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SUMMARY Morphological integration can respond to
environmental conditions, a response that may be dynamic
through ontogeny. Among fishes, brook charrs (Salvelinus
fontinalis) display a trophic polymorphism that makes it a good
species for analyzing the ontogeny of morphological
integration. To better understand the processes regulating
variation and integration, we assess the ontogenetic dynamics
of covariances and developmental progress for populations of
S. fontinalis from two habitats that differ in water velocity; lake
and stream. Geometric morphometrics and developmental
progress were evaluated on 751 and 198 specimens,
respectively. In both habitats, most ossification events occur
before the transition from alevin to juvenile. This threshold
defines two distinct periods. During the first period
representing free-embryos and alevins, there are important

shape changes and rapid ossification, integration tends to be
relatively low and decreasing and the variance of shape
drastically decreases. During the juvenile period, the rate of
shape change decreases and the onset of ossification is
nearly complete, plus integration increases and shape
variance stabilizes. While we find two distinct developmental
periods, we nonetheless find a notable stability underlying the
ontogenetic dynamics of variability as well as gradual change
in the structure of covariation within each habitat. Our results
imply that the variability of juvenile body shape does not seem
to retain signals of variability determined early in ontogeny and
warrants caution in using juvenile as guides to the earlier
causes of variability. Overall, this study highlights the difficulty
of inferring causes of integration from studies of static
covariance.

INTRODUCTION

Morphological integration refers to the interdependence

among traits caused by shared function or developmental or-

igin that is typically measured by the statistical associations

among traits (Olson and Miller 1958; Cheverud 1982). The

structure of those statistical associations reflects processes that

affect some traits but not others. It is the covariance-generating

processes that produce patterns of morphological integration.

Covariance-generating processes can be altered by mutation,

and also by the dynamics of development or environmental

factors, with consequent changes in the structure and overall

level of integration (Riska 1986; Zelditch 1988; Zelditch and

Carmichael 1989; Hallgrı́msson et al. 2007). A major objective

of ecological and evolutionary developmental biology is to

understand the developmental, ecological, and evolutionary

processes that structure (co)variability, as these are among the

determinants of evolvability (Hendrikse et al. 2007).

Changes in covariance structure have been found from age

to age within a single environment, revealing the develop-

mental dynamics of integration (Atchley and Rutledge 1980;

Zelditch 1987, 1988; Zelditch and Carmichael 1989; Badyaev

and Martin 2000; Ivanović et al. 2005; Young 2006; Zelditch

et al. 2006). In the case of rodents, there appears to be a close

connection between the dynamics of integration and function:

both adult function and adult covariance structure are estab-

lished shortly before weaning and thereafter are stable (Zel-

ditch 1987, 1988; Willmore et al. 2006; Zelditch et al. 2006).

The covariance structure of adult rodent skulls thus reflects

processes that occurred before weaning, revealing the signa-

ture of preweaning developmental processes. In teleosts, we

might also anticipate rapid early modifications in integration

because this is when we find rapid changes in many traits,

such as those documented for body shape, metabolism,

swimming ability, and behavior (van Snik et al. 1997; Gisbert

1999). The particular changes in integration that occur during

early development may depend on the environmental de-

mands faced by developing phenotypes, and these demands

likely vary across environments.

We might also expect that the structure of covariances

would differ between habitats because phenotypic plasticity,

induced by contrasting environmental demands, is known to

have an impact on covariance structure (Schlichting and Pig-

liucci 1998). Various lacustrine teleosts exhibit a phenotypic
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and behavioral divergence along a benthic versus limnetic axis

(Robinson and Wilson 1994 and references cited therein).

This divergence is known to affect integration in juvenile

pumpkinseed sunfishes (Lepomis gibbosus) for which benthic

and limnetic forms can differ in both magnitude and structure

of integration (Parsons and Robinson 2006). This divergence is

also reported for lake populations of brook charrs (Salvelinus

fontinalis) (Venne andMagnan 1995) and functional demand is

one of the factors known to induce differences in morphology

(Peres-Neto and Magnan 2004; Proulx andMagnan 2004) and

integration (Peres-Neto and Magnan 2004). Peres-Neto and

Magnan (2004) reared brook charr and Arctic charr (Salvelinus

alpinus) juveniles for a period of 6 months under four water

velocities, finding that the level of integration was associated

negatively with water velocity in Arctic charr. In the case of

brook charr, the highest level of integration was found in fishes

reared at medium water velocity. That study, which focused on

integration in juvenile specimens, did not address the effect of

functional demands earlier during development. The differen-

tiation between alternative phenotypes could take root in the

interaction between developmental dynamics of integration

and environmental demands. This interaction may have par-

ticularly large consequences early in ontogeny, when develop-

ment is most rapid and functional demands change most

dramatically.

To better understand the processes responsible for both

ontogenetic changes in covariance structure, and their interac-

tion with ecological factors, we herein examine the ontogenetic

dynamics of covariances in yearling brook charr from two

habitats that differ in water velocity; lake and stream. How

covariances change, either over time or across environments,

depends on whether the variation that is introduced and/or

preferentially removed is random or not. If random variation

were being preferentially eliminated from each population,

the covariances would become larger relative to the random

variation, leading to an increase in the level of integration

without a change in covariance structure. Conversely, if the

nonrandom variation were being preferentially eliminated or

added from the population, the covariances would change rel-

ative to the random variance, leading to a modification in level

of integration but most importantly, this would lead to a

change in covariance structure. The overall levels of variance

and integration only provide some of the information needed

to understand the developmental dynamics of integration.

