenkov and

Porai-Koshits observed, the synthesis of the crystallite and
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random network concepts in the modern crystallite theory is
not diametrlcélly opposed to the Zachariasen-Warren model.
According to Lebedev (50), the difference between the modern
crystallite theory and the random network theory is merely
one of degree: "It is easy to see that such a gradual
transition may be lmagined between these theories that
thelr juxtaposition becomes meaningless. On the basis of
the continuous network concept we can always imagine that
at some polnts in the network the orilentations of the atoms
may go so far that such regions can be quite justly termed
crystallites; on the other hand, on the basis of the (modern)
crystallite theory we must visualize the individual
crystallites as being so small that we cannot speak of
the exlstence of completely defined crystals wilth sharp
boundaries, as it 1s evident that between the grains there
should be transition zones with irregular distribution of
the particles, while the lattice of the grains themselves
may be consliderably distorted owing to the extremely small
size of the crystals.®

The original version of the modern crystallite theory
has been modified in more recent papers. Valenkov and
Porai-Koshits, like Randall, et.al., employed the Scherrer
line width-particle size relationship (Equation I-1) to
estimate the average size of the crystal-like regions in
the sample. Poral-Koshits (51) has recently conceded that

no significance can be attached to this calculation since
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the derivation of the Scherrer formula presupposes the
existence of a much more ordered structure than can
possibly exlst in vitreous silica. The idea that there
are crystallltes that very much resemble crystals has
therefore been sbandoned,

Stevels (5) offers a representative version of the
updated modern crystallite theory: "It is very likely that
there are regions (which may be of the order of 100 x, but
also larger) in which networks as described by Zacharilasen-
Warren exist, wlth the restriction that the randomness 1s
not complete; or perhaps: where deviations from order are
not too great. These reglons are bound together by means of
other reglons where the depree of randomness 1s much higher,
and where the Zacharlasen-Warren theory also virtually holds.
Here, relatively higher concentrations of the mlssing
bridges, vacancles and perhaps (1n cases like fused silica)
also "lmpurities will be found. These regions may be the
boundaries of the first-mentioned ones end thus account for
the grainlike structure found with the electron microscope.
In other words, thls synthesis accounts for the
experimentally found microinhomogeneity of glass.”

As noted by Stevels, the results of studles with the
electron microscope appear to support the concept of
coexisting regilons with differing degrees of order.

Oberlies (52) a2nd Prebus and Michener (53), among others,
have detected inhomogeneities in samples of vitreous silica

with this instrument. Wsrshaw (54) reports that electron
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microscopy of fractured and polished surfaces of glass shows
the presence of inhomogeneities ranging in size from 30 %

to 150 2 1n dlameter. In his analysis he argues that if the
bonding within the inhomogeneities is random, and if the
inhomogenelities are distributed in & random manner
throughout the glass, hls observations are in no way
incompatible with the palr distribution curve obtained by
Warren.

Zarcycki and Mezard (55) have reported that they have
obtained electron transmission micrographs of vitreous
silica which exhibit a fine granularity in the 50 X to 100 8
range. They offer the following interpretation of this data:
the observed pattern is attributed to the mutual
mis-orientatlion of domains. The degree of order inside of
these domains should be sufficient for 1t to be possible to
speak of mis-orientation - in other=words to be able to
define the orientation of one domain in relation to its
neilghbors. But on the other hand, their dimensions being
approximately 100 X, the domains must be sufficlently
disorganized not to give rlse to the sharp diffraction
pattern which would be expected of a perfect crystal of that
size. It 1s thought that the lmage of the glass network
could be best described by using a 'para-crystalline' model,
The degree of order in the domains would thus be
intermediate between that of a perfect crystal and of an

amorphous lattice. These domains would in turn be arranged
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in a superlattice which can exhibit varicus degrees of
order from completely amorphous to increasinply para-
crystalline.

Zarcyckl and Mezerd conclude that this model 1is
consistent with the results of the low-angle x-ray
diffraction experiments since the electron diffraction is
completely independent of the internal structure of the

domains and depends only on their external shapes.



1.3.9 RING STHUCTURES IN VITHKEOU3S SILICA

Several authrors (57) {58) have observed that the
structures of the crystslline forms of silica may be
described in terms of rings of 8104 tetrahedra. The rings
in the sllica crystals are regularly repetitive and the
types of rings in the immedliate nelghborhood of each atom
are limited., For example, the structures of cristobalite
(votk high and low temperature forms), quartz, and tridymite
contain only hexagonal rings of 510, tetrabedra. King (58)
descrites the hexagonal rings in cristobalite as "chalr-
shaped" and those in tridymite as "chalr-shaped" and "boat-
shaped". The structures of coesite and keatite, $wo of the
denser crystalline polymorphs of silica, consist of rings
of four and five tetrahedra respectively.

The concept of rings of Slou tetrahedra has also been
adopted by a number of authors to descrite the structure of
vitreous silica. Bernal (59) was one of the first to
suggest that vitreous silica could te pictured as "a network
of linked four-coordinated molecules forming rings of four,
five, six, seven, or even more molecules arranged in varlous
sets of random order, and consequently, complexly responsive
to temperature and pressure changes, leading to anomalous
expansion at low temperature.”

Dean (60) has suggested the possibility of a ring

structure in vitreous silica formed from three tetrahedra.

The three silicon atoms and three of the oxygen atoms 1n

e



o

these tetrahedra form a planar ring with S1-0-Si angles of
130°. Dean argues that if the force field for this
configuration can be represented by a nearest neighbor
central force model, his analysis shows that there exist two
normal modes of vibration which are strictly localized to
the s8ix atoms of the planar ring snd involve no displacements
from equilibrium of other atoms in the network. In one mode
the adjacent atoms vibrate out of phase and a simple order
of magnitude calculation 1ndicates that this motion might
account for the band observed at ~ 950 cm~1 in the infrared
spectrum of vitreous silica (€1). The other mode 1is
described as an infinitesimal ring rotation in which the
atoms all move in phase with an extremely low frequency.

The results of x-ray and neutron scatterihg measurements,
which are discussed in Section 1.3.13, indicate that the
S1-0-S1 angle suggested by Dean 1s unrealistically low. If
the three-membered 510, rings are one of a number of
different ring confligurations in vitreous silica, they could
account for only a very small percentage of the ring types
in the structure or the density of the structure would be
too high.

Cartz (62) has measured the x-ray diffraction pattern
of vitreous silica and reports that the theoretical
diffraction pattern calculated from a model consisting of a
mixture of non-planar rings of five, six, seven, and elght

5104 tetrahedra 1s in excellent agreement with thls data.
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In each Of these rings the S1-0-Si angle is 150°, the $1-O
bond length 1s 1.60 X, and the tetrahedra are assumed to be
regular. The dlistribution of ring-sizes 1s shown in

Table I-2.

Table I-2 Ring Size Distribution in the Cartz Model
Of Vitreous Silica

Non-planar Ring-size Distribution:
Percentage of number of rings

containing n tetrahedra

n=4 5 € 7 8 9
0 2l L8 20 8 0

King (58) has investigated the ring conflgurations
in the random network model which she and Evans have
constructed (63). She finds that her model contains rings
of five, six, and seven SiQ, tetrahedra. The distribution
of these ring types 1s as follows: five-membered rings -
L6%, six-membered rings - 38%, end seven-membered rings -
16%. (The King and Evans model 1s discussed in greater
detail in Chapter V.)

On the other hand, Oberlles and Dietzel (64) report
that the most satisfactory match with the pair distribution
function derived from their x-ray diffraction data 1s
provided by a model composed almost entlirely of six-membered

Siou rings similar to those found in cristobalite.



1.3.10 TILTON'S PENTAGONAL-DODECAHEDRAL MODEL (THE VITRON)

In 1957 Tilton (65) suggested the possibility of a
pentagonal-dodecahedral model for the structure of glass.
The unit cell in this model, which is constructed of five-
membered rings of symmetrical tetrahedra, 1s a regular
pentagonal-dodecahedral element (12 faces, each face five
sided) containing 20 310# tetrahedra with 20 silicon atoms
at their centers, 30 oxygen atoms at interconnected
corners, and 20 "external" oxygen atoms which form bridges
for the addition of nelghboring unit cells. The radial
distribution of the atoms in this unit cell is given in
Table I-3.

According to Tilton, thils structure arises from a high
temperature arrangement of connected silicon-oxygen
tetrahedra which 1s frozen by the rapid increase in rigidity
as the glass cools. As a result, the confipuration of the
connected tetrahedra is such that the structure will frave
minimum density, i.e. the S1-0-Si bond angle 1s 180° and
the rings, if any, are circular and planar so that the
tetrahedra can have maximum distention. These conditions
favor the formation of pentagonal rings since the interior
angle of a regular tetrahedron, 109028', differs so little
from the ilnterior angle of a regular pentagon, 1080. The
growth of Tilton's structure proceeds uniquely in slix

directions from an initial tetrahedron to form a network

containing dodecahedral holes or cavitlies, each separated

L6
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TABLE 1-3 Radial Distribution of Atoms in the Tilton Pentagonal Dodecahedra

From O to: From Si to: Atom Pair
Spacing
No. | Kind No. | Kind (A)
2 Si 4 O 1.60
6 ©) 2.60
4 Si 3.20
6 Si 12 O 4.00
6 O 4.19
3 Si ) O 4,92
12 O 4.99
12 Si 5.18
12 O 5.93
12 Si 24 O 6.14
12 O 6.79
12 O 7.14
6 Si 12 O 7.15
12 O 7.3
24 Si 7.33
12 Si 24 O 7.71
12 O 8.04
3 O 12 Si 8.38
24 Si 8.4
6 Si 12 O 8.54
18 O 8.6
4 Si 8.97
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from its twelve somewhat dlstorted neightoring cavities by
twelve planar interfaces of very slightly stressed penta
rings. A stressed network cluster of such dodecahedral
cages is designated a vitron.

The most important property of this model is that its
fivefold symmetry precludes the formation of a crystalline
structuré. In the words of Tilton: *"Just as penta tiles
fall where hexagons succeed in covering a floor, so do
regular penta dodecahedra fall to fill space completely and
extenslvely." The bonding of the dodecahedra is described
as follows: "The interior dihedral angle of a dodecahedron
15 116.6°, and thus not far from 120°, which would be exactly
right for fllling space without stress and distortion. If
one regular dodecahedron 1s attached or jJoined on each face
to 12 1like structures, none in the outer shell can touch
any of 1ts five nelghbors. By radial compression these
neilghtors may meet and the requisite tangential tension in
the peripheral bonds may not be excessive for the first
shell., Further increase in cluster slze by the addition of
32 cages 1n the second shell would require much higher
tensions in the outermost bonds, and some defective
attachments or broken bonds might result in order for bonds
to hold elsewhere on the periphery. Thus the great strength
of the silicon-oxygen bond is the factor that should cause,
and automatically limit, the growth in size of vitrons.

The automatically limited abllity to grow, and a
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distribution of stresses localized and balanced within each
vitron, are features that may distinguish a vitreous
sutstance from a crystal.”

The balance of Tilton's paper 1s devoted to a detailed
geometrical classification of possible vitrons and an
attempt first, to correlate the model with experimental
diffraction data, and second, to interpret a number of
physlochemical properties of glass, e.g., gaseous diffusion,
viscosity, density, coefficient of thermal expansion, etc..
For example, the observed low tensile strength of silica
glass is attributed to the fact that there are fewer bonds
per unit cross section in the interstitial connective
"matrix" between the vitrons than within them. Changes in
the interstitlal matrix's structure and volume, both of
which are rather arbitrary parameters in this model, are
credited with producing the observed anomalies in the
thermal behavior of vitreous silica with respect to its
viscosity, compressibility, volume, and elastic modulil.

One of the weakest features of the vitron model appears
to be the low density of this structure. The calculated
density of a vitron is 2,00 g/cmB, which is about 10% lower
than the known density of vitreous silica, 2.20 g/cmB. To
explain thils discrepancy the author 1s forced to argue for
elther a decrease in the unit volume of the outer and
distorted cages of vitrons or throw the burden of raising
the average density upon the relatively small volume of

interstitial material between the vitrons.
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As noted previously, Warren's analysis of his x-ray
diffraction data in the 1930's indicated that the Si1-0-Si
angle 1s approximately linear. This result is consistent
with Tilton's model: in the five-membered planar ring of
'SiOu tetrahedra, the S1-0-Si angle is approximately 1770.
However, a number of more recent diffraction measurements
suggest that this angle is considerably less than 180°.
(The S1-0-51 angles calculated from the results of a number
of x-ray and neutron diffraction measurements are listed in
Table I-7.) Furthermore, the larger interatomic spacings
in the unit cell of Tilton's model do not apree very well
with the spacings indlcated 1n the radial distribution
curves obtalned from recent neutron diffraction
measurements (Table I-6).

Hicks (66) has argued, on the basis of configurational
entropy consliderations, that local reglons in vitreous
silica are far more likely to have a cristobalite structure
than a pentagonal dodecahedra structure. He considers the
number of bonds required to form the six-membered rings
characteristic of the cristobalite structure and a
ventagonal dodecahedra and estimates that the relative
probablility of the formation of the two configurations

1s 520,000 to 1 in favor of cristobalite.
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1.3.11 ROBINSON'S PENTAGONAL-DODECAHEDRAL MODEL

A modified version of the pentagonal dodecahedra model
has been suggested in a paper by Robinson (67). In the
words of the author: "The vitreous silica model aetwork
arrived at in this paper can be described as textured
pentagonal dodecahedral. This means that on the average the
network can bte concelved of as an assemblage of 1lndividual
grains, each grain conslsting of stacked pentagonal
dodecahedra (pd). The individual pd are, however, badly
distorted and in fact no two pd will be exactly alike in
shape. Furthermore, there will surely be lmperfections in
the sense that some of the pentagons (pentagonal rings)
forming the sides of the dodecahedra will undoubtably be
replaced by hexagons or rings contalning other numbers of
Si1 atoms. It is not known at this time what percentage of
the total rings are other than pentagonal but the evidence
derived from the density and the admittedly non-preclse
diffraction data shows that 1t cannot be large."

The distortion or puckering of the faces of the
pentagonal dodecahedra has the advantage of decreasing the
size of the unit cell and hence increasing the density of
the model to a more reasonable value. The puckering also
introduces a dispersion among the bond lengths and the
tgame' interatomic distances vary somewhat from position to
position in the ring. (The calculated interatomic distances

for the puckered pentagons which make up thils structure are
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listed in Table I-L,.,) Although the smaller number of
repeating interatomlc spacings in thls model makes it more
compatible with the x-ray diffraction results (Table I-5,
Section 1.3.13) than Tilton's model, it certainly does not
predict or explain the larger interatomlc spacings indicated
in the atom pair distribution curves obtained from neutron
diffraction date (Table I-6, Section 1.3.13).

It should also be noted that Hick's (66) determination
of the relative probability of forming a cristobalite-llike
structure and pentagonal dodecahedra applles to the Roblnson
model as well as Tilton's model since the same number of
bonds are required to form the pentagonal dodecahedral unit
cell regardless of whether the unit is distorted or regular

in shape.



