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ABSTRACT
We study the sensitivity of weak-lensing surveys to the effects of catastrophic redshift errors –
cases where the true redshift is mis-estimated by a significant amount. To compute the biases
in cosmological parameters, we adopt an efficient linearized analysis where the redshift errors
are directly related to shifts in the weak-lensing convergence power spectra. We estimate the
number Nspec of unbiased spectroscopic redshifts needed to determine the catastrophic error
rate well enough that biases in cosmological parameters are below statistical errors of weak-
lensing tomography. While the straightforward estimate of Nspec is ∼106, we find that using
only the photometric redshifts with z � 2.5 leads to a drastic reduction in Nspec to ∼30 000
while negligibly increasing statistical errors in dark-energy parameters. Therefore, the size
of the spectroscopic survey needed to control catastrophic errors is similar to that previously
deemed necessary to constrain the core of the zs–zp distribution. We also study the efficacy
of the recent proposal to measure redshift errors by cross-correlation between the photo-z and
spectroscopic samples. We find that this method requires ∼10 per cent a priori knowledge of
the bias and stochasticity of the outlier population, and is also easily confounded by lensing
magnification bias. The cross-correlation method is therefore unlikely to supplant the need for
a complete spectroscopic-redshift survey of the source population.
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1 IN T RO D U C T I O N

Weak gravitational lensing is a very promising cosmological probe
that has potential to accurately map the distribution of dark mat-
ter and measure the properties of dark energy and the neutrino
masses (for reviews, see Bartelmann & Schneider 2001; Huterer
2002; Hoekstra & Jain 2008; Munshi et al. 2008). It is well un-
derstood, however, that systematic errors may stand in the way of
weak lensing reaching its full potential – that is, achieve the sta-
tistical errors predicted for future ground- and space-based surveys
such as the Dark Energy Survey (DES1), Large Synoptic Survey
Telescope (LSST2) and the Joint Dark Energy Mission (JDEM3).
Controlling the systematic errors is a primary concern in these and
other surveys so that a variety of dark-energy tests (recently pro-
posed and reviewed by the JDEM Figure of Merit Science Working
Group; Albrecht et al. 2009) can be performed to a desired high
accuracy.

�E-mail: garyb@physics.upenn.edu (GB); huterer@umich.edu (DH)
1 http://www.darkenergysurvey.org/
2 http://www.lsst.org/
3 http://jdem.gsfc.nasa.gov/

Several important sources of systematic errors in weak-lensing
surveys have already been studied. Chief among them is the red-
shift accuracy – approximate, photometric redshifts are necessary
because it is infeasible to obtain optical spectroscopic redshifts for
the huge number (∼108–109) of galaxies that future surveys will uti-
lize as lensing sources (Ma, Hu & Huterer 2005; Huterer et al. 2006;
Abdalla et al. 2008a; Amara & Réfrégier 2008). It is therefore im-
perative to ensure that statistical errors and systematic biases in the
relation between photometric and spectroscopic redshifts, recently
studied in depth with real data as well as simulations (Oyaizu et al.
2008; Banerji et al. 2008; Lima et al. 2008; Cunha et al. 2009; Ab-
dalla et al. 2008b), do not lead to appreciable biases in cosmological
parameters.

The relation between the photometric and spectroscopic red-
shifts has been previously modelled as a Gaussian with a redshift-
dependent bias and scatter. It is found that both the bias and scatter
(i.e. quantities 〈zp–zs〉 and 〈(zp–zs)2〉1/2 in each bin of �z = 0.1)
need to be controlled to about 0.003 or better in order to lead to
less than ∼50 per cent degradation in cosmological parameter ac-
curacies (Ma et al. 2005; Huterer et al. 2006; Kitching et al. 2008).
These constraints are a bit more stringent in the most general case
when the redshift error cannot be described as a Gaussian (Ma &
Bernstein 2008). These requirements imply that N spec � 105
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spectra are required in order to calibrate the photometric red-
shifts to the desired accuracy. Gathering such relatively large
spectroscopic sample will be a challenge, setting a limit to the
useful depth of weak-lensing surveys. (While the redshift er-
rors have been well studied, other systematics are also im-
portant, especially theoretical errors in modelling clustering of
galaxies at large and small scales, intrinsic shape alignments
and various systematic biases that take place during observa-
tions; Huterer & Takada 2005; White 2004; Hagan, Ma &
Kravtsov 2005; Zhan & Knox 2004; Huterer & White 2005;
Zentner, Rudd & Hu 2008; Rudd, Zentner & Kravtsov 2008;
Shapiro & Cooray 2006; Shapiro 2009; Heitmann et al. 2005, 2008;
Takada & Bridle 2007; Takada & Jain 2009; Kitching et al. 2008;
Joachimi & Schneider 2008; Bernstein 2009; Jarvis & Jain 2004;
Jain, Jarvis & Bernstein 2006; Ma et al. 2008; Guzik & Bernstein
2005; Stabenau et al. 2007; Heymans et al. 2006; Massey et al. 2007;
Paulin-Henriksson et al. 2008; Amara & Réfrégier 2008; Heavens,
Refregier & Heymans 2000; Croft & Metzler 2000; Crittenden et al.
2001; Mackey, White & Kamionkowski 2002; Jing 2002; Heymans
& Heavens 2003; King & Schneider 2003; Hirata et al. 2004; Hirata
& Seljak 2004; Mandelbaum et al. 2006; Bridle & Abdalla 2007;
Bridle & King 2007.)

Essentially, all of the aforementioned photo-z requirement studies
(e.g. Ma et al. 2005; Huterer et al. 2006), however, have modelled
the errors as a perturbation around the zs–zp relation. While this
perturbation was allowed to be large and to have a non-zero mean
and scatter (e.g. Huterer et al. 2006; Abdalla et al. 2008a; Amara &
Réfrégier 2008) and even skewness (e.g. Ma et al. 2005), it did not
subsume a general, multimodal error in redshift.

