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PREFACE

Hydroelastic behaviorial analysis of marine structures (ocean-going and offshore) has

been becoming increasingly important as an area of research in naval architecture. As

marine vessels become larger and their structure becomes lighter, the elastic behavior

gains prominence, leading to adverse effects like hull bottom damage, fatigue stresses due

to prolonged hull whipping, and local failures. The larger the structure, the more is its

flexural behavior. Offshore oil exploration utilizes VLCC (Very Large Crude Carriers)

and ULCC (Ultra Large Crude Carriers) for transportation and storage. Such vessels

require a hydroelastically sound design. As the increasing world population leads to the

scarcity of inhabitable land, (flexible) floating cities and airports are not far from be-

coming a reality. Arctic and Antarctic exploration provides another area of hydroelastic

application, where ice-breaking (a few hundred km2 in area) is a major challenge.

The estimation of the global flexural strength notwithstanding, isolated hydroelastic

analysis is necessary to incorporate local strength in regions of the craft; e.g. the bow,

wetdeck, stern, and bow flare. Slamming is a common phenomenon in planing crafts

: sudden decreases in the dynamic lift of the hull causes the craft to impact against

the wall of water below its bow. Slamming damage may be local structural failures or

fatigue due to the weakly damped, persistent global whipping induced by the impact.

Slamming is also a common phenomenon in the sea environment, where, depending on

the frequency of encounter of the vessel with the wave field, the forefoot emerges once

every few wave encounters, followed by an inevitable slam. The relative bow motion,

which is a superposition of the heave, pitch and the wave (in magnitude and phase),

indicates the probability of slam for a given sea state.
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ABSTRACT

HYDROELASTIC RESPONSE OF MARINE STRUCTURES TO

IMPACT-INDUCED VIBRATIONS

by

Nabanita Datta

Chair : Armin W. Troesch

This research deals with the numerical analysis of the hydroelastic behavior of marine

vessels under hydrodynamic impact loads, which causes potentially detrimental local

flexural vibrations in the vessel. The objective is to provide the dynamic response spectra

for transient water-structure dynamics subject to typical impact loads and time scales,

using one-way coupling between the fluid and the structure. The hydrodynamic pressure

is assumed to be applied on the rigid plate, and then the plate is modelled to respond

elastically. The structural vibrations are assumed not to influence the hydrodynamic

pressure field.

The changing wetted surface is the prime complexity of the problem. The sweeping

load sets the plate into small amplitude vibrations, exciting all its natural frequencies

(fundamental and overtones). The time-scales of the problem are : (a) the duration of

the forcing when sweeping across the plate, and (b) the natural period of the structure.

Assuming small deflections of the structure, normal mode summation is used to calculate

the vibratory response. The total deflection is assumed to be a series summation of the

modal deflections. When the amplitude of the vibrations is small, the dynamic stresses

are directly proportional to the flexural displacement.

xx



Two configurations of the moving load, i.e. (i) uniform stretching load and (ii) im-

pact load, are applied. The coupled system of modal governing differential equation

is non-dimensionalized in space and time, and the Dynamic Loading Factor (DLF) of

the loading is numerically evaluated by the fourth-order Runge-Kutta method. The

corresponding static deflections are calculated by Galerkin’s method. The ratio of the

maximum dynamic deflection to the maximum static deflection is the DLF. This anal-

ysis provides recommendations to the structural designer, who typically relies on static

analysis. The modal participation spectra relative to the dominant fundamental mode

for various impact speeds is used to establish modal truncation guidelines.

The variation of the response with respect to space and time, and with respect

to various parameters like the aspect ratio, damping ratio, boundary conditions, and

deadrise angles has been studied. The change in natural frequencies of the structure

due to these parameters, and immersion, has also been evaluated.

xxi



CHAPTER I

INTRODUCTION

1.1 Problem Definition.

The subject of flexible fluid-structure interaction has been gaining prominence in

academic research and practical applications in the last few decades. The prediction of

the magnitude and distribution of hydrodynamic impact pressures is a useful criterion for

the structural design of high-speed vessels. The study of global and local dynamic elastic

behavior of marine vessels and structures forms the basis of marine hydroelasticity. Non-

conventional high-speed crafts built of lighter materials like aluminum, GRP, FRP, non-

metallic composites, etc. require hydroelastic analysis as an important component of

the basic design spiral. The estimation of the global flexural strength notwithstanding,

isolated hydroelastic analysis is necessary to incorporate local strength in regions like

the bow, wetdeck, stern, and bow flare.