TABLE |1-4 Radial Distribution of Atoms in the Robinson

Distorted Pentagonal Dodecahedra

From O to: From Si to: Atom Pair
Spacing
No. | Kind No. | Kind (A)
2 Si 4 O 1.615
6 o] 2.67
4 Si 3.226
6 Si 12 o 3.97
6 O 4.17
3 Si 6 O 4.85
12 Si 4.98




1,3.12 TEMPERATURE-PRESSURE DEPENDENT COEXISTING STRUCTURES
IN VITREOUS SILICA

Babcock, Barber, and Fajans (68) have attacked the
structure question from still another point of view. The
primary concern of these authors is to explain the anomalous
thermal properties of vitreous silica: "The very small and
nearly constant (thermal expansion) coefficlent of vitreous
silica between 300° and 1250°K and the fact that it becomes
negative below ZOOOK is unlique among homogeneous solid
substances. A minimum occurs not only for the volume, but
(according to Doborzynski (69)) also for the dielectric
constant of vitreous silica. No satisfactory explanation
of these facts has bteen offered and they cannot be
understood from the viewpoint of a single continuous network
which, with increasing temperature, would show merely the
effects of the anharmonicity of atomic vibrations."

Babcock, et.al. suggest that these anomalies are the
direct result of temperature and pressure dependent
structural changes in the glass., Two possible descriptions
of the mechanics of the structural transformations are
offered:

a.) The change in bond angles and distances occurs
more or less continuously throughout the vitreous
phase.,

b.) Two (or more) well-defined ionlc arrangements,

"structures" I and II, coexist within the glass.

-5l
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Each structure has a normal positive thermal

expansion coefficient, but their relative

concentrations, which are in equilibrium with

each other within the homogeneous phase, change

contlinuously with temperature and pressure.
Although the authors concede that the data presented in
their article does not allow a clear-cut decision between
the two hypotheses, they favor the coexisting structure
hypothesls.

The propertlies of the coexisting structures in the

Babcock, et.al. model are as follows:

1.) At a given temperature, the specific volume
of I is greater than that of II.

2.) An increase in temperature shifts the equilibrium
from I toward II, i.e., the conversion I —>1II 1s
endothermic. The lower the temperature the greater
is the amount of the spacious structure I which 1is
available for conversion into the denser structure
11,

3.) The interconversion of I and II is rapid and
reversible even at low temperatures.

4,) Increased pressure shifts the equilibrium from I
toward I11.

Therefore, according to this hypothesis, the thermal
expansion behavior of vitreous silica 1s the result of the

small positive expansions of both I and II coupled with the



volume contraction which accompanies the conversion of I
(low temperature form, low density) into II (high
temperature form, high density) on heating.

The fact that the mean compressibility of vitreous
sllica lncreases with increasing pressure and decreasing
temperature 1is also interpreted in terms of the conversion
I—>1II, According to properties 1 and 4, the coefficient
of compressiblllty can be expected to be relatively large
because the conversion I—> II causes contraction. At
increased temperatures structure II 1is favored; the high
pressure applied during the measurement of compressitility
at elevated temperatures causes smaller amounts of the
conversion I—> 11 and therefore decreaées the apparent
compressibility.

The possibility of coexlsting structures in vitreous
silica was noted in Section 1.3.8. However, the results of
an x-ray scattering study by Zarcycki (70) provides the
basis for a very telling criticism of the Babcock, et.al.
hypothesls, According to Babcock, structure I predominates
in vitreous silica at a temperature of approximately - 730C
and the total conversion of structure I to structure II
takes place over a range of about 1000°¢C, Zarcycki has
observed the x-ray scattering by vitreous silica at
temperatures of 20°¢ and 1600°c. Although 1t was necessary
to replace the 1600°¢C specimen with a new one every fifteen

minutes because of its progressive devitrification, he
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found that the interstomlc spacings at the two temperatures
were practically the same. A proponent of the Babcock
hypothesis might well argue that at a glven temperature the
differences 1n the interstomic spacings of structures I and
II could not be resolved in the Fourler analysis of the
diffraction data; however, 1t 1s difficult to believe that
the change which one would expect 1in the relative
concentrations of the two structures at these wildely
separated temperatures would not te observed through a

shift in the wmean values of the lnteratowlc spacings.



1.3.13 EXPERIMENTAL DIFFRACTION DATA

Most of the models of the structure of vitreous silica
are based on the results of x-ray, neutron, and, to a lesser
extent, electron diffractlion studies. The following survey
of these measurements will perhaps indicate why the
structure of vitreous silica remains the subject of so much
controversy.

As indicated in the discussion of Warren's work, there
are two possible ways of analyzing the experimental
diffraction data. One method is tased on the calculation of
the theoretical diffraction patterns for various models; the
otrer method starts wlth the observed diffraction curve and
transforms it into a radial distribution curve
characteristic of the average atom pair density in the
sample. Comparison between theory and experiment 1ls made
by means of the diffraction curves in the flrst method and
pair distribution curves in the second. Although the two
methods are equivalent 1n principle, they each have their
limitations and in practlice there are siltuations where one
method 1is more approprilate than the other.

Intuitively 1t would seem that the most stralghtforward
and satisfactory method of analysis 1s that which requires
the least manipulation of the experimental data. The fact
that there is a much wider variation in the reported pailr
distribution curves than in the d4iffraction vatterns from

which they are derived lends added welpht to this argument.

-58-
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Rowever, few of those who have suggested models have either
calculated a theoretical diffraction curve or provided the
necessary 1information to do so. In lieu of this information,
the experimentallst has no physically meaningful way in
which to present his results other than in the form of an
atom pair distribution curve. There 1s also the question of
the uniqueness of the diffraction pattern calculated from a
particular model. For example, Begdyk'yants and Alekseev
(71) report that the theoretical diffraction curves for a
random network model and a model consisting of cristobalite
crystallites (2 x 2 x 1 unit cells in size) both agree quite
well with the electron diffraction pattern for vitreous
silica which they have measured. The possibllity that
radically different structures may produce the same
diffraction pattern (homometric structures) has also been
demonstrated by Patterson (72). Therefore, for the reasons
cited above, the comparison between theory and experlmental
results 1s usually made on the basis of atom pair
distribution curves,

The use of electron diffraction techniquee for the
study of amorphous systems has been discussed in detall by
Bauer (73). Electron diffraction investigations of vitreous
silica have been rather limited., This is due, in part, to
the low penetrating power of an electron beam and the
resulting experimental difficulties assoclated with the

need to use very fine powders or films. Surface effects
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such as the interaction of the samples with moisture in the
alr hinder the measuremwent of reliatle diffraction patterns,
The high cross section for electron scattering also creates
serious multiple scattering problems,

Bauer (73) suggests that the low penetrating power of
the electron beam might be a definite advantage in the
investigation of the structure of a non-crystalline solid:
"As 1s well known, the radial distribution function involves
an averaging, over all points in a sample, of the product
of the density of electric potential or scattering matter
at each point by the density contained in a shell of radlus
r. Clearly, up to a certaln size the magnitude of'the
sample affects the average. Conceivably, if one were to
1lluminate small encugh regions of the sample, he could
obtaln a much more sensitive measure of local order than 1is
generally observed; but corrections will have to be made
for.diffraction effects due to small sample size." However,
the results of the electron diffraction measurements to
date do not appear to support this argument.

Electron diffraction studies of vitreous silica have
been reported by Ackermann (74), Bagdyk'yants and
Alekseev (71), Kdnig (75), Maxwell and Mosely (7€),

McClurg (77), and Shishakov (78). There is one consistent
feature of all of these studles: the interatomic distances
which are deduced from this data are smaller than those
determined from the x-ray and neutron diffraction data,

McClurg, for example, has obtained a palr distribution
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frow the Fourler 1nversion of his diffraction data which
shows well-defined peaks at spaclugs of 1.3, 2.2, 3.0, 4.0,
and 4.5 2. In comparison, the spacings of the peaks in the
pair distribution curve which Warren obtained from his x-ray
data are 1.62, 2.65, 3.2, 4.3, and 5.2 2. McClurg concludes
that the discrepancles in the interatomlic spacings obtained
by the two different wethods are not the result of
experimental error; and therefore, that the bulk structure
of vitreous silica must be different from the structure of
the surface layer. Weyl and Marboe (79) suggest that the
difference in the bulk and surface structures arises from
the fact that the SiO4 tetrahedra in the surface have to be
distorted in order to assume a structure that does not
contaln unscreened Siu+ lons.

Shishakov claims that the sharp interference effects
which he observes in his electron diffraction pattern are
proof of the existence of flat networks or one and two
dimensional cheins. However, Porai-Koshits (80) attributes
these effects to the partial crystallization of the glass
during its preparation for the investlgatlon.

The paramount role of the x-ray diffraction studlies of
vitreous silic2 in the development of the various theorles
and models of the structure has been detailed in the
foregoing pages. The results of a number of these studles,
in the form of atom pailr spacings, are listed in Table I-5.

A brief comment concerning the atom palr spaclngs
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reported in the literature 1s in order here. Even if the
diffraction data are 1lnverted with a minimum number of
errors, the accurate determination of the atom pair spacings
from the resulting pair distribution curves is still a very
difficult proposition. Consider, for example, the analysis
of Warren's pair distribution curve (Figure I-3). The
second and third peaks in Warren's curve are unresolved.
(The same 1s true for all of the other pair distributions
obtained from x-ray measurements.) Warren has indicated
that the unresolved distribution curve can be separated
Into two relatively symmetric peaks in this region. However,
the arblitrary separation of unresolved peaks 1s a very
questionable procedure and obviously leads to a great deal
of inaccuracy in the determination of the pair spacings and
densities. In addition to the problem of unresolved peaks,
at the larger spacings (> 3.2 2) the 1dentification of a
peak in the distributlon curve with a particular atom pair
18 a matter of considerable uncertainty. In one paper
Warren concludes that the peak at 4,3 ® can be attributead
to two different silicon~oxygen palrings which are
unresolved in the Fourier analysis (26); yet, in another
papar he indicates that this same peak arises from a
combination of silicon-oxygen and oxygen-oxygen pairings (27).
In recent years there have been several neutron
diffraction studles of vitreous silica. The major advantage

of this technique lies 1in the fact that neutron scattering
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by an lsolated nucleus is isotropic. 1In the X-ray
diffraction experiment the scattering intensity is
determined by the electron density distribution in the
sample. Since the wavelength of the x-rays 1s of the same
order of magnitude as the atomic radii, interference occurs
between waves scattered by different electrons within the
same atom. Thls destructive interference decrcases the
intensity of scattering as the scatterling angle increases
and limits the range of momentum transfers in which it is
possible to observe diffraction maxima. The independence
of the neutron scattering from this effect has led to the
discovery of diffraction maxima at momentum transfers well
beyond the effective range of the x-ray experiments,

The results of those who have transformed thelr neutron
diffraction data into atom pair distribution curves are
listed in Table I-6. The smaller pair spacings derived
from the neutron measurements agree quite well with those
obtalned from the x-ray data. The advantage of belng able
to obtain diffraction data at larger momentum transfers 1s
reflected in the fact that previously undetected longer-
range atom palr spaclngs are obtserved in the neutron
results. However, the information in Table I-6 must be
viewed with the same degree of caution as that in Table I-5
since the interpretation of the pair distribution curves
obtained from the neutron data 1is subject to the same

difficulties as the interpretation of the x-ray results
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(unresolved peaks and the uncertainty as to whether a glven
peak represents one or more types of atom pairing).

Henninger, Buschert, and Heaton (40) have suggested
that the questlion of whether a particular peak in the pair
distribution curves represents a single type of atom pailring
can te resolved by combining the results of the x-ray and
neutron diffraction measurements. (Assuming, of course,
that the same sample is used for both measurements,)

The distribution function obtained by the Fburier
inversion of an x-ray or neutron diffraction pattern is not
a direct distribution of atoms; rather, it is a sum of the
distributions of each type of atom palr welpghted by the
effective scattering amplitudes and atom concentrations.
The appearances of the pair distributions obtained from the
x-ray and the neutron measurements differ considerably.
This follows, in part, from the fact that the x-rays scatter
with greater 1ntensity from silicon atoms than from oxygen
atoms while the reverse 1s true for the neutron scattering.
(The ratio of the nuclear scattering lengths Si/0 for
neutrons 1s 0.65 (90); the ratio of the scattering factors
S1/0 for x-rays is 1.5 (39).)

According to Henninger, et.al., the ratio of the
distribution functions obtalned from the x-ray and neutron

data, BR(r), may be equated to the following expression:
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where m; 1s the fraction of the total number of atoms which
are of type 1, pi—j(r) 1s the average density of j-type
atoms at a distance r from l-type atoms, b1 1s the neutron
coherent scattering length of an i-type atom, and K1 1s the
x=-ray scattering amplitude of an 1-type atom divided by the
average scattering factor per electron.

If the near nelghborhood of each atom is highly
ordered, the ratio R(r) derived from the experimental data
will 1indicate the correlation of atom types. For example,
if an oxygen atom has only oxygen nelghbors at distance LS
and no silicon-silicon palrs exist wlth a spacing of Ty
the ratio should be RO—O(rl) = Kg/bg = 147 since [)51_0(r1)=
pO—Sl(rl) = p31_31(r1) = 0. The other possible isolated
correlations would give BSi-Si(r) = 1450 and B g, o(r) = L63,
When there is no preferential palring, as in a random

mixing, = pO_O = 2'00-51 and therefore,

Psio = 2Ps1os
Bmix(r) = 364, At large separations r, beyond the region
of short-range order, the ratio should approach this value.
The experimental R(r) curve which Henninger et.al.
computed from the results of thelr x-ray and neutron
measurements is shown in Figure 4, According to the
authors, this calculation verifles that each of the first
three peaks in the palr distribution curves represent a
single type of atom pairing: S1-0O pairs with a 1.61 2
spacing, 0-0 palrs at 2.62 X, and Si-51 pairs at 2.95 3.
Furthermore, they clalm that the peaks in the pailr

distribution curves at larger spacings represent mixtures
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of all three types of pairing. (This last assertion is
difficult to reconcile with their R(r) curve. The two
nzxima in the R(r) curve at r = 3,85 R ana r = b4 R are

certalinly much closer to RS o Lé3 than the value for

1w
mixed pairings R ,.= 364.)

1x™

The successful application of the ratio analysis
obviously requires accurate computation of the two atom pailr
distribution curves. Since three of the ratios of palirings
(RO-O= 147, R = 364, and Ryy_o= 463) are quite close in
value there 1s not much of a margin for error. The fact
that Henninger's experimental R(r) curve overshoots the
calculated extreme values for each of the first three atom
pairings would seem to 1ndlicate that his pair distribution
curves are not sufficlently accurate for the analysis of
the peaks at the larger spaclngs.

It is extremely difficult to assess the relatlve
gquality of the atom pair dlstribution curves reported 1in
the literature. As noted previously, the sources of error
in the measurement and in the inversion of the diffraction
data are numerous. The probtlem is further complicated by
the fact that the authors' attempts, if any, to correct for
the experimental and inversion difficulties are rarely
discussed in any detall. A&s a result, there are many
instances where the reader has been led to believe that

spurious peaks are real and real features of the pair

distribution curve have either teen altered or completely
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removed. The diffraction studles by Carraro (88) and
Henninger (40) provide a typical example of the confusion
created by thils probtlem. Each of these authors has
measured the neutron diffractlon pattern of vitreous silica
and transformed his data into a pair distritution curve.
Although the positlons and relative intensities of the
maxima in the two diffraction patterns are in excellent
agreement, there 1s a significant difference in their

pair distribution curves. Henninger's results show a
prominent, well-resolved peak at 3.22 X; Carraro's analysis,
on the other hand, indicates that this peak is a spurlous
feature and his palr distribution curve actually passes
through a minimum at this point. Although Henninger
provides a more detalled description of his computation
than Carraro, neither author provides sufficient information
to determine which interpretation 1s correct.