In this paper, we would like to remedy this omission by estimating
the effect of catastrophic redshift errors. Catastrophic errors are
loosely defined as cases when the photometric redshift is grossly
mis-estimated, i.e. when |zp–zs| ∼ O(1), and are represented by
arbitrary ‘islands’ in the zp–zs plane. We develop a formalism that
treats these islands as small ‘leakages’ (or ‘contaminations’) and
directly estimates their effect on bias in cosmological parameters.
We then invert the problem by estimating how many spectroscopic
redshifts are required to control catastrophic errors at a level that
makes them harmless for cosmology.

This paper is organized as follows. In Section 2, we derive the rel-
evant equations for the bias in cosmological parameters induced by
mis-estimated catastrophic redshift errors in a tomographic weak-
lensing survey. In Section 3, we apply these methods to a canonical
ambitious weak-lensing cosmology project. In Section 4, we ask
the following question: how large must a complete spectroscopic-
redshift survey be in order that the catastrophic photo-z error rates
be measured sufficiently well that remnant cosmological biases
are well below the statistical uncertainties? Newman (2008) has
suggested an alternative mode of measuring the photo-z error dis-
tribution, namely the angular cross-correlation of the photometric
galaxy sample nominally at zp with a spectroscopic sample at zs; in
Section 5, we investigate whether systematic errors in the photo-z
outlier rates derived from this cross-correlation technique will be
small enough to render cosmological biases insignificant. Section 6
discusses the scaling of these results with critical survey parame-
ters, the ramifications for survey design and areas of potential future
investigation.

2 FOR M A LISM

In this section, we establish the formalism that takes us from ‘is-
lands’ in the zs–zp plane to biases in cosmological parameters. First,

however, we define the basic observable quantity, the convergence
power spectrum and its corresponding Fisher information matrix.

2.1 Basic observables and the Fisher matrix

The convergence power spectrum of weak lensing at a fixed multi-
pole � and for the ith and jth tomographic bins is given by

Pκ
ij (�) = �3

2π2

∫ ∞

0
dz

Wi(z) Wj (z)

r(z)2 H (z)
Pmat

(
�

r(z)
, z

)
, (1)

where r(z) is the comoving distance, H(z) is the Hubble parameter
and Pmat(k, z) is the matter power spectrum. The weights Wi are
given, for a flat universe, by Wi(χ ) = 3

2 �M H 2
0 gi(χ ) (1+z), where

gi(χ ) = χ
∫ ∞

χ
dχsni(χs)(χs − χ )/χs, χ is the comoving distance

and ni is the comoving density of galaxies if χ s falls in the distance
range bounded by the ith redshift bin and zero otherwise. We employ
the redshift distribution of galaxies of the form n(z) ∝ z2 exp(−z/z0)
that peaks at 2z0 � 0.9.

The observed convergence power spectrum is

Cκ
ij (�) = Pκ

ij (�) + δij

〈
γ 2

int

〉
n̄i

, (2)

where 〈γ 2
int〉1/2 is the rms intrinsic shear in each component which

we assume to be equal to 0.24 and n̄i is the average number of
galaxies in the ith redshift bin per steradian. The cosmological
constraints can then be computed from the Fisher matrix

Fij =
∑

�

∂D
∂pi

Cov−1 ∂D
∂pj

, (3)

where Cov−1 is the inverse of the covariance matrix between the
observed power spectra Cκ

ij(�) which have been organized into a
vector D, and matrix multiplication is implied. For a Gaussian
convergence field, its elements are given by

Cov
[
Cκ

ij (�), Cκ
kl(�)

] = δ��′

(2� + 1) fsky ��

× [
Cκ

ik(�)Cκ
jl(�) + Cκ

il(�)Cκ
jk(�)

]
, (4)

where f sky is fraction of the sky observed and �� is the binning of
the convergence power spectra in multipole.

We assume the parametrization of the equation of state of dark
energy w(a) = w0 + (1 − a)wa = wp + (ap − a)wa, where in
the latter equality the pivot scale factor ap is chosen so that the
parameters wp ≡ w0 + (1 − ap)wa and wa are uncorrelated for
a given survey. Our fiducial Supernova Cosmology Acceleration
Probe (SNAP) survey described below, without any theoretical sys-
tematics, determines w0 and wa to accuracies of σ (w0) = 0.089
and σ (wa) = 0.31, respectively [corresponding to the pivot value
determined to σ (wp) = 0.027].

2.2 Biases in the Gaussian limit

Consider the general problem of constraining a vector of Npar cos-
mological parameters {pi} organized into a vector P = {pi} based
on an observed data vector D = {Dα}. Here, Dα are the power
spectra Cij from equation (2) and α runs over pairs of redshift bins.
If the observable quantities Dα are distributed as Gaussians with co-
variance matrix C (defined as Cov in equation 4), then the first-order
formula for bias in the ith parameter, �pi, induced by a bias �D in
the data is (e.g. Knox, Scoccimarro & Dodelson 1998; Huterer &
Turner 2001)

�pi =
∑

j

(F −1)ij
∑
αβ

∂D̄α

∂pj

(C−1)αβ �Dβ. (5)
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Here, F is the Fisher matrix for the cosmological parameters defined
in equation (3). The above bias can be more concisely expressed as

�P = F −1Q �D ≡ F −1V , (6)

where we have defined the matrix Q and vector V as

Qij ≡
∑

k

∂D̄k

∂pi

(C−1)kj (7)

V ≡ Q �D. (8)

The induced parameter bias is considered unimportant if it is
small compared to the expected statistical variation in the cosmo-
logical parameters. In the case where the likelihood in the parameter
space is Gaussian, the likelihood of the bias �P being exceeded by
a statistical fluctuation is determined by

�χ 2 = �P T F�P = V T F −1V . (9)

Here, �χ 2 indicates the significance of the bias in the full Npar-
dimensional parameter space. The usual χ 2 formulae apply; for
example, in a one (two) parameter model, the bias is larger than the
statistical error of 68 per cent of the time for �χ 2 = 1.0 (2.3).

In the Appendices, we prove two useful theorems about �χ 2.

(i) The bias significance �χ 2 always decreases or stays fixed
when we augment the likelihood with (unbiased) prior information,
e.g. data from a non-lensing technique.

