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CHAPTER1

INTRODUCTION

Water temperature in streams and rivers is an important attribute of water quality. It di-
rectly controls and often dominates the spatial and temporal distributions of most physical,
chemical, and biological processes in rivers (Caissie et al., 2005; Wehrly et al., 2006). For
example, stream temperature is universally recognized as a crucial variable affecting fish
ecology and community dynamics (Diana, 1983, 1984; Bartholow, 1991; Bartholow et al.,
1993; Kapetsky, 2000; Borman & Larson, 2003; Wehrly et al., 2003; Horne et al., 2004;
Wehrly et al., 2006). Other examples, such as rate of evaporation and condensation, water
density, viscosity, dissolved oxygen content, thermal pollution, chemical reactions, growth
rate of aquatic organisms, and many others, are strongly tied with water temperature. Con-
sequently, to examine the health of an aquatic ecosystem, it is critical to understand how
water temperature changes by natural and anthropogenic stressors.

Stream water temperature changes naturally. It varies from headwaters to outlet because
the water is in contact with the atmosphere and the streambed for cumulatively longer times
(Caduto, 1990; Leopold, 2003; Allan, 2004). It can also be altered when tributaries from
different geomorphic settings enter or when additional groundwater inputs recruit into the
stream (LeBlanc et al., 1997; Wehrly et al., 2006). Seasonal variations in stream water
temperature may reflect the changes in local weather condition, as well as the portion of
groundwater contribution, while diurnal stream temperature variations are highly related to
the air temperature and the receiving solar radiation (Sinokrot & Stefan, 1994; Bartholow,

2000). However, natural thermal regimes can be further altered by human activities. Urban-



ization, landuse change, water demand, and human-induced climate change can seriously
affect stream water temperatures to a great extent.

Many different water temperature models have been developed. These models can
be generally characterized as either being based on empirical methods or on numerically
simulated heat balance equations. The empirical methods are almost always designed for
specific locales (Baker et al., 2005), making it inappropriate to use for capturing thermal
dynamics for other rivers. Besides, these empirical models provide no basis for anticipating
effects of future changes in landcover, hydrology, or climate.

The other type of temperature models is physically-based models. These are models
that posit the complex dynamics of heat exchange at a particular location. Several prob-
lems associated with such models arise in the context of basin-wide ecological assessments.
First, heat balance models are usually steady state models, which assume flows are essen-
tially constant for the entire averaging period, and boundary conditions being simulated
are homogeneous and constant (Bartholow, 2000). Second, most of them are based on the
estimation and time averaged solutions of full energy budgets, including radiation, convec-
tion, conduction, evaporation, and advection. The parameters required for a full energy
budget model are many, and most are difficult to estimate. Obtaining estimates of the pa-
rameters for a large number of sites is often considered simply impractical. Third, these
models often ignore groundwater advection when modeling large rivers (Brown, 1969).
However, a big river is almost always composed from several smaller headwater streams,
and river valleys typically provide both substantial elevational head and conductive alluvial
depths. Thus groundwater advection often has significant impacts on stream temperature
under low flow conditions (O’Neal, 1997; Wiley et al., 1997; Baker et al., 2001, 2003).
For the aforementioned reasons, and to overcome the difficulties of parameterization and
coefficient estimation, a new water temperature model is desired.

The main purpose of my dissertation is to develop a new, simpler (more abstract) ap-

proach to modeling stream temperature which facilitates larger-scale modeling of an en-



tire watershed network, and captures the dynamic hydrographic character typical of real
river systems. Without sufficient long-term water temperature data to provide an empir-
ical function of catchment properties to the predictions of water temperature across the
Muskegon River Watershed, I chose the physically-based heat balance approach to accom-
modate changes in the energy balance that arise from changing environmental conditions,
and transform to changes in water temperature (TVA, 1972; LeBlanc et al., 1997). The
thermodynamic principles are the same from other existing physically-based models. The
calculation approach was quite different. I used only the dominant physical processes to
simplify parameterization as much as possible. This helped reduce the complexity of pa-
rameterization that existed in most physically-based models, without sacrificing too much
of the needed level of accuracy. My simplified stream temperature model required fewer
site-specific parameters, such as riparian shading, wind speed, cloud cover, and humid-
ity. More importantly, since my approach involves explicit coupling to dynamic surface
runoff and groundwater models, it provides an obvious context for exploring the effects of
ecological changes in both groundwater and surface runoff hydrology.

Here, I focus and discuss the development of the Reduced Parameter Stream Tempera-

ture Model (RPSTM) and its applications, including in the following five chapters:

Chapter II - The Reduced Parameter Stream Temperature Model:

This chapter consists of the theoretical development of the Reduced Parameter Stream Tem-

perature Model (RPSTM), the calibration and validation results, and a sensitivity analysis.

Chapter III - Application I- Groundwater Withdrawal:

This chapter illustrates and quantifies patterns of downstream change in thermal regimes
associated with water withdrawal in Michigan rivers, and examines the implications of such

changes on the distribution of coldwater fish assemblages.

Chapter IV - Application II- Dam Removal:



This chapter compares the the impacts of dams and their removal on lower river thermal
regimes, quantifies their impacts on the timing of the early life history stages of Great Lakes
anadromous fishes, and explores the potential amounts of thermally suitable habitats above

the dams for these fishes.

Chapter V - Application III- Climate Change:

This chapter presents a general methodology for water temperature prediction in the light of
climate change scenario, provides a preliminary estimation of the impacts of climate change
on thermal regimes, and assesses the potential shifts in early life stages of targeted game

fish species (steelhead, walleye, and chinook salmon) in the Muskegon River Watershed.

Chapter VI Conclusion and Future Work:

This chapter briefly summarizes the RPSTM developed in this dissertation, and the findings

from the three applications.



CHAPTER I

A REDUCED PARAMETER STREAM TEMPERATURE
MODEL (RPSTM) FOR BASIN-WIDE SIMULATIONS

2.1 Abstract

Water temperature is a crucial predictor of species composition for fish and invertebrate
communities in rivers. To help understand how changes in landscape hydrology and climate
are likely to influence riverine communities, I constructed a Reduced Parameter Stream
Temperature Model (RPSTM), a spatially explicit, easy to parameterize mechanistic heat
balance model. Interfaced with dynamic hydrological models, it allows basin-wide, accu-
rate estimation of stream temperatures under the impacts of changing climate, hydrologic,
and land cover scenarios. In a validation test I used RPSTM to simulate daily water temper-
ature at 119 locations in the Muskegon River Watershed from 1985 to 2005. A sensitivity
analysis was also conducted. The results showed that RPSTM performed well (Maximum
Absolute Error, MABSE, was generally about 1°C for most sites validated) in estimating
stream temperature along the Muskegon river network. The sensitivity analysis revealed
that RPSTM was most sensitive to the parameterization of local air temperature, hydraulic
depth, and solar radiation, but relatively insensitive to rate of surface flow. RPSTM was
moderately sensitive to rates of groundwater discharge, network travel time, and the pa-
rameterization of the heat transfer coefficient. This modeling approach is easily integrated
into complex multi-modeling systems that are now being used to evaluate effects of long

term changes in land use, climate change, and river management on river fish communities.



2.2 Introduction

Stream water temperature is a critical variable shaping the biology of riverine ecosystems.
It exerts a fundamental control over distribution and abundance of fish and other assem-
blages through both physiological (rates of feeding, growth, and metabolism) and behav-
ioral (preferential immigration and emigration) mechanisms (Blann & Nerbonne, 2002;
Wehrly et al., 2003; Brazner et al., 2005; Cheng et al., 2006; Wehrly et al., 2006). Rela-
tively small changes in temperature distributions can potentially radically alter the structure
of fish populations (Diana, 1983, 1984; Cardwell et al., 1996; Kapetsky, 2000; Borman &
Larson, 2003; Wehrly et al., 2003; Horne et al., 2004; Brazner et al., 2005; Cheng et al.,
2006; Wehrly et al., 2006). Consequently, models linking hydrologic, channel and ripar-
ian conditions to the longitudinal distribution of temperature have played a key role in the
study of river fish ecology (Mitchell, 1999; Wehrly et al., 2009; Wiley et al., 2010).

Stream temperature models can be generally characterized as either being based on
empirical methods or on numerically simulated heat balance equations. Empirical relation-
ships were based on time-series and/or geographic observations of stream temperature and
both local and catchment properties. Although water temperature naturally varies with lo-
cations, geomorphic settings, and hydraulic routing, it almost always follows both diurnally
and seasonally cyclic patterns. These patterns are mainly a response to temporal variation
in solar radiation and air temperature (Leopold, 2003; Allan, 2004). Longterm stream tem-
perature monitoring can provide empirical summary descriptions for a locale (Baker et al.,
2005), but it provides no basis for anticipating effects of future changes in landcover (which
strongly influence hydrologic routing) or climate. Moreover, these empirical methods often
assume similarity of the parametric influences to the past, precluding the consideration of
future natural or human-induced impacts on stream temperatures. Since both land use and
climate change seem an inescapably aspect of our near future, the need for more robust
ways of predicting changing thermal environments in rivers is self-evident.

With the growing concern about ecological impacts of global warming, physically-



based heat balance models are receiving renewed interest (Bartholow et al., 2005; Chapra
& Tao, 2006; Fujihara et al., 2008). Heat balance models can accommodate changes in the
energy balance that arise from changing environmental conditions (TVA, 1972; LeBlanc
et al., 1997). They also preserve each individual heat exchange term, which make quanti-
fying single or multiple heat exchange on stream temperatures possible (Bartholow, 2000;
Borman & Larson, 2003). Therefore, these physically-based heat balance models can be
reasonably used to predict in hypothetical scenarios, such as the impacts of dam removal
(Bushaw-Newton et al., 2002; Bartholow et al., 2005), in-stream flow manipulations (Zorn
et al., 2008), and anticipated climate change (Sinokrot et al., 1995). Unfortunately, heat
balance models involve a high level of complexity. The most widely used temperature mod-
els of this type depend on time averaged solutions of full energy budgets, and therefore,
require detailed local parameterization to capture major heat fluxes into and out of streams
(TVA, 1972; LeBlanc et al., 1997; Bartholow, 2000; Borman & Larson, 2003; Chapra &
Tao, 2006). These include: radiation, convection, conduction, evaporation, and advection.
However, in many practical applications, there are insufficient data at the required scales
to estimate parameter values needed in a spatially explicit way. As a result, their enormous
data requirements for parameterizations have made them hard to apply across larger river
networks and other regional-scale ecosystems (Crittenden, 1978).

In addition, most existing heat balance models use steady state solutions to simplify the
calculations. These models assume flows are constant for the entire estimation period and
boundary conditions are homogeneous and constant (Bartholow, 2000; Borman & Larson,
2003; Bartholow et al., 2005). However, the temperature dynamics of streams and rivers
are linked directly to dynamic water discharges, and it is difficult to capture this in steady
state models.

As such, I developed a new Reduced Parameter Stream Temperature Model (RPSTM),
which was conducted with the intent of capturing the correct parametric influences without

the need for detailed site-specific data. It was designed to run explicitly in conjunction



with hydrologic models’ (e.g. HEC-HMS (Hydrologic Engineering Center’s Hydrologic
Modeling System)) simulations of daily flows through large stream networks and is cur-
rently being used in an existing watershed multi-modeling system (MREMS; Muskegon
River Ecological Modeling System) (Wiley et al., 2003a,b; Seelbach & Wiley, 2005; Wiley
et al.,2010). RPSTM provides a new, simpler (more abstract) approach to modeling stream
temperature which facilitates large-scale implementation for an entire watershed network
and allows dynamic thermal characterization typical of real river systems. Moreover, by
combining several heat flux terms into one term (Lanini et al., 2004; Sridhar et al., 2004),
it requires fewer data while still generating accurate stream temperature estimations. Most
importantly, since this approach involves explicit coupling to dynamic surface runoff and
groundwater models, it provides an obvious avenue for exploring the effects of changes in
both groundwater and surface runoff hydrology.

This paper comprises of several parts. I first describe the basic heat balance equations
that govern heat flux in river channel systems. Next I show the derivation of the simplified
RPSTM heat balance equation from the full energy balance. Then I illustrate how the
basic RPSTM approach can be implemented in a hydrologic modeling context; focusing
on its implementation in the Muskegon River (a 7,057 km? catchment tributary to Lake
Michigan). Finally I explore the results of the simulation in a series of validation tests and

a sensitivity analysis.

2.3 Methods

2.3.1 General Basis: The Heat Balance Approach

Temperature is a measure of the amount of energy a system contains. Heat flux (dg/dt)
in the full energy budget includes three standard mechanisms of heat transport: radiation,
convection, and conduction.

In a stream system, energy flux related to radiative processes include solar radiation (i.e.

shortwave radiation), long wave radiation, and back radiation. Consequently, physically-



based in-stream temperature models treat the heat exchange processes as a combination of
these major thermal processes (TVA, 1972; LeBlanc et al., 1997; Bartholow, 2000; Borman
& Larson, 2003; Chapra & Tao, 2006):

d
d—? — (SR+LR—BR)+C,+Cy 2.1)

where dq/dt is heat flux transferring through a unit surface over a specified unit of time
W/ m2h), SR is heat flux from solar radiation at the water surface (J / m2h), LR is heat flux
from longwave radiation (J/ m?h), BR is heat flux of back radiation from the water (J / m2h),
C, is heat flux of convection (J/ m2h), C, is heat flux of conduction (J/ m2h).

Shortwave solar radiation is typically the largest thermal input and strongly affects in-
stream water temperature (TVA, 1972; LeBlanc et al., 1997) , but its quantity is highly
variable both within and between days. Latitude and longitude, as well as the attenua-
tion rate, also affect the quantity of solar radiation reaching a stream. While latitude and
longitude are easily incorporated into a model, attenuation of solar radiation affected by
local variations in atmospheric transmission, cloud cover, reflections, and canopy shade, is
extremely difficult to specify other than by local measurement.

Longwave radiation is the radiation emitted from nearby objects including the surround-
ing atmosphere and ground itself. It falls within the infrared portion of the spectrum (Adam
& Sullivan, 1990). The downward flux of longwave radiation from the atmosphere to a

stream can be calculated using the Stefan-Boltzmann Law:
LR = o (Tyir +273)*€qir(1 — RL) (2.2)

where T, is air temperature (°C), ¢ is the Stefan-Boltzmann constant (5.67 X 1073w / m2K*),
€,ir 1s emissivity of the atmosphere, and Ry is the reflection coefficient, which is typically
assumed to equal 0.03, and is negligible.

A stream also radiates back to the atmosphere, the ground near the stream, and the

riparian vegetation. The amount of this back radiation from the water surface can also be



approximated by the Stefan-Boltzmann law:
BR = eo (T, +273)* (2.3)

where T,, is stream surface temperature (°C), and € is emissivity of water.

Besides radiation, convection, including atmospheric convection and evaporation, is
also important to the overall energy budget of a stream. Convection occurs mostly across
the air-water interface when air and water temperature differs. As a consequence, the rate

of the convective heat flux (C,) can be computed as (Bowen, 1926; Kreith, 1973):
Cv — hc<Tair - Tw) (24)

where C, is heat flux of convection (J/ m2h), T,, is stream surface temperature (°C), Ty,
is air temperature (°C), and /, is a heat transfer coefficient (J/ m?h°C). The heat transfer
coefficient (4.) can be calculated as:

%: 1.5 x 10° (2.5)

e

where k. is the evaporative coefficient for evaporation, and can be estimated as:
k,=1.74 x 1076 x (1+0.72V,) (2.6)

where V, is wind velocity (m/s).

2.3.2 RPSTM Theoretical Derivation

Streambed and stream water temperatures typically follow variations in air temperature, but
are lagged with increasing depth (Acornley, 1999; Brown et al., 2006). For example, water
temperature in a stream responds to the atmospheric conditions in the time constants on
the order of about 40 hours for every meter of water depth (Edinger et al., 1979; Sinokrot
& Stefan, 1993). This reflects mostly rapid adjustments to changes in net radiation flux

and convective flux. Conduction is a much slower process in the time scale on the or-
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der of weeks (Sinokrot & Stefan, 1993). In shallow streams, measurements of streambed
temperature profiles show that the temperature of the streambed surface is almost equal to
the temperature of the stream water, implying that stream water temperature is not very
sensitive to the streambed thermal conductivity (Sinokrot & Stefan, 1993; Lanini et al.,
2004; Sridhar et al., 2004; Cadbury et al., 2008). As a first step towards a more simpli-
fied heat flux representation, I assume the effect of streambed conduction on stream water
temperature is small enough to ignore and drop it from the heat balance altogether.

In general, water temperature in a stream reaches a thermal equilibrium in balance with
the environmental conditions. If there is temperature difference between stream water and
its surroundings, they will exchange thermal energy (heat exchange) until a new thermal
equilibrium is reached. To dynamically predict in-stream temperature, it is critical to cal-

culate the total heat exchange AH (KJ) of a reach:
AH =Ag x A 2.7)

where Aq is the amount of heat transferred through a unit area (KJ/m?), and A is the total
surface area of the reach. Once the heat exchange of a unit air-water interface is determined,
one can calculate the temperature of a reach. Based on the definition of specific heat (c),

the change in stream temperature (A7) is determined as:

AT = — (2.8)
mc

where m is the mass of water in the reach. Therefore, the continuous change in stream

temperature (dT,,/dt) can be written as:

AT, dT, 1 dH 1 {(dqu)} 09)

lim 22 — a
v o) dt

At—0 Af dt  mc " me

Assuming thermal uniformity within a channel both vertically and horizontally, as well
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as a constant interface area (A), the rate of temperature change can be simplified as:

dTW_ A
dt  mc

(E)_{(AXdXP)XC}(dt)_dxpxC(dt) (2.10)

where d is hydraulic depth, p is water density, and dg/dt is heat flux. Substituting heat

fluxes from Equation (2.1), the rate of water temperature change can be written as:

Ly _ (SR+LR—BR+C,+C,)
dt  dxpxc v
1
= Txp e [SR+ 0 (Tuir +274) * €0ir(1 — R) — €6(Tyy +273)* + he(Tpir — Tyy) + 0]

(2.11)
The humidity of the atmosphere close to the water surface is usually large, so I used the
emissivity of water in place of the emissivity of air. Equation 2.11 can then be rewritten as:

dT, 1
dt  dxpxc

{SR+ o€[(Tyir +273)" + he(Tyir — T,)} (2.12)
In Equation (2.12), the quadratic terms can be expanded as:

(Toir +273)* — (T, +273)* = T + 4T3, x 273 +6T2, x 273 + 4T, x 2733 +273*
— T —4T> x 273 — 6T2 x 273> — 4T;, x 273 — 273*
= (T~ T) +4x 273 (13, ~ T3) + 6 x 273" (13, ~ T2)
+4 %2733 (Tpir — Tyy)
= (Tuir — Ty) X [4 x 2733 +6 x 2732 (Tyir + Ty
+4 %273 (T2, + Toiy Ty + T) + (T + T3, Ty + Toiy TE +T3))
(2.13)
Usually, Ty + T,, (°C) is much smaller than 273 allowing Equation (2.13) to be simpli-
fied as:

(Toir +273)* = (T, +273)* ~ 4 x 2733 (Tyir — T, (2.14)
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Consequently, Equation (2.12) can be simplified as:

dT, 1
dtw = Txp e [SR+4 %273 6&(Toir — Tyy) + he(Tuir — T
1
= TSR e (X 273oe ) (T =T) - 215)
1
= W(SR) + (—k) (T — Tuir)

where k is the heat exchange coefficient, which can be expressed as:

. (4x273%ce +h,) 1 2.16)
T dxpxc d '

The solving of the first-order ordinary differential equation (Equation (2.15)) allows us

to model stream temperature of a reach as:

SR SR _
Tyo = Tair + Wpc + (Twi — Tair — Wpc) x e K (2.17)

where T, is the stream temperature at the bottom of the stream reach prior to mixing with
water from other reaches (°C), T,,; is the stream temperature at the start of the reach (°C),
and 7 is travel time of water in each stream segment (/). This simplified equation makes
the prediction of in-stream temperature from energy budget substantially easier. More than
that, it can be used for a wide variety of conditions using only seven parameters, and can

be easily estimated.

2.3.3 Implementation in RPSTM

1. Major Input Variables and Types
RPSTM is implemented using a channel schematic framework similar to that used in
HEC-HMS (Anonymous, 2001). In order to use the RPSTM approach, reach specific
estimates of daily surface water and groundwater flows must be supplied by interfac-
ing hydrological models. I use the outputs from surface water and groundwater mod-
els ILHM; the Integrated Landscape Hydrology Model) (Hyndman et al., 2007),

routed in HEC-HMS to obtain channel flows and groundwater discharges (m3/s),
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and reach-specific travel times (k) (Wiley et al., 2010). Other required information
includes catchment area (km?), observed daily average solar radiation (kJ/ cm?), and
observed daily average air temperature (°C). Solar radiation and air temperature data
used in the simulations were developed by A. Kendall and D. Hyndman at Michigan
State University from NOAA Doppler Radar data and local co-op weather gauges
(Hyndman et al., 2007). Additional necessary parameters include groundwater tem-
perature (°C), the heat exchange coefficient (k), hydraulic depth (m), residence time
of the reservoirs (%), and the solar coefficient. The parameterization processes will

be discussed in section 2.3.4.

