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We study the optimal pricing and replenishment decisions in an inventory system with a price-sensitive demand,
focusing on the benefit of the inventory-based dynamic pricing strategy. We find that demand variability impacts the

benefit of dynamic pricing not only through the magnitude of the variability but also through its functional form (e.g.,
whether it is additive, multiplicative, or others). We provide an approach to quantify the profit improvement of dynamic
pricing over static pricing without having to solve the dynamic pricing problem. We also demonstrate that dynamic pricing is
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realized by using one or two price changes over a replenishment cycle.
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1. Introduction
Inventory-based pricing strategies have been practiced
in many industry sectors. For example, Aguirregabiria
(1999) investigated a supermarket chain and found that
retail prices tend to decrease when procurement orders
are placed and increase between two orders. In the per-
sonal computer industry, Byrnes (2003) made the fol-
lowing observation on Dell’s pricing strategy: ‘‘While
its competitor’s prices were stable with periodic adjust-
ments, Dell’s prices varied significantly from week to
week as the company modified its prices to push prod-
ucts where component inventory was building beyond
prescribed levels.’’ In the automotive industry, the
transaction price is typically negotiable, and dealers are
usually willing to lower the price if they have a high
level of inventory. Zettelmeyer et al. (2006) empirically
found that a dealership moving from a situation of
inventory shortage to an average inventory level lowers
transaction prices by about 1%, corresponding to 15%
of the dealers’ average profit margin per vehicle.

In these examples, prices vary with inventory lev-
els, and so price fluctuations can be observed even
when demand is stable. One reason for this inven-
tory-based pricing is that a high inventory level pro-
vides the firm with an incentive to lower the price so

as to stimulate demand and reduce inventory holding
cost. This rationale has been formally studied in the
literature under various settings, e.g., Aguirregabiria
(1999), Federgruen and Heching (1999), and Chen and
Simchi-Levi (2006).

Understanding the profit drivers of dynamic pricing
is of significant value to industry practitioners and re-
searchers alike. In the industry practices cited above,
will a higher demand variability enhance or limit
the advantage of dynamic pricing over fixed prices?
How will this impact, if any, change with respect to
other profit drivers of dynamic pricing, such as holding
cost and revenue? Furthermore, when the demand and
cost parameters change, adjusting price alone is a com-
mon practice, as opposed to a joint decision on price and
inventory level (via adjusting replenishment quan-
tities). This is often a reflection upon the lack of coor-
dination between sales and operations units within
a firm. But will the advantage of a joint pricing-replen-
ishment optimization outweigh that of dynamic pricing
per se, and will this advantage be impacted by demand
variability as well?

Our study addresses these issues and aims at gen-
erating insights that can help managers understand
when and how to use dynamic pricing as an effective
profit enhancement tool. Some of our findings confirm
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existing practices. For instance, we find dynamic pric-
ing to be most effective in settings where the finished-
goods inventory is expensive to hold and expensive to
replenish in small batches. This is consistent with the
prevalent practice of dynamic pricing in personal com-
puter and automobile industries. Besides the cost drivers,
we have also identified other drivers to the profitability
of dynamic pricing, such as marginal revenue and de-
mand variability. Indeed, we have developed a formula
to capture explicitly the composition effect of all these
profit drivers without having to solve the dynamic pric-
ing problem. In addition, our study has brought to bear
some rather subtle new insights highlighted below:

(i) The impact of demand variability on the benefit
of dynamic pricing is reflected not only in the
magnitude of the variability but also, and often
more significantly, through the functional form
of the variability (e.g., additive, multiplicative,
or others). This calls for more sophisticated ap-
proaches to measuring and modeling demand
variability.

(ii) In a dynamic pricing strategy, the number of
price changes used in a replenishment cycle has
a strong diminishing marginal benefit. Using a
single price change per cycle, one can already
capture about 75% of the profit improvement,
and this percentage is quite insensitive to all
model parameters.

(iii) Inventory-based dynamic pricing is best im-
plemented jointly with the right inventory
replenishment decision. A suboptimal replen-
ishment quantity, even if it is only 10% off the
optimal level, can easily undo any benefit from
dynamic pricing. In other words, dynamic
pricing alone is less effective than a joint pric-
ing-replenishment strategy. Furthermore,
the advantage of the joint optimization over
dynamic pricing alone remains largely intact as
demand variability increases.

The joint pricing and inventory replenishment
problems have been extensively studied in various
settings. We refer the reader to four survey papers:
Petruzzi and Dada (1999), Yano and Gilbert (2003),
Elmaghraby and Keskinocak (2003), and Chan et al.
(2004). Here we highlight some papers closely related
to our study. Federgruen and Heching (1999) exam-
ined a periodic-review model with price-dependent
demand and linear replenishment cost, without a
setup cost. They show that a base-stock list-price
policy is optimal for both average and discounted
objectives. When a replenishment setup cost is in-
cluded, the (s, S, p) policy has been proven optimal
under various settings. Periodic review with backor-
der setting is considered by Chen and Simchi-Levi
(2004a, b) and Feng and Chen (2004). Periodic review

with lost sales setting is considered by Polatoglu and
Sahin (2000) and Chen et al. (2006). Huh and Janak-
iraman (2008) provide an approach for proving and
generalizing many of the early results for both back-
order and lost sales settings. Continuous-review
models are studied by Feng and Chen (2003) and
Chen and Simchi-Levi (2006). Markov modulated
demand models are analyzed by Yin and Rajaram
(2007) and Gayon et al. (2009).