(ii) �χ 2 always decreases or stays fixed when we marginalize
over one or more dimensions of the parameter space. In the Gaus-
sian limit, the bias �pi is unaffected by marginalization over other
parameters.

We will use these results later to argue that our requirements on
the control of catastrophic redshift errors are conservative, in the
sense that adding other cosmological data (e.g. constraints expected
from the Planck experiment) or considering individual cosmological
parameter biases will only weaken the requirements.

2.3 The case of catastrophic photo-z errors

For weak-lensing tomography, the data elements Dα are the con-
vergence (or shear) cross-power spectrum elements Cκ

αβ (�) between
photo-z bins α and β at multipole �. Let us examine how these will
be biased by photo-z outliers.

We assume a survey with the (true) distribution of source galaxies
in redshift nS(z), divided into some number Nb of bins in redshift.
Let us define the following terms.

(i) Leakage: fraction of objects from a given spectroscopic bin
that are placed into an incorrect (non-corresponding) photometric
bin.

(ii) Contamination: fraction of galaxies in a given photometric
bin that come from a non-corresponding spectroscopic bin.

One could estimate either of these quantities – after all, when
specified for each bin, they contain the same information. Let leak-
age fraction lST of galaxies in some spectroscopic-redshift bin nS

(the ‘source’ of leakage) end up in some photo-z bin nT (the ‘target’
of leakage), so that lST is the fractional perturbation in the source
bin. Note that since bins S and T may not have the same number of
galaxies, the fractional perturbation in the target bin is not necessar-
ily the same. The contamination of the target bin T, cST, is related
to the source-bin leakage via

cST = nS

nT
lST, (10)

Figure 1. Explanation of how the leakage and contamination operate. In this
figure, we assume for simplicity that the number of galaxies in the source and
target bin is the same, so that lST = cST. Because the redshift distribution
n(z) is normalized to unit integral in each bin, the source bin’s redshift
distribution nS(z) does not change; see the bottom left-hand panel. The
target bin’s redshift distribution, nT(z), does change however, as illustrated
in the bottom right-hand panel.

where nS and nT are the absolute galaxy numbers in the source and
target bins, respectively.

The redshift distribution of galaxies (normalized to unity) in the
source bin, nS, does not change since while a fraction of galaxies
is lost, the redshift distribution is normalized to unit integral; see
Fig. 1. Conversely, things are perturbed in the target bin, since it now
contains two populations of galaxies, the original one with fraction
1−cST and the contamination at incorrect (source-bin) redshift with
fraction cST; again, this is clearly shown in Fig. 1. Therefore,

nS(z) → nS(z) (11)

nT(z) → (1 − cST) nT(z) + cSTnS(z), (12)

and only the target-bin-normalized number density is affected (i.e.
biased) by photo-z catastrophic errors.

The effect on the cross-power spectra is now easy to write down.
Clearly, only the (α, β) cross-spectra where one of the bins is the
target bin – α = T or β = T – will be affected:

CTT → (1 − cST)2CTT + 2cST(1 − cST)CST + c2
STCSS

CαT → (1 − cST)CαT + cST CαS (α �= T )

Cαβ → Cαβ (otherwise). (13)

We have checked that ignoring the quadratic terms in cST leads to no
observable effects on the results (for cST = 0.001 contamination).

Equations (13) are a central result in this paper, as they show
how the observable power spectra change as a result of catastrophic
redshift errors. The biases in the cosmological parameters, �pi, can
now be computed by assigning the biases in the observables (�Dβ

in equation 5) to be the differences between the right-hand side and
the left-hand side in the above equations.

We can simplify our final analytical results as follows. We replace
the single index α for data elements in equation (5) with the triplet
�αβ so that D�αβ ≡ Cκ

αβ (�), and we reserve the symbol C for the
covariance of the data elements. The bias in data induced by the
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catastrophic errors is

�D�αβ =
∑
μν

cμν[δαν(D�μβ − D�αβ ) + δβν(D�μα − D�αβ )]. (14)

If we make the further assumption that the convergence is a Gaussian
random field, then we have

C�αβ,�′γ δ = δ��′ [D�αγ D�βδ + D�αδD�βγ ] (15)

⇒ (C−1)�αβ,�′γ δ = δ��′

2

(
D−1

�

)
αγ

(
D−1

�

)
βδ

. (16)

Equation (5) simplifies considerably when we invoke equations (14)
and (16):

�pi =
∑
j,μν

(F −1)ijMj,μνcμν, (17)

where

Mj,μν ≡
∑

�

[
(E�

i )μν − (E�
i )νν

]
, (18)

and

E�
i ≡ ∂D�

∂pi

D−1
� . (19)

As a reminder, the Fisher matrix in the case of a zero-mean Gaussian
variable is (Tegmark, Taylor & Heavens 1997)

Fij = 1

2

∑
�

Tr
(
E�

i E
�
j

)
. (20)

In a cosmological application, we will marginalize over all pa-
rameters except a subset of interest A. In the Fisher approximation
bias is simply projected on to the A subset: �pA = PA�p, where PA

is the projection matrix (see Appendix B). If FA is the marginalized
Fisher matrix, then the �χ 2 of the bias after marginalization is

�χ 2 =
∑
μν

∑
μ′ν′

cμνcμ′ν′
∑

ij

Mi,μν

(
F −1P T

A FAPAF −1
)

ij
Mj,μ′ν′ .

(21)

3 A P P L I C AT I O N TO C A N O N I C A L S U RV E Y S

For a first study we examine a weak-lensing survey similar to that
proposed for SNAP (Aldering et al. 2004), but with the source–
galaxy selection restricted to incur a minimal catastrophic error rate.
Evaluation of other potential surveys could be performed following
the same model.

We take the eight-parameter cosmological model considered by
the Dark Energy Task Force (DETF; Albrecht et al. 2006): dark-
energy physical density �DEh2; and equation-of-state parameters
w0 and wa; normalization of the primordial power spectrum A and
spectral index n; and matter, baryon and curvature physical densities
�Mh2, �Bh2 and �kh

2, respectively. The fiducial values of these
parameters are taken from the 5-yr Wilkinson Microwave Anisotropy
Probe (WMAP) data (Hinshaw et al. 2009). We will assume a Planck
cosmic microwave background (CMB) prior as specified by the
DETF report. Recall that application of further priors can only
weaken the requirements on photo-z outliers (see Appendix A).

