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1. DESCRIPTION CF EXPERIMENT

1.1 INTRODUCTION

The thermosphere probe (TP) experiment described herein is the result
of a research effort implemented by this laboratory under contract with the
NASA Goddard Space Flight Center, Aeronomy and Meteorology Division. The
purpose of this effort was to provide an ejectable rocket-borne system cap-
able of making simultaneous direct measurements of gas temperature and dens-
ity, ion and electron density, and electron temperature in the earth's atmos-
phere in the altitude region between 100 and 350 km, a region within the
thermosphere. The primary mission of the experiment is to fill the present
measurement gap in this general altitude region which is above the altitude
capability of the grenade, falling sphere and pitot-static techniques, and
below the altitude of usual satellite measurements.

The TP incorporates an omegatron partial pressure gage,l a cylindrical
electrostatic probe,2 and a sun-earth aspect measuring system. This com-
plement of instruments provides data for the determination of the previously
mentioned desired atmospheric parameters. Subsequent development of the
aspect determination system permits an extension of the experiment to de-
termine the horizontal component of atmospheric wind in the plane of tumble
of the TP.

The ejectable system was chosen for the purpose of removing the TP from
the environment of the launch vehicle, similar to the established "Dumbbell”
technique,2 and to permit a tumbling motion to be imparted to the package,
independent of the launch vehicle.

The following report describes the theoretical background and techniques
utilized in obtaining the gas temperature and density data, the electron tem-
perature and density data, and atmospheric winds. Only those engineering par-
ticulars that bear directly on the actual measurement of the desired quan-
tities required for data analysis are described in this report. A compre-
hengive engineering report of the system is in preparation.

1.2 THE THERMOSPHERE PROBE

The TP is a cylindrical instrument 6 in. in diam, 32 in. long and weighs
4O 1b. A photograph of the assembled instrument is shown in Fig. 1. One end
of the cylinder containg the omegatron gauge with its circular orifice and
breakoff device on the cylindrical axis; the other end of the cylinder con-
tains the earth sensor. The center section contains the sun aspect sensor,



Fig. 1. Assembled TP.



a small cylindrical electrostatic probe and the telemetry antennae. The
outer structure of the probe is made of stainless steel and the assembled
instrument is vacuum sealed. The probe system is completely self-contained
providing i1ts own power supply, measuring sensors, signal conditioning, and
transmission equipment.

1. EJECTION AND TUMBLE SYSTEM

The ejection nose cone system is shown in Fig. 2. The clamshell-type
noge cone halves, which provide the aerodynamic shape of the rocket during
powered flight are hinged to the base of the enclosure and are held together
against the force of two springs by a magnesium ring which is pyrotechnically
fractured to effect opening. The TP rests on a spring-loaded plunger within
the enclosure. The plunger is held depressed against the spring force by a
latch mechanically linked to a nose cone half so that opening of the nose
cone releases the latch, freeing the plunger, which, operating against the
compressed spring, ejects the TP from the opened enclosure. A negator motor
(constant force spring), with § It of cable is mounted below the plunger.

One end of the cable is fastened to the top side of the TP. As the TP leaves
the vehicle, it is tumbled in the plane containing the cable hock and the
center of gravity. When the TP has tumbled approximately 135°, the cable re-
leases and is reeled back into the vehicle.

The ejection system causes the TP to separate from the nose cone at
about 5 fps and the negator or constant force spring imparts the tumble mo-
tion with a period of 2.0 sec. The roll period is noncontrolled and is the
resultant of the roll period of the rocket at ejection. The opening of the
nose cone halves prior to ejection provides an effective despin mechanism
assuring a roll rate substantially less than the tumble rate. Thus, with a
low roll rate and a moment of inertia ratio of more than 30, the TP can be
considered to be tumbling in the plane of the cylindrical axis.
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2. ASPECT DETERMINATION

2.1 INTRODUCTION

The analysis of the neutral particle-pressure measurement requires that
the orientation of the pressure-gauge orifice, with respect to the velocity
vector, be known. For this purpose, the TP experiment utilizes a sun-earth
aspect sensor.

The sun aspect sensor views a fan, 360° wide, the plane of which is
oriented perpendicular to the long axis of the TP. As the TP tumbles, and
rolls, the fan sweeps out a solid angle of Urx steradians, thereby viewing
the sun at periodic intervals (every half tumble period). The output of
the sun sensor yields the roll position of the TP at the time the sun 1is
viewed,

As was described in a previoug section of this report, the ejection
system for the TP is designed to decrease the roll rate and tumble the in-
strument in the plane containing the cylindrical axis. Since there are no
external torgues on the TP after ejection, it will be assumed that the angu-
lar momentum vector, T, for the system will remain fixed in inertial space.

2.2 EJECTION KINEMATICS

In Fig. 3 the quantities and coordinates of interest are described for
the analysis of the equations of motion of the TP during ejection.

The Iagrangianéfzfor the TP after it has left the plunger is:
o2 2 . 7Y
5&: 1/om%" + 1/278° - K(x + € cos0) (2.2.1)
where
I = maximum moment of Inertla

X

congtant force spring constant

]

m = mass of TP
The equations of mction are

m¥ +K = 0 (2.2.2)

and



#K (CONSTANT FORCE SPRING)

Fig. 3. Ejection kinematics coordinates.