An equally troublesome omission in most of the papers
is an adequate description of the sample 1ltself., According
to Sosmen (91): "The structure of any given fragment of
vitreous silica is a composlte inheritance from all of the
temperatures trrough which it has passed since 1t last
attalned a therwodynamic eguilitrium, Its proverties
therefore depend, to a limited extent, upon its thermal
and mechanical history." In tre discussion of the
crystellite model it was noted that varlous measurements of
the physical properties of vitreous silica suggest that

there i1s a correlation between the structure of the glass
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and the crystalline form of silica from which 1t was
prepared. Douglas and Isard (92) report that the quenching
of vitreous silice from temperatures that vary between
100000 and 150000 produces samples with substantial
differences in density at room temperature. All of trese
factors indicste that if a palr distribution function 1is

to have any significance, the sample from which 1t 1s
obtalned must ke adequately described.

Since the 4iffraction studies cited in this report
suffer in varying degrees from the abovementloned errors
and omissions, let us discuss exactly what we can learn
about the structure of vitreous silicea from the atom pailr
spacings in Tatles I-5 and I-6.

There is almost universal agreement that the results
of thre diffraction experiments confirm that the baslic unit
of the vitreous silica structure 1is the S1Q, tetrahedron.

The mean value of the 0-31-C angle is
2 2
2510 ~ Bo-0

2
R
2 51-C

I-4 /3(0-81-0) = arcces

where BSi-O and RO~O are the silicon-oxygen and oxygen-
oxygen palr spacings respectively. If the silicon atom 1s
surrounded bty four oxygen atoms in a regular tetrahedral
configuraticn, this angle will be 109028'. As shown in
Tavle I-7, the 0-31-0 angles calculated from the
experimentally derived palr spacings lle within a few

degrees of thls value.
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TABLE [-7. Bond Angles in Vitreous Silica Calculated from Diffraction Data

Author Method S (0-5i-0) O (Si-O-Si)
Warren X-ray 109° 162°
Hartlief X-ray 104° 130°
Simon X-ray - 140°
Zarzycki X-ray - 143°+1 70(0)
Norman X-ray 107° 140°
Warren X-ray 109° 146°
Henninger X-ray 108° 158°
Milligan Neutron 107° 145°
Breen Neutron 108° ~1 80°(b)
Carraro Neutron 106° -
Henninger Neutron 110° ~150°®)
Lorch Neutron 109° 145°
Henninger X-ray/Neutron 103° 132°

(a) Zarzycki is one of the few authors who has calculated the $i-O-Si
angle from his data and is the only one who has estimated the
error in the angle determination.

(b) Both Breen and Henninger report Si-Si atom spacings which are

more than twice the Si-O atom spacings.



-7 3=

As the spaclngs between the atoms 1ncrease, there is
a corresponding decrease in the reliebility of the
information which can te obtained from the pair
distribution curves. Conslder, for example, the calculation

of the mean angle of the S1-0-51 tond linking the SiC

4
tetrahedra. The £1-C-51 angle 1s glven by the expression
ZR? RZ
" - 51-S
I-5 © (51-C-51) = arccos Di‘GZ Si-01
2R3
51-C

Using the S51-C and S1-51 palr spacings listed in Tatles I-5

and I-6, one finds that estimates of the mean S1-0-31 angle

vary from 1300 to 180° (Tatle I-7).

It should be remembered that the x-rays are scattered
by the electron distribution in the sawmple whereas the
neutrons are scattered bty the nuclei. Unless the electron
distritution atrout each atom is spherically symmetric, there
is no reason to expect that the S1-C-51 angles calculated
from the neutron and x-ray data wlll be very nearly equal.
However, it 1s almost inccncelvable that the 320 range in
values calculated from the x-ray data and the comparable
350 variztion in the neutron results is a true reflection
of the degree to which the short range order of vitreous
silica varies from sample to semple. There 1s evidence,
furthermore, that even if the mean value cf the Si-0-51
angle 1ls strongly sample dependent, the limits indicated
in Table I-7 are unreasonable. Bell and Dean (93) have

constructed a physical model of the vitreous silica
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structure, based on the random network concept, in which the
mean Si-0-51 tond angle is 139°24'., They find that the
density of this model is approximately 25% greater than the
measured deunsity of vitreous silica. On the other hand, a
model in which the mean 51-0-S1 angle is approximately 180o
has a density 10% lower than the measured density (€5).

The most likely explanation of the wide range in the
S1-0-51 angles 1s the extreme sensitivity of the angle
calculation to small variaticns in the S1-0 and 51-51 atom
spacings. A plot of the Si-0-31 angle as a function of
these pair spacings 1s shown in Flgure 5. We see, for
example, if & fixed Si1-C pair spacing of 1.60 R 1s assumed,
a decrease in the S1-S1 spacing from 3.20 X to 3.15 X
decreases the S1-0-S1 angle by 200. Lorch {(89) estimates
an error of 10.05 X in the 51i-0 pair spacing which he has
derived from his neutreon diffraction study. Again referring
to Figure 5, we see that 1f a fixed 51-51 atom palr spacing
cof 3.15 R 1s assumed, an increase in RSi-O from 1,58 R to
to 1.60 X, a change of only 0.02 X, gives rise to a 12O
increase in GB(SI-O-SI). Perhaps the 4ifficulty of
obtaining an accurate estimate of 69 explalns why there has
not been a satisfactory intervpretation of the other maxima
(r >»3.2 X) in the pair distribution functlons of vitreous

silica,
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Figure 5. The tetrahedra linking angle, (S1-0-S1),
as a function of the sllicon-oxygen and

silicon-sillicon spacings.
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1.4 THE DYNAMICS OF THE VITREQUS SILICA STRUCTURE
1.4,1 INTRODUCTION

The foregoing discusslon of the various models of
the structure of vitreous silica dealt with what may be
classified as the structural statics, i.e. the interatomic
spacings, bond angles, and the coordination (atom peir
densities) of the structure. A complete description of
vitreous silica must also include a description of its
characteristic vibrations and the nature of the forces
which give rise to them. The most direct experilmental
evidence of the dynamical properties of vitreous silica
is obtained from measurements of its infrared, Raman, and
more recently, inelastic neutron scattering spectra. The
measurements and interpretations of these spectra are

reviewed in the followlng pages.
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1.4,2 TINFRARED AND RAMAN SPECTRA OF VITREOUS SILICA

Infrared properties of glass have been studied since the
teginning of infrared spectroscopy more than sixty years ago
(94)(95) and the first attempts to investigate Raman spectra
in glass date back to 1928 (96)(97)(98)(99). As a result,

a reasonably large body of data has beea accumulated by both
techniques. The apparatus and the méthods employed to obtailn
the infrared absorption and reflection spectra of glasses

are detalled in a review article by Simon (100). A similar
discussion of the Raman measurements 1s provided by Bobovich
and Tulub (101). Therefore, the following remarks will be
confined to a few special problems connected with the
specific nature of the infrared and Baman interactions in
glass and thelr bearing on the reliabllity of the data
ottained by the two techniques.

The principal protlem in the infrared spectroscopy of
vitreous slllica lles with the type of sample required for the
measurements. Absorption in the regions of the fundamental
bands 1s s0 strong that layers of vitreous silica a few
microns thick absorb the ilncident light completely. In order
to obtain a useful transmission spectrum, one has to resort
to very thin films blown as bubbles from molten glass or fine
powders in 01l suspensions or mixed with dry KBr powder and
pressed into pellets. Since the strength and shape of
absorption bands in powdered materlials depend critically on
the particle size, it 1is questionable if the data obtalned

from this type of sample 1s truly representative of the bulk

-77-
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structure of vitreous silica. A simllar objection applies
to the data obttained from the thin films. The infrared
spectrum can be obtained by reflection from a polished
surface of a larger glass sample. However, the reflection
measurement 1s generally insensitive for weak tands.

The Raman effect in vitreous silica 1s very weak and
generally produces btroad diffuse tands. Difficulties in the
Raman measurements arlse from the parasitic scattering from
sample defects such as knots, bubbles, devitrified particles,
etc.. The high pressure mercury lamps which have commonly
been used as the exciting source for these measurements,
produce spectra contalning a continuous background in
addition to sharp lines which greatly hinders the detection
and interpretation of the weak scattering spectrum of glass.
The use of low-pressure mercury lamps in more recent studies
has helped to reduce the background problems. Also, the |
more modern technique of using a laser as the exciting source
is just beginning to be employed in the study of glasses.

The results of a numbter of infrared studies of vitreous
silica are compiled in Table I-8. The numter of absorption
or reflection bands reported by a particular author 1is not
significant in that the measurements cover wildely different
ranges of frequencies, e.g. Reitzel's (108) study includes

1 to 600 cnm? region whereas the measurement

only the 400 cm™
-1 -1

of Lippencott, et.al. (106) extends from 300 cm to 4000 cm .

What will be descrited as the consensus inrared spectrum of

vitreous silica 1s listed in the last column of Table I-8.
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The criterion for the inclusion of a band in the consensus
spectrum i1s that it must have been observed in at least
three different measurements.

The nature of the low frequency region (V < 400 co )
of the infrared spectrum of vitreous silice is a matter of
consideratle controversy. The weak absorptioa tands at
76 cm-l, 85 cm-l, and 116 cm-1 which Barnes (104) observed
in his 1932 measurements have not been confirmed by
subsequent measurements. Plendel and Mansur (111) report
that they have observed a very weak absorption band at
~ 143 c:m'-1 but nothing below this band in a measurement that
extends down to at least 65 cmal. Su, et.al. (109) report
the presence of four absorption bands between 207 and
280 cm-l. However, it 1s interesting to note that there is
no evidence of this absorption in the transmission curve
shown in their paper. Hanna (112) also reports an infrared
band at about 200 cm°1. Plendel and Mansur (111), on the
other hand, observe no absorption in this region. Gross and
Romanov (102) claim to have observed a moderately strong
infrared band at about 373 cm‘l. Lippencott (106), Su (109),
and Hanna (112) observe no absorption in this reglion of
thelr spectra.

In summary, if there are infrared bands in the low
frequency end of the vitreous sillca spectrum, they are
obviously quite weak and/or very sample-dependent. The
many discrepancies noted atove point up this fact and

indicate that more intensive studies of this region of
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the infrared spectrum are required.

The 475 cm“l, 790 cm'l, and 1100 cm~! bands of the
consensus spectrum are all quite strong. Although these
bands are relatively broad (> 50 c:m"1 at room temperature),
thelr positions in the spectrum are well established.

For example, if the older data of Gross and Romanov (102)

1s ignored, the varlation in the reported positions of

the infrared bands in the 475 o:;m"l region of experimental
spectra is only 10 cm'l; in the 790 cm~! region, 19 cm=1,

If the 1030 cm™! band which Su, et.al.(109) observed in their
reflection spectrum is discounted, the range in the reported
positions of the bands in the 1100 cm™1 region is ~ 30 cm’l.
This relatively large range, in comparison to the other

two bands, probably is due to the presence of a band at

~ 1200 cm'l which appears as a shoulder on the high frequency
side of the 1100 cm™! band and distorts its shape. No bands
have been observed 1in the Infrared data in the region beyond
1300 em L.

The results of a number of Raman scattering studies of
vitreous silica are compiled in Table 1-9. The dominant
feature of the Raman spectrum of vitreous silica 1s an
intense continuum extending from the exciting line out to a
sharp cut-off at ~ 560 cm™l. (The criterion of three
observations for the inclusion of a band in the consensus
experimental spectrum has been relaxed in this instance

since there have been only two serious attempts to measure

the extreme low frequency region of the Raman scattering
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spectrum of vitreous silica.) According to Flubacher, et.al.
(119), the continuum is characterized by two broad intensity
maxima at 48 cm~! and L32 cm~! and a sharperApeak at 489 em™1,
Krishnan (116) reports a strong Raman band at ~ 370 em~1,
Gross and Romanov (114) report some six different maxima in
this region. Simon (100) suggests the possibility of two

1 and 275 el Thus,

strong bands at approximately 95 cm_
it is interesting to note that one finds discrepanciles in
the low frequency Reman data similar to those in the low
frequency infrared data.

The higher frequency end of the Raman spectrum of
vitreous silica appears as follows: two fairly weak bands
are observed at 595 - 620 em™d and 685 co~ . The most
intense band in the spectrum after the low frequency

1

continuum appears at 780 - 830 cm - with a moderate intensity

shoulder at 830 - 850 cm“l. A very weak band is observed at
915 cm"l and a moderately strong band is observed between
1020 - 1095 cm™! with a weak shoulder at about 1150 -

1240 cm“l. There have been no reports of Raman bands

beyond 1300 em™ L.

Knowledge of the degree of polarization of the Raman
bands should be helpful for band assignments. According to
a study of the state of polarization of the Ramen spectrum
by Harrand (117), the continuum is strongly polarized at

~ 200 - 500 om~! but depolarized at ~ 100 cm”l. The bands

at 595 - 620 cm"l, 780 - 830 cm'l, and 915 cm~! are

polarized; all of the other bands are depolarized.
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Attempts to assign the various features of the infrared
and Ramen spectra to particular motions of the atoms in

vitreous silica are discussed in Section 1.4.4.



1.4.3 INELASTIC NEUTRON SCATTERING SPECTRA OF VITREOUS
SILICA

The inelastic neutron scattering measurement offers
several slgnificant advantages over both the infrared and
Raman techniques. 1In Section 1.4.2 it was noted that the
high absorption of the incident radiation in the infrared
measurements requires the use of thin films or powder
samples. Since the mean free path of a neutron in vitreous
silica 1is approximately 4 to 5 centimeters (Chapter 1IV), it
is possible to use a much larger sample and thus obtain data
which 1s more truly representative of the bulk structure.
Also, the sample does not have to have the high optical
quality required in the Raman measurement. However, the
greatest advantage of the neutron scattering experiment 1is
that the neutrons can interact with all cf the vitrational
modes of the target whereas the infrared and Raman
experiments are sensltive only to optically active modes.

To date, only Egelstaff (120) and Leadbetter (121) have
studied the 1inelastic neutron scattering properties of
vitreous silica. Both experiments were performed at the
cold neutron-chopper faclility at the Dido reactor, Harwell.
In each case, the energy of the neutrons in the incident
beam was 3 meV (25 cm-l) and therefore, only energy gailn
spectra were observed.

Egelstaff's measurements were performed at temperatures

of 20°C and 350°C. fde reports that he observes three major

-85~
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peaks and a fourth peak of low intensity in the inelastic
scattering spectra. The energies of these peaks are glven
as 39 meV (315 cm-l), 13 meV (105 cm-l), 4 meV (32 cm-l),

and approximately 2 meV (16 cm'l).

(The energies of the
scattered neutrons are determined by measuring their
time-of -flight over a 1.28 meter flight path.) Three of
the spectra, one of the 20°¢ measurements and two of the
350°C measurements, are reproduced in his paper. The
scatter of the data points and the lack of error bars makes
it extremely difficult to observe the reported maxima. Only
the 39 meV and 13 meV peaks 1n one of thé BSOOC spectra are
readlly apparent. Judged on the basis of the three spectra
shown, the presence of the other two peaks is highly
questionable.

In Leadbetter's study, the coherent inelastic neutron
scattering by a sample of vitreous silica at a temperature
of u—l?OC was observed at slx scattering angles between
20° and 900. The spectrum observed at the ?50 scattering
angle 1is reproduced in Figure 6. Leadbetter claims that the
coherent 1lnelastic neutron scattering spectra of his glass
sample and a powder sample of low-cristobalite are alwmost
identical for the region W > 50 cn”l. The location of the
maxima in the low-cristobalite spectra (for W > 50 cm-l)
are given as « 85 cm-l, ~ 150 cmul, and between 200 and
500 cm-i. In the low frequency region of the spectra
(W < 50 cm-l), Leadvetter notes that a peak observed at

~ L0 cm-1 in the low-cristotalite spectra is almost
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completely smeared out in the vitreous silica results where
it exlists only as an ill-defined shoulder.