Samples similar in overall levels of variance or integration can

differ in covariance structure and vice versa. We thus examine

both overall levels and structure of (co)variance. We also ex-

amine the magnitude of changes that occur from size to size as

this could affect the amount of variance being newly intro-

duced or the rate at which it is eliminated.

Our analysis of shape change, variance, and integration is

placed in a developmental context by measuring develop-

mental progress by the number of newly ossified endoskeletal

elements of the pectoral and median fins. These newly ossified

endoskeletal elements are of special interest because ossifica-

tion accurately describes phases of brook charr development

(Balon 1980) and can serve as an estimator of developmental

rate. Thus the first objective of this study is to examine in-

tegration within a single environment, to determine whether

covariance structure is stable through posthatch ontogeny.

The second objective of this study is to compare the dynamics

of covariances during posthatch ontogeny between lake and

stream brook charr populations.

MATERIALS AND METHODS

Sample
Wild-caught brook charr (S. fontinalis) yearlings were sampled

from two separate sites located in the Matapedia Valley, eastern

Québec, Canada. The first site, North Gunn Creek, is a tributary of

the Causapscal River (481320N, 671070W). The second study site,

Casault Lake (481290N, 671090W; 414ha) is emptying into the

Causapscal River; sampling was restricted to the littoral zone. Both

Casault Lake and Gunn Creek are connected to the Causapscal

River (approximate distance of 14km). Casault Lake will be re-

ferred to as ‘‘lake’’ while Gunn Creek will be referred to as

‘‘stream.’’ Data collection started May 18, 2005 in the lake habitat

and May 23, 2005 in the stream habitat and ended July 21, 2005 at

both sites. Sampling was carried out daily before June 21 (10

specimens per day) and at weekly intervals thereafter (25 specimens

per week) in both habitats. Specimens were euthanized (saturated

carbon dioxide solution), fixed in 5% neutral buffered formalde-

hyde for 48h and conserved in 70% ethanol.

Immediately following each capture, the site was marked and a

multiparameter sampling system (150 MDS, 600QS YSIs, Yellow

Spring, OH, USA) was used for measurement of temperature (1C),

dissolved oxygen (mg/l), and pH. Water velocities (cm/s) were

measured using a Sontek handheld acoustic Doppler velocimeter

(SonTek Handheld FlowTracker ADV, San Diego, CA, USA)

which provides reliable and accurate water velocity measurements

for low velocity values (e.g., o3 cm/s).

Ossification sequence
A total of 198 specimens were cleared and doubled stained with

Alcian blue for cartilage and Alizarine Red S for bone (Dingerkus

and Uhler 1977). A structure was considered to be cartilaginous

when it took up Alcian blue and ossified when a clear periosteum

was visible and/or when it took up Alizarine Red S. These spec-

imens were used to validate 5-mm size classes (o20, 20–25, 25–30,

30–35, 35-40 and 440mm) in terms of their representation of

skeletal development as well as to quantify developmental progress

in pectoral and median fins (anal, dorsal, and caudal). Age being

unknown for these wild-caught brook charrs, we use standard

length (SL) as a proxy for biological time (Adriaens and Verraes

2002). SL was measured using the distance between the tip of snout

and posterior end of hypurals landmarks. There were three possible

developmental states for each endoskeletal element; 0: absence, 1:

cartilage, and 2: bone. Only the transition between cartilage and
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bone was used because the appearance of cartilage was heavily

influenced by the size of smaller specimens, whereas ossification

was well represented in our sampling range. Calculations of SL

were done in TmorphGen6, part of the integrated morphometrics

programs; compiled stand-alone versions running in Windows are

freely available electronically at http://www3.canisius.edu/�sheets/
morphsoft.html.

We used a logistic regression to describe the relationship be-

tween the continuous predictor variable (SL) and the random

component (developmental states for each element) in order to

estimate the SL at a 50% cutoff point (SL50), giving an estimate of

the SL at which half of the specimens are ossified for a given

element in each habitat. The significance of the logistic regression

was tested using the G2 statistic, also termed the likelihood ratio

w2-statistics, which is more robust than the Wald t (Quinn and

Keough 2002). Out of the 142 elements initially included, only 66

elements (Figs. 3 and 4) for which the logistic model was significant

(P � 0.05) were considered for analysis of developmental progress.

The main effect of habitat was tested using a permutation-paired

t-test in which SL50 was randomly reassigned 9999 times within

each of the 66 elements (block) and for which the t statistic was

computed each time. The P-value of the two-tailed test is two times

the proportion of randomized samples exterior to the t-value of

the sample. Logistic regression and permutation-paired t-test

were programmed on Systat (Version 11, Systat Software Inc.,

Richmond, CA, USA).

Morphometric analysis
Twelve landmarks (Fig. 1) were digitized on the left side of each

individual by the same observer (L. F. R.). Specimens were placed

in a custom device, a small transparent plastic box with transverse

strings to ensure a constant and horizontal orientation of all fishes.