. River Channel Configuration File

In RPSTM, a river channel configuration file is used to route the calculations and
encodes a schematic representation of the channel system. If a river is composed
of two tributaries and a main channel, it is represented by 7 elements (i.e. 4 nodes
and 3 lines), where lines AC and BC represent tributaries A and B, and line CD is
the main channel C. In RPSTM, the head waters of tributaries (i.e., nodes A and B)
consist of two components— surface water (Qy,) and groundwater discharge (Qgy).
The node at the confluence of the two tributaries (i.e., node C) is defined as a junction
(Figure 2.1). In the configuration file, I first construct a n by n table, where n is the
number of nodes. At the outer array, tributaries and rivers are first arranged from up-
to down-streams, and then from lower to higher orders where applicable. At the inner
arrays, I use 0 and 1 to represent the absence and presence of a stream node. First
order streams (i.e., nodes A and B) will always be presented as themselves, whereas
junction and main channel nodes are presented by whatever is above or confluent
into them (Figure 2.1. The mainstem temperature is simulated by fluxes from both
upstream and several important tributaries. All groundwater inputs are assumed to
occur at the head of each reach. To simplify, I assume conservation of mass such that

after mixing at the junction, water travels to the next junction without considering
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Qsw.a Configuration File:

A)/- Qqw.a A B C D

v Al1]o]o]o

el B|{Oo|1|0]o0

TwosTims MON . Q c|1|1|0]0O0
T'ME e

B DlIO|O]| 1|0
}w‘s

Figure 2.1: An example of a river composed of two tributaries and one main channel, and how to set up its
configuration file before running RPSTM.

any evaporation loss.

3. Temperature Estimation
To estimate the temperature of natural streams, it is critical to account for the more
or less continuous mixing of water from different sources and temperatures (Adam
& Sullivan, 1990). Since my model is driven by dynamic hydrological models, RP-
STM takes the mixing of surface water and groundwater discharges into account to

dynamically predict longitudinal variation in stream water temperature.

For RPSTM to run, the initial stream temperature (7,,;)(°C) is set to be the tempera-

ture at the start of each tributary, and is determined as:

_ Ty X Qsy + Tgw X ng

T .
" Osw + ng

(2.18)

where Ty, is head surface water temperature (°C), Ty, is groundwater temperature
(°C), Qs 1s modeled surface water discharge (m? /s), and Q,, is modeled ground-
water discharge (m°/s). Precipitation, including rainfall and snowmelt, is the main
source of head surface water. Head surface water temperature is assumed to be equal
to the temperature of precipitation, which can be presented as local air temperature
(Byers et al., 1949). Surface water and groundwater discharge are presumably be-

ing mixed before water starts to travel downstream. For example in Figure 2.1, travel
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times of both tributaries (¢4 and ¢p) are pre-determined by HEC-HMS as the estimated
time of concentration from the unit hydrograph (Wiley et al., 2010). The output tem-
peratures of nodes A and B at the bottom of the tributaries (Node C) before mixing is
calculated by Equation 2.17. The input temperature at node C (T,,; c) is determined
by the temperatures of the two tributaries’ output temperatures (i.e., Ty, 4 and Ty, B)
during the same time domain. Travel time of the tributaries A and B may not be the
same. If the travel time of water in tributary A (i.e., #4) is shorter than that of water
in tributary B (i.e., 73), then the input temperature at node C (7, ¢) is the output tem-
perature of node A (7, 4) at time 74. At time 7, the temperature at node C (T,,; c)

becomes a mixture of the output temperatures of nodes A and B (7,,, 4 and T,,, p) as:

Two,A X (st,A + ng,A) + Two,B X (st,B + QgW,B)

2.19
(st,A + ng,A) + (QSW,B + ng,B) ( )

Tyic =

where Q4 is modeled surface water discharge for node A, Qy,, g is modeled surface
water discharge for node B, Q,,, 4 is modeled groundwater discharge for node A, and
QOgw,p is modeled groundwater discharge for node B. The input temperature at node
D (T, p) is calculated by Equation (2.17) using the travel time of water in the main
channel (7¢) and the output temperatures at node C (7,,,¢). If modeled temperatures
fall below zero, the latent heat of water is considered in the temperature calculation

to accommodate the phase change from water to ice.

To handle thermal stratification in lakes, residence time in the reservoir is in place of
travel time to better estimate the thermal properties of reservoirs as heating sources

for streams.

2.3.4 Application to A Large Complex River System: the Muskegon
River

1. Study Area

The Muskegon River Watershed is located in the central lower Michigan, USA. The
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watershed lies within twelve counties: Kalkaska, Crawford, Clare, Lake, Mecosta,
Missaukee, Montcalm, Muskegon, Newaygo, Osceola, Roscommon, and Wexford
Counties. Its drainage basin encompasses about 7,057 km?2; with a mainstem length
of 350 km. Originating in Higgins and Houghton Lakes, it flows southwest to the

Muskegon Lake, which eventually drains into Lake Michigan (Figure 2.2).

Average annual precipitation ranges from 75 to 90 cm. Summer is usually a drier
season. More than 85% of stream water volume in the tributaries of the Muskegon
River is derived from groundwater (Boutt et al., 2001; Pijanowski et al., 2007). Thus
groundwater fed tributaries are important in sustaining the cold- and cool-water fish
species (Clapp et al., 1990; Brazner et al., 2004, 2005; Creque et al., 2005; Wehrly
et al., 2006), which are common in much of the river system. Nonetheless, there
is concern that a number of important fishes may become susceptible to thermal
stresses (O’Neal, 1997; Wiley et al., 2003a; DePhilip et al., 2005) resulting from
land use changes (e.g. urban sprawl) (Pijanowski et al., 2006, 2007), climate change

(Wiley et al., 2010), and hydropower production (Horne et al., 2004).

. Specific Paramerterizations

The following variables were parameterized specifically for the Muskegon River—

(1) Groundwater Temperature

Groundwater temperature has been reported to be at a constant temperature as the
annual average air temperature if originates from deeper groundwater, and to be
more variable if it flows from shallow groundwater (Bundschuh, 1993). The shal-
low groundwater temperature is characterized by annual periodic temperature fluctu-
ations, influencing by seasonal air temperature variations at the surface (Bundschubh,
1993; Lee & Hahn, 2006). In winter, shallow groundwater temperature can be 1-6 °C
lower than the average annual air temperature, while in summer 2-4 °C higher (Lee

& Hahn, 2006).
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Figure 2.2: The location of the Muskegon River Watershed in Michigan (upper left corner), and the

configuration of tributaries (blue lines) and study sites (red nodes).
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In the Muskegon River Watershed, the springs come from shallow groundwater, or
the mixing of shallow with deep groundwater. Given no direct measurements are
available, and the average annual air temperature for this region was 8.9 °C from
1985-2005, estimates of groundwater temperature at 12.5°C from May 30 to October
7 (i.e. 150" to 280" days of the year), and 6°C for the rest days of the year were

applied for the entire model.

(2) The Heat Exchange Coefficient (k)

From Equations (2.5) and (2.6), it is necessary to know the wind velocity in or-
der to estimate the heat transfer coefficient (4.). With an observed range of O to 8
m/s for the wind velocity in the Muskegon River Watershed, /. ranges from 10.13 to
17.64, and therefore the theoretical value of k is somewhere between 0.006 and 0.019
(mh’l) (Equation 2.16). I conducted several field and lab experiments to better es-
timate the heat exchange coefficients (k) applied in RPSTM. The k estimated from
field and flume experiments in the lab agreed with theoretical values ranging from
0.006 to 0.019 h~! at a depth of 1 meter for observed wind speeds in the Muskegon
River watershed. In RPSTM simulations, 0.0092/depth (h~1) for small channels, and

0.015/depth (h~1) for large rivers and reservoirs, were applied for the entire model.

(3) Hydraulic Depth Estimates

Hydraulic depth for each node and reach in the Muskegon River was determined as:
d = e~ 1446 5 p0-125 5 (70202 (2.20)

where d is hydraulic depth, D, is drainage area, and Q is the total channel flow, which
is the summation of modeled surface water (Qy,) (m° /s) and groundwater discharges
(Qew) (m? /s) from the hydrological models. Depths were calibrated to the average
depth in the low flow season from field records at approximately a hundred locations

across the Muskegon River Watershed.
(4) Dam Simulation
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Table 2.1: Epilimnion depths, volumes, and calculated hydraulic residence times of three major reservoirs
on the mainstem Muskegon River.

Epilimnion Flow Epi-Volume Residence
Reservoirs | Depth (m) (m°/d) (10°%%)  Time (h)
Rogers Dam 3 38.06 5.45 40
Hardy Dam 6 41.34 94.71 636
Croton Dam 2 52.99 9.78 51

In reservoirs, RPSTM estimates the water temperature in the epilimnion. As a result,
I used epilimnion depths of the reservoirs in place of hydraulic depths (Table 2.1).
Moreover, to handle thermal stratification in lakes, residence time in the reservoir was
included to better estimate the thermal properties of reservoirs as heating sources for
streams. The residence time of Rogers Dam, Hardy Dam, and Croton Dam were

calculated by Epi-Volume/Flow (Table 2.1).

In order to offset the underestimated energy inputs in the epilimnion of hydropower
reservoirs, I included the solar heating coefficient into RPSTM for calibrating mod-
eled temperature at Rogers, Hardy, and Croton dams. The solar heating coefficient
was used to reflect a reservoir’s relatively large volume of water acting like an energy

stock to absorb and store solar energy.

2.4 Results

Modeled stream temperatures were validated for the observed daily mean water temper-
atures at 10 monitoring locations. These locations represent a variety of fluvial types
(reservoirs, small reaches, and main channels) and had relatively complete, multi-year data
records.

Among the 10 locations, the correlations between predicted and observed daily mean
water temperature ranged from 0.77 (Low Clam) to 0.99 (Big Rapids) (Table 2.2, and
Figures 2.3 and 2.4). Correlation coefficient less than 0.9 occurred at two locations (Low

Clam and Hersey River) in year 2000; each had with 116 days of observed daily mean
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Table 2.2: Goodness-of-fit comparison between simulated and observed mean daily water temperatures (°C)
at 12 locations in the Muskegon River.

Distance from Year of No. of days of Correlation MABSE

Location mouth (k1)  observed data observed data (r) O
Low Clam 232.64 2000 116 0.77 1.1
Hersey River 155.12 2000 116 0.81 1.1
Little Muskegon 125.69 2000 149 0.97 1.1
Little Muskegon 125.69 1993-1994 351 0.98 1.0
Big Rapids 123.38 1998-2005 2623 0.99 1.1
Croton Dam 80.82 1995-1998 4008 0.98 1.0
Downstream

of Croton Dam 69.56 1990 120 0.96 0.9
Henning 58.30 2000 118 0.90 0.7
Upper Cedar 31.71 2003-2004 656 0.90 2.0
Lower Cedar 15.17 2002-2004 578 0.95 1.6
Little Cedar 12.08 2003-2004 467 0.95 1.8

temperature data. The remaining 8 locations showed a much better relationship (correlation
ranged from 0.9 to 0.99) between modeled and observed daily mean stream temperatures
and much higher of observed days.

Mean absolute error (MABSE, °C) was calculated as the average of the absolute de-
viations of data points between modeled and observed temperatures. Overall, RPSTM
demonstrates high predictive power. 10-year daily MABSEs were generally about 1 (°C)
among the 10 locations. For locations in the mainstem of the Muskegon River, MABSEs
were within 1.1 °C of the measured temperature, whereas for those in the tributaries, they
were within 2°C. The largest MABSE (2.0 °C) occurred in Upper Cedar Creek, and the

smallest (0.7 °C) occurred at Henning (Table 2.2, and Figures 2.3 and 2.4).

2.5 Sensitivity Analysis

In this paper, I performed a sensitivity analysis (Reckhow & Chapra, 1983; LeBlanc et al.,
1997) to investigate how simulated stream temperature was affected by the seven major pa-
rameters in RPSTM, including: air temperature (7;;,), depth (d), the heat flux of shortwave

solar radiation (SR), modeled groundwater discharge (Q,, ), heat transfer coefficient (k.),
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Figure 2.3: Comparison of simulated mean daily water temperature with observed data at Big Rapids,
Croton Dam, and downstream of Croton Dam located in the mainstem of the Muskegon River.
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Figure 2.4: Comparison of simulated mean daily water temperature with observed data at the tributary
locations of the Muskegon River.
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modeled surface flow (Qy,,), and network travel time (¢). I used 10-year July mean stream
temperature as an indicator of sensitivity. It is of particular interest to us since summer
stream temperature is one of the most important factors limiting the distributions of many
cool- and cold-water fishes in this region (Wehrly et al., 2003, 2006, 2007).

I further studied the impacts of these parameters on the major geomorphic settings in
rivers. In the Muskegon River, I chose four locations representing upstream conditions (Big
Rapids), largest tributaries (the Little Muskegon River), large reservoirs (Croton Dam),
and small tributaries (Lower Cedar Creek confluence to the Muskegon River near its ter-
minus). I independently evaluated the sensitivity to the seven key parameters. I adjusted
values of each parameter by factors of 0.25, 0.5, 0.75, 1.25, 1.5, 1.75, and 2, and re-ran the
model, evaluating changes in outputs. The results were then summarized by plotting these
changes in estimated stream temperature at each site. These plots allowed us to identify the
magnitude and direction (positive or negative) of a single parametric influence to stream
temperatures, and to quantitatively understand their impacts on modeled temperatures.

The analysis results at four locations all showed that air temperature is the key thermal
driver in my simulations (Figures 2.5 to 2.8). When adjusting air temperature by factor 2,
it gave a value up to 60°C in summer when the original air temperature was about 30°C.
Although this extremely high air temperature is not realistic, it was utilized to show the rate
of change in water temperature by air temperature. The air temperature affected in-stream
temperature linearly with sensitivity between 15.5°C/factor to 19.0°C/factor.

The second-most influential parameter is stream depth. In-stream temperature at all
locations monotonically decreased while the factors of depth increased (Figures 2.5 to 2.8).
The impact of depth on in-stream temperature was from —5.9°C/factor to —2.9°C/factor.

Shortwave solar radiation is the third most sensitive parameter to the in-stream tem-
perature. Similar to air temperature, it was linearly related to in-stream temperature with
sensitivity varying from 2.4°C/factor to 4.6°C/factor.

At all four locations, groundwater discharge showed an impact of —1.4°C/factor to
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—0.7°C/factor. It was monotonically and inversely related to stream temperature. Heat
transfer coefficient influenced in-stream temperature at 0.6°C/factor to 0.8°C/factor, except
at the Little Muskegon River its influence (i.e. 2.2°C/factor) was much higher than the
other three locations.

Surface flow appeared to be the least sensitive parameter, as it influenced in-stream
temperatures among four locations at less than 0.25°C/factor in average. The influences
of network travel time on stream temperature varied with location in the system as might
be expected. The sensitivity analysis showed that network travel time was less sensitive
to the estimated in-stream temperature at Big Rapids (—0.1°C/factor) and Little Muskegon
River (0.7°C/factor); however, it was sensitive at Croton Dam (—3.1°C/factor) and Lower
Cedar Creek (—3.9°C/factor). It is noted that at Croton Dam and Lower Cedar Creek,
network travel time affected the modeled stream temperature to different levels at certain
factors. For instance, from factors 0.25 to 0.5 xtravel time at Croton Dam, network travel
time on average affected in-stream temperature at —8.6°C/factor. At Lower Cedar Creek
from factors 1 to 1.25xtravel time, it impacted in-stream temperature to —23.4°C/factor

(Figures 2.5 to 2.8).

2.6 Discussion and Conclusion

RPSTM is a physical process model adopted from the energy balance equations. I further
simplified the energy inputs and outputs into seven major parameters, and then translated
the changes in energy balance into water temperature changes. Since the parameterization
process was much reduced compared to most existing physically-based stream tempera-
ture models, it is relatively easy to apply RPSTM to large scale river watersheds. Large
river watersheds usually involve more complex settings and interactions, thus their thermal
conditions are more difficult to model from a highly parameterized model. Although RP-
STM is more complex than a regression type model, it provides a more robust picture of

stream temperatures in relation to potential changes in land use, climate, and hydrology.
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Figure 2.6: Sensitivity Analysis: Identify the influence of each parameter to the modeled July mean stream
temperature by perturbing one parameter of factors ranging from 0.25 to 2, with 0.25 increments at a time at
Croton Dam in the Muskegon River.
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Figure 2.7: Sensitivity Analysis: Identify the influence of each parameter to the modeled July mean stream
temperature by perturbing one parameter of factors ranging from 0.25 to 2, with 0.25 increments at a time at
Little Muskegon in the Muskegon River.
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Figure 2.8: Sensitivity Analysis: Identify the influence of each parameter to the modeled July mean stream
temperature by perturbing one parameter of factors ranging from 0.25 to 2, with 0.25 increments at a time at
Lower Cedar Creek in the Muskegon River.
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RPSTM was integrated with an existing watershed multi-model, MREMS (the Muskegon
River Ecological Modeling System) (Riseng et al., 2006; Wiley et al., 2010), allowing ex-
amination of impacts of natural- or human-induced stressors on stream temperature. By
manipulating changes in the environmental conditions, a comprehensive analysis of im-
pacts can be easily investigated.

In this study, RPSTM was able to capture the river’s daily and seasonal signals, and
matched well with observed stream temperature data. Results showed that the prediction
accuracy of RPSTM was within 1.1°C MABSE in the mainstem and within 2°C MABSE
in the tributaries. Deviations from observed stream temperature data likely were the result
of inaccuracies in both the hydrological model inputs and in parameter estimates.

One likely cause for simulation error is the inaccuracy inherent in air temperature and
solar radiation time-series data. The sensitivity analysis showed that air temperature was
the most influential parameter to the modeled stream temperature, as most heat exchange
terms would involve local air temperatures. I found that shortwave solar radiation was also
sensitive to the estimations of stream temperatures, because in the daytime without full
shading, shortwave radiation serves as one of the major heating sources to the river water
(Bartholow, 2000). With the increasing accuracy of the measuring techniques, errors caus-
ing by the measured instrument can be limited. Since air temperature data were measured at
weather stations miles away from the Muskegon River watershed area, it cannot capture the
real interactions in the local air-water interface. Shortwave solar radiation measurements
were obtained at five sites by the river, but applied for the entire model. With the limita-
tions of site-specific input data, RPSTM still provided useful and reasonable predictions
with Pearson’s product-moment coefficient (r) ranging from 0.77 to 0.99 over such long
time period. More accurate simulations could potentially be achieved by using a higher
density of weather data.

Another likely source of error could be hydraulic depth estimation. Depth is the sec-

ond most sensitive parameter to in-stream temperature estimations. I determined depth by
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regression analysis (Equation 2.20) using data from the low flow season (summer). This
would make the depth estimates in high flow seasons (winter) less accurate. This is espe-
cially true for estimations in small, shallow creeks with large groundwater inputs, because
they are very sensitive to estimates of depth and groundwater advective heat flux. For exam-
ple, temperature estimates in Cedar Creek showed large deviations from observed stream
temperatures in winter. With a large amount of groundwater fed into Cedar Creek, errors
from groundwater input, coupled with the errors from the depth estimation, probably both
contributed to the observed error. This suggests that larger errors are more likely to occur
in my modeling for small tributaries with ample groundwater inputs in winter months.

In addition, errors can arise from the network travel time estimates. Network travel time
was modeled as a constant average value for each reach, whereas in reality it fluctuates with
discharge, wind speed, and debris load. The sensitivity analysis revealed that travel time
has highly variable impacts depending on locations. This is because network travel time is
used to determine which equilibrium temperature (i.e., air temperature) should be applied
to calculate stream temperature (i.e., a travel time of 2 days will result in an equilibrium
temperature set to day (n+2)’s air temperature). Manipulating travel time in rivers in the
sensitivity analysis would cause the model to compute equilibrium temperatures that are
very different from initially computed equilibrium temperatures. Likewise, altering res-
idence time in reservoirs would also result in the selection of very different equilibrium
temperatures. This is especially evident in river junctions from extremely short travel time,
such as small creeks, to long travel times, such as reservoirs or big channels. Junctions be-
tween small and large rivers may be more sensitive to estimates of travel times because the
two rivers are equilibrating to the air temperatures from different days, and usually function
differently. This is seen in the model, as sensitivity to network travel time varied markedly
among locations (Figures 2.5 to 2.8).

Some errors might also come from the hydrologic model’s estimates of groundwater

quantity, and my estimates of its recharging location and temperature. I modeled most
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groundwater recharging locations at upstream as most existing stream temperature models
did, if they took groundwater convection into account. I realized that when groundwater
is recharged in areas other than upstream, this assumption would make the model not be
able to accurately incorporate advective thermal influence on water temperature. To reduce
errors resulting from this, in any area, if groundwater advective heat flux was known to
be significant, I manually relocated the groundwater recharging area and considered the
mixing impacts (Equation 2.19) into the temperature estimation. As a result, errors from
groundwater recharging locations can be limited. However, errors can still be from the
estimation of groundwater quantity and temperature. The thermal impact of groundwater
on the stream water temperature depends on the proportion of groundwater to surface wa-
ter. The quantity of groundwater is dependent on the time of the year, geological factors,
and the watershed area. The temperature of groundwater is more stable compared to the
discharge fluctuations, but errors from the estimation of groundwater temperature could
still cause in-stream temperature simulation errors. In RPSTM, groundwater temperature
companied with air temperature were used to determine the initial condition of the water
temperature at the beginning of each modeled upstream node. In this study, quantity of
groundwater discharge was provided by the linked groundwater model (i.e., ILHM) for
dynamic estimates at each node. Consequently, any errors from the assigned groundwater
temperature or the simulated groundwater quantity would result in errors of initial stream
temperature estimates.