Although Leadbetter states that his results are in
good agreement with those of Egelstaff, there are a number
of discrepancles in the positions of the maxima reported
by the two authors. Thls can be attributed in part to the
difficulty of accurately determining the ceaters of the
relatively btroad bands of the neutron scattering spectra.
However, with better counting statistics it might be
possible to determine if there 1s one band centered at
105 cm.l as reported by Egelstaff, or bands at ~ 85 cm.1
and ~150 co™' as reported by Leadbetter, and to resolve

the questlon of the presence or absence of peaks in the

low frequency region of the spectra.



1.4,4 INTERPRETATION OF THE VIBRATIONAL SPECTRA OF
VITREOUS SILICA

At the outset it can be stated that the problem of
interpreting the spectra obtained from the inelastic neutron
scattering, Raman, and infrared measurements of vitreous
silica remains as yet unsolved. The techniques commonly
employed in the analysls of the molecular vibrations of free
molecules and the lattice dynamics of crystalline solids are
not strictly applicable in this case. The problem of
interpreting the dynamlcs of the disordered glass lattice is
of course further complicated by the uncertalnty as to the
nature of even the short range order in the structure.

As a first step in the interpretation of the observed
spectra, one might consider a general classification of the
vibrational modes of the polymorphs of S10, suggested by
Lippencott, et.al. (106). It 1s noted that a S10; group in
a rigild framework has 3N-3 or six vibrational degrees of
freedom, Hecognizing the fact that there is some ambigulty
as to how the corresponding modes of vibration should be
classifled in terms of bond stretching, bond bending, and
bond distortion types, Lippencott, et. al. somewhat arbitrarily
assoclate a bond stretching and a bond bending wmode with
each oxygen atom. It is assumed that the O-stretching mode
corresponds to the highest observed frequencies in the
spectra. Two vibrational modes are assigned to the S1 atom,
one of which is a stretching mode corresponding approximately

to motions of the S1 atom between the two O atoms. The

~89-
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remaining mode ls asslgned to what 1s described as a low
frequency distortion or Si-0 bending mode.

For each 8102 group which 1s added to the first to make
up the unit cell, nine vibrational degrees of freedom are
added. These nine modes are classified as the fbllowing
types: because each added 8102 group adds four bonds, four
of the nine modes correspond to tond stretching frequencies,
two involving dlsplacements associated with the O atoms and
two for the Si atom. (Using another description, these
would correspond to two antlisymmetric stretching modes of the
type €= S1 O-»«51, and two symmetric stretching modes of
the type €«=—Si 0 S1 —> ,) Two more of the nine modes may
te classified as bending motions associated with the bending
of the Si1-0-Si angle. The remailning three modes are
associated with low frequency bending or distortion modes.
Table I-10 summarlizes this classification of the modes of
vibration for various numbers of 8102 groups per unit cell.
Lippencott, et.al. emphasize that their classification of
vibrational modes is only approximate and that 1n general,

a given mode will be a mixture of stretching, bending, and
distortion types.

In the case of vitreous silica, one obviously cannot
speak in terms of a unit cell comparatle to that found in
a crystalline lattice. However, the identification of the
infrared, Raman, and neutron bands of vitreous silica in a
given frequency range with the modes indicated 1in Table I-10

1s justifled to some extent by the argument that the
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vibrational spectra of glasses are determined largely by the
nearest neighbor interactions and thus are essentlally
similar to the spectra of crystals of the same composition
and possessing the same type of short range order.

Since it 1s generally recognized that the Siou group 1is
the basic structural unit of the disordered glass lattice,
several authors (122) (123) have suggested that it would be
reasonable to attempt to relate the observed spéctra of
vitreous silica to the normal freguencies of a free Siou
tetrahedron. Support for thils argument comes from the fact
that tetrahedral SiOu groups are the maln structure elements
in the crystal lattices of silicates and the infrared
reflection spectra of all sllicates contain two reflection
maxima near 1000 cm-1 and 500 cm.l° These maxima have been
attributed to the two infrared active frequencles of a
tetrahedral point group.

The four normal modes of vibration of a free tetrahedral
molecule of the type XYu are shown in Figure 7. The first
mode (Species Al) is Raman active, producing completely
polarized lines, and inactive in the infrared. The second
mode (Species E) 1s also Raman active and infrared inactlve,
The Raman lines for this mode are depolarized. The other
two modes (Species Fz) are both Raman and infrared active.
The Raman lines for both modes are depolarized (124).

As noted by Simon (100), the calculation of the normal

frequencies of the 8104 tetrahedron is not completely
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V,, TYPEA Y, TYPEE
SYMMETRIC DOUBLY DEGENERATE
V3, TYPE F Vg TYPE F

BOTH TRIPLY DEGENERATE

Figure 7. The four normal modes of a tetrahedral molecule
of the type XY, . (From Simon (100).)
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straightforward. A detalled analysis by group theoretical
methods indicates that there are seven individual force
constants to be considered in an XY, molecule (125). Those
who have calculated the normal frequencies of the free SiOu
tetrahedron have assumed that a number of these force
constants are negligitly small. Matossl (124) has used
three force constants in the central force formulas of

Dennison and Schaefer (126) to ottain the following

frequencies for the S10, tetrahedron: Lﬁ = 770 cm-l,
-1 -1 -
Lé = 260 cm , Lg = 92k cm 7, Lﬁ = 450 cm 1. Saksena (127)
1 1

obtains frequencies of U, = 729 cm

Y

force constants in the formulas given by Herzbterg (128).

’ L@ = 473 cm ,

= 1031 cm-l, and LZ’= Lg3 cm.l through the use of three

The calculated frequencies and the polarizations
predicted for the Raman lines of the free tetrahedron agree
reasonably well with the stronger features of the consensus
experimental infrared and Raman spectra (Tables I-8 and I-9).
The relatively strong polarized band otserved at 780-830 cm.1
in the consensus Raman spectrum might well te assoclated
with the L& mode. Although this mode 1s supposedly inactive
in the infrared, a strong band 1is observed at 790 cm-1 in
the experimental infrared spectrum. The predicted L% mode
in the Raman spectra would lie in the intense, depolarized
conﬁlnuum otserved in the low frequency region of the Raman
spectrum. The 1100 cu~! band of the consensus infrared

spectrum and the moderately strong depolarized band observed

at 1020-1095 co~! in the Raman spectrum agree well with the
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predicted frequenclies and polarizations of the LS mode. The
l#?;"‘cm"l band in the infrared spectrum agrees quite well
with the calculated frequencies of the V, mode and the

Raman scattering 1s also quite strong in this region of the
frequency spectrum. However, the Raman line for the Y, mode
of the free 510, tetrahedron is depolarized while Harrand
(117) reports that the experimental data in this region is
strongly polarized.

Since the 510, tetrahedra in vitreous silica are
partially or completely bound to each other by the common
oxygen atoms, 1t 1s apparent that the foregoing identification
of bands of the experlmental spectra with the normal
frequencies of the free 510, tetrahedron must be considered to
be only an extremely crude approximation. The discrepancies
between the otserved and predicted results confirm this point
and indicate the need for a more sophisticated model.

Su, Borrelli, and Miller (129) and Wadia and Balloomal
(130) have attempted to simulate the effect of the linkage of
the SiOh group to the rest of the glass lattlce with models
in which the tetrahedral unit 1s tonded to four atoms of
infinite welght located at the neighboring silicon sites.

In both papers it 1s assumed that the bond angle 1s straight
(S1-0-S1 = 1800) so that the tetrahedral symmetry (Td) of the
free S10y unit is retained. The frequency spectra calculated
for this model are of dublous value since the model as

described, 1is hardly an adequate representation of the actual
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bonding scheme and completely ignores the effect of the
vibrational motions of the lattice. This perhaps explains
the fact that the results of both of these calculations
are relatively insensitive to the authors'! choice of force
constants for the model.

As noted previously, the tetrzhedral configuration of the
oxygen atoms about a central silicon atom 1s also observed in
the lattices of the crystalline sllicates. The linkage of
the tetrahedra in these lattices occurs in many different
forms. Crystals such as enstatite (MgSiOB) and diopside
(CaMg(SiOB)Z), for example, form lattices in which the 510,
groups share only two corners with other SiOu tetrahedra,
This interlinksge leads to infinitely extended (8103)x chains
which are held together by Mg2+and Ca2+ ions, In other
lattices such as those of some clay minerals and micas, the
SiOu tetrahedra share three of their four corners and form
infinitely extending sheets, Connection of 5104 groups so as
to form rings of tetrahedra occurs 1in crystals of henitoite

(BaT1S1 _O_) and beryl (A12B6331 ). Matossi (124),

39 618
Saksena (127), and Stepanov and Prima (131), among others,
have calculated the vibrational spectra for these different
groupings of the Sioq tetrahedra.

Since one would expect that the groupings of Siou
tetrahedra in the silicate lattices would provide a more

realistic approximation of the vitreous silica lattice than

the model of a single fixed tetrahedron, it 1s tempting to
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look for correlations between theilr calculated vibrational
spectra and the experimental spectra of vitreous silica.
However, there are sericus problems in attempting such an
enalysis. In the three papers cited above, the authors
cautlion that thelr calculations are of an approximate nature
and therefore, not too much importance can be attached to the
numerical values whlch they have obtained for the frequencies
of the various vibrational modes. (Even in the simplest case,
the free SiO4 tetrahedron, Saksena's and Matossi's calculations
of the frequencies of the normal modes vary by as much as

200 cm-l.) The question as to how the interaction of the
various groupings of the tetrahedra with their surroundings

1s to be taken into account remains unsolved since the
abovementioned calculations are for completely 1solated systems.
Even after thls gross simplification of the problem, other
assumptions were required for these calculations. In the work
of Stepanov and Prima (131), for example, only valence
vibrations were considered; this reduces the number of force
constants in the calculation to two and in the published part
of the work to only one. Furthermore, the lack of long-range
order in vitreous silica prevents the symmetry properties of
the different molecular groups from manifesting themselves in
the optical properties of the bulk solid. Under these
circumstances the group theoretical selection rules for the
infrared and Raman activity of the various vibrations are no

longer strictly valld and it becomes difficult, 1if not
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impossible, to make rellatle assignments of the observed
frequencies (100).

In recent years there has been an increased interest in
adapting the methods employed in the calculation of the
vibrational fregquency spectra of crystalline lattices to the
problem of the disordered glass lattice. Dean (132),
Anderson (133), Dyson (134), and Schwidt (135), among others,
have considéred this probtlem. The greater portion of this
work has been devoted to the study of the physically
unrealistic model of a one dimensional chaln of harmonic
oscillators. However, as Lleb and Mattis (136) have pointed
out in their review of this subject, until the one
dimensional model is thoroughly understood, it is rather
pointless to consider the much more complicated two and
three dimensional disordered arrays.

Bell, Bird, and Dean (137) have calculated vibrational
frequency spectra for the physical model of the glass
structure constructed by Bell and Dean (93). (As noted in
Section 1.3.13, this model is based on the random network
concept with a mean S1-0-Si bond angle of n'lhoo.) The
spectra calculations were based on a numerical technlque
originally used by Dean and Bacon (138) in work on the
spectra of two component lattices and the assumptlion that
central and non-central forces act between nearest nelghtors
in the model. Zarzycki and Naudin's (139) estimate of
5

4,0 x 10° dynes/cm was adopted for the central force

constant and the non-central force constant was taken to be
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3/17 times the central force constant; this is in close
agreement with Saksena's (127) suggested ratio for the
force constants in 8102.

Two types of boundry conditions were considered in the
calculations: the fixed-end condition in which the non-
bridging oxygen atoms at the model surface are regarded as
fixed, and the free-end condition in which these surface
oxygen atoms are free to vibrate. Since the model is finite
in size, there are a finlte number of degrees of freedom -
1227 when the fixed-end condition i1s imposed and 1509 with
the free-end condition.

The spectrum calculated for the fixed-end boundry

1 1

condition shows prominent peaks at 410 cm -, 730 cm ~, and

1040 cm.lo (The three strong bands in the consensus
experimental infrared spectrum are observed at 470 cm-l,

795 cmwl, and 1100 cm *.) From a study of the atomic motions
associated with these frequencles, the authors propose the
following tentative assignments. The band at 1040 cmul is
assoclated with a 'bond-stretching' vibration in which the
bridging oxygen atoms move in the opposite direction to
their Si neighbors and roughly parallel to the S1-51 lines.
The peak at 730 cm-1 is assigned to a 'bond-bending!
vitration in which the oxygen atoms move approximately at
right angles to the 51-51 lines and in the S1-0-51 planes;
these are the so-called 'Si-stretching' modes described bty
Lippencott, et.al. (106). The large peak at 410 cm“1 in the

calculated spectrum is attributed to a 'bond-rocking'
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vibration in which the oxygen atoms move roughly
perpendicular to the S1-0-Si planes. According to Bell,
et.al., the modes in these bands are not localized to Just

a few atoms, nor, on the other hand, are they typical of the
extended wave-like modes which occur in crystalline solids;
they appear to be complicated vibrations intermediate between
the two extreme types. Furthermore, there 1s a tendency for
the higher frequency modes to be more localized than modes

at low freguencies.

The major difference in the spectra derived from the
fixed-end and free-end boundry conditions was that a band
gap observed between the 730 cm“1 and 1040 cm~1 peaks of the
fixed-end spectrum was replaced by a new and fairly intense
tand at about 850 cm"1 in the frequency spectrum of the
free-end model. A study of the atomic displacement
elgenvectors for modes in the reglion of the new band
indicated that this tand could be attributed to highly
localized Si-0 stretching vibrations involving the surface,
1.e. non-bridging, oxygen atoms. The non-bridging oxygens
also give rise to another less marked shoulder at about
330 cm-1 in the free-end spectrum.

Bell, et. al. note that if they accept Saksena's (127)
suggestion that the central force constaat for the non-
tridging oxygens is 5.0 x 105 dynes/cm (as opposed to

5

-1
4,0 x 10° dynes/cm for bridging oxygens) the peak at 850 cm

-1
should move to a higher frequency, probatly around 950 cm ~.

Simon and McMahon (Table I-8, ref. (105)) report that they
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have otserved a btand in this region of the infrared spectrum
of vitreous silica. In a more recent paper, Simon (140)
confirms the presence of a structure sensitive (i.e. its
intensity varies from sample to sample of glass) infrared
band at abtout 950 cm°1 which he likewise attributes to the
presence of non-bridging oxygen atoms. However, there is
another possible explanation of this band. Weyl and Marboe
(141) report that the observation of this band in the
infrared spectra of some samples of vitreous silica has been
attributed to the presence of OH ions. This band is absent
in powdered quartz but can be developed when finely powdered
quartz (grain size ~1 micron) is brought into contact with
water. Water itself does not have this band.

