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Summary

1. To ensure the successful detection, control and eradication of invasive plant species, we need

information that can identify areas prone to invasions and criteria that can point out which particu-

lar populations may become foci of further spread. Specifically, our work aimed to develop statisti-

cal models that identify hotspots of invasive plant species and evaluate the conditions that give rise

to successful populations of invasive species.

2. We combined extensive data sets on invasive species richness and on species per cent ground

cover, together with climate, local habitat and land cover data. We then estimated invasive species

richness as a function of those environmental variables by developing a spatially explicit generalized

linear model within a hierarchical Bayesian framework. In a second analysis, we used an ordinal

logistic regressionmodel to quantify invasive species abundance as a function of the same set of pre-

dictor variables.

3. Our results show which locations in the studied region, north-eastern USA, are prone to plant

species invasions given the combination of climatic and land cover conditions particular to the sites.

Predictions were also generated under a range of climate scenarios forecasted for the region, which

pointed out at an increase in invasive species incidence under the most moderate forecast. Predicted

abundance for some of the most common invasive plant species, Berberis thumbergii, Celastrus

orbiculatus, Euonymus alata, Elaeagnus umbellata and Rosa multiflora, allowed us to identify the

specific conditions that promote successful population growth of these species, populations that

could become foci of further spread.

4. Synthesis and applications. Reliable predictions of plants’ invasive potential are crucial for

the successful implementation of control and eradication management plans. By following a multi-

variate approach the parameters estimated in this study can now be used on targeted locations to

evaluate the risk of invasions given the local climate and landscape structure; they can also be

applied under different climate scenarios and changing landscapes providing an array of possible

outcomes. In addition, this modelling approach can be easily used in other regions and for other

species.

Key-words: Berberis, Celastrus, Elaeagnus, Euonymus, hierarchical Bayes, invasive species,

IPANE, Rosa

Introduction

The spread of invasive species has developed into a major

ecological and economic issue for many regions of the world

(Pimentel 2002). As a consequence, inference on where to

target early control and eradication efforts has become critical

in the management of those species. Identifying which particu-

lar areasmay be likely to host large numbers of invasive species

and recognizing which specific populations may become a hub

of further spread are common goals for ecologists and natural

resources managers. We evaluated how variables related to a

region’s climate, landscape and habitat are associated with the

establishment and further spread of invasive plant species with*Correspondence author. E-mail: iibanez@umich.edu
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the objective of providing information to better target eradica-

tion and control efforts in locations where future invasions are

likely to take place over time.

Much research on invasive species has focused on species

traits that promote invasive species success (e.g. Rejmanek

et al. 2005; Herron et al. 2007). While some organism-based

generalizations are possible, for example the positive relation-

ship between high reproductive output and invasive potential,

characteristics of the recipient environment are also important

determinants of invasive species success (Richardson & Pysek

2006; Eschtruth & Battles 2009). Studies of community invasi-

bility have been recently reviewed elsewhere and suggest that a

single set of attributes cannot be assigned to areas harbouring

many invasive species (Fridley et al. 2007; Melbourne et al.

2007; Compagnoni & Halpern 2009). Perhaps most impor-

tantly, the interaction of species’ traits and conditions in the

recipient area are critical to determining invasive species suc-

cess, such that a species with invasive tendencies will not suc-

ceed in all recipient areas (Richardson & Pysek 2006;

Eschtruth & Battles 2009; Milbau et al. 2009), nor during all

phases of the invasion process (Milbau & Stout 2008; Milbau

et al. 2009). Studies attempting to synthetically predict invasive

species success generally suggest that plant invasions are par-

ticularly idiosyncratic and often only vague generalizations

about patterns and processes are possible (Hayes & Barry

2008; but seeMilbau& Stout 2008).