Quantifying the profit improvement of inventory-
based dynamic pricing over static pricing is important
as it can help a firm weigh the benefits against
potential shortfalls in using dynamic pricing (e.g.,
customer dissatisfaction). Results along this line have
been limited to numerical examples. Federgruen and
Heching (1999) experimented with a multiplicative
demand case in a periodic-review system, and found
that the benefit of dynamic pricing increases as de-
mand variability increases. They reported a maximum
of 6.54% increase in profit compared with a fixed
pricing strategy. With an order-setup cost, Feng and
Chen (2004) showed that the profit improvement of
dynamic pricing is limited, while the profit improve-
ment as a percentage of static pricing profit could
be large when the static pricing profit is low. For a
periodic-review system with lost sales, Chen et al.
(2006) found that the profit improvement of dynamic
pricing increases in the fixed ordering cost. Yin and
Rajaram (2007) found that the benefit of dynamic pric-
ing increases in the fixed ordering cost and demand
variability. Gayon and Dallery (2007) pointed out
that dynamic pricing is potentially more beneficial
when the replenishment process is partially controlled.
In a setting with strategic consumers, Gallego et al.
(2008) showed that static-pricing can be optimal under
some situations. To the best of our knowledge, this
is the first paper that develops theoretical bounds on
the benefit of inventory-based dynamic pricing. These
theoretical bounds reveal how various factors drive the
profitability of dynamic pricing.

The key element in our study is the Brownian de-
mand model, which leads to an explicit characterization
of the various drivers to the profitability of dynamic
pricing, and enables us to obtain the insights high-
lighted earlier. Many studies have employed Brownian
motion to model cumulative demand and investigated
inventory control problems. Bather (1966) considered
optimizing an (s, S) policy for a continuous-review
inventory system with Brownian demand. Puterman
(1975) studied the optimal control policy in a produc-
tion-inventory system. Constantinides and Richard
(1978) proved the optimality of threshold policies for
a class of diffusion control problems. Studies along this
line include those by Vickson (1986), Sulem (1986),
Chao (1992), and Beyer (1994). More recently, Bensous-
san et al. (2005) proved the optimality of (s, S) policy
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when the demand process consists of a compound
Poisson process and a Brownian motion; Benkherouf
(2007) further extended the model to include general
holding cost. All of the above studies employ the
Brownian demand model and focus on inventory cost
minimization. The joint pricing and replenishment
strategy is the main subject of the current paper.

The paper is organized as follows. A formal descrip-
tion of our model is presented in section 2. The benefit
of dynamic pricing is examined in section 3. Bounds
and approximation for the benefit of dynamic pricing
is developed in section 4. The importance of the joint
optimization is emphasized in section 5. Concluding
remarks are summarized in section 6.

2. Model Elements

2.1. Demand Model
The cumulative demand up to time t is denoted as
D(t), and modeled by a diffusion process:

DðtÞ ¼
Z t

0

lðpuÞduþ
Z t

0

sðlðpuÞÞdBðuÞ; t � 0; ð1Þ

where pt is the price charged at time t, l(pt) is the
demand rate at time t, s(l) measures the variability of
the demand (or the error of demand forecast) when
the demand rate is l, and B(t) denotes the standard
Brownian motion.

ASSUMPTION 1. The inverse demand function p(l) is strictly
decreasing and twice continuously differentiable. The rev-
enue rate r(l) 5 p(l)l is strictly concave in l.

Denote r(l): 5s(l)2/l, which is a relative measure of
demand variability in our model. To motivate, consider
the case of a renewal demand process with the inter-
arrival time having a mean 1/l and a standard devi-
ation s0. We can approximate this renewal process by a
Brownian motion: lt1l3/2s0B(t) (see Chen and Yao
2001). Here, s(l) 5 l3/2s0; and hence, r(l) 5 l2s0

2, which
is the squared coefficient of variation of the inter-arrival
time, a common measure for demand variability.

ASSUMPTION 2. The relative demand variability r(l) is con-
vex and twice continuously differentiable.

A class of demand variability functions that satisfy
the above assumption is s(l) 5 slb and correspond-
ingly r(l)5s2l2b� 1, where b � 1

2 or b � 1. Three
special cases are given below:

� The constant demand variability s(l) 5 s: r(l) 5

s2/l;
� The linear demand variability s(l) 5 sl: r(l) 5

s2l;
� The square-root demand variability sðlÞ ¼ s

ffiffiffi
l
p

:
r(l) 5 s2.

The constant demand variability case is a continu-
ous-time analog to the additive demand model in the
periodic-review setting. When the demand variability
is s(l) 5 sl, the demand model (1) can be written
as dD(t) 5 l(pt)(dt1sdB(t)), which is an analog to the
multiplicative demand model in a discrete setting.
The square-root demand variability function is moti-
vated by matching mean and standard deviation
with a Poisson process. (Note that a Poisson process
with rate l has mean lt and standard deviation

ffiffiffiffiffi
lt
p

.)
The functional form of the demand variability de-

pends on the type of consumer and product. For
example, the demand from price-sensitive consumers
tends to be more variable when the average demand
is higher, whereas the demand from price-insensitive
consumers has a price-independent variability. Other
exogenous factors, such as weather and economic
conditions, will also scale the demand by a random
factor. Depending on the magnitude of demand vari-
ability from different sources, the aggregate demand
variability may exhibit additive, multiplicative, or
more complicated forms. In this paper, we do not aim
to find the most appropriate functional form of de-
mand variability, which is an empirical issue by itself.
We focus on analyzing inventory and pricing de-
cisions under the general form of the demand vari-
ability. Wherever appropriate, we use the above three
special functional forms as illustrative examples.

2.2. Pricing-Replenishment Policies and Long-Run
Average Objective
We assume that the holding cost rate is linear in the
quantity held, and let h denote the cost of holding one
unit of inventory per unit of time. At any time, the firm
can replenish its inventory with quantity S at a replen-
ishment cost c(S), which is an increasing function of
S. Assume replenishment is instantaneous, i.e., zero
lead time, which is appropriate when the lead time is
insignificant relative to the length of the replenishment
cycle. Thus, inventory is depleted by the demand
stream in a continuous-time fashion and then replen-
ished immediately when it drops to the reorder point.
We assume that the demands must be satisfied imme-
diately upon arrival. Consequently, the reorder point is
zero, and the replenishment follows a simple order-up-
to policy, with the order-up-to level denoted by S. A
rigorous proof of the optimality of such a replenish-
ment policy may follow an approach similar to that in
Constantinides and Richard (1978).