4 
 

vessel  is  ‘V’.  The  water  is  assumed  to  be  initially  calm,  and  the  vessel  has  zero  heel.  The  
deadrise  (apex)  angle  is  β,  with  respect  to  the  horizontal.  The  structure  has  no  flexural  
deflection  or  vibratory  velocity  at  time  t  =  0.  Upon  impact,  the  plate  is  set  into  flexural  
vibrations,  with  all  the  natural  frequencies  excited  to  different  extents.   

 
                                                                                                                                                                                                                              
                 V 
                                                                                                                                                   c                                                                                                                                             
                                                                                 β  

                                    
                                   Plate 

         
Fig.  1.            2-D    Slamming  model  of  a  typical  high-speed  craft. 

 
If  the  fundamental  modal  response  is  assumed  dominant  as  Faltinsen  [8],  it  is  sufficient  

and  efficient  to  consider  ‘pure  bending’  (Kirchhoff’s  plate),  ignoring  shear  deformation  and  
rotary  inertia  (Midlin’s  plate).  This  is  a  dual  time-scale  problem,  with  (a)  the  wetting  time  
(time  taken  by  the  hydrodynamic  load  to  sweep  across  the  length  of  the  plate)  and  (b)  the  
fundamental  natural  frequency  of  the  plate,  both  influencing  the  dynamic  load  factor  (DLF).  
The  corresponding  static  deflection,  under  exactly  the  same  loading  configuration,  is  
calculated  by  the  Galerkin’s  method.   
 
2.1   Modal  Analysis 

 
The  linear,  second-order,  homogeneous,  governing  differential  equation  for  the  free,  

damped  vibration  of  the  Kirchhoff’s  plate,  ignoring  gravity,  is  given  by  Eq.  (1).                                    
                                            

    𝑚𝑚𝜕𝜕𝐳𝐳2(x,y,t)
𝜕𝜕𝑡𝑡2 +   𝑐𝑐 𝜕𝜕𝐳𝐳(x,y,t)

𝜕𝜕𝜕𝜕
+   𝐷𝐷∇4𝐳𝐳(x, y, t) =   0                               (1) 

 
The  dynamic  deflection  z(x,y,t)    is  a  function  of  space  and  time.  Separating  the  

variables  into  space  and  time,  we  assume  𝚽𝚽k(x, y)  as  the  spatial  shape  function,  and  
𝑞𝑞𝑘𝑘(𝑡𝑡)  as  the  temporal  function  of  the  kth  vibratory  mode.  The  total  out-of-plane  
dynamic  deflection  of  the  plate  is  approximately  a  linear  superposition  of  the  modal  
deflections  zk(t),  as  given  by  Eq.  (2),   
     𝐳𝐳(x, y, 𝑡𝑡) = ∑ 𝑧𝑧𝑘𝑘(𝑥𝑥,𝑦𝑦, 𝑡𝑡)∞

𝑘𝑘=1 =     ∑ 𝚽𝚽k(x, y). 𝑞𝑞𝑘𝑘(𝑡𝑡)∞
𝑘𝑘=1                                  (2) 

                          
with  the  3-D  plate  modeshape  (shape  function)  is  defined  as  a  series  summation  as  follows  : 

𝚽𝚽(𝑥𝑥,𝑦𝑦) =   � � 𝐴𝐴𝑗𝑗𝑗𝑗𝑘𝑘
modey

𝑙𝑙=1

modex

𝑗𝑗=1

𝛟𝛟𝑗𝑗 (𝑥𝑥)𝛟𝛟𝑙𝑙(𝑦𝑦) = � � 𝐴𝐴𝑗𝑗𝑗𝑗𝑘𝑘
modey

𝑙𝑙=1

modex

𝑗𝑗=1

𝐆𝐆𝑗𝑗𝑗𝑗 (𝑥𝑥,𝑦𝑦) 

i.e.        𝐆𝐆𝑗𝑗𝑗𝑗 (𝑥𝑥,𝑦𝑦) = 𝛟𝛟𝑗𝑗 (𝑥𝑥)𝛟𝛟𝑙𝑙(𝑦𝑦),  ‘modex’  is  the  number  of  modes  considered  in  the  x-
direction,  ‘modey’  is  the  number  of  modes  considered  in  the  y-direction,  and  ϕj(x)  and  ϕl(y)  

Figure 1.1: Two-dimensional slamming model.

