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Abstract The generalized layout problem involving sizing, shape, and topology
optimization is solved by using the homogenization method for three-dimensional
linearly elastic shell structures, as an extension of the previous work by Bendsde and
Kikuchi. Formulation, a solution algorithm, several examples of computing the
optimum layout of shell structures are presented.

1. Introduction

A modem theory of structural optimization based on mathematical programing and
sensitivity analysis is developed by Schmit [1] and Fox [2] in the 60s, although the
concept of fully stressed design was widely applied in design practice without solid
mathematical justification but with engineers' intuition for a long time. Using
variational methods such as Lagrange multipliers and calculus of variations, Prager
and Taylor [3] made a justification of the fully stressed design for a class of structural
optimization problems by deriving their optimality condition, whose direct use in
constructing optimization algorithms leads the so-called optimality criteria method.
Structural optimization in the 60s was restricted mostly to sizing problem of frame
structures. Even some of topological layout optimization problems of a struc-re were
solved as sizing problems by emphasizing the fact that unnecessary members of
frames disappear in the optimization process as the area of the cross section of such
members goes to zero. However, these restricted investigation of topology of the
optimum structure could not provide significant advancement of the theory of the
optimum layout of a structure which enhances the "classical" layout theory of Prager
[4] for a very restricted class of structures as an extension of the concept of Michell
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trusses [5]. Even more recent work by Rozvany [6] in which Prager's idea is
extensively developed, deals with layout problems of extremely complex, but still
frame structures based on the analytically derived optimality criteria method.

In the present work, we shall extend our scope of layout of a structure, and shall
solve layout problems for more general solid structures without assuming frame with
complex topology constructed by networking all possible combination of joints
distributed in a given design space. In other words, we shall formulate the problem
based on the assumption of continuum so that any topology of a structure can be
generated without assuming any special structural elements and their combination.
Furthermore, the shape and size of the optimum structure will also be determined as
the result of the design problem without specifying any of parametric representation of
the shape and size of a structure. In particular, the optimum layout of three-
dimensional shell structures will be studied as an extension of the previous works of
the homogenization method introduced in Bends¢e and Kikuchi [7], and also in Suzuki
and Kikuchi [8] for plane structures.

2. A Homogenization Method for Plate/Shell Structures

The basic concept of the homogenization method for the generalized layout
problem for three-dimensional plate/shell structures is the same to the one for plane
elastic structures. Here we shall briefly describe the homogenization method for
plate/shell structures. The following is the fundamental steps of the homogenization
method of the layout optimization problem :

1) A base shell structure is assumed, the thickness of which is described as a
function hg. This is thickness can be zero, and then we shall consider a complete
layout of a structure from the beginning. If hg is not zero, a built-up shell structure is
assumed with layout of the optimum reinforcement by solving the present optimization
problem.

2) A design domain Q is specified on the curved surface in which the middle
surface Qg of the initial shell structure is contained. This domain can be a subset of
the middle surface of the initial shell, while it is also possible to be larger than the
middle surface.

3) Microscopic perforation is assumed to find the optimum reinforcement of the
initial shell by adding solid material whose volume is prescribed. Perforation is
characterized by three distributed design variables { a1, az, 0 }, the first two are the
sizes of the rectangular hole in the unit cell and the angle of rotation of the hole in the
macroscopic shell structure. These functions may have different values at different
points in the design domain. The "true" size of holes made in the shell structure is
really tiny and infinitely many, and they are described by €a; and €aj for a sufficiently
small positive number €>0. Thus, it may consider there are infinitely many and small
rectangular parallelopipes with holes, whose height is a half of a fixed value k1, on the
both sides of the initial shell in order to maintain symmetry of the cross section with
respect to the middle surface. A schematic description of the design variables is
given in Fig. 1. '
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Figure 1 A Schematic Description of the Design Variables
on a Three-Dimensional Shell Structure

4) Reinforcement is designed to be constructed by accumulation of appropriate
scaling of the unit cell described in Fig. 2 with rotation 6 about the normal line to the
middle surface. Scaling is taken place only on the middle surface, while the height of
the hollow rectangular parallelopipes keeps constant to be a half of A1 in the both
sides of the middle surface. The total volume of reinforcement is given by

VR = phl J.(gl 1)) )dQ ( ) )

where p is the mass density of the material for reinforcement.