We assume shear tomography with 20 bins linearly spaced over
0 < z < 4 with �z = 0.2; we have checked that the results are
stable with �z. The redshift distribution and fiducial cαβ are taken
from a simulation of the photo-z performance of SNAP as described
in Jouvel et al. (2009). The procedure is to (1) create a simulated

catalogue of galaxies, (2) calculate their noise-free apparent magni-
tudes in the SNAP photometric bands spanning the visible and NIR
to 1.6 μm, (3) add the anticipated observational noise to each mag-
nitude, (4) determine a best-fitting galaxy type and redshift with the
template-fitting program LE PHARE4 and (5) examine the 95 per cent
confidence region zl < zp < zh determined by LE PHARE and retain
only those galaxies satisfying (Dahlen et al. 2008)

D95 ≡ ln

(
1 + zh

1 + zl

)
≤ 0.15. (22)

This strict cut results in a catalogue of ≈70 galaxies per arcmin2,
with a median redshift of zm ≈ 1.2. The Weak Lensing (WL) survey
is assumed to cover f sky = 0.1 of the full sky, with a shape noise
of σ γ = 0.24 per galaxy. We consider only shear tomography at the
two-point level, as this will likely maximize the bias imparted by
redshift errors. We also ignore systematic errors other than redshift
outliers, which will likely maximize the statistical significance of
the outlier bias.

We will henceforth in this paper define a redshift outlier to satisfy∣∣∣∣ln 1 + zp

1 + zs

∣∣∣∣ > 0.2 (catastrophic outlier definition). (23)

In the simulated photo-z catalogue, 2.2 per cent of the source galax-
ies are outliers by this criterion. In our analyses below, we will only
consider biases from photo-z errors meeting this outlier criterion,
i.e. we assume that the ‘core’ of the photo-z distribution is well
determined.

Fig. 2 illustrates the canonical model and the sensitivity to redshift
outliers in this model. The left-hand panel shows the quantity csp/�z

versus zs and zp. (We scale the contamination by �z to produce a
quantity that is independent of the choice of bin size �z.) The
highest contaminations are in two ‘islands’ as follows. The first at
zp > 2.5, zs < 0.6 is probably due to confusion between high-
z Lyman breaks and low-z 400-nm breaks. Because true z > 2.5
galaxies are relatively rare, a small leakage rate from zs ∼ 0.5
can produce a high contamination fraction. The LE PHARE code run
for this simulation does not incorporate a magnitude prior for the
photo-z; doing so might reduce the size of this island.

A second high-contamination region is zs ≈ 1, zp < 0.2. Again,
the contamination rate is high because the target-bin density is much
lower than the source-bin density.

The right-hand panel in Fig. 2 shows �χ 2 evaluated using equa-
tion (21) for this case of catastrophic errors. We calculate the sig-
nificance �χ 2

2D of the bias after marginalization of the cosmology
on to the two-dimensional (hence 2D) w0–wa plane. We simplify
by considering the bias arising from contamination in a single bin.
This is

�χ 2
2D = (hμν�z)2c2

μν, (24)

h2
μν ≡

∑
ij

Mi,μν

(
F −1P T

A FAPAF −1
)

ij

Mj,μν

(�z)2
. (25)

Again, the inclusion of the �z factor defines an hμν that is invariant
under rebinning. The interpretation of hμν is as follows: if there is
an ‘island’ of outliers that spans a range δzp of photo-z bins, and
contains a fraction c̄ of the galaxies in these photo-z bins, then the
2D significance of the resultant bias will be√

�χ 2 ≈ hμνδzpc̄. (26)

4 www.oamp.fr/people/arnouts/LE PHARE.html
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Figure 2. Left: the contamination rate csp/�zs of the photo-z bin per unit redshift in spectro-z is plotted for our example case. Note that the contamination
is highest at zp > 2.5 and zp < 0.2, where there are relatively few source galaxies and hence a small number of outliers can become a large fractional
contamination. Right: the quantity hsp which specifies the significance of the w0–wa bias caused by a contamination rate of 0.001/δzp across a range δzp

of photo-z. This plot indicates that the outlier contamination rates must be known to one to three parts per thousand over all photometric redshift bins, most
sensitively at 0.3 < zp < 1.5.

Fig. 2 indicates the bias significance of a contamination rate c̄ =
0.001/δzp. We desire �χ 2

2D � 2.3 to keep the bias well within the
68 per cent confidence contour. The most severe constraint on c̄

would be to take the peak value hμν ≈ 1300 and a very wide island,
δzp ≈ 0.5, in which case the criterion for small bias becomes

c̄ < 1/(hμνδzp) ≈ 1/(1300 × 0.5) = 0.0015. (27)

The contamination rate into any island of outliers must be known
to 0.0015 or better to avoid significant cosmological bias. This
conclusion is independent of the nominal outlier rate. The tolerance
on the outlier rate will scale with sky coverage as f

−1/2
sky .

3.1 Photo-z probability distributions

Throughout this paper we have assumed that the photo-z algorithm
assigns a single zp to each galaxy, and that the WL analysis bins
galaxies on the basis of this estimate. Most photo-z algorithms will,
however, produce some posterior likelihood distribution P (zp) over
redshift. For many astrophysical measurements, selection of a sin-
gle maximum-likelihood zp will induce biases that can be alleviated
by properly considering the full P (zp) distribution for the galaxies
placed into a bin (Padmanabhan et al. 2007; Mandelbaum et al.
2008). The results of this paper can be applied to an analysis that
retains P (zp) information as follows: first, we assume that some
criterion has been used to divide the galaxies into WL tomography
bins, labelled by index T. Then the P (zp) distributions of all galaxies
in bin T are summed to give the overall estimated distribution P T(zp)
of the galaxies in the bin. The estimated contamination fraction ĉST

is the integral of P T(zp) over a source redshift bin near zs. The tol-
erances on cST in this paper apply to how accurately these estimates
from the photo-z posterior must match the true contamination rates.
All the equations derived below for validation via spectroscopic
sampling should still apply to the use of photo-z distributions.