Slamming or impact is a common phenomenon, where in severe seas, the vessel hull

emerges once every few wave encounters, followed by a probable slam (Fig.1.1). The

detrimental effects of impact-induced vibrations are several; namely, transient local high-

frequency vibrations, global whipping, fatigue, and permanent plastic deformations of

the bow and bottom platings due to the very high localized slamming pressures.

1



 

 

 

 

 

 

 

 

 

Figure 1.2: Three-dimensional wetting.

Slam-induced impact pressures have been investigated widely, first pioneered by Von-

Karman in 1929, improved upon by Wagner in 1932. Accurate estimation of the peak

impact pressure for various slam velocities and deadrise angles resulted from decades

of intensive research, both analytical and experimental. Relatively less investigated

is the area of dynamic elastic response of the structure subjected to such loads. For

some applications, the dynamic system can be modelled as a distributed force sweeping

across the length of the plate at a certain velocity, and the plate being set into vibratory

motion (Fig.1.2), damped by material friction or radiation damping. The surrounding

fluid is also set into motion, thereby increasing the effective system inertia. The restoring

forces are the flexural rigidity of the structure and the changes in buoyancy (especially

in global-scale hull vibrations). The interaction of inertial, elastic and hydrodynamic

forces generates the hydroelastic response.

This response involves the wet vibrations of the bow, keel, and the wetdeck. The

natural frequency of vibration of elastic structures is considerably reduced in water as

compared to in air. The structure is subjected to intense moving hydrodynamic pres-

sures (Fig.1.3), which sets it into high frequency, weakly damped, submerged vibrations.

Water inertia offsets the stiffness of the plate, possibly predisposing it to greater dy-

namic response. Thus, vibration analysis becomes mandatory for efficient structural

design of such susceptible marine structures under vulnerable environmental conditions.
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Figure 1.3: Three-dimensional Impact Pressure.

1.1.1 Motivation

1. Structural design: plate scantlings.

The study of the hydroelastic response of marine structures, to hydrodynamic impact

loads, establishes several critical structural design criteria.

2. Frequency domain analysis.

The response of the structure to transient loading involves all the natural frequencies

of vibration. The study of the deflection in the frequency domain leads to useful insights

into resonance, susceptible frequencies and modeshapes, and how the structure behaves

as a band-pass filter to the hydrodynamic load. (Ships are low-pass filters to the sea

wave loads).

3. Response generalization with respect to all the parameters.

Structural parameters like deadrise angle, plate boundary conditions, aspect ratio,

and damping ratio, all influence the time-scales of the phenomenon. To assist in the

interpretation of the results, the response can be generalized with respect to all the pa-

rameters to generate a self-similar response characteristic for a range of impact speeds

and material properties.
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1.1.2 Research Questions

1. What is maximum dynamic response?

The maximum stress is proportional to the maximum strain within the limits of small

deflections and pure bending. The magnitude of the maximum stress would dictate

the plate scantlings of the hull. The structural designer typically conducts the static

analysis of the plate under an equivalent area load. The dynamic overshoot of the stress

magnitude needs to be taken into account as a compulsory safety factor for design.

2. What are the spatial and temporal distributions of the response?

Given the framing and the geometry of the hull, the location of the maximum re-

sponse will depend on the boundary conditions and the aspect ratio of the plate. The

instant of the maximum load and the duration of the high stresses depend on impact

speeds, natural frequencies of the plate, and structural damping.

3. What are the time scales of the phenomenon?

An impact load excites all the natural frequencies of the structure to different ex-

tents. The impact load’s duration, configuration, and orientation influences the degree

of participation of each frequency. Added mass, and to a lesser extent, damping decrease

the frequency of vibration. Different plate boundary conditions and aspect ratios also

change the natural frequency. A combination of all these parameters define whether a

plate is soft or stiff relative to impact loading.