5) The optimum design is defined by minimizing the mean compliance of a shell
structure for a set of specified loading and support conditions under the volume
constraint

VR < Vgiven . (2)

No other constraints on the stress, strain, and displacement of the shell are
assumed in this formulation, while the standard formulation of the optimization is
stated as minimizing the total weight of the shell under constraints of the stress,
strain, and displacement.

reinforcement

o 5 fo—

initial
built-up
shell

Upper Half of the Middle Surface

Figure 2 Upper Half Portion of the Unit Cell of the Initial Shell and its Reinforcement

6) To simplify formulation of a shell, let us assume that a curved shell is
“approximated by union of 4 node quadrilateral finite elements defined by four corner
nodes placed in the tree-dimensional space. Further, in order to neglect the curvature
effect of a shell, finite element formulation assumes the flat 4 node quadrilateral
element obtained by the projection of the original possible non-flat element onto the xy
coordinate plane which is defined by minimizing the sum of squares of the distance of
corner nodes from the plane. The coordinates x and y are then set up as the principal
directions obtained by solving the associated eigenvalue problem. The thickness (
i.e. transverse ) direction is defined as the normal to the xy plane, and is identified
with the z axis. The coordinates (x,y,z) can then define a local coordinate system in
which a flat shell element is derived.

Suppose that the displacement field {uy, uy, u;} of an arbitrary point P in a shell
element €, is approximated by



5.2)=u(x3) + 20,5
u (x,y,z) v(x y)—sz(}c,y)
u,(x,3,2)=w(x,y) (3)

where {u, v, w} is the displacement field of the point P’ of the projection of P on the
middle surface of the shell that coincides with the xy plane, 8, and 6y, are the rotation
of P about the x and y axes, respectively. This approximation of the displacement
field yields the strains :

(4)

Using the contracted notation, the internal virtual work in an arbitrary shell element
Q. can be written by

W2 o
U, = o dzdQ
v= |, | frioke) 5

where [D] is the elasticity matrix in the contracted notation obtained by assuming the
plane stress. condition in the xy plane. The matrix [D] is defined by the elasticity
tensor EG obtained by rotation 8 of the homogenized elasticity tensor EH for plane
stress problems.  Applying the symmetry condition with respect to the middle
surface, the internal virtual work in €, can be written by

OUe= Jg ({Sem}T[DO]{sm} +{8x ) [Dy]{x g} + {S'Y}T[Dzs]{'Y})dQ
+0256,, (6)

where
hol2
[Do]= j D,(a;,6)]dz + J

hy/2
hon[D,,,(0,0)]c# - Lon[Dm(a,-,G)]dz
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—hol2 hol2
Dy]= J.-hlzz [Ds(a,-,B)]dz+J. ho/z[ (0,0)]dz + j [D (a;,0)]dz

Dyy(a;,0) D12(ai’e) Dy4(a;,6)

[Dm(a,-,e)] = D22(a,-,9) / D26(a,-,9) D1z D44 0
SYM Dis(a;0) [D:]=B Dys
du/dx ~96, / ox 0. +3w /3y
{eq}={0v/dy {Kkg}=) 06,/dy ! ={e +ow / 3x }
du /3y +dv/dx 96,/ 9x—08, / dy ’

and
a2 =oc2h1J. A(x — X0’ Dyg+(y - )" Dys}dQ

Here (xg, yo) may be identified with the centroid of Qe, . is a very small number, and
B is the so-called shear correction factor. o; are sizes and 6 is angle of rotation of
microscopic holes that only exists in [-h1/2,-ho/2] and [ho/2,h1/2] . As shown in
above the design variables { a1, a2, 0 } define the D matrices in the shell formulation,
and thus, for a set of their fixed values we can regard the above a standard shell
formulation that can be found in the literature of finite element analysis of shells, see,
e.g., Noor, Belytschko, and Simo[9]. Since "torsional" rigidity is introduced artificially,
this model involves 5 degrees of freedom per node. It is also noted that the
homogenization process is applied at the level of the D matrix before integrating it in
the thickness direction to compute appropriate rigidity for a plate/shell.