Such difficulties are attributed not only to variation in plant

trait interactions with environmental conditions, but are also

due to the fact that plant introductions take place under a wide

range of particular circumstances in time and space (McDon-

ald, Motzkin & Foster 2008). For example, some plant species

only became invasive after being extensively planted, as was

the case with kudzu, Pueraria lobata (Forseth & Innis 2004) in

the southeast USA. This perennial vine was planted to control

soil erosion and afterwards became one of the most aggressive

invasive plants around forest edges (Blaustein 2001). In other

cases the species’ spread was aided by a particular set of cir-

cumstances (i.e. ‘windows of opportunity’) as seems to have

happened with Japanese barberry, Berberis thunbergii, in the

Northeast USA. Berberis thunbergii was first introduced as a

horticultural planting to replace the European barberry; its

spread into natural areas took place once agricultural fields

were abandoned in the early to mid-20th century (Silander &

Klepeis 1999; DeGasperis & Motzkin 2007; Mosher, Silander

& Latimer 2009). Would kudzu have become the major prob-

lem it is now, with $500 million spent per year on its control

(Miller 1991), without initial planting campaigns? Or would

Japanese barberry have become so prevalent if old fields have

not been available to such an extent and its planting encour-

aged early on? The set of conditions that allowed a species to

become invasive may not be replicated at different sites or

points in time; these idiosyncrasies of species invasions hamper

our ability to predict future events.

In particular, the structure of the landscape (e.g. corridors

for dispersal, occurrence of disturbed areas) has played a very

important role in the establishment and spread of invasive

plant species. Many plant invasions have been facilitated by

human-altered landscapes (e.g. Mack & D’Antonio 1998;

Levine & D’Antonio 1999; Cadenasso & Pickett 2001; Vila

et al. 2007). In fact, recent research suggests that identification

of the ecological neighbourhoods that benefit the spread and

establishment of particular species increases the accuracy of

predictions of species’ invasion (Ibáñez et al. 2009).

Our approach considers invasions at the regional scale (i.e.

hundreds of kilometres). Although climate is undoubtedly the

major driver of a species distribution (Woodward 1987) at this

scale, we also incorporated data sources in addition to climate,

specifically landscape structure and habitat type, that have

been key to predicting current patterns of plant invasions (Sob-

eron & Peterson 2005; Chytry et al. 2008; Ibáñez et al. 2009).

We ask: on the basis of climate and landscape structure, what

makes a particular region prone to plant invasions? If propa-

gules are available, can we identify areas where the potential

for successful establishment and spread of alien species is high?

Many of the invasive plant species we find today can grow in a

large array of settings (e.g. climates, habitats), but only under

particular ecological conditions do they become aggressive

invaders (Pino et al. 2005).

Another consideration is the exacerbation of invasive species

impact predicted with global change (Hobbs & Mooney 2005;

Meyerson & Mooney 2007). Natural systems will be chal-

lenged not only by human-mediated species movement but

also via the effects of global climate change. The stresses

imposed bymultifaceted environmental changemaymake nat-

ural areas more susceptible to invasions, creating more oppor-

tunities for the spread of alien species. Therefore, when

evaluating the susceptibility of a region to invasive plants, we

should operate in the context of a dynamic environment where

several climate scenariosmay be taken into account.

In the case of our study system, the New England region of

eastern North America, one-third of the vascular plant flora is

non-indigenous, of which 3–5% are invasive (Mehrhoff 2000).

These alien species constitute a major threat to the preserva-

tion of the region’s natural vegetation (Farnsworth 2004) and

significantly affect the local economy (Barton et al. 2004;

Wang et al. 2006). The region is mainly characterized by sec-

ondary forests regenerated after cropland abandonment in

southern and central NewEngland (Foster 1992) and after log-

ging activities in the north (Dibble, Brissette & Hunter 1999).

Such disturbances, together with the introduction of alien spe-

cies since the 17th century, have promoted the establishment of

many plant species. In recent years there has been a major

effort to collect data on the extent of plant invasions across the

region (Mehrhoff et al. 2003). The Invasive Plant Atlas of New

England project (IPANE: http://www.IPANE.org) was initi-

ated in 2001 to evaluate the status of invasive species. We can

now use these data to evaluate the susceptibility of the region

to plant invasions.

The specific questions we aim to answer here are: (i) What

are the climate and landscape attributes associated with the

abundance of invasive plants in New England? (ii) Are there

areas in the region with the potential to become hot spots

for invasive plant species? Will these change under the fore-

casted climate scenarios? (iii) For a particular species, what are
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the environmental conditions associated with prolific popula-

tions?

Materials and methods

SPECIES DATA

Plot-based surveys on the presence ⁄ absence and abundance of inva-

sive species have been gathered by a group of volunteers across New

England as part of the IPANE project since 2001 (Mehrhoff et al.