4. How does the response vary with deadrise angle?

The deadrise angle is a very important design parameter of a high-speed vessel. It

influences (a) the maximum impact pressure, (b) the wetting speed, and (c) the instant

in time when the maximum deflection occurs.

5. How does the response vary with plate boundary conditions and aspect ratios?

These parameters collectively soften or stiffen the plate, thereby compressing the

composite time-scale to the dynamic zone or a quasi-static zone of the response.

4



6. Which are the susceptible plate natural frequencies?

If the time-scale of the impact coincided with one of the natural frequencies of the

plate, it leads to possible resonant behavior and, subsequently, fatigue.

7. Which are the susceptible plate modeshapes?

As an extension of the above, the modeshapes associated with resonant frequencies

are susceptible to fatigue. Also, the modeshapes which align themselves with the spatial

configuration of the moving load are excited the most, and hence, the most vulnerable.

8. What is the effect of immersion on the dynamic response?

Wetting reduces the natural frequency of the structure, stretching the time-scale.

1.2 Literature Review.

This work investigates a wide range of issues related to the vibration of flexible ma-

rine structures in water. The literature review generally examines hydroelasticity, i.e.

the vibration of elastic structures in water. The hydrodynamic force of the fluid causes

the structural vibrations. The nature of the force can be of different kinds, e.g. regular

wave loads, irregular sea loads, or random impact loads. The choice of the force here

is restricted to hydrodynamic impact loads. Thus the literature associated with ship

slamming and impact is investigated. The primary aim of this dissertation is the

assessment of the response of the structure to such loads. Since the impact

is a transient load, it was necessary to study the effect of moving loads on structures.

First, the structure is idealistically modelled as a beam, and the response of beams to

the moving loads is studied. Structural damping is also incorporated. The modelling

complexity is increased where the structure is made more realistic, being modelled as

a plate (Fig.1.4). The free vibration of plates in air is thoroughly investigated, fol-

lowed by forced vibration of the same. After the dry analysis, the plate is assumed to

vibrate in water, taking into account fluid-structure interaction effects. Finally, vari-
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ous aspect ratios have been used to replicate the actual bottom plates of marine vessels.

 

 

 

 

 

 

 

 

 

Figure 1.4: Fundamental CCCC plate modeshape.

1.2.1 Hydroelasticity.

All kinds of sea-going vessels and offshore structures suffer wave-induced or impact-

induced vibrations to greater or lesser extents. The study of global hydroelasticity of

marine structures has been going on for a past few decades.

Pioneering work on hydroelasicity has been done by Bishop and Price [1], beginning

with the modal dry and wet analyses of the elastic responses of vessels in rough seaways

due to hydrostatic and wave loads, followed by local transient impulsive loading anlay-

sis in regular and irregular seas. Xia et al [2] studied the global hydroelastic response

of a containership to impact loading in a seaway, using time-domain strip theory with

modal analysis. They compared the numerical and experimental analyses. Kyoung et

al [3] investigated the hydroelastic response of VLFS, coupling the Boundary Element

Method (BEM) with the Finite Element Method(FEM). They included a complicated
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sea bottom condition and free surface. Senjanovic et al [4] analyzed the vibrations of

ship girders, using the 1D FEM method to model several modes of vertical and tor-

sional vibrations. Senjanovic et al [5] further looked into frequency-domain global ship

hydroelasticity of a flexible barge, subject to a JONSWAP spectrum. They used modal

analysis for the structure, and BEM for the fluid with a free surface.

1.2.2 Slamming and Impact.

A subset of hydroelasticity is the study of local elastic response of marine structures,

especially due to impact loads. The impulsive pressure moving across the structure sets

it into high-frequency vibrations. To investigate it, it first becomes necessary to evaluate

the pressure magnitude, duration, and configuration, as a function of space and time.

Cointe [6] studied the slamming pressure on a solid due to an impact with a fluid

surface. He divided the fluid into the outer and inner domains, overlapping the respec-

tive pressure to generate a closed-form pressure distribution over the jet-head, thereby

avoiding the singularity in pressure found in the Wagner model of impact pressure.

Howison et al [7] extended Cointe’s model by using three domains in the fluid, formu-

lating the outer pressure and the stretching inner pressure. The peak pressure, the keel

pressure and the distribution has been formulated for small deadrise angles, using the

independent variables of jet head, jet head velocity and jet thickness.