Bell, et.al. conclude their paper with the following
statement: "We must emphasize the point that the frequency
spectrum (as computed in our work) 1s not equivalent to the
infrared or Raman spectrum, even for a glass where one does
not encounter strict selection rules forbidding optical
activity in certaln modes. However, one expects each of the
main bands in the frequency spectrum to have a counterpart
in the infrared or the Raman spectrum, or both."™ The three
most prominent peaks in thelr calculated spectra do indeed
agree qulte well with the strong btands observed in both the
Raman and infrared spectra. Furthermore, Leadbetter (121)
claims that there 1s excellent agreement between the Bell,
et.al. spectra and his inelastic neutron scattering results

for frequencies greater than 100 cn™l.
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The discussion to this point has dealt with attempts to
correlate the experimental data with calculated frequency
spectra. The difficulties arising from the lack of an
adequate model of the structure, the approximate character
of the proposed force systems, and the sensitivity of the
calculations to the cholce of force constants, indicate the
need for supplementary methods of analysis. Vlasov (141)
has disc&ssed the problem of interpreting the experimental
spectra and has come to the concluslion that at the present
time the only promising direction for studles of the
characteristic vitrations of the glass lattice lies in the
comparison of the experimental glass spectra with the
measured spectra of the crystalline silicas. An analysis
of this nature i1s , of course, attractive to proponents of
the modern crystallite theory of the structure.

(Before discussing the crystalline data, a trief word
is required about the notation used to identify the high-
and low-temperature modifications of the various crystalline
forms of silica. In the literature it is a common practice
to give the deslignation (X to the low-temperature
modification and ﬂ to the high-temperature modification.)

A major problem in attewmpting to find correlations in
the various spectra of vitreous silica and the crystalline
polymorphs is that there is neither sufficlent quantity or
quality of data for the crystalline silicas. Only in the
case of ((-quartz are the Raman, infrared, and inelastic

neutron scattering spectra relatively well established.
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The Raman and neutron scattering spectra of (X-cristobalite
have each been measured once. Nelther of these measurements
have been performed for (X-tridymite.

A comparison of the Raman data for ({-quartz and the
consensus Raman spectra of vitreous silica 1s presented in
Table I-11., Although there are some similarities, there are
also a number of otvious discrepancies. The major difference
appears to be in the low frequency end of the spectra: the
lowest frequency line in the ((-quartz spectrum 1s observed
at 128 c:rn'1 whlle the lntense continuum in the glass spectrum
extends down almost to the exciting line of the source.

Harrand (14€) is the only author who has reported a
measurement of the Raman spectrum of ((-cristobalite. She
notes that she had great difficulty in obtaining any
scattering of useful intensity but did observe a moderately
sharp line at 470 cm"1 and weak bands at 100 cm_1 and
150 - 200 cmnl. Since (O(-cristobalite is usually opaque
(147), 1t 1s surprising that such a measurement was possitle.

The results of numerous measurements of the infrared
spectrum of (X-quartz are compiled in Table I-12, It is
interesting to note that in some instances the vitreous
silica measurements appear to be more precise than the
((-quartz measurements. For example, in Section 1.4.2 it
was otserved that the reports of the position of the tand in
the 475 emt region of the glass spectrum differ by only
10 cm*l; the reported positions of the corresponding band 1in

-1
in the (({-quartz data vary ty as much as 26 cm ~. A likely
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TABLE 1-11. Comparison of the Raman Spectra of &~ Quartz and Vitreous Silica

oC- Quartz Vitreous
Krishnan | Saksena | Scott & Shapiro Consensus Silica
(142) (143) Porto (144)] (145)
10
128 128 128 128 128 (s)
145 147 146 (vw)
207 207 207 207 207 (s)
266 267 265 264 265 (ms)
356 358 356 355 356 (m)
394 391 394 394 394 (m)
403 403 401 403 403 (m)
452 450 452 451 (m)
466 466 464 466 466 (vs) v
505 509 508 508 (m) 550 (vs)
595-620 (w)
695 695 697 698 697 (w) 685 (w)
796 795 795 798 796 (w) 780
809 806 807 811 808 (m)
830 (s)
820 (m)
915 (vw)
1063 1063 1072 1067 1066 (w) 1020
1082 1082 1085 1081 1082 (vw) ]035 (ms)
1160 1160 1162 1161 1161 (w) 1150
1227 1228 1235 1233 1233 (vw) ]ZXO (w)

Key: s- strong, m- moderate, w- weak, v- very
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explanation of this lack of precision in the quartz data 1is
that unlike cristobalite, tridymite, and vitreous silica,
the scattering of light by quartz is not lsotropic. While
quartz may te considered as falrly isotropic far enough from
strong dispersion bands, this is not the case within the
bands. According to Simon and McMahon (105), strong
dichrolsim 1s usually observed within the tands and the
methods commonly used to analyses the data fall to yleld
conslstent results near the band centers.

From Table I-12 one can see that the prominent bands of
the consensus infrared spectrum of the vitreous silica match
up quite well with intense bands in the ((-quartz data.
However, the correlations are no worse for the much less
of ten measured spectra of (X-cristobalite and (X-tridymite.
(See Tables I-13 and I-14.) A brief review of some of the
papers cited in Tables I-12, I-13, and I-14 indicates that
there are indeed many different opinions as to which of the
spectra of the crystalline sillcas more nearly resemtles
that of vitreous sillca.

Simon and MoMahon (105) studied the 700 to 1400 cm
region of the infrared spectra of (X-quartz, ((-cristobalite,
and vitreous silica. In one measurement the samples were
held at a temperature of BOOK in order to minimize the line
broadening effect of thermal motions. Comparing the widths
of the strongest band in the spectra of the three samples
(1055 cm”1 in ({-quartz, 1085 em? in O(-cristobalite, and

1100 cm~} 1n vitreous silica), 1t was noted that the widths
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of the quartz and cristobalite bands were identical, while
the width of the vitreous silica band was only slightly
greater (27 cm-1 as compared with 22 cm-l). The fact that
the width of the band for the glass sample was only 5 c::m‘-1
greater than those for the crystalline samples was
interpreted as an indication that the motion giving rise to
this tand must te assoclated with a feature of the silica
structures which persists even in the absence of long range
order. Simon and McMahon identified the motion as a valence
streching mode ( €— Si O-»«-Si) of neighboring Si-O ions.
Furthermore, they claimed that the spectrum of vitreous
silica corresponds more nearly to that of (X-cristotalite
than ((-quartz.

Lippencott, et.al. (106) have measured the infrared
spectra of ((-quartz, O(-tridymite, (X-cristobalite, coesite,
and vitreous silica. They conclude that the infrared
spectrum of vitreous silica resemtles that of tridymite
in that each has the same number of observed frequencies.

Florinskaya and Pechenkina (110), like Simon and

1 region

McMahon (105), have investigated the 700 to 1400 cm
of the silica spectra. Their experiment, however, included
a measurement of the ((-tridymite spectrum in addition to
the ((-quartz, ((-cristobalite, and vitreous silica spectra.
They report that the bands of the glass spectrum coincide
with the bands of the quartz spectrum. This result 1is
attrituted to the presence of quartz crystallites in the

glass structure and it 1s suggested that the crystallites
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are probatly larger than the slzes estimated from x-ray data.

Both Egelstaff (120) and Leadbetter (121) report that
there 1s little similarity in the neutron scattering spectra
which they have measured for vitreous silica and (X-quartz.
The differences in the spectra are most apparent in the low
frequency region ( (WJ < 50 cm-l). Leadbetter's claim of
exXcellent agreement between the neutron scattering spectra
of (O(-cristobalite and vitreous silica for W > 50 cm-l was
noted in Section 1.4.3.

In the foregolng discussion there 1s no mention of
spectra measurements for the high-temperature modifications
of the crystalline silicas. Since these are the crystalline
forms existing at the temperatures at which glass solidifles,
this data is potentially of great interest. Unfortunately,
because of the difficulty of these measurements, very little
high temperature data has teen reported. Some of the more
recent work includes studies of the Raman spectrum of
/}-quartz by Scott and Porto (144) and Shapiro (145), end
measurements of the high frequency region (700 to 1400 cmcl)
of the infrared spectra of ,B-quar-tz and fJ-cristobalite by
Simon and McMahon (105). Unfortunately, the bands which are
observed in these spectra are so broadened by the thermal

motions of the crystal lattices that they are of little

practical value for comparisons with other spectra.



1.5 THE ANOMALOUS LOW TEMPERATURE HEAT CAPACITY OF
VITREOUS SILICA

The inelastic neutron scattering data appearing in this
work provides new information about the low freguency region
of the vibrational spectrum of glass. In the concluding
pages of this introduction, several physical properties
of vitreous silica which are directly related to the low
frequency motions will be examined. The acoustic and
dlelectric attenuations in glass and 1its low temperature
heat capacity are of special interest because they differ
quite markedly from the corresponding properties of at
least one of the crystalline sllicas, low-quartz. Of course,
one hopes that an examination of these propertles will
provide added insights into the nature of the glass
structure and the factors which differentlate the
crystalline and vitreous state.

The thermodynamic properties of a solid, as is well
known, are determined by the characteristic vitratlons
of its atoms. The problem of computing the complete
vibrational spectrum of a solid from its microscopic force
constants 1s quite difficult and has been attempted only
for crystalline forms; however, ilmportant simplifications
occur in the low temperature limit.

At low temperatures, only the lowest frequency
vibrational modes of a solild are excited. Because of the

periodic symmetry of its lattice, the normal modes of a

-111-
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crystal may be represented as traveling plane waves
cheracterized by a wavevector Hi and a frequency bji. At
very low frequencies where the wavelength 2T/q is large
compared with the interatomic spacing, the vibrational
behavior of the crystal lattice is similar to that of an
elastic continuum; the phase velocity W/q and the group
velocity, dW/dq, of the lattice waves are identical and
equal to the velocity of scund. The properties of these
waves can therefore be computed from the bulk properties
of the crystal,i.e. from the macroscopic elastic constants,
without regard for the detailed atomic forces.

A glass has no long range order and hence no periodic
symmetry. Although its atomic vibrations may still be
resolved (in the harmonic approximation) into nbrmal modes,
these will,1in general,no longer be plane waves. However,
in the long wavelength 1limit, where the detalled atomic
structure in & small region 1s unimportant, the glass will
alsc behave as an elastic continuum and the pfoperties of
the "elastic" or "acoustic" wzves in the glass can also be
determined from the measurements of 1ts macroscopic elastic
constants (149) (150). If these "elastic" médes are the
only low frequency vibrations in the glass, one can compute
the low temperature heat capacity directly from its
macroscopic elsstic constants.

It can be shown (151) that the low freguency

vibrational spectrum of an insulator has the form:
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I-5 G W) = QW+ fw* « YWl + ...

According to Debye (152), the first term of the above
expresslion represents the frequency distribution of an
elastic continuum; the higher order terms arise from
dispersion of the lattice waves.

In the quasi-harmonic zpproximatior (151) (153), the
constant volume heat capaclity of a solid at temperature T

is

%ax 2
I-6 Cy(T) = kaf- G(W) (hw/kpT)” exp(-hw/kgT) dW
0

(exp(-hL/kgT) - 1)°

The frequency distribution given in Egquetion I-5 would

therefore give rise to a heat capscity of the form

I-7  Cy (T) = aT3 + bT5 + ¢TI’ +

o e 00

The heat capacity is also often expressed in terms of a
Debye temperature G(T). The Debye temperature is defined
as the cut-off (ﬁ(daax/kB) of the Debye distribution,
G(W) =(X(,jz, which would give the experimental heat
cepacity at the specified sample temperature T.

The limiting value of the Debye temperature at Co K

is defined to be

1
I1-8 90 = (12 N kBTTu/ 5a) /3
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where N is the total number of atoms in the sample (154),
The parsmeter a in the above expression is obtained from
the experimental heat capacity data by plotting CV(T)/T3
versus T2 and extrapolating the resulting curve to T2 = 0.
The Debye temperature may also be defined in terms of

the macroscopic elastic properties of the sample:

T A
k

1/
I-9 @(elastic) = 4 [3 N] g
LV
B
where Vo is the mean velocity of sound obtained by
averaging the elastlc constants in all directions of the
sample and V is the volume of the sample (149). The

parameter a, defined in terms of the elastic data, is then
I-10 a = (16/5)T° (ky/b3) v v3

If the only low freguency vibrations in the sample
(crystalline or noncrystalline) are the harmonic, long
wavelength acoustic lattice vibrations, then the Debye
tempereture computed from the elastic constants,

O (elastic), should be equsl to the Debye temperature
obtained frowm the calorimetric measurement, Ocﬁ within the
experimental error. (Anderson (155) has shown that the
comparison of 90 and f(elastic) is independent of any
assumptions regarding the size of the vibrasting unit.)

The low temperature heat capacity of vitreous silica
has been measured by Flubacher, Leadbetter, Morrison, and

Stolcheff (119) for a sample annealed at 1100°C and by
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Westrum (156) for samples annealed at lO?OOC and 130000.

The results of Flubacher's glass measurements and Westrum's

data for quartz and cristobalite are shown in Fligure 8.
Anderson (155) extrapolated the vitreous silica and

2

quartz data to T™ = 0 and found that

(o}
395 K for vitreous silica

I
iy

o .
620" K for quartz

0Q>
i

From z celculation bzsed on the elastic constant data of

Koga (157), Anderson estimated that
B(elastic) = 600° K for quartz

whereas the low temperature elastic constant data of

McSkimin (158) indicated that
o
Q(eclastic) = 495 K for vitreous silica

The agreement between the two @'s for quartz is
satisfactory while the 90 for vitreous silica appears to
be less than {(elsstic) by about 20%. According to
Anderson and Dienes (159), if the non-acoustic
contribution to the heat capaclty of vitreous silica is
estimated by subtracting a Debye function from Westrum's
data, over half the heat capacity up to 35° K arises from

non-acoustic vibrations.



(*(897) UOSTJIION pue JI8339QpP8Ba] Eo.umv
.Nupmsdvsm.mp:cnoﬁapo.woﬂammsomna.?&om Na woﬁo«poghwmm ma\ oummpzw«.h

o) L
(o]0}~ 00¢ 002 o]0]
; ; ; _ 0
_-a-—4 ®)
A-—A A )
A-- /
-l % U
o --4&--"- ~to:OV ¥ 402
- ’ O
T «\ o
j 3
/ P~ O
94110qO}S11) —> 4 O0'¢
! o
v =
I N
DOI|IS SNOJYA ! 4 O .vw
)
~w_ a
-1 068
s
4 09




-117-

There appears to be no question that the discrepancy
in the vitreous silica @'s is not the result of
experlmental errors. The elastic wave velocities obtzined
by McSkimin have been confirmed by Fine (160) and
Flubacher, et.al. (119). McSkimin's and Fine's data were
obtained from ultrasonic measurements while the results of
Flubacher, et.zl. were determined from measurements of the
Erillouin spectra of vitreous silica. The calorimetric
measurements of Flubacher, et.al. and Westrum extend down
to temperatures of 2.30 K and 50 K respectively. Flubacher,
et.al. estimate an accuracy of *2 per cent gt the lowest
temperatures of thelr measurements. The data 1s consistent
with more recent measurements of the heat capacity of
vitreous silica which extend down to 1.30 K and indicate
that at these very low temperatures C/l‘3 1s actually
increasing with decressing temperature (161).

The source of the excess heat capacity is a matter of
considerable speculation. BRosenstock (150), for instance,
suggests that it 1s reasonable to expect "extra" low
frequency vibrations in z noncrystelline solid: "Cavitiles
in the structure are likely to occur in the disordered
lattice, and such cavitles may possibly contain one atom
weakly bound to gglz one of the other atoms. Such =
weakly bound atom will vibrate with low frequency and thus
contribute strongly to the specific heat at low
temperatures; but it will in no way affect the motlion of

the rest of the lattice. The vibration 1s strictly a local
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one and will therefore not show up 1in any measurement of
elastic waves." Anderson end Dienes (159) suggest that the
explanatioh lles in the presence of a low frequency opticsl
branch or a highly disperse acoustic mode. Flubacher,
Leadbetter, Morrison and Stoicheff (119) have supported

the theory that the excess arlses from low freguency
optical modes. Thelr observation of the low frequency
continuum in the Raman spectrum of vitreous silica is cited
in support of thls interpretation. However, Leadbetter
(121) has more recently suggested that the excess heat
capacity 1is produced by a very highly disperse acoustic
mode. This conclusion 1s based on the results of his
neutron scattering study (Section 1.4.3).