2003). Volunteers are initially trained by IPANE staff on plant identi-

fication and field data collection methods, and there is periodic

follow-up training. For those species that are challenging to identify,

verification is undertaken by submitting voucher specimens or photo-

graphs. The validity of volunteer-collected data has been assessed in

numerous studies (e.g. Galloway et al. 2006; Brooks et al. 2008) and

makes us confident in the reliability of this data set. To date over 5000

field plots have been inventoried and the location of some 11 000 indi-

vidual incursions of more than 100 invasive species has been docu-

mented (Fig. 1). From those records we calculated the total number

of invasive plant species at each location (i.e. richness). We also have

measures of species abundances, defined as the percent of ground

cover occupied by each species present in the plots (10 m radius cir-

cles), coded as ordinal categories: 1: less than 1%; 2: 1–5%; 3: 5–25%;

4: 25–50%; 5: 50–75%; 6: 75–100%. The specific species analysed for

this study are: Berberis thunbergiiDC Japanese barberry, a shade-tol-

erant shrub, Celastrus orbiculatus Thunb. oriental bittersweet, a

woody vine, Elaeagnus umbellata Thunb. autumn olive, a nitrogen-

fixing shrub, Euonymus alata Thunb. burning bush, a perennial

shrub, and Rosa multiflora Thunb. ex Murr. multiflora rose, a peren-

nial shrub. These species are frequently found throughout the region,

with percentage presence across IPANE sites ranging from 7% to

23%.Of the�5000 data points available, we used 4200 in our analysis
and withheld the remainder records (�900) to validate the different

models examined. For more detail on the history of the invasions, the

species, and on data collection and protocols see the IPANE web site

http://www.IPANE.org.

CLIMATE DATA

Current climate data are averages for 1950–2000 downloaded from

the WorldClim data base (Hijmans et al. 2005). Each of the IPANE

sample locations was intersected with climate data at a 30 arcsec

(�1 km) resolution. We selected five climate variables that seemed

ecologically most relevant in affecting the degree of invasion (i.e.

plant growth, survival and reproduction; Pino et al. 2005). We

included: (i) mean maximum temperature of the warmest month; (ii)

mean minimum temperature of the coldest month (both of which

inform us about the tolerance limits of each species with respect to

temperature); (iii) mean annual precipitation; (iv) mean precipitation

seasonality (i.e. coefficient of variation in precipitation along the year,

which measures how evenly rainfall is distributed throughout the

year); and (v) mean precipitation of the warmest quarter (which

provides a proxy for dryness during the summer months). Maps

predicting potential invasive species richness were generated using

climate data from the same source at a 5 min spatial scale (�10 km).

Predictions of species richness were also generated under two cli-

mate models forecasted for the region for the years 2070–2100

(Wang 2005). Changes in temperature and soil moisture will vary

among different climate models making the impact of predicted

climate change on invasive species model dependent (Beaumont,

Hughes & Pitman 2008). To account for such variability in

outcomes we used forecasts from the two most extreme climate

predictions from the more than 20 global climate models participat-

ing in the IPCC AR4 (Wang 2005). Specifically, we considered

outcomes from two widely used general circulation climate models

under the B1 scenario (where carbon dioxide forcings are main-

tained at current levels): CCSM3 and UKMO-HadCM3. These

forecasts cover from least to most extreme temperature and precipi-

tation change projections for the Northeast USA. CCSM3 predicts

a slight increase in temperature with higher summer precipitation,

while HadCM3 forecasts a greater rise in temperature and lower

precipitation rates (Fig. S1, Supporting Information).

LAND USE LAND COVER (LULC) DATA

Landscape data for the region are available through the C-CAP pro-

gram which uses 30-m resolution Landsat Thematic Mapper and

Landsat Enhanced Thematic Mapper satellite imagery (NOAA

1995–present) and classifies the images into LULC data. For our

analysis, the 12 terrestrial classes identified by the C-CAP analysis

were collapsed into six categories: (i) developed, (ii) deciduous and

mixed forests, (iii) evergreen forests, (iv) crops, (v) scrub ⁄ shrubland
and (vi) pastures and grasslands (Table S1, Supporting Information).

