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1 Unit Commitment Problem

One of the most important problems in electrical power generation is the unit commit-
ment problem. The primary concern of system operators is having enough capacity to meet
demands during their peak load periods. The limited amount of hydro-electric energy stored
in the dams and system reservoirs may not prove to be sufficient to respond to high de-
mands. Therefore, costly thermal generation units must be used in order to make up for
the supply shortage. The unit commitment problem refers to the task of finding an optimal
schedule, and a production level, for each generating unit over a given period of time. The
unit commitment decision indicates which generating units are to be in use at each point
in time over the scheduling horizon [8]. Clearly, this problem is a multi-stage program with

some 0/1 variables.

Throughout this paper, we assume that there are n generating units and that the duration
of the study horizon is T. Normally, a 24-hour horizon is sufficient, but a longer horizon,
one week, is needed if pump-storage units are to be considered. The state of each unit, ¢, at
a time period. t, is represented by the variable u!. A unit is on at time ¢ if u! = 1, and off
if u! = 0. The level at which unit i operates during a period, ¢, is i > 0. The minimum

and maximum operating levels for each unit are g; and G;, respectively. The cost function,

/
Iz

of operating a unit, 7, at a level, z}, is assumed to be a convex quadratic function of
. This function measures the total fuel and maintenance cost associated with eaéh’ output
level, z¢, in the feasible operating range. A start up cost, S;, is incurred whenever the state
of a unit changes from zero to one. The cost function, f!, of each unit, 7, is modified so that
it takes into consideration the start up cost S;. We will refer to this modified function by
filzt,ui_,,ul). Note that the function f; is not continuous, hence it is non-differentiable and

non-convex. When a unit is switched on, there is a minimum on-time requirement, that is,

it has to be on for at least L; periods. A similar constraint applies for the case when a unit



is switched off; it has to be off for at least [; periods.

The mathematical formulation of the model is

minl,u ?:1 T:l fi(“ri’ ué—l’ u;)

subject to nrho> d,t=1,..., T,

(1)

where d; > 0 represents the demand for electricity during period ¢. In addition to the previous
constraints, each unit must satisfy the minimum on-time, minimum off-time, and minimum
and maximum operating level constraints. The problem in (1) is a large-scale mixed-integer
quadratic program. Many approaches have been proposed to solve this problem; they can
be classified into branch-and-bound methods, dynamic programming, priority ordering, and
Lagrangian relaxation method [1]. The first two techniques are satisfactory from the the-
oretical point of view, but they are practically intractable due to the large size of storage
required to implement them on a computer. The third approach is a greedy strategy and
does not guarantee an optimum solution in general. The Lagrangian relaxation technique
seems to be the most efficient; it attempts to solve the problem indirectly by solving the

dual problem.

Muckstadt and Koenig [8] appear to have been the first people to address the unit com-
mitment problem and to sﬁggest a sound technique for solving it. They use a Lagrangian re-
laxation, which decomposes the given problem into smaller sub-problems. Each sub-problem
corresponds to the problem of minimizing the cost of operating a generator in the electrical
system over the study horizon. Dealing with individual generators simplifies the task of
representing the constraints that depend on the state of the generator from period to period,
such as minimum on-time and minimum off-time requirements. Dynamic programming is
then used to solve the sub-problems, and a lower bound on the optimal cost of the primal
problem is obtained. The authors use branch-and-bound to enumerate all possible states of

the system efficiently. At each node of the branch-and-bound tree, the states of some gener-



ators at certain time periods are fixed, and the Lagrangian dual of the problem at that node
provides a lower bound that helps in pruning the search tree. However, in order to maintain
high efficiency, they do not allow more than a small number of Lagrange multivlier updates
at each node. The update is performed using a subgradient method that approximates the
steepest-ascent direction since the dual gradient is not unique at some points. The dual
solution at some nodes may provide a feasible solution which further reduces the size of the
search tree. This strategy, that is, Lagrangian relaxation coupled with branch-and-bound,

is common in integer programming and guaranteed to find an optimum solution.

The previous technique may fail in practice, as shown by the authors, due to the large
number of nodes that need to be studied. Bertsekas, Lauer, Sandell, and Posbergh [5] use
a similar Lagrangian relaxation technique but, rather than using branch-and-bound, they
update the Lagrange multipliers and resolve the problem. The process is repeated until the
duality gap is small enough. In order to accelerate the calculations, the cost function of each
generator’s sub-problem is approximated by a differentiable function. The approximate dual
problem is solved using a quadratically convergent constrained version of Newton's method,
which makes use of the gradient and the Hessian matrix of the approximate dual function.
The main contribution of this paper is providing an upper bound on the size of the duality
gap when the number of generators is greater than the study horizon. Their bound is given
by msg—Tc) where T is the length of the planning horizon, S* is the maximum start-up
cost over all generators, C* is the maximum cost of operating a generating unit for one
period, and £* is the optimum dual functional value. The previous result is consistent with
a well known property of Lagrangian relaxation: “the duality gap is typically quite small (in
relative terms) if the number of separable terms is large, and in fact becomes smaller as the

number of separable parts increases” [4].



A very similar approach is suggested by Merlin and Sandrin [7]. They use the same
Lagrangian relaxation to separate the problem. Pump-storage hydro units are treated as
any other generator. They then use the subgradient algorithm to update the Lagrange
multipliers as proposed by Poljak [10]. Their numerical results are very impressive given the
computing power at that time; they solved a system with 172 units over 48 hour horizon
to within 0.42% in two minutes. These results may be the consequence of using linear cost

functions for the generators while other references use piecewise-linear cost functions.

Zhuang and Galiana [14] provide a heuristic that can be used at termination of the dual
maximization procedure if the resulting primal solution is infeasible. The main idea is to
increase, with a moderate step size, the penalties on the violated constraints iteratively until

a feasible solution is found.

In this paper, we use a Lagrangian relaxation technique to decompose the problem into
smaller sub-problems. Each sub-problem is solved using dynamic programming. We use the
special structure of the single-generator sub-problem to reduce the size of the state space of
the dynamic program, and to obtain a more efficient formulation than that used classically.

We use a subgradient technique to solve the dual maximization problem [10, 3].

2 Lagrangian Relaxation Approach

In order to make the program in (1) separable, a Lagrange multiplier, \; > 0, is associated
with each of the constraints Y7, x} > d;. This choice of relaxation decomposes the problem
into n single-generator sub-problems. Constraints that depend on the change in the state
of a generator from period to period, such as, minimum up-time and minimum down-time,

become easy to implement. The Lagrangian dual problem has the form

max £(\)

A>0



Figure 1: The Lagrangian Relaxation Approach described in Section 2

Set 7 « 1. Initialize the Lagrange multipliers,
A, as described in section 3.4.