We allow the pricing decisions to be dynamically
adjusted within each replenishment cycle (a cycle is
the duration between two consecutive replenishment
epochs), but we do not adjust prices continuously
over time. Instead, we explicitly consider the fre-
quency of price changes. Let N � 1 be a given integer,
and let S 5 S04S14 � � �4SN� 14SN 5 0. Immediately
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after a replenishment at the beginning of a cycle, price
p1 is charged until the inventory drops to S1; price p2 is
then charged until the inventory drops to S2; . . .; and
finally when the inventory level drops to SN� 1, price
pN is charged until the inventory drops to SN 5 0,
when another cycle begins. The same pricing strategy
applies to all cycles. For simplicity, we set Sn 5

S(N� n)/N. That is, we divide the full inventory
S into N equal segments, and price each segment with
a different price as the inventory is depleted by the
demand. In summary, the decision variables are
(S, p1, . . . , pN), where N is fixed. We will study the
effect of N in section 3.

Next, we derive the long-run average profit func-
tion. Without loss of generality, suppose at time zero
the inventory is filled up to S. Let T0 5 0, and Tn be the
first time when inventory drops to Sn:

Tn :¼ inff t � 0 : DðtÞ ¼ nS=N g; n ¼ 1; 2; . . . ;N:

We refer to the duration when the price pn is ap-
plied as period n. The length of period n is therefore
tn: 5 Tn�Tn� 1. Since Tn’s are stopping times, by the
strong Markov property of the Brownian motion, tn is
just the time during which S/N units of demand has
occurred under the price pn:

tn ¼
dist:

inff t � 0 : lðpnÞtþ sðlðpnÞÞBðtÞ ¼ S=N g: ð2Þ

Let X(t) denote the inventory level at t. Clearly,
X(t) 5 S�D(t) in the first cycle tA[0, TN). Since the
replenishment and pricing policy is the same for all
cycles, X(t) is a regenerative process with the replen-
ishment epochs being its regenerative points. Hence,
to optimize the long-run average profit, it suffices to
focus on the first cycle.

Applying integration by parts, and recognizing that
dX(t) 5� dD(t), X(Tn� 1) 5 SN� 1, and X(Tn) 5 Sn, we have

Z Tn

Tn�1

XðtÞdt ¼ TnSn � Tn�1Sn�1 �
Z Tn

Tn�1

tdXðtÞ

¼ TnSn � Tn�1Sn�1 �
Z Tn

Tn�1

Tn�1dXðtÞ

þ
Z Tn

Tn�1

ðt� Tn�1ÞdDðtÞ

¼ tnSn þ
Z Tn

Tn�1

ðt� Tn�1Þ½lðpnÞdt

þ sðlðpnÞÞdBðtÞ�:

A simple change of variable yields

Z Tn

Tn�1

ðt� Tn�1Þdt ¼
Z tn

0

udu ¼ t2
n

2
;

whereas

E

Z Tn

Tn�1

ðt� Tn�1ÞdBðtÞ
� �

¼E

Z Tn

Tn�1

tdBðtÞ
� �

� E½Tn�1�E½BðTnÞ � BðTn�1Þ�

¼ 0;

which follows from the martingale property of B(t) and
the optional stopping theorem.

Let vn(S, pn) denote the expected profit (sales reve-
nue minus inventory holding cost) during period n.
Then, making use of the above derivation, we have

vnðS; pnÞ ¼
pnS

N
� E

Z Tn

Tn�1

hXðtÞdt

� �

¼ pnS

N
� hE½tn�Sn �

1

2
hlðpnÞE½t2

n�

¼ pnS

N
�

hS2ðN � nþ 1

2
Þ

N2lðpnÞ
� hrðlðpnÞÞS

2NlðpnÞ
; ð3Þ

where the last equation uses the moments of tn

proved in Lemma 1 in Appendix A. Note in the above
expression the first term is the sales revenue from pe-
riod n, the second term is the inventory holding cost
attributed to the deterministic part of the demand (i.e.,
the drift part of the Brownian motion), and the last
term is the additional holding cost incurred by de-
mand variability in period n.

For ease of analysis, we use the inverse of the de-
mand rates fmn 5 l(pn)� 1, n 5 1, . . . , Ng as decision
variables and define l 5 (m1, . . . , mN). Then, from
Lemma 1 in Appendix A, the expected length of a
replenishment cycle is S

N

PN
n¼1 mn, and the long-run

average profit can be written as follows:

VðS; lÞ ¼
PN

n¼1 vnðS; pnÞ � cðSÞ
S

N

PN
n¼1 mn

¼

PN
n¼1 pðm�1

n Þ�
hS

N

�
N�nþ1

2

�
mn�

1

2
hmnrðm�1

n Þ�aðSÞ
� �

PN
n¼1 mn

;

ð4Þ

where a(S) 5 c(S)/S. In the above average objective,
the term

PN
n¼1

1
2hmnrðm�1

n Þ=
PN

n¼1 mn represents the ad-
ditional holding cost due to demand uncertainty. The
firm’s problem is

max
S; l

VðS; lÞ: ð5Þ

3. Characterizing the Benefit
of Dynamic Pricing

Understanding what enhances and what limits the
benefit of dynamic pricing is crucial to its effective
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implementation. In this section, we numerically ana-
lyze the profit drivers of dynamic pricing strategies.