Road density was obtained from the Census 2000 Topologically Inte-

grated Geographic Encoding and Referencing (TIGER) data base of

the United States Census Bureau (2007). Using ArcGIS v9.2 (ESRI

2006) andHawth’s Tools (Beyer 2004) we estimated per cent coverage

of each category and total length of roads (km) in 1 and 10 km radii

circles around each sampled location. The 10 km radius buffer sum-

maries performed best for the richness analysis, while the 1 km buf-

fers were best for the species percentage cover analyses. As with the

climate data, we used 5 min (�10 km grid cells) summaries of the

LULC data to generate maps predicting the invasive outcome as a

function of the local landscape (Fig. S2).

SITE DATA (HABITAT TYPE AND CANOPY CLOSURE)

Although we were interested in regional-scale predictions based on

climate and landscape structure (�10 · 10 km grid cells), we also

included information on local site characteristics (i.e. habitat type

and canopy closure). Inclusion of site variables allowed us to differen-

tiate the effects of climate and LULC from those due to local charac-

teristics such as habitat type and light availability. As part of the

Number of 

0 – 1

2 – 3

4 – 5

6 – 8

9 – 12

recorded species

Fig. 1. Region of New England with number of invasive species

recorded at sampled locations (n = 4207).
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IPANE sampling protocol, volunteers gathered data on habitat and

per cent canopy closure at each sampled location (Mehrhoff et al.

2003). Habitat types were originally classified into 31 categories, but

to simplify the analysis we grouped them into eight general types:

edge, deciduous and mixed forests, evergreen forests, open wetlands,

closed canopy wetlands, marine influence, open ⁄ abandoned and

other (this would include sites that were not defined by any of the ori-

ginal types) (Table S1). At each location, an estimate of canopy clo-

sure was recorded as an ordinal four-level variable, where the canopy

closure ranged from 0 to 100 in increments of 25%.

MODEL DEVELOPMENT

To accommodate the multilevel structure of our data, where we com-

bined several sources of information collected at different scales, we

developed hierarchical models (Clark 2005) for the analyses of inva-

sive species richness and species per cent cover data. We developed

our models within a Bayesian framework because Bayesian methods

are well suited for analyses of hierarchical models (Gelman & Hill

2007). Also, using hierarchical Bayesian techniques allowed us to take

into consideration the different sources of uncertainty inherent in our

data, process models and the predictions (Clark and Gelfand

2006a,b).

RICHNESS ANALYSIS

We analysed invasive species richness data for the sample locations in

NewEngland (n = 4200 points, Fig. 1) as a function of the predictive

environmental variables described above. This analysis identified the

environmental conditions that may predispose a particular area to be

successfully invaded by alien species. The number of invasive species

(count data) at location ‘i’, Ni, was considered to be drawn from a

Poisson distribution with mean ki that was then estimated as a func-

tion of the predictive variables using a ln link function:

Ni � Poisson kið Þ eqn 1

lnðkiÞ ¼ Xibþ wi þ ei eqn 2

Xi is the set of environmental variables at location i (see descrip-

tions above). We ran three different models to test the value of

adding different types of environmental data. We first modelled

with climate data only (model 1), then climate and LULC data

(model 2) and finally, climate, LULC and site data (model 3).

The vector of fixed effect coefficients associated with each of the

environmental variables, b, also included an intercept term and

each term had the following vague prior distribution:

bk � Normalð0; 10 000Þ eqn 3

In the case of the site variable ‘habitat’, a factor, we estimated a

different coefficient for each habitat type, h, and each coefficient was

centred around themean (bhabitat h ) bhabitat mean).

To account for any spatial correlation in the data we included

spatially explicit random effects, wi, that were estimated as a func-

tion of the neighbouring locations within a 10 km radius. In other

words, locations nearby were likely to be more similar than those

farther away. We tried several neighbourhood radii (1, 5, 10 and

20 km) in a previous analysis and 10 km radius represented best the

spatial structure of the data (Ibáñez et al. 2009). Spatial effects were

assigned to a conditional autoregressive prior distribution (CAR),

where bij = 1 if location j is a neighbour of i within that radius,

and bij = 0 otherwise:

wijwj;j6¼1 � Normal
X
j

bijwj; r
2
w

 !