Furthermore, RPSTM was not as accurate in reservoirs as in normal channel flow units.
RPSTM assumed the temperature in epilimnion of reservoirs to be homogeneous, but in
reality, it can vary with depth, season, and probably flow. Assuming a homogeneous tem-
perature in epilimnion resulted in a greater discrepancy between modeled and observed
segment temperature due to variations in heat exchange and storage in colder, deeper (i.e.,
hypolimnetic) layers. Although a solar heating coefficient was applied in reservoirs to bet-

ter calibrate the outputs, RPSTM was not able to correctly locate the actual heat exchange
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fluxes in reservoirs, as the temperatures in reservoirs were often more extreme but also more
stable than those in rivers. Since RPSTM was designed in a more abstract way mainly for
river reaches, it does not consider depth dependent stratification and other complex pro-
cesses a large lake typically has. Therefore, it can not provide as accurate predictions in
IeServoirs.

Finally, the estimates of the heat transfer coefficient (4.) might cause certain errors to
the simulation results. From Equations 2.5 and 2.6, I found that heat transfer coefficient
varies with wind speed. Wind speed varies as a function of canopy density, season, and ge-
ography. When running RPSTM, the heat transfer coefficient at each node was estimated as
a site-specific constant, resulting in a simpler model but likely decreasing model accuracy.
However, Brown(1969) and Sinokrot and Stefan (1993) both pointed out that the impact
of wind speed on stream temperature, either by evaporative cooling or by convective heat
transfer, is much less important than the impact from exposure/isolation to the sun (Brown,
1969; Sinokrot & Stefan, 1993). Similarly, the sensitivity analysis showed that the heat
transfer coefficient is not as sensitive as aforementioned parameters. Therefore, I believe
errors associated with assuming a fixed wind speed are likely small.

RPSTM can be a useful approach for modeling large-scale temperature distributions
across a big river network. Many other stream temperature models work well at few loca-
tions, or in the well studied rivers with relatively small drainage areas (Webb & Nobilis,
1994; Webb, 1996). For example, there have been a variety of stream temperature mod-
els developed for specific locations in rivers (Webb & Nobilis, 1994; Webb, 1996), that
can only predict stream temperatures within the study sites which they are parameterized.
RPSTM’s general format allows applicability across wide range of river networks when
basin-wide hydrologic modeling is available.

RPSTM offers the advantage of reduced need for parameterization while providing ac-
curate stream temperature estimates. RPSTM shares many similarities with HEC-5Q, a

temperature model developed by the US Army Corps of Engineers (1986), which also ac-
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curately predicts stream temperatures across whole river networks with MABSE between
1.63-2.23, (Bartholow et al., 2005). However, RPSTM had similar performance (MABSE
ranges between 0.71 to 2.0 °C) to HEC-5Q while requiring fewer parameters. HEC-5Q re-
quires data on many meteorological conditions (i.e atmospheric pressure, air temperature,
humidity, shortwave radiation, cloudiness, and wind speed) that are not readily available
in most watersheds. Moreover, HEC-5Q is sensitive to estimates of topographic shading.
RPSTM requires no shading inputs. In theory, shading impacts stream temperature by
blocking incoming shortwave solar radiation, and influencing local air temperatures. In
RPSTM, the effect of topographic shading on stream temperature has been absorbed via
the exhibition of local air temperature and solar radiation as required input data. There-
fore, there is no need to double count the impact of shading. As such, RPSTM is easier
to use than HEC-5Q while providing similar accuracy in temperature estimation. The only
atmospheric conditions required by RPSTM are air temperature and shortwave radiation,
making it more practically applicable. If there are no observed air temperature data avail-
able, the General Circulation Models (GSMs) (Lau et al., 1996) can provide estimates.
Furthermore, the linearity relationship of solar radiation to modeled stream temperature
implied that one can still use RPSTM for in-stream temperature prediction when there is
no solar radiation data available, if assisted by calibration techniques.

The most important advantage of RPSTM is that it supports dynamic estimations of
stream temperature. Accuracy is also enhanced due to explicitly considering travel time in
stream temperature estimation. Moreover, using dynamic air temperature better incorpo-
rates the effects of local climate variation on stream temperature. Furthermore, it simulates
process-based flow conditions by coupling with HEC-HMS. Flow is one of the controlling
factors on stream temperature. By representing flow dynamically, one can predict stream
temperature more accurately than a steady state flow model. In addition, RPSTM also
has the ability to respond to dynamic changes in groundwater discharge. Existing models

with reduced parameter requirements often ignore groundwater advection when modeling
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large rivers (Brown, 1969). However, big river segments almost always contain several
smaller headwater streams, and large river valleys typically provide both substantial eleva-
tional head and conductive alluvial depths. As a result, groundwater advection often has
significant impacts on stream temperature under low flow conditions (Bundschuh, 1993;
Constantz et al., 1994; O’Neal, 1997; Wiley et al., 1997; Baker et al., 2001, 2003; Lee
& Hahn, 2006). RPSTM took groundwater advective impacts into account by considering
their magnitude in the presumed mixing process with surface water discharge, and reflected
in calculating the initial stream temperature at the start of each tributary. On the other hand,
it might imply that without dynamic discharge information, either provided by field mea-
surements or by modeling approach, it will be difficult to apply RPSTM.

In conclusion, RPSTM has been designed and developed to be a spatially distributed,
easy to parameterize heat balance model. It can be integrated with dynamic hydrological
models to provide dynamic stream temperature estimation under the variable influences
of micro-climate, land cover, and hydrology. Furthermore, it is easy to apply to large
watersheds that are difficult to model using extant models. Comparison of model outputs
to observed data from a variety of streams in the Muskegon River Watershed reveal that
RPSTM provides accurate stream temperature estimations. Given that RPSTM is a process-
based model, it can be and has been used in dynamic simulations of past, current, and future

watershed management scenarios (Wiley et al., 2010).
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CHAPTER III

DOWNSTREAM IMPACTS OF WATER
WITHDRAWAL: A SPATIALLY EXPLICIT
SIMULATION

3.1 Abstract

Groundwater plays an important role in shaping the ecological character of rivers. As hu-
mans search for water resources to satisfy increasing demand, pumped withdrawals pose
potential threats to river water quality and biological integrity. In 2006, the State of Michi-
gan enacted a new groundwater withdrawal law (2006 PA 34), which explicitly linked
potential impacts on fishes to permitting. To better quantify potential withdrawal impacts,
I used modeling experiments to evaluate the changes in thermal regimes associated with
different levels and locations of water withdrawal. I also linked thermal regimes to poten-
tial impacts on coldwater fishes by calculating the changes in rates of potential lethal events
across affected lengths of river channel. Results showed that withdrawal effects were highly
location and intensity dependent, although increases in potential lethal events for coldwater
fishes were in general strongly correlated with flow reductions. Since the impacts of a water
withdrawal varies with location due to the spatial heterogeneity of groundwater loading. It
is important to understand site-specific hydrologic routing when issuing water withdrawal
licences. This study contributes to the discussion of how environmental protection stan-
dards and permitting requirements can best be developed to both provide for the needs of

our citizens and to protect our waters and water-dependent resources.
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3.2 Introduction

River flow is composed of surface runoff and groundwater. These two components have
very different characteristics. Surface water flow is almost always faster, and warmer in
summer and cooler in winter, than groundwater. Stream temperature varies spatially and
temporally with latitudinal and longitudinal locations, day/night and seasonal fluctuations,
global and local climate, geomorphic settings, and hydraulic routing. Stream width, depth,
and surface area (size), length, and velocity are important in governing river temperature.
Wide streams will have a large surface area compared to volume exposed to solar radia-
tion and thus will be heated to a higher temperature than narrow streams (Farber et al.,
1998). Longer streams with slower velocity will have more time in contact with the atmo-
sphere and expose to solar radiation, and therefore, will have higher temperatures (Adam
& Sullivan, 1990). Often, the proportion of surface and groundwater entering a river chan-
nel determines its water temperature. Groundwater can directly affect river temperature
through advective processes that buffer the water mass against source of heat input (Wehrly
et al., 2006). Therefore, the magnitude of groundwater delivery to river channels modulates
downstream heat gain. In addition, the specific locations where groundwater exchanges oc-
cur are important in shaping river thermographs downstream. Given the relatively constant
groundwater temperature (Bundschuh, 1993; Sinokrot et al., 1995; Constantz, 1998), high
groundwater flows typically (in Michigan) result in cooler river temperatures in summer
and warmer temperatures in winter.

In Michigan, the landscape was heavily glaciated from 43-16 k BP. A protracted period
of retreat (16-10 BP) led to ample coarse drift deposits and groundwater inputs to modern
river systems. However, even in this region, increasing consumptive demand on surface
and groundwater supplies are raising concern (Great Lakes- St. Lawrence River Basin Wa-
ter Resources Compact and Agreement, 2005). Consumptive withdrawals can affect river
water levels and (indirectly) temperature, potentially dramatically altering aquatic commu-

nities (Jansen, 2000; Turner et al., 2005; Cott et al., 2008). In 2006, to better manage river
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water quality and to protect river fishes from water withdrawal impacts, the State of Michi-
gan enacted a new groundwater withdrawal law. Under this legislation, river flows cannot
be decreased "such that the stream’s ability to support characteristic fish populations is
functionally impaired" (Senate Bill 0850, Michigan 2006). Later in 2007 and 2008, several
additional Public Acts were enacted to (1) prohibit all withdrawals resulting in adverse re-
source impacts; (2) establish a water withdrawal permitting system; and (3) require several
state departments to develop an assessment tool to determine and proposed withdrawal’s
potential impact. While it was understood, the thermal impacts of water withdrawal nec-
essarily vary from site to site and generally permutate downstream (Cott et al., 2008; Zorn
et al., 2008), many existing stream temperature models are either too simplistic to capture
these longitudinal dynamics, or too complex to be easily applied (TVA, 1972; LeBlanc
et al., 1997; Bartholow, 2000; Borman & Larson, 2003; Bartholow et al., 2005; Chapra &
Tao, 2006).

Here, I apply the newly developed Reduced Parameter Stream Temperature Model (RP-
STM; see Chapter 2) to explore the temporal and spatial dynamics of water temperature
responses to typical water withdrawal scenarios. The objectives of this paper are: (1) to
illustrate and quantify patterns of downstream change in thermal regimes associated with
water withdrawal in Michigan rivers, and (2) to examine the implications of such changes

on the distribution of coldwater fish assemblages.

3.3 Methods

In order to understand the impacts of simulated rates of water withdrawal on river ecosys-
tems, it is necessary to explicitly consider linkages between hydrological and thermal
regimes. To this end I chose three representative Michigan river systems as locales for my
analysis. Hydrologic models were developed for each of the systems and then were used to
simulate baseline flow (summer) conditions. My newly developed temperature model, RP-

STM (see Chapter 2) was then used to model baseline thermal profiles in each river. Next,
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simulated flows were incrementally reduced from baseline levels at one or more locations
in each of the modeled river networks, and RPSTM used to examine changes in tempera-
ture that resulted. Finally, resulting changes in thermal regime were then summarized as
changes in thermal habitat quality by estimating rates of change in potential lethal events
for coldwater fishes. "Potential lethal event" is defined here as a seven-day running average
July and August stream temperatures greater than 22°C (Wehrly et al., 2007). Presumably

a single lethal event could substantially impact local fish populations.

3.3.1 Site Descriptions

The Muskegon River, Cedar Creek, and Mill Creek were chosen as representative systems
because they represent a range of hydrologic types and sizes common in Michigan, and had

sufficient existing data sets to support the required modeling simulations (Figure 3.1).

1. The Muskegon River Watershed:
The Muskegon River Watershed is within the Lake Michigan/Huron basin, part of
the Laurentian Great Lakes, in central lower Michigan, USA. Drainage basin en-
compasses about 7,057 km?, which lies within 10 counties (Clare, Lake, Mecosta,
Missaukee, Montcalm, Muskegon, Newaygo, Osceola, Roscommon, and Wexford
counties). The main river runs about 350 km, making it the second longest river in
Michigan. The main stem Muskegon River is a fifth order stream, arising in Higgins
and Houghton lakes, and flowing southwest to Muskegon Lake and into Lake Michi-
gan. Stream flow within the Muskegon River Watershed is dominated by ground-
water sources (Hyndman et al., 2006, 2007) and as a result supports a number of
coldwater fishes (O’Neal, 1997; Wehrly et al., 2006). The northern part of this wa-
tershed is currently dominated by forest, with agriculture dominant in the central
region, and urban areas in the south (Pijanowski et al., 2007). Peak flows in this
system occur in the spring with associated snowmelt or large rain events (Hyndman

et al., 2006; Pijanowski et al., 2007).
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Figure 3.1: The locations of the Muskegon River Watershed, Cedar Creek (a tributary of the Muskegon
River), and the Mill Creek Watershed in Michigan.
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The Muskegon River’s many groundwater fed tributaries sustains cold- and cool-
water species, including walleye, northern pike, yellow perch, white sucker, sculpin,
steelhead, brook trout, lake trout, coho, Chinook salmon, and brown trout (Clapp
et al., 1990; Brazner et al., 2004, 2005; Creque et al., 2005; Wehrly et al., 2006).
Nevertheless, it has been reported that a number of important sport fish populations
appear to be under stress due to human-induced changes in the environmental condi-

tions (O’Neal, 1997; Wiley et al., 2003a).

. Cedar Creek:

The 147.89 km? Cedar Creek watershed is a sub-basin of the Muskegon River and is
located in Muskegon and Newaygo counties. Cedar Creek is comprised by 3 small
tributaries- Upper Cedar, Lower Cedar, and Little Cedar. The dominant landcover in
the upstream portion of Cedar Creek is agriculture, while downstream landcover is al-
most entirely forested, which provides shade and helps moderate water temperatures.
The lower portion of Cedar Creek is strongly influenced by groundwater (Hyndman
et al., 2006, 2007). Downstream shading and groundwater provide habitat for brook

trout and Chinook salmon.

. Mill Creek:

Mill Creek drains the largest sub-basin of the Huron River, a medium-sized river
tributary to Lake Erie. It flows through a bowl-shaped catchment (340 km?) in
an agriculture-dominated landscape. The geology of the Mill Creek catchment in-
cludes morainal ice contact hills and coarse moraines (north and west), finer texture
moraines (east and south), alluvium and outwash (east), and till plain for most of
the catchment area (Seelbach & Wiley, 1996). Mill Creek has four major branches-
the Main, the North, the South and East branches. The largest branch is the Main
Branch, which drains the southwest edge of the watershed. The Lower Mainstem

carries the combined flow of the four upper branches into the Huron River at Dexter.
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3.3.2 Hydrological Modeling Overview

1. The Muskegon River Hydrologic Model
Flows for the Muskegon River Watershed were simulated using HEC-HMS (Hy-
drologic Engineering Center’s Hydrologic Modeling System) linked with a 2-layer
recharge and groundwater model developed by Dr. P.E. Richards, SUNY at Brock-
port, NY, as a part of the the Muskegon River Ecological Modeling System (MREMS)
(see http://mwrp.net) (Wiley et al., 2003a; Brenden et al., 2008; Wiley et al., 2010).
The Muskegon HMS model represents this system as a series of 21 channel reaches
originating in 40 sub-basins ( a total of 118 nodes) (See Figure A.1 in Appendix A).
It was run and ran with a daily time step, simulating the period from 1/1/1985 to

12/31/2005.

2. The Cedar Creek Hydrological Model
Flow in Cedar Creek was modeled using ILHM (Integrated Landscape Hydrological
Model) (Hyndman et al., 2006) routed through a higher resolution HEC-HMS net-
work. Baseflow simulations and runoff abstraction from ILHM were linked with the
HEC-HMS to estimate an in-channel hydrograph. The hydrologic model of Cedar
Creek was comprised of 20 sub-basins feeding 18 channel reaches with a total of 53
nodes (See Figure A.2 in Appendix A). Model simulation ran on an hourly time step;

flows were simulated for the period from 12/19/2002 to 8/4/2004.

3. The Mill Creek Hydrological Model
Flow in Mill Creek was modeled using HEC-HMS with empirically calculated monthly
groundwater flows. The model represented Mill Creek as 10 sub-basins and 7 chan-
nel reaches with a total of 26 nodes (See Figure A.3 in Appendix A). The model ran
on a daily time step from 1/1/2003 to 9/30/2004. Daily groundwater discharge was
estimated as an average monthly loading from a regional regression model (Seelbach

& Wiley, 1996).
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3.3.3 Modeling Experiments

1. Experiment 1: Response Variability to Basin-Wide Flow Reductions
In this Experiment, I incrementally two factors simultaneously reduced (a) total flow
(defined as the sum of surface water and groundwater), and then (b) only ground-
water, at each of the 40 modeled sub-basins. The effect was a basin-wide reduction
in flows driven by either losses of groundwater, surface water, or both. My goal
was to investigate how proportional losses might vary spatially within a single river
system. Results for each reach were summarized as 10-year (from 1996 to 2005)
July and August mean temperatures, because these two months usually consist of
the highest water temperature of the year, which is most likely to threaten the cold-
water fish species. I also calculated a 7-day moving average of the daily modeled
temperature at each reach for every 7-day interval for the period from 1985 to 2005.
Since summer weekly mean in-stream temperature below 22°C is a widely used ther-
mal threshold for coldwater species in the midwest U.S. (Lyons, 1996; Lyons et al.,
1996; Wehrly et al., 2003, 2007), when a 7-day average is above the 22°C thermal

threshold occurred, I counted it as one potential lethal event (Wehrly et al., 2007).

The impact of water withdrawal on both temperature and habitat availability was
compared for each withdrawal level to the baseline conditions in terms of the prob-
ability of potential lethal events. These were calculated by dividing the modeled
number of potential lethal events by 1816 (the number of lethal events that would

occur during the simulation if all summer temperatures exceed the 22°C threshold).

2. Experiment 2: Spatial Variability in Response to Localized Flow Reductions in
(a) a Cold and (b) a Warm Water System
My purpose in Experiment 2 was to investigate the impact of local withdrawal on
downstream water temperatures, and to compare those impacts in a small coldwater

(Cedar Creek) and a small warmwater (Mill Creek) stream. This experiment differs
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Figure 3.2: The location of 2 pumping zones used in simulations in experiment 2a for Cedar Creek,

Michigan.
from Experiment 1 in that withdrawals were limited to a single location for each
model run, although I explored spatial variability by examining 2 withdrawal loca-
tions in each stream system. Pumping Zone 1 extended from Cedar Creek at M-120
to its confluence with Little Henna Creek, and Pumping Zone 2 was from Sweeter
Road to River Road (Figure 3.2). In a similar way, flow was reduced at 2 different
locales in the Mill Creek simulation (2b). Pumping Zone 1 was in the upper Main
Branch basin, and Pumping Zone 2 was in the upper North Brain basin (Figure 3.3).
Simulated temperatures were again summarized by monthly mean temperatures in
July and August, and potential lethal events. The cumulative effects of flow with-
drawal on thermal regimes were evaluated and compared moving downstream to the

mouth.
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Figure 3.3: The location of 2 pumping zones used in simulations in experiment 2b for Mill Creek, Michigan.
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3.4 Results

3.4.1 Experiment 1

1. Changes in Water Temperature

Modeled water temperature exhibited large spatial variation throughout the Muskegon
River watershed under baseflow conditions. Likewise, responses to experimental
flow reductions were highly variable spatially. For example, in the mainstem river
below Croton Dam, July mean temperature increased about 2.4°C from 24.6°C (i.e.,
baseline) up to 27.0°C with a 90% total flow reduction. In contrast, in the low-
est reaches of Brooks and Cedar creeks, important cool- and cold-water tributary
systems, July mean temperature only increased about 1.8°C to 2°C from 18.1°C to
19.8°C and from 18.9°C to 20.9°C with a 90% flow reduction respectively (Table
3.1).

Reductions in sub-basin groundwater loading generally resulted in more rapid warm-
ing than did reductions in surface water loading. For example, a 90% groundwater
reduction in Cedar Creek in July resulted in a 3.0°C warming, while only 2.0°C
warming resulted from a 90% reduction in total flow. On the other hand, tributaries
with very little groundwater input saw almost no change in temperature when ground-
water alone was withdrawn. When similar percentages were withdrawn from both
surface and groundwater, tributaries with little groundwater input warmed rapidly
and more than from a withdrawal of groundwater alone. In this case, a much larger
absolute water volume was taken by the simulated surface water than by groundwa-
ter pumping activities. For example, at the outlet to Muskegon Lake in August, a
0.6°C warming occurred with a 90% groundwater withdrawal, in contrast to 0.7°C

warming from a 90% reduction in both surface and groundwater loading (Table 3.2).

In general, Experiment 1 showed that increasing levels of water removal generally

result in warmer stream temperatures during the summer. Impacts of pumping also
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Table 3.1: Modeled 10-year (1996 to 2005) July and August mean water temperature resulting from
different percentages of total flow reduction at different locations in the Muskegon River Watershed.