L4
I0 - K ¢ sin® = 0 (2.2.3)

The solutions to 2.2.1 are:

A A (2.2.4)
m
and
x = -1/2%2+v4 +x (2.2.5)
0 o @
The solutions to 2.2.3 are:
- - _ —7
Doy = Oy = V2 A ~Jcos@o - cos@ o (2.2.6)
where © = release angle
max
A" = Ke
I
The release time is: 0
max
. _ 1 dae
max Ity r v’
N2 A 0 \/COS@O ~ cog@
o
= ﬁ {
L. - Flk, ¢) (2.2.7)
2 Q
where B = 1 5 o =sin -2 ; k = sin~t L
1 -0 2 B

The translational velocity of the TP after being tumbled is given by

—
_ Vo' tpex KT N
.=V oY A tmax K1 2.2.8
Vinin o o e ( )
where Vb is the initial velocity obtained from the plunger, which is
2 2 / ]
K - T -2K ’
Vb = N/ p(x max X min) *o . M/g (Energy In) (2.2.0)
m m

-3



where Kp = plunger spring constant

e
1]

expanded length of plunger spin

max

Xmin = compressed length of plunger spring
x = (x -x . )

o max min

In the present configuration, the TP parameters are:

m = 1.27 slugs

I
max

1.25 slug ft2

2
I LOb slug ft

min

For the solutions we get

€ = .97 T 22 = 3.10
o, =15° o= .1305
o, =135 B = 1.017

The solutions are:
v, = 9.8 ft/sec

tmax ~ 1.5% sec

Tumble Period =

2.5 EQUATIONS OF MOTION OF THE FREE TP

K_ = 100 1b/in
P
k =54 1p

Energy In = 61.5 slug ftg/sec2

F(82°211,82°3L") = 2,60

12

win < 0 ft/sec

Wy = 302 rad/sec

T ~ 2 gec

max =

The TP cylinder is assumed to be a symmetrical top moving in a force
free space. Referring to Figs. 4 and 5, the 1',2',3' axes of a right Car-
tesian coordinate system are fixed to the TP, and the 1,2,5 axes are fixed
in inertial space. The components of angular velocity along the 1',2',3°
axes with respect to the inertial frame of reference in terms of Eulerian

angles are:



Fig. 4. Coordinates for free TP analysis.



Fig. 5. Coordinates for free TP analysis.
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.

$ sin@ cosV + © cosV

8—-
i

$ sin@ cosy - @ siny (2.3.1)

e
N -
1l

% cos@ + @

S
i

The components of the angular momentum for this angular velocities are:

1] —_ sz T
L = oply
S t z
L2 (DgIl (2»;-&
LV = olI
3 375
and
2 12 142 .2 ’
L~ = L + L) +L5 (2.3.3)

Assuming the angular momentum vector, L, is in the direction of the 3
axis of the inertial coordinate system, the components of L on the 1',27,2!
axes are:

L' = I sin@ ginVy

1

L) = L sin0 cosV (2.3.4)
IL! = L cos®

3

Therefore, from (2.3.2) and (2.3.k4)

wi = I 5in® sinvy

1y

= L gino cosVy (2.3.5)

=

-

n' = E_ coso

13

Defining w' as the angular velocity along the axis of maximum moment
of inertia, we have:

o' = (@ ) = = 5in® (2.3.6)

11



@' is the angular velocity along the axis of minimum moment of inertia.

The angular velocity is the direction of the 3 axis is the precission
angular frequency:

y L
wPR = ¢ = '£— (2“3‘7)
1
From (2.3.1) and (2.3.5)
(Ilg-L)sinQ siny = - Ilé cosVy
(Ilé-L)sin@ cosy = 115 sinVy (2.3.8)
(IBQ-L)COSQ = - 13&

4 4

Solving for @, ¢, and ¥ (L is constant in the inertial frame)

Y

@ = 0
¢ = E—. (2’5 9)
i)
. L
v = cog@ (== - —)
I5 Iy
Integrating (2.3.9) yields
@ = const. = @O
6 = Lty (2.3.10)
1 o)
1
ol 1
= QL |=— = =—j t +
v cos [15 111 $O

Equations (2.5.10) are the linearly time dependent Buler angles of the
TP.

In section 2.2, the TP parameters were given as:

2
I; = I, = 1.25 slug Tt

12



15 = .04 slug 42
w£ ~ox = E’---sin@
T
~1
and
w o~ ox = E_’COS@
13
tan @ = 1 ~ 30
Iz
or @ ~ 88°

Therefore, since the highest roll rate expected was assumed, we con-

clude that the TP is tumbling in a plane perpendicular to the angular momen-
tum vector.

2.l TUMBLE PERIOD

Two independent methods for the determination of the TP tumble period
are available. The period between guccessive sun pulseg can be read more
accurately and is used for the tumble-period measurement, with the period be-
tween pressure maxima providing confirmation of the results. The tumbie
period is measured with an error of less than 2 msec (~1 part in 500).

2.5 ROLL PERIOD

Fach cycle of the tumble motion causes the sun sensor to generate an
output which is a function of the TP roll position. The roll rate is deter-
mined by the following analysis of this information:

Let
® = roll rate (deg/sec)
@ = roll position of TP
k = an integer (0,1,2,...)
n = number of 1/2 tumble periods
t = time

15



then
£0(p40) Btk 260°

where

_ . . i o .
t(n+2) tn is simply the tumble period.