r2
w ¼ 1=sw where sw � Gammað0�5; 0�0005Þ

eqn 4

After initially running this model with only spatial random effects,

we also included random error terms, ei, with an exchangeable normal

prior:

ei � Normal 0;r2
e

� �
r2

e ¼ 1=se where se � Gammað0�5; 0�0005Þ
eqn 5

The random effects at each location were then the sum of the spatial

term, w, and the error term, e, constituting a convolution prior (Be-

sag, York & Mollie 1991; Mollie 1996), which adds flexibility in the

allocation of the residuals. The value of the hyperparameter priors

for the precision terms, s�Gamma(0Æ5,0Æ0005), were those commonly

used in CAR models (Kesall & Wakefield 1999) and implied a stan-

dard deviation centred around 0Æ05, which ranged between 0Æ01 and

2Æ5 with a prior probability of 1%. Given the ln link we used tomodel

the number of invasive species, the constraints we set on the precision

terms cover all the variability we observed in the data and still aided

themodel runs.

PERCENTAGE GROUND COVER ANALYSIS

In a separatemodel we analysed percentage ground cover data for the

study species, given the species was observed at a sample location.

Here we used cover data as a proxy for population success and as a

measure of potential for further spread. We estimated ground cover

as a function of the same environmental variables available: climate,

LULC and site characteristics. In this case per cent cover, PC, was

recorded in six ordinal categories, from £1% to 100% (see Species

data). At location i we assigned a probability pik of falling in each of

the six, k, categories (1–6), using an ordered logit model (or propor-

tional odds model) (McCullagh 1980; Cox 1995). Here the coverage

categories are distributed as:

PCi �Multinomialðpi;1:6; 1Þ eqn 6

The probability of falling within a specific category k site i, pik, is
described as follows:

P PCi ¼ 1ð Þ ¼ pi1 ¼
1

1þ eXibþwi�Upperlimit1

P PCi ¼ 2ð Þ ¼ pi2 ¼
1

1þ eXibþwi�Lowerlimit2
� 1

1þ eXibþwi�Upperlimit2

:::

P PCi ¼ 6ð Þ ¼ pi6 ¼ 1� 1

1þ eXibþwi�Upperlimit6

eqn 7

Xi represents the matrix of environmental data at each location.

We ran model 1 (only climate), model 2 (climate and LULC) and

model 3 (climate, LULC and site variables) to determine which

environmental factors best fit the data. b represents the vector of

the intercept and fixed effects coefficients associated with the pre-

dictor variables and was estimated similarly as in the richness

analysis. Spatial correlation in the data was accounted for by also

including location-level spatially explicit random effects, w. In this

case adding an additional random term, e, did not significantly

improve the fit of the models and was not used. Upper and lower

1222 I. Ibáñez et al.

� 2009 The Authors. Journal compilation � 2009 British Ecological Society, Journal of Applied Ecology, 46, 1219–1228



limits reflect the boundaries of the ordinal categories of the data

(see Species data).

Model simulations were run in OpenBUGS 1.4 (Thomas et al.

2006). Simulations were run until convergence of the parameters was

ensured (�50 000 iterations), after which posterior mean estimates of

the parameters were calculated from another 50 000 iterations.

MODEL SELECTION

Model selection among the three variations described (models 1, 2

and 3), was made on the basis of calculating the posterior predic-

tive loss (PPL) function (Gelfand & Ghosh 1998) for the richness

analysis [the convolution prior did not allow us to estimate devi-

ance information criterion (DIC), see below]). For the analysis of

the species per cent cover data we estimate the DIC (Spiegelhalter

et al. 2000) to compare among models. In both cases, models that

minimized PPL or DIC values were considered to have a better fit

to the data.

MODEL EVALUATION

In order to evaluate our predictions with independent data we with-

held the last �900 data points collected in the IPANE data base.

These additional data points fall within the geographical and climatic

ranges considered in the analyses. We compared our regional predic-

tions with these independent data and evaluated the goodness of fit of

each model by calculating the sum of squares of Predicted-Observed.

In case of having more than one observation per grid cell we used the

mean value for species richness and for per cent ground cover. This

method is easy to use and does not make any assumptions about the

stochasticity implicit in the data (Hilborn & Mangel 1997). Models

thatminimized the sum of squares were considered to be better at pre-

dicting the independent data. In the case of species richness, we also

calculated the number of grid cells correctly estimated for number of

invasive species, with a two species margin.

VISUAL IZ ING PREDICT IONS

Aswe are interested in where invasive species may be particularly suc-

cessful and not only where they already are well-established, we gen-

erated maps of the potential number of invasive species (i.e. richness)

for the whole New England region. To generate prediction maps we

used the posterior parameter values (b coefficients), regional data on

climate (current and forecasted), current LULC data and the average

canopy closure estimated from our data set (37%). This method

allows visualization of grid cell predictions on a continuous map sur-

face.