Various selection criteria might be applied to galaxies on the
basis of their P (zp), with the intent of reducing the outlier bias –
our D95 cut (equation 22) being just one example. The requirements
for calibration of the outlier rate will apply to the galaxy sample
after such cuts or weights are applied, and of course the calibration
requirements will in general depend on these cuts and weights.

4 C ONSTRAI NT V I A SPECTROSCOPI C
SAMPLI NG

The most obvious way to determine the contamination rate cαβ is
to conduct a complete spectroscopic-redshift survey of galaxies in
photo-z bin β. It is of course essential that the spectra be of sufficient
quality to determine redshifts even for the outliers in the sample.

Let us now estimate the total number of spectra Nspec required
in order to keep the total bias below some desired threshold. We
will assume that each redshift drawn from the spectroscopic survey
is statistically independent. In this case the distribution of Nαβ , the
number of galaxies in photo-z bin β that have spectro-z in bin α, will
be described by a multinomial distribution. When the outlier rates
are small, the number of spectra in each outlier bin tends towards
independent Poisson distributions.

We would like to relate the contamination uncertainties δcij to the
required number of galaxy spectra. Let Nβ be the number of spectra
drawn from the photometric redshift bin β so that Nspec = ∑

β Nβ .
In this case, 〈Nαβ〉 = cαβNβ and the variance of the contamination
estimate is

δc2
αβ = (δNαβ )2

〈Nβ〉2
= cαβ

Nβ

. (28)

Since the Poisson errors between different outlier bins are uncorre-
lated, the expected bias significance becomes

〈�χ 2〉 =
∑
αβ

(hαβ�z)2
〈
δc2

αβ

〉
=

∑
αβ

(hαβ�z)2cαβ/Nβ. (29)

We would like to quote a total number of spectroscopic redshifts
rather than the number per photo-z slice (Nβ above) in order to
make our findings more transparent. We consider two cases: first,
a slitless or untargeted spectroscopic survey will obtain redshifts
in proportion to the number density Nβ of source galaxies in each
redshift bin: Nβ = N specnβ/n. Then we will consider a targeted
survey, in which the number Nβ can be chosen bin by bin to produce
the minimal bias for given total Nspec.
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Figure 3. The number of calibration spectra required to attain an outlier bias
significance of �χ2

2D = 1 is given by the integral of this plot over the zs–zp

space. The quantity plotted is, from equation (31), h2
spcspn/np, where np is

the source density in the photo-z bin and n is the total source density. The
plot is in units of 106 galaxies. Note that the required number of calibration
spectra is strongly driven by the need to constrain the outliers with photo-z
zp > 2.5 but true redshifts zs < 0.8. Note further that this plot is essentially
the product of the left-hand panel and the (square of the) right-hand panel
of Fig. 2.

4.1 Untargeted spectroscopic survey

In the untargeted case, the number of galaxies to follow up in each
bin is proportional to the number density in that bin:

Nβ = Nspecnβ/n, (30)

and the condition �χ 2 � 1 becomes (from equation 29)

Nspec �
∑
αβ

(�z)2 h2
αβcαβn/nβ. (31)

Fig. 3 plots the summand of this expression in the zs–zp plane. The
required Nspec is hence the sum over values in this plane (note that
we omit the bins near the diagonal that do not meet the ‘outlier’
definition). We find that �χ 2

2D � 1 requires N spec � 8 × 105, and
in the full 8D parameter space (i.e. considering �χ 2 for the 8D
parameter ellipsoid), we need N spec � 2 × 106.

These requirements are daunting, potentially larger than the Nspec

that are needed to constrain the core of the photo-z distribution
as determined by Ma & Bernstein (2008). Note however that the
requirement is strongly driven by the region zs > 2.5, zp < 0.8. This
is because contamination rates are high here in the nominal photo-z
distribution (Fig. 2), and these bins are sparsely populated (small
np), meaning that many spectra must be taken in order to accumulate
a strong enough constraint on these contamination coefficients.

This suggests a strategy of omitting the zp > 2.5 galaxies from
the tomography analysis entirely. Omitting zp > 2.5 from the sum
(equation 31) produces a much weaker requirement: for �χ 2

2D �
1, we need N spec � 2.8 × 104, a 30-fold reduction. This strategy
would eliminate ≈8 per cent of the source galaxies in the SNAP
model and reduce the dark-energy constraint power by 18 per cent,
as measured by the DETF figure of merit (FoM). This would be an
acceptable strategy to reduce the outlier bias if one were unable to

eliminate the high-zp island of outliers by refinements to the photo-z
methodology.

4.2 Targeted spectroscopic survey

If we wish to minimize �χ 2 in equation (29) for a given total Nspec,
a simple optimization yields

Nβ ∝
√∑

α

h2
αβcαβ, (32)

and thus

Nspec�χ 2 =
⎛
⎝∑

β

�z

√∑
α

h2
αβcαβ

⎞
⎠

2

. (33)

Optimized targeting reduces the requirement for �χ 2
2D � 1 to be

N spec � 1.2 × 105. Eliminating the zp > 2.5 sources reduces the
requirement sixfold, N spec � 2.0 × 104.

Note that the targeted redshift requires seven times fewer cali-
bration redshifts than the untargeted survey, if we are using the full
source redshift range, but only 1.4 times smaller Nspec if we restrict
zp < 2.5 in the lensing analysis.

4.3 Scaling and robustness

The required Nspec to reduce outlier-rate biases to insignificance
scales with the sky coverage and the mean outlier rate as

Nspec ∝ fskyc̄ (34)

when most of the information is coming from shear tomography,
and the depth of the survey is held fixed. We have verified that
Nspec varies little as the number of tomography bins grows (�z <

0.2) and the information content of the tomography saturates. The
two bias theorems imply that the required Nspec will drop if we add
additional unbiased prior information or if we marginalize down to
a single dark-energy parameter.

More precisely, we find that the ratio N spec × [σ (wp) ×
σ (wa)] ≡ N spec/FoM, featuring the well known ‘FoM’ (Huterer
& Turner 2001; Albrecht et al. 2006), is roughly the same with
several alternative survey specifications we consider (and is exactly
the same if only the sky coverage f sky is varied).