Our numerical studies reported below cover a wide
range of scenarios. Specifically, we consider c(S) 5 K1

cS, s(l) 5slb, and the inverse demand function is p(l;
a, b) 5 a� bl or p(l; a, b) 5� a log(bl), corresponding to
the linear and exponential demand functions, respec-
tively. Then, the optimization problem in (5) becomes

max
S; l

VðS; lÞ

¼

PN
n¼1 pðm�1

n ; a; bÞ� hS

N
ðN� nþ 1

2
Þmn�

1

2
hs2m2�2b

n � K

S
� c

� �
PN

n¼1 mn

:

Applying a change of variables, l ¼ b~l and S ¼ K~S,
we can rewrite the above problem as follows:

max
~S; ~l

Vð~S; ~lÞ

¼

PN
n¼1 pð~m�1

n ; a; 1Þ� Khb~S

N
N�nþ1

2

� �
~mn�

1

2
hs2ðb ~mnÞ2�2b�~S

�1�c

" #

b
PN

n¼1 ~mn

:

ð6Þ

The objective in (6) indicates that the optimal solu-
tion ð~S�; ~l�Þ depends only on six parameters: (N, a,
Khb, hs2b2� 2b,b, c). Thus, to sweep across all possible
scenarios and study when dynamic pricing is more
profitable, we can choose to vary six independent pa-
rameters (N, a, c, s,b, h) while fixing (K, b). In the case
of linear demand p(l) 5 a� bl, we can also fix c be-
cause parameters a and c appear in (6) in the form of
a� c. In the following numerical analysis, the scale of
certain parameters may appear to be too large (e.g.,
for holding cost h), but from (6) we can see that in-
creasing the scale of certain parameters is equivalent
to increasing the scale of others, which helps to sweep

across a wide range of scenarios and improve the ro-
bustness of our results. In the rest of this section, we
use V�N to denote the profit under the optimal N prices
and replenishment level.

3.1. Impact of Demand Variability
We are particularly interested in the effect of (s, b, h),
since these are the parameters that determine the ad-
ditional holding cost due to demand variability. The
composite effect of these three parameters on the
profit is shown in Figure 1. We have also tested
these effects using various values of (N, a, c)
and different demand functions (including
a 5 50, 75, 100 for the linear demand, a 5 50,
75, 100 and c 5 5, 10, 15 for the exponential demand,
and V�N � V�1 with N 5 2, 3, . . . , 7). Figure 1
reports V�8 � V�1 for a linear demand case. The follow-
ing observations are robust across all settings.

First, demand variability always has a negative
effect on V�1, the profit under a static-pricing
strategy. Second, dynamic pricing is not necessarily
more valuable with a higher demand variability. How
the profit improvement V�8 � V�1 changes with de-
mand variability depends on the form of the demand
variability function. Higher additive demand vari-
ability (Figure 1a) reduces the benefit of dynamic
pricing, while higher multiplicative demand variabil-
ity (Figure 1b) tends to enhance it. Demand variability
has no effect on the improvement when sðlÞ ¼ s

ffiffiffi
l
p

(Figure 1c). Numerically, we also found that the price
spread (difference between the highest and the lowest
prices) tends to decrease in the additive demand vari-
ability and increase in the multiplicative demand
variability. Thus, higher profit improvement is asso-
ciated with larger spreads among the optimal prices
(or, more fluctuating prices).
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Figure 1 Profit Improvement of Dynamic Pricing Over Static Pricing: c(S) = 10015S, p(k) = 50� k
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Another observation is that the relative profit im-
provement, ðV�8 � V�1Þ=V�1, increases in s for all
three forms of demand variability. This is clear for
the cases s(l) 5 sl and s

ffiffiffi
l
p

, since V�8 � V�1 is non-de-
creasing in s, while V�1 is decreasing in s, as shown in
Figure 1b and c. For s(l) 5 s, when V�1 approaches
zero, the absolute improvement does not diminish.
We can numerically verify that the relative profit
improvement is indeed increasing in the additive
demand variability and approaching infinity when V�1
is close to zero. In a different model, Federgruen
and Heching (1999) found that the percentage profit
improvement increases in demand uncertainty. Our
model yields similar results, but it is interesting to see
that the same may not hold for the absolute profit
improvement.

Our observation also concerns the impact of s
in connection with h. How these two parameters
interact is ambiguous a priori. A higher h increases
the need for inventory-based dynamic pricing, which
may result in a higher impact of demand variability; but
a higher h will likely lead to a lower replenishment
level, which leaves less room for the dynamic pricing
strategy to be effective. But our numerical results con-
firm that a higher h enhances the benefit of dynamic
pricing and magnifies the impact of demand variability
on the profit improvement, in both absolute and relative
senses.

3.2. Single vs. Multiple Price Changes
We have observed in our numerical studies that the
number of price changes has a strong diminishing
marginal benefit. Figure 2 illustrates the optimal de-
cisions and profit corresponding to different values of
N. Here, using only two prices (i.e., a single price
change within a replenishment cycle) already
achieves about 75% of the profit improvement, and
beyond N 5 8, the marginal improvement is essen-
tially nil. Thus, V�8 is essentially the best profit that can
be achieved via dynamic pricing.

This calls for further studies on the profit improve-
ment associated with a single price change, i.e., a
pricing strategy that is the least dynamic. We measure

the effectiveness of a single price change by computing
the ratio ðV�2 � V�1Þ=ðV�8 � V�1Þ for thousands of problem
instances with wide range of parameter values. We have
tested a total of 7488 problem instances, and each in-
stance actually represents a class of equivalent instances
(with the same value of (a, Khb, hs2b2� 2b,b, c); refer to
the discussion at the beginning of section 3). Table 1
reports the summary statistics of the effectiveness ratio.
Remarkably, regardless of the model parameters, the
two-price strategy consistently achieves about 75% of the
profit improvement.