Approximating u, v, w, 8y, and 6y by bilinear polynomials in the parametric
coordinates & and M, using the shape functions

R R o

where {( &q, ng )} are the parametric coordinates of the four corner nodes of an .
element. Applying this approx1mat10n we discretize the total strain energy, and then

the internal virtual work of the shell is approximated. Indeed, in each finite element
we obtain the element stiffness matrix in the local coordinate system (x,y,z) :

[]= [ BT [o0] B, i+ {35 [2: [y

+ jﬂe[BY] [D][By a2+ ko] ko] (8)

Here
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and {d,} is the vector of the degrees of freedom in an element. Applying appropriate
numerical integration rules which yield equivalent effect of appropriately assumed
stress or strain fields in an element, we can compute the element stiffness matrix of
the shell.. Details of such integration schemes can be found in Noor, Belytschko, and
Simo[9].

T7) If the shell is subject to external forces and moments on the lateral surfaces

and its boundary, we can derive an approximation using the 4 node quadrilateral
element. We shall represent such an approximation by

8p, = {54,}' {1.} 9)



where 8P, is the work done by the external forces and moment of an element Q,, and
{ fe } is the set of equivalent nodal forces and moments with respect to the degrees of
freedom in a finite element.

Thus, the total potential energy of the shell structure is approximated by the
discrete form

n(a )=y el kHa}-{a) (£}

e=1 (10)

where E is the number of finite elements covering the shell structure, i.e., design
domain in the optimum reinforcement problem. It is clear that the element stiffness
matrix [K,] depends on the design variables { aj, a2, 0 }.

8) Since the design problem is defined by minimizing the mean compliance under
the volume constraint for the amount of reinforcement material, its finite element
approximation is given as follows :

E
Minimize Z{a’e’}T {£.}

=1
VR =Phl Ig(l_alal )dnsvgwen ¢ ( 11 )

Noting that
S 1T .
({d,})= Z el (= Mipimize (]
we can define the optimization problem by

Minimize (—2 Mipimize n({Ee})]

e

Va=phy Jo(1-21a,)dQ<V iy (12)

Introducing the Lagrange multiplier A<0 to the volume constraint, and defining the
Lagrangian

E .
L=II- X[phlz '[Qe (l ) )dQ - VgivenJ

e=1 ) (13)
the first variation of this Lagragian with respect to the design variables, degrees of
freedom in the finite element model, and the Lagrange multiplier, yields the optimality
condition of the finite element approximation of the design problem :
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Applying the optimality criteria method described in Bends¢e and Kikuchi [7] and
also in Suzuki and Kikuchi [8], we can derive a computational scheme to determine
the design variables { a1,a2,0 }. In the present work, we discretize the design
variables by piecewise constant functions, i.e., within a finite element , a1 , a2 , and 0
are assumed to be constant. Thus 3E discrete design variables are introduced in the
discrete optimization problem.

9) It is noted that the height A1 of the microscopic hollow rectangular
parallelopipes is assumed to be constant in the optimization problem, while the sizes
of hollowness, a; and ay, are assumed to vary in design. The standard treatment of
the optimum reinforcement of a plate/shell structure is defined by obtaining the
thickness of added reinforcement to the initial thin plate/shell structure. In other
words, the design variable is the thickness h(x,y) of the reinforcement. In the
present approach, we assume the constant height of the "ribs," but their sizes and the
orientation will be determined so as to the optimization is achieved, and also the
existence of microscopic ribs is expected, although they may not be formed as the
result of the optimization. The present optimization can be classified as a sizing
optimization problem, but the choice of the sizes to be optimized is non-standard.

Another characteristics of the present approach is that the homogenization
process is applied at the level of the D matrix of a solid, instead of applying the
homogenization to the bending rigidity. If there are infinitely small stiffeners in the
perpendicular direction of the x axis as shown in Fig. 3, the present approach does not
alter the bending rigidity of the initial plate/shell in the x direction at all, since the
homogenized elasticity constant in the x direction of the unidirectional stiffened panel
is the same to the one without stiffeners. However, if the homogenization process is
taken for the bending rigidity, this unidirectional stiffeners may contribute to increase
of the overall bending rigidity if the height of stiffeners is sufficiently high. Thus, the
present approach cannot produce unidirectional discrete stiffeners to increase the
bending rigidity, despite of its capability of significant increase by their use. In other
wards, despite of possibility of the existence of fine microstructures in the present
formulation, we prevent the existence of unidirectional discrete stiffeners, and then the