Henke [8] studied the elastic response of hull platings to typical hydrodynamic im-

pulse loadings, generating the dynamic stresses as a function of space and time. Faltinsen

[9] used modal analysis to study the similar response of a stiffened rectangular plate,

taking advantage of Wagner’s model to evaluate the added mass associated with the

vibration. However, he used only the first two modeshapes, and predicted a

13%-15% dynamic overshoot above the static deflection of the structure. Lu

et al [10] used a coupled structural-hydroelastic equation to model the water entry onto
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a structure during impact. Khabakhpasheva and Korobkin [11] used the simple Wag-

ner model to study the elastic response of a beam, under both dry and wet conditions,

comparing them with the static response. They predicted a 50% overshoot above

the static deflection, using a very idealized model of a beam. Peseux et al

[12] used the impact pressure model similar to Cointe, and compared it to experimental

investigations. Korobkin et al [13] used FEM to couple the structure with the fluid, to

calculate the hydroelastic response and the added masses for different discretizations.

Stenius et al [14] modelled the impact pressure with FEA, and studied the issues related

to the numerical analysis. Kim et al [15] extended the impact pressure analysis to a hull

with hard chines. Constantinescu et al [16] furthered the impact pressure evaluation

over deformable surfaces with free surface effects.

The background for the transient impact pressure model being established, this liter-

ature review now proceeds to the study of the response of structures to the moving load.

1.2.3 Moving Loads.

Thomson [17] studied the transient vibration of single Degree-of-Freedom (DOF)

systems, generating the response spectra (Dynamic Load Factor vs. non-dimensional

impulse duration) for shock excitations. The arbitrary forcing needs numerical time-

integration to generate the response.

Law and Chan [18] studied the vibratory response of beams to moving point forces

as a function of time. Lee [19] did a similar analysis for beams, but evaluated the de-

flection as a function of space. Yau et al [20] extended the above to bridge vibration,

subject to moving vehicles. Savin [21] used repeated moving loads on beams with various

boundary conditions, and studied the dynamic amplification factors (DAF) of the vibra-

tion. Dugush and Eisenberger [22] used non-uniform continuous beams, and numerically

evaluated the mid-span deflections by modal analysis. Lu and Chan [23] identified the
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moving force by Fourier transformations for the displacement and velocity. Pesterev et

al [24] evaluated the global Dynamic Loading Factor (DLF) of simply-supported (SS)

and clamped-clamped (CC) beams over a wide range of moving speeds. Yagiz and Sak-

man [25] modelled the bridge as a plate, with the vehicle as a smaller plate moving over

it, and used normal mode expansion to establish the dynamic deflection of the mid-point

as a function of time.

The speed at which the forcing moves across the structure is the single most impor-

tant parameter dictating the normalized response. The natural frequency of vibration

of the structure is the other parameter influencing the elastic deflections.

1.2.4 Beam Vibration.

To study the response to moving impact hydrodynamic loads, the simplest structure

is first chosen, which is a beam. The pressure and the response are assumed to be

2-dimensional, which is an initial idealization to lay the foundation for this work.

Yamaki and Mori [26] studied the non-linear vibration of clamped beams in the

frequency-domain, using modal analysis. Ward [27] numerically studied the dynamic

response of simply-supported beams to uniform stretching loads, and compared them to

experimental results. Pan and Hansen [28] studied the effect of boundary conditions on

beam vibration, taking into account eight different boundary conditions. Howard [29]

analytically formulated the modal (generalized masses) of beams and plates. Wang and

Cheng [30] studied the free vibration of beams with modal analysis.

1.2.5 Structural Damping.

Every structure has inherent damping, which reduces the maximum vibratory deflec-

tion and the dynamic amplification at resonance condition allowing for smaller scantlings

in the design of the structure. Thus damping needs to be incorporated into the analysis.
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Wilson and Man [31,32] formulated modal damping of multi-degree-of-freedom sys-

tems by defining the critical damping as a function of modal mass and modal stiffness.

Bulatovic[33] studied critical damping of such systems similarly. Mahmoodi et al [34]

used a different damping model for continuous systems to analyze the non-linear mode-

shapes of beams.