Is 7 less than the maximum

number of iterations?

Set j + j + 1. Update
the Lagrange multipli-
ers.

Solve n single-generator sub-problems using
the procedure described in section 3.3.

Is generation greater than the
demand in all periods?

Store the new solution and compute the corre-
sponding duality gap using the dual solution.

Is the duality gap obtained

small cnough?

Yes

Stop. The best solution found so far is consid-

cred a local minimum.




where

Dﬂ

n

n T
r;ugZZf, oy u) — > Azl - dy)

i=1t=1 t=1 =1

subject to unit minimum and maximum operating levels, and minimum on-time and off-time

constraints. The Lagrangian dual function can be rewritten as

- i o A
= Iglunzz filzh ui_y,up) = —ni(xt —dy).

T N VN
=rg5rllgz<fz ohoul l,ui)-ﬁ(:v;—dt)»i:l, ., (2)
and adding the resulting values of F;(\) over all generators. Note that each of these programs
is independent of the others, which motivates a parallel implementation of this step. The
optimization problem in (2) is called the ;th single-generator sub-problem since it only

depends on the specifications of generator i.

If the primal solution corresponding to a given A is feasible, then the Lagrange function
value is a lower bound on the primal objective function value (weak duality). It follows that
the maximum dual objective function value is a lower bound on the primal optimum objective
function value. The difference between the optimum value of the original program and the
optimum value of the Lagrangian dual problem is called the duality gap, and is expected to
be strictly positive since the feasible region of the relaxed problem is not convex. One can
also show that the Lagrange function is concave, hence continuous, in the parameter A and
bounded, which implies that a global optimum can be reached by using an appropriate convex
programming method. The two previous remarks are the main attraction in this technique
since one can replace a hard primal problem by that of maximizing concave function. Note
that the Lagrange function is not differentiable at all points A, which complicates the process

of maximizing the dual function.



In order to solve the dual problem, a starting point, A, is chosen according to some crite-
rion, then the value of the Lagrange function, £()), is computed by solving n minimization
problems. If the resulting primal solution is feasible, then £()) is a lower bound and ¥°; Fi(\)
is an upper bound on the optimum value of (1). If the difference between the upper and
lower bounds is relatively small, the procedure terminates. Otherwise, the process is re-
peated by choosing a better Lagrange multiplier. A more detailed description of the steps

of this process is provided in the following sections.

3 Solving Single-Generator Sub-Problem

We used dynamic programming to solve the mixed-integer quadratic program in (2). At
each time period or stage, a generator can be in one of two states: on or off. The formulation
needs to take into consideration the minimum on-time and minimum off-time constraints:
that is, a variable must represent the number of periods spent so far in the current state.
Many researchers suggested using L + [ nodes at each stage of the dynamic programming
graph [8, 7, 14]: no change in the generator state is permitted at nodes where a generator
has been on/off for less than L/l periods. The following observations reduce the number of

nodes in the dynamic programming graph substantially:

e Since one can only make decisions at those nodes in which a generator has been on/off
for at least L/l periods, one needs only to consider these nodes in the dynamic pro-

gramming formulation.

e Furthermore, the decision set of a generator that has been on/off for longer than L/

is the same as that of a generator that has been on/off for exactly L/l periods.

So, it suffices to consider two nodes at each stage: on for at least L periods and off for at
least [ periods. In other words, the number of nodes in the dynamic programming graph is

2T which seems to be best in this case.



Figure 2: Traditional Dynamic Programming Formulation for Single-Generator Sub-Problem
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Each node is represented by two indices. The first index indicates the state of the
generator: on/off, and the second one indicates the time or the stage variable. For instance,
the node (off, 3) indicates that at time period 3, the current generator has been off for at
least [ periods. Hence, this generator can be switched on, that is, move to node (on,3 + L),

at a cost of
34L

c(off, 3) + > min (fi’(ft) - %;—t(:z:; - dt)> + S;.

t=4 Tt

On the other hand, we can keep the generator off, that is, move to the node (off, 4) at a cost

of c(off, 3) + A\id;/n. The cost at any node, c, represents the minimal cost needed to reach
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this node in the graph given the initial state at time 0.
Given a Lagrange multiplier, A, the following algorithm describes the steps required to

find an optimum solution for the single generator problem!.

o Initialization. Let z}, t =1, ..., T, be an optimum solution for the convex optimiza-
tion problem:

)\ .
n;inf'(xt) - ﬁ(:ct —dy), t=1, ..., T,

such that z} is within the operating range of that generator. Let c(off,t) = oo for all
t=0,...,T+0l-1,and c(on,t) = oo forallt =0, ..., T+ L—1. If the initial state
is off then let c(off, 0) = 0; otherwise, let c(on,0) = 0. Set ¢ + 0.

e General Step.

1. c(off,t + 1) = min {c(oﬁ, t+1), coff,t) + %ﬂdt+1}.

c(on,t+L) = min {c(on, t+ L), c(off,t) + SmnitrT) (f’(:r::) — 2

fak
n

(23 —d.)) +S}.

c(on,t+1) = min {c(on,t+ 1), clon,t) + f'(x7,,) — 22 (zF,, — dt+1>}-

n

c(off, t + 1) = min {c(off,t +1), c(on,t) + ZT:iI;E_tfrl’T} Ae d,}.

2. Set t + t+1.

3. If t < T then go to step 1.

4. Check the nodes (off, t), t=T, ..., T+1—1, and (on,t), t=T, ..., T+L-1,

to find the optimum value of the objective function corresponding to the given .

Note that the number of functional evaluations needed to compute the summation in step 1
is only one. A predecessor pointer is associated with each node. Whenever the cost, ¢, of a
node changes, the pointer is updated so that it poihts to that node from which the transition
has the lowest cost. At termination, one can use the predecessor pointers recursively to find

an optimal strategy.

'In order to simplify the notations, the index i will be skipped throughout the steps of the algorithm.

11



Figure 3: Suggested Dynamic Programming Formulation for Single-Generator Sub-Problem
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4 Initial Lagrange Multipliers

Clearly, the choice of the initial values of the Lagrange multipliers is very crucial since it
affects the number of iterations, hence, the execution time of the algorithm. The following
two sections describe techniques that we found to provide very good approximations for A

efficiently.