10



optimum layout computed by the present formulation can be suboptimum to the one
obtained by the formulation that the homogenization process is applied at the level of
bending rigidity, see Bends¢e [10], since it can produce unidirectional discrete
stiffeners. In this sense, the present formulation does possess limitation to produce
the optimum, but it can be still useful in practice of structural design optimization in
which distribution of infinitely many and microscopic discrete stiffeners is unrealistic in
manufacturing. Most of engineering applications prefer not to have infinitely many
microscopic discrete stiffeners, but they place a finite number of macroscopic discrete
stiffeners.  The present formulation can provide such solutions, rather than the
optimum that involves infinitely many discrete stiffeners.

10
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Figure 3 Homogenized Bending Rigidity of a Unidirectionally Stiffened Beam
( after : Bending rigidity is homogenized )
( before : D matrix is homogenized )

Since nonlinearity of the bending rigidity of the plate/shell computed by the present
approach is much stronger than the case that bending rigidity is homogenized,
convergence of an iteration scheme by the optimality criteria method for optimization
may not be smooth. In other words, some special care may be necessary to deal with
this strong nonlinearity with respect to the design variables a; and as.

10) = Thickness optimization of a plate/shell structure has been extensively
studied in structural optimization by, e.g., Schmit et al. [11], Morrow and Schmit [12],
Simitses [13], Banichuk [14], Haftka and Prasad [15], Cheng [16], Cheng and Olhoff
[17,18], and others. Especially, majority of literature related to this subject can be
found in the survey paper Haftka and Prasad [15] and a general theory of the
thickness optimization of a plate can be found in Banichuk[14] for the case that the
variation of the thickness is sufficiently smooth so that discrete stiffeners should not
appear in the optimum. Delicate discussion on convergence and mechanical models of
a plate/shell is discussed in Cheng [16], as well as importance of introduction of the
homogenization method is demonstrated in Cheng and Olhoff [17,18] and also in
Bends¢e [10]. A layout theory of plates are also discussed in Rozvany[19] with a
different context from the present approach.

[



3. Optimum Layout of Beam and Arch Structures

We shall first study layout problem of a beam/arch structure using the above
formulation before extending the homogenization method to a three-dimensional
plate/shell structure. To this end, a beam/arch is regarded as a two-dimensional
plane structure.

The first example is a layout problem shown in Fig.4 that can be found in standard
textbooks on structural optimization. If this problem is regarded as a sizing problem
that finds the optimal thickness of the rectangular cross section of a beam with a fixed
width, this problem can be solved easily by applying a standard technique of structural
optimization.

h(x) L

Figure 4 Thickness optimization problem of clamped beam

The problem of minimizing mean compliance subject to equilibrium equation and
volume constraint is equivalent to

L 2, )
max n:vin {L -;—Ebh3 [Zx—};) dx - Pw|x=L/2} (15)
subject to
L
jobhdx—VSO (16)

Here w is vertical displacement, h is height of beam that is to be designed, and b is
width of beam that is fixed, E is Young's modulus, P is applied point load, and V is
upper bound on volume. Using Lagrange multiplier method, necessary condition for
optimum can be derived as

) \2
2 d w _
h (de_zJ =constant (0<x< L) (17)

From boundary conditions, the analytical answer for optimal distribution of thickness
becomes

12



3 [ =
h(x) = ll Ty

L (0<x<L/2) (18)

and symmetric when L/2 <x <L . The answer is shown in Fig. $.

L4—

Figure 5. Analytical solution of beam thickness design
The optimal thickness distribution yields two hinges at x=L/4 and 3L/4, i.e., h =0 at

=L/4 and 3L/4, while the maximum thickness is obtained at x=0, L/2, and L. The
gradient k' of the thickness is o at a=L/4 and 3L/4. |