4. Bounds and Approximation for
the Benefit of Dynamic Pricing

In this section, we derive bounds on the profit im-
provement of dynamic pricing strategy over static
pricing. We further develop an explicit formula to di-
rectly quantify the benefit of dynamic pricing without
having to solving the N-price problem. The bounds

Table 1 Effectiveness of the Two-Price Strategy: Statistics of
(V �2 � V �1 )=(V �8 � V �1 )

Demand form s(l) 5s s(l) 5sl sðlÞ ¼ s
ffiffiffi
l
p

Linear demand

Mean (standard deviation) 0.759 (0.004) 0.761 (0.003) 0.760 (0.002)

Minimum / maximum 0.726 / 0.762 0.741 / 0.780 0.753 / 0.780

Number of instances 1200� 1200 1200

Exponential demand

Mean (standard deviation) 0.759 (0.002) 0.761 (0.001) 0.760 (0.001)

Minimum / maximum 0.748 / 0.761 0.756 / 0.762 0.757 / 0.762

Number of instances 1296�� 1296 1296

Overall

Mean (standard deviation) 0.7600 (0.0025)

Minimum / maximum 0.726 / 0.780

Number of instances 7488

�1200 instances are based on 20	20 different values of (h, s) as in Figure 1 and

a 5 50, 75, 100.
��1296 instances are based on 12	12 different values of (h, s) (same range as

in Figure 1 but with a coarser mesh), a 5 50, 75, 100, and c 5 5, 10, 15.

1 2 3 4 5 6 7 8
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29

1 2 3 4 5 6 7 8
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1 2 3 4 5 6 7 8
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32

50

V*p*

50N N

S*

50 N

Figure 2 Effect of the Number of Price Changes: c(S) = 10015S, h = 20, r(k) = 20, p(k) = 50� k

Refer to the discussion at the beginning of section 3 and note that this setting is equivalent to a class of settings with the same value of
(Khb, hs2b2, a� c), e.g., c(S) 5 20150S, h 5 5, s5 2, p(l) 5 95� 20l).
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and approximation formula reveal how various fac-
tors drive the profitability of dynamic pricing.

Intuitively, the benefit of dynamic pricing should be
closely related to the degree of price fluctuation. Thus,
we first investigate the range in which the optimal prices
(or equivalently, optimal l) may vary. Proposition 1 be-
low gives this range for a fixed replenishment level S.

PROPOSITION 1. For fixed S, let l� be an optimal decision corr-
esponding to the optimal N prices. Then for 1 � m � n� N,

Sðn�mÞ
N G01 þ G02=h
� � � m�n � m�m �

Sðn�mÞ
N G1 þ G2=hð Þ ;

where

G1 ¼ min
m2A

	
1

2
r00ðm�1Þ m�3



;G01 ¼ max

m2A

	
1

2
r00ðm�1Þ m�3



;

G2 ¼ min
m2A
f�r00ðm�1Þ m�3 g; G02 ¼ max

m2A
f�r00ðm�1Þ m�3 g:

and A is any set that contains ½m�1; m�N�.

Note that Assumptions 1 and 2 imply that

d2pðm�1Þ
dm2

¼ m�3r00ðm�1Þo0 and

d2ðmrðm�1ÞÞ
dm2

¼ m�3r00ðm�1Þ � 0:

ð7Þ

Hence, G1, G01, G2, and G02 are all positive, which
implies that m�n4m�m if n4m, i.e., the optimal prices are
higher when the inventory level is lower.

In next proposition, we consider the profit differ-
ence between the optimal dynamic pricing and the
optimal static pricing strategy, both being jointly
optimized with the replenishment level.

PROPOSITION 2. Let ðS�N; l�Þ be an optimal solution to the N-
price dynamic pricing and replenishment problem (5) and
let V�N be the corresponding optimal profit. Let ðS�; m�Þ be
the optimal solution to the static (i.e., N 5 1) pricing and
replenishment problem. Then,

V�N � V�1 �
h S�N

2 1�N�2
� �
24�m

2

G1þG2=h
� G1 þ G2=h

ðG01 þ G02=hÞ2

" #
;

V�N � V�1 �
h S�2 1�N�2

� �
24m�

2

G01þG02 =h
� G01þG02=h

ðG1þG2=hÞ2

" #
;

where �m ¼ 1
N

PN
n¼1 m�n, and

G1¼min
m2A

1

2
r00ðm�1Þ m�3

	 

; G01¼max

m2A

1

2
r00ðm�1Þ m�3

	 

;

G2¼min
m2A
f�r00ðm�1Þ m�3 g; G02 ¼ max

m2A
f�r00ðm�1Þ m�3 g:

and A is any set that contains ½m�1; m�N�.

Motivated by the above upper bound and lower
bound, we construct an approximation for the
profit improvement. Let G0

1 ¼ 1
2r
00ðm��1Þ m��3 and

G0
2 ¼ �r00ðm��1Þ m��3, and notice that

2

G1 þ G2=h
� G1 þ G2=h

ðG01 þ G02=hÞ2
4

1

G0
1 þ G0

2=h

4
2

G01þG02 =h
� G01 þ G02=h

ðG1 þ G2=hÞ2
:

In the lower bound for V�N � V�1, we replace the
term in the brackets by (G1

01G2
0/h)� 1 and replace

(1�N� 2) by 1 when N is large. Then, the profit
improvement of dynamic pricing can be approxi-
mated as follows:

V�N � V�1 

hS�2

24m� G0
1 þ G0

2=h
� � ; N � 8; ð8Þ

where G0
1 ¼ 1

2r
00ðm��1Þ m��3 and G0

2 ¼ �r00ðm��1Þ m��3

measure the convexity of the demand variability
function and the concavity of the revenue func-
tion, respectively (refer to [7]). Note that the above
approximation formula depends only on the static
pricing strategy ðS�; m�Þ and allows us to estimate the