The role rate, in deg/sec, is equal to the number of degrees the TP has
apparently rolled in one tumble pericd (t©n+2—Gn), plus the number of com-
plete cycles it has rolled (*k 360°), divided by the tumble period-—the time
between roll position data inputs, @ ip and ©,. The plus or minus signs are

a consequence of the uncertainty in roll direction.

In the TP application, since the tumble period is less than the roll
period, k is O and the equation becomes i@n+2‘@p/tn+2’tn° Any pair of sensor
outputs provide a solution; therefore, successive solutions can be uged to

prove the assumption k = O and also to indicate the correct sign in i@n+2.

2.6 ORIENTATION ANALYSIS (Velocity Vector Reference)

Figure 6 shows the coordinate system used for the determination of L. Tt
is a right cartesian-coordinate system in which the z axis is pointing at the
Sun.

The TP1, and TPp vectors describe the position of the TP cylinder axis,
the direction being that of the normal to the orifice of the pressure gauge.
TP, is the position of the TP at the time it is closest to the velocity vec-
tor, i.e., the time a maximum pressure reading is recorded. 552 is the
position of the TP at the time a sun pulse ig received. Tfé is in the x-y
plane since the sun sensor is perpendicular to the axis of the TP.

The angle yq 1s the angle between Tfl and TPp, It is determined by
measuring the time difference, At, between a peak pressure reading and a
sun pulse. The angle y7 1is then given by:

o A
?'-L = 560 X = t @
. tumble period

The angle y, is the half angle of the cone, about the z axis, of all
possible angular momentum vectors. This is determined by the folliowing anal-
ysis:

1h



_—

TP, (8,290°)

Half Cone Angle”

=a

X

Sun

Fig. 6. Coordinates for TP orientation, velocity vector reference.
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et

t = time

n = number of l/2 tumble periods

®w = roll rate
Y, = cone half angle of L from z axis
@ = sun sensor roll position

Then, assuming that the roll rate is less than the tumble rate:

= {
Once one knowns ©, and where the sun sensor has rolled to in half a
tumble period, ©,,7 can only be the received output for one plane of tumble

with respect to the sun vector. 7o 1s the half angle of the cone of possible
angular momentum vectors about z.

2.7 ORIENTATION EQUATIONS

Referring to Fig. 6 which shows the vectors to be determined, the equa-
tions to be solved are the following:

Agsuming the TP is tumbling ir a plane, we get:
TPy » L = TPp + L = O. (2.7.1)

From our previous definiton of yq:

TPy « TP = cos 77 » (2.7.2)

Since the TP, vector is tangent to the cone of minimum angle of attack,
we can say:

E . _TE:L X -\7 = 0. (2‘7*5)
The minimum angle of attack, &, is then given by:

16



= cog O (2.7.ka)

or

<l

I
|71

= sina . (2.7.4b)

Assuming all vectors, except V, are unit vectors.

Using typical spherical coordinates, © measured from the z axis and @,
the angle in the x-y plane, measured counterclockwise from the x axis, we
can_golve the above four equations for the unknown quantity ¢L’ the ¢ position
of L. ©7 1s by definition equal to Vos

The solutions are:

IZ\E 2 1/2
+cos v
cos(gy-pp) = [——gt® (2.7.5)
‘L AT+
where
A o= Sos 7
cos 7o
sin @ = __,EE_ZI_L, (2.7.6)
' COS(¢1=¢2)
p~gy = L (2.7.7)
2
NN
sin(¢l-¢v) - B2 VBE-CE41 . (2.7.8a)
2
BT+1
_ X
for ¢2-¢L = .E
NI
sin(dr-gy) = =2 -tg B-C+l (2.7.80)
B=+1
fOI‘ ¢2‘¢L = - ?’2[“
where

17



2 >
sin (g1-g2)*cot 72

sin(¢1-¢2)008<¢1"¢2)

C = cot yo cot Qy
sin(g1-¢2)

The above equations yield eight solutions for ¢L’

If this analysis is carried out at two or more times during the flight,
with data input from the sun sensor, only one of the eight solutions will

yield the same g, each time. This then is the correct ¢, and the angular
momentum vector is known.

2.8 ORIENTATION ANALYSIS (Earth Normal Reference)

In this method, the output from an earth sensing instrument is used to
determine the time when the TP is closest to the local earth normal vector,
N. The equations for this case are similar to those of the previous method
(see Fig. 7).

Let Tﬁé = position of TP when a sun pulse is recorded
Eﬁg = position of TP when closest to N (earth sensor data)
ﬁ = Iocal normal to earth's surface
f = angular momentum vector
75 = angle between 552 and ﬁié (minimum) (measured)
QL = half angle of cone of possible angular momentum vectors
(measured)
TP, * L = TPz "L = O (2.8.1)
TP, * Tﬁé = cos 73 (2.8.2)
- EE% xN = 0 (2.8.3)
%&% = sino (2.8.14)
v

18



90°)

S X

Sun

Fig. 7. Coordinates for TP orinetation, earth normal reference.
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The solutions are:

A" + cos 93 1/2
cos(dB- ¢2) = 7 (2.8.5)
AY + 1
where
At _ COs 75
cos@L
cos
sin@5 = 75 (2.8.6)
cos(d, - 4;)
?gg - ¢L = * /2 (2.8.7)
where, for ¢2 - g = /2
2 2, 4
BIC! + \/B' - C'= + 1
sin(d, - 4.) = - (2.8.8)
> N B' + 1
and for ¢, - ¢y = - n/2
_RIC + 12 _ 12
sin(g% _ 9{1\1) . -B'C “\éB C'“ +1 (2.8.9)
B" + 1
where
2 2
g . Sin (§3 - go) + cot O,
cta(g, - dp)eos(d; - #,)
o cotQLcotQN
sin(ng5 - ¢2)

As for the previous case (sec. 2.7), the equations yield eight solutions
for ¢L' An analysis at several points along the trajectory eliminates the
ambiguity.