Only specimens with intact fins and minimal body bending were

included for a final sample size of 751 individuals (lake, N5394;

stream, N5357). Samples were divided into six successive 5-mm

size classes (lake, o20mm, N570; 20–25mm, N5133;

25–30mm, N581; 30–35mm, N562; 35–40mm, N534 and

440mm, N514; stream, o20mm, N527; 20–25mm, N572;

25–30mm, N5110; 30–35mm, N569; 35–40mm, N543 and

440mm, N536). Shape analyses were done by superimposing

configurations of landmarks using the generalized least squares

(GLS) procrustes superimposition, which preserves all information

about shape differences among specimens, removing only the in-

formation unrelated to shape (i.e., scale, position, and orientation;

Rohlf and Slice 1990). Preliminary exploration using principal

component analyses (PCA) found that dorsoventral bending of

specimens, a preservational artifact (Wund et al. 2008), explained

PC1 and accounted for 440% of the variance in each sample. To

remove that nonbiological variation from the data, we regressed

shape on PC1 scores and analyzed the residuals from that regres-

sion (Wund et al. 2008). The resulting PCA shows PC1 to be

identical to PC2 in the original data and the ontogenetic compo-

nent to be unaltered by this manipulation. We similarly removed

allometric variation within each size class by analyzing the residuals

from a regression of shape on size, measured as centroid size (CS).

Landmarks were digitized using tpsDig version 2.10 and tests of

allometry were performed using tpsRegr version 1.34., freely avail-

able at: http://life.bio.sunysb.edu/ee/rohlf/software.html. GLS

superimposition and the calculation of CS were performed in

CoordGen6, allometric correction was performed in Standard6 and

preliminary PCA were done in PCAGen6; all programs part of the

IMP series.

Morphological variation and integration

Mean shape
Mean shapes were generated for each size class and compared using

Goodall’s F-test (Goodall 1991; Rohlf 2000). To estimate the

amount of shape differences between two samples, we calculated the

full Procrustes distance between means and statistical significance of

the difference in the distances was determined by bootstrapping (900

bootstraps). The nature of these shape differences are depicted by

vectors of relative landmark displacements on a deformed grid to

show the changes between means of successive size classes within

each habitat, and across habitat for each size class.

Variance of shape
To estimate the variance of shape, we used the standard formula

for a variance:

V ¼

Pn

j¼1
d2
j

ðn� 1Þ ð1Þ

where dj is the Procrustes distance of individual j from the mean

shape for its size and n is the sample size for a size class. This

distance metric is Euclidean so V is also the trace of the variance–

covariance matrix of shape variables (i.e., the sum of their univ-

ariate variances) and, in these calculations, it does not matter

whether the variances are computed from the shape coordinates or

any other geometric shape variables, such as the partial warp

scores, because all give the same estimate of the distance. To de-

termine whether size classes or habitats differ in the variance of

shape, we used a t-test, with standard errors of shape variance

estimated by bootstrapping with 999 iterations (calculations were

done in Disparity Box6, part of the IMP series).
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Fig. 1. Twelve biologically relevant landmarks identified on brook
charr (Salvelinus fontinalis). 1, Tip of snout; 2, center of the eye; 3,
posterior limit of skull roof; 4, anterior insertion of dorsal fin base;
5, posterior insertion of dorsal fin base; 6, posterior insertion of
adipose fin base; 7, posterior end of hypurals; 8, posterior insertion
of anal fin base; 9, anterior insertion of anal fin base; 10, pelvic fin
insertion; 11, pectoral fin insertion; 12, posterior limit of lower jaw.
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Level of integration
We quantified the level of morphological integration (I) using the

variance of eigenvalues (Wagner 1984) extracted from the covari-

ance matrix (Young 2006). The rationale for this metric is that

when covariances are high, most of the variance lies along the first

few eigenvectors, whereas the remaining eigenvalues are small,

producing a large variance in eigenvalues. Conversely, when

the variables are nearly independent of each other, all eigenvalues

are similar to each other and their variance is low (Wagner 1984).

In Wagner (1984), eigenvalue variance was derived from a corre-

lation matrix which makes I directly comparable across popula-

tions or species so long as adjustments are made for the number of

traits and sample size. In the case of landmark data, the common

scale for shape variation is eliminated when correlation matrices

are used (Klingenberg andMcIntyre 1998), covariance matrices are

therefore more appropriate. When I is calculated from the covari-

ance matrix, it depends not only on the number of traits and sam-

ple size but also on the variance within the sample, therefore the

variance of eigenvalues was standardized by the total shape vari-

ance in each sample (the trace of the variance–covariance matrix)

(Willmore et al. 2006; Young 2006). Significance of differences in

variance of eigenvalues was calculated by bootstrapping each

dataset using 999 iterations; to determine the statistical significance

of the difference between two samples (successive size classes within

each habitat or across habitat for each size class), we used a two-

tailed test in which the differences were ordered from largest to

smallest, and determined whether zero lay within the top and bot-

tom 2.5%. The calculation of variance of standardized eigenvalues

and bootstrapping of data matrix were performed in R (R

Development Core Team 2005).