4.1 Quadratic Approximation

Since the cost function of each generator, f/(z), is a quadratic convex function, one can

obtain a starting A by solving the quadratic program:

subject to Prh > d,t=1,..., T (3)
0<2t < Gy

In other words, the minimum on and minimum off time requirements, and the lower bounds

Syt takes into consideration the start up

on generation capacities are relaxed. The term g

cost of each unit.
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The program in (3) is a convex quadratic program that can be solved efficiently using
any quadratic programming algorithm, such as Lemke’s. Note that the previous quadratic
program is separable, and can be written as the sum of T' quadratic programs, each of which

has exactly one constraint

min: 2, fi(z) + g
dy (4)

subject to LT

v

The dual variables associated with the demand constraints, 7, 2! > d;, are used as initial

Lagrange multipliers of (1).

We can make the program in (4) separable by associating a Lagrange multiplier, j; > 0,
with the demand constraint. Now, we have n different quadratic convex programs; each of
which has one bounded decision variable, z:. The solution is found easily by finding the
point, T:(u), at which the derivative of the objective function vanishes, and then choosing
the closest feasible point, zi*(u), to T¢() as an optimum solution. The value of the dual
multiplier, 4 is then updated, and the process is repeated until ", i*(y;) is equal to d;.
The final values of ; are used as an approximation for the Lagrange multipliers for the
mixed-integer quadratic program in (2). In order to improve the efficiency of the procedure,
one can build a table that contains the demand values corresponding to different marginal

costs, ¢, at the beginning of the solution process.

4.2 Linear Approximation

Since the coefficients of the quadratic terms in the cost functions are relatively small, one

can approximate f!/(z) using a linear function, c;z, such that

fl(Gi) + S
T Gi .

13



Here again, the term %L is added to take the start up cost into consideration. Since each
generator has a constant marginal cost in this case, that is, the cost per Megawatt-Hour does
not depend on the load on the generator, we can sort the generators in the ascending order of
their marginal costs, ¢;. If we ignore the minimum generation capacity requirements, and the
minimum on and off time constraints, we can find easily which units to put on line to meet
any given demand at a minimal cost. The problem simply is to minimize a piecewise-linear

convex function subject to the constraint of meeting the demand, and is solved by choosing

the generators in the order of c;.

The previous procedure can be further simplified and accelerated by building a table that
contains the slopes, ¢;, in ascending order in one column, and the corresponding cumulative
maximum generation capacities in the other column. For any given demand at time ¢, one can
find the range in which the demand falls, and use the corresponding c; as an approximation for
the Lagrange multiplier at that time period. The resulting function is convex and denoted by
A(.) for use in subsequent sections. This approximation was implemented and, surprisingly,
the dual objective function value of the initial solution was always within two percent of the

optimum dual objective function value.

5 Updating Lagrange Multipliers

If the primal solution corresponding to the current dual solution, J, is infeasible, or if the
primal solution is feasible but the duality gap is not small enough, then a new dual vector
must be used so that a better primal feasible solution is obtained. Since the dual objective
function is concave, but not everywhere differentiable, it may not have a gradient everywhere
and a subgradient technique is necessary to maximize this function. A vector ¢ is called a
subgradient of £(.) at X if

£0) < £0)+ (A= XNTe

14



If the subgradient is unique at a point A, then it is the gradient at that point. The set of
all subgradients at A is called the subdifferential, 9£()), and it is a closed convex set. A

necessary and sufficient condition for optimality in subgradient optimization is 0 € 9.

We used the subgradient optimization algorithm; it generates a sequence of points using

the rule

A=\ 4 !

where ¢ is any subgradient of £(.) at A! [13]. The step size, a;, has to be chosen carefully
in order to achieve a good performance by the algorithm. Poljak [10] has shown that the
necessary and sufficient conditions to guarantee the convergence of the sequence A to an

optimum solution is

all€'ll = 0 and Y- eull€'l| = oo, (5)
l

where ||.|| denotes the Euclidean norm. In fact, a geometric convergence rate can be achieved

if we choose
£5— £\
= — e,

1€
where £7 is the optimal value of the Lagrange function. A problem here is that £* is not
known in advance. We adopted a simple updating rule that satisfies (5) but has no known

theoretical convergence rate
1

o= ——,
T At b
where a and b are constants; they are chosen according to the given data. We also imposed

an upper bound on the step size in order to maintain dual feasibility.

Recall that our problem is to maximize
n

T n
£ = min 3 filadui_yuf) - SN ad - d)
’ t=1 =1

1=1t=1

15



subject to A' > 0. A subgradient of the function £(\') with respect to ' is given by
Vt Z xt, t= ]. T

If V,£(X) is not equal to zero, then it is an ascent direction and the value of £(\!) will
increase by moving to A+ ay(d; — ¥; 28), ay > 0. Since we want to maintain dual feasibility.

that is, A; > 0, the maximum step length is

Ai
max — : 6
“ ?:l .T; - dt ( )

when Y0, 2% > d;. In the case where the primal solution is infeasible, Sr ozt < dy, there

is no upper bound on the value of a;, but we imposed a maximum step length in the

implementation. The previous points can be summarized as follows:
o If Xl =0and ;2 > d;, then set A\*! « AL

o If Xl > 0and ;20 > dy, then set \*' « M + ay(d; — ¥, 2), where a; does not
"
excee m

o If Z ) < dy, then set A\ M+ qy(d, — ¥ 7).

The previous procedure is very efficient and simple to implement.

6 Pump-Storage Hydro Unit

The problem of optimizing pump-storage units has been studied extensively. Bannister and
Kaye [2] discuss the case of a single reservoir and a single production facility that represents
all available generating units. The operating cost of the production facility is assumed to
be piecewise linear and convex. The authors present a linear programming formulation, and
then exploit the special structure of the constraint matrix in order to develop an efficient

dynamic programming formulation, which in turn is used to solve the model over the study

16



horizon. However, this paper assumes that the cost function of operating the hydro unit is
the same for all time periods, and hence, independent of the load on the system. In reality,
the cost associated with pumping water into the reservoir of the hydro unit, and the savings
resulting from releasing water from the storage depend on the system’s load and its current
state. The previous difficulty is a result of the non-linearity of the generator’s cost functiohs

and the start up and shut down costs.

Merlin and Sandrin [7], and Aoki, Itoh, Satoh, Nara, and Kanezashi [1] provide a more
general solution by assuming that the pump-storage unit is a special generating unit which
can produce and consume electricity. The cost function of the hydro unit is assumed to be
a linear function of the amount of water released from, or pumped into, the reservoir. The
cost coefficient at each time period, ¢, is the marginal cost, A;, of producing electricity at
that time period. The water utilization problem is then solved using dynamic programming.
In each iteration, the values of A change, which consequently changes the cost associated
with the hydro unit, hence its policy. Our numerical experience with this technique indicates
that the number of iterations needed to solve the problem is relatively large. The reason
may be the strong relationship between all time periods which is introduced into the model
by treating the hydro unit as any other generator. Another problem with using a linear
cost function for the hydro unit is that, given a small marginal cost, A, at period ¢, the
dynamic programming technique tends to pump a lot of water and may fill the reservoir in
that period. On the other hand, if A, is relatively large, the dynamic programming solution

may use most of the water at that period.