Results

MODEL SELECTION

In the case of the richness data analysis, model 1, climate only,

had the lowest PPL, although the other two models did not

substantially differ in fit. When looking at particular species

analyses for cover, model 3 (climate, LULC and site) showed

the best goodness of fit (lowest DIC) for three species,B. thun-

bergii, C. orbiculatus and R. multiflora. For the other two spe-

cies, E. umbellata and E. alata, model 1 preformed best,

althoughmodels 2 and 3were not very different.

MODEL EVALUATION

When comparing our predictions with the independent data

(Table 1),model 3 (climate, LULCand site) had the best good-

ness of fit (smallest sum of squares predicted–observed) for the

richness data and also for four of the five species,B. thunbergii,

C. orbiculatus, E. alata and R. multiflora. The only species in

which model 1 (climate only) fitted the independent data best

Table 1. Model selection criteria: predictive loss for richness and DIC for abundance. Model evaluation: least squares sum (all) and per cent of

grid cells correctly identified (richness only), comparisons of independent data with model predictions, lower values indicate better predictions of

the independent data for the least squares method, while higher values show higher per cent in correct identification for the grid cells; bold values

indicate the best model predicting the independent data

Richness

Abundance

Berberis

thunbergii

Celastrus

orbiculatus

Elaeagnus

umbellata

Euonymus

alata

Rosa

multiflora

Model selection criteria: predictive loss and DIC

Model 1 (Climate) 16 770 3346 2836 977 834 >>3000

Model 2 (Climate+LULC) 16 780 2460 2751 997 866 2765

Model 3 (Climate+LULC+Site) 16 780 2434 2736 988 864 2725

Number of data points: 4207 877 879 329 290 982

Model evaluation: using independent data – least squares

Model 1 (Climate) 480Æ82 46Æ5 40Æ6 15Æ96 16Æ3 42Æ5
Model 2 (Climate+LULC) 441Æ16 44Æ8 24Æ9 20Æ84 1Æ2 28Æ2
Model 3 (Climate+LULC+Site) 371Æ79 43Æ8 17Æ4 17Æ98 0Æ82 14Æ5
Number of data points: 911 164 257 85 49 287

Per cent of grid cells correctly identified for number of invasive species

Model 1 (Climate) 90 – – – – –

Model 2 (Climate+LULC) 92 – – – – –

Model 3 (Climate+LULC+Site) 90 – – – – –

Number of grid cells with independent data 164 – – – – –

DIC, deviance information criterion; LULC, Land Use Land Cover.
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wasE. umbellata. When looking at the per cent of grid cells for

which the number of invasive species were correctly predicted

the three models were very similar (Table 1). Given the results

of the model selection and evaluation, we are reporting param-

eter results and regional predictions from model 3 to facilitate

comparisons among the two analyses, richness and species’ per

cent cover (Fig. 2, for specific parameter values, see Table S2).

PARAMETER ESTIMATES

Both the richness and abundance models indicate that climate

variables were themost influential in determining the co-occur-

rences or cover of invasive species (Fig. 2). After climate, site

factors were next in importance to model fit, followed by

LULCvariables. Species richness was higher in areas withwar-

mer temperatures in both summer and winter along with

higher summer precipitation and precipitation seasonality.

Conversely, high annual precipitation had a negative effect on

the number of invasive plant species. With respect to LULC,

areas with a large proportion of evergreen forests or croplands

were associated with lower richness, while roads had a positive

effect on the number of invasive species. Although not signifi-

cant, developed areas, deciduous forests and pastures seem to

promote the occurrence of invasive species. Edge habitat most

favoured a large number of invasive species and evergreen for-

est habitat had lower numbers. Higher levels of canopy closure

were also associated with lower invasive species richness.

Results of the per cent ground cover analyses show differ-

ences in the direction and magnitude of the effect of each pre-

dictive variable among the five species (Fig. 2, Table S2).