Structure of integration
The structure of covariation within each sample was analyzed using

PCA. Covariance structures are often compared across populations

by common principal components analysis (Flury 1988), but this

procedure presupposes that the principal components are well-de-

fined, meaning that the eigenvalues of successive components are

statistically distinct. When this is not the case, the variation is more

hyperspherical than hyperelliptical and random samples drawn

from a single hyperspherical population could yield apparently

different PC1s. Thus, apparently large differences between samples

could be due simply to chance. To determine whether the first and

second eigenvalues of our samples are statistically distinct, we used

Anderson’s (1963) test for the distinctness of eigenvalues. The null

hypothesis of indistinct eigenvalues was rejected for only one sam-

ple (20–25mm lake yearlings).

Therefore, to compare the structure of variation we used com-

mon subspace analysis (CSA), another method developed by Flury

(1988) for cases in which populations lack distinct eigenvalues. In

this approach to comparing covariance structures, the difference

between multidimensional subspaces is measured by the minimum

angle through which one subspace must be rotated to align it with

the other (Flury 1988; Zelditch et al. 2006). This value is then

compared with the distribution of angles obtained by drawing two

random samples (with replacement) from each dataset. Thus, the

angle between the two samples is compared with the distribution of

angles obtained within each sample (for technical details, see

Zelditch et al. 2006). In our comparisons, we included as many

dimensions as needed to account for 80% of the variance, which is

typically from six to eight components. The remaining components

are individually trivial, accounting for o5% of the variance. PCA

were performed using PCAGen6, CSA were performed using

SpaceAngle, programs part of the IMP series.

Additionally, covariance matrices were compared using random

skewers methods (Cheverud 1996). Random skewers compare

the evolutionary responses of each covariance matrix to random

selection vectors (Marroig and Cheverud 2001; Ackermann and

Cheverud 2002). Details of this method can be found in Cheverud

(1996). Briefly, a total of 10,000 random selection vectors were

applied to each matrices and their responses compared using the

average vector correlation. These average vector correlations can

be interpreted like a standard correlation coefficient. They will fall

between 0 and 1, with the extremes indicating inequality and

equality in covariance structure, respectively. The statistical signifi-

cance of this similarity is tested by comparing the observed vector

correlation to the distribution of vector correlations between ran-

dom vectors. If the observed vector correlation exceeds 95% of

those obtained in the randomization, the similarity of the variance/

covariance matrix is significantly greater than zero. Calculations

were done using Skewers, a freely available program from L. J.

Revell (http://anolis.oeb.harvard.edu/�liam/programs/).

RESULTS

Ossification sequence

The majority of ossification events take place before yearlings

reach 30mm (Figs. 2 and 3). Proximal radials at the center of

the dorsal fin (PRD3 to PRD11) and the anal fin (PRA3 to

PRA10) ossify before yearlings reach 20mm. Elements ossi-

fying later, up to 45mm, include the ones at the margins of

the dorsal and anal fins. Proximal radials from left and right

pectoral fins ossify when yearlings reach around 25mm. In

the caudal fin, the majority of elements ossify before yearlings

reach 20mm. These include arches, as well as haemal and

neural spines of the caudal vertebra, hypurals, epurals, and

uroneural 1. Elements of the caudal fin ossifying later include

the dorsal and ventral arcocentra, preural centra and ural

centra 1 and 2 and uroneural 2. A permutation-paired t-test

shows ossification events in stream fishes occur at a signifi-

cantly smaller SL50 (P50.0003) with a mean difference of

0.719mm.

In fishes with intermediate development like brook charrs,

hatchlings emerge from the egg envelopes as late free-embryos

with no functional gills, median fins that are part of the fin-

fold and an axial skeleton that only exists as cartilaginous

structures, if at all (Balon 1980). At the transition to exclusive

external feeding, these free-embryos become alevins, and

finally, when most temporary structures found in embryos

and alevins have been replaced by definitive adult organs or

structures, the fish is considered a juvenile (Balon 1980). The

free-embryo to alevin transition is not clearly visible using

ossified skeletal structures but according to Balon (1980), the
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transition between alevin and juvenile is evidenced by the

completion of the ossification of the axial skeleton. Accord-

ingly, the smallest brook charrs (approximately 15mm) can

first be identified as late free-embryos and then as alevins,

while specimens of more than 25–30mm in SL can be con-

sidered juveniles.

Morphological variation and integration

Mean shape

Mean shapes differ between successive size classes within each

habitat, with the exception of 35–40 and 440mm in lake, as

well as across habitats for each size class (Table 1). In both

U1 U2PU1 E1 E2 UN2

varc HA HS

UN1

18.6 mmA

B

D E

C

F

28.4 mm

pr4

pr2

pr3

pr1

Dpr Ddr

Apr Adr

dr1

lep

lep

H6

H1
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ST

Fig. 2. Cleared and stained brook charr showing cartilage in blue and bone in red. (A) Whole specimen, scale bar 5mm. (B) Whole
specimen, scale bar 10mm. (C) Pectoral fin, scale bar 1mm; dr, distal radials; dr, distal radials; pr, proximal radials. (D) Caudal fin, scale
bar 1mm; E1–2, epurals 1–2; HA, haemal arch; HS, haemal spine; H1–6, hypural 1–6; PH, parhypural or haemal spine of preural centrum
1; PU1,. preural centra 1; UN1–2, uroneural 1–2; U1–2, ural centra 1–2; varc, ventral arcocentra. (E) Dorsal fin, scale bar 1mm; Ddr, dorsal
distal radials; Dpr, dorsal proximal radials; lep, lepidotrichia. (F) Anal fin, scale bar 1mm; Adr, anal distal radials; Apr, anal proximal
radials; lep, lepidotrichia.
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habitats, full Procrustes distances display a similar ontoge-

netic pattern; amount of shape change is significant except in

the case of 35–40 to 440mm lake samples (P50.1383)