7 Efficient Pump-Storage Unit Formulation

In order to reduce the number of iterations, one can ignore the pump-storage hydro unit,

solve the thermal unit commitment problem to obtain the marginal cost, );, at each period,

17



t, and then solve the water allocation problem using dynamic programming. Now, the load
on the thermal units is updated, and the unit commitment problem is solved again to obtain
a new set of \. The process is repeated until the values of A converge. Note that at each

iteration, a large mixed-integer quadratic program needs to be solved.

The previous procedure is not very efficient since the initial values of A are far from being
optimal, and the number of iterations needed is large. One can obtain a better initial set of
Lagrange multipliers by using the approximating procedure described in section 4.2. Notice
that instead of solving a unit commitment problem in each iteration, we need to perform a
table look-up in order to come up with a reasonable A. Then, the demand is changed and
the new values of A are used and so on. We formulated the previous problem as a dynamic

program by discretizing the water level in the reservoir.

Assume that the water level at the beginning of the horizon is hg and that the terminal
water level at the end of the horizon is hr. The maximum water level in the reservoir is
h. The cost of pumping water into the reservoir, p(he_y, by, d;), is a function of the water
levels, h;,—; and h¢, and the load on the system, d;, during time period ¢. Let us denote
the amount of electricity needed to change the water level in the reservoir from h,_; at the
beginning of period ¢, to h; at the end of that period by H(h;_y, h;). The function H (hy_; h,)

is assumed to be positive for h;_; < hy; that is, pumping, and negative for h,_; > h; which

—H(h+A,h)

represents generating electricity. Clearly, the ratio Hhhtd)

A > 0, is strictly less than

one; it represents the efficiency of the hydro unit.

Given a certain demand, d;, our approximation of the cost of generating one unit of
electricity, A;, is given in section 4.2 by the convex function A(d;). Note that A(d,) is a

function of the load and does not depend on the time period. The cost of changing the water

18



level from h;_; to h; is
ht v
mmmmﬂg:/ A(dy = H(he_y, B))dh. | (7)

h=hi_y

Since we decided to discretize the variable h, a summation over all intervals between h;_;

and h; should replace the previous integral.

The recursive equation of the dynamic program is

Pt(ht) = min _{Pt—l(ht—l) +p(ht_1, ht,dt)}, t= 1, RN T (8)

0<hi_1<h

The boundary conditions are Py(hg) = 0 and Py(h) = oo for h # hg. The optimal objective

value is Pr(hr) and an optimal strategy can be found easily by backward recursion.

One can look at the previous dynamic program as an attempt to smoothen the demand
for electricity in different periods using the hydro unit. During low demand periods, water
is pumped into the reservoir at a relatively low cost, which increases the load on the thermal
units. When the marginal cost is large; that is, the demand is high, water is released to

absorb part of the demand which reduces the load on the thermal units.

After solving the dynamic program in (8), we update the load on the thermal units
dy=dy+ H(hy_y, hy), t=1, ..., T,

and solve the resulting thermal unit commitment problem. Using the marginal values ob-
tained from the Lagrangian relaxation of the unit commitment problem, we again minimize
the cost of operating the hydro unit, which is assumed to be a linear function of d; with ),
as its cost coefficient. As mentioned earlier, having a constant cost, A;, at each time period
for any change in the water level may cause the hydro unit to over pump or release. This

extreme behavior is dampened by restricting the maximum amount of water that can be

19



Figure 4: The Procedure Used in Finding an Optimal Solution for the Hydro Unit

Approximate the marginal-cost function of
generating electricity, A(d), using the proce-
dure described in section 3.4.

Compute the cost of changing the water level
for the given demand using equation (3.7).

Use the dynamic program of (3.8) to obtain
an approximate water allocation, h;, at cach

time period, t =1, , ..., T.

Update the demand on the thermal units Set A« Apew. Solve
~ the dynamic program
di=di+ H(hi—1, ), t=1, ..., T. of (3.9).

Solve a thermal unit commitment problem to

obtain the exact marginal cost, Anew, corre-

sponding to d.

Are all the values of A and No

Anew close enough?

Yes

Stop. The current solution is a local minimum.
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pumped or released in one period to H. The recursive equation of the resulting dynamic

program takes the form

Pt(ht) = If;ﬂin{])t_l(ht_l) + /\t(dt - H(ht_l, h))}, t= 1, ey T, (9)
t—-1
where h;_; takes all possible water levels in the range [max{0, h; — H}, min{h, h, + H}]. The
dynamic program in (9) leads to a new hydro policy. The proéess is repeated until the values

of A converge.

8 Demand Uncertainty

Throughout the previous sections, d; > 0 represented the total demand for electricity
during time period t. Clearly, d; is a random variable that fluctuates according to the

weather, the day of the week, the time of day, and many other factors.

The main difficulty is that the demand for electricity is continuously varving. In practice,
the demand during each period, which is usually one hour, is estimated using the weather
forecast and the data that has been already collected from similar periods in previous vears.
This estimation is done for each period in the problem horizon which is generally one week:
the approximated demands are then used to find an optimum strategy, which determines the

status of each generator during each time period.

Since the actual demand at any point in time may be different than the approximated
demand, experienced operators observe the changes in the demand, and make the necessary
real-time decisions. For instance, if the demand for electricity increases above a certain level.
the load on the generator with the lowest cost per electricity unit, that is, the smallest slope
or marginal cost, is increased. In this case, the operator is trying to meet the demand at a

low cost using a greedy strategy. But after using the flat parts of the cost functions for all the
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running generators, it may actually be more beneficial to start up another generator rather
than using the generator with the smallest slope. In some cases, all running generators may

reach their upper limits, and still another generator may need to be started.

A widely used approach to handle demand uncertainty is to develop forecasts of both
the average and the peak demand for each time period. The unit commitment problem
formulation is then altered so that it takes into consideration the worst case scenario; that

is, the peak demand at each period, d;.

minx,u Z?:l Z’{zl fi (1";7 ui—l’ u;)
subject to srrh > dy,t=1,..., T
Z:l:l G,Ui > Et, t: 17 ey T

Planners require excess reserve capacity not only to guarantee the existence of enough gen-
erating capacity, but also to protect the system against the inability to satisfy the demand
when generating equipment failures occur. Excess system capacity is often called spinning

reserve [8].

The following section describes a unit commitment formulation that takes into consider-
ation the non-deterministic nature of the demand. An efficient technique for solving this

problem is also presented.