We have used two independent codes to verify the robust-
ness of results to the myriad of assumptions made and check for
the presence of unwanted numerical artefacts. The two codes agree
to roughly a factor of 2 in Nspec, which is satisfactory given the
differences between the implementations, e.g. whether curvature
and/or neutrino masses are free to vary and whether the fiducial
redshift distribution is smoothed over the cosmic variance in the
simulated catalogue.

4.4 Correlated outlier errors and incompleteness

So far we have considered the case where bin-to-bin fluctua-
tions in contamination δcαβ are uncorrelated. Contamination-rate
errors δcαβ that are correlated from bin to bin might arise if
the spectroscopic survey systematically misses outliers in cer-
tain redshifts islands (or if the spectroscopy is not done at all!).
We can set a specification on the maximum allowable systematic
contamination-rate error δc̄ in an island of photo-z width δzp us-
ing equation (26). Our previous results for the canonical survey
show that the contamination rate in the island should be known to
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δc̄ � 0.0015. In other words, a spectroscopic-redshift failure rate
of only 0.15 per cent in some range of zp can cause a significant
cosmology bias if all of these missed redshift are outliers in a par-
ticular island. A 99.9 per cent success rate has rarely if ever been
achieved in a spectroscopic-redshift survey.

5 C ONSTRAIN ING OUTLIER RATES USING
G A L A X Y C O R R E L AT I O N S

The above requirements on Nspec and completeness may be too ex-
pensive to accomplish, particularly for fainter galaxies. We now
examine the possibility that one could make use of a spectroscopic
galaxy sample that does not fairly sample the photo-z galaxies
(Newman 2008). The idea is to cross-correlate a photo-z sample
at nominal redshift zp with a spectroscopic sample known to be
confined to a distinct bin zs. The amplitude of this cross-correlation
will tell us something about the contamination rate csp, since there
is no intrinsic correlation between the galaxy densities at the two
disparate redshifts.

Newman (2008) calculates the errors in this estimate that would
be induced by shot noise in the sample (for a somewhat related
work, see Schneider et al. 2006). Here we assume that statistical
errors will be negligible and attend to two systematic errors that
will arise.

5.1 Outlier bias and correlation coefficients

First, we define gs and gp to be the fluctuations in the sky density of
the projected distributions of the spectroscopic-survey galaxies in
bin s and the photometric-redshift galaxies in bin p. We set ms to be
the fractional fluctuations in the projected mass density in redshift
bin s. The bias is defined by 〈g2

s 〉 = b2
s 〈m2

s 〉. The amplitude of the
measured cross-correlation between the angular distributions gs and
gp of the spectroscopic and photometric samples can be written as

〈gsgp〉 = cspbsbsprsp

〈
m2

s

〉
= csp

bsprsp

bs

〈
g2

s

〉
, (35)

where csp is the contamination rate, bsp is the bias of the outlier
population and rsp is the correlation coefficient between the density
fluctuations of the spectroscopic and the outlier populations. The
outlier population is those minority of sources in photo-z bin p that
have spectroscopic redshifts in bin s.

In a large survey, shot noise in 〈gsgp〉 and in 〈g2
s 〉 might become

small, and bs could be determined to good accuracy through a study
of the redshift-space power spectrum of the spectroscopic targets.
There is, however, no reliable way to infer the bias bsp of the outlier
population. The photometric data do not allow us to isolate the out-
lier population, so we cannot measure the angular autocorrelation
of outliers in a (zs, zp) cell without being overwhelmed by the corre-
lations of the galaxies in the ‘core’ of the photo-z error distribution.
We also cannot assume that the outliers have the same bias as the
other galaxies in their source redshift bin, since the outliers are not
necessarily a fair sample. So in general, bp �= bsp �= bs.

The correlation coefficient rsp also has no alternative observable
signature we have identified. Hence, there will be a systematic-error
floor on δcsp arising from the finite a priori knowledge of the product
bspr sp.

5.2 Lensing magnification

The second complication to the cross-correlation method is that
gravitational lensing magnification bias will induce a correlation

between the spectroscopic and photometric samples even if there
is no contamination. Let us assume that the spectroscopic sample
is in the foreground of the photo-z ‘core’; a similar analysis can be
done when using cross-correlation to search for contamination by
background galaxies.

There are two types of magnification-induced correlations. First,
it is possible that the spectroscopic sample at zs and the photo-z
sample at zp are both being lensed by a foreground mass distribution
at zl < zs, zp. Following the notation of Hirata & Seljak (2004), this
would be called a ‘GG’ correlation. The apparent densities of both zs

and zp samples are modulated by lensing magnification bias; hence,
they are correlated.

The second type of lensing-induced correlation is the ‘GI’ con-
tribution. In the case zs < zp, the photo-z sample is lensed by mass
fluctuations at redshift zl = zs. The lensing modulates the sky den-
sity of the background zp sample, while the foreground zs galaxy
density is correlated with its local mass density and hence with the
induced magnification bias. The GI effect is also present for zp <

zs, due to mass at zl = zp.
The GI correlation is as follows: Let the spectroscopic bin zs span

a range �χ s in comoving radial distance. The matter fluctuations
ms induce a lensing convergence on the photo-z bin at zp of

κp = 3ωm

2
�χs

χp − χs

χp
ms, (36)

where ωm = �m h2 = 0.127 is the comoving matter density, χ p

and χ s are the comoving angular diameter distances to zs and zp,
respectively, and we have assumed a flat Universe.

The lensing magnification will induce apparent density fluctua-
tions in the background sample as

glens
p = qpκp, (37)

where qp is a magnification-bias factor for the galaxies in the photo-
z bin. For instance if the selection criteria for the bin were a simple
flux limit, and the intrinsic flux distribution were a power law dn/

df ∝ f −s, then we would have qp = 2s − 2. In general, qp will be
of the order of unity.