Site Middle Croton Little Brooks Cedar Outlet to the
Branch Dam  Muskegon Creek  Creek Muskegon Lake
% Flow Reduction Modeled 10-year July Mean Water Temperature (°C)
0% (Baseline) 22.3 24.6 20.8 18.1 18.9 25.1
10% 22.4 24.7 20.8 18.2 19.0 25.1
30% 22.6 25.0 21.1 18.3 19.2 25.5
50% 229 253 21.3 18.5 19.5 254
70% 233 25.9 21.8 18.9 19.9 25.7
90% 24.0 27.0 22.7 19.8 20.9 26.1
9% Flow Reduction Modeled 10-year August Mean Water Temperature (°C)
0% (Baseline) 22.0 24.9 20.4 17.9 18.6 24.6
10% 22.0 25.0 20.5 18.0 18.7 24.6
30% 22.2 253 20.7 18.1 18.9 24.7
50% 22.5 25.6 20.9 18.3 19.1 249
70% 22.8 26.1 21.3 18.7 19.5 25.0
90% 23.5 27.1 22.2 19.5 20.4 253

varied with location and the type of removal (total flow vs. groundwater).

2. Changes in Thermal Habitat Quality
In Experiment 1, I simulated daily temperatures across the river network for a pe-
riod of 21 years (1/1/1985 to 12/31/2005) and estimated probability of lethal thermal

events for salmonids as a general biological metric for thermal habitat.

In the baseline run a total of 4344 potential lethal events occurred within the entire
watershed during the simulated 21 year period; this is equivalent to a basin average
rate of approximately 1.7% per year (21 yrs * 138 VSEC-NHD segments * 86 events
= 249228 possible events). This could be interpreted as meaning that over the 21 sim-
ulated summers, on average about 1.7% of the time temperatures in a single reach
element (VSEC-NHD unit; Valley Segment Ecological Classification Unit-National
Hydrography Dataset (Seelbach & Wiley, 2005; Seelbach ef al., 2006)) exceeded
thresholds generally tolerable by coldwater species (Figure 3.4). Of course the spa-

tial distribution was not uniform. The river above Rogers Dam was more favorable
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Table 3.2: Modeled 10-year (1996 to 2005) July and August mean water temperature resulting from
different percentages of groundwater withdrawal at different locations in the Muskegon River Watershed.

Site Middle Croton Little Brooks Cedar Outlet to the
Branch Dam  Muskegon Creek  Creek Muskegon Lake
% Withdrawal Modeled 10-year July Mean Water Temperature (°C)
0% 22.3 24.6 20.8 18.1 18.9 25.1
10% 22.5 24.7 20.9 18.2 19.0 25.1
30% 22.8 25.0 21.2 18.4 19.3 25.2
50% 233 254 21.6 18.8 19.7 254
70% 24.0 26.0 22.3 19.5 20.3 25.6
90% 25.4 27.1 23.8 21.2 21.9 25.9
% Withdrawal Modeled 10-year August Mean Water Temperature (°C)
0% 22.0 24.9 20.4 17.9 18.6 24.6
10% 22.1 25.0 20.5 18.0 18.7 24.6
30% 22.5 25.3 20.8 18.3 18.9 24.7
50% 22.9 25.7 21.2 18.6 19.3 24.8
70% 23.7 26.3 21.8 19.3 19.9 25.0
90% 25.1 27.3 23.2 20.9 21.3 25.2

to coldwater species (lethal events probability of 11% to 20%) than the lower river
(lethal events probability of 21% to 40%). Lower river tributaries, such as the Little
Muskegon River, Bigelow Creek, Brooks Creek, and Cedar Creek also clearly pro-
vide good habitats for coldwater fishes (Figure 3.4). As water was removed from
the sub-basins, the basin-wide total number of lethal events increased more rapidly
with higher percentages of total flow reductions. When half of the total flow was
withdrawaled, total number of lethal events could increase by about one third to the

baseline (Table 3.3).

There was great spatial variability in terms of where these lethal events occurred. For
example, there were zero potential lethal events in lower Brooks and Bigelow Creeks
even at a 90% flow reduction. On the other hand, in the Lower Middle Branch, four
additional (beyond baseline) potential lethal events occurred at a 70% flow reduction;
in the Little Muskegon River, lethal events began to increase at a 30% flow reduction.
Below Croton Dam and in the mainstem downstream of Cedar Creek, 30% flow

reductions increased the frequency of lethal events by 63.2% and 22.4% respectively
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Figure 3.4: Baseline lethal events probability in over 21 years from 1985 to 2005 at each modeled locations
throughout the entire Muskegon River Watershed under current flow condition.

Table 3.3: The total number of potential lethal events in the Muskegon River under different total flow
withdrawals from 1985 to 2005.

Percent Total Lethal Events Percent

Flow Withdrawal (Times) Increase
0% 4344 Baseline

10% 4556 4.9%

20% 4761 9.6%

30% 5005 15.2%

40% 5242 20.7%

50% 5532 27.3%

60% 5798 33.5%

70% 6126 41.0%

80% 6597 51.9%

90% 7365 69.5%
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Table 3.4: Increment in potential lethal events for select sub-basin in the downstream of Middle Branch,
Croton Dam Reservoir, downstream of the Little Muskegon River, downstream of Brooks Creek, down
stream of Bigelow Creek, and downstream of Cedar Creek caused by different levels of total flow removal.

Location Middle Croton Little Brooks Bigelow Cedar
Branch Dam  Muskegon Creek  Creek Creek
% Flow Reduction Number of Potential Lethal Events (Times)

0% 0 764 0 0 0 152
10% 0 819 0 0 0 175
20% 0 873 0 0 0 211
30% 0 935 1 0 0 248
40% 0 982 5 0 0 289
50% 0 1054 6 0 0 325
60% 0 1144 7 0 0 375
70% 4 1253 9 0 0 435
80% 6 1359 27 0 0 512
90% 37 1511 68 0 0 694

(Tables 3.4 and 3.5).

Using the thermal criterion of avoiding potential lethal events for coldwater fishes, I
examined the overall patterns of thermal sensitivity in the different river segments to
flow reduction and can identify those reaches most vulnerable to temperature change
due to water withdrawal. A 10% modeled flow reduction was predicted to result in
1% to 5% increases in lethal events from the baseline in three areas (Clam River,
Hersey River, and the lower part of the Little Muskegon River) and in almost all
modeled reaches of the mainstem Muskegon River. The rest of the modeled tribu-
taries and the very upstream main channels of the Muskegon River showed no change
from the baseline. A 30% flow reduction caused 6% to 10% increases in lethal events
probability in most of the mainstem channel, except reaches at the Hardy Dam and
the lower parts of the Muskegon River which increased only 1% to 5% from the base-
line. As water withdrawals were increased, lethal events occurred at more locations.
At the 90% flow reduction rate, the upper main channels of the Muskegon River had
46% more events than at baseline; the middle parts of the river showed increases of
41% to 45%; and the lower river had increases from 25% to 16% (Figure 3.5). Re-

ductions in groundwater alone showed similar trends, but with a more rapid increase
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Table 3.5: Times and percentage increases of potential lethal events in the downstream of Cedar Creek
caused and in the Croton Dam Reservoir by different level flow withdrawal upstream from the Muskegon
River study during the period of 1985 to 2005.

Sites Downstream of Cedar Creek Croton Dam
Percent Event Percent Event Percent
Flow Reduction | Increases Increase Increases Increase
0% Baseline Baseline Baseline  Baseline
10% 23 15.1% 55 7.2%
20% 59 38.8% 109 14.3%
30% 96 63.2% 171 22.4%
40% 137 90.1% 218 28.5%
50% 173 113.8% 290 38.0%
60% 223 146.7% 380 49.7%
70% 283 186.2% 489 64.0%
80% 360 236.8% 595 77.9%
90% 542 356.6% 747 97.8%

in the rate of increase of lethal thermal events (Figure 3.5).

In terms of total length of the channel system affected by water withdrawal, I found
that as more water was removed, the total adverse impact on coldwater fishes (kilo-
meters of channel habitat lost) increased. For example, across the entire watershed,
the total length of channel that experienced 1-week above at least 22°C thermal
threshold ranged from 52.5km for a 10% total flow reduction to 332.5km for a 90%
total flow reduction. In the worst case, more than 27 additional weeks above the
threshold occurred when 90% of the total flow was removed. It is worth noting here
that at a 30% reduction level, adverse effects for a 4- or a 5-week period began to
occur. Clearly, the relationship between flow reduction and the relative adverse effect
are complex, and no single description for all segments is possible. Nonetheless, I
believe that the 30% flow reduction level represents a system level threshold at which
impacts on coldwater fishes are great and will occur because of higher summer water

temperature (Figure 3.6).

3. Experiment 2a: Confined Withdrawals in a Coldwater Stream

In the Cedar Creek modeling experiment, I simulated water withdrawal of both
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Figure 3.5: Changes in the possible lethal events probability with different level of total flow (i.e., surface
water plus groundwater) or only groundwater withdrawn at every modeled location compared to the baseline
within the entire Muskegon River Watershed from 1985 to 2005.
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Figure 3.6: Changes in the total affected length of the modeled tributaries and mainstem Muskegon River in
response to different flow reduction, and the resulted number of week differences to the baseline with
potential lethal events across the entire Muskegon River Watershed from 1985 to 2005.
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groundwater and surface water from a single locale (Zone 1 or 2) by manipulating
surface water and groundwater elements in the model. Zone 1 contributed on aver-
age 51% of available flow at the mouth of the system and in this experiment pumping
from Zone 1 simulated a local, medium-scale water withdrawal of the type common
in areas under increasing development pressure. The modeled maximum percentage
water withdrawal (90% reduction from these two elements) would be approximately
60% of the total available channel flow. Zone 2, a more upstream locale, simulated a
full variety of scenarios, including large quantity water withdrawals (90% of the total

available flow).

A 90% reduction in total flow from Zone 1 resulted in only a slight increase (0.23°C)
in temperature 2.4 km downstream (Figure 3.7). Temperature increased by 1.64°C
immediately downstream of pumping zone 1, from 14.4°C to 16.0°C with a 90% total
flow reduction in July. Thus the impact of flow removal from zone 1 was limited to
the immediate downstream reach, and was relatively benign given the already low

baseline temperature in the lower half of this river.

Pumping in zone 2 had larger and more ecologically significant effects. Mean July
stream temperature 0.1 km downstream increased by 2.5°C (from 19.8°C to 22.3°C)
with a 90% total flow reduction; while August mean stream temperature increased
2.6°C, from 20.6°C to 23.2°C with a 90% total flow reduction (Figure 3.8). The
magnitude of modeled temperature changes caused by removal at zone 2 was also

similar when measured at 0.7 km below at the lowest reach.

Across the analysis period of approximately two years, pumping in zone 1 did not
show any adverse impacts (increase in lethal events) to coldwater fish species. How-
ever, flow withdrawal in zone 2 had more substantial effects. Starting at the 30% total
flow reduction, potentially lethal thermal events started to occur in the bottom reach
of Upper Cedar Creek (reach b, 4.7 km below pumping zone 2). The next upstream

reach (reach c, 2.3km below pumping zone 2) began to have lethal events occurring
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Figure 3.7: Experiment 2a (Cedar Creek): Modeled temperature response at downstream segments of Upper
Cedar Creek (reaches b and c) as the total flow is reduced by pumping in Zone 1.
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Figure 3.8: Modeled temperature response at downstream segments of Upper Cedar Creek (reache b (4.7 km
below pumping zone 2) and reach ¢ (2.3 km below pumping zone 2) as the total flow is reduced by pumping
in Zone 2.
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Figure 3.9: Modeled number of potential lethal events in a 21 month period on coldwater fish species using
a seven-day average temperature greater than 220C as a threshold.

at the 40% total flow reduction (Figure 3.9). With 90% total flow loss, lethal events
were occurring 79%, and 68% of the time in July and August in reaches b and c,

respectively.

4. Experiment 2b: Local Withdrawal from a Warm Water Stream (Mill Creek)
In Mill Creek, simulated pumping in Zone 1 (upstream of the main branch) decreased
the heating rate (defined as changes in water temperature per distance) of several
downstream reaches; the effect differed depending on reach location. In the baseline
run, July mean water temperature increased 1.28°C over a distance of approximately
20.5 km between upstream and the outlet of Mill Creek. In the Zone 1 pumping
experiment, however, mean water temperature increased only 1.1°C, 0.8°C, 0.5°C,
and 0.2°C over baseline temperatures given a 10%, 30%, 50%, and 70% total flow
withdrawal respectively. With a 90% total flow withdrawal at Zone 1, modeled water

temperature decreased 0.2°C. Trends of modeled temperature change at other lo-
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Temperature Changes Caused by Flow Reduction at
Upstream of the Main Branch in Mill Creek
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Figure 3.10: Changes in modeled 2003 July mean water temperature (y axis) at different distances (x axis)
from J5 to the outlet caused by pumping at upstream of the main branch in Mill Creek.

cations along the lower main branch in Mill Creek were similar but with different

magnitudes (Table 3.6).

When the pumping experiment was moved to Zone 2 (upstream of the north branch),
I also observed that higher rates of flow reduction would decrease the downstream
heating rate. The response was location dependent. Without pumping (i.e., baseline),
2003 July mean water temperature increased 1.04°C over a distance of approximately
14 km from the bottom of the Pumping Zone 2 to the confluence of the North and
Main Branch. However, modeled 2003 water temperature with pumping in Zone 2
increased only 0.9°C, 0.7°C, 0.5°C, 0.2°C, and 0.0°C at 10%, 30%, 50%, 70%, and
90% total flow withdrawal level respectively. Without pumping (baseline), 2003 July
mean water temperature increased 0.9°C over a distance of approximately 23.1 km
from the bottom of the Pumping Zone 2 to the outlet of Mill Creek. Nonetheless,

modeled 2003 July mean water temperature increased 0.8°C, 0.6°C, 0.3°C, 0.1°C at
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Table 3.6: Modeled July and August mean water temperature change caused by different percentage of total
flow reduction at upstream of the main branch in Mill Creek in years 2003 and 2004.

Reach J5-J52  J5-J6 J5-J4 J5-USGS Gage J5-J2 J5-Outlet
Distance (km) 32 10.7 11.4 14.3 18.0 20.5
Water Withdrawal (%) Changes in 2003 July Mean Water Temperature (°C)
0% 1.1 1.2 1.4 1.4 1.3 1.3
10% 0.9 1.0 1.3 1.2 1.1 1.1
20% 0.8 0.8 1.1 1.1 1.0 1.0
30% 0.6 0.6 1.0 1.0 0.8 0.8
40% 0.4 0.3 0.8 0.8 0.6 0.7
50% 0.2 0.1 0.7 0.6 0.5 0.5
60% 0.0 -0.1 0.5 0.4 0.3 0.3
70% -0.2 -0.3 0.4 0.3 0.1 0.2
80% -0.2 -0.5 0.2 0.1 -0.1 0.0
90% -0.1 -0.7 0.0 -0.1 -0.2 -0.2
Water Withdrawal (%) Changes in 2004 July Mean Water Temperature (°C)
0% 1.1 1.1 1.4 1.3 1.2 1.3
10% 0.9 0.9 1.2 1.2 1.1 1.1
20% 0.7 0.7 1.1 1.0 0.9 0.9
30% 0.5 0.5 1.0 0.9 0.7 0.8
40% 0.3 0.3 0.8 0.7 0.6 0.6
50% 0.1 0.0 0.6 0.6 0.4 0.5
60% -0.1 -0.2 0.5 0.4 0.2 0.3
70% -0.2 -0.4 0.3 0.2 0.1 0.1
80% -0.3 -0.6 0.2 0.1 -0.1 0.0
90% -0.2 -0.7 0.0 -0.1 -0.2 -0.2
Water Withdrawal (%) Changes in 2003 August Mean Water Temperature (°C)
0% 1.0 1.1 1.3 1.2 1.2 1.2
10% 0.8 0.9 1.2 1.1 1.0 1.0
20% 0.7 0.7 1.0 1.0 0.9 0.9
30% 0.5 0.5 0.9 0.8 0.7 0.8
40% 0.3 0.3 0.8 0.7 0.6 0.6
50% 0.2 0.1 0.6 0.5 0.4 0.5
60% 0.0 -0.1 0.5 0.4 0.3 0.3
70% -0.1 -0.3 0.3 0.3 0.2 0.2
80% -0.2 -0.4 0.2 0.1 0.0 0.0
90% -0.1 -0.5 0.1 0.0 -0.1 -0.1
Water Withdrawal (%) Changes in 2004 August Mean Water Temperature (°C)
0% 0.8 0.9 1.0 1.0 1.0 1.0
10% 0.7 0.7 0.9 0.9 0.9 0.9
20% 0.5 0.6 0.8 0.8 0.8 0.8
30% 0.4 0.5 0.7 0.7 0.7 0.7
40% 0.3 0.3 0.6 0.6 0.6 0.6
50% 0.1 0.2 0.5 0.5 0.4 0.4
60% 0.0 0.0 0.4 0.4 0.3 0.3
70% -0.1 -0.1 0.3 0.3 0.2 0.2
80% -0.2 -0.2 0.2 0.2 0.1 0.1
90% -0.1 -0.3 0.1 0.1 0.0 0.0
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Table 3.7: Modeled July and August mean water temperature change caused by different percentage of flow
reduction at upstream of the north branch in Mill Creek, 2003 and 2004.

Site JNF-J4 JNF-USGS Gage JNF-J2 JNF-Outlet
Distance (km) 14 16.9 20.6 23.1
Time July 03  July 04 | July 03 July 04 | July 03 July 04 | July 03 Jul 04
% Withdrawal Changes in Water Temperature(°C)
0% 1.0 1.0 1.0 1.0 0.9 0.9 0.9 0.9
10% 0.9 0.9 0.9 0.9 0.8 0.7 0.8 0.8
20% 0.8 0.8 0.8 0.7 0.7 0.6 0.7 0.6
30% 0.7 0.7 0.6 0.6 0.5 0.5 0.6 0.5
40% 0.6 0.6 0.5 0.5 0.4 0.4 0.4 0.4
50% 0.5 0.4 0.4 0.4 0.3 0.3 0.3 0.2
60% 0.3 0.3 0.3 0.3 0.2 0.1 0.2 0.1
70% 0.2 0.2 0.2 0.2 0.0 0.0 0.1 0.0
80% 0.1 0.1 0.0 0.0 -0.1 -0.1 -0.1 -0.1
90% 0.0 0.0 -0.1 -0.1 -0.2 -0.2 -0.2 -0.2
Time Aug 03 Aug04 | Aug03 Aug04 | Aug03 Aug04 | Aug 03 Aug 04
% Withdrawal Changes in Water Temperature(°C)
0% 0.9 0.8 0.9 0.8 0.8 0.7 0.8 0.7
10% 0.8 0.7 0.8 0.7 0.7 0.6 0.7 0.6
20% 0.7 0.6 0.7 0.6 0.6 0.5 0.6 0.5
30% 0.6 0.5 0.6 0.5 0.5 0.5 0.5 0.5
40% 0.5 0.4 0.5 0.4 0.4 0.4 0.4 0.4
50% 0.4 0.4 0.4 0.3 0.3 0.3 0.3 0.3
60% 0.3 0.3 0.3 0.3 0.2 0.2 0.2 0.2
70% 0.2 0.2 0.2 0.2 0.1 0.1 0.1 0.1
80% 0.1 0.1 0.1 0.1 -0.1 0.1 0.1 0.1
90% 0.1 0.1 0.1 0.1 -0.1 0.0 -0.1 0.0

10%, 30%, 50%, and 70% total flow withdrawal level respectively. Again, at the

90% total flow withdrawal, modeled water temperature even decreased 0.1°C. At

90% total flow reduction level, predicted July mean water temperature decreased the

most at the downstream end of the lower mainstem of Mill Creek (i.e., J2; about

0.2°C decrease on average), and then warmed up a little at the outlet (about 0.02°C

warmer than J2).

Mill Creek is not a suitable habitat for coldwater fish species;no analysis of potential

lethal events for coldwater species was performed.
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Temperature Changes Caused by Flow Reduction at
Upstream of North Branch in Mill Creek

1.6
—— 0% Total Flow Reduction 10% Total Flow Reduction
1.4 +H 20% Total Flow Reduction 30% Total Flow Reduction
——40% Total Flow Reduction —e—50% Total Flow Reduction
——60% Total Flow Reduction 70% Total Flow Reduction
] 80% Total Flow Reduction 90% Total Flow Reduction

N
- N
I

o
e
|

Change in Temperature ( °C)
o o o
o N n (@]

?

5 10 15 20 25

o
()

-0.4

Distance (km)

Figure 3.11: Changes in modeled 2003 July mean water temperature (y axis) at different distances (x axis)
from JNF to the outlet caused by pumping at upstream of the North Branch in Mill Creek.

3.5 Discussion and Conclusion

In Experiment 1, the modeled summer stream temperatures were sensitive to flow reduc-
tions, but that impact was highly variable in space and depended strongly on upstream
hydrology, flow volume, and position of the reach in the drainage network (i.e., time of
travel). At a given location, the thermal impacts of total flow reduction on stream temper-
ature were often similar to those of groundwater withdrawal. However, in places where
groundwater dominated the hydrology, groundwater reductions had a stronger impact than
total flow reduction. Conversely, in a surface-water-dominated channel reach, the thermal
impacts from total flow withdrawal were relatively slight.