9 Stochastic Unit Commitment Formulation

Rather than solving the unit commitment problem for the expected demand vector, one can
consider a set of possible scenarios and solve the unit commitment problem for the demand of
each of these scenarios. Each scenario is assigned a weight, P, that reflects the possibility of
its occurrence in the future. In other words, the uncertainty about future demand is modeled

by a number of deterministic sub-problems; this approach is called scenario analysis [11].
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Here, one hopes to discover similarities and trends by studying different instances of the

sub-problems, and eventually, come up with a “well-hedged” solution to the original problem.

The policy we are looking for has to satisfy the constraint that if two different scenarios
s and s’ are indistinguishable at time period t-on the basis of information available about
them at time ¢, then the decision made for scenario s must be the same as that of scenario s’
The previous constraint is modeled by partitioning the scenario set at each time period into

disjoint subsets that are called scenario bundles. Clearly, a bundle at time ¢ is refined in

Figure 5: Scenario bundles Scenario 1

Decisions made for Scenarios 1 and
2 must be the same.

o Scenario 2

Decisions made for Scenarios 1, 2,
3, and 4 must be the same.

o o Scenario 3
Mon Tue Wed Thu Fri Sat Sun

Decisions made for
Scenarios 3 and 4 must o Scenario 4
be the same.

subsequent time periods into smaller disjoint bundles [11].

To clarify the previous concept, assume that the unit commitment problem was solved
for S demand vectors, d°, s = 1, ..., S, which resulted in a three-dimensional array
representing the status of each unit at each time period under each scenario, u”*. The system
administrator needs to make a decision concerning the status of each unit, 7, during the first
time period based on the solutions obtained. In general, the values of u’i‘s, s=1, ..., 85,
are not equal, and an optimal decision cannot be made without reformulating the problem

so that the decisions ui’s are the same forall s=1, ..., Sandi=1, ..., n.
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One does not only have to consider the first time period, but must also take into account
all subsequent bundles that could affect the decisions made throughout the study horizon.
Two scenarios are members of the same bundle, (2, at time period ¢ if both of them have
the same demand values for all time periodé 1, ..., t. Note that each scenario is a member
of exactly one bundle at each time period, which motivates the notation B(s,t). If two
scenarios are members of the same bundle at time ¢, then their bundles in time periods

1, ..., t —1 are also the same. In other words,

B(s1,t) = B(sq,t) = B(s1,7) = B(s9,7), T=1, ..., t = 1.

Mathematically, a bundle at time period ¢ is represented as a constraint on the deci-
sion variables, ui‘s, of its scenarios. Adding the bundle constraints results in a large-scale
mixed-integer quadratic program that combines S unit commitment problems together. The
objective function is to minimize the weighted sum of the objective functions of the smaller
problems, that is, to minimize the expected cost over all possible scenarios. Here is the

mathematical formulation:

: S T L, , X
ming, Yoy Py Soay Sl wity u®)

subject to Z?zlscﬁ’s > di,t=1, ..., T, s=1,..., S
and
‘751,32:B(sl,t)-—-B(sg,t):Qk:>1,t’t"51 :uﬁ’”:c};, t=1,....T,i=1, ..., n

The previous program is solved in a Lagrangian relaxation-like technique: a multiplier,
uﬁ‘s, is associated with the bundle constraint on each variable uﬁ‘s, and the corresponding
penalty term, uﬁ’s(ui’s —¢}), is added to the objective function. The target value ¢} is the

same for all scenarios that share the same bundle, and is assumed to be the weighted average
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Figure 6: The Progressive Hedging Algorithm Described in Section 9

Initialize the Lagrange multipliers, A, and the
hydro and thermal penalties.

Sct A + Anew, do not Solve S hydro-unit problems to obtain the best

reset the penaltics.

water utilization for each scenario.

Update the hydro-unit
penaltics.

Are all bundle constraints

satisfied for the hydro-unit?

Solve S unit commitment problems to ob-

tain Apew for cach scenario.

Update the thermal-
unit penaltics.

Arce all bundle constraints

No

satisfied for all generators?

Arc all the values of A and

Ancw close enough?

Stop. The current solution is a local minimum.

25




of the decisions made ‘
1,8

Ci N ZS:B(S,t):Qk Psut
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Es:B(s,t):Q;c Ps

The process is very similar to the one proposed for solving the deterministic unit commitment

problem using Lagrangian relaxation. Starting from a set of penalties, S unit commitment
problems are solved. If the resulting solutions satisfy the bundle constraints, then we stop
with an admissible implementable policy or a feasible strategy. Otherwise, the penalties are
updated and the process is repeated. We call the previous process progressive hedging [11].
Since the program in (10) is not convex, the feasible policy obtained at termination is a local
minimum for the problem. In order to get better policies, different starting penalties and

different updating strategies should be used.

10 Duality Gap Estimation

Our goal is to minimize the expected cost of generating electricity using n generators for a
horizon of T periods over S possible scenarios. Mathematically, the problem can be written

as:
ming, Yoo, P Y, Yl fi(fi'sa 'y, ug) 1)

subject to noat >l |

and subject to minimum on-time, minimum off-time, minimum and maximum operating
levels, and the appropriate bundle constraints. In order to represent the bundle constraints,
we define 7(s) to be the first period in which a scenario, s > 2, does not share a bundle
with another scenario s’ < s. We also define o(s) < s to be a scenario that shares the same

bundle with s at all time periods prior to and including 7(s) — 1. The bundle constraints

are then written as

Wt -y’ = o, t=1,...,7(s)=1,i=1,...,n,s=2,...,S.
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The program in (11) is made separable into S deterministic unit commitment problems
by using the appropriate Lagrangian multipliers. Let us relax the bundle constraints by
associating a multiplier, 4i°, with each equality constraint w* = up"®) = 0. Here is the
resulting dual objective function:

p (=) (1)

n n ’T(S)-—l

S . ' .
maximin Y- P 3L Y Al i) - 1
s=

=1 t=1 s=21

—

1 t=
In this section, we show that under certain conditions, the duality gap is relatively small:

hence, the use of this relaxation is justified.

Proposition 10.1 Under the assumption that there exists a feasible solution for the given
unit commitment problem of each scenario, the duality gap between the minimum of (11)
and the mazimum of (12) is bounded above by KC. Here, K 1s the number of instances at
which the scenario tree branches; i.e., K = || Us_o{7(s)}||, and C is a constant determined

by the generating units of the system.