1.2.6 Plate Vibration.

The idealized beam is next extended to the more realistic plate, exposed to an

impact load, resulting in high-frequency vibrations and dynamic stresses. First, the free

vibration of the plate is studied to establish the natural frequencies, followed by the

forced vibration analysis.

Young [35] analyzed the free vibration of plates by the Ritz method, with various

boundary conditions. Saha et al [37] studied the higher-order large-amplitude vibrations

of plates for different boundary conditions. Wang et al [38] perfected the modeshape

functions of plates with different boundary conditions. Saha et al [39] returned with

the non-linear plate vibrations, generating the modeshape contours. Zhang et al [40]

furthered the study to wet free vibration analysis, using Energy FEA to evaluate the

plate bending and energies associated. Yeh et al [41] delved into the numerical aspects

of free vibration analysis of plates. Korobkin and Khabakhpasheva [42] used 3-D com-

pressible jet impact to study the deflection of elastic panels as a function of space and

time, inclusive of the added masses. Yu et al [43] studied the numerical convergence

of the frequencies of square plates with various boundary conditions. Chen et al [44]

generated the modeshapes of rectangular plates experimentally, comparing them with

the results from FEA.

The above literature has studied the structural response when most of the structure

is still dry, and the hydrodynamic load can be assumed to act on a dry plate, producing
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the maximum response at an early stage of the transient loading. The fluid inertia

surrounding the plate is hitherto ignored.

1.2.8 Fluid-Structure Interaction.

When the maximum vibratory response occurs later in the impact sequence, the

radiation pressure of the water vibrating along with the plate cannot be ignored. His-

torically, the free wet vibration of the plate has been analyzed to evaluate reduction in

the natural frequencies and the associated added masses. The boundary value problem

with varying complexities is defined in the literature below.

Lamb [45] studied the vibration of elastic circular plates in contact with water, using

an energy method. Chertock [46] studied the flexural response of submerged solid,

modelling the added mass as a proportional solid. Meyerhoff [47] calculated the added

masses of rectangular plates, using dipole distribution strength as an series expansion.

He calculated the added masses associated with each modeshape, and studied their

convergence with modal truncation. Joseph et al [49] studied the decrease in natural

frequencies of plates in fluids, given various plate densities, fluid densities and composite

orientations. Wu et al [50] numerically evaluated the modal exciting forces, added mass

and damping of an elastic floating plate, including the free surface of the fluid. Modal

analysis has been used to solve both the diffraction and the radiation problems.

Kwak [51] studied the decrease in natural frequencies of rectangular plates with

water on one side (with and without free surface), with different boundary conditions

and aspect ratios. Faltinsen [52] studied the detailed response of beams to slamming

pressures, evaluating the wet natural frequencies and the modal added masses. Chang

and Liu [53] calculated the wet natural frequencies of floating plates, using an energy

method, while Cheung and Zhou [54] did the same for bottom plates, for different

volumes of surrounding fluid on one side. Yadykin et al [55] calculated the added mass
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of cantilever plates, formulating the added mass coefficient. Hashemi et al [56] analyzed

the vibration of vertical rectangular Mindlin plates in contact with varying depths of

water on one side.

This concludes the literature review to study the wet vibration of square plates,

subject to transient impact hydrodynamic loads.

1.2.9 Aspect ratio.

As an additional parameter of the plate, the aspect ratio is also included in this

work. It changes the natural frequency of the plate. This is of practical importance,

given the framing of the hull, which can be longitudinal or transverse.

Liew et al [57] calculated the natural frequencies of rectangular plates with various

boundary conditions and aspect ratios, using an energy method. Harik et al [58] did the

same using the analytical strip method, followed by modal analysis. Sakata et al [59]

continued with the calculation of higher-order frequencies of orthotropic plates. Low

et al [60] compared the Rayleigh-Ritz frequencies to experimental results. Zhu et al

[61] studied the vibration of stiffened rectangular plates subject to moving point loads.

Huang et al [62] studied the influence of aspect ratio on the modeshapes of free vibration

of plates.

1.3 Dissertation Overview.

Chapter 2 of this thesis first formulates the transient hydrodynamic force. A bench-

mark forcing configuration, namely the uniform stretching load is defined, followed by

the more realistic impact force model at a given impact speed V and deadrise angle β.