(Table 1). In both habitats, most shape changes (Fig. 4, A

and B) seen between the smallest size classes (o20 to 20–

25mm) concern an increase in head and trunk depths. This

increase in depth is complemented by a remodeling of caudal

peduncle proportions (forward migration of the dorsal fin as
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Fig. 3. Standard length at a 50% cutoff point deter-
mined by logistic regression for the pectoral, dorsal,
anal, and caudal fins of brook charr yearlings from lake
and stream, indicated by filled and empty symbols, re-
spectively. Apr2–12, anal proximal radials 2–12; dar-
cPU3–5, dorsal arcocentra of preural centra 3–5; Dpr1–
13, dorsal proximal radials 1–13; E1–2, epurals 1–2;
H1–6, hypurals 1–6; HAPU1–5, haemal arch of preural
centra 1–5; HSPU4–5, haemal spine of preural centra
4–5; LPpr1–4, left pectoral proximal radials 1–4; NAP-
U1–5, neural arch of preural centra 1–5; NSPU3–5,
neural spine of preural centra 3–5; PU1–5, preural
centra 1–5; RPpr1–4, right pectoral proximal radials 1–
4; U1–2, ural centra 1–2; UN1–2, uroneural 1–2; var-
cPU1–5, ventral arcocentra of preural centra 1–5.
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well as contraction of the space between the adipose fin and

the posterior end of hypurals landmarks) in larger size classes

(20–25 to 35–40mm). Shape changes are generally congruent

between habitats but seem to be initiating at a smaller size

in stream. For example, the marked increase in depth is al-

ready visible between o20 and 20–25mm in stream, whereas

it is most noticeable between 20–25 and 25–30mm in lake.

Regarding shape differences between lake and stream, Fig. 4C

shows that from the smallest size class, differences concern

mostly the caudal peduncle which is shorter (contraction

of the space between the adipose fin and the posterior end

of hypurals landmarks) in relation to the rest of the

body in stream fishes. As fishes increase in size, differences

also include body depth and median fins (dorsal and anal);

overall, stream fishes develop a deeper body with longer

dorsal and anal fin bases and a more compressed caudal

peduncle.

Variance of shape

In both habitats, variance is approximately halved between

theo20 mm size class and 35mm yearlings, a decrease that is

statistically significant (Fig. 5A). After that point, variance is

statistically constant. In the comparison between habitats,

only one size class (25–30mm) differs statistically significantly:

the variance within that class is significantly greater in the

lake habitat.

Level of integration

In both habitats, integration decreases early in ontogeny. In

the lake habitat, this decrease continues to the 25-mm size

class; in the stream habitat it continues to the 30-mm size class

(Fig. 5B; Table 2). There is a tendency for increasing

integration later in ontogeny even though differences between

consecutive size classes are not always significant (Table 2).

The comparison between the two habitats shows that at

medium sizes, fish from the lake habitat are more highly

integrated than the ones from the stream habitat (i.e., 20–25,

25–30, and 30–35mm) whereas the level of integration in

larger size classes does not differ significantly between habitats

(Fig. 5B; Table 2).

Structure of variation

PCA reveals that in most size classes of both habitats, the

most highly variable feature is body depth relative to body

length, variation that is visually evident in the contrasting

displacements of landmarks at the anterior and posterior in-

sertions of the dorsal fin versus pelvic fin (Fig. 6, A and B).

Another variable feature found at several sizes in both hab-

itats is head size relative to body length; variation that is

evident by the contrasting displacement of landmarks at the

mouth and pectoral fin insertion. Finally, the third typically

variable feature is posterior body proportions, as indicated

either by the contrasting displacement of the anterior and

posterior dorsal fin base relative to the adipose and caudal

Table 1. Procrustes distances between mean shapes, statistical significance of the differences in mean shapes

(Goodall’s F-test) and distance between means (Bootstrap estimate): (A) for successive size classes within each habitat,

(B) across habitat for each size classes

Lake Stream

Distance Goodall’s F Bootstrap estimate Distance Goodall’s F Bootstrap estimate

(A)

o20 to 20–25mm 0.014 0.000 0.001 0.018 0.000 0.001

20–25 to 25–30mm 0.015 0.000 0.001 0.019 0.000 0.001

25–30 to 30–35mm 0.013 0.000 0.001 0.013 0.000 0.001

30–35 to 35–40mm 0.017 0.000 0.001 0.014 0.000 0.001

35–40 to 440mm 0.009 0.138 0.216 0.008 0.002 0.023

Lake versus stream Distance Goodall’s F Bootstrap estimate

(B)

o20mm 0.015 0.000 0.001

20–25mm 0.011 0.000 0.001

25–30mm 0.015 0.000 0.001

30–35mm 0.019 0.000 0.001

35–40mm 0.023 0.000 0.001

440mm 0.023 0.000 0.001
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peduncle, or else by the contrasting displacement of the an-

terior pelvic fin insertion and caudal fin.