Proof Let us solve the unit commitment problem for all scenarios s = 1,...,S without
taking the bundle constraints into consideration. Our goal is to find, using these optimal
policies, a feasible policy that satisfies all bundle constraints. Note that if we force each
generator, i, to be on for at least L; periods prior to each branching point in the scenario
tree, the resulting optimal solutions are feasible and satisfy the bundle constraints. In other
words, scenarios that are in the same bundle have identical schedules for the generating
units. This follows from the fact that scenarios contained in a given bundle at a time period
t have the same demand for all periods prior to ¢, and that the states of all generators at

each of the K branching points are forced to be identical.

After relaxing the bundle constraints and solving the unit commitment problem corre-

sponding to each scenario optimally, the state of a generator, 7, under a given scenario and
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prior to a specific branching point, ¢, can be in one of three states. Here, we describe a pro-
cedure that uses the optimal policies to produce a feasible schedule that satisfies all bundle

constraints.

1. on for at least L; periods.

No action is necessary to make the problem feasible.

2. on for a < L; periods.

Here, the generator ¢ is off for the 3 > I; periods prior to t — a. We study two cases:

ea+pB—-L; >
Switch on generator ¢ for the L; periods prior to t. Note that 7 is off for a + 3 — L;
periods in the new schedule; i.e., the minimum-off time requirement is satisfied.

The additional cost incurred is S; + L; f;(g;, 1, 1).

ea+pB—-L; <[
Switch on generator ¢ for all a + § periods prior to t. Note that the resulting
schedule satisfies the minimum-on time requirement since there are at least L,
periods prior to t — a — 3 in which the generator is on. The additional cost

incurred is at most (L; + ;) fi(gi. 1,1).

3. off for B periods.

We discuss two cases:

« B> L+l
Switch on generator ¢ for the L, periods prior to t. The resulting schedule is feasi-
ble since it satisfies both the minimum on-time and minimum off-time constraints.

The additional cost incurred is S; + L; fi(gi, 1,1).

e B Li+1;

Switch on generator i for all 3 periods prior to t. The resulting schedule is feasible
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since this generator is on for at least L; periods prior to t — 3. The additional

cost incurred is at most (L; + ;) f;(g, 1, 1).

From the previous discussion, it costs at most C' = L;fi(g;,1,1) + max{S;,l; }:(¢;. 1,1)} to
force a generator, 1, to be on for L; periods prior to a given time period ¢. Since we have at
most A branching points for each scenario, an upper bound on the increase in the objective
function cost that results from enforcing the bundle constraints is:

S
S P,KC = KC.

s=1

Clearly, KC' is an upper bound on the duality gap of the relaxation used; i.e., it is an

upper bound on the difference between the minimum of (11) and the maximum of (12). =

Note that the number of branching points, K, is bounded above by S — 1. The ratio
of the duality gap to the number of scenarios, S, is called the relative gap. It is bounded
above by % In practice, K" does not increase linearly with the number of scenarios since
the branches are created at certain periods in the planning horizon. If this is the case, the

relative duality gap approaches zero as the number of scenarios increases.

11 Scenario Generation

In order to obtain a policy that is of practical use, we need to provide the progressive
hedging algorithm with scenarios that truly reflect all possible future demands. Furthermore,
the probabilities assigned to these scenarios must be calculated carefully. Clearly, this is not
an easy task, and more research must be done in this area in order to develop a better
understanding of the demand randomness and the related factors. One thing which must be
considered in regards to scenario generation, is that the more scenarios which are created,

the better the hedging policy of the algorithm. On the other hand, the execution time of the
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algorithm grows rapidly as the number of scenarios included increases and as their demands

are more diverse.

Among the factors that randomly affect the load on the system are generator failures and
unexpected or unusual demands. One should also consider the available electricity that can
be purchased from other suppliers and the sales of electricity to other regions with emergency
needs. Here is a closer look at some of these factors and the suggested methods of treating

them in our model.

11.1 Generator Failures

A given generator may be unavailable for use at any time due to unforeseen circumstances,
such as mechanical problems, unscheduled maintenance, etc. The current strategy of Detroit
Edison and Consumers Power is to maintain adequate operating reserves for these types of
situations. At any given time, some of this operating reserves is available from the pump-

storage plant.

We have modeled this problem by creating a scenario which has demand increases equal
to the unavailable generator’s capacity. These demand increases occur, during the periods
in which the generator is expected to be down. The scenario is then assigned a weight equal
to the probability that this generator will be unavailable. Different scenarios can be created

for different generator failures.

Another way to model this problem is to approximate the generating capacity loss over
a certain period of time. The advantage of this technique is its independence from the
individual generators. For instance, the Michigan Electric Power Coordination Center per-
sonnel estimate that the unexpected generation loss is approximately 400 Megawatt-Hours

every three days. The previous statement is translated into an increase in the load of 400
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Megawatt-Hours per day with a probability of one third, and no increase in the load with a
probability of two thirds. We started with the expected scenario, and then created a scenario

tree that covers all possible increases using the previous rule.

11.2 Inaccurate Forecast

Experienced schedulers forecast the load for each hour of the week on Sunday and, if
necessary, update this forecast on each shift. In order to estimate the load on the system, a
scheduler uses the data of the same week from previous years, the data of days with similar
weather conditions, and his/her personal experience. The resulting load forecast is then used

as the input for the unit commitment program which determines an optimum strategy.

Here again, we created several scenarios with high demand increases or decreases. The
unusual changes in the demand are assigned probabilities according to the likelihood of their
occurrence. This approach makes it easy for a scheduler to include all the relevant data of

a certain week in the model after assigning a suitable weight to each of them.

11.3 Other Factors

Electricity can be bought from or sold to other electric companies. The price per Megawatt-
Hour varies depending on the time of the day, the contracts governing the trade between
these companies, the amount of electricity needed, the urgency of the electricity need, etc.
All the resulting changes in the load on the system can be modeled as possible scenarios.
Each of these scenarios has an additional generator with an appropriate cost function cor-
responding to the price of the available electricity. The minimum and maximum generating
capacities of such a generator are set equal to the total amount of electricity that can be
purchased in each period. Each generator of this type is a must-run unit in its corresponding

scenario, and is assumed to be unavailable in all other scenarios. The only difficulty in ap-
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plying this approach is that the probability assigned to each scenario needs to be estimated
accurately. This estimation can be done easily if there is a large database that will permit

a good approximation of these probabilities.

12 Computational Experience

The progressive hedging technique was implemented using the C language on an IBM
RS/6000. The code is written so that it makes full use of the RISC architecture. A unit
commitment problem with 2400 binary variables and 2400 continuous variables is solved in

less than one second to within 0.1% of the optimum solution.