The methodology of the analysis is next presented, detailing the normal mode expan-

sion method for both free and forced vibration. Numerical evaluation of the dynamic

deflection and the corresponding static deflection of the plate leads to the Dynamic
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Load Factor (DLF). Modal analysis demands the study of modal participation and

truncation. Thus the relative modal contribution of each mode, relative to the funda-

mental mode is studied. The DLF and the Relative Modal Contribution (RMC)

are sensitive to structural parameters like deadrise angle, plate boundary conditions,

damping, and aspect ratio. The influence of such parameters is included.

In Chapter 3, the structure is first simplistically modelled as a beam, whose free vi-

bration analysis generates the natural frequencies and modeshapes of the beam. (These

modes also form the basis functions for the plate modes). The beam is then subjected to

the two loading configurations, at four different damping ratios and five deadrise angles,

to generate a family of DLF plots. The self-similar behavior of the DLF is highlighted

for a large range of wetting times.

Expanding the analysis in Chapter 4 to a more realistic geometry, free vibration

is studied to generate the natural frequencies and modeshapes for rectangular plates.

The forced vibration response of the plate is evaluated over a range of impact speeds

and material properties. Different plate boundary conditions and aspect ratios further

modify the DLF, and the corresponding RMCs.

The dry vibration analysis represents one of the extreme cases of the fluid-structure

interaction problem. The investigation is now extended to the other extreme, i.e. wet

vibration analysis in Chapter 5. The boundary value problem (BVP) of a vibrating plate

in contact with water on one side is formulated, and the modal analysis is done by taking

advantage of the body boundary condition (BBC), to generate the vibratory response

characteristics of the plate. The dry and the wet vibration results from the respective

analyses have been compared for both uniform and impact loading. The decrease in the

natural frequency of the plate is also measured.

Finally, the work is discussed and conclusions are drawn, leading to recommendations

for into possible future research.
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1.4 Dissertation Contribution.

The three-year work resulting in this thesis leads to several interesting insights into

transient hydrodynamic impact-induced vibrations of thin plates.

1) The quasi-static and the dynamic zones of the vibratory response over a range of

impact velocities and material properties have been clearly established for both Uniform

and Impact loading configurations.

2) The accuracy of the dry natural frequencies of plates have been established for 5

significant figures, and that of the wet natural frequencies to 4 significant figures. This

shows that this reduced-order modelling does not compromise with the accuracy of the

frequencies, while being efficient. Also, the frequencies have been grouped into three

specific categories, which are the three kinds of solutions of the Eigen value analysis of

the free plate vibration problem.

3) The time-scales of the problem are inclusive of the influence of the structural

parameters like deadrise angle, plate boundary conditions, aspect ratio and damping

ratio. The change in the plate response due to changing aspect ratios have been shown

for both longitudinal and transverse stiffening of the hull bottom/keel, comparing its

response to beam responses for extreme aspect ratios.

4) The sensitivity of the DLF to the above parameters have been studied and consis-

tently established. Non-dimensionalization of the time-scale (independent variable) with

respect to the deadrise produces a narrow band of DLF plots, for a deadrise from 1 de-

gree to 30 degrees. Damping reduces the peak DLF and smooths the DLF characteristic

in the quasi-static zone of the response.

5) The first 7x7 = 49 modeshapes of a CCCC plate have been established and tab-

ulated systematically. The unique frequencies form the main diagonal of the matrix

table. The repeated frequencies are adjacent to the main diagonal, and the non-repeated

frequencies are diagonally adjacent to them. The two sets of frequencies lie in alternate
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sub-diagonals as we proceed either way away from the main diagonal.

6) The wet vibration analysis results have been compared to those of the dry vi-

bration analysis, again illustrating the fact that non-dimensionalization of time-scales

self-similarize the Dynamic Load Factor (DLF) over the range of wetting speeds and

material properties. In dry vibration, the impact force is non-dimensionalized by the

plate inertia, while for the wet vibration analysis, it is non-dimensionalized by the total

system inertia (plate+water inertia).

7) The relative modal contribution of the principal coordinates have been studied

to establish the modal truncation guidelines, which evaluate the dynamic deflection

within the limits of engineering accuracy. The decrease in natural frequencies and the

corresponding added mass of vibrating plates have been calculated for three different

plate boundary conditions, a wide range of aspect ratios and higher-order modeshapes.