In Experiment 2 (a and b), where flow reductions were restricted to specific zones, the
overall result was consistent with those observed in Experiment 1. Again, the amount of
groundwater downstream was an important factor controlling the magnitude of change in

downstream heating rate. Travel time was another critical factor. In the Mill Creek (Ex-
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periment 2b), water withdrawal upstream actually reduced the heating rate downstream by
reducing the volume-weighted travel time in some segments below a confluent cooler water
reach. This could happen because groundwater is generally very limited in the mainstem of
Mill Creek, but a few tributaries of the North Branch carry an unusually high groundwater
contribution. As more total flow was withdrawn upstream, it enhanced the cooling effect
of downstream groundwater inputs on the remaining water volume. In addition, the dis-
tance below the withdrawal strongly affected the modeled response, since longer distances
provided greater exposure to solar energy and larger influences from air temperature. In
Mill Creek, traveling a greater distance also provided additional cooling from the rela-
tively larger amounts of downstream groundwater. As a result, although water warmed
immediately below the pumping zone, modeled temperature at some downstream locations
dropped, not increased, in response to pumping. This surprising spatial variation illustrates
the potential complexity of thermal regime response in river networks and the desirability
of detailed thermal modeling as a part of the permitting process.

Interpreting the thermal regimes through the biological filter of potential lethal events
also provided evidence for a strong correlation between flow reduction and declining cold-
water habitat quality at reaches adjacent to pumping activities. However, the magnitude
of the effect varied markedly between experiments and among sites. My modeling ex-
periments suggest that it not only depends on pumping location, but also river hydrology
(network structure), rate of withdrawal, and spatial patterns of flow accrual downstream.
Although it is fair to generalize that in coldwater systems, the higher the groundwater with-
drawal, the more the potential for impacts on coldwater fish species survival.

The State of Michigan enacted a new groundwater withdrawal law in 2006. Later in
2008, Michigan ratified the Great Lakes-St. Lawrence River Basin Water Resources Com-
pact for the increased protection of the waters of the Great Lakes Basin. Public Acts 179
through 189 of 2008 were amended to bring the State’s water withdrawal registration and

permitting system into conformity with the Compact. A water-withdrawal assessment pro-
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cess and Internet-based screening tool were then developed to evaluate if proposed new
or increased high-capacity water withdrawals will cause an adverse resource impact, and
affect the ability of a stream to support the characteristic fish population (Reeves et al.,
2009).

This legislation is especially critical in rivers with regional groundwater sources as the
results showed very different thermal response to water withdrawal. Based on my find-
ings, large regional groundwater loading downstream may, but also may not, ameliorate
the heating effects from water withdrawal upstream. For instance, in Experiment 1, Brooks
and Bigelow Creeks both did not experience additional lethal events even at 90% flow re-
duction. In the Middle Branch, a few lethal temperature events started to appear at 70%
flow reduction, while in the Little Muskegon River, lethal temperature events started to ap-
pear with 30% or more flow reduction. On the other hand, Experiment 2a showed that with
ample groundwater sources, thermal impacts due to localized upstream pumping could still
occur. My results suggested that 30% water withdrawal might be a removal threshold in
terms of new legislative rule. A similar threshold was also recommended by Michigan
Groundwater Conservation Advisory Council for their evaluated 11 river types (Anony-
mous, 2007).

Although a 30% withdrawal threshold might be a reasonable boundary to protect streams
and their supporting fish fauna from the impacts of large-scale water withdrawal, it is im-
portant to understand that thermal regime responses to water withdrawal are highly depen-
dent upon location and specific hydrologic context. Moreover, flow-biotic relationships are
highly variable among species and river types (Arthington et al., 2006; Zorn et al., 2008).
Zorn et al. (2008) indicated that "20 to 50% of the summer base flow could be removed
without serious adverse impact to fish assemblages in all river types except the cold transi-
tionals" (Zorn et al., 2008). As a result, a site-specific analysis has been included into the
Michigan’s implementation legislation (Public Act 181 of 2008) for withdrawals falling

into certain categories. This revision reflected the understanding of the aforementioned
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complexity and the possibly large range of variation in withdrawal impacts.

In conclusion, this study used a series of modeling experiments to demonstrate that
(1) both surface water and groundwater removals have potentially serious impacts on river
thermal regimes, and (2) that there is an inherently large spatial variability in thermal re-
sponses to unit flow removal. The magnitude, and sometimes direction of thermal impact,
appears to be location specific shaped by patterns of local groundwater flux, mixing ratios,
and travel times. Wells or water extractions closer to the river are likely to have larger
impacts on thermal regime. Yet, large groundwater loading downstream could ameliorate
local groundwater losses. More importantly, it might alleviate the heating effects from
consumption of upstream local groundwater and/or surface water flow. Therefore, sensi-
tivity to water extraction is likely to be spatially variable and site specific, and modeling
heat transport implications will likely be necessary to evaluate ecosystem sensitivity. In
this context, the simplified modeling approach of RPSTM can be a useful tool for explicit
analysis of impacts. These modeling experiments were requested and performed under the
contract with the Michigan Groundwater Advisory Council and have already provided use-
ful information for the discussion of how environmental protection standards can best be
developed to provide for the needs of our citizens without threatening our natural resource

heritage.
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CHAPTER IV

SIMULATING THERMAL IMPACTS OF DAM
REMOVAL ON THE EARLY LIFE HISTORY OF
GREAT LAKES ANADROMOUS FISHES AND THEIR
DISTRIBUTION IN THE MUSKEGON RIVER
WATERSHED IN MICHIGAN, U.S.A.

4.1 Abstract

The Muskegon River is one of the most popular fishing rivers in Michigan. It provides
high quality nursery habitats for several highly-valued game fish species, including steel-
head (Oncorhynchus mykiss), walleye (Stizostedion vitreum), and chinook (Oncorhynchus
tshawytschain). However, three major hydropower dams located in the middle of the river’s
mainstem do not allow passage for fish and make the potentially valuable upstream habitats
for spawning and nursery inaccessible.

On the Muskegon River proponents of dam removal have argued for clear benefits to
the three above-mentioned fish species. They have argued that removal will both make
additional upstream habitat available and improve the thermal habitats of the lower river.

Iapplied my newly developed RPSTM (Reduced Parameter Stream Temperature Model)
to estimate stream temperature under "with dams" and "dams removed" scenarios at 20 sites
in the Muskegon River from 1996 to 2005. Under the circumstances of "dams removed",
the simulated stream water temperature at sites right at or below dams would be lower all
year round, compared with the modeled temperatures when dams were present. Taking

only thermal effects into account, the simulated results have revealed that dam removal
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would cause delays of 8 to 10 days in initiation of spawning for steelhead and walleye, but
no significant delays for chinook. At the same time, timing of fry emergence would be
delayed for all three modeled fish species, although length of delay varied between species

(7 to 15 days).

4.2 Introduction

There are more than 75,000 dams (with storage of greater than 50 acre-feet), and more than
perhaps hundreds of thousands of smaller dams (<15 acre-feet) across the United States
(Anonymous, 1999), affecting in various ways the physical and ecological characteristics
of the waterways in which they are found. Many of these dams in the United States have
reached their designed life expectancies, and are now under relicensing review by the Fed-
eral Energy and Regulatory Commission (FERC) (Bartholow et al., 2005) or other state and
local authorities. With a growing awareness of the importance of environmental preserva-
tion and the protection of fish species and other forms of wildlife (Doyle et al., 2002),
dam removal offers a viable alternative for river management, should the dams’ licenses
fail to be renewed. As part of a larger trend, the past 30 years have seen the removal of
more than 600 dams in the U.S.; most of these were small, low-head, and run-of-the-river
(Maloney et al., 2008). A number of studies have indicated that top-draw hydropower op-
erations would increase summer water temperatures and reduce winter water temperatures,
which may dramatically affect the productivity of salmonids and alter the timing of their
life history (Horne et al., 2004; Tayler & Rutherford, 2007).

Anadromous rainbow trout, also known as steelhead (Oncorhynchus mykiss), chinook
salmon (Oncorhynchus tshawytscha), and walleye (Sander vitreus) are among the most im-
portant sport fisheries in the Great Lakes. The timing of these fishes life history events is
strongly tied to water temperature (Newcomb & Coon, 1997; Koster et al., 2003; Horne
et al., 2004; Wehrly et al., 2006). Water temperature in streams and rivers influences

species distributions, individual growth and metabolism, and species composition (Bartholow,
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1991; Bartholow et al., 1993; Wiley et al., 1997; Kapetsky, 2000; Borman & Larson, 2003;
Wiley et al., 2003a).

The Muskegon River Watershed lies in the central western part of Michigan’s Lower
Peninsula. The large number of groundwater-fed tributaries makes this river an important
spawning habitat for cool- and cold-water fishes, with significant annual production of nat-
ural runs of steelhead, chinook salmon, and walleye (Sander vitreus) for regional sport fish-
eries (O’Neal, 1997; Wiley et al., 2010). Steelhead and chinook salmon were introduced
into the Great Lakes in the late 1800s (Biette ef al., 1981; Bartron & Scribner, 2004; Horne
et al., 2004). Due to their high recreational values, management agencies around the Lake
Michigan basin have made an effort to sustain their populations, mostly by stocking. Un-
like steelhead and chinook salmon, walleye are native to the Great Lakes. In the Muskegon
system, walleye may move freely between the Muskegon River, Muskegon Lake and Lake
Michigan throughout the year (Hanson, 2006). However, scientists have found that walleye
are unable to sustain themselves in the Muskegon River without human assistance. Thus,
the Michigan Department of Natural Resources and Environment (MDNRE) has launched
a program of harvesting walleye eggs and stock at sites right below Croton Dam, the most
downstream dam on the Muskegon River.

In addition to Croton Dam (constructed in 1907), Rogers Dam (constructed in 1906)
and Hardy Dam (constructed in 1931) located within the lower half of river’s mainstem,
have posed problems for steelhead, chinook salmon, and walleye populations, by blocking
access to abundant upstream habitat. On one hand, these water reservoirs provide important
ecosystem services, including hydropower generation, irrigation, municipal and industrial
water supply, recreational use, and flood control (Caduto, 1990; McCully, 1996; Hadley
& Emmett, 1998; Bushaw-Newton et al., 2002). On the other hand, a wealth of existing
scientific evidence shows that large mainstem dams lead to alterations in river flow, wa-
ter quality, sedimentation process, and the subsequent degradation of riverine ecosystems

(Caduto, 1990; Hadley & Emmett, 1998; Graf, 1999; Pringle et al., 2000; Bushaw-Newton
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et al., 2002; Doyle et al., 2002; Pohl, 2002; Horne et al., 2004; Finger et al., 2006; Jager &
Smith, 2008; Maloney et al., 2008).

In 1994, each of the three hydropower dams on the Muskegon River received a 40-year
relicensing from FERC. Meanwhile, FERC also mandated a modification of the Muskegon
River from peaking flows to run-of-river flows for the purpose of increasing habitat for,
and production of, early life stages of salmonids and other fishes (Weisberg & Burton,
1993; Travnichek et al., 1995). Although the dams on the Muskegon River were issued
40-year licences, dam removal could have been an outcome of the process. Given the
fact that the removal of dams is not only costly but also controversial, future decision
makers will need scientific evidence of the many costs and benefits of a dam’s removal. The
thermal impacts of dam removals are complex, poorly understood, and apparently highly
variable. The majority of documented case studies to date have focused on relatively small
dams. However, each dam varies in its hydrologic and hydraulic characteristics, associated
watershed and location, and so the thermal and ecological effects of its removal are likely
to vary (Pohl, 2002; Velinsky et al., 2006). Understanding how changes in temperature
associated with either dam construction or dam removal impact both species of interest
and the ecosystem as a whole is a crucially important aspect of modern river management.
Clearly, there is a need to understand the potential net thermal and ecological beneficial
impacts of dam removal before a decision can be made.

With the hope of informing future management of the steelhead, chinook, and walleye
fisheries in the Muskegon River, I applied my newly developed RPSTM (Reduced Param-
eter Stream Temperature Model) to dynamically predict stream temperature under "with
dams" and "dams removed" scenarios. My objectives in this paper are: 1) to compare the
the impacts of these dams and their removal on lower river thermal regimes, 2) to quantify
their impacts on the timing of the early life history stages of steelhead, chinook, and wall-
eye, and 3) to explore the potential amounts of thermally suitable habitats above the dams

for steelhead, chinook, and walleye.
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4.3 Methods

This study integrated hydrological, stream temperature, and biological/fishery models to
examine and explore the impacts of hypothetical dam removals. As dams are primar-
ily known to alter flow regimes, I coupled process-based hydrological models to RPSTM
to dynamically predict the associated changes resulting from changes in surface water or
groundwater discharge. The simulated water temperatures were used to analyze potential
timing changes of steelhead, chinook, and walleye early life stages. As dam removal will
allow salmonids access to potential spawning and nursery habitats upstream, simulated
water temperatures were summarized as July mean temperatures for searching thermally

suitable habitats above dams.

4.3.1 Site Description

The Muskegon River is the second longest river in Michigan. At 350 km in length, the
Muskegon River flows from Higgins and Houghton Lakes, southwest to the Muskegon
Lake, which drains into Lake Michigan. The drainage basin encompasses about 7,057
km? (Figure 4.1). The Muskegon River contains many groundwater fed tributaries, which
help to sustain cold- and cool-water species (Clapp et al., 1990; Brazner et al., 2004, 2005;
Creque et al., 2005; Wehrly et al., 2006). The Muskegon River has also been an impounded
river system over 150 years. Today, there are three major dams lying on the river (Table
4.1). The most upstream dam is Rogers Dam, which was built in 1906. It is located on
the Muskegon main stem 133.9 km above the mouth. Hardy Dam is in the middle of
the three dams. It was built in 1931, and is located 40.0 m below Rogers Dam. Croton
Dam, built in 1907, is at downstream about 9.4 km of Hardy Dam. These dams have been
operated to schedule hydroelectric power for about a century. Besides the three major
hydropower dams, there remain many other unregistered small dams located on tributary
streams (O’Neal, 1997). Clearly, these impoundments provide human swimming, fishing,

wildlife, and aesthetic benefits. However, harmful consequences of dams also exist in
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Table 4.1: Locations of the modeled stream temperature sites in the Muskegon River.

Impoundment Characteristics | Rogers | Hardy | Croton
Location (km from the mouth) 133.9 93.9 84.5
Catchment Area (km?) 4744.8 | 5008.9 | 6034.1
Residence Time (d) 1.8 46.5 5.9
Mean Depth (m) 3 6 2
Average Flow (cms) 38 41 53

terms of fisheries. For instance, dams present impassable barriers to adfluvial fish (such as
salmonids, suckers, and walleye) spawning migrations. Moreover, the operation of dams
results in changes of flow and stream temperature conditions, which strongly influence the
distribution of fish populations (Tayler & Rutherford, 2007). The new licenses for these
three hydropower dams issued by FERC will expire in 2033. More understanding of the
relationship between existing dams or dam removals, and their impacts on riverine fisheries

will be useful for the next licensing decision.

4.3.2 Thermal Impact Assessment

I modeled the stream temperature at 119 locations in the Muskegon River Watershed.
Twenty of these locations are in the main stem of the Muskegon River from the mouth
to Higgins Lake— 8 are downstream from the mouth to Croton Dam, 9 are above Rogers
Dam, and 3 are in the major hydropower dam pools (i.e., Croton, Hardy, and Rogers) (Table
4.2). All other locations are in tributaries of the river (Figure 4.1).

The hydrological data (daily average surface water discharge, daily average groundwa-
ter discharge, and water travel time for each reach) required by RPSTM were estimated by
HEC-HMS and ILHM (Hyndman et al., 2006). Daily average solar radiation (kJ/ cm?) and
daily average air temperature (°C) were also required to implement RPSTM. These climate
data were observed from the Michigan Automated Weather Network (MAWN) (Anony-
mous, 2008) and from 9 commercial airport weather stations. Only one of the MAWN
weather stations was located within the watershed, but two were near it.

Solar coefficients were estimated at the locations at reservoirs to assist in calibration

66



Table 4.2: Locations of the modeled stream temperature sites in the Muskegon River.

Site Name Location
Site 1 Mouth of the Muskegon River to the Muskegon Lake
Site 2 North Channel of the Muskegon River
Site 3 Muskegon River at Mill Iron
Site 4 Muskegon Wastewater Treatment Plant
Site 5 Muskegon River at B31 Bridge
Site 6 Muskegon River at Bridgeton Bridge
Site 7 Muskegon River at Newaygo Bridge
Site 8 Muskegon River at Downstream Croton Dam (Below USGS Gauge)
Site 9 Muskegon River in Croton Dam Pond
Site 10 | Muskegon River in Hardy Dam Pond
Site 11 Muskegon River in Rogers Dam Pond
Site 12 Muskegon River at Big Rapids (USGS Gauge)
Site 13 Muskegon River at Junction of the Hersey River
Site 14 Muskegon River at Evart (USGS Gauge)
Site 15 Muskegon River at Junction of Middle Branch
Site 16 Muskegon River at Junction of the Clam River
Site 17 Muskegon River at Down Reedsburg Dam
Site 18 Muskegon River at Reedsburg Dam
Site 19 | Muskegon River at Houghton Lake
Site 20 | Muskegon River at Higgins Lake

67



: Haymarsh
v AN :
= i ..~\-J'£Q West Brahch, 5
L/ ; Ao

Jasir
|
r
by
W
o L
= e =y
o ~...Q , <
° # S
oy :

.'. '.') [ s “~ \\
ko Dot and Tom Cre®
Tyt i) ik i
%, EONS

Rogers Dam

Hardy Dam

e Sty Site

——— Tributary

- Lake

$ A — L a :

o\ Lwesg - ' 0 4 8 16 24 32

— Kilometers
Muskegg
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of water temperature in the reservoirs. Other parameters needed for RPSTM implementa-
tion included the heat exchange coefficient, groundwater temperature, and hydraulic depth.
The heat exchange coefficients were assumed 0.0092/depth (2~!) for small channels, and
0.015/depth (A1) for large rivers and reservoirs, and were applied to the entire model.
These values were derived from theory, and further confirmed by field and laboratory ex-
periments (see Chapter II). Groundwater temperature was parameterized by calibrating
modeled stream temperature to observed temperature in Cedar Creek, a tributary to the
Muskegon River with many groundwater sources. The hydraulic depth (m), and residence
time of the reservoirs (4), were parameterized by regression models (see Chapter II). Es-
timated hydraulic depth were calibrated to the observed data in the low-flow condition at
approximately one hundred locations in the Muskegon River Watershed.

After calibration, RPSTM was applied to simulate daily average stream temperature
given the current climate with predicted hydrologic data of dams in place in the HEC-HMS
from 1996 to 2005. For the "dams removed" scenario, I restored the hydraulic depths and
set the residence time of the dams into zero to reflect a free-flowing river if dams were
absent. Then, by removing dam elements in the the HEC-HMS, I applied RPSTM with the
modeled no-dams hydrologic data, and the aforementioned parametric changes, to predict
daily average stream temperature for the same modeled period. The simulated temperature
results were summarized into 10-year (from 1996 to 2005) monthly mean temperatures for

comparison purposes.

4.3.3 Thermal Impacts on Fishes

1. Timing Shifts of Early Life History Stages
The timing of fish life history stages are strongly tied into the stream temperature
conditions. To examine impacts on early life cycle timing due to water tempera-
ture changes in relation to hypothetical dam removal, I applied simple timing and

temperature criteria from literature reviews of three fish species: steelhead, chinook
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salmon, and walleye; all are important game fish in the Muskegon River. Locations
examined were restricted to present fish spawning sites in the main Muskegon River
below Croton Dam, including nearshore Muskegon Lake, the Muskegon main stem
from Newaygo to Bridgeton, and in the reach immediately downstream from Croton
Dam (O’Neal, 1997). When modeled stream temperature and time fell within the
reported ranges, then that day was counted as a possible spawning date. I then esti-
mated fry emergence date for that spawning day by accumulating temperature-units
(TU; 1 TU = 1°C above freezing for 24 hours) until the reported total TU require-
ment was reached. Ten-year averages of the estimated early season spawning and
fry emergence timing were calculated and compared to examine impacts of dam re-

moval.

In the Muskegon River, the first spawning steelhead are found in March or April,
when stream temperature reaches 4.4°C. The peak of the spawning activities are in
mid-April, possible continuing into May, with a daily average stream temperature
warms to 12.8°C (Biette et al., 1981; Bell, 1991; Newcomb & Coon, 1997; O’Neal,
1997; Horne et al., 2004; Richter & Kolmes, 2005). To include all possible spawning
activities, I applied 4.4 to 12.8 °C as the criteria for daily average stream temperature
to filter the modeled stream temperatures at each location from March to May. After
spawning, I assumed that fry emerged after an accumulation of 230 to 340 TU (Myers
& Horton, 1982; Murray & McPhail, 1988). I used 230 TU for early- and 340 TU

for late-emergence.