20



2.9 DIRECT METHOD OF OBTAINING <

Another method of finding O directly is discussed below. This method
gives a more understandable physical picture of the TP's motion and yields
a directly for each time sun sensor data are available.

Figure 8 shows the plane of tumble (shaded plane) and its relationship
to the measured gquantities, 7y and y2. The cone half angle AD is equal to
(K/E)-yg. It is the cone to which all possible tumble planes must be tangent.
EB is the angle 77, the angle measured between a sun-pulse and a peak-pres-
sure measurement (at B). The circle about the sun vector of radius AB de-
scribes the locus of all possible positions of the TP when a peak-pressure
measurement was received. The criterion for a solution is that the tumble
plane must be tangent to the cone AD and must be tangent to a cone about the
velocity vector (cone half angle EE) at a point on the cricle of radiug AB
(Ql of our previous analysis). The angle BC is by definition the minimum
angle of attack &, to be solved for.

The problem then is to solve the gspherical triangles for the angle

BC = @ in terms of the known quantities AB = Op, BD = (x/2)-yq, AC = Oy,
AD = (ﬂ/E)-yE (see Fig. 9).
cos AC = cos BC cos AB + gin BC sin AB cos(90°+1)
or
cos AC = cos BC cos AB - sin BC sin AB sin u (c.9.1)
also
cos AB = cos AD cos BD + sin AD sin BD cos 90°
or
cos AB = cos AD cos BD . (2,9,2)
Now, from the sine law:
sin K§ _ sin Kﬁ
———ig- = —
sin o sin p
or
Sil’l KB - sSin AD . (20935 )
gin W

2l



Fig. &. Coordinates for direct method of angle of attack analysis.
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C

Fig. 9. Spherical triangles of Fig. 8.
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Substituting Egs. (2.9.2) and (2.9.3) into Eq. (2.9.1), we get:

cos AC = cos BC cos AD cos BD - sin BC sin AD . (2.9.4)
Rearranging
= === [T
cos AC - cos BC cos AD cos BD = -N1l-cos BC sin AD.

Squaring both sides

o o— o o— —_— —_— — —_
cos AC + cos BC cos AD cos BD - 2 cos AC cos BC cos AD cos BD

o — —
= gin AD - cos BC sin AD .

Rearranging

o— o— o— 2— —_ — — —
cos BClcos AD cos BD + sin AD] - 2 cos BC(cos AC cos AD cos BD)

o— O
+ (cos AC-sin AD) = O .
Let
ey 2= — 2/1 T 7
4 = cos AD cos BD + sin AD = cos <§ - 79 0032 <§ - 7;> + sin2<§ - 7%)
m = COS KE cos KB cos 55 cos Oy cos (% c X
B = v 5" 7o) ST
B 255 . 2Kﬁ EO . 2 [
n = cos AC - gin = cos Oy - sin 5" 72
o - —_
£l cos BC -~ 2n cos BC +n = O
and
m * VmP-fn
cos BC = —, (2.9.5)

This analysis was carried out with the assumption that the position of
the TP at minimum angle of attack was describable in the top hemisphere of
the sun coordinate system shown in Fig. 8. If the TP is positioned on the
bottom hemisphere [AE > (n/2)] then the angle BD is [(n/2)+yy)].

el



= i
For AB < = <=
o’ 75 5
L = sin272 sin271 + cos272
m = cos OV sin 7o sin 71
2 2
n = cos OV - COos 72
and for AB > —, 7o <=
2 2
P 2 2 2
= i i b’ +
sin 72 sin 7, +cos 7,
m = - COs OV sin 75 sin 4l
2 2
n = cos OV - COS 72

where

mE~ mg-ﬂn

o = m—— 2.9.6
cos ) (2.9.6)

2.10 COMPUTER ANALYSTS

The orientation analysis described in Sections 2.5 and 2.6 have been
programmed for digital computer solutions. The program instructs the com-
puter to produce a theoretical trajectory, matched to radar data, with velocity
components in both earth fixed and sun fixed coordinates. This trajectory is
then used to obtain the eight solutions for each of two analysis points. The
two groups of solutions are compared, and the correct angular momentum vector
is selected and used to determine the minimum angle of attack wversus flight
time. Other parameters obtained from the results of the solution are shown
in Fig. 10.

2.11 ATMOSPHERIC WIND

The use of the two orientation analyses described in Sections 2.4 through
2.6 permits a determination of the component of horizontal atmospheric wind
in the plane of tumble of the TP. Since the velocity vector reference method
determines the motion and, hence, angle of attack of the TP, with respect to
the atmosphere and the sun, and the earth reference method determines the

25
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motion with respect to the earth and sun, any differences between the two
methods larger than the expected error must be due to atmospheric motion.
Therefore, the guantity determined is an apparent difference in minimum
angle of attack, AQ., Although true wind velocity determination dependsg
upon Ob, the minimum angle of attack, and other data input magnitudes, a
theoretical plot of the horizontal wind velocity component in the plane of
tumble versus altitude for a typical Nike-Tomahawk trajectory is given in
Fig. 11.
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%, DATA REDUCTION

3.1 Np DENSITY VS, ALTITUDE—-DATA ANALYSLS

The pressure relationship across the orifice of a pressure gauge mounted
within a moving, rotating body in a free-molecular-flow region in a planetary
atmosphere, is given by the thermal transpiration equation as modified by
drift velocity considerations.