The foreground galaxy distribution gs has a correlation coeffi-
cient rs with the mass ms; hence, a covariance between populations
results:

〈gsgp〉GI = 3ωm

2
�χs

χp − χs

χp
qpbsrs

〈
m2

s

〉
(38)

= 3ωm

2
�χs

χp − χs

χp
qp

rs

bs

〈
g2

s

〉
(39)

(we have ignored shot noise in the galaxy autocorrelation). This
lensing contamination will have to be subtracted from 〈gsgp〉 in
order to extract the information on contamination csp. Even if all
the cosmological factors are well determined, the magnification
coefficient qp will have to be empirically estimated. Finite accuracy
in this estimate will increase δcsp.

The GG correlation scales as follows: let κ s be the convergence
induced on the foreground (spectroscopic) sample by mass at z <

zs. This produces density fluctuations gs = qsκ s. This mass induces
convergence κp ≈ κ sr(χ s, χ p) on the background (photo-z) source
population, where r is an integral involving the distributions of
foreground mass which must satisfy r ≥ 1. Not concerning ourselves
with details, we take r = 1. The induced angular correlation will be

〈gsgp〉GG = qsqpr
〈
κ2

s

〉
. (40)

Typical RMS values κ s are 0.01–0.02 at cosmological distances. The
GG lensing correlation must be removed from the signal to retrieve
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the contamination fraction, and again even if there is no shot noise
and all distances and lensing amplitudes are known perfectly, the
values of qs and qp will only be known to finite precision.

5.3 Estimate of systematic errors

Summing the GG, GI and intrinsic contributions, the cross-
correlation between spectroscopic and photometric samples is

〈gsgp〉 =
{

3ωm

2
�χs

χp − χs

χp
qp

rs

bs
+ csp

bsprsp

bs

} 〈
g2

s

〉
+ qsqpr

〈
κ2

s

〉
(41)

⇒ csp = 1

bsprsp

⎡
⎣ bs〈gsgp〉〈

g2
s

〉 −
bsqsqp

〈
κ2

s

〉
〈
g2

s

〉
− 3ωm

2
�χs

χp − χs

χp
rsqp

]
.

(42)

All of the right-hand quantities are potentially well measured from
the survey data itself or from other cosmological probes, except the
outlier covariance factor bspr sp and the magnification coefficients qp

and qp. Uncertainties in the a priori assumed values of these factors
will propagate into the contamination coefficient as

(δcsp)2 ≈ [
δ(bsprsp)

]2
c2

sp + δq2
p

(
3ωm

2
�χs

χp − χs

χp

)2

+ (
δq2

p + δq2
s

) ⎛
⎝ q

〈
κ2

s

〉
〈
g2

s

〉
⎞
⎠

2

. (43)

Here we assume b ≈ r ≈ 1, qs ≈ qp.
Earlier we showed that contamination into an outlier ‘island’

should be known to δcsp ≤ 0.0015 to avoid significant parameter
bias. Can such a small contamination be measured using the cross-
correlation technique?

(i) If the nominal outlier rate is csp ≈ 10δcsp ≈ 0.015, then
we require a prior estimate of outlier bias/covariance accurate to
δ(bsp r sp) < 0.1. Little will be known about the outlier population
besides its luminosity range, and the outliers may tend to be active
galaxies or those with unusual spectra whose clustering properties
might be deviant as well. We would consider a 10 per cent prior
knowledge on outlier bias to be optimistic but perhaps attainable.

(ii) For the second (GI) term, if we take the distance factors to
be ≈1, and the outlier population to span a range �χ s ≈ 0.3, then
the magnification-bias coefficient must be known to an accuracy of
δqp � 0.025. This accuracy in qp will be challenging to achieve. If
the galaxy selection is by a simple magnitude cut, then the slope
of the counts yields qp and potentially could be measured to high
precision. Weak-lensing samples typically have more complex cuts
and weightings, however, than a simple flux cut-off. Surface bright-
ness, photo-z accuracy and ellipticity errors are involved, making
estimation of qp more difficult.

(iii) The third (GG) term places constraints on δqp and δqs that
will generally be weaker than those from the GI term.

If the cross-correlation technique is to determine outlier contam-
ination fractions to an accuracy that renders them harmless, then we
will need to know the bspr sp product of the outlier population to 0.1
or better, and also must know the magnification-bias coefficients
q of our populations to 2 per cent accuracy. This is true regardless
of the sample size, and these tolerances will scale as f

−1/2
sky . The

demands on δ(bspr sp) also become more stringent linearly with the
photo-z outlier rate.

We have not considered the possibility of extraneous angular
correlations induced by dust correlated with the foreground galaxy
sample or by dust in front of both samples (Ménard et al. 2009).
This signal will be present to some degree, and may perhaps be
diagnosed with colour information.

In summary, while we have shown here that the cross-correlation
technique proposed by Newman (2008) is sensitive to catastrophic
redshift errors, we found that measuring these errors (i.e., the con-
tamination coefficients csp) will be difficult using this technique
alone.

6 D I SCUSSI ON AND C ONCLUSI ON

In this paper, we have considered the effects of the previously
ignored catastrophic redshift errors – cases when the photometric
redshift is grossly mis-estimated, i.e. when |zp–zs| ∼ O(1), and are
represented by arbitrary ‘islands’ in the zp–zs plane. We developed
a formalism, captured by equations (13), that treats these islands
as small ‘leakages’ (or ‘contaminations’) and directly estimates
their effect on bias in cosmological parameters. We then inverted
the problem by estimating how many spectroscopic redshifts are
required to control catastrophic errors at a level that makes them
harmless for cosmology. In the process, we have proven two general-
purpose theorems (in the Appendices): the bias due to systematics
always decreases or stays fixed if (1) (unbiased) prior information
is added to the fiducial survey or (2) we marginalize over one or
more dimensions of the parameter space.

We found that, at face value, of order million redshifts are required
in order not to bias the dark-energy parameter measurements (i.e.
in order to lead to �χ 2 � 1 in the w0–wa plane). However, the
requirement becomes significantly (30 times) less stringent if we
restrict the survey to redshift z < 2.5; in that case, Nspec is only
of the order of a few tens of thousands. Essentially, leakage of
galaxies from lower redshift to z > 2.5 is damaging since there
are few galaxies at such high redshift and the relative bias in the
galaxy number is large. Therefore, using only galaxies with z � 2.5
helps dramatically by lowering the required Nspec while degrading
the dark-energy (FoM) constraints by mere ∼20 per cent.