Although a variety of stream temperature ranges have been reported for chinook
salmon in different regions (Murray & Rosenau, 1989; Mullan et al., 1992; My-
ers et al., 1998; Murphy & Heard, 2001), I used a daily average temperature range
from 7.2 to 14.5°C starting in September, as the criteria for fall chinook spawning
in Michigan (Piper et al., 1982; Connor et al., 2002, 2003a,b). These values were

particularly well matched to our observations for the timing and water temperature
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for fall spawning chinook in the river. I then estimated emergence by summing daily
mean temperature from the first predicted spawning date until they accumulated 1000

TU (Seymour, 1956).

Walleye migrate up the river to spawn every spring. I used a daily average temper-
ature in a range of 4.4 to 8.3°C from March to May as a thermal criterion (Baker &
Manz, 1971; Roseman et al., 1996; DePhilip et al., 2005) for migration and spawning
up river. Following spawning, I used 115 TU (Roseman et al., 1996) as the threshold

for fry emergence.

. Thermally Suitable Upstream Habitats

The upper Muskegon River contains many groundwater fed tributaries that are con-
sidered potential suitable habitats for salmonids. If dams were absent, these habitats
would become available. In assessing these potentially suitable habitats, I applied the
modeled alternative stream temperature along with a commonly used lethal temper-
ature criterion for salmonids: a seven-day running average July and August stream
temperatures greater than 22°C (Wehrly et al., 2007). If a seven-day running average
water temperature in a reach was modeled to be greater than 22°C, it was counted as
a "potential lethal event". Presumably a single lethal event could substantially im-
pact local fish populations. When a tributary contains no potential lethal event, it is

considered a thermally suitable habitat.

As fishes are not only constrained by water temperature, other habitat characteristics
also influence the distribution of fish species. I further linked simulated water tem-
perature along with modeled alternative flow and water quality outputs from other
modeled portions of MREMS, to a modified version of Classification and Regres-
sion Tree (CART) (Steen et al., 2006, 2010). CART, part of the Great Lakes Gap
Analysis Program (GLGAP), is a regional fish habitat model that predicts presence

and absence of a specific fish species for river segments. Linkage with CART pro-
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vided more accurate and more useful prediction in quantifying suitable fish habitats.

Predictions were mapped into a VSEC-NHD (Valley Segment Ecological Classifi-
cation Unit-National Hydrography Dataset) based map (Seelbach & Wiley, 2005;
Seelbach et al., 2006), which was used as the underlying spatial framework, for as-

sessment of suitable habitats.

4.4 Model Results

4.4.1 Changes in Stream Temperature

In my simulations, locations close to and in reservoirs (i.e., Sites 9, 11, 17, 18, 19, and
20), as well as at the mouth (i.e., Site 1) of the Muskegon River, experienced the warmest
stream temperatures in summer (Table 4.3 to 4.6). Simulated removal of Rogers, Hardy,
and Croton dams lowered water temperatures for all sites below Rogers Dam pond from
January to December in all years (Table 4.3 to 4.6). Not surprisingly, modeled tempera-
tures at locations upstream of Rogers Dam showed negligible change between "with dams"
and "dams removed" scenarios. For example, at Site 12, the modeled daily average tem-
peratures were almost identical between "with dams" and "dams removed" scenarios. As a
result, I restrict my discussion below to sites below Rogers Dam.

Simulations suggested that the largest thermal change would occur in the dam ponds
(the impounded segments). The 10-year monthly mean temperature decreased by 0.26
to 0.94°C each month from January to December at Rogers Dam (Table 4.3), while it
decreased from 0.22 to 0.69°C, and from 0.39 to 1.02°C, at Hardy Dam and Croton Dam,
respectively (Table 4.4 and 4.5). The effect declined with distance away from the dams.
Variation in change observed among sites ranged from 0.01 to 0.94°C. Site 1 (i.e., site at
the mouth) was the least affected site by dam removal. The 10-year monthly average water
temperature was lowered from 0.01 to 0.16°C from January to December at the mouth.

The impacts of dam removal also varied seasonally. In general, the smallest changes in

water temperature occurred in January; although there were a few exceptions. In contrast,

72



Table 4.3: Comparison of modeled 10-year monthly mean stream temperature (°C) under "with dams" and
"dams removed" scenarios at Rogers Dam.

Site: Rogers Dam

Month | With Dams Dams Removed Deviation
1 1.5 1.2 -0.3
2 2.4 2.0 -0.4
3 3.1 2.6 -0.6
4 9.3 8.5 -0.7
5 14.4 13.7 -0.7
6 21.0 20.2 -0.8
7 24.7 23.8 -0.9
8 24.2 234 -0.9
9 21.8 20.9 -0.9
10 14.5 13.8 -0.7
11 7.9 7.4 -0.5
12 3.6 3.1 -0.4

the largest deviation of 10-year monthly mean temperature occurred in April for all the
mainstream sites below Croton Dam (Table 4.6). For instance, water temperature below the
dams fell 0.94°C at Sites 7 and 8 in April; while at Site 1, it fell only 0.16°C (Table 4.6).
In currently impounded sites, the largest change in water temperature occurred in summer
and early fall. For example, at Rogers and Croton dams, the largest 10-year monthly mean
temperature deviations resulting from dam removals occurred in June or July; while at

Hardy Dam, it occurred in September.

4.4.2 Changes in the Timing of Spawning and Fry Emergence

Fishes are sensitive to changes in water temperature. Modeling results indicated variable

shifts for the timing of fishes early life history stages.
(1) Spawning Activities at Down Croton (Site 8)

At Site 8, an important current spawning location, modeling predicted that steelhead would
spawn on average from March 25 to May 24, with year to year variation started as early
as March 9 and as late as May 31. Without dams, modeling predicted a 10 day delay in

the onset of spawning activity, which on average ranged from April 4 to May 24. Variation
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Table 4.4: Comparison of modeled 10-year monthly mean stream temperature (°C) under "with dams" and
"dams removed" scenarios at Hardy Dam.

Site: Hardy Dam

Month | With Dams Dams Removed Deviation
1 2.1 1.5 -0.5
2 2.2 1.8 -0.4
3 2.7 2.2 -0.5
4 7.4 7.1 -0.3
5 12.7 12.4 -0.3
6 18.7 18.5 -0.2
7 23.2 22.9 -0.3
8 23.7 23.2 -0.5
9 21.8 21.3 -0.5
10 15.8 15.1 -0.7
11 9.0 8.4 -0.6
12 4.7 4.0 -0.6

Table 4.5: Comparison of modeled 10-year monthly mean stream temperature (°C) under "with dams" and
"dams removed" scenarios at Croton Dam.
Site: Croton Dam

Month | With Dams Dams Removed Deviation
1 1.4 1.0 -0.4
2 1.9 1.5 -04
3 2.6 1.9 -0.7
4 8.2 7.3 -0.9
5 13.8 12.9 -0.9
6 20.0 18.9 -1.0
7 24.6 23.6 -1.0
8 24.9 23.9 -1.0
9 22.7 21.8 -0.9
10 16.4 15.5 -0.8
11 9.1 8.5 -0.6
12 4.2 3.8 -0.5
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Table 4.6: Comparison of modeled 10-year monthly mean stream temperature (°C) under "with dams" and
"dams removed" scenarios at Site 1 to Site 8.

Site 1 2 3 4 5 6 7 8
Month With Dams (°C)

10 10 12 07 13 17 17 16
28 27 16 1.1 16 21 32 20
39 35 24 20 24 27 40 27
97 87 85 85 79 15 85 8.0
154 143 140 144 132 126 13.6 135
22.0 20.8 204 20.8 19.2 185 199 19.6
25.1 244 240 24.6 238 233 23.6 24.0
246 243 239 243 24.1 238 237 244
212 213 21.1 21.1 222 222 215 223
10 136 142 142 142 16.1 164 150 16.1
11 71 77 78 74 93 97 86 9.0
12 26 3.0 32 27 43 48 42 43

Month Dams Removed (°C)

1 1.0 1.0 12 06 12 15 14 1.1
2 28 27 15 09 13 1.8 28 14
3 38 34 21 1.7 19 22 35 19
4 95 84 81 81 72 66 76 171
5 152 14.1 13.7 141 126 119 129 12.7
6 21.9 206 20.1 205 186 17.8 19.0 18.7
7
8
9

(S

O 00 1 O\ Lt & W IN

249 242 237 242 232 226 228 234
245 240 237 240 236 232 23.0 238
21.1 21.1 208 20.8 21.7 21.6 209 21.7
10 13.5 139 139 139 157 159 145 15.6
11 70 75 76 72 90 94 82 86
12 25 29 31 25 40 45 38 39

Month | Deviation = (Dams Removed) - (Current) (°C)

00 -0.1 -01 -0.1 -02 -02 -04 -04
00 -0.1 -01 -02 -03 -04 -04 -06
-0.1 -01 -02 -03 -05 -05 -06 -0.8
-02 -03 -03 -04 -07 -08 -09 -09
-0.1 -03 -03 -03 -06 -0.7 -0.8 -0.7
-0.1 -02 -02 -03 -06 -0.7 -09 -09
-0.1 -02 -03 -03 -06 -0.7 -0.8 -0.7
-0.1 -02 -03 -03 -05 -0.6 -07 -0.6
-0.1 -02 -03 -03 -05 -06 -06 -0.5
-02 -03 -03 -03 -05 -05 -05 -05
-0.1 -02 -02 -02 -03 -03 -04 -04
-0.1 -0.1 -02 -02 -03 -04 -04 -04
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over the ten years was large with steelhead spawning occurring as early as March 10 and
ending as late as May 31. With the dams in place, walleye spawning ranged from March
25 to April 26, varying over the ten years from March 8 to May 19. Simulated removal of
the dams caused walleye’s spawning activities to be delayed 8 days, and on average began
on April 3 and ended on May 2, varying over the ten years from March 9 to May 20.

For chinook salmon, modeling suggested current spawning activities would occur on
average from October 11 to November 27, varying over the ten years from October 8§ to
December 22. Removal of the dams did not cause chinook’s spawning activity to change
much. The timing of chinook spawning activity shifted only one day earlier— from October
10 to November 25 on average. Variation over the ten years for the timing of chinook
spawning activity following dam removals ranged from October 4 to December 22 (Figure

4.2).
(2) Fry Emergence Immediately Downstream of Down Croton (Site 8)

At Site 8 when dams were present, steelhead hatched by April 29 to June 15 on average,
varying over the ten years from April 12 to June 22. With dams absent, on average fry
emergence were delayed from May 6 to June 16. , varying over the ten years from April
15 to June 23. At Site 8 when current dams-in, walleye fry emergence would take place
from April 15 to May 7, with variation over the ten years ranged from March 26 to May
28. Without the dams, walleye emerged from April 22 to May 13, varying over the ten
years from March 28 to May 29. As for fall spawning chinook salmon, with dams in place,
fry emerged from April 26 to June 6, varying over the ten years from March 15 to June
15. If dams were removed, chinook fry emerged on average from May 6 to June 15, with

variation over the ten years started from April 8, and ended on June 23 (Figure 4.2).

4.4.3 Potential Upstream Habitat

Based on temperature and access only, with dams in place, 10.4% (a length of 36.4 km) of

the Muskegon Rivers’ total channel miles are thermally suitable for fish that can tolerate
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Figure 4.2: Predicted 10-year average timing shifts of spawning and hatching activities for steelhead,
walleye, and chinook salmon at down Croton (Site 8). Solid lines indicate earliest to latest yearly variations.

7-day water temperature up to 22°C. If dams were absent, thermally suitable habitat would
increase to 47.0% (a length of 164.5 km) of the Muskegon Rivers’ total channel miles
(Figure 4.3).

Using my thermal predictions to drive the Steen et al. (2010) macrohabitat model, 1
again found very large increases in potentially suitable habitat for each of the targeted sport
fishes. In particular, if dams were removed, steelhead and walleye habitat would increase
200% and 250% respectively. Chinook habitat in the Muskegon River system would be

increased by a more modest 75% (Figure 4.4).

4.5 Discussion and Conclusion

In this study, RPSTM was integrated with other MREMS models, providing more accurate
estimates of water temperatures that would accompany the physical changes in hydraulic
depth, residence time, and discharge under the circumstances of dam removal. My model
predicted that dam removals would lower monthly stream temperature all year round. Col-
lectively, the results have shown that series of dams in the Muskegon River had made the
downstream waters slightly warmer in average on a monthly basis than the results under
the "dams removed" scenario. These results were different than the prediction from a hypo-

thetical dam removal study in the Manistee River in Michigan (Horne et al., 2004). Horne
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Figure 4.3: Model simulations of currently available habitat (dams) for fish that can tolerate 7-day water
temperature up to 22°C, and of habitat that would be made available if Rogers, Hardy, and Croton dams
were removed (no dams).
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Figure 4.4: Model simulations of currently available habitat for steelhead, walleye, and chinook salmon
(above), and of habitat that would be made available if Rogers, Hardy, and Croton dams were removed
(below).
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et al. (2004) found that removal of Manistee River dams would warm up sooner in spring
and cool faster in fall than when impounded. The discrepancies of different direction of
temperature changes between these two studies could possibly due to different approaches
in hydrological estimation. Horne et al. (2004) did not as explicitly consider dynamic
changes in hydrology in dam removal scenario. The hydrological models integrated with
RPSTM predicted that without dams, total flow and hydraulic depths would be decreased at
the reservoirs. Decreased water volume and shallower hydraulic depths could eliminate the
thermal energy storage effects of impoundments, which in turn cause lower downstream
temperatures. In addition, the hydrological models also found that dam removal would
strengthen the accrual of ambient groundwater sources, which could further cool down
the stream temperature in summer. Most importantly, when a river is under its natural
hydraulic configuration after hypothetically removing the dams, a new temperature equi-
librium would be reached due to adjustments of width, depth, and flow (Horne et al., 2004;
Velinsky et al., 2006; Jager & Smith, 2008). As a result, different methods in simulating
the changes of hydrology can potentially affect the estimation in stream temperatures.

The results were consistent with previous research findings, predicting that removing
dams would result in the decrease of summer stream temperatures at the sites below the
dams in Michigan rivers (Newcomb & Coon, 1997; Horne et al., 2004). In particular, daily
average temperatures in summer at sites right at or below dams were always lower than
those with dams in place. My model predicted an average of 1°C decrease in summer
water temperatures below the dams in the Muskegon River. Horne et al. (2004) also found
that average summer water temperatures would decrease from 0.9 to 1.0°C without dams
in the Manistee River. This is because both the Muskegon River and the Manistee River
receive a large volume of groundwater input under the between the impoundments. With
dams in place, the cooling impact from groundwater in summer is overwhelmed by the
large warmer mass from impoundments’ large water volume (Horne et al., 2004). Removal

of dams returns the river back to its natural condition, and allows groundwater inputs play
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sufficient cooling to the water.

My model further predicted that the magnitude of changes in stream temperature fol-
lowing dam removal varied temporally and spatially, depending on the distance to the dams,
the hydrology, and the year-to-year climate conditions. In general, sites closer to the dams
would experience greater temperature changes. As for sites farther from the dams, the ther-
mal footprints of dams were diminished due to the longer distance of air-water interaction.
Impacts of dam removal can also be varied due to the different geometry and geographic
location of river network (Newcomb & Coon, 1997). In the Batsie River, a tributary of Lake
Michigan, removing a dam from the upper reaches would have limited effect below dams
because the inputs of warmer surface water from a headwater lake (Newcomb & Coon,
1997). Apart from the spatial changes, modeling results also varied year by year due to
annual weather variation. The temporal variations were possibly caused by the influence
of climatic cycle on air temperature, which eventually led to a similar trajectory on water
temperature.

It is an important result in terms of fishery management in the Muskegon River that
dam removal could effectively lower summer stream temperature and allow more habitat
and time in the mainstream of the Muskegon River for coldwater species. For example,
migrating adult steelhead would be less thermally stressed and find more thermal refuge in
cooler tributaries in summer. Yet, the magnitude of the lowered summer stream temperature
from dam removals varied temporally and spatially, depending on the distance to the dams,
hydrology, and year-to-year climate conditions.

Analysis results supported the contention that removal of the three hydropower dams
would bring large areas of usable habitats for the three targeted fish. In particular, the
Little Muskegon River, a major tributary adjoining to the mainstem at where Croton Dam
located, is currently fulfilling the 7-day 22°C criterion threshold. However, the existence
of Croton Dam hinders possible fish movement. Dam removal would open the way and

make this thermally suitable tributary accessible. CART analysis further confirmed that
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the Little Muskegon would be suitable for both steelhead and chinook, but not for walleye,
due to other habitat characteristics, such as substrate and flow condition, instead of water
temperature.

Apart from the adjacent Little Muskegon River, dam removals would in general bring
a lot more usable habitat upstream for the targeted three migratory fish. My model pre-
dicted a doubled increase of usable habitats for steelhead and walleyes, and a 75% increase
for Chinook salmon. In contrast, Creque (2002) estimated usable habitats would become
tripled for steelhead, and 5-fold more for Chinook salmon above dams. Although both
studies use similar variables in estimating usable habitats above dams for steelhead and
Chinook salmon, hierarchies of the importance each variable has to the consideration of
usable habitats are very different. For example, although both studies include water tem-
perature and flow criteria of usable habitats for steelhead, different regression models can
produce very different outputs. Besides, calculation of total usable area was very different
in both studies. Difference in these modeling methods all contribute to the discrepancies.
Nonetheless, results both suggested that suitable habitats above the dams in the Muskegon
River would be large. Therefore, identifying suitable habitat for steelhead, walleyes, and
Chinook salmon will be important to provide useful information for fishery managers to
plan their stocking strategies.

The changes in modeled stream temperature following dam removal were certainly
sufficient to affect the early life stages of steelhead, walleyes, and Chinook salmon. The
modeling results revealed that the largest decrease in stream temperature would occur in
April if dams were removed. This is a particularly sensitive time of year in terms of fish
reproduction. Delays in spawning and hatching activities for steelhead and walleye were
predicted. In contrast, fall chinook spawning moved slightly ahead; however, fry emer-
gence for chinook was predicted to be delayed by one month on average. At the same time,
the simulations revealed a longer incubation period for Chinook salmon eggs following

dam removals. As for steelhead and walleyes, the thermally suitable hatching periods re-
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main similar. Prolonged hatching time for Chinook salmon would therefore overlap more
with the hatching activities of steelhead and walleye. This might imply potential inter-
species competitions. For example, walleye eggs and fry currently do not sustain well in
the Muskegon River because its often too cold temperature in spring (Ivan et al., 2010),
which implies a worse situation for walleyes after dam removal due to further decreased
water temperature in spring. However, this study considered only water temperature in
estimating the timing shifts in the early life stages. This could resulted in errors when pre-
dicting the changes in life history timing shifts. Day light and flow velocity are important
factors affecting timing of fish spawning. In addition to water temperature, fish also choose
where to spawn based on flow and substrates. Changes in timing of life history stages
could also result in shifts of the structure for individual fish population and their commu-
nity distribution. As dam removals might also cause dramatic changes in each species’
major life history stage, not just in spawning and hatching, one might ask how the changes
in one life history stage would affect other stages or other species. For example, the delayed
timing of steelhead spawning might shorten hatching and emergence time for developing
eggs (Burger et al., 1985; Bartholow et al., 2005). On the other hand, improved thermal
conditions would make steelhead fry less stressed and more capable of dealing with other
stressors, which would enhance their survival rate (Godby et al., 2007). If survival rate
were improved, and if juvenile growth were also increased, along with the appearance of
more suitable thermal habitats and longer period of preferred stream temperature, a more
complex intra- and inter-species competition may occur. Besides, since migrating adult
steelhead would be less stressed by the summer stream temperature, their ability would be
enhanced in coping with other stressors. This strengthened ability of adult steelhead could
lead to an adverse effect on cool- and warm-water species. These factors were not consid-
ered in my study. Thus, a more detailed study of the causes and potential consequences of
life history timing shifts will be required.