From Ref. 3
% = 1y /1, £(s) (3.1.1)
where
2
f(g) = e-s +~f;s(l+erfs)
s = Vecos B/u
w o= VaT/n
P = pressure
T = temperature
V = wvehicle velocity

B = angle between the normal to the pressure-gauge orifice
and the wvelocity vector

u = most probable thermal velocity for molecules of mass m
1 = subscript denoting quantities inside the pressure gauge
0 = subscript denoting quantities outside the pressure gauge

For the TP experiment, the pressure gauge is tumbling in a plane which is
at an angle @ (minimum angle) from the velocity vector. Considering the maxi-
mum change in pressure during one tumble period:

Py, /T, [£(s)-£(-2)] (3.1.2)

Pimex = Fimin = Po'Ti/

since
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f(+s) - f(-s) = Es[erf(s)-erf(ns)] = 2Vn s.

We get:

Lyv]
-

!

g
[N

]

2P,V s VT /T, = 2P, . (3.1.3)

max min © L/70

From the ideal gas law:

we get:

2, = 2vx Ro VT.T, s .

1
Which, for ambient N, density, is:

AP
Po = - V cos @ G.1.5)
2x RVT T, —22 2

0

substituting u =\/2kT/m, and rearranging yields:

APs

o) (see Ref. L) . (51,105)

© \/'zruchosa

In terms of number density:
] _ ) inAnNgi
N No — -
20 2 \/;_[- Uchosa
or
A U
MNpy “Nopj

n = —= 3,1.6
2o oNx Veosy, ( )

Figure 12 gi\f'es typical values for NEPimax’ Pimin’ and Py for a typical Nike-
Tomehawk trajectory.

3.la  Op, O DENSITY VS. ALTITUDE—DATA ANALYSIS

Omagatron Oo measurement—total recombination inside gauge assumed for
0 -+ Os.
2
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-
v
ﬁ
fos %o 0Ty
For equilibrium flow at orifice:
= + £
UO2i Nop, U020 Bog, £(85,) + 1/2 ng Uy 7(5,) (3.1.7)
where U = most probable thermal speed
T

m

Substituting the temperature and mass dependent expression for Uog- and
dividing the right hand part of the equation - *

M T
n,_ = oo £(So,) + 1/2 [—2 [ n, £(s) (3.1.8)

Ty
2\/3{ Veosg
bng, = —————— [no, +1/2n, ]
eq UOQ. © ©
i
or
Arop, Uopy = £(an,, ) (3.1.9)
n,. +1l/2n, = ——————— 1
2 o NE
0 2Nt V cosy

Agsuming diffusion equilibrium, the hydrostatic equation for each species can
be written:

dn aT
1t. by 1/2 KT o + k —2 1/2M, gn
mu . y — _—n o= -
° "4n dgh °© %2 =70
T dn02+deo .
a Kk —9 pn =
an °©  4h o °2 op Bloy
add
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ar(an) o
KT, ===+ k — fln) = M, a(l/bng + 0 ) (3.1.10)
or
ar
1/bn,  + ng - -k [T, af(sn) , %o f(An)] = -g(an)
° "% Mo 8 ah dh
(3.1.11)
Using equation for g(AN) and f{AN) (3.1.9) and (3.1.11) we get:
n02 = -2g(An) - f(An)
0 (3.1.12)
ng = L [f(An) + g(An)]
and o Llg(tn) + £{tn)]
= . . : (3.1.13)
Hop 2g{tn) + £(An)
~
also Ny
hon T L
g(An) = - i f(An) (3.1.10)
o —2— 4 ),
1’102
n
O
— g(4n)
1’102
0 ~-f(An)
0.5 -.900f(An)
1.0 -.8%3%f(An)
2.0 -.750f(An)
® -.500f(An)

Therefore, the ambient number densities of O, and O are separable and de-
terminable from the Op density measurement within a gauge open to the atmos-

phere through a knife edge orifice,
recombination of O into O, occurs within the gauge is guestilonable.

The validity of the assumption that total

However,

measurements of O during any typical flight would yield the data required to
determine what fraction has recombined into Op, and similar equations can

easily be derived.
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3.2 AMBIENT NEUTRAL TEMPERATURE VS, ALTITUDE—-SCALE HEIGHT METHOD

The determination of ambient gas temperature from pressure measurements
in a moving and tumbling pressure gauge can be accomplished by two indepen-
dent methods. One method is the determination of a scale height for the
ambient gas; the other uses the "yelocity gean” technique§5 which determines
the relationship between the vehicle velocity, a known parameter, and the
most probable thermal velocity of the ambient particles, a quantity propor-
tional to the square root of the temperature.