¢ i

Design Domain

[a—

t —>—

<< ‘ 20 >

Figure 6. A Design Problem of a Beam Structure

Now let us solve a similar problem using the homogenization method based on the
formulation given in the previous section. To do this, we shall consider the optimum
layout problem in a very narrow strip shown in Fig. 6. A shear force is applied along
the center of the narrow strip and this force is transmitted to the fixed supports in both
sides by a structure constructed. Dividing the narrow design domain into 200 x 10
uniform size 4 node finite elements, we shall solve the discrete optimization problem
(12) to determine the optimum layout for three different volumes of "reinforcement.”
Note that in this example, we assume that hg = 0, i.e., there is no initial plate
structure assumed. The total number of discrete design variables is 6,000, while the
total number of the degrees of freedom of the finite element model of the design
domain is 4,422 since plane stress condition is assumed without any of transverse
deformation. Computed results are shown in Fig.7. It is clear that hinges appear at
x=5 and 15, same way as beam solution goes. Since it is possible to generate
internal holes inside the optimal structure, holes are naturally formed to increase the
stiffness against bending moment. i.e. forms sandwich beam. In most of thickness
optimization studies published so far, internal holes are not presented. Thus, the
method introduced in this paper can provide far more sophisticated optimal structure.
If the volume of solid material is reduced, very truss like structures are formed.
Because of the restriction on the design domain, reinforcement can be placed only
inside the very narrow rectangular domain. Large reinforcement is observed in the
vicinity of the fixed end points as well as the center at which the point force is applied.
It is clear that the present method can provide the shape and topology of the overall
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structure as well as the optimal sizes of members of a "truss" structure, and that
there have been no other methods which have comparable capability to the present
‘one.

Volume Constraint 18
Figure 7. Optimal Layout of a Beam like Structure

As shown in Fig. 7, hinges appear in the optimal structure if a beam like structure
is assumed. Now let us solve the similar problem for an arch which can take both
inplane and transverse forces.(Fig. 8) Because of curvature, large portion of the
transverse force applied at the center is transferred as axial force along the axis of an
arch. Thus, formation of hinges is unrealistic in such a structure, i.e., the optimal
layout for an arch like structure should be very different from' the one for a beam.
Indeed, Figure 9 shows the optimal layout for three different volumes of solid material.
No hinges are generated. Furthermore, the present method can find the best layout of
the axis of an arch as well as the thickness. To do this, a standard method requires
sensitivity analysis of the position of the axis of an arch as well as the thickness
distribution. In the present method, it is not necessary to provide these information.
The optimal configuration of an arch is automatically obtained without specifying its

function forms.
* Load

Design Domain

e I
- ,

< 20
Figure 8 Design Problem of Arch structure
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Volume Constraint 10

Volume Constraint 15

Volume Constraint 18

-Figure 9. Optimal Layout of an Arch Structure

4. Optimum Layout of a Simply Supported Plate

For demonstration of the homogenization method to find the optimal layout of a
plate/shell structure, we shall consider a simply supported plate subject to two loading
cases : a concentrated force at the center and uniformly distributed pressure on the
plate. The size of the plate is 60 cm X 60 cm as shown in Figs. 10 and 11. Using
symmetry of the geometry and the loading condition considered here, one quarter of
the domain need be modeled by 4 node finite elements to find the optimal layout of
reinforcement of a thin plate of the initial thickness hg=0.lcm. The height of
"stiffeners" which are introduced for reinforcement is restricted to A1=1cm. A quarter
of the plate, i.e. the design domain is divided into 30x30 square and uniform finite
elements in which 2,700 discrete design variables are involves while the total number
of degrees of freedom of the finite element model is 4,805 because of 5 degrees of
freedom per node. Young's modulus of the reinforcement and the initial plate material
is assumed to be 200 GPa, while Poisson's ratio is 0.29. We shall apply two different
loads, a point transverse force at the center and a uniformly distributed transverse
load on the plate.

The optimal distribution of reinforcement of a thin plate is obtained as shown in
Fig. 12 for the point load. If the volume of reinforcement ( i.e. solid material added to
the original thin plate ) is very large, no reinforcement are assigned in the vicinity of
the lines connected for the mid-points of two adjacent boundary edges of the plate. A
square plate rotated 45 degree is formed as a part of stiffeners. If the thickness of the
middle thin plate is assumed to be zero, i.e., hg=0, the optimal layout of solid material
to form a plate structure must yield-line hinges along these four 45 degree inclined
lines. It is reminded that two hinges are generated for a beam when its thickness is

15



optimized for the case of point load at the center of the clamped beam, see Section 3.
Thus, line hinges in the optimal reinforcement may be expected. It should be noted
that this does not mean discontinuity of the transverse displacement along these
hinge lines.