We have studied two approaches for a spectroscopic survey: the
untargeted one where the number of spectra at each redshift is
proportional to the number of photometric galaxies (Section 4.1)
and the targeted one where the number of spectra is optimized
to be minimal for a given degradation in cosmological parameters
(Section 4.2). For the case where galaxies with zp > 2.5 are dropped,
the targeted survey gave only a modestly (∼40 per cent) smaller
required Nspec.

We do not imply that these Nspec requirements apply to all pro-
posed surveys to high accuracy, although the O(10−3) required
knowledge on catastrophic rates is robust. The calculation should
be repeated with the fiducial photo-z outlier distribution, survey
characteristics and cosmological parameters of interest to a partic-
ular experiment.

Our work demonstrates for example that efforts to reduce the
‘island’ of catastrophic mis-assignment from z ≈ 0 to z ≈ 3, such
as magnitude priors, could greatly reduce the required Nspec. Since
Nspec ∝ fskyc̄ (with c̄ being the mean rate of catastrophic contam-
ination), it is clear that a photo-z survey with an improved signal-
to-noise ratio (S/N) and wavelength coverage to reduce the total
catastrophic rate will also require lower Nspec to calibrate these
rates.
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Another practical implication of these results is that the
spectroscopic-redshift surveys must be of very high completeness
–99.9 per cent if there is a possibility that all failures could be in an
outlier island, but less if some fraction of the failures are known to
be in the core of the error distribution.

If an outlier island is known to exist at a particular (zs, zp) location,
it may be possible to include the contamination csp as a free param-
eter in the data analysis and marginalize over its value. It is possible
that self-calibration may reduce the bias in cosmological parame-
ters. It is likely infeasible, however, to leave the csp values over the
full (zs, zp) plane as free parameters. We leave self-calibration of
outlier rates for future work.

We have also studied whether the technique proposed by Newman
(2008), which correlates a photometric sample with a spectroscopic
one, can be used to measure, and thus correct for, catastrophic red-
shift errors. The advantage of this approach is that the spectroscopic
survey need not be a representative sampling of the photometric
catalogue. While we found that the cross-correlation technique is
sensitive to catastrophic errors (specifically, the contamination co-
efficients csp), the contamination coefficient is degenerate with the
value bspr sp of the bias and stochasticity of the outlier population.
Furthermore, there is a correlation induced by lensing magnifica-
tion bias that spoofs the contamination signal. It will therefore be
difficult to use the cross-correlation technique to constrain outlier
rates to the requisite accuracy.

Overall, we are very optimistic that the catastrophic redshift er-
rors can be controlled to the desired accuracy. We have identified a
simple strategy that requires only of order 30 000 spectra out to z

� 2.5 for the calibration to be successful for a SNAP-type survey.
Coincidentally, this number of spectra required for the catastrophic
errors is of the same order of magnitude as that required for the
non-catastrophic, ‘core’ errors (Ma et al. 2005; Huterer et al. 2006;
Ma & Bernstein 2008). The total spectroscopic requirements of a
survey will be based on the greater of requirements of these two
error regimes.
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APPEN D IX A : EFFECT OF UNBIASED PRIORS
O N B I A S SI G N I F I C A N C E

Will a bias get worse or better (more or less significant) when
additional unbiased prior information is added to the likelihood? It is
intuitive that biases �P should decrease when unbiased information
is added. However F → F + G for some new non-negative-definite
prior Fisher matrix G, meaning that the statistical errors also shrink.
So which effect wins out? We prove here that addition of unbiased
prior information cannot increase the significance of parameter bias.

The proof is straightforward: equation (9) gives the significance
�χ 2 of a bias in terms of the original positive-definite Fisher matrix
F and the vector V . If G is a non-negative-definite prior, then the
change significance of the bias is

�χ 2(with prior) − �χ 2(without prior)

= V T (F + G)−1V − V T F −1V . (A1)

This quantity cannot be positive. If it were, then there would some
0 < λ0 < 1 and a positive-definite matrix H = F + λ0 G such that

0 <
∂

∂λ

[
V T (F + λG)−1V

]
λ0

= −(H−1V )T GH−1V . (A2)

If G is non-negative definite, this situation cannot occur. We hence
conclude that the �χ 2 of some bias is always reduced (or stays the
same) by addition of an unbiased prior.

APPENDIX B: EFFECT OF
M A R G I NA L I Z AT I O N O N B I A S SI G N I F I C A N C E

We can ask the following question: if we calculate the significance
of a bias induced over a parameter space, then marginalize away

parameter vector B to leave parameter vector A, how might the
significance differ in the smaller space? We show that in the Gaus-
sian limit, marginalization always reduces (or leaves unchanged)
the �χ 2 assigned to the bias, although the �χ 2 per DOF may in-
crease. To see this, first we note that marginalization over B does
not change the biases in the parameters A if the distribution is Gaus-
sian. So the bias in A is simply a projection matrix PA times �P :
�PA = PAF −1V . The �χ 2 after marginalization down to the
A space is determined by the marginalized Fisher matrix, F ′ =
[(F −1)AA]−1. So we have

(�χ 2)A = V T F −1P T
A F ′PAF −1V

= V T F −1V − (PBV )T (FBB )−1(PBV ) (B1)

= �χ 2 − (PBV )T (FBB )−1(PBV ). (B2)

The equivalence in equation (B.1) can be derived from manipulation
of the common expression for the inverse of a matrix decomposed
into a 2 × 2 array of submatrices. Because FBB and its inverse must
be non-negative definite, the last term is negative, so we are assured
that (�χ 2)A ≤ �χ 2. Equality is, however, easily obtained, e.g. if
there is no bias in the B parameters. We thus know that �χ 2/NDOF

can potentially increase.

This paper has been typeset from a TEX/LATEX file prepared by the author.

C© 2009 The Authors. Journal compilation C© 2009 RAS, MNRAS 401, 1399–1408