As yet, no one has attempted to obtain the low
frequency vibrational spectrum of vitreous silica by
inversion of the heat capaclty data. On the other hand,
there have been a number of attempts to reproduce the heat
capacity data with calculations based on specific models
of the structure and vibrational properties of the glass
lattice.

Smyth, Skogan, and Harsell (162) have calculated the
heat capacity from a model in which 1t is assumed thzt the
atoms in vitreous sillca cen be regarded as independent
harmonic oscillators. The heat capacity 1s represented as

the sum of three Einstein functions:
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I-11 C () = B [3E(h(s,/kT) + bE(h wy/kpT) + 2E(h/kgT)]

where E(h(u/kBT) = (huJ/kBT)z exp(th/kBT)

(exp(hi/i T) - 1)%

Smyth, et.al. assume that the silicon ztom is in a fairly
symmetric fleld and therefore assign the same frequency,

W

4y» tO each of its three possible modes of vibration.
Each oxygen atom 1s assumed to lie at midpoint of g line
Jolning two sillcon atoms and 1s assigned two egual

transverse frequencies, W,., and one longitudinal

7
freguency QJL. The oxygen ion finds 1itself in a very
unsymmetriczl field because vibrations zlong the Si-0 bond
encounter the strong field of the silicon, while vibrations
transverse to the S1-0 bond encounter little if any,
repulsive force. Consequently, the restoring force of this
mode of vibration 1s low, leading to a small frequency.
Smyth, et.al. conclude that the transverse mode of the
oxygen ion accounts for most of the low temperature
specific heat.

Dank snd Barber (163) have fitted the specific heat
data between 50 K and 30o K with a function similar to

those derived theoreticzlly (164) (165) for layer-like

solids such as graphlte:

112 C(T) = C,( 0,/T) - ¥° ¢, §5/T) + ¥ c5( /)

2
1 -y +y3
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where 02(9 /T) = 6 R ('I'/9 ) fen x exp(x)
0 (exp(x) - 1)°

On = (hly/ip); x = (MW/kT); y = (6,/6,) = W/ W,

The functions in Equation I-12 are descrited as follows:
"the function Cz(en/T) represents the heat capacities of
1dealized two-dimensional continua, while cB(Qn/T) is the
well-known Debye function. The characteristic temperature
6% 1s assumed to correspond to the maximum hjz, of a class
of frejquencies consisting of translations normal to the
"layer" and rotational oscillation about axes in the "layer",

while 93 is assumed to correspond to a maximum, ,, in

30
a class of relatively low frequencles which because of
interactions between "layers" in real laminar solids, are
characteristic of isotropic solids." From thelr analysis,
Dank and Barbter conclude that (a) the best fit of the
experimental heat capacity data is obrtalned by assuming
that the smallest group of atoms which vibrate as a unit
is 31306 and, (b) at low temperatures, the structure of
vitreous silica is highly anisotropic.

Flubacher, et.al. (119) fit their specific heat data

o
in the range between 2°K and 15 K with the expression

- -8 -10
I-13 CV(T) = 1.155 x 10 5T3 +1.5x 10 'I‘5 + 1 x 10 T7

+ 1,36 x 10'3 E(13/T) + 3.51 x 10'2 E(32/T)
+ 2,62 x 10'1 E(58/T) cal./mole degree K

This expression has the form of Equation I-7 with the
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addition of three Elnstein terms. As indicated, the
characteristic temperatures,j%&{ of the Einstein terms are
13°K, 32°K, and 58°K and represent 0.008, 0.2, and 1.4% of
the total number of vibrational modes in the sample. The
idea of using a comtination of Debye and Einstein spectra
to fit experimental heat capacity data was previously
introduced by Nernst (165). His viewpoint is that the
Einsteln terms represent the contribution from the optical
branches of spectra for polyatomic crystals.

The value of the heat capacity calculations and the
conclusions which are drawn from them is questionatle.
In each of the three papers cited above, the calculated
heat capacity agrees quite well with the experimental
data. This apparent insensitivity to the choilce of model
indicates that the heat capacity data alone cannot provide
the detailed shape of the low frequency spectrum of glass.

The question arises as to whether the anomalous or
excess heat capacity 1s characteristic of the vitreous
state., On the basls of & study of the low temperature
heat capacities of a number of crystalline and vitreous
sutstances, Leadbetter (149) has concluded that: " at low
frequencles there are no appreclable differences in the
frequency distributions of crystals and glasses which
are attritutable simply to the lack of periodicity
characteristic of all glasses." Evidence that the excess
heat capacity need not occur as a direct result of a

disordered structure is provided by the fact that the value
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of @(elastic) calculated from the measured elastic wave
velocities of vitreous germanla agrees quite well with the
value of 90 derived from the T = 0 intercept of its measured
heat capacity (1€7).

The fact that the low temperature heat capacity of
cristoralite appears to be more nearly like that of vitreous
silica than that of quartz (Filgure 8) 1s also suggestive.
The question of comparing the values of § and @ (elastic)
for cristoballite is not resolved since the elastic constants
of cristobalite have not bteen measured. Although this
problem 1s usually clrcumvented by arguing that the elastilc
properties of cristobalite and vitreous silica should te
quite similar since thelr densities differ by only ~ 5%,
there are also disagreements concerning the interpretation
of the thermal data. According to Anderson (155), the
values of 90 for vitreous silica and cristobalite are close.
(This comparison is based on Westrum's data.) He argues
that in order for the anomaly to be atsent in cristoballte,
its elastic constants would have to be about 30% less in
magnitude than those of vitreous silica. On the other hand,
Leadbetter and Morrison (168) suggest that Anderson has
misread Westrum's data; they assert that it 1is very likely
that the elastic and extrapolated thermal results for

cristobalite will agree in the low temperature limit.



1.6 THE ACOUSTIC AND DIELECTRIC LOSSES IN VITREOUS SILICA

Acoustic measurements by a number of observers (169)
(170)(171)(172) indicate that there is a large internal
friction effect in vitreous silica at low temperatures (30o
to 50°K) and high frequencies (60 kc to 20 mc per second).
The term 'internal friction' includes all phenomena which
lead to an irreversible generation of heat from mechanical
energy. Although there are several possible sources of
internal friction in glasses (e.g. thermoelastic effects,
viscous flow, phase transformations, static (or elastic)
hysteresis) the temperature and frequency behavior of the
data strongly suggests a structural relaxation (172).

Structural relaxation at low temperatures and high
frequencies should be indicated by effects other than the
internal friction; in particular, a dlelectric loss should
occur at roughly the same frequency and temperature as the
observed acoustic loss. Stevels (173) has measured a
dielectric absorption peak for a silicate glass which is in
the kilocycle-to-megacycle frequency range and which appears
to have a maxlmum near 60°K. Furthermore, in this experiment
the evidence for a shift of the peak to higher temperatures
for higher frequencies (as one would expect for a structural
relaxation) is quite marked.

Corresponding losses, both acoustic (174) and dlelectric
(175), have been observed in quartz. However, these effects
are generally attributed to the presence of lattice defects

and impurities in the gquartz samples. By way of comparison,
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the acoustic losses in vitreous silica are about three

orders of magnitude larger than in natural quartz (159).

The dlelectric and acoustic losses in vitreous silica

are characterized ty the following features:

(a)

(t)

The loss curves for vitreous silica are quite broad,
requliring a wide distribution of relaxation times.
Anderson and Bommel (172) have demonstrated that a
distribution of six actlivation energiles, each of which
is assoclated with a relaxation, could account for the
shapes of their experimental loss curves. On the other
hand, the losses in quartz are relatively sharp, and
they approxlmate a single relaxation mechanism. The
helghts and widths of the internal friction peaks show
that a great deal more heat 1s generated from the
lattice waves in the non-crystalline phase than in the
crystalline phase. (See Table I-15).

It can be shown that the angular relaxation freguency
W, satisfies the expression W) = W,y exp (-q/kgTy)

where W/

bax 15 the Debye frequency calculated from the

elastic constants, q 1s the activation energy, and T,
1s the temperature at which the loss 1s a maximum for a
given frequency Wf. According to Dienes and Anderson
(159), the fact that the pre-exponential factor is
equal to the Debye frequency indicates that there 1is
essentially no entropy of activation; consequently,

the relaxation proceeds with no reorganization of the

structure surrounding the relaxing specles.
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(c) The activation energy, q , 1s very small in comparison
with the energy requlred for relaxation processes
assoclated with the diffusion of ions in silica, or for
a molecular rotation (such as, for example, the SiOu
tetrahedron). Values of q and the internal friction,

Q , are listed in Table I-15 (159).

TABLE I-15 Experimental Parameters for the Dielectric and

Acoustic Losses in Vitreous Silica

Sample q (cal/mole) Max Qfl
Vitreous Silica | 1030 (acoustic) 2 X 10-3
Vitreous Silica | 1320 (dielectric) | 1 x 1o'u

Quartz 1€00 (acoustic) 2 X 10“'6

Quartz 1900 (dielectric) | 2 x 1077

The vaiues listed above are intended only to show the
order of magnitude. The maximum value of the internal
friction depends to some extent on the sample and the
frequency. In the case of vitreous silica, the value
of q represents the most probable value of the
activation energy for the relatively broad distributlon.
(d) Although the acoustic loss results from the propagation
of toth longitudinal and transverse (or shear) waves,
a comparison of McSkimin's data for the longltudinal
waves and the data of Fine and Anderson and Bommel for
the shear waves, indicates that most of the loss is
traceable to the shear waves, 1.e. the loss 1s most

probably assoclated with a transverse vibration.
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(e) Accompanying the acoustic loss is a 2% relaxation of
the snear modulus. The small change in modulus
indicates that only a small fraction of the relaxation

specles are relaxing at any one time.

Anderson and Bommel (172), who are responsitle for
collecting much of the information cited above, have
proposed a model in which the lateral motion of the oxygen
atom perpendicular to the S1-0-Si bond is resvonsitle for
the internal friction. The mean S1-0-S1 bond angle 1s
essumed to be 180o and the argument proceeds as follows:
"The gradual change from the close range ordered structure
to distant disordered structure 1s a result of the small
variation in bond angles. A kinked Si-0-51 bond angle
corresponds to the oxygen atom in a higher than average
energy state. For every kinked bond there is, however,
another almost equivalent state which is the mirror image of
the kinked boad. If the oxygen is to pass from one state to
the mirror image, the two adjacent silicons muét be pushed
apart. Thermal energy can make the oxygen atom take up these
equivalent positions alternately. A shear ultrasonlc wave
can tias one of the energy states with respect to the other,
thus altering the time in each state. The time lag for
equilibrium to be reached 1s the source of the relaxation."

"Such vibrations of the oxygen atom would exert a strong
dipole moment since the motion S1-0-Si 1s a transverse
optical vitration. This vibration would require virtually

no reorganization of the structure thus satisfylng the
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condition of zero entropy of activation. The number of bent
bonds would determine the magnitude of the loss and the
value of the relaxation strength. The spread of relaxation
times would depend upon the variability of the bond angle."

Mason (176) has suggested the following simple
calculation to show that the activation energy, which he
clalms 1s mainly the energy required to push the two silicon
atoms apart as the oxygen goes from one position to the
other, 1s conslstent with the measured values. There are
about 2.2 x 1022 molecules per cublc centimeter, and twice
as many 5S1-0 bonds. The expansion caused by a bond angle

flexing from an angle of (W - ¢) to W(in radians) is
I-14 01/1 = (1 - cosf) = ¢2/2

The energy 1s approximately the expansion multiplied by

Young's modulus, or

1-15 q= EN (01/1)
J (4.4 x10%¢)

2
2.05 x 105 Q cal/mole

where E 1s Young's modulus (7.80 x 1011)

y N 1s Avogadro's
number (0.603 x 102h)’ and J is the conversion factor
between ergs and calories (4,18 x 107). The estimated
activation energles which he obtains for various angles
are listed in Table I-16.

TABLE I-16 Energy Required to Flex a S1-0-Si Bond

(degrees) 1° 2° 3° 4° 5° 6°

q (cal/mole) | 62.5 250 562 1000 1560 2240
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One can see that a change in bond angle of the order of
4° to 50 would be consistent with the measured activation
energles.

Strakna (177) has suggested a model in which the
relaxation loss 1s attributed to the motion of oxygen atoms
in elongated S1-0-S1 bonds. In this model the oxygen atoms
have two equivalent stable positicns which are alternately
occupied due to thermal activation. The ultrasonic signal
blases one of these positions with respect to the other and
changes the relative population of these sites. When the
time of readjustment to the equilibrium distribution is
comparable to the period of the blasing ultrasonic signal,
energy ls returned to it out of phase, resulting in a
decrease of amplitude. The relaxation time assoclated with
this loss mechanlsm 1s dependent upon the height of the
energy barrier between the alternate oxygen positions.
Strakna calculates the barrier energy as a function of Si-Si
separation by assuming that the interaction energy of the
bridging oxygen atom within the two silicon atoms can te
approximated by the sum of two Morse potentials. He
estimates that an exceptionally large proportion (20 to 30%)
of the total number of 51i-0-S1 bonds in vitreous silica are
anomalous (elongated).

A number of authors have attempted to associate the
observed ultrasonic absorption phenomena with the excess
heat capacity. Mason (176) and Leadretter and Mcrrison

(168) suggest that the motion of the oxygen atom proposed by
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Anderson and Bommel (172) mipht well account for both effects.
Clark and Strakna (178) have calculated the excess
speclfic heat on the tasls of the elongated S1-0-S1 tond
model., Solutlion of the one-dimensional Schroedinger equation
for the vibrational motion of the oxygen atom in this btond
leads to a system of split energy levels. Usling the S1-Si
tond lengths ottalined in Strakna's ultrasonic study, the
excess specific heat contribution of the extended bonds due
to the spacing tetween the two lowest energy levels was
calculated. It was assumed that for each elongated Si-Si

bond distance, Bi , the excess specific heat per mole was:

III-1€ C,(T) = Ry (AEi/RmT)Z exp( AE,/B,T)
( 1+ exp(AE,/R,T) )2

where Ry 1s the gas constant per mole and AEi is the energy
difference tetween the two lowest energy levels for bond
lengths with spacing Ri. The total excess specific heat 1is
then simply C(T) = (1/N) Z:Nici(T) where Ny 1s the relative
number of S1-51 tonds withispacings between Ry and B{4;, and
N =2 N,. Clark and Strakna conclude that 10-20% of all of
the éi-O—Si bonds in vitreous silica must be elongated 1in
order to fit the heat capacity deta with this model.

It should be noted that the agreement between the heat
capacity data and Clark and Strakna's calculation is not
very good. While it is possible that the excess heat
capacity might be fitted satisfactorily with this model, 1t
appears that the required distribution of elongated tonds

must differ markedly from the distritution derived from the
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ultrasonic attenuation data.

There 1s other evidence which suggests that the
ultrasonic attenuation and the excess heat capacity are
unrelated. Primak (179) has studied the changes in the
properties of vitreous silica irradiated in intense fast
neutron teams. Irradiation of a vitreous silica sample
reduced 1ts excess heat capacity by about 50% while the
ultrasonic attenuation was reduced by about 85%. This
result suggests that the ultrasonic attenuation and the
excess heat capacity depend on somewhat different features
of the gless structure. It should also be noted that even
though the low temperature acoustic absorption is observed
in Pyrex glass, there 1s no excess heat capacity (149).