Figure 10 Simply Supported Square Plate Subject to Two Different Loading
Conditions

Simply Supported

Simply
30cm Supported

j e 30cm _PI

Symmetry Lines
Figure 11 Finite Element Model of a Quarter Portion of the Plate

But only the slope may be discontinuous, and it is still admissible in the
variational formulation of an elastic plate defined in the Sobolev space H2(Q2). The
slope, i.e., the normal derivative of the transverse deflection w along a finite number of
curves in the plate can be discontinuous. In this sense, the optimal reinforcement or
layout pushes the transverse deflection w to the limit of the admissible space, in other
words, w is just in H2(Q) but not in H2+5(Q) for §>0. This, further, may imply that
proof of convergence of finite element approximations requires very delicate argument
when the representative mesh size goes to zero, since it expects extra regularity (
smoothness ) of the solution to obtain the rate of convergence of the finite element
approximation. It should be possible to establish strong convergence of the finite
element approximations to the optimal solution, but it may be difficult to establish an
explicit rate of convergence.

16



(c) volume 450/900 (d) volume 270/900

Figure 12 Optimal Layout of reinforcement of a Plate with Point Load

To explain the result obtained in Fig.12 for the optimum layout of reinforcement, let
us introduce a fact of limit line analysis of plasticity in which slip lines appear, see
Figure 13. It can be easily understood that the reinforcement in layout optimization
are formed on the slip lines of limit analysis obtained in Yang[20]. Here, because of
formation of four hinge lines in the optimum layout, these behaves so as to the simply
supported boundary, and then two more slip lines are added by connecting diagonals of
this "newly" formed simply supported plate. Most of reinforcement is formed along
the slip lines, and this seems to be a natural consequence. When limit lines appears,
displacement becomes infinite in linear theory, while our objective of reinforcement is
to minimize the mean compliance which yields the minimum displacement for a
specified load. To avoid plastic hinges in limit analysis, reinforcement in an elastic
plate must be along these lines. A rather thick cross shape stiffener on the center (
which corresponds to slip lines of the inner simply supported plate generated by
appearance of four hinges in the reinforcement ) and thin stiffeners along the diagonals
of the original plate, are formed. Note that the black portion in the figures indicates

17



that no holes are generated over there in reinforcement i.e. stiffeners or plates whose
height is fixed to be h1-hg. Another interesting observation is that solid stiffeners or
plates are generated in most of the portion. There is very little perforation in the
optimal design, although it is allowed. In other words, fine microstructure by
perforation may not be the optimum as far as the present result is concerned.

slip line

Inner plate
by four hinges
Hinges.

slip line

slip line

slip line
Figure 13 Slip Lines of Simply Supported Plates in Limit Analysis

Figure 14 shows the result for a plate with the uniformly distributed load. It is
noteworthy that in the distributed load case, additional stiffeners appear in the four
corner area. The overall layout for this case is the same to the one for the point load.

A

4

(a) volume 450/900 | (b) volume 270/900

%

Figure 14 Optimal Layout of a Plate with Distributed Load

Another interesting question is whether the present homogenization method is
stable in finite element element approximations. That is, when the finite element
model of a three-dimensional shell structure is refined systematically, it is important
to know whether the displacement of the shell and the optimum layout of
reinforcement do converge to the unique solutions. In this case, the height 4 of the

18



stiffener which is characterized by the microstructure of the hollow rectangular
parallelopipe is assumed to be constant, while the thickness of the initial shell kg is
also fixed to be a sufficiently small number. Similar convergence of finite element
approximations is considered for plane structures in the previous paper [8]. We shall
examine convergence of the finite element approximation by using the layout
optimization of the plate with a concentrated force applied at the center of the plate.
To do this, a quarter portion of the square plate is divided into three different meshes:
20x20, 30x30, and 40x40 uniform square 4 node finite elements for the volume of
reinforcement 720 while the total area of design domain is 900. The optimum layouts of
reinforcement are obtained as shown in Fig. 15, and it is clear that the configuration of
the optimum layout is unchanged by finite element mesh refinement except very
details of reinforcement. In other words, convergence of the finite element
approximation can be expected for the present formulation. The value of the mean
compliance of the optimum structure is also affected by the finite element refinement in
ver small amount, i.e., convergence is attained. As refinement is taken place, very
fine details of reinforcement can be observed, although the overall layout is unchanged.