Table 2 Accuracy of the Approximation of Profit Improvement: Statistics of
h S�2 =(V �

8
�V �

1
)

24l�(G0
1

+G0
2
=h)

Demand form s(l) 5s s(l) 5 sl sðlÞ ¼ s
ffiffiffi
l
p

Linear demand

Mean (standard deviation) 1.003 (0.008) 1.011 (0.006) 1.008 (0.006)

Minimum/maximum 0.945/1.014 0.969/1.036 0.991/1.038

Number of instances 1200 1200 1200

Exponential demand

Mean (standard deviation) 1.003 (0.007) 1.010 (0.003) 1.007 (0.004)

Minimum/maximum 0.971/1.012 0.999/1.015 0.996/1.014

Number of instances 1296 1296 1296

Overall

Mean (standard deviation) 1.007 (0.007)

Minimum/maximum 0.945/1.038

Number of instances 7488

All above statistics are based on the same problem instances as in Table 1.
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benefit of dynamic pricing using the static pricing
information.

To study the accuracy of the approximate formula
in (8), we examine the ratio between the approxi-
mate value in (8) and the exact value of V�8 � V�1
for wide range of parameter settings. A ratio that is
close to 1 indicates high accuracy of this approximation.
In Table 2 we list the statistics of this ratio, which are all
quite close to 1. This indicates that the formula in (8)
provides a good estimator for the profit improvement
without having to solve the N-price replenishment
problem.

When N 5 2, multiplying the right hand side of (8)
by 75% gives an approximation for the benefit from
using only a single price change:

V�2 � V�1 

h S�2

32m� G0
1 þ G0

2=h
� � :

where G0
1 ¼ 1

2r
00ðm��1Þ m��3 and G0

2 ¼ �r00ðm��1Þ m��3.
Intuitively, the above formulae also suggest that for

an inventory-based dynamic pricing strategy to yield
a significant benefit, the products must be expensive
to hold and expensive to replenish in small quantities,
such as personal computers, home appliances
and electronics, and automobiles. Not surprisingly,
these are the kind of industry sectors where dynamic
pricing is usually practiced. The formulae also suggest
that both the deterministic (r(l)) and stochastic (r(l))
components of the demand must be taken into ac-
count when deciding whether dynamic pricing
could lead to significant profit improvement. It is
the concavity or convexity of these components
that are driving the profitability of dynamic pricing.
To provide intuition, we note that in the numerator
of (5), the additional holding cost term �

PN
n¼1

1
2hmnr

ðm�1
n Þ and the revenue term

PN
n¼1 pðm�1

n Þ are both con-
cave in l (refer to [7]). The concavity of these two
terms limits the extent to which the optimal prices
vary, and thus limits the profit improvement of
dynamic pricing. A measure of their concavity is G1

0

and G2
0. These are exactly the terms in the approxi-

mate formula.

5. Dynamic Pricing Alone vs. Joint
Pricing Replenishment

It is commonly seen in practice that firms implement
dynamic pricing without considering it jointly with
the replenishment quantity. This is typically due to a
lack of coordination between sales and operations
units within an organization. Here, we study the ben-
efit of a joint pricing-replenishment decision, as op-
posed to executing dynamic pricing alone.

Given a replenishment level S, let VN(S) denote the
profit under the optimal N-price strategy. Consider
the following two ratios:

V8ðSÞ � V1ðSÞ
V�8 � V1ðSÞ

;
V8ðSÞ � V1ðSÞ

V�2 � V1ðSÞ
:

The first ratio measures the proportion of the
maximum improvement that can be achieved by im-
plementing dynamic pricing alone. The second ratio
compares dynamic pricing using multiple price
changes against the joint pricing-replenishment strat-
egy using only one price change. These ratios depend
on how far the fixed variable S is away from the op-
timum S�. We consider three scenarios: S is fixed at
ð1� 0:05ÞS�, at ð1� 0:1ÞS�, and at ð1� 0:15ÞS�. Then,
for each scenario and each of the 7488 problem in-
stances as in Tables 1 and 2, we compute the above
two ratios. The results are summarized in Table 3, in
terms of the medians of the ratios (we use median
since the distribution is typically skewed).

The first ratio shows that when S deviates from the
optimal S�, dynamic pricing alone only achieves a
fraction of the best possible improvement via joint
optimization. The second ratio indicates that dynamic
pricing alone generally performs no better than the
joint optimization with only a single price change. In
both cases, the performance of dynamic pricing alone
deteriorates drastically when S deviates further from

Table 3 Median Profit Improvement Ratio

Deviation of S

s(l) 5s s(l) 5sl sðlÞ ¼ s
ffiffiffi
l
p

� 5% � 10% � 15% � 5% � 10% � 15% � 5% � 10% � 15%

V8ðSÞ�V1ðSÞ
V �

8
�V1ðSÞ

Linear demand 0.81 0.51 0.32 0.61 0.28 0.15 0.71 0.38 0.21

Exponential demand 0.82 0.53 0.33 0.68 0.34 0.19 0.77 0.46 0.27
V8ðSÞ�V1ðSÞ

V �
2
�V1ðSÞ

Linear demand 1.00 0.59 0.35 0.72 0.30 0.16 0.85 0.42 0.22

Exponential demand 1.02 0.61 0.36 0.81 0.37 0.20 0.95 0.51 0.29

The medians are taken from the same 7488 problem instances as in Tables 1 and 2.
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the optimal level. The results strongly indicate the
strength of a simple, two-price strategy along with a
jointly optimized replenishment quantity.

Figure 3 further elaborates on Table 3 by showing
the effect of demand variability on the above ratios.
The figure for exponential demand is very similar and
omitted. Notice that the ratios remain largely at the
same level as demand variability changes, indicating
the robustness of the findings in Table 3.