For the first method, we assume an atmosphere at equilibrium such that
the hydrostatic equation holds:

aP
dh

= - 08 (3.2.1)

Also, we assume the ideal gas law is valid:
P = pRT . (3.2.2)

Differentiating Eqg. (3.,2.2) with respect to altitude, we get:

aP - g 4R . pR,gE . (2.2.3)
dh dh dh

Substituting Eg. (3.2.3) into Eg. (3.2.1):

dp aT
RT'_— + "R'—' =
an P8 T PRy ©
or
rr 30 & o (g +R ax = 0. (2.2.4)
dh dh

For the TP experiment, the expression for ambient density was derived
previously:

AP . .
p = o (\5"2‘5)
Ui Jr V cos o
Now
. APy
dp _ 1 A LAV L tenaar, 2
dn oy, Veosa | dn V dh dh | (5.2,6)
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Substituting Eqs. (3.2.5) and (3.2.6) into Eg. (3.2.4) and cancelling
common terms

dT AP+ \

L e ~ (3.2.7)
R dn/ 4Py APy AV . 0
_EE—‘ mvf,dh tan Q@ AP3 in

This expression relates the amblent temperature to the basic pressure
measurement and trajectory information. To change the equation to a form
more suitable for data reduction, we multiply the numerator and denominator

by V, = dh/dt,
T _<§+§E - (5.2.8)
R dn/ d4aP; AP 4y da

- T+

at T v at - tan O AR EY

Equation (5.2»8) allows one to reduce much of the data, in terms of
flight time, from the original telemetry records, eliminating trajectory
information requirements until final analysis.

Returning to Egs. (3.2.1) and (3.2.2), we see that Eq. (3.2.1) can te
expressed as:

h-
L . .
Pl - Py = Jf pgdh . (5:.2.9!)

hg
Where Pl is the ambient pressure at altitude hy and P, 1s the ambient pres-

sure at altitude ho.
From Eq. (5,2.2), we can express ambilent temperature as:
T = P/eR .,

Therefore,

hl
u/; pgdh + PE

T. = 2 (3.2.10)
0. R

I
A

P, can be determined by
T2 = Pa/pgR o

Where T, is obtained from the data using Eq. (3.2.8).



Sy

Equations (3.2.8) and (3.2.10) are both valid for the assumption of Egs.
(3.2.1) and (3.2.2). Both equaticns have teen used for data reduction and
excellent agreement in the regults is obtairned.

Another technique for temperature determinatiorn which 1s independent of
Eq. (3.2.1) is discussed in the following section

3.3 AMBIENT TEMPERATURE VS. ALTITUDE—VELOCITY SCAN METHCD

The velocity scan method for determining ambient temperature hag been
derived previously and is reported in Ref. 3. For this the thermal trans-
piration equation is used.

P; S
ol Vo, /1) £(s) (5.3.1)

Since the TP is tumbling in a plane whose angle from the velocity vector
is o, the angle of attack, P, for any given pressure reading is:

where © is the rotation angle in degrees in the plane of tumble. © 1s zero
when B = &, and a peak pressure reading is obtained. For any given tumble
period, it can be assumed that the ambient temperature is coustant, there-
fore, the ratio of (3.3.1) at B1, to (3.3.1) at Bp yields:

(p; ., /P. = fis {5 (3.3,
‘Plﬁl/ 152) W‘iﬁl)/ \5ﬁ~,2> 13.3 2)
where
—02
fls) = e +n a(l+erfs)
s; = Vcos Qcos Gl/uo
ug = VKT /m

5

As is known:

lim £(s) = 2V s.

S+

Therefore, for high S (s > 2), the linearity of f(s) causes:

J

cos Ol/cos Q

Piﬁ]_/Piﬁg 2"

36



However, if the 90° point (0 = 90°), for example, and the peak pressure
point (6 = 0°) are chosen for the pressure reading.

/Py = (%) . (3.3.3)

P,

From this ratio, an S can be determined. The ambient temperature is then
given by:

To . V cos O (505°u)
2k Sy

where V, g, &, m and k are known quantities.

It will briefly be noted here that the errors involved in reducing data
from Eq. (3.3.4) above become quite large for high vehicle velocities, since
all the temperature information is contained at pcints on the pressure curve
near © = 90°, where S is small (Fig. 13). Also, the iluherent inaccuracy of a
linear amplifier at low outputs, compared to full scale outputs, causes er=
rors in P9O° that appear to approach and even exceed 100% especially when
background pressure effects are also present. A thorough errcr analysis of
this technique has been initlated and will be reported separateiy wher com-
pleted. Therefore, the data presented in a later section was reduced usirg
the previous method (scale height). In either case, assuming the gauge nas
a linear pressure-current characteristic, a systematic calibration error does
not cause an error in the computed ambient temperature, since only ratios of
the measured pressures are lnvolved in the expresgions uged.

3.4 ELECTRON TEMPERATURE AND DENSITY---DATA ANALYSIS

The equations for the current collected by a gtatiocnary cylindrical
probe immersed in a plasma were derived by Mott-Smith, and langmuir (1926).
An extension of this work to moving cylindrical probes was carried out re-
cently by Kanal (1964).7 The thermal velocity of the electrons is very
large in comparison with typical spacecraft velocities, thus for electron
current calculations the probe can in effect be congidered stationary. The
Debye length corresponding to typical F-region conditions is of the order of
1 cm. The dimension of the sheath which surrounds the collector is of the
order of the Debye length and since the radiug of the collector used in
these experiments is only 0.027 cm, a large sheath radius to probe radius
ratio results. The retarded and accelerated current equations under thesge
conditions are given by (3.L.1) and (3.L4.2), respectively.
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where:

P

v
ap

erfc (X)

]

1

1]