In conclusion, detailed daily water temperature modeling with RPSTM has provided
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useful information on the basis of physical changes in flow and water temperature and on
the impacts to the fishery, allowing fishery managers to better plan for the future in advance.
Apart from the species studied here, the Muskegon River has also been previously docu-
mented as important habitat for other river spawning species, such as the endangered lake
sturgeon, and several species of suckers (O’Neal, 1997). Dam removal could also release
usable spawning and nursery habitats upstream for other important riverine fish species.
Furthermore, if air temperature is expected to increase further in the future under the impact
of global climate change (Soloman et al., 2007), dam removal might help in mitigating the
negative impacts on the coldwater fish community. Consequently, this modeling approach
will be useful in examine complex riverine systems for the future. A thorough cost-benefit
evaluation of the operation/removal of hydroelectric facilities, including the accompanying
social, physical, and ecological changes, will be needed to ensure that the negative impacts

to human and riverine organisms that use these lotic habitats will be minimized.
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CHAPTER V

IMPACTS OF GLOBAL WARMING ON THE EARLY
LIFE HISTORY OF GREAT LAKES ANADROMOUS
FISHES: A MODELING CASE STUDY

5.1 Abstract

Climate change is a serious issue both in the Great Lakes region and globally. To explore
long-term, large-scale potential thermal impacts on Great Lakes fishes, I used a new re-
duced parameter heat balance model (RPSTM) and simulated detailed changes in seasonal
temperature patterns for the Muskegon River, an important tributary of Lake Michigan.
Predictions from the 4th IPCC A1B Scenario were used to drive a multi-modeling system
which provided required inputs for RPSTM. Modeling suggested that the Muskegon River
may experience 2 to 4.5°C warming in monthly water temperature. The greatest increases
in modeled water temperature were predicted to occur in spring, especially during warmer
than average years. Moreover, groundwater fed tributaries experienced greater water tem-
perature change than large channels/reservoirs in winter. However, this spatial distinction
was reduced during the summer. These changes in water temperature are likely to sig-
nificantly alter the timing of steelhead, walleye, and Chinook salmon early life history.
This integrated multi-modeling approach could be useful to fishery managers interested in

planning management adaptations to cope with climate change.
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5.2 Introduction

Reports of observed and potential impacts from a changing climate are accumulating rapidly
(Soloman et al., 2007). Reported impacts range from mountains (Lopez-Moreno et al.,
2008; Minder, 2010; Logan et al., 2010) to oceans (Goberville et al., 2010; Ruhland &
Krna, 2010), from plants (Hou et al., 2010; Sun et al., 2010) to animals (Kissling et al.,
2010; Sauter et al., 2010), and from individual species (Nardone et al., 2010; Steen et al.,
2010) to the entire ecosystem (Mooij et al., 2009; Wiley et al., 2010). Although many re-
ports are still controversial, long-term observations are helping scientists understand how
climate is changing in space and time. For example, global warming is now known to
result from increases of atmospheric concentrations, especially carbon dioxide and other
green house gases. One of the principal ecological effects of climate change is the warm-
ing of earth’s oceans, lakes, and rivers (Mohseni et al., 1999).

Water temperature is a key driving variable governing the overall biological structure of
riverine ecosystems (Bartholow et al., 1993; Wehrly et al., 2003). In particular, fish ecology
and community dynamics are strongly tied to water thermal conditions (Diana et al., 2004;
Horne et al., 2004; McRae & Diana, 2005; Meeuwig et al., 2005; Wehrly et al., 2006;
Diana & Smith, 2008). In salmonids, for instance, life history staging is often triggered by
changes in water temperature (Mullan et al., 1992; Newcomb & Coon, 1997; McCullough,
1999; McCullough et al., 2001), and due to their relatively narrow temperature tolerance,
species distribution is extremely sensitive to the changes in water temperature (Jager ef al.,
1997; McCullough et al., 2001; Steen et al., 2010)

Since temperature is such a crucial factor in shaping ecology of a riverine system, it
is important to understand how climate-induced change may alter the natural spatial and
temporal thermal regimes of aquatic ecosystems. Human-induced and natural changes in
hydrology and climate may both contribute to future shifts in riverine thermal regimes
(Webb & Clack, 1996; Brown et al., 2006). North America is projected in the future to

have warmer and wetter winters (Jonsson & Jonsson, 2009; Wiley et al., 2010), with annual
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average air temperatures being 1.7°C to 4.4°C higher (Soloman et al., 2007). Clearly,
future water temperature regimes are likely to be very different and this will necessarily
have strong impacts on the biology of river fishes.

To assess the potential changes of stream temperature in relation to future climate
change, a modeling approach is required to link climate projections to changes in river
thermal regimes. Currently, stream temperature models can be grouped into two types:
empirical methods (Mohseni et al., 1999; Mohseni & Stefan, 1999) and physically-based
heat balance models (US Army Corps of Engineers, 1986; Sinokrot et al., 1995; Bartholow,
2000). Mohseni and Stefan (1999) applied a simple regression function of air temperature
to estimate weekly stream temperature under a warmer climate scenario. However, this
empirical approach cannot be applied to shorter time scales (e.g. daily). More importantly,
this kind of statistical relationship provides limited power for anticipating effects of future
changes in climate since it incorporates no mechanism of heat fluxes associated with these
climatic changes.

More mechanistic models follow deterministic heat transport theory to calculate changes
in-stream water temperatures. For these “process-based” models, prediction of water tem-
perature is frequently accurate within 1°C compared to observed field data. However, the
existing physically-based heat balance models require a large number of spatially variable
parameters and large amounts of local calibration data. For example, MNSTREM (Sinokrot
& Stefan, 1993) and HEC-5Q models (US Army Corps of Engineers, 1986) both require
many site-specific variables, including stream morphology, stream hydrology, meteorolog-
ical variables, and stream bank vegetation types. While some parameter values may be
easily obtained, many, such as local (reach scale) relative humidity, wind speed, and cloud
cover, are not always available, especially in large regional studies.

Parameterization will be inherently risky under a climate change scenario due to un-
certainties in future climate outcomes. The magnitude and even direction of parameter

response to climate change are difficult to verify because of scaling and interaction con-
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cerns. Local weather conditions are very likely to differ from global or regional patterns
predicted by General Circulation Models (GCM; (Deardorf, 1972; Sellers et al., 1986; Pir-
tle et al., 2010; Sinha et al., 2010)) of future climate scenarios. In addition, the interactions
of a warming climate with stream hydrology, geomorphology, and plant communities are
likely complex. They might interact with each other in different relationships than empir-
ical models, and therefore, the parameterization process will likely be more difficult and
variable in regard to global warming.

The developed Reduced Parameter Stream Temperature Model (RPSTM) provides ac-
curate water temperature estimation that requires fewer parameters, and supports dynamic,
and spatially explicit hydrologic simulations. Here I use this temperature modeling ap-
proach to examine ways in which climate change may alter life history and distributional
patterns of several important fishes in the Muskegon River Watershed, Michigan, USA.

The purpose of this study was to: (1) present a general methodology for water tem-
perature prediction in the light of a climate change scenario; (2) provide a preliminary
estimation of the impacts of climate change on thermal regimes; and (3) assess the poten-
tial shifts in early life stages of targeted game fish species (steelhead, walleye, and Chinook

salmon) in the Muskegon River Watershed as a result of climate change.

5.3 Methods
5.3.1 Site Description

This study examines climate change impacts on the Muskegon River Watershed. The wa-
tershed is located in the west-central part of the Lower Peninsula of Michigan, USA. The
drainage basin encompasses 7,057 km?, of which 33.4 % is agriculture, 9.6 % urban, 22 %
forested, 14 % wetlands, and 21 % covered by other land use type (Anonymous, 2004).
The Muskegon River is the second longest river in Michigan. Its mainstem is 350 km
long; from the head waters to Lake Michigan, it drops about 175 m. The river originates in

Higgins and Houghton lakes, and flows southwest to the Muskegon Lake, which eventually
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drains into Lake Michigan. The river presently has 4 major water impoundments, includ-
ing Reedsburg (constructed in 1940), Rogers (constructed in 1906), Hardy (constructed in
1931), and Croton dams (constructed in 1907). Reedsburg Dam is located at the headwa-
ters of the river, just below Houghton Lake. The other three are large hydropower dams
with large impoundments, located in the middle portion of the mainstem (O’Neal, 1997).

The average annual precipitation in the Muskegon River Watershed is 90 cm (Pijanowski
et al., 2006). Peak flows tend to occur in the spring either following snowmelt or associ-
ated with large rain events. Water quality is good in most parts of the watershed (O’Neal,
1997). Presently, the Muskegon River supports 77 native fish species and an additional non-
native 12 species that colonized through constructed channels or were introduced directly
(O’Neal, 1997). Many groundwater fed tributaries help to sustain cold- and cool-water
species (Clapp et al., 1990; Brazner et al., 2004, 2005; Creque et al., 2005; Wehrly et al.,
20006).

I focused the assessment of fish early life history of adfluvial steelhead (Oncorhynchus
mykiss), Chinook salmon (Oncorhynchus tshawytscha), and Great Lake walleye (Sander
vitreus) (O’Neal, 1997) on the lower part of Muskegon River, ranging from Croton Dam
to Muskegon Lake. Access for migratory fishes to the upper river is restricted by the three
large hydropower dams. The length of the lower Muskegon River is approximately 70 km

(Steen et al., 2010), and provides the primary spawning areas of the species discussed here.

5.3.2 Model Linkage

To explore the impacts of future climate change on thermal regimes of the Muskegon River,
RPSTM was applied to estimate both present (baseline) and future water temperatures. RP-
STM was linked to a suite of interacting sets of climate, hydrology, and landuse models in
MREMS (The Muskegon River Ecological Modeling System) (Seelbach & Wiley, 2005;
Wiley et al., 2010). Participating component models of MREMS were developed and exe-

cuted independently. They communicated by exchanging inputs/outputs via a shared data
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directory referenced by VSEC (Valley Segment Ecological Classification) spatial frame-
work (Anonymous, 2000; Seelbach et al., 2006). Models were structured and executed in
a proper hierarchy that represented how climate condition influenced local hydrologic, wa-
ter quality, and ultimately biological consequences in real river ecosystems (Wiley et al.,
2010).

Typically, the weather and landuse models drive all other dependent models. Cur-
rent (i.e., years 1996 to 2005) climate data were developed by Kendall and Hyndman at
Michigan State University from NOAA Doppler Radar data and local cooperative weather
gauges. The climate change scenario was based on projections of the Intergovernmental
Panel on Climate Change (IPCC) A1B climate modeling in the 4th Assessment Report
(Meehl et al., 2007). Projected monthly anomalies of average daily air temperature and
total daily precipitation (Soloman et al., 2007) were used to adjust historic data from 1996
to 2005 (Wiley et al., 2010). Future landcover was simulated by a Land Transformation
Model (LTM) (Pijanowski et al., 2000). LTM uses neural network simulation algorithms
that apply the historical patterns of urban and forest growth into the future (Pijanowski
et al., 2006, 2007). Groundwater flux was predicted by the Integrated Landscape Hydrol-
ogy Model (ILHM) (Hyndman et al., 2007). In addition to weather data, ILHM required
outputs from the landcover model. The simulated groundwater discharge was then accumu-
latively operated and transformed by HEC-HMS through its embedded programing in basin
and channel routing. Later, these hydrological outputs (i.e., surface water and groundwater
discharge), along with climate data were used as inputs to execute RPSTM. Water tem-
perature predictions were then summarized into daily thermographs. At the end, predicted
changes in water temperature were used to determine the associated changes in fish habitats
(Figure 5.1).

The distributed multi-modeling environment of MREMS allowed me to provide a con-
sistent and coherent picture of how the Muskegon River ecosystem might functionally re-

spond to changing climate. Both MREMS and RPSTM were successfully verified from
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Figure 5.1: Flow diagram of how RPSTM linked to the interacting sets of models in MREMS for predicting
impacts of climate change on water temperature and fish thermal habitat in the Muskegon River Watershed,
Michigan, USA.

a variety of monitoring locations representing different fluvial types, including reservoirs,

small reaches, and main channels (see Chapter 2) (Wiley et al., 2010).

5.3.3 Simulating Effects of Climate Change

Based on IPCC (2007), monthly anomalous rise for average daily air temperature was
predicted to rise between 3.5 to 4°C in North America based on the conservative A1B sce-
nario (Soloman et al., 2007). In comparison to other IPCC scenarios, A1B scenario was
based on a modest reduction of greenhouse gas emissions to the end of this century. [PCC
clearly stated out in the report that reliably simulating and attributing observed temperature
changes at smaller scales remains difficult, due to relatively larger natural climate variabil-
ity and uncertainties at local scales (Soloman et al., 2007). To apply IPCC’s projection
without losing higher resolutions at local scales, I added IPCC’s monthly predictions of air
temperature rise into the current daily weather profiles. These data were then used as "fu-
ture climate data" to drive the entire integrated modeling system. In this way, I preserved

more realistic rain and temperature distributions across the catchment.
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Table 5.1: Locations of the modeled stream temperature sites in the Muskegon River.

Site Name Location

Site 1 Mouth of the Muskegon River to the Muskegon Lake

Site 2 North Channel of the Muskegon River

Site 3 Muskegon River at Mill Iron

Site 4 Muskegon River at Muskegon Wastewater Treatment Plant

Site 5 Muskegon River at B31 Bridge

Site 6 Muskegon River at Bridgeton Bridge

Site 7 Muskegon River at Newaygo Bridge

Site 8 Muskegon River at Downstream of Croton Dam (Below USGS Gauge)

Site 9 Muskegon River in Croton Dam Pond

Site 10 Muskegon River in Hardy Dam Pond

Site 11 Muskegon River in Rogers Dam Pond

Site 12 Muskegon River at Big Rapids (USGS Gauge)

Site 13 Muskegon River at Junction of the Hersey River

Site 14 Muskegon River at Evart (USGS Gauge)

Site 15 Muskegon River at Junction of Middle Branch

Site 16 Muskegon River at Junction of the Clam River

Site 17 Muskegon River at Down Reedsburg Dam

Site 18 Muskegon River at Reedsburg Dam

Site 19 | Muskegon River at Houghton Lake

Site 20 | Muskegon River at Higgins Lake

Stream temperature predictions were compiled at 20 locations in the main stem of the
Muskegon River; 8 locations were from the mouth to Croton Dam, 9 locations were above
Rogers Dam, and 3 locations were at the major hydropower dams (i.e., Croton, Hardy, and
Rogers Dams) (Table 5.1).

Stream temperature from “current” and “future” climate scenarios were estimated in
daily time steps from 1996 to 2005. Inputs accounted for in the climate change alteration
include changes in daily air temperature, daily surface runoff, daily groundwater discharge,
travel time, hydraulic depths, and groundwater temperature. Future groundwater temper-
ature was assumed to increase from 12.5°C to 16°C in summer, and from 6°C to 9.6°C
for other seasons. This is because groundwater temperature responds closely to ground
surface temperatures (Taylor & Stefan, 2009). It typically follows regional average annual
air temperature (Bundschuh, 1993; Lee & Hahn, 2006). As future air temperatures was

projected to increase from 3.5 to 4°C, groundwater temperature is expected to rise at sim-
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ilar magnitudes (Andrushchyshyn et al., 2009). Some existing studies also indicated that
groundwater temperature can be from 2 to 5 °C warmer in response to global warming,
depending on the regions and types of land use (Andrushchyshyn et al., 2009; Taylor &
Stefan, 2009).

Simulated daily water temperature results were summarized into monthly values to

examine the impacts of changing climate on stream water thermal conditions.

5.3.4 Estimating Impacts of Climate Change on Steelhead, Walleye,
and Chinook Salmon

Steelhead, walleyes, and Chinook salmon are three of the most popular game fish species
in the Great Lakes region. Will the warming global climate reduce the thermal habitats
of these fishes in this important river? If air temperature continues to rise, how will the
spawning and hatching activities be impacted?

Simple timing and temperature criteria from literature reviews were applied to translate
modeled temperature into shifts in the early life timing of steelhead, walleyes, and Chinook
salmon. These spawning thermal criteria (see below), along with time window criteria
,were used to determine when spawning activities would begin and end in every simulated
year. Fry emergence was dependent on spawning date and predicted spawning activities
were then projected by accumulating temperature-units (TU; 1 TU = 1°C above freezing
for 24 hours). A 10-year average of the estimated timing for spawning and fry emergence
was calculated and compared to examine impacts from climate change.

For steelhead, spawning usually starts in March or April, typically when stream tem-
perature reaches 4.4°C. The peak of the spawning activities are in mid-April, possibly
continuing into May, with a daily average stream temperature ranging from 10 to 12.8°C
(Biette et al., 1981; Bell, 1991; Newcomb & Coon, 1997; O’Neal, 1997; Horne et al., 2004;
Richter & Kolmes, 2005). To include spawning seasons from the beginning to the end, I
used a temperature range of 4.4 to 12.8 °C from March to May as a threshold for spawning.

Fry emergence criteria for steelhead fry typically occurs after the accumulation of 230 to
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340 TU (Myers & Horton, 1982; Murray & McPhail, 1988). I used a range of 230 and 340
TU for early and late emergence, respectively.

Walleyes are unable to reproduce successfully in the Muskegon river without human
assistance, but they do migrate up the river to spawn every spring. Eggs and sperm are
typically fertilized and raised in the hatchery every year. Then, the 5-cm-long walleyes
originating in the Muskegon River are stocked back in the river in late May. To assess the
impact of climate change on the timing of walleye spawning activities, I used a spawning
range of from 4.4 to 8.3°C from March to May as the thermal criterion (Baker & Manz,
1971; Roseman et al., 1996; DePhilip et al., 2005). 1 used 115 TU as the threshold for
emergence (Roseman et al., 1996).

A variety of stream temperature ranges have been reported to trigger spawning of Chi-
nook salmon in different regions (Murray & Rosenau, 1989; Mullan et al., 1992; Myers
et al., 1998; Murphy & Heard, 2001), I used a daily average temperature ranges of 7.2 to
14.5°C starting in September, as the criteria for fall spawning in Michigan (Piper et al.,
1982; Connor et al., 2002, 2003a,b). This particularly matched well to our observations
of fall spawning Chinook salmon in the Muskegon River. I then used 1000 TU (Seymour,

1956) as the criterion for fry emergence.

5.4 Model Results
5.4.1 Water Temperature Regimes

My model projected increases in average water temperature of 2 to 4.5°C each month
across the Muskegon River Watershed given a monthly anomalous air temperature increase
of 3.5 to 4°C in the area. Increase in water temperature was predicted to occur across the
entire Muskegon River Watershed with almost no exceptions throughout the continuous 10
modeled years. However, the magnitude of changes in water temperature varied seasonly
and spatially.

Location played an important role in controlling the magnitude of increase in water tem-
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perature with regard to climate change. Relative sensitivity to air temperature change also
varied seasonally. In general, in the mainstem, the greatest changes in stream temperature
were projected to occur in spring, and occasionally the month July in warm years, fol-
lowed by fall and summer, and the smallest changes occurred in winter. Average seasonal
changes were from 3.2 to 4.5°C each month in spring, from 3.2 to 4.4°C each month in
fall and summer, and from 2.2 to 4.3°C each month in winter. On average, January was the
least affected month in the mainstem. However, in upstream locations where small streams
receive large groundwater inputs, the greatest water temperature changes were predicted
to occur in winter (i.e., 4.2 to 4.3°C increase each month from December to February),
and the smallest change in summer (i.e., 3.7 to 4.1°C increase each month from June to
August).

Moreover, elevated groundwater temperature shows more effective in warming under
the climate change scenario. Consequently, a greater discrepancy occurred in winter when
groundwater fed tributaries experienced greater water temperature changes than those at
main channels and reservoirs. For example, during December to February, Cedar and
Brooks creeks (both have ample groundwater inflows) encountered about 4.3°C anoma-
lous rise in these month; while during the same period, Muskegon Lake increased over 2.3
to 3.4°C, and Hardy Dam Pond increased over 3.1 to 3.9°C. The greater temperature in-
creases in winter in the tributaries might provide over-wintering shelter for fishes. Spacial
variation in the impact on climate change in water temperature was less in summer. For
example, Hardy Dam Pond showed higher increment (4°C) than Brooks Creek (3.8°C) in
July, while the Muskegon Lake was 3.4°C similar (the lowest average increment).

Change in daily average water temperature was greater than monthly average change,
and varied from 1 to 5°C with occasional events below 1°C or above 6°C. However, sea-
sonal variance was more pronounced. When averaging daily changes by month, April
through July was the period of greatest change. The reach downstream immediately of

Croton Dam, had the highest change across the entire watered: >= 7°C daily change was
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found in April 29, 2000, and the averaged 10-year monthly increases of 4.5°C were found
in April and May. In June and July, the daily anomalous rise was above 3.7°C. Conversely,
December through February were the periods with the least temperature change, ranging
from 2.1 to 3.6°C downstream of Croton Dam. In the main channel, spring months and July
were still the two major periods that water temperature was impacted by climate change the

most.

5.4.2 Changes in the Timing of Spawning and Fry Emergence

1. Steelhead:
Predictions of the impact of climate change on the timing of steelhead spawning and
hatching activity were quite different at different locations. In general, below Croton
Dam appeared to be the place most affected by climate change. Based on the 10-year
averaged simulations, steelhead were predicted to start their spawning activities on
March 25, and continue spawning until May 24 under current climate. In the climate
change scenario, steelhead spawned from March 4 to May 2, about 3 weeks earlier.
A warming climate would also result in an earlier fry emergence. Under current
climate, fry were predicted to emerge on average from April 29 to June 15 (yearly
variation ranges from April 12 to June 22). With climate change, fry were predicted
to emerge on average from April 6 to May 24, ranging from as early as March 26
to as late as June 6. Overall, if air temperature warms up 3.5 to 4°C, fry emergence
will be ahead about three weeks, similar to the impact on spawning activities (Figure

5.2).

2. Chinook salmon:
In the Muskegon River, Chinook salmon begin moving into the river in August and
remain through December (Piper et al., 1982; Connor et al., 2002, 2003a,b). Peak
spawning occurs in mid Oct, but can shift to late October, even early November, if

the fall is warm. According to the model prediction for current climate conditions,
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Figure 5.2: Projected 10 year averaged shifts of spawning and hatching activities for steelhead, walleye, and
Chinook salmon at site 8, with error bars indicate yearly variations.

Chinook salmon spawn below Croton Dam on average from October 11 to November
27, with variation ranging from October 8 to December 22. Given projected climate,
my model predicted Chinook salmon will delay their spawning from late October
(October 27) through late December (December 28), but yearly variation existed and
ranged from October 14 to January 27. On average, warming climate caused the early

spawning cohort to be delayed about 2 weeks, and the late one about one month.

