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Abstract
A rigorous UTD (Uniform Geometrical Theory of Diffraction) analysis of the
diffraction by a smooth convex impedance cylinder is presented. The analysis parallels the
one employed for the perfectly conducting cylinder. Ray solutions are obtained which
remain valid in the transition region and uniformly reduce to those in the lit and the shadow
regions. In addition, a ray solution is presented when the observation point is in the close
vicinity of the cylinder. The resulting transition region expressions are in terms of Fock-

type integrals which are evaluated using a numerical scheme based on Fourier quadrature.



I.  Introduction

The problem of scattering by a smooth convex impedance cylinder has received
much attention. Wang [1, 2] presented ray-optical solutions for the impedance and coated
cylinders. His results are valid only in the lit and shadow regions and do not apply to the
case where the observation point is in the close vicinity of the cylinder. Wait and Conda
[3, 4] developed a solution which is valid in the transition region and for observation points
on and off the surface. However, as pointed out by Pathak [5] it did not uniformly reduce
to the ray solution [6, 7] exterior to the transition regions. Also, it is not valid on the
surface in the transition region and these limitations were the primary motivation of
Pathak's work [5] for the perfectly conducting convex cylinder. Recently, Kim and Wang
[13] presented a solution applicable to a coated circular cylinder that remained valid in the
transition region fields. They employed a heuristic approach to obtain the numerical values
of the resulting transition integral applicable to a coated cylinder. Their solution is uniform
but not applicable to the close vicinity of the cylinder.

In this report we present a rigorous UTD solution of the diffraction by a circular
impedance cylinder with plane wave illumination. The analysis parallels Pathak's
formulation [5] for the perfectly conducting cylinder. Using this procedure, ray solutions
are obtained that are valid in the transition region and reduce uniformly to those in the lit
and shadow regions. In addition, a ray solution is given when the observation point is in
the close vicinity of the cylinder as shown by the regions 4, 5, and 6 in fig. 1. Finally, the
presented UTD solution is generalized to the case of a smooth convex cylinder in a heuristic

fashion paralleling the approach followed for the perfectly conducting case.



II. Mathematical Formulation

Before considering the problem of surface wave diffraction by a convex impedance
surface, it is instructive to first develop a solution for the diffraction by the canonical
geometry of a circular impedance cylinder. Generalizations to any convex surface can then
be made on the basis of the expressions obtained for the circular cylinder.

Consider the circular impedance cylinder, shown in fig. 2, illuminated by a z-
polarized plane wave field given by

ul = u, & = U, P 0%

where u, denotes the amplitude (possibly complex) of the wave and an & time
dependence is assumed and suppressed. The total field in the presence of the impedance

cylinder can be easily written in terms of the eigenfunction representation
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7 is the normalized surface impedance of the cylinder, a is the cylinder radius and ¢ (¢ = ¢s
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at the shadow boundary) is the angle measured from the x-axis. Furthermore, the indicated

differentiations of the Bessel and Hankel functions are with respect to the argument.
Since (2) is a slowly convergent series, especially for large ka, our objective is to
obtain asymptotic representations for u‘t suitable for practical applications. We,

therefore, seek uniform expressions for the total field in the lit, shadow and transition



regions. Such expressions should also recover the well known geometrical optics field,
where applicable.
By rewriting (2) in an integral form and subsequently employing the Watson's

transformation, we find that [8]

J,(ka) +Ql (ka) . @ ]

wal_ o o (] 5R)- H,”(kp)
T +“2'“°f[ T E ) + Qi)

00

ce?™dv +u, )

where

J,(ka) + Ql (ka) .. @ }ﬂ.‘,g
2
[

- Ty(kp) - H, (kp)
27 ﬂ T ) + k)

e-jV(th +9) + e-jv(2n - )
1- c-jZ\m

L4 .

dv (6)

y=lo-Z Igl<® or |\pl<§- 7

and u, denotes the creeping waves which circulate around the cylinder more than once. We
will consider this term later in the analysis.