Il

1l

Il

kT, \L/2
I, = Neg A.exp(Vb) (3.4.1)
Eﬁme
1/2
kTe / 5 1/2 1/2
NogA 75 vy + exp(V,)erfe(V, " )
2
e § (3.1.2)

Boltzmann's constant
temperature

mass

number density

magnitude of electronic charge

collector area

9Vpp
KT,

potential difference between the probe and the ambient plasma

Vép + VR

applied voltage
potential of the Thermosphere Probe with respect to the plasma

complimentary error function

X

o .2
1l - ;TE f exp[-ﬁ ] dfj

O

i

Let Eq. (3.4.1) be rewritten in the following manner:

9Vap

.
exp iR (3.4.3)
kTe kTe

wr, \ M2
I. = NogAexp
2nfe

Takingthe natural logarithm of Eg. (3.4.3) one obtains:
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T 1/9 o p 1
. kT qv
(I ) = tn < NeoA |+ 2ap +:-;5 (3,L,4)
T 2, Mg kTe kT,

The sawtooth voltage applied to the prote is made to vary from about -0.5V
to approximately +5.0V at a rate of L5 ¢/s. This rate is sufficiently high
to justify the assumption that the ambiernt parameters {density and tempera-
ture) remain constant during one sweep. Thus, assuming that the equilibrium
potential of the TP as well as the aftmospheric parameters remaln constant
during a sweep, differentiation of Eq. (3.4.L) with respect to Vap yields:

all a{ty)l g 11,600 (3.1.5)
Al Vg KTe te

Therefore if 4 n(Ir) is plotted versus Vap a straight line results if the
velocity distribution of the electrons is Maxwellian. The slope of this
curve directly yields the electron temperature Te. Such a curve obtained
from typical experimental results is shown in Fig. 1L,

The retarded current equaticn [Eg.(3.L.1)] shows an exporertial rela-
tion between the collected current and the voltage, whereas the eguation
for accelerated current [Eg. (3.4.2)] shows a strong departure from such
behavior. Therefore, ideally the plot of the electron current as a function
of the applied voltage on a semilog paper will result ir a gtraight Line for
positive applied voltages, up to the point where the cylinder reaches toe
plasma potential. The applied potential corresponding to this hreakpoint 1s
then equal in magnitude and opposite in sign to the equilibrium refererice
(TP) potential. Such a curve, constructed from typical experimental points
was shown in Fig. 1L. The establishment of this breakpoint, therefore,
yields the equilibrium potential of the TP body. The eiectron current c0l-
lected by a probe at the plasma potential, referred to as the random current,
is given by Eq. (3.4.6),

kT "\ 1/2 )
Iep = Negh (3.L.6)
Emm.e

Once the equilibrium potertial (Vg) is determined by this "breakpcirt method”
the value of the random electron current can easily by found. Using the
electron temperatures derived from the slope of retarded characteristics,

the ambient electror densities are calculated from the randcom electron cur-

rent.

Equation {Bohoz) for the accelerated current containg two unknowns:
the ambient electron density arnd the reference potential. The fact that
these unknowns and the other parameters in Eg. (3.4.2) can be congidered
constant during one sweep, as discussed above, leads to another technique
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(Method II) for the determination of the electron density and the TP
potential. The method employed is simple: by noting the collected current
for two different applied voltage values (selected to ensure accelerating con-
ditions), two equations with two urknowns are obtained, which then are solved.
A computer program has been written to obtain such solutions from the actual
volt-ampere characteristics. Six to eight points from each curve are typi-
cally read into the computer and substituted into Eq. (3.4.7) for the number
density Ne’

(3.L.7)

T
~a

Ye = /xm, /2 1/o .
) < e> gh i}—_-g vo"L/c + exp(V,) erfc(‘\fol/ﬂ

Eﬂme ﬁl/g

This equation is obtained from simple rearrangement of Eq. (3.4.2). Since

Ne is assumed constant during one sweep, a value for the TP equilibrium poten=-
tial, VR, is obtained corresponding to each pair of data points. In this pro-
gram a value of VR is first calculated for all the possible combinations of
pairs and from these an average value of VR 1s obtained. This average value
of VR is then used to calculate the ambient electron density from each of the
data points with the aid of Eq. (3.L4.7). The resulting density values are
then also averaged. These averaging processes minimize the reading errors.

Another method, which 1s a variation of the one previously described
(No. II), can also be used to obtain electron density and TP potential infor-
mation. This approach is again based on solving the accelerated electron
current equation for VR and Ng. Considering two points on the "accelerated”
portion of the volt-ampere curves, the ratic of currents is

2 1/2 ,
Ial _ 1/2 (Vo) + exp (Vgqy) erfe (V,p) :Fw’ol)
Tap 2 1/2 . | P (Vor
2 nl/g (V62> / + exp (ng) erfc (Vb2) (Vo2)
(%.4.8)

where V__ = a4 (v

+ i =
on = e Vapn FVp), o= 1,2...

If the two points under congideration correspond to the maximum applied

voltage, Vépm’ and that applied voltage which brings the cylinder to the

plasma potential, [VR], respectively, one can write:

= F(V ). (3.4.9)
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Equation (3.4.9) provides a functional relationship between Iep and
Vi with Vépm as a parameter, thus:

I, = G (Vg) (3.4.10)

The experimental volt-ampere curve can be expressed as

I, = H(V) (3.h.11)
When V. = -Vg, the measured current corresponds to the random current
Iepe Thus if Eg. (3.4.10) is plotted on the same scale as the experimental

curve, the two curves will intersect at one point only. At this intersection
point the applied voltage is equal in magnitude and opposite in sign to VR
and the current is the random current Ier from which the electron density can
be computed.