The measurements of the acoustic and dielectric losses
and the low temperature heat capacity have provided strong
evidence of unusual low frequency atomic motions in vitreous
silica. They have, in fact, provided valuable insights
into the nature of these anomalies. However, in the final
analysis, the development of convincing models and/or
explanations of these phenomena requires more precise
knowledge of the microscopic properties of vitreous silica -
information such as that which can be ottained from
diffraction and spectra measurements. This is not to imply
that the neutron scattering results will provide all of the
answers to the many questions ralsed in the preceding pages.
They should, however, flll some serlous gaps in our present

knowledge of the structure and atomic motions of glass.



CHAPTER II

2.1 INTRODUCTION

The relationship between the structure and dynamics of
an atowlc system and i1ts neutron scattering cross sections
will be discussed in this chapter. PFor detalled derivations
of the cross section formulae which are presented here the
reader is referred to the texts of authors such as Lomer and
Low (180), Turchin (181), @nd Summerfield, Carpenter, and
Lurie (182).

In the neutron scattering experiment we assume that s
neutron with wave vector go impinges on the target system,
scatters through an angle 0 , and leaves the target with

wave vector k. In this interaction of the neutron and the

scattering system there is a momentum transfer of
1I-1 K = Ak, - k)

and an energy transfer of

11-2 fw = ﬁz(kz - kz)

2m
n
The scalar momentum transfer is related tc the angle of

scattering by the equation
2,2 _ 8¢, 2 2
I1I-3 15K B(k “ + k° - 2k k cos ¢)

Ferwi (183) has shown that if one introduces a special
potential tc represent the interaction between a neutron and
the target nuclel, the probability of the scattering of

thermal energy neutrons by a system of bound nuclel can be
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calculated by means of the first Born approximation. Since

the range of the nuclear forces (~10"12

cx) i1s small in
comparison to both the wavelength of a thermal neutron and
the interstomic distances in the scattering system (~10'8cm),
the neutron-nuclear interaction can be characterized as a
"localized impact”. The interaction potential is therefore
represented in the form of a delta function, the so-cslled

Fermi pseudopotential:

II-4 v=2mk b O(r - B(t) )
B

where o, is the neutron msss and b is the bound atom
scattering length of the nucleus located at position B at
time t. The form of the Fermi pseudopotential is chosen so
a8 to guarantee that in the high energy limit (Eo:>ov) the
first Born approximation will glve the correct total
scattering cross section for a free atom: Cﬁi = hTTa2 where
& is the experimentally determined free atom scattering
length, (The relationship between the bound and free atom
gcattering lengths is b = (mn + M) a/M where M 1s the wass
of the scattering atom.)

The formal expression for the differential scattering

cross section per unit solid angle and unit interval of
energy, ls

II-5 2

2
A0 =b k S( )
TISE g, o
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where
-1
II-6  S(K,w) = (277) N /[exp 1(K-r -wt) G(r,t) dr 4t

It 18 assumed here thst the scattering system consists
of N nuclei of the same type with zero spin. The function
S(K,w), the so-called scattering law, is independent of the
mass and energy of the scattered neutron as well as the
interaction potential - 1t depends solely on the physical
properties of the scattering system. G(E,t), described by
Van Hove (184) as the space-time correlstion function of the

system, 1s defined to be
-iK.r ,-1K-R_(0) 1K:-R (t

N N
-3
II-7 G(r,t) = (2 [dK - =
ry Lﬁﬂ %%I n e

or the equivalent expression

N N
11-8 ¢&(r,t) =%‘ <§ }3_",[&_1:' 6[_:; + R (0) - ,I_"] 6[_:;'- Ei(t)]>

31(0) and Eé(t) are Helsenberg position operators for the
nuclel. In the usual scattering experiment the atoms of the
scattering system are not initially in any one given energy
eigenstate, rather, there is a thermal distribution of
energy elgenstates in the system. The angular brackets in
the above expressions indicste a thermal averaging of the
expectation values of the enclosed operators over the
different states of the system at a given temperature.

If the target can be describted as a classicsal systenm,

G(E,t)dg 13 readily interpreted as the probability of
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finding one of the target nuclei in the neighborhood dr
of the point r at time t given that a nucleus was at the
origin at t = 0, However, in a quantum system G(E,t) is
generally complex and this simple interpretation is no
longer adequate. The physical interpretation of the real
and lmaginary parts of G(r,t) 1s discussed in detail by
Van Hove (184),

If the scattering system can be regarded as belng
composed of distinguishable particles (i.e., the particles
obey Boltzman statistics), the space-time correlation
function can be separated into two components: 'G‘(g,t),
the self-correlation function which describes the
correlation between the positions of the same particle at
different times, and the function Gd(z,t) which descrites
the correlation between pairs of distinct particles. Thus,

II-9  G(r,t) = Gy(r,t) + G4(r,t)
where

N
II-10 G, (r,t) =%<§ fd;_-' O(r + B (0) -~ ") Ofr'- gl(t))>

and
1 N
II-11 G4(r,t) = m 1§3 dr' (5(_::_ + 51(0) -r') 6(3'- Ej(t)>

In systems in which the scattering length differs
among isotopes or in which the spin dependent scattering

lengths for a given isotope differ, incoherent scattering
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takes place. These factors can be taken into account by

replacing b‘G(E,t) by

2
II-12 b G(r t) —> b2 (r,t) + b thd(r t)

1n@ s

where
II-13 bi’nc <b2>— <b>2

(v )*

The angular brackets represent averaging first over the

2
II-14 bcoh

spin states of the system consisting of the neutron and the
given isotope and second, over all the isotopes of the
given chemical element. Equation I1I-5 is replaced by the
following expressions for the coherent snd incoherent
differential scattering cross sections of a monatomlc

scattering system:

II-15 40 = Nboop k G(r,t)

1(K.r - wt) O'(r,t)
‘[jér dt e ~ -



2.2 THE STRUCTURE FACTOR AND THE STATIC PAIR DENSITY
FUNCTION
The structure factor of an atomic system is defined as
the integral of the scattering law over all energy transfers
occurring in the interaction of the atoms and the particles
which they scatter:

1(K-r - wt)
- G(r,t)

1I-17 [S(K,w) dw = lfdw[fdr at e
-jwt
Since ‘IAcu e = 2Tr5(t), the above expression reduces to
K- r
II-18 fS(!f_,w) dw = N [dg e = G(r,0)

From Equation II-8 we see that G(r,0), the space-time

correlation function at time O, is
N
=1 - -
11-19  G(r,0) ilzgfdy <6<_1;+§_1(o) £') 6(z'- B,(0))

Since 21(0) and EJ(O) commute, in this instsnce it is

possible to perform the dr' integration:
N
I1I-20 G(r,0) =1 Z <5(r +R (0) -R (O))>
- Nigp v T K

Separating out the diagonal terms of the summation over the

indices 1 and }, one finds that
I1-21 G, (r,0) = §(r)

&(r,0) = O(r) + e(r)
where

-136-
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N
11-22  g(r) =-§T Z <5(5‘_ + B (0) - _I_R_J(o))>
1#)=1

The function g(r) 1s the well known static psir
correlation function - the average density of atoms in s
unit volume located at position r as seen from an atom
located at the origin., The substitution of the above
expression for G(r,0) in Equation II-18 gives

iK.r
II-23 S(K,w) dw =N (1 + fe -7 g(r)ar)
We see that in order to determine g(g) one does not require
detailled knowledge of the scattering law itself; the
integral of the scattering law, l.e., the structure factor,
is sufficient. Unfortunately, the dats obtained in the
normal diffraction measurement cannot be directly related
to the structure factor of the scattering system without
employing certain approxiwations.

The conventional diffraction experiment generally
provides a measure of the coherent angular scattering
cross sectlon:

coh coh 2 k
a2t 4T [AF el [ st aw

The k/ko factor in the integrand of the above expression
depends on the energy transfers in the scattering process.
Furthermore, { varles with w and the integration 1s limlted
to energy transfers between —(0 and E/h. Since the

indicated integration 1is automatically performed in the
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experimental measurement, the value of (dCTOOh/de) which
one obtains 18 not a direct measure of the systeu's
structure factor.

If the energy transfers in a diffraction measurement
are negligible in comparison to the energies of the incident
photons, electrons, or neutrons, then k/kozsl, the locus of
the experimental measurement 1n.ﬁfou sppce satisfies the
constant K condition required in the definition of the
structure factor, and the range of integration is
effectively infinite. This 1s the so-called static
spproximation., If this approximetion 1s valid, then it
follows that

iKer

coh 2
4% -+ Nl 1+ [om T g(p) ar)

I1-25 in

In an x-ray diffraction measurement, the ratio of the
incident energy of the photons to the energy transfers is of
the order of‘vloé. For electrons with a wavelength of ~1 X,
the incident energy - energy transfer ratio 1is ~10b.
Therefore, the static approximation 1s quite accurate for
x-ray and electron measurexents. It 1s also common practice
to assume that the static approximation is reasonably
well satisfied for neutron diffraction experiments.

However, since the energies of thermal neutrons are genarally
of the same order of magnitude as the energy transfers
when they are scattered, the applicabllity of the statlc

spproximation in the analysls of the neutron data is by no
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means a8 obvious as in the x-ray and electron diffraction
experiments. This point will be discussed in greater detail
in Chapter III; for the remainder of this discussion, it
will be assumed that Equation II-25 is valid for the neutron
diffraction experiment.

It 18 useful st this point to note some of the general
characteristics of the g(g) function. BRegardless of whether
the scattering system 1s liquid, gaseous, or solid, the
repulsive forces between the electron distributions of the
atoms in the system will cause the static palr density
function to go to zero in some finite region around r = 0.
(In Chapter IV it will be shown that this property of the
g(r) function can be used to normalize the diffraction data
if the determination of the absolute scattering intensity is
not feasible.) For an 1deal gas, the g(r) function assumes
@ constant value in the region beyond this miniwum distance
of approach for a palr of atoms. In strongly ordered systems
such as polycrystals, the g(r) function will exhibit
distinct, well-resolved peaks at dlstances corresponding to
the separations of the nearest atom neighbors, the next
nearest neighbors, ect.. In a substance such as vitreous
silica, where what order there is in the structure 1s
relatively short-ranged, the peaks in the g(r) function are
less distinct and become progressively broader at large r's.
Eventually, g(r) approaches a constant value equal to the

average density of the system,
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II-26 1im g(r) = a = N/V
r —large
The fact that the static pair density function assumes

a constant value at large r leads to singular behavior of
the cross section in the forward scattering direction. If
the asymptotic value of g(r) is added to and subtracted from
Equation II-25, then

oh_ K. r
11-27 g%'c coh( 1+ (2m) 5(K)n +fe ~ “(g(r)-n) dr)

The second term in this expression represents the forward
scattering contribution. Since the forward scattering
contribution cannot be measured, it 1s ignored.

To this point in the discussion it has been assumed
that the scattering system is monmatomic. For a polystomic
system such as sillicon dloxide, Equation I1I-27 becomes
1I-28 g%corL I Ntbt + % b, EI' N, t'fdg ot E(gt,t(;_)- n,)
where 2: is the summation over atoms of type t, bt iz the
cohereng scattering length of an atom of type t, Nt is the
number of atoms of type t in the system, and n, is the
average density of the type t atoms, n. = N /V. The function

t

t't(r) is a new static pair correlation function giviag the

density of atoms of type t about atoms of type t':

<6(r MR Ul 1 = Oy1Opme >

where ‘Ej represents the double sum over the N, atoms of
n,n!

11-29 gt,t(r) =-——'
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type t and the N_, atoms of type t', The factor

g
(1-0,,0 included to insure that only the

trg mnt) 18
contribution of distinct atoe pairs is included in the sum.

If the polyatomic scattering system can be assumed to
be isotropic, then gt,t(g) will depend only on the magnitude
of r and Equatlon II-28 will reduce to the following
expression:

do"COh- 2
11-30 5/ = %Nbbt +
(o o]
2 sinKr
N D flmr -n ar

Dividing Equation II-30 by Z N bt, which is the limiting

value of (dCTCOh/dII) at large momentun tranafers, we have
coh
, d
II-31 L A g - 1=
), Nebf an
t sanr
gbt ! t' t.f‘“u‘ (gtw nt) dr

N, b%
gtt

The Fourier transform of Equation II-31 gives the following

expression:

2 2r [
II-32 bwe ( g(r) - go) = —Trfi(K)-K' sin Kr 4K
(6]

coh
ag

1
2
% Ntbt a0

where 1(K) = -1

2
glr) =§ bt g' Nttbtl tht(r)/zt:Ntb t

2
Z b, g' Ny 1bys By/ ‘é Ngb e



2.3 INTERPRETATION OF THE INELASTIC NEUTRON SCATTERING
SPECTRUM
In the introductory remarks in Section 2.1 it was noted
that knowledge of the scattering law function, S(K ,w),
enables one, 1in principle, to derive the space- and time-

dependent palr correlation function of the scattering system:
II-33 G(r,t) = (27 )~IN1 fexp 1(wt ~-HKr) S(H,w) dK dw

Unfortunately, it is rarely possible to obtalin an experimental
measurement of the scattering law with sufficient ranee in
ﬁroo space and statlistical accuracy to allow one to evaluate
the four-dimensional Fourler integral. Even in studies of
isotropic scattering systems, in which ccse the above
expression reduces to a two-dimensional Fourier integrsal,
there have been few attempts to obtain the G(r,t)function
by inversion of the experimental data. One must therefore
consider alternative methods of data analysis to determine
the dynamical properties of the scattering system.

For crystalline solids there is the detailed theory of
lattice vibrations on which to base the interpretation of
the experimental data. It is well known that if the
vibrations of the N atows in a so0lid are harmonic, these
motions may be described by a superposition of 3N independent
noreal vibrational modes. The periodic symmetry of a crystal
lattice enables one to represent these modes as traveling
plane waves - each wave characterized by a wave vector g,

a frequency w, and a polarizetion index s. If the unit cell
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-143-

of the crystal lattlice contains n nuclei, the polarization
index s will assume 3n values and there will be 3n
vibrational branches for each wave vector q. For each
branch s, there is a three dimensional dispersion relation
w = Uus(g). If the crystal in question scatters neutrons
coherently, the experimental determination of these
dispersion relations 1s relatively strailghtforward.

Wwhen only one phonon participates in the scattering of
a neutron, i.e. the quantum number of one of the normal modes
of the crystal 1s lncreased or decreased by one,
characteristic peaks are observed in the coherent inelastic
scattering spectrum. (The cross sections for multiphonon
processes are generally small in comparison to the single
phonon cross section.) The coherent double differential
cross section for one phonon processes in a crystal can be

written as follows (185):

h ~(Wy+W, ) L1K-(D, - )
I1-34 %0 - i T ¥ bb, e My 12000 By

dN4a € 2kgN 3 3¢
y 1 em® ¥ waueen” [explhu/kgr)
VA, v L .
3 s u%(exp(huh/kBT) - 1) 1
X 6K + g - 27T O( €+ tiwy)

The upper signs refer to phonon creation and the lower signs

to phonon annihilation processes. The j-th atom of the unit
cell of the crystal hes a coherent scattering length choh-
mass MJ’ Debye-Waller factor WJ, and its equilibrium position
within the cell 1is located atlé%. The s index identifies

the normal mode. The amplitudes, directions and phases of
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the motions of the atoms within the unit cell sre specified
by the polarization vectors O .
The energy and womentum conservation conditions for the

neutron - phonon interaction,

II-35 €= 3 huylg) = h(ic- kg?‘)
20p
and
K=k-k=2mT3g

are incorporated in Equation II-34 in the delts functioms.
Therefore, each peak observed in the coherent inelastic
scattering spectra ylelds a palr of values of w and ¢
belonging tc & dispersion relation. Anr accurate wveasurement
of the absolute scattering intensity of the individual
phonoa peaks enables one, in principle, to determine the
polarization vectors.