For the majority of size classes in the lake habitat, the

three variation patterns described above are easily identifiable

but this is not the case for samples from the stream habitat.

Although variation in body depth relative to length is clearly

evident in this habitat as well, it is dispersed across several

PCs because it is associated with different combinations of

other features (Fig. 6B). Among those other features are the

landmark at the posterior limit of skull roof and those at the

< 20mm to 20-25mm

A B C

20-25mm to 25-30mm

25-30mm to 30-35mm

30-35mm to 35-40mm

35-40mm to > 40mm

< 20mm to 20-25mm

20-25mm to 25-30mm

25-30mm to 30-35mm

30-35mm to 35-40mm

35-40mm to > 40mm

< 20mm

20-25mm

25-30mm

30-35mm

35-40mm

> 40mm

Fig. 4. Ontogenetic changes in mean shape within habitats: (A) lake, (B) stream, and between-habitat differences in mean shape for the
same size class: (C) the ontogenetic changes are shown as a deformation of the smaller to the larger mean, the differences between habitats
are shown as a deformation of the mean lake to stream shapes. Owing to the subtlety of shape changes between samples, the magnitude of
shape changes are exaggerated fivefold.

Integration and variance during ontogeny 747Fischer-Rousseau et al.



pelvic, anal, and adipose fins (representing height of the cau-

dal peduncle). A second aspect of posterior body shape vari-

ation that is seen in the stream habitat but not in the lake

habitat involves the adipose fin and caudal peduncle.

CSA shows there is a gradual change in structure of

covariation throughout ontogeny. Only one comparison re-

veals a statistically significant difference between successive

size classes: 20–25 versus 25–30mm samples from the stream

habitat (Table 3A). However, comparisons to the smallest size

class (o20mm) shows angles between samples are increasing

as ontogeny proceeds in both habitats (Table 3B). The struc-

ture of covariation differs significantly between the smallest

size class and larger ones in both habitats (i.e., 30–35 and

35–40mm in lake and 35–40 and 440mm in stream). The

two habitats differ statistically significantly in structure of

covariation only at smaller sizes (i.e., o30mm) (Table 3C).

Average vector correlations between covariance matrices

show that samples are more similar than expected by chance

(Table 4) as expected from the results of CSA. In no case

could we reject the null hypothesis that variance/covariance

matrices are no more similar than expected by chance. The

correlation coefficients suggest that similarity between age-

classes increases over ontogeny in lake, whereas it decreases in

stream (Table 4) but these trends are not statistically signifi-

cant (P50.000). Comparisons between habitats also show

that covariance structures are moderately similar, least so at

the largest sizes, with P-values of 0.000, except between lake

and stream for 30–35 (P50.001) and 440mm (P50.005).

Overall, these correlations suggest that successive size classes

from the same habitat are moderately to highly similar to

each other, and those from the same size class from the two

habitats are moderately similar to each other.

DISCUSSION

The transitions between developmental intervals
coincide with a shift between periods defined by
levels of variance and integration

During the free-embryo and alevin periods, there are large

shape changes (i.e., increase in head and trunk depths, change

in caudal peduncle proportions), rapid ossification, and the

overall level of integration tends to be relatively low and

decreasing, especially in the stream samples. Additionally, the
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Fig. 5. Index of integration (I) and variance through ontogeny for
brook charrs from lake and stream, indicated by filled and empty
symbols, respectively. (A) Index of integration (diamond) is esti-
mated by the variance of their standardized eigenvalue from their
covariance matrix; (B) variance (square) is the trace of the vari-
ance–covariance matrix of shape variables.

Table 2. Magnitude of differences in the levels of integration for brook charr yearlings from lake and stream

o20mm 20–25mm 25–30mm 30–35mm 35–40mm 440mm

o20mm � 0.00053 � 0.00109 � 0.00140 � 0.00101 � 0.00003 0.00153

20–25mm � 0.00021 0.00036 � 0.00031 0.00008 0.00106 0.00262

25–30mm 0.00043 0.00064 0.00130 0.00039 0.00137 0.00293

30–35mm 0.00182 0.00203 0.00139 0.00231 0.00098 0.00254

35–40mm 0.00146 0.00166 0.00103 � 0.00037 0.00096 0.00156

440mm 0.01168 0.01189 0.01125 0.00986 0.01022 0.00962

Differences are indicated for lake size classes in the lower half of the matrix and for stream size classes in the upper half of the matrix, difference between
habitats are indicated on the diagonal. The level of integration of the smaller size class is always subtracted from that of the larger one while for between-habitat
differences, the level of integration of the stream sample is subtracted from that of the lake sample. Significant differences are indicated by bold face (Po0.05).
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Fig. 6. The structure of variation for each size sample
of brook charr from (A) lake and (B) stream. Shown
are the four principal components (PCs) of variation
for shape variables after removing bending and all-
ometry. Each PC is depicted as a combination of the
deformed grid and vectors of relative displacements of
landmarks. Size range of each sample is indicated on
the left; the percentage of variation explained by each
PC is indicated below.
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variance of shape drastically decreases. The contrast between

levels of variance and integration suggests a high degree of

random variation, that is, variation that is independent from

landmark to landmark.