6. Concluding Remarks
In this paper, we have studied an inventory-based dy-
namic pricing strategy: the price is changed whenever
the inventory drops by a fraction of the replenishment
quantity. We address the drivers of the profit improve-
ment of dynamic pricing. The benefit of dynamic pricing
can be significant under certain conditions. First, higher
holding cost, lower additive demand variability, higher
multiplicative demand variability, and less concave rev-
enue function all enhance the profit improvement of
dynamic pricing. Second, dynamic pricing strategy
should be implemented jointly with an optimal replen-
ishment level; a suboptimal replenishment quantity can
easily offset the benefit of dynamic pricing.

Through extensive numerical analysis, we found that
75% of the benefit of dynamic pricing can be captured
by using only one price change. This implies that effec-
tive dynamic pricing does not necessarily use frequent
price changes, especially when frequent price changes
increase customer dissatisfaction. In this paper, we also
provide a formula to directly estimate the benefit of
dynamic pricing without the need to solve it.

Finally we make a remark on the timing of the price
changes. This paper considers pricing based on an even
division of the total replenishment quantity. In general,
the segments are not necessarily equal, but our numer-
ical experiments show that the optimal segments
(optimized jointly with prices and replenishment level)
are quite even and the corresponding profit is almost
the same as using equal segments. Furthermore, in

practical situations when the prices are chosen from a
discrete set, the optimal prices may be equal across
several segments, and the solution based on equal seg-
ments can effectively tell how many prices to use, when
to change prices and what prices to change to, as ev-
ident from the following example.
EXAMPLE. Let l(p) 5 50� p, c(S) 5 1001S, h 5 1, s(l) 5 10.
Suppose the prices have to be integer valued, and S has
to be a multiple of 5. Using N 5 140, we find the optimal
policy is to order 70 units for each cycle, charge a price of
$25 until the inventory level drops to 67 units, charge $26
until the inventory drops to 19, and charge $27 until the
inventory runs out. The policy uses only three prices
(despite the choice of a large N value) and yields an
average profit of $528.745.

In other words, the equal partitioning of [0, S] (into
140 segments) does not prevent us from finding the
optimal partitioning (of three uneven segments). &
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Appendix A

LEMMA 1. Let ln 5 l(pn). For the stopping time tn defined
in (2), we have

E½tn� ¼
S

Nln
and

E½t2
n� ¼

sðlnÞ2S

Nl3
n

þ S2

N2l2
n

:

PROOF. (This lemma follows from well-known results
regarding optional stopping applied to Brownian mo-
tion; refer to, e.g., Karlin and Taylor, 1975. The proof
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Figure 3 Effect of Demand Variability on the Median Profit Improvement Ratio: Linear Demand

The medians are taken from the linear demand rate instances in Table 3.

Chen, Wu, and Yao: Benefit of Inventory-Based Dynamic Pricing Strategies
Production and Operations Management 19(3), pp. 249–260, r 2009 Production and Operations Management Society 257



here is included for completeness.) Omit the subscript
n, and let x: 5 S/N. The definition of t in (2) implies
that lt1sB(t) 5 x. This, combined with EBðtÞ ¼ 0,
which follows from applying optional stopping to
B(t), leads to E½t� ¼ x=l. Next, we derive the second
moment of t. Since sB(t) 5 x� lt, we have

s2½B2ðtÞ � t� ¼ ðx� ltÞ2 � s2t:

Applying optional stopping to the martingale
B2(t)� t, we have

E½ðx� ltÞ2� ¼ s2E½t�; or

l2 VarðtÞ ¼ s2E½t�:

This leads to

E½t2� ¼ s2

l2
E½t� þ E2½t� ¼ s2x

l3
þ x2

l2
: &

PROOF OF PROPOSITION 1. Based on (7), the numerator
of the objective in (4) is strictly concave in l. The
ratio of a concave function over a positive linear
function is known to be pseudo-concave (Manga-
sarian, 1970). Thus, the first-order conditions
are sufficient. The first-order conditions for mm and
mn give

@VðS; l�Þ
@mm

� @VðS; l�Þ
@mn

¼

dp

dm
ðm�m�1Þ � dp

dm
ðm�n�1Þ þ hS

N
ðm� nÞ þ hðf 0ðm�nÞ � f 0ðm�mÞÞPN

n¼1 m�n
¼ 0;

ðA1Þ

where fðmÞ :¼ 1
2mrðm�1Þ. The relations in (7) imply

that

G1 � f 00ðmÞ � G01; and

G2 � �
d2p

dm2
ðm�1Þ � G02; 8m 2A:

Hence, for m�n � m�m,

ðm�n � m�mÞG1 � f 0ðm�nÞ � f 0ðm�mÞ � ðm�n � m�mÞG01 ðA2Þ

ðm�n � m�mÞG2 �
dp

dm
ðm�m

�1Þ � dp

dm
ðm�n
�1Þ � ðm�n � m�mÞG02;

ðA3Þ

Combining (A1)–(A3) yields the desired inequali-
ties in the proposition. &

PROOF OF PROPOSITION 2. The optimal single-price policy
ðS�; m�Þ can achieve a profit no lower than the feasible
single-price policy: ðS�N; �mÞ. Thus,

Consider the first term in the numerator of (A4):

pðm�n
�1Þ � pð�m�1Þ ¼

Z m�n

�m

dp

dm
ðm�1Þdm

¼
Z m�n

�m

�
dp

dm
ð�m�1Þ þ

Z m

�m

d2p

dm2
ðs�1Þds

�
dm

�
Z m�n

�m

�
dp

dm
ð�m�1Þ � G2ðm� �mÞ

�
dm

¼ðm�n � �mÞ dp

dm
ð�m�1Þ � 1

2
G2ðm�n � �mÞ2;

where the inequality is due to d2p
dm2 � �G2 (by definition

of G2 and (7)). Summing the above inequality over
n 5 1, . . . , N and dividing both sides by N�m, we have

PN
n¼1

�
pðm�n�1Þ � pð�m�1Þ

�
N�m

� �G2

PN
n¼1 ðm�n � �mÞ2

2N�m

Note that 1
N�1

PN
n¼1 ðm�n � �mÞ2 is the variance of a

random variable that is uniformly distributed over
m�1; . . . ; m�N . That variance is minimal if m�1; . . . ; m�N are
minimally spaced out. From Proposition 1, the min-

imal distance between mn and mn11 is
S�N

NðG0
1
þG0

2
=hÞ � D.