mesh 20x20

mesh 30x30

mesh 40x40

Figure 15 Convergence of the Finite Element Approximation
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5. Optimum Layout of a Simply Supported Shallow Shell

Let us consider a shallow shell whose projected plane to the xy plane is the same
to the plate considered in the previous section. The shallow shell is defined by the
curved surface

. x . z z 1
_z(x,y)=zmaxsm1t———smn—y— where —max — max — __

max  Ymax Xmax  Ymax 12

S

(a) volume 450/900 (b) volume 270/900

Figure 16  Shallow Shell with the Point Load at the Center

(a) volume 450/900 (b) volume 270/900

Figure 17 Shallow Shell with the Uniformly Distributed Load
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The results of a shell are very different from those of a plate as expected from the
fact that the optimal layout of an arch is dramatically different from the one of a beam
shown in Section 3. Figure 16 shows the optimal distribution of stiffener or
reinforcement layout of a shell for the case of a point transverse load applied at the
center top of the shallow shell surface. A ring shape reinforcement is formed that is
never be generated in a plate. Inner cross shape center stiffener in a plate disappear
in a shell. Rather thick stiffeners are assigned along the diagonals. This is again,
very different from the case of the plate. Hinges appears on the diagonal stiffeners,
but they are different from the plate, too. Another difference is that scattered
reinforcement is observed inside a ring stiffener when the volume of solid material for
reinforcement is reduced. This indicates possibility of the microstructure of perforation
over there. For the plate, all of stiffeners are solid.

Figure 17 shows the result of a shell for the distributed load. Basic pattern of
distribution of stiffeners is similar to the one for the point load case, although they are
more distributed in the four comers of a shell. Stiffeners in the center portion disappear
in the distributed load case. ,

It is clear that very different layouts are obtained in a plate and a shell for the both
loading cases. This difference may be explained by the fact that a shell is combination
of a plate and a membrane. Quite large portion of applied forces is supported by
membrane rather than plate in a shell structure. If pure flat plate is considered, all the
loads must be supported as a plate. Thus, the mechanics nature of a shell is very
different from that of a plate, and this difference implies different optimal layouts of
reinforcement in design optimization.

6. Transition from a Plate to a Shallow Shell

As shown in above the layout for a shallow shell is different from the one for a
plate. Thus, it may be interesting to investigate transition process from a shell to a
plate by reducing the shell height zyax to zero. It is a natural question what happens
in between. Does the basic pattern of the layout change suddenly at a certain point ?
Figure 18 shows how the optimal distribution of reinforcement changes from Fig.14
(b) to Fig.17 (b). It is observed that sudden change does not occur, but changes are
rather gradual. In other words, transition of the layout of a shell to that of a plate is
"continuous." Since quantifying the change of topology is difficult, we shall display in
Fig. 19 the change of the mean compliance in transition from a plate to a shallow shell.
The uniformly distributed pressure is applied and the shape of the shell is the same to
the one used in the previous section, while the shell height is varying from 0 to 4.
Compliance change also shows very smooth transition from a plate to a shell, though
there is a region in which compliance changes is very steep. It is natural to expect
that in this region, the structure changes from "bending dominant” to "membrane
dominant”.

7. Optimum Layout of Reinforcement of a Folded Plate

We shall apply the homogenization method to find the optimum layout of a folded
plate structure in order to demonstrate the capability of the present formulation for
solving design problems in practice where many folded plates are used. Since this
example is for showing the capability of the present formulation, we shall consider
only a simple case as shown in Fig. 20 involving 90 degree folding. Three forces, Fy,
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Fy, and F; are separately applied to emphasize the special mechanics nature of the

problem.