Warmer temperatures, mainly in summer, were beneficial for

C. orbiculatus, E. alata and R. multiflora, but have a negative

effect on B. thunbergii and E. umbellata. High annual precipi-

tation positively affected C. orbiculatus, E. umbellata and

E. alata, but had a negative influence on B. thunbergii and

R. multiflora.
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Fig. 2. Posterior means (+SD) of the parameters estimated in the analyses (for comparisons among variables the parameter posterior means

have been multiplied by the average variable value). Asterisks indicate that the 95% credible interval around the parameter mean values did not

include zero.
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The per cent of shrub ⁄ scrubland was the only significant

LULC variable for B. thunbergii and C. orbiculatus was nega-

tively associated with deciduous forests and croplands. Devel-

oped areas, deciduous and evergreen forests also diminished

the per cent cover of E. alata. The only general pattern, lower

per cent cover of these species, was around landscapes where

evergreen forests were dominant.

Habitat-level variables were particularly species specific,

though edge habitat seemed to favour the growth of all five

species. Deciduous forest sites promoted the abundance of

B. thunbergii, C. orbiculatus and E. alata, and decreased

E. umbellata andR. multiflora. Evergreen forest sites had a sig-

nificant negative effect on B. thunbergii and R. multiflora

abundance, contrary to its effect on E. umbellata. Open wet-

lands had a positive effect on B. thunbergii and R. multiflora

cover; closed canopy wetlands enhanced cover of B. thunbergii

andE. alata, and were detrimental toC. orbiculatus, E. umbel-

lata and R. multiflora. Maritime-influenced sites were only

favourable for E. umbellata and R. multiflora. Open ⁄aban-
doned habitats had a significantly positive influence on

B. thunbergii,C. orbiculatus and E. alata. In all species, except

for E. alata, the canopy closure coefficient was negative, sug-

gesting that canopy closure could have had a negative effect on

the population growth of those species.

POTENTIAL HOT SPOT MAPS

We generated predictions (the number of potential invasive

species) based on the region’s climate and LULC. In the case

of climate, we also generated predictions under the two fore-

casted climate extremes described in the Methods section

(Fig. 3). Invasive species richness is predicted to generally

increase under the climate change projection with slight

increases in temperature with higher summer precipitation and

slightly lower annual precipitation (CCSM3), but decrease

under projections with greater increases in temperature and

lower precipitation (HadCM3) (Fig. 3).

Comparing predictions among the current and future cli-

mate scenarios, we find that all species, except E. umbellata,

have a higher risk of increased abundance relative to current

conditions under moderate climate change (CCSM3) while

their incidencemay be reduced under themore extreme climate

change forecast (HadCM3) (Fig. 4).

Discussion

When management resources are limited, identifying those

conditions that promote invasion, ahead of the invasion, will

be critical to the success of early detection and rapid response

control efforts (Andow 2005). Our model predictions provided

explicit spatial locations where early detection efforts should

be focused using our network of volunteers as these areas are

most likely to become invaded. And what it is more our

approach and the models developed in this study can be

applied elsewhere and to any species.

The factors promoting a particular introduction are defined

by a set of temporal and spatial circumstances that may not

apply to other species, times or locations (Davis 2009). Such

individuality motivated us to focus on a particular region,New

England, and instead explore the regional attributes that may

Current CCSM3   HadCM3 

Current - uncertainty

Number of
predicted
species 

Standard 

0 – 0·25

0·25 – 0·5

0·5 – 0·75

0·75 – 1

> 1

0 – 1

1 – 2

2 – 3

3 – 4

> 4

deviation

Fig. 3. Predicted invasive species richness under current and two climate scenarios.
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have fostered plant invasions in the area. We concentrated on

the climatic conditions that may have promoted the establish-

ment of invasives, but viewed the process in the context of the

landscape these species encountered as they spread. Including

LULC variables in our analysis allowed indirect assessment of

many aspects of the invasion process like propagule introduc-

tion and build-up and species naturalization, which are highly

linked to human development and to the incidence of distur-

bances. Unique magnitudes, directions and combinations of

climatic, LULC and habitat-level factors influencing the distri-

bution of each species in the study region are evident. Our

results provide clear evidence for the unique nature of plant

invasions when considering individual species, although, some

general patternswere also identified given the range of environ-

mental conditions foundwithin the region.

Even with species-specific differences, we were able to

identify potential hot spots for plant species invasions. Rela-

tively warmer areas with sufficient summer precipitation

appear to be associated with invasive species occurrence.