Therefore, the above variance is bounded below
by the variance of the random variable that is
uniformly distributed over D, 2D, . . . , ND, which can

V�1 �
pð�m�1Þ � hS�N

2
�m� 1

2
h�mrð�m�1Þ � aðS�NÞ

�m
:

V�N � V�1 �PN
n¼1 pðm�n�1Þ � pð�m�1Þ
� �

� hS�N
N

PN
n¼1 N � nþ 1

2

� �
m�n �

N

2
�mÞ

� �
� h

2

PN
n¼1 m�nrðm�n�1Þ � �mrð�m�1Þ
� �

N�m
:

ðA4Þ
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be computed as (N11)ND2/12. Thus,PN
n¼1 ½pðm�n�1Þ � pð�m�1Þ�

N�m

� � G2

2N�m
ðN � 1ÞðN þ 1ÞND2

12

¼ �G2 S�N
2ð1�N�2Þ

24�mðG01 þ G02=hÞ2
:

ðA5Þ

The above lines of proof also apply if p(m� 1) is re-
placed by �1

2mrðm�1Þ and G2 is replaced by G1. In
parallel with (A5), we have

�h

2

PN
n¼1 ½m�nrðm�n�1Þ � �mrð�m�1Þ�

N�m

� � hG1 S�N
2ð1�N�2Þ

24�mðG01 þ G02=hÞ2
:

ðA6Þ

Now we consider the second term in the numerator
of (A4).

�hS�N
N

PN
n¼1 N � nþ 1

2

� �
m�n �

N

2
�m

� �
N�m

¼
hS�N

PN
n¼1 n�N � 1

2

� �
m�n þ

N

2
m�n

� �
N2�m

¼ hS�N½2m�1þ4m�2þ � � � þ2Nm�N�ðNþ1Þðm�1 þ � � � þ m�NÞ�
2N2�m

¼ hS�N½ðN � 1Þðm�N � m�1Þ þ ðN � 3Þðm�N�1 � m�2Þ þ � � ��
2N2�m

where in the last line, the series ends with m�N=2þ1 �
m�N=2 if N is even, and ends with 2ðm�ðNþ3Þ=2 � m�ðN�1Þ=2Þ
if N is odd.

Applying Proposition 1 and the identity:

ðN � 1Þ2 þ ðN � 3Þ2 þ . . .

þ N þ 1� 2
N

2


 �� �2

¼ ðN � 1ÞNðN þ 1Þ
6

;

we have

�hS�N
N

PN
n¼1 N � nþ 1

2

� �
m�n �

N

2
�m

� �
PN

n¼1 m�n

�
h S�N

2 ðN�1Þ2þ ðN � 3Þ2 þ � � � þ Nþ1�2
N

2


 �� �2
" #

2N3�m G1 þ G2=hð Þ

¼ h S�N
2ðN � 1ÞNðN þ 1Þ

12N3�m G1 þ G2=hð Þ

¼
h S�N

2 1�N�2
� �

12�m G1 þ G2=hð Þ :

ðA7Þ

Combining the inequalities in (A4)–(A7), we
have

V�N � V�1 �
h S�N

2 1�N�2
� �
24�m

	 2

G1 þ G2=h
� G1 þ G2=h

ðG01 þ G02=hÞ2

" #
:

Next we prove the lower bound for the profit im-
provement. Let ðS�; m�Þ be the optimal single price
policy. Fixing S ¼ S�, we optimize over the N prices,
and denote the optimal solution as ðS�; l�Þ. Then
we construct a feasible policy ðS�; ~lÞ, where
~mn ¼ m� þ m�n � 1

N

P
n m�n. We assume that ~mn 2A.

(If not, we could always scale ~mn and/or enlarge A
such that ~mn 2A, and the resulting lower bound will
be slightly different, but the insights remain the
same.)

Since the feasible policy performs no better than the
optimal one, we have

Then, following exactly the same logic of the proof
for the upper bound, we have the following inequal-
ities corresponding to (A5), (A6), and (A7),
respectively:

PN
n¼1 ½pð~mn

�1Þ � pðm��1Þ�
Nm�

� � G02 S�2ð1�N�2Þ
24m�ðG1 þ G2=hÞ2

V�N � V�1

�

PN
n¼1 pð~mn

�1Þ � pðm��1Þ
� �

� hS�

N

PN
n¼1 N � nþ 1

2

� �
~mn�

N

2
m�

� �
� h

2

PN
n¼1 ~mn rð~mn

�1Þ � m�rðm��1Þ
� �

Nm�
:
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�h

2

PN
n¼1 ½~mn rð~mn

�1Þ � m�rðm��1Þ�
Nm�

� � hG01 S�2ð1�N�2Þ
24m�ðG1 þ G2=hÞ2

�hS�

N

PN
n¼1 N � nþ 1

2

� �
~mn�

N

2
m�

� �
Nm�

�
h S�2 1�N�2

� �
12m� G01 þ G02=h

� � :
Combining the above inequalities gives the lower

bound

V�N � V�1 �
h S�2 1�N�2

� �
24m�

	 2

G01þG02 =h
� G01 þ G02=h

ðG1 þ G2=hÞ2

" #
:

&
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