We used the same data that is used by Michigan Electric Power Coordination Center. The
system has a pump-storage hydro plant with six units, and more than hundred thermal units.
Water is pumped into the reservoir during low-demand periods so that it can be used during
peak-demand periods. For this study, the power needed to pump the water into the storage
facility is assumed to be linear to the change in the water level. In other words, to change
the water level in the storage by one foot, one needs a constant amount of electricity that is
independent of the level of water in the pump-storage plant. This constant was assumed to
be 340 Megawatt-Hours per foot in our calculations. The efficiency of the storage facility,
that is, the ratio of the power generated by one foot of wafer to the power needed to pump
one foot of water into the reservoir is 70%. So, it makes sense to pump water for future use
as long as the ratio of the marginal cost during the pumping period to the marginal cost

during the generation period is less than 0.7,

The thermal units are divided into four different categories. The first is the must-run units
which are assumed to be on-line everyday throughout the year. These units have relatively

lower operating costs compared to the others. The second category is the unavailable units.
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The unavailability is due to maintenance, mechanical failures, or other factors. Cyclers form
another category. These units must be scheduled for use in advance, since they require a
long time to get them on-line. The last category is peakers. Peakers are committed when
no other economic resources are available, or when a system condition requires their quick
start capability. For this study, the minimum on and off times for peakers are equal to one

hour, so that they can be used when needed then turned off immediately after that.

12.1 Generation Shortage Example

We used 22 different scenarios in this example. The expected demand for each period
over a one-week horizon was provided by Detroit Edison and Consumers Power; it is that
demand for the time periods between Monday November 9, 1992 and Sunday November 15,
1992. We assumed that the demand over Saturday and Sunday for all scenarios is the same
as that of the forecasted demand, scenario one. Saturdays and Sundays have low demand
in general, hence, they are not the bottleneck in the unit commitment schedule. The other
scenarios were generated from scenario one by adding 400 Megawatt-Hours with probability
one third at the beginning of Tuesday, Wednesday, Thursday, and Friday. This increase in
the demand takes into account the possible failure of some thermal units. Table 1 summarizes

the demand increases of different scenarios relative to the expected demand.

The scenario tree and different scenario bundlesv can be seen in Figure 7 and Table 1.
For instance, scenario one and two have the same demand throughout Monday, Tuesday,
Wednesday, and Thursday, and therefore they are members of the same bundles up to the
beginning of Friday. That means that our unit commitment schedules for these two scenarios
must be the same for all periods prior to Friday. In other words, the water level and the
thermal units’ status, on or off, are the same. Scenarios three, four, and five have the

same demand up to Friday morning, and therefore, our unit commitment schedules for these
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Table 1: Demand Increases for Different Scenarios

Scen. | Prob. | Mon. | Tue. | Wed. | Thu. Fri. | Sat. | Sun.
1 {19.05% 0 0 0 0 0 0 0
2| 9.52% 0 0 0 0 400 0 0
31 9.52% 0 0 0 400 400 0 0
4| 4.76% 0 0 0 400 800 0 0
51 0.95% 0 0 0| +20% | +20% 0 0
6| 9.52% 0 0 400 400 400 0 0
7| 4.76% 0 0 400 400 800 0 0
8| 4.76% 0 0 400 800 800 0 0
9| 1.90% 0 0 400 800 | 1200 0 0
10 | 0.95% 0 0 400 800 | +15% 0 0
11| 0.95% 0 0] +20% | +20% | +20% 0 0
12 | 9.52% 0| 400 400 400 400 0 0
13| 4.76% 0] 400 400 400 800 0 0
14 | 0.95% 0| 400 400 400 | +20% 0 0
15| 4.76% 0| 400 400 800 800 0 0
16 | 1.90% 0| 400 400 800 | 1200 0 0
17| 0.95% 0| 400 400 | +15% | +15% 0 0
18 | 4.76% 0| 400 800 800 800 0 0
19 | 1.90% 0| 400 800 800 | 1200 0 0
20 | 1.90% 0| 400 800 | 1200 | 1200 0 0
21 | 0.95% 0| 400 800 | 1200 | 1600 0 0
22| 0.95% 0] 400 | +20% | +20% | +20% 0 0
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scenarios must be the same for all periods prior to Friday. Note that all scenarios have the
same demand on Monday, hence they are members of the same bundles for all periods prior
to Tuesday morning. Figures 8 to 12 in section 12.1.1 show the demand comparisons between

each scenario and the expected demand.

We used the progressive hedging technique to solve the previous problem. Note that for
any bundle, penalties need to be applied only to the cyclers if their status are not the same.
The must-run units and the unavailable units have the same status, and the decisions on the
peakers’ status can be made in real time since their response time is negligible. This remark
reduces the calculations considerably since progressive hedging has to deal with the small

number of cyclers only.

Table 2 shows the costs of applying the optimum strategy for a given scenario to each
of the other scenarios. Obviously, the lowest cost for each scenario occurs when its own
optimum strategy is used. The expected value of using each optimum strategy is computed
and given in the column E(x). The costs corresponding to applying the progressive hedging
policy to all scenarios are provided in the last row of Table 2. The difference between the
expected value of each optimum policy and that of the progressive hedging represents the

savings incurred by using progressive hedging.

Note that scenario one is the forecasted demand and its optimum strategy is the strategy
used by Michigan Electric Power Coordination Center to build their schedule. We call this
strategy the deterministic strategy since it is computed using the expected demand. Applying
this strategy to the other scenarios represents what Detroit Edison and Consumers Power
may pay if the forecast is inaccurate, that is, if another scenario occurs. Clearly, the expected
cost corresponding to the progressive hedging strategy, $19,978,000, is lower than that of the
deterministic strategy, $20,124,000, yielding a savings of $146,000 for this week. As a matter
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of fact, in the long run, the cost of applying the progressive hedging strategy must be less

than the expected cost of applying any other strategy to all scenarios.

12.1.1 Demand Comparison

Figure 7: Scenario Tree
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Figure 9: Electricity Demand Comparison for Scenarios 6 to 9

Figure 10: Electricity Demand Comparison for Scenarios 10 to 13
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Figure 11: Electricity Demand Comparison for Scenarios 14 to 18
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12.1.2 Pump-Storage Plant Water-Level Comparison

As we are trying to make the same decisions for scenarios that share the same bundles,
water levels in the storage facility must be the same for such scenarios. Note 1L.ow scenarios
one and two maintain the same water level throughout the week up until Friday morning. It is
interesting to compare the hedging strategy of scenario one to the deterministic strategy. The
deterministic strategy uses more water in the periods between Monday and Thursday; while
the hedging strategy is being more conservative by taking into consideration the possibility

of demand increase on Friday.

Since it is very hard, for computational reasons, to make the difference in the water levels
in a bundle equal to zero, we assumed that two policies are the same if the weighted difference
in their water levels is less than 0.3 foot, that is, 100 Megawatt-Hours. This is why scenario

five does not follow exactly the policy of other scenarios sharing the same bundle.