In both habitats, an abrupt decrease in number of newly

ossified endoskeletal elements occurs when yearlings reach 25–

30mm in SL and marks the beginning of the juvenile period.

From this point on, the rate of change in body shape dimin-

ishes, the overall level of integration increases, and shape

variance stabilizes. Consequently, the transition between ale-

vin and juvenile coincides with changes in habitat, morphol-

ogy, and function (Balon 1999; Kováč 2002), as well as with a

shift between periods defined by level and structure of vari-

ance and integration.

The general trends in variance and integration are
common to populations from both habitats, but
they do undergo different ontogenetic changes

First, over ontogeny, stream fishes develop a deeper body

with longer dorsal and anal fin bases, a more compressed

caudal peduncle and fins that ossify at a significantly smaller

size compared with lake fishes. Experimentally, higher water

velocities generate earlier ossification of endoskeletal elements

of the median fins in Arctic charrs (R. Cloutier, unpublished

data) and a deeper body in various salmonids (Pakkasmaa

and Piironen 2001; Imre et al. 2002; Peres-Neto and Magnan

2004; Fischer-Rousseau et al. in press). Second, our analysis

Table 3. Differences in structure of variation, measured

by the angle (in degrees) between the subspaces

encompassing 80% of the variation: (A) for successive

size classes within habitat, (B) from the smallest size

class (o20mm) within habitat and (C) between lake

and stream samples

Size classes

Number

of PCs B W(1) W(2)

(A)

Lake

o20 to 20–25mm 8 60.05 107.58 94.79

20–25 to 25–30mm 8 73.12 89.92 98.03

25–30 to 30–35mm 7 92.08 101.88 108.74

30–35 to 35–40mm 7 107.31 106.47 110.27

35–40 to 440mm 6 91.52 101.9 116.46

Stream

o20 to 20–25mm 8 109.14 114.96 112.74

20–25 to 25–30mm 8 102.41 98.87 97.35

25–30 to 30–35mm 8 84.63 93.04 104.25

30–35 to 35–40mm 8 101.27 106.63 110.89

35–40 to 440mm 7 79.56 110.97 106.59

(B)

Lake

20–25mm 8 60.05 107.58 94.79

25–30mm 8 107.82 109.54 106.73

30–35mm 8 127.73 108.14 117.07

35–40mm 8 122.05 108.31 112.53

440mm 8 126.02 108.86 132.83

Stream

20–25mm 8 109.14 114.96 112.74

25–30mm 8 124.04 125.57 120.14

30–35mm 8 110.04 123.33 120.35

35–40mm 8 139.51 121.55 119.51

440mm 8 137.07 124.65 121.13

(C)

o20mm 8 136.46 100.50 117.65

20–25mm 8 111.10 85.94 99.58

25–30mm 8 109.03 98.58 96.87

30–35mm 8 93.80 104.26 106.17

35–40mm 7 108.69 108.88 109.85

440mm 6 120.68 132.22 122.70

Given are the number of principal components compared (No. of PCs),
between-size angle (B), within-size angles [W(1)/W(2)]. When B exceeds
both W(1) and W(2), the difference between the two subspaces is statis-
tically significant (indicated in bold face).

Table 4. Random skewers and matrix disparity between

covariance matrices. (A) for successive size classes within

habitat, (B) between lake and stream samples

Lake Stream

R(rs) M(d) R(rs) M(d)

(A)

o20 to 20–25mm 0.89 0.47 0.76 0.59

20–25 to 25–30mm 0.90 0.39 0.80 0.43

25–30 to 30–35mm 0.78 0.52 0.86 0.29

30–35 to 35–40mm 0.70 0.54 0.85 0.32

35–40 to 440mm 0.66 0.74 0.67 0.57

R(rs) M(d)

(B)

o20mm 0.60 0.87

20–25mm 0.68 0.67

25–30mm 0.74 0.59

30–35mm 0.63 0.53

35–40mm 0.67 0.56

440mm 0.49 0.89

For each sample, we present the average random skewers vector cor-
relation [R(rs)] and the matrix disparity coefficient [M(d)], multiplied 1000-
fold.
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suggests that lake fish tend to be more highly integrated than

the ones from the stream habitat (i.e., 20–25 , 25–30, and 30–

35mm). The majority of our stream specimens (72%) were

caught at water velocities faster than 1.0 body length per

second, corresponding roughly to the ‘‘fast’’ treatment which

generated the lowest integration level in Peres-Neto and

Magnan (2004). The lower integration found in our fish from

the stream habitat thus agrees with previous results. Because

the differences we observe between lake and stream fishes

could represent either adaptations or plastic responses to en-

vironmental conditions (i.e., water velocity), these differences

will be put aside to concentrate on the one ontogenetic pattern

common to both habitats.