An alternate expression for u; is

@ g |
Hy (kp) - =% o — Ho (kp) |V gy ®)

. =“_°ﬁ— (- Hy (ka) + QH, (ka) 1
12 2| H, (ka) + QH," (ka) ]

and when this is combined with the expression of u; in (5), we find that
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In addition, the contour c; runs from -e - j€ to O - j€ and the contour c; runs from
0 - je to o= - je, where € — 0*. The use of Hf)l)(kp) = 2Jy(kp) - Hf)z)(kp) has also been

involved to obtain the above expression.

From (10), we observe that I; is independent of the impedance boundary

conditions, whereas I, is completely dependent on the form of the boundary conditions.
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We next approximate the Bessel function J,,(ka) and the Hankel function I-‘El )'(2)(ka) in(11)

for large ka by

Ty(ka) = (VT )" V(1)
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where the Airy function V(t) and W 2(t) are defined as [9]
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The contour I, runs from e e 3 tooce- je and T, is the complex conjugate of T',.
Using (13), I can now be written as
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(a) Analysis for the shadowed portion of the transition region

The uniform asymptotic evaluation of I; for large kp is known for the shadow part
of the transition region [S] and is given by

o [ 2)
-jka® -jks
e Fl ks@ | € (16)

Uk 8 2 ) &5




where all parameters are defined in fig. 3 and
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X

is a modified Fresnel integral referred to as the transition function [10]. Also, positive

branch of \/ ks8%/2 is chosen in (16).
For the evaluation of I, in (14), we must employ the Debye approximation for

) .
H_ “(kp) [8] given by
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Since v(t) = ka + mt is of order ka in the transition region, we may also set sin Y= -sp- in the

Debye approximation to obtain
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An evaluation of I, then yields
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where G(x, q) is the generalized Pekeris' function [11] defined by
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An evaluation of G(x, q), which is computationally efficient, can be found in [12].



Combining (16) and (20) yields
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where P is a point in the shadow region and ui(Q;) = u, is the value of the incident field at

Q.

In the deep shadow region (far from SB,),8 » 0,x» 0, F —) — 1 and the

solution in (22) reduces to the GTD solution.

(b) Analysis for the illuminated portion of the transition region
If the result in (22) for the shadow region is directly employed to calculate the field

u; at a point Py, in the lit region, it does not reduce to the geometrical optics field far from
SB1. An approximation for H{” (kp) which is different from that in (19) is, therefore,

required to model the field behavior in the deep lit region. First, Hf)m(kp) in I; of (14) is

replaced by its far zone approximation (v(t) « kp) to obtain
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Using (24) in (23) yields
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In the far zone (kp » ka), we have (see fig. 4)
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Therefore, I; can be written as
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Using the approximation in (24) and (26), I; is evaluated to find [5]
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Combining (27) and (29) we further obtain
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Also, by virtue of the identification
i
a cgs ® - 5 = reflected ray caustic distance (31)

in (30), we can rewrite u;(P) as
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u,(P) ~ ui(P)) + u'(Qp) [f;_‘l exp { & }
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The near-zone (not in the close vicinity of the surface) field in the lit region can now

be obtained from (32) by replacing the far-zone ray divergence factor \/ §/& with its near-

zone value \/ p/(P + L), where  represents the near-zone reflected ray distance from Qg

to Py

Therefore,
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The above result, which is valid within the lit region (including the shadow
boundary SB;) now properly reduces to the GTD solution in the deep lit region. It remains

to evaluate the contribution of u,. This can be expressed as a residue series but is

negligible in the lit region for large ka.