Figure 13: Water level Comparison for Scenarios 1 to 5
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Figure 14: Water level Comparison for Scenarios 6 to 9
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Figure 16: Water level Comparison for Scenarios 14 to 18
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Figure 17: Water level Comparison for Scenarios 19 to 22
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12.1.3 Pump-Storage Plant Generation/Consumption Comparison

As mentioned earlier, the relationship between the change in the water level and the
amount of electricity generated is linear. A similar relationship holds in the case of pumping.
We assumed that 340 Megawatt-Hours is needed to raise the water level in the storage facility
by one foot. The efficiency of the hydro—unit. is 70% which implies that 238 Megawatt-
Hours are generated whenever the water level decreases by one fobt. The following figures
are obtained from the water levels in the storage. The positive values indicate generating
electricity and the negative values indicate pumping of water into the facility. Note that the
ratio of the area under the positive part of any curve, that is, total generation during the
week, to the area under the negative part of that curve is equal to 0.7. The previous relation
results from the condition that the water levels at the beginning and at the end of the week

are the same.

Figure 18: Generation/Consumption Comparison for Scenarios 1 to 5
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Figure 19: Generation/Consumption Comparison for Scenarios 6 to 9
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Figure 20: Generation/Consumption Comparison for Scenarios 10 to 13
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12.1.4 Smoothened Demand Comparison

The following figures show how the hydro-unit smoothens the demand of each scenario.
Electricity is generated during peak periods since the marginal cost is very uigh at these
times. On the other hand, the load is increased on the system during the night and the
weekend in order to fill up the water storage. The original deterministic demand is displayed

on each graph to serve as a measure of comparison.

In most cases, the hydro-unit starts generating electricity when the demand is 10,000
Megawatt-Hours. For these scenarios with high demands, the generation level increases
depending on the future demand. We can observe a similar behavior for pumping: the
hydro-unit starts pumping when the demand level is lower than 9,000 Megawatt-Hours. The
previous demand levels are consistent with the marginal costs, A, obtained from solving the
unit commitment problem: A = $17 when the demand is 9,000 Megawatt-Hours and )\ ~ $23
when the demand is 10,500 Megawatt-Hours, yielding a ratio of 0.74.

Figure 23: Smoothened Demand Comparison for Scenarios 1 to 5
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Figure 24: Smoothened Demand Comparison for Scenarios 6 to 9
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Figure 25: Smoothened Demand Comparison for Scenarios 10 to 13
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Figure 26: Smoothened Demand Comparison for Scenarios 14 to 18
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12.2 Inaccurate Forecast Example

We created sixteen different scenarios using the demand data provided by Detroit Edison
and Consumers Power for the months of August in years 1990, 1991, 1992, and 1993. The
four weeks of August in each of the four years are assumed to be probabilistically independent
with identical demand distribution, hence, each.week is considered a possible scenario with a
weight of % In order to create scenario bundles, we assumed thatl the demand on Monday,
Tuesday, and Wednesday is known in advance, and equal to the average demand over these
days in the given sixteen scenarios. On Thursday morning, there are four branches, each
one of them is taken as the average of the demand on Thursdays in August in each of
the four years. Then, each of Thursday’s scenarios splits on Friday morning; the resulting
sixteen branches have the same demand on Friday, Saturday, and Sunday as that of the
sixteen observed scenarios. Figure 28 shows the scenario tree, and Figures 29, 30, 31, and 32

provide the electricity demand used in each one of the sixteen scenarios.

We solved the previous problem for each of the individual scenarios to obtain its optimal
policy, which is then applied to other scenarios to compute the expected operating cost. We
also solved the problem using the expected demand; the results are shown in the “Determin-
istic” row of Tabie 3. Progressive hedging is then used to minimize the expected cost over
all scenarios; the results are shown in the 1ast' row of the same table. The hedging policy is
expected to perform better than any other policy; it saves on the average $120,000 over the

deterministic one.

The following sections provide all the results related to this example, namely, different
water levels in the pump-storage plant, electricity consumed or generated by the hydro unit,
and the smoothened demand curves for different scenarios. The deterministic scenario is
drawn to compare its demand to the other scenarios. The optimal water level and the cor-

responding electricity generation/consumption of the deterministic scenario are also shown.
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12.2.1 Demand Comparison

Figure 29: Electricity Demand Comparison for Scenarios 1 to 4
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Figure 30: Electricity Demand Comparison for Scenarios 5 to 8
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Figure 31: Electricity Demand Comparison for Scenarios 9 to 12
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Figure 32: Electricity Demand Comparison for Scenarios 13 to 16
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12.2.2 Pump-Storage Plant Water-Level Comparison

Figure 33: Water level Comparison for Scenarios 1 to 4
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Figure 34: Water level Comparison for Scenarios 5 to 8
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Figure 35: Water level Comparison for Scenarios 9 to 12
] A ﬁ*’*
s /
* \ A . .I/_\\\ ; / ,/—
N ﬂ [ \ {!/ ,\\{ ! ,FJ
. \ . |
vl | | | \ L /
/ | \\ T |
ol \ \'\I !
) YV |
10 - \\J \ . \ / _,,AA,J
\ -
N . R\ )

54



60

50-/

4 +

30

20 1

10+

Figure 36: Water level Comparison for Scenarios 13 to 16
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12.2.3 Pump-Storage Plant Generation/Consumption Comparison
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Figure 37: Generation/Consumption Comparison for Scenarios 1 to 4
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Figure 38: Generation/Consumption Comparison for Scenarios 5 to 8
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Figure 39: Generation/Consumption Comparison for Scenarios 9 to 12
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Figure 40: Generation/Consumption Comparison for Scenarios 13 to 16
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12.2.4 Smoothened Demand Comparison

Figure 41: Smoothened Demand Comparison for Scenarios 1 to 4
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Figure 42: Smoothened Demand Comparison for Scenarios 5 to 8
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Figure 43: Smoothened Demand Comparison for Scenarios 9 to 12
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Figure 44: Smoothened Demand Comparison for Scenarios 13 to 16
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13 Conclusions

We improved the existing method for solving the unit commitment problem by selecting a
good starting set of marginal costs, and improving the single-generator sub-problem dynamic
programming formulation. In order to handle demand uncertainty, we suggested solving the
unit commitment problem for different scenarios in order to obtain an optimum policy for
~each"0f them. Since the policiés may differ, a penalty term is applied to each policy which
violates the average pblicy. The probleni is then resolved and new penalties are dbtaixled,
This process is repeated until a unique optimum policy is reached. The preliminary results
indicate that using the progressive hedging technique can reduce the operating cost of the

system by 1-2%.
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