The extraction of the polarization vector information
from experimental data 1s a difficult undertaking which has
been attempted for only the simplest crystals., However, as
indicated above, the dlspersion relstions are deduced simply
from energy and momentum conservation considerations without
recourse to any very complicated theory or analysis of the
data. Furthermore, the determination cf the phonon peak
positions 1n ﬁf&o space requires nowhere near as much
detall or statistical accuracy in the expericsntal
measurement as would be required to obtain the Van Hove

space~-time correlation function.
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In a polycrystalllae target the direction of a given
reciprocal lattice vector T is randomly distributed and ae
a result, tane sharp peaks found in the coherent inelaatic
snattering spectra of single crystals are generally no
longer observed. However, there remsin characteristic sharp
breaxs In the energy dlstribution of the scattered neutrons
whicn csn be related to an average dispersion relation for
the target.

One-phonon coherent scattering from & polycrystal can

occur only if K lies 1m the range
I1I-36 T -=q< K <2nT + g

q 1s the wave number of the phonom in question and T 1s the
rodulus of an arbltrary reclprocal lattice vector. The
cross section for the one-phonon event in & polycrystal lis
obtained fror Equation II-34 by summing over all orientstions
of g with respsct to 2W7T and then averaging this result
over sll orlentations of K with respect to 2w 7 (186). Tre
general shape of the icattering spectrum 1s determined Dy
the factor [(&‘q;)('qu,)*] in the cross sectiom expression.
If, as & limlting case, 1t 1s assumed that all lattice weves
&re sither pure loagitudinal or pure transverse waves, 1i.=,,
QXL and Q!T are taken to be unit vectors parallel and at
right angles, respectively, to the phonon wave vector, the
resulting polsrization factors will appear as shown 1in

Flgure 9. The contribution from the longitudinal mode 1z



-146-

K=2wl-q K=2wT K=21rT+q

Figure 9. Vector diagram for a coherent one-phonon process
in a polycrystal and the resulting polarizatlon
factors. (From Skold and Larsson (193).)
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seen to peak at K = 27w 7T ¢ q and fall to zero for K = 2wT .
On the other hand, the contribution from the transverse
wodes has a brosd maximum at K=2wT and falls to zero

at K=2wT 2 Qp *

Eecause of the nature of the longitudinsl and transverse
polarization factors, the sherp bresks in the scattering
spectra of polycrystalline solids are generally aszsoclated
with longitudinal phomon effects. The comtribution from
the transverse modes, which i1s usually obscured by the
longitudinal coatribution, is well defined only in situations
where the transverse frequency coincldes with a peak in the
density of vibrationsl states. The average lomgitudimal
frequency - wave number relationship 1z determined from the
positions of the discontinulties in the coherent scattering
spectrun., At a fixed emergy transfer € = ﬁuu, the distance
between the two breaks in the scattering spectrum is AK= 2q
- thus we obtaim the w= w (q) relationship.

The coherent structure in the inelastic scattering
spectra of a polycrystal i1s generally restricted to the
spaller momentum and energy transfers. At large momentum
transfers wany different reciprocal lattice points can
contribute to the scattering and as a result, the momeantun
axd energy couservation conditions for the meutrom - phomon
interaction can be satisfled at most points in K - space.,

The observation of coherent structure at large energy

transfers is hindered by the fact that the imelastic
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scattering cross section generally tends to decrease with
increasing energy transfers.

Is 1t reasonable to attempt to analyze the inelastic
scattering spectrum of vitreous silica on the basis of
theories and cross section formulae developed for
polycrystalline systems? Vitreous silica is more nearly
like a 1liquid in that there is no long range regularity of
the equilibrium positions of its atoms. Even if the modern
crystallite model of its structure (Section 1.3.8) is correct,
a comparison of the diffraction patterns of vitreous silica
and the polycrystalline silicon dioxldes clearly indicates
that the range of order in vitreous silica is nowhere near
as extensive as that in the polycrystalline samples. On the
other hand, the silicon and oxygen atoms 1n glass and the
polycrystalline silicon dioxides lack the mobility of the
atoms 1n a liguid.

Because of the lack of long-range regularity of the
equilibrium positions of the atoms 1in liqulds and
noncrystalline solids 1t 1s questionable if the description
of their vibrational motions in terms of phonons with
well-defined frequency-wave vector relationshlips 1s
appropriate. Nevertheless, we know that some of the atomic
motions in these systems can be characterized as waves:
solids support both longitudinal and tranﬁverse acoustic
waves regardless of the degree of order in thelr structure

and liquids are known to support longitudinal acoustic waves.
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The similarity of the polycrystal and liquid phase
coherent 1lnelastlic neutron scattering spectra of a number
of substances suggests that in some instances a phonon-like
description of the collectlve motions is meaningful for the
liquid state. To cite an example, Cocking and Guner (187)
report that the same discontinuities which they observe in
the coherent neutron scattering spectrum of polycrystalline
tin are also found in their liquid tin data. Experimental
evidence of the existence of dispersion relations for
liguid aluminum (188), lead (189) (190), potassium (191),
sodium (192), and argon (193) has also appeared in the
literature. Both Singwi (194) and Egelstaff (195) have
employed the idea of phonon-like modes to describe near-
neighbor correlations of the atomic motions in liquids.
Singwi's model introduces the concept of a finite range of
phonon-like exclitations while Egelstaff takes some account
of the polarization of the modes. Cocking (196) has shown
that the introduction of polarized modes is required to
explain the observed results of coherent neutron scattering
by liquid metals and his results agree with the conclusions
of Skold and Larsson (193) for liquid argon.

Considering the success of adapting the concepts of
phonon-like motions and the cross section formulae of
polycrystalline systems to the interpretation of 1liquid
scattering spectra, it seems reasonable to conclude that

the neutron scattering spectrum of vitreous silica can be
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interpreted in a like manner - especially since the
scattering spectrum of a solid is not complicated by
contributions from the diffusive motions one finds in a
liquid.

In the discussion of the anomalous specific heat of
vitreous silica (Section 1.5) it was noted that the
equllibrium thermodynamic'properties of a solid can be
determined from a knowledge of the frequency spectrum of the
system's normal vibrations. The normal frequency distribution
function, g{w), is an integral characteristic of the dynamics
of a crystal which can in principle be generated from the
dispersion relations. The foregoing discussion has indicated
that the most that one could hope to obtain from the analysls
of the structure in the coherent scattering spectra of a
polycrystalline target or a less ordered solid such as
vitreous silica would be an average dispersion relation.

This result could hardly be expected to provide the required
detail to generate an accurate g(w) function. However,
Egelstaff (197) has suggested an alternative method of
extracting the frequency spectrum information from the
scattering data of polycrystalline targets in which the
nuclel have large coherent scattering amplitudes.

The differential scattering cross section for a

polycrystalline target is written in the following form

2
11-37 40 = %[bfnc Sg(K,w) + bczzoh[sl“‘ yw) + Sq(K »“’)]]
o

dE
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Since the sillicon and oxygen atoms are coherent
scatterers thére will be no contribution from the first
term in this expression. Sg(K,w) has the following property
(for processes in which the neutron gains energy on

scattering.)

K=0] K 2Mw N2
Sd(K,uﬂ represents an laterference contribution, the explicit

11-38 11n[sl(K5w)] = 1 glw [‘XP(““’/“BT) - 1] ™

form of which 1s unimportant. The important point 1s that as
K increases this function should tend to zero. Thus, for

sufficiently large R

II-39 bgoh[SS(K,w) + Sd(K,w)] — bgoh 5 (K,w)

The sum of Sg(K,w) and S;(K,w) plotted as a function of
0(2 is quite similar in appearance to the decay curve
(in activity versus time) of a mixture of two radiocactive
species with different half-lives: S;(K,w) corresponds to
the contribution from the shorter-lived component while
SS(K,uﬂ is similar in appearance to the contribution of the
longer-lived component.

The Egelstaff analysis proceeds as follows: at a fixed

energy transfer € , the ratlo

e 2
1I-40 a0
and d'a/ K

is formed from the experimental data and plotted as a

€= constant

function of P{z. The resulting curve is extrapolated to
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K = 0 from the region of large K where the incoherent
approximation is valid and the contribution from Sd(ﬁ,u» is

negligible. The extrapolation ylelds

II-41 lln[ aor K '2] =vZ, ()

K»0|dNdE kBNMw exp(fiw/k,T) -
i.e., the magnitude of g(w) for a given w=€/f. The
frequency spectrum is generated by repeating this process
for a range of values of € ,

If there 1s more than one type of atom in the scattering
system, one must be cautious 1n interpreting the results of
this mode of analysis. Although this point has often been
ignored, the g(w) function obtained by the Egelstaff
extrapolation technique is the true phonon frequency spectrum
function only if the target has a Bravals lattice with cublc
symmetry. For a monatomic lattice with a basis, the
relationship between the experimentally determined and true
g(w ) functions can be established to within the Debye-
Waller factor. However, a direct relationship no longer
exists for lattices contalning different atom types. 1In
this instance the extrapolation technique does not produce
the true g(w) but a product of this function and a sum
including Debye-Waller factors and the squares of the modulil
of the phonon polarization vectors of the scattering system.
Because of the dependence of the polerization vectors on €,
the experimentally derived function may be gquite different

in form from the true g(w). It is only when the dependence
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of the polarization vectors on € 1is sufficiently smooth
that the experimental g(w) will resemble the true frequency

spectrum. Thils problem is discussed in detall by Gurevich

and Tarasov (198) and Kagan (199).



CHAPTER III

3.1 THE VITREOUS SILICA TABGETS

The targets used in this study were 4" x 2" x 0,290"
samples of Corning Glass Works' Code 7940 vitreous silica.
This is an ultrapure glass manufactured from noncrystalline
materials. The maximum total lmpurities, other than water,
do not exceed 0.01 wt. percent. The water content of this
silica 1s estimated to be about 0.1 wt. percent. (The
parts per million of the sample contaminants are listed
in Table III-1 (200).)

Complete details of the physical properties of the
Code 7940 glass are provided in Corning's product
information bulletin FS-5 (January 15, 1965). Briefly,
its thermal properties are as follows:

o
Average Expansion Coefficlent per C:

0 - 300°%¢ 5.6x10-7
300~ 600 C b.0x10" "
600°- 900°C 3.6x10°

Softening Point (+40°C) | 1585°C
Annealing Point (425 C) 1075°¢
Strain Point  (425°C) 990°C
Specific Heat at 25°C, cal/gm(oc) 0.17
Thermal Diffusivity at 25°C, cmz/sec 0.008
Thermal Conductivity at 25°C,

cal/(sec)(cmz)(oc/cm) 0.0032

~154~
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Some of the more lmportant mechanical properties of the

glass are:

Elastic Modulus, 25°C 10.6x10° psi
Shear Modulus, 2500 4.55x106 psi
Poisson's Ratlo, 25°C 0.17
Modulus of Rupture, Abraded, 2500 7160 psi
Density, gm/cm3 2.202

As noted atove, the thickness of each target obtained
from Corning was 0.290". In order to test for multiple
scattering effects 1n our measurements, one target was
ground down to a thickness of 0.164", Grinding operations
are quite capatle of generating a very large amount of heat
and producing some local devitrification in the sample.

To prevent this from occurring, the sample was immersed in
a coolant during the grinding operation and the material
was removed in steps of 0.002. with frequent pauses to

dissipate any heat buildup.
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TABLE [lI-1

Purity of CORNING Ultrapure Vitreous Silica, Code 7940

ELEMENT PARTS PER MILLION
Sodium 0.01 - 2.0
Potassium 0.01 - 0.1
Copper 0.01 - 0.05
Magnesium 0.01 - 0.1
Calcium 0.1 - 1.0
Zinc 0.05 - 0.5
Boron 0.05 - 0.5
Aluminum 0.05 - 5.0
Chlorine 10.0 - 100.0
Titanium 0.1 - 10.0
Phosphorus 0.01 - 0.1
Arsenic 0.001 - 0.005
Antimony 0.001 - 0.005
Bismuth 0.01 - 0.1
Vanadium 0.01 - 0.1
Chromium 0.001 - 0.05
Manganese 0.001 - 0.01
Iron 0.1 - 5.0

According to Corning, the above analysis is considered to be typical
of all of their Code 7940 glass. Different techniques were used for

different impurities in order fo obtain the most accurate values.



3.2 THE PHASED-CHOPPER MECHANICAL MONOCHROMATOR

The inelastic neutron scattering measurements reported
in this work were performed with the Unlversity of Michigan's
phased cropper mechanlcal monochromator. A schematic diagram
of this faclility, which 1is located at team port "J" of the
Ford Nuclear Reactor, 1s shown in Figure 10. The system
1s slmilar to the faclillity constructed at Chalk River by
Egelstaff, et.al. (201) and has been described in references
(202), (203), and (204). The following description will
draw on these sources to provide a brief explanation of the
operation of the system. This information will also provide
the nccessary background for the description of a two rotor
modification of the system which was used to measure the
total neutron cross section and the diffraction pattern of
the vitreous silica target.

The major components of the mechanical monochromator
facility are four time-~phased slotted rotors which define
the energy and direction of the incldent neutron team, and
a detector-time-of-flight analyzer system which determines
the energies and directions of the scattered neutrons.

The neutron source for the monochromator is the leakage
spectrum of the two megawatt Ford Nuclear Reactor (205).

The facility's beam port 1s extended through the water of
the reactor pool bty means of a nitrogen-filled stainless
steel bellows and looks directly at a D20 tank mounted next
to the reactor core (206). A helium filled collimator in

the beam port helps to optimize the neutron beam incident on
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rotor 1.

The four rotor unlts are housed along the beam path in
a concrete shleld. Additional shielding in the form of
water tangs, polyethylene, masonite, and torated paraffin 1is
fltted around each unit to reduce the background from the
scattering of neutrons and gamma radiation by the rotors.

Trhe two types of rotors used in the system are shown in
Figure 11. The rotors at positions 1 and 3 (Figure 10) are
made of a fitreglass-resin mixture. The wide, divergent
slits in these rotors are designed to transmit a relatively
troad pulse of both thermal and fast neutrons. The rotors
at positions 2 and 4 are made of a high strength Mg-Zn alloy
containing 10% cadmium for neutron attenuation. The narrow,
curved slits of these rotors produce relatively short bursts
of thermal neutrons. Since the total cross sectlon of
cadmium drops from a value of ~7600 barns at 0.17€ ev to
less than ~20 barns at 1.0 ev (207), fast neutrons pass
through these rotors with minimal attenuation.

The range of neutron energies transmltted by a rotor is
a function of its speed of rotation and the curvature of its
slits. The ratio of the optimum transmitted neutron speed
(NS) to the rotor tip speed (TS) is commonly used to
characterize the slit curvature of the rotor. For the cadmium
rotor shown in Figure 11, NS/TS = 8. The ratio for the
fibreglass-resin rotors, NS/TS = 24, 1s higher since they are
designed to operate at lower angular velocities. For a

detailed discussion of rotor transmission characteristics
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the reader 1s referred to the works of Carpenter (208) and
Marseguerra and Paulli (209).

The system which drives the rotors was designed st
AERE, Harwell and 1s described in reference (210). Briefly,<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>