III.  Generalization to the Case of a Smooth Convex Cylinder
By utilizing the local properties of propagation, scattering, and diffraction of waves
at high frequencies, the uniform results in (22) and (33) can be modified to the case of a

convex cylinder of slowly varying curvature in the following manner

11



(a) Shadow region

The field u; at P; in (22) after generalization becomes

. L
ul(Ps) ~ 'ul(Ql) 1’ m(Ql) m(Q2) \/;2(:' € jkt Iiae;'f’.t'?
-iks
A1-Faa} + o, q)} °J’_ x>0
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where

L=S

- x?
" 2m(Q)) m(Q,)

t' denotes any point between Q; and Q, on the cylinder and pg(t) is the radius at t'.
(b) Lit region

The field u; at Py in the lit zone of the convex cylinder, after generalizing (33),

becomes
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IV.  Field in the Deep Lit and Shadow Regions
The geometrical optics incident and reflected rays represent an accurate first-order
asymptotic high-frequency field approximation within the deep lit region. These fields can

be obtained via an asymptotic evaluation of the first term [14] of (5) yielding
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_ cos Oi -1 . 39
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are the surface reflection coefficients.
For the field in the deep shadow region, a residue series solution can be obtained

from the first integral in (5) which gives the creeping-wave representation as

1
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n= H'o,. (ka) 3 H, (ka) + QH, (ka)L o
where v, are the zeros of the following transcendental equation
V) 2
H,, (ka) + QH,_(ka)=0 (41)
The contribution from the multiply encircling wave represented by u, in (16) can
also be cast into a residue series. We have
) ou 5
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2 ka @, 9 [, @
n=1 H, (ka) Y H, " (ka) + QH,, (ka) .
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Clearly, the above expression for u, fails when one of the poles v_ is equal to an integer

and corresponds to a resonance condition.
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The residue series given in (40) does not give the ray-picture interpretation of the

creeping-wave diffraction. In order to obtain the Keller type GTD ray format, the Debye

approximation can be employed for the Hankel function for kp » lv |, i.e.,

. i3
) 2 ‘J(kp sin B: - BIDII - I)
ko)== | —ovou-0"o
Hy, (kp) \/ nkp sin B, ©

B, = cos’! [;:_;]

Further, assuming

where

B, = cos (%),

(43) can be rewritten as

Hy, (kp) = \/% e'j["’ vaeost (3 7}]

where
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Substituting (43) - (47) into (40) now yields
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where
8=vy-p

(see figure 3 for the angle definitions) and for the circular cylinder
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A ray representation for the multiply encirculing wave u, can also be obtained in a similar

fashion.

V. Field in the Close Vicinity of the Convex Cylinder

The uniform results given in (34) and (36) are not valid in the close neighborhood
of the surface of the cylinder. To describe the field in the close vicinity of the surface, a
Taylor series approximation of the Fock integrals is required.

When the field point is extremely close to the surface of a circular cylinder such that

k(p - a) » ka, Jy()(kp) and }{Ezz;(z)(kp) can be approximated by

Ty(kp) = (mJT )" V(z-h) (51)
1M, 2 -, -
Hy  (kp)=Fjm/T)" W, ,(t-h) (52)
where
h=m'kd (53a)
d=p-a (53b)

Using the above approximations and (13) in the expressions for u; given by (5) and (8),

we have

kay L V@-qV@) Ng
u, =eﬁf u, ﬂV(T h) W,'(1) - qW,(7) Walt h)]cm dt (4

-0

and
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where

z=my
It is convenient to employ the representation (54) for y < 0 and that of (55) for y > 0.
Also, we may rewrite (54) in terms of a new parameter z' as used by Logan [11] for the

Fock currents (h=0 case). We have

z'=msin { =-m cos ¢

Therefore,

ka @)
e’ ™ = exp jkacos¢-j—-3——

and (54) can then be written as

ejka cos ¢ exp {.J 3

0, @), o=, =

V'(1) -qV(r) N
. ﬂv(r - h) - wzv(t) - qwz(T) wz(t h)] CJ ' dt

The result in (55) and (59) can be further generalized to the case of arbitrary convex

cylinder as follows:
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where z' = -m(PN) cos ' for Py in the lit region and

. -kt ¥ W I(T) - qw (’C) |
L W(t-h)- L W, (1-h)|.z
2T l [ (1) W, (@) - qW, () 2T )]cJ dt  (60b)

u,(P) =~ vi(Q,)

where

dr for Py, in the shadow region

The point Py in the lit and shadow regions is illustrated in fig. 5.
In order to simplify the integrals in (60a) and (60b), W1 2(T - h) may be
approximated by a Taylor series for small h as