The electron temperature measurement technique described here hasg been
used successfully for a number of years for both rocket and satellite applica-
tions. -10 This wealth of experience provides great confidence in the re-
sults. The use of the electron current characteristics for ionospheric eleg_
tron density measurements, as discussed here, is a more recent f:lp_proach,ll’J“2
nevertheless the results so far indicate that if the experimental parameters
are properly selected (e.g,, current detector sensitivity, voltage sweep rate,
etc.) the accuracy of the density and equilibrium potential measurements i1g

in the order of 5-10%.

5.5 DATA PROCESSING

The theory and analysis methods described in this report have been used
in analyzing data obtained from four successful TP payloads launched from
Wallops Island, Virginia. All four used Sparrowbee launch vehicles which
attained peak altitudes of approximately 300 km. The resulting geophysical
data is presented in Ref. 12.

A section of a telemetry record, obtained during the flight of NASA
6.06, is shown in Fig. 15. To date, the data have been reduced to engineer-
ing terms from records similar to this. The voltage deflections are read
with data reducers, such as the Gerber GDDRS-3B. Much of the analysis to
reduce these data into atmospheric parameters has been programed for com-
puter solutions. In the near future, a data processing system will be
avallable for use in processing the magnetic tapes of the telemetered data.
Such a system in conjunction with a computer, also to be available, will
considerably decrease the time and human effort involved in obtaining the
degired geophysical parameters.

b3



g - . u
= = — :
4 - ——— ST
_ P S —
‘ e
: © o o
H = w 3 c
: - S 1538 = m
“ p == e z f-A P - \
s . ; —— - s
m w — i —
: - . e
. ===
“ ~ - ALY T
: : e
m N I ——
mr . 3 «N J/ —— e R!\YW\N?&HHH
: : ) el —
& o - o e S~ m
M o - ,.«J\Hﬁwnii» =
i E——
H 2 R i
: 2 & T
& - > o vd 5
ik N . c a
H P L //um a B w =
! . S S —_— =S e
= N D ,,a ‘\\\\ © m S & L
.ﬂ o RS > - b] pr &
M & z S i e
- pd ) 2
: — g d o1} el
: = ) . 1 0 b
m — Py o -wo__ M- .ﬂw O
: b 4
i~y . 2 H3
 — Q ‘ Yy O w3 @ *
L — D L 8K
— BN |
- \;\\
——— —= £ >

Telemetry record from NASA 6.06.

Fig. 15.

Lk



10.

11.

REFERENCES

Niemann, H. B., and Kennedy, B. C. “Omegatron Mass Spectrometer for
Parial Pressure Measurements in the Upper Atmosphere,” (to be submitted
to Rev. Sci. Inst.), 19%5.

Carignan, G. R. and Brace, L. H., "The Dumbbell Electrostatic Ionosphere
Probe: Engineering Aspects,” Univ. of Mich., ORA Report 03599-6-S, Ann
Arbor, November 1%1.

Schultz, F. V., Spencer, N. W., and Reifman, A., "Atmospheric Pressure
and Temperature Measurement Between the Altitude of 40 and 110 Kilometers,"
Upper-Air Research Program, Report No. 2, Univ. of Mich. Res. Inst. Re-
port, Ann Arbor, July 1948.

Horowitz, R. and lLaGow, H. E., "Upper Air Pressure and Densgity Measure-
ments from 90 to 220 Kilometers With the Viking 7 Rocket,” Journal of
Geophysics Research, 62:57-78 (1957).

Nagy, A. F., Spence, N. W., Niemann, H. B., and Carignan, G. R., "Measure-
ments of Atmospheric Pressure, Temperature, and Density at Very High Al-
titudes," Univ. of Mich., ORA Report 0280L-7-F, August 1961.

Mott-Smith, H. M. and Langmuir, I. "The Theory of Collectors in Gaseous
Discharges,” Phys. BRev., 28, 727-763, 1926.

Kanal, M., "Theory of Current Collection of Moving Cylindrical Probes,”

J. Appl. Phys., 35, 1697-1703, 196k,

Spencer, N. W., Brace, L, H. and Carignan, 5. R., "Electron Temperature
Evidence for Nonthermal E uilibrium in the Tonosphere,” J. Geophys. Res.,

67, 157-175, 19%2.

Nagy, A. F., Brace, L. H., Carignan, G. R. and Kanal M., "Direct Measure-
ments Bearing on the Extent of Thermal Nonequilibrium in the Tonosphere,”
J. Geophys. Res., 68, 6L01-6412, 1963.

Brace, L, H., Spencer, N. W., and Carignan, G. R., "Ionosphere Electron
Temperature Measurements and Their Implications,” J. Geophys. Res., 68,

5397-5k12, 19%63.

Nagy, A. F. and Farugi, A. Z., "Ionospheric Electron Density and Body
Potential Measurements by a Cylindrical Probe,” Univ. of Mich., ORA Re~
port 05671-4-S, September 196k,

5



12.

REFERENCES (Concluded)

Spencer, N. W., Brace, L. H., Carignan, G. R., Taeusch, D. R. and
Niemann, H. B., "Electron and Molecular Nitrogen Temperature and
Density in the Thermosphere,” (submitted for publication, J. Geophys.

Res.).

L6