Locations with landscapes dominated by deciduous forests,

pastures and grasslands and with a high number of roads

seemed to foster higher numbers of invasive species. At the

site level, disturbed habitats (i.e. edges and open areas) were

also associated with the establishment of these species. These

patterns confirm the role of human activities in the occur-

rence of invasive species. Our regional predictions reflected

our data on the number of invasive species, revealing a

higher incidence in the southern part of the region. Addition-

ally, the analysis forecasted potentially larger numbers of in-

vasives in north-western New England, where the presence

of invasive species is currently relatively low, but the climate

and landscape structure point to a high risk for further inva-

sions. Such predictions can also be generated at different

spatial scales aided with the implementation of local invasive

species management plans.

The wide distributions of many current invasive plant spe-

cies prompted us to concentrate on the identification of prob-

lematic populations (i.e. potential sources of propagules into

uncolonized areas). Many of the currently introduced invasive

species are able to establish in a large variety of sites (Ibáñez

et al. 2009), but will only develop stable and highly fecund

populations in areas where the initial availability of propagules

is high andwhere the environmental conditions are optimal for

the growth and reproduction of the species. In this case climate

and site data informed us on the environmental factors affect-

ing the population, and we used LULC data as a rough proxy

for landscapes that encourage establishment and spread of

invasive plants (often linked to human activities).

Most of the work done in identifying optimal sites for plant

invasions focuses on the climatic and specific habitat character-

istics that promote the growth of a particular species (e.g.

Buckley, Briese & Rees 2003; Hendrix et al. 2008; Gasso et al.

2009). However, for four of the five species examined, includ-

ing neighbourhood LULCdata, improved the predictions; this

reinforces the value of combining predictive variables of differ-

ent types and spatial scales (Meentemeyer et al. 2008; Ibáñez

et al. 2009). Land use change has influenced the growth and

spread of invasive plants in the past (DeGasperis & Motzkin

2007; Mosher et al. 2009) and while we assumed here that

landscape relationships will remain stable, we should also keep

in mind that future landscape dynamics may alter the preva-

lence of invasive plants. In these analyses, each species showed

a unique pattern that determined which combinations of cli-

mate, LULC and site properties promoted the growth of pro-

ductive populations, confirming the idiosyncrasy of the

invasion process and the difficulties of developing generaliza-

tions from single species analyses.

In addition, climate change will also affect plant species dis-

tributions; therefore, taking into account future climate predic-

tions will be imperative if we want to have a comprehensive

understanding of all possible outcomes. An increase in temper-

atures may open higher latitudes to colonization by plants

fromwarmer regions. And, a world-wide decrease in soil mois-

ture (IPCC 2007) will shape the future distribution of many

species in accordance with their tolerance to drought. We then

extended our forecasts to incorporate future climates from pre-

dictions generated by general circulation models. The moder-

ate climate projections (CCSM3) have the potential to increase

plant species invasions. In the case of four of our studied spe-

cies, it could also have a positive effect on their population

growth. On the other hand, predictions under the more

extreme temperature and drought projections (HadCM3) seem

to indicate a lower risk of plant invasions and population

abundance. However, these forecasts are limited to the extent

that they do not take into consideration that the native vegeta-

tion would also be affected, and that the competitive interac-

tions among species and other factors may also be modified.

Nevertheless, having the range of possible outcomes will help

us to single out the most likely areas to become major focal

points of invasion and spread.

The regional data collected by the IPANE volunteers

(S. Treanor, J.A. Silander, J.M. Allen & L.J. Mehrhoff,

unpublished data) provided us with the often unavailable, but

necessary, large-scale data set to analyse the invasion process

Fig. 4. Changes in ground cover (current–forecasted) for the studies

species under the two climate scenarios included in the analyses.
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and to generate predictions of future patterns of plant inva-

sions. The link between citizen scientists, academic research

and natural resource managers is fully elucidated by the pro-

cess and data presented here and demonstrates an improved

strategy for planning early detection andmonitoring strategies.

These species-specific predictions, in particular the information

about the direction and magnitude of the environmental driv-

ers affecting population growth, can be now used directly by

natural resource managers in early detection work and in plan-

ning eradication and control campaigns. Furthermore, the

multivariate approach followed in this study can be imple-

mented in other locations and for other species using the same

or different set of predicted variables with the purpose of gener-

ating realistic predictions of plant invasive potential.
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