* S

(@) Zmax Xmax =Zmax /Ymax= 1/96

: ) '-w*‘ ©d
(C) Zmax /Xmax =Zmax /[Ymax= 3/96 (d) Zmax /Xmax =Zmax /Ymax=4/96

Figure 18 Optimal Reinforcement of Shells with Various Height
( Distributed Load, Volume 270/900 )

Transition of Mean Compliance

Mean Compliance

[N

0

0 1 2 3 4
Hight of Shell (width 60)

Figure 19 Change of the Mean Compliance
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Force F; gives just tension to the
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folded 90 degree

Force Fx provides transverse bending to both the standing and flat plates. Force
Fy generates in plane bending to the standing plate while rather large torque is
standing plate, and it provides both transverse bending and torsion to the lower flat

plate. It is noted that effect of bending is much larger than torsion in this case.

generated by this force in the lower flat plate.

Figure 20 Design Domain of a Folded Plate and Three Different Loadings
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Figure 21 Optimum Layout of a Folded Plate for the Applied Load Fx
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Figure 22 Optimum Layout of a Folded Plate for the Applied Load Fy
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Figure 23 Optimum Layout of a Folded Plate for the Applied Load F,

The standing plate is divided into 20 x 20 square uniform 4 node shell finite
elements, while the lower flat plate is divided into 20 x 30 square uniform 4 node
elements. This finite element model involves 6,426 degrees of freedom, and the total
number of discrete design variables is 3,000. The thickness of the initial plate hg is
assumed to be zero, and the height of "microscopic" stiffeners is assumed to be a
constant, h1=1 in the present example. Two different amounts of solid material are
considered, say 500 and 300 for the total design domain that is expressed as 1,000
units. The optimum layouts of folded plates are described in- Figs. 21, 22, and 23 for
two different volume and for three different applied load at the upper-left corner of the
standing plate. _

When force Fy is applied to the folded plate, this generates basically transverse
bending and rather small torsion. Since the height of the plate for layout is held to be
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constant A1=1 in this problem, the optimum layout obtained should be very similar to
the one obtained by the width optimization of a beam subject to a transverse force
applied at the free end of the cantilever. If force Fy is applied at the upper-left comer
of the standing plate, in-plane bending moment is generated in the standing plate
while large torque exists in the flat plate. Thus, a frame structure shown in Fig. 24 is
formed in the standing plate portion.

[

Figure 24 Frame Structure in the Standing Plate for In-Plane Bending

Since a downward force is applied at the left comer of the flat plate while a upward
force is applied at the right corner, we have large torque in the flat plate portion, and
then the layout is to resist to this torque. For force F;, only tension force is
generated in the standing plate, only a wire is need to sustain the tension in this
portion.  For the flat plate, bending and small torsion are applied, and the layout is
very similar to the case of force Fy.

8. Optimum Layout of Reinforcement of a Shell Structure

As the last computational example, we shall obtain the optimum reinforcement of a
cylindrical shell shown in Fig. 25. In this case, effect of the boundary condition on the
optimum layout is examined. The height and the radius of the shell are h=20cm and
r=20cm, respectively, and it is divided into 20x80 uniform size 4 node rectangular finite
elements. A uniformly distributed moment is applied along the two vertical lines as
shown in Fig. 25. Figure 26-(a) shows the layout of reinforcement when the both
ends of the cylindrical shell is simply supported, while Fig. 26-(b) represents the
optimum reinforcement when the both ends are free. Both cases tends to generates
discrete ribs in the circumferential diréction, although rather massive reinforcement is
assigned along the lines on which the distributed moment is applied for the case of
simply supported end condition.

9. Conclusions

The homogenization method to find the optimum layout of reinforcement of three-
dimensional shell structures is presented in this article together with several
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computational examples. As shown in above, without specifying the shape and
topology of reinforcement of the shell initially built up, the optimum configuration can
be obtained. The design variables are the size of rectangular parallelopipes in
microscopic level as well as the rotation of these. Their height is held to be constant,
while standard thickness optimization of a plate/shell utilizes the thickness as thé
design variable.

a) Simply Supported
b) Free

a) Simply Supported
b) Free

Figure 25 Cylindrical Shell with the Loading Condition
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(a) Simply Supported (b) Free End Condition

Figure 26 Optimum Layout of Reinforcement of a Cylindrical Shell

The present formulation provides rather discrete solid stiffeners as the optimum
reinforcement, and it generates very little portion of finely perforated reinforcement.
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Convergence of finite element approximations is examined, and stable convergence is
obtained for the example worked here. = The present method is applied to obtain the
optimum reinforcement for various cases of pates and shells in the three-dimensional
space.
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