Developmental rate could contribute to the
ontogenetic pattern observed for variance and
integration

There is a transition from high and largely random variation

during the free-embryo period to the lower and more inte-

grated variation seen in juveniles. High developmental rates in

free-embryos, evident from important shape changes, and

rapid ossification, could result in greater variation in degree of

maturity within the smaller size classes, which is expected to

result in high variance and low integration. As development

slows down and individuals all eventually reach a similar

state, maturity is expected to become less variable. As we

observe, this should diminish variance while increasing inte-

gration. This hypothesis of ontogenetic decrease in develop-

mental rate has been proposed to explain how variation

in skull shape could decrease even as fluctuating asymmetry

increases (Hallgrı́msson 1999) and also makes sense in the

context of fish development.

The ossification of the axial skeleton, transition from em-

bryonic to juvenile/adult muscle, and the acquisition of adult

body shape are all thought to be related developmental

events, linked to the transition to exogenous feeding that

occurs at the beginning of the alevin period (Koumans and

Akster 1995). Accordingly, the intense development of both

the muscular and the skeletal systems could produce the

dominant changes in shape as well as high variation among

individuals in degree of maturity. Diminishing variation in

degree of maturity, however, would not explain why variation

and integration both briefly diminish early in development, a

pattern that suggests an increase in the randomness of vari-

ation even as variation itself diminishes. According to the

palimpsest model proposed by Hallgrı́msson et al. (2007),

developmental processes are (co)variance generating, and the

structure imparted by one process may be overwritten and

obscured by others. The fact that the structure of covariation

gradually changes within each habitat suggests that variation

appears to be more random in structure because of the in-

teraction between covariance generating processes.

Variance and integration could be influenced by
epigenetic interactions

Following the initial reduction in variance, and in integration

as well, variation remains stable and becomes less random

(i.e., integration increases). Such changes need not be due only

to passive mechanisms, such as the fact that all individuals

eventually mature. These changes could also be due to mech-

anisms that preferentially eliminate random variation. Among

the possibilities are cartilage and bone morphogenesis, muscle

and bone interactions, and somatic growth. Most interesting

are the epigenetic interactions between functioning muscles

and the skeleton, which would lead locomotion and feeding to

contribute to the loss of random variation. Such interactions

have been invoked to explain ontogenetic changes in verte-

brate skull shape (e.g., Moss 1997a, b, c, d), the decrease in

variance of skull shape in mammals (Zelditch et al. 2004) as

well as the development towards the adult patterns of inte-

gration before weaning in rodents (Zelditch 1987, 1988; Will-

more et al. 2006; Zelditch et al. 2006). Whether the epigenetic

influence of locomotion and feeding can explain differences in

variance of body shape in fish is unknown but function is

usually thought to be responsible for changes in phenotypic

responses (Imre et al. 2001, 2002; Pakkasmaa and Piironen

2001; Grünbaum et al. 2007, 2008), including morphological

integration in salmonids (Peres-Neto and Magnan 2004) and

sunfishes (L. gibbosus) (Parsons and Robinson 2006). The

gradual elimination of the initial variation in degree of

maturity could allow for the epigenetic effects of locomotion

and feeding to become apparent and later increase the

covariation among functionally related traits (i.e., increase in

level of integration).

The juvenile covariation structure appears to arise
from the sequential overlay of many
developmental processes

The ontogenetic stability of covariance structure seen in post-

weaning rodent skulls (Zelditch 1987, 1988; Willmore et al.

2006; Zelditch et al. 2006) or postnatal primate scapulae

(Young 2006) is not characteristic of either of these two eco-

logically distinct populations of brook charrs. In these studies,

integration and variance are measured at grossly different

scales (i.e., skull or scapular shape vs. overall body shape),

and the developmental stages are not equivalent (i.e., post-

natal or postweaning mammalian development vs. posthatch

development in teleosts). Nevertheless, in these brook charr,

the structure of variation does not appear to retain the im-

print of earlier ontogeny as it does in mammalian skulls and

scapulae. Consequently, adult mouse skulls might be appro-

priate models to determine potential causes of variability

(Willmore et al. 2006) but the dynamic nature of variability in

body shape would make juveniles, and perhaps adult fishes,

less reliable guides to the earlier causes of variability. The

Integration and variance during ontogeny 751Fischer-Rousseau et al.



juvenile covariation structure of these teleosts appears to arise

from the sequential overlay of many developmental processes,

highlighting the difficulty of inferring the developmental, and

functional causes of integration from studies of static covari-

ance structures (Hallgrı́msson et al. 2007).

CONCLUSION

The fact that we find one ontogenetic pattern common to

both habitats suggests a stability of processes responsible

for the complex dynamics of integration and variance. We

have isolated a novel and complex ontogenetic pattern of

integration that is linked to the alevin–juvenile transition but

this is only a first step in further understanding how devel-

opmental processes are responsible for the changes in covari-

ance seen during fish ontogeny. To better understand these

ontogenetic changes in covariance and further explain small

evolutionary changes occurring between populations or spe-

cies, we will likely need to combine data from functional

morphology and developmental biology. In this respect, fishes

represent a promising model system as water velocity is a

common, effective, and noninvasive way to alter functional

demands and impose elevated, but physiologically normal

mechanical loads on the developing musculoskeletal system.
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