W, + *ch'(t)] ﬁ

2
W, 5@ - h) = W, @) - W, h+ oW, ) B | 3

' 4 ' 5
H[2W 0+ W o) L [4W, 0+ 2W )] e CY )

Also

by - w3
% IV(r- h) e 7" dr = ¢ @7 (62)

Using (61) and (62), in conjunction with (60a) and (60b), we obtain
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u,(P) ~ u’(P [
for Py in lit region,

-1

. Pg(Py
u,(P) ~ ui(Q) ™ [p Q )] {A®@-aA@)}

for Py in shadow region where

A(D) =hgD) + & g(D) 2*‘, D)- ,g"<D>+0(h>

2 3

AD) =50+ g0y - I g0) - ) - ’4, g(D) +0(h’)

'Dt
80 )'—J. W, - qwz(t)

A procedure for the computation of g(D) is discussed by Pearson [12]. It should be noted
that (63a) which is applicable in the lit region may not be of sufficient accuracy in the case

of slowly attenuating creeping and/or surface waves. An improved result can then be

@) {A@) - qu(z')}:l

(63a)

(63b)

(64a)

(64b)

(65)

obtained by adding (63a) and (63b) with t > ma. Clearly, the addition of (63b) corresponds

to the contribution of the creeping wave that has travelled the minimum distance on the

cylinder’s surface to reach Py,. The contribution of those creeping waves that travelled

more than once is given by (42) and could be added to u, if greater accuracy is required.
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VI. Numerical Results

The UTD expressions (22), (33) , (38), (48) and (63) provide a complete set of
equations for the computation of the total field in any region of interest. These maintain
field continuity at all transition boundaries which is an important feature not shared by
alternative expressions found in the literature.

In this section we present some curves which validate the accuracy of the derived
expressions by comparison with data based on the eigenfunction solution. A difficulty in
implementing these was the evaluation of Fock-type functions G(x, q) and g(D) as well as
the determination of the zeros corresponding to (41). The Fock-type functions were
evaluated by employing the Fourier quadrative method as described in [12] and the zeros of
(41) were determined using the routine given in [15]. Since of primary interest is the
evaluation of the field very close to the impedance surfaces, we have concentrated in the
presentation of data pertaining to this case. Figures 6-10 present the magnitude of the field
0.05\ away from the surface of circular impedance cylinder of radius 3A. Each figure
corresponds to a different surface impedance and includes data for both polarizations of
incidences. As seen, in all cases, the accuracy of the UTD solution is excellent. An
exception to this is the case depicted in figure 10 where the chdsen impedance yields a pole
that is close to an integer. As discussed earlier, this specifies a resonance condition.
Nevertheless, the agreement between the UTD and eigenfunction solutions is excellent in
the shadow region.

At present we are continuing with the integration of all of the UTD expressions in a
single versatile code. This will be followed by a similar analysis based on using higher

order impedance boundary conditions.
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Fig. 4. Reflected ray path for the lit region.
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Fig. 5. The projection of the field point P in the direction of the surface normal at PN .
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Fig. 6. Bistatic scattering pattern of a circular impedance cylinder with a = 3A, p =3.051
and n = 1+j 1 (a) E - polarization (b) H-polarization.
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Fig. 7. Bistatic scattering pattern of a circular impedance cylinder with a = 3A, p =3.05A
and 1 = 1-j 1 (a) E - polarization (b) H-polarization.
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Fig. 8. Bistatic scattering pattern of a circular impedance cylinder with a = 3A, p = 3.05A
andn =2 (a)E - polarization (b) H-polarization.
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Fig. 9. Bistatic scattering pattern of a circular impedance cylinder with a = 3\, p = 3.051
andn =j2 (a) E - polarization (b) H-polarization.
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Fig. 10. Bistatic scattering pattern of a circular impedance cylinder with a = 3A, p = 3.05A
and N = - j 2 (a) E-polarization (b) H-polarization.