Using the predicted spawning time as a start to accumulate the necessary energy
for fry emergence, model results suggest that global warming will induce an earlier
emergence— on average by one month. Under current climate settings, the model
predicted Chinook salmon fry emerge from April 26 to June 6. While with global
warming climate, Chinook salmon will emerge on average from March 16 to May 14

(Figure 5.2).

3. Walleye:
Walleye, a native species in Michigan, is another popular sport fish species in the
Muskegon River. Below Croton Dam, given the current climate, my model predicts
that on average spawning should extend from March 25 to April 26. Under a warming
climate, spawning activities would on average extend from March 2 to April 5, about
three weeks earlier. For current climate, fry would emerge from April 15 to May 7,

versus March 22 to April 16 for warming climate. However, large yearly variations
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in dates exist in the model runs driven by annual climate variation. For example,
across the 10 year period, the early run fry emergence occurred 11 to 32 days earlier
in response to the climate change scenario, and late season run fry emergence was 9

to 53 days earlier (Figure 5.2).

5.4.3 Impacts of Climate Change on Fish Species at Different Loca-
tions

There are several distinct but distinct spawning locations for river fishes in the lower
Muskegon River (O’Neal, 1997). Modeling suggests that the impacts of climate change
vary spatially across locations.

For steelhead, the predicted warmer water temperature in spring shifted spawning 25
days earlier than present immediately below Croton Dam, and also downstream in the
reach from Newaygo to Bridgeton. Similar to the impacts on steelhead, climate change
was estimated to shift walleye spawning activity at Bridgeton 24 days earlier, whereas
immediately below Croton Dam and at Newaygo, it was only 22 days earlier. Conversely,
the predicted warmer water temperature in fall resulted in a delayed spawning activity for
Chinook salmon. Minor differences occurred between spawning locations: immediately
below Croton Dam spawning was estimated to be delayed 16 days, Bridgeton 15 days, and
Newaygo 14 days (Figure 5.3).

For fry emergence, impacts of climate change were found to affect the location at
Bridgeton the most for all three species. Averaged modeling results suggest that steel-
head and walleye fry will emerge about 25 days earlier at Bridgeton, 23 days below Croton
Dam, and downstream in the reach at Newaygo about 20 days ahead. Chinook salmon fry
emerged from 41 to 42 days earlier below Croton Dam and also downstream in the reach

from Newaygo to Bridgeton (Figure 5.4).
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Figure 5.3: The impact of climate change on the timing shifts of spawning activities varied spatially at down
Croton, Newaygo, and Bridgeton. Timing shifts were calculated as the differences of early season spawning
activities from current and climate change scenarios, and averaged from 10-year daily simulations.
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Figure 5.4: The impact of climate change on the timing shifts of fry emergence varied spatially at down
Croton, Newaygo, and Bridgeton. Timing shifts were calculated as the differences of early season hatching
activities from current and climate change scenarios, and averaged from 10-year daily simulations.
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5.5 Discussion and Conclusion

Prediction results indicated that the maximum changes in monthly water temperature will
occur in spring, followed by fall and summer, and the minimum in winter at locations in
the mainstem and reservoirs. This projection is consistent with Mohseni et al. (1999) who
used a regression model on a weekly time scale in 993 stream gaging stations throughout
the contiguous United States (Mohseni et al., 1999). They found that maximum change
in weekly stream temperatures should occur in spring (March to June), and the minimum
changes in winter (December and January) and summer (July and August) (Mohseni et al.,
1999). However, I found that in smaller tributaries, seasonal trends of water temperature
change are very dependent on groundwater inputs. Projections of water temperature change
in the tributaries are very different than those in the mainstem. In general, locations with
ample groundwater-fed tributaries experienced the greatest water temperature change in
winter, and the smallest change in summer. This was due to temperature buffering effects
by significant groundwater inflow. In winter, as air temperatures were elevated by climate
change projections, higher air temperatures, more rapid snow melt, and more rain events,
all of which contributed to a higher groundwater inflow rate in ILHM predictions.

In addition, I found that projected water temperature followed the cold- and warm-
year oscillations, but the impacts of climate change were not significant by categorizing
into cold- and warm- years. Annual average air temperature was projected to increase
3.5°C, which caused 40.8% and 42.1% increments to the annual average air temperature
to the current weather in years 2000 and 2002. This, in turn, drove annual average water
temperatures to increase 33.0% and 33.6% in those respective years. The 1.3% difference
in annual average air temperature only raised annual average water temperature by 0.6%.
As warmer years typically have higher daily air temperature, and less daily total flow, the
net heat transported into stream water will be compensated by heat losses in evaporation
and transpiration.

Changes in water temperature in spring resulted on average in a predicted three-week
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shift in spawning and fry emergence of steelhead and walleyes. Meanwhile, elevated stream
water temperature also shortened incubation time for spring spawners. In contrast, pro-
jected elevated water temperature in fall led to an average of a one to two month delay in
spawning activities of Chinook salmon, with a shorter development time and earlier fry
emergence. However, this study considered no other factors but only water temperature in
estimating the early life stage timing shifts. Other than water temperature, tributary hy-
drology, flow stability, and day length also determine spawning and nursery habitats for
fish (Creque et al., 2005; Godby et al., 2007; Ivan et al., 2010). Without thoroughly con-
sideration of these important factors, results could show a broader range of the timing in
spawning and fry emergence. This was found in this study as Chinook salmon migration to
the Muskegon River currently occur from late September, which is about one to two weeks
earlier than my prediction. Also, Chinook salmon fry currently emerge from late March to
late May, about one month earlier than the predictions from my model.

Moreover, physical habitat conditions, such as flow velocity and substrates are impor-
tant to fish in choosing their spawning habitats. These factors are critical in determining
absence and presence of fish in an area, which could potentially lead to a more complex
inter- and intra-interactions. In this study, I did not consider these complex interactions
among species. For example, shorter incubation time could potentially decrease the risk of
eggs being eaten by animals, and might thus decrease mortality. However, if many species
are so affected, it could result in a general increase in complex and interesting interspecies
competition. Increasing competition interactions may alter expectations based on climate
change alone. As Steen et al. (2010) predicted, climate change will cause a decline of
coldwater fish, and significant increases of cool- and warm-water species in the Muskegon
River Watershed (Steen et al., 2010). As a result, a more detailed study of the causes and
potential consequences of life history timing shifts will be required.

In regions other than Michigan, global climatic changes have also been predicted to

be a great threat to many riverine fishes (Casselman, 2002; Field & Francis, 2002). How-
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ever, the impacts of climate change could vary with river ecosystems and species. They
are dependent upon the changes of rate and magnitude relative to historical and present
hydrothermal regimes for each watershed, and the adaptive ability and capacity of species
(Palmer et al., 2009). The relations between a warming climate and the changes in life-
history found in this study are different than those found in other geographical areas. For
example, in Pacific salmon, projected warmer sea-surface temperature can influence mi-
gratory timing (Jonsson & Jonsson, 2009). Hodgeson et al. (2006) reported that sockeye
salmon Oncorhynchus nerka returned early to the rivers in south-west Alaska, but late to
the rivers in British Columbia, Canada due to a relatively warmer sea-surface water tem-
perature (Hodgeson et al., 2006). In addition, climatic variability in the North Pacific, the
Pacific decadal oscillation (PDO), also greatly impacts salmon for both the spawning suc-
cess of adults and for growth and survival of juveniles during their freshwater residency
(Hilborn et al., 2003).

It is important to note that my projections focused only on the influence of water tem-
perature, and did not account for impacts from other factors, nor account for longterm
genetic changes that might occur in response to climate change. For example, spawning
sites are not rigidly controlled by temperature alone but are the product of a dynamic bio-
logical process influenced by physical habitat conditions such as flow and substrate. These
limitations are important to acknowledge because the environmental changes can also lead
to population-level changes, such as the life-history, phenology, and morphological traits
of many species (Ozgul et al., 2010). These changes could occur as concurrent responses
to both environmental change and changing selection pressures or natural selection on her-
itable traits or drift (Ozgul et al., 2010).

An important challenge to modeling the impact of climate change on stream water tem-
perature lays in the great uncertainty about estimates of groundwater temperature. Even
though there has been tremendous progress in hydrothermal research, there are major gaps

in our basic understanding of the influence of climate change on groundwater temperature.
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The few existing model predictions are quite variable (Andrushchyshyn et al., 2009; Taylor
& Stefan, 2009; Vicca et al., 2009), and in some cases controversial. Groundwater tem-
perature varies with soil depth, geological setting, and landcover type (Andrushchyshyn
et al., 2009; Taylor & Stefan, 2009; Vicca et al., 2009). Taylor and Stefan (2009) indi-
cated that both urbanization and climate warming will contribute to a warmer groundwater
temperature (Taylor & Stefan, 2009). When transforming a land from "undeveloped" to
"fully urbanized" area, along with a doubled carbon dioxide emission climate scenario,
groundwater temperature is likely to raise by about 5°C (Taylor & Stefan, 2009). Vicca et
al. (2009) predicted a +2, +4, and +6°C increase in the shallow groundwater temperature
in response to climate change in their ciliate communities study (Vicca et al., 2009). In-
deed, the uncertainties in the groundwater system in response to climate change makes the
prediction of stream water temperature very challenging. To better understand the effects
of this uncertainty on my model results, I conducted a sensitivity analysis by manipulat-
ing the magnitude of change in groundwater temperature. Rerunning my analysis I found
that a 5°C increase in groundwater temperature produced an additional from 1.2 to 2.2°C
increases in predicted water temperature (Figures 5.5 to 5.8). Increases were dependent
upon travel distance and time, and the amount of groundwater inflow. This is coincident
with my conclusions that water temperature within a free-flowing river typically increases
gradually in a downstream direction (Vannote et al. 1980), but can vary at the microscale
as a result of groundwater inflow (Geist et al., 2002). It is not difficult to imagine that in
different regions, these discrepancies will be even larger. Therefore, it seems that studies of
potential climate change impacts on soil and water temperature are critical to understand-
ing climate impacts on the thermal regimes of rivers. Such studies are needed to provide
a more through basis for modeling impacts of climate change on groundwater-influenced
riverine and wetland ecosystems.

In conclusion, linking RPSTM to MREMS multi-modeling provided a useful approach

to forecasting how climate change may alter riverine thermal habitats and cause shifts in the

103



Sensitivity of Assigned Groundwataer Temperature on
Water Temperature Simulation @ Big Rapids
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Figure 5.5: The sensitivities of different magnitude of elevated groundwater temperature at Big Rapids (a
big channel) to the projected water temperature in response to climate change.
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Sensitivity of Assigned Groundwataer Temperature on
Water Temperature Simulation @ Croton Dam
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Figure 5.6: The sensitivities of different magnitude of elevated groundwater temperature at Croton Dam (a
reservoir) to the projected water temperature in response to climate change.
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Sensitivity of Assigned Groundwataer Temperature on

Water Temperature Simulation @ Little Muskegon
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Figure 5.7: The sensitivities of different magnitude of elevated groundwater temperature at Little Muskegon
(a major tributary to the Muskegon River) to the projected water temperature in response to climate change.
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Sensitivity of Assigned Groundwataer Temperature on
Water Temperature Simulation @ Lower Cedar
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Figure 5.8: The sensitivities of different magnitude of elevated groundwater temperature at Lower Cedar (a
small groundwater fed tributary) to the projected water temperature in response to climate change.
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timing of Great Lakes anadromous fishes early life history. A predicted 2 to 4.5°C increase
in monthly water temperature will induce earlier spawning and fry emergence activities
for steelhead and walleyes, and delay spawning and accelerate fry emergence for Chinook
salmon. These predictions should be useful to fishery managers interested in planning for

adaptation strategies to cope with climate change.
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CHAPTER VI

CONCLUSION AND FUTURE WORK

6.1 Summary of Chapter Findings

In Chapter 2, I described a newly designed Reduced Parameter Stream Temperature Model
(RPSTM). RPSTM offers significant implementation and computational advantages over
existing heat balance models when simulating stream temperatures across large watersheds.
Moreover, the model is processed-based, increasing the confidence in the output of dy-
namic simulations of past, current, and future scenarios. The results showed that RPSTM
performed well in estimating stream temperature along the Muskegon river network. The
sensitivity analysis revealed that RPSTM is most sensitive to the parameterization of local
air temperature, hydraulic depth, and solar radiation, but relatively insensitive to rate of
surface flow. RPSTM is moderately sensitive to rates of groundwater discharge, network
travel time, and the parameterization of the heat transfer coefficient. This modeling ap-
proach is easily integrated into complex multi-modeling systems that are now being used
to evaluate effects of long term changes in land use, climate change, and river management
on river fish communities.

In Chapter 3, I used RPSTM to evaluate the thermal impacts of water withdrawal. The
results demonstrated that (1) both surface water and groundwater removals have potentially
serious impacts on river thermal regimes, and (2) that there is an inherently large spatial
variability in thermal responses to unit flow removal. The magnitude, and sometimes direc-

tion of thermal impact, appears to be location specific shaped by patterns of local ground-
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water flux, mixing ratios, and travel times. Wells or water extractions closer to the river
are likely to have larger impacts on thermal regime. Yet, large groundwater loading down-
stream could ameliorate local groundwater losses. More importantly, it might alleviate the
heating effects from consumption of upstream local groundwater and/or surface water flow.
Therefore, sensitivity to water extraction is likely to be spatially variable and site specific,
and modeling heat transport implications will likely be necessary to evaluate ecosystem
sensitivity.

In Chapter 4, I examined the impacts of dam removal and found that dam removal could
effectively lower summer stream temperature and allow more space and time in the main-
stream of the Muskegon River for coldwater species. Yet, the magnitude of the lowered
summer stream temperature from dam removals varied temporally and spatially, depend-
ing on the distance to the dams, the hydrology, and the year-to-year climate conditions.
Under the circumstances of "dams removed", the simulated results have revealed that dam
removal would cause delays (8 to 10 days) in the timing of spawning for steelhead and
walleyes, but have no significant impact on Chinook salmon. At the same time, timing
of fry emergence would be delayed for all three modeled fish species, although length of
delay varied between species (7 to 15 days). Analysis results also supported the contention
that removal of the three hydropower dams would in general bring a lot more usable habitat
upstream. As the total area of the Muskegon River was large, quantifying suitable habitat
via the GIS technology for steelhead, walleye, and chinook provides useful information for
fishery managers to plan their stocking strategies.

Lastly in Chapter 5, I applied RPSTM along with the predictions from the 4th IPCC
A1B Scenario to drive a multi-modeling system, and evaluated the impacts of climate
change on the early life history of Great Lakes anadromous fishes. Modeling suggested that
the Muskegon River may experience a 2 to 4.5°C warming in monthly water temperature.
The greatest increases in modeled water temperature occurred in spring, especially during

warmer-than-average years. Moreover, groundwater fed tributaries experienced greater wa-
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ter temperature change than large channels/reservoirs in winter. However, this spacial dis-
tinction was reduced during the summer. These changes in water temperature are likely to
significantly alter the timing of steelhead, walleyes, and Chinook salmon early life history.
This integrated multi-modeling approach could be useful to fishery managers interested in

planning management adaptations to cope with climate change.

6.2 Importance of Hydrologic Modeling to Water Tem-
perature

Many factors affect local stream water temperature. These include basin geography, global
and local climate, geomorphic setting, and details of hydraulic routing (see Chapter 2).
River width, depth, surface area (size), length, and velocity are also important factors.
For example, wider streams heat more rapidly than narrower streams due to the increased
surface-to-volume ratio, which results in greater exposure to solar radiation (Farber et al.,
1998). Likewise, water in long, slow velocity channels also has greater exposure to the
surrounding atmosphere and more time to equilibrate with warmer air temperatures (Adam
& Sullivan, 1990). These two facts alone require that inside a particular river system water
temperature will continuously vary spatially from headwaters to terminus.

The physical, chemical, and biological systems of a river are closely and intensely
linked together, making the predictions for a river ecosystem very complex. The tempera-
ture of rivers draining a landscape is driven by interactions of energy inputs from diverse
sources. Linking to a multi-modeling systems helps to more accurately capture the influ-
ence of dynamic changes from landscape, climate, and hydrology.

Among all these potentially influential factors, the magnitude of groundwater discharge
1s a major controlling factor for stream temperature in the upper Midwestern U.S. (LeBlanc
et al., 1997; Wehrly et al., 2006). Both distribution and timing of groundwater inputs are
important in shaping the river thermograph downstream. High groundwater yields typically

result in cooler than air stream temperatures in summer and warmer than air temperatures in
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winter (Bundschuh, 1993; Sinokrot et al., 1995; Constantz et al., 1994; Constantz, 1998).
Therefore, the magnitude of groundwater delivery to river channels modulates downstream
heat gain, and creates thermal environments that are relatively cold and stable which favor
coldwater fish species (Wehrly et al., 2003).

As such, the hydrological modeling plays a much more important role in the prediction
of stream water temperatures. In this study, RPSTM required information of stream net-
work, discharge rate, travel time, and hydraulic depth from the outputs of the hydrologic
modelings— ILHM (the Integrated Landscape hydrology Model Groundwater; (Hyndman
et al., 2007)) and HEC-HMS (the Hydrologic Engineering Center’s Hydrologic Model-
ing System; (Anonymous, 2001)). These two models process watershed discharge coming
from precipitation to land surface and water body, take evapotranspiration into account,
infiltrate to soils and groundwater aquifer, and then combine with water body as discharge
of surface runoff and groundwater. The models describe what happens as water that has
not infiltrated or been stored on the watershed moves over or just beneath the watershed
surface (the surface runoff part), and simulates the slow subsurface drainage of water from
the system into the channels (the groundwater part). They also support various aspects of
hydrologic estimation, such as: peakflow, flow duration curves, runoff, and baseflow, for
any kind of land development scenario.

In addition, the results from the water withdrawal application clearly demonstrated that
changing the volume of streamflow and/or groundwater also altered thermal regimes. It
provides clear evidence of how important it is to know the magnitude of hydrologic load-
ings to the prediction of water temperature. Without hydrologic models, a greater uncer-
tainty might emerge from areas with large underground aquifers. Surface runoff informa-
tion is usually easier to obtain either by online USGS gauge data, or by discharge measure-
ments in a stream. Groundwater information, on the other hand, is more difficult to acquire,
since the magnitude, character, and extent of groundwater contributions are not as easy to

access as those in river flow. As a result, a groundwater model is very important in rivers
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with groundwater inputs.

However, long-term water temperature records may provide information on both the
location and the magnitude of the groundwater source. This is because temperature of
groundwater is relatively colder in summer, and warmer in winter than the air temper-
ature. Even without knowing how much or what temperature groundwater is, inputs of
groundwater into a reach will make the reach’s thermograph different than a reach with
no groundwater source within the same stream network. Therefore, if the influences from
other factors are known (by running RPSTM), the actual water temperature measurements
can reflect the influence of groundwater. From this point of view, RPSTM has the potential

to identify groundwater inputs when longterm water temperature records are available.

6.3 Reduce Parameterization of a Model

As Albert Einstein said: “It can scarcely be denied that the supreme goal of all theory is
to make the irreducible basic elements as simple and as few as possible without having
to surrender the adequate representation of a single datum of experience.” This statement
clearly expressed the intent of my research— to develop a simple stream temperature model,
which can generally be applied to any river system. Compared to most physically-based
heat balance models, RPSTM does require much less parameterization and makes it pos-
sible to predict stream water temperature across a large river network. Another purpose of
this study is to evaluate the effects of human-induced thermal changes on fish distributions
and their early life history, and results have shown that RPSTM indeed provided needed
accuracy for this purpose.

RPSTM might be reduced too much in terms of using it in the impoundments. It pro-
vides less accurate predictions in large impoundments, simply because RPSTM was de-
signed in a more abstract way mainly for river reaches, and did not consider depth depen-
dent stratification and other complex processes a large lake typically has. However, it is

always a necessary trade-off that a simple model is more generalizably applicable, while
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a complex model is usually more specifically applicable. To solve this problem, a more
complex version of RPSTM will be needed to consider the important mechanisms for large

impoundments which were ignored in the current version of RPSTM.

6.4 Future Work

1. Dam Removal Plus Climate Change Scenario:
As stated in Chapter 4, removing dams would potentially decrease the current stream
temperatures by about 1°C. It is an interesting question if dam removal could help
mitigate the negative impact of global climate change on the coldwater fish commu-
nity. As a result, a scenario comprised “dam removal plus climate change” may be

able to answer this question.

2. Error Propagation in Multi-Modeling Approach:
It is not clear in this study how errors propagated in this multi-modeling system.
It cannot be denied that through series of model runs, it is very difficult to deter-
mine whether errors (including specification error, parameterization error, or compu-
tational error) (Wiley et al., 2010) cancel each other out or accumulate. Quantifying
errors from each sub-model will be a necessary step towards analyzing a system’s
error propagation. This might help identify uncertainty about the magnitude and the

direction in response to future forecasting using this multi-modeling approach.
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APPENDIX A

HYDROLOGICAL MODELING (HEC-HMS) SETUP
FOR THE MUSKEGON RIVER, CEDAR CREEK, AND
MILL CREEK
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Figure A.1: Channel schematic for the Muskegon River Watershed, Michigan.
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Figure A.2: Channel schematic for Cedar Creek, Michigan.
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