8) The modal contribution to the total vibration for each of the modeshapes have

been studied for the two different loading configurations, leading to understanding why

a particular mode would be excited and another will not. It highlights why the odd

beam modeshape parallel to the direction of the forcing is the most sensitive, while the

even modeshape perpendicular to the forcing is the least sensitive. It also includes the

contribution from the inter-mode coupling due to the stiffness and the added mass.

9) A special study has been done to study the dynamic response of the beams/plates

at zero wetting time (i.e. instantaneous wetting), for four damping ratios, four boundary

conditions and several aspect ratios.

10) The DLF charts form the basis for dynamic analysis of marine structures, useful

to structural designers who conduct the static analysis under an area load. Here, the

static analysis has also been done for the plate under the exact loading configuration.
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CHAPTER II

ANALYSIS METHODOLOGY

Having introduced the problem, we now proceed to formulate its details and describe

the method of the analysis. The transient loading is qualitatively and quantitatively de-

scribed, followed by the analysis of the free and forced vibration of the structure by

the normal mode analysis. The efficient modal analysis consumes much less time than

the more accurate FEA, without compromising on the efficacy of the results and their

relevance to the structural designer of marine vessels.

2.1 Problem Formulation.

The wedge-shaped bow section of the vessel is partially modelled as a flexible rectan-

gular isotropic plate, subject to hydrodynamic impact loads, undergoing pure bending,

with the rest of the bow-section rigid (Fig.2.1). The constant vertical impact velocity of

the vessel is V. The water is assumed to be initially calm, and the vessel has zero heel.

The deadrise (apex) angle is β, with respect to the horizontal. The structure has no

flexural deflection or vibratory velocity at time t = 0. Upon impact, the plate (Fig.2.2)

is set into flexural vibration, with all the natural frequencies excited to different levels.

If the fundamental modal response is assumed dominant as Faltinsen [8], it is sufficient

and efficient to consider ′pure bending′ (Kirchhoff’s plate), ignoring shear deformation

and rotary inertia (Mindlin’s plate).

Assumptions for pure bending :

(a) Plane cross sections remain plain after deformation.
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Figure 2.1: Two-dimensional model of impact hydrodynamics.

(b) Normals to the reference(neutral) axis remain normal.

(c) Changes in geometry of cross-section are neglected.

(d) Effects of shear deformation on displacements are neglected.

(e) Beam deformations and slopes are small.

This is a dual time-scale problem, with (a) the wetting time (time taken by the

hydrodynamic load to sweep across the length of the plate) and (b) the fundamental

natural frequency of the plate. Time-scales associated with (a) and (b) both influence

the dynamic load factor (DLF). The corresponding static deflection, under exactly the

same loading configuration, is calculated by Galerkin’s method [58].

V = vertical impact velocity 

ω = Dry natural frequency, of undamped vibration, of a square plate, with SSSS boundary 

conditions. 

            β (Deadrise angle) 
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ω 
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Figure 2.2: Kirchhoff’s plate.
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2.2 Transient Load Formulation
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Figure 2.3: Transient Load.

The moving impact force is parallel to the X-axis of the rectangular Kirchhoff’s

plate (Fig.2.3) which has a length L and width B. The force does not vary along the

Y-direction. The x = 0 and x = L boundaries of the plate typically correspond to to

the longitudinal stiffeners; and the y = 0 and y = B boundaries typically correspond to

the transverse stiffeners. For aspect ratio α > 1, the hull is transversely framed, and for

aspect ratio α < 1, the hull is longitudinally framed.

2.2.1 Uniform Stretching Load

To compose a dynamic loading factor (DLF) typically associated with bridge engi-

neering, the vibration of the plate subjected to a uniformly distributed stretching load

moving across the dry plate (Fig.2.4) at a constant speed of V is analyzed by the modal

expansion analysis.

There are two time-scales in this problem :

1) the time taken by the load to sweep across the plate Tsp, which is primarily dependent

on the relative impact velocity V and deadrise angle β,
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2) the fundamental frequency ω1,dry of vibration of the plate, dependent on the geomet-

rical and material properties of the plate, i.e. the boundary conditions, the damping

ratio and the aspect ratio.
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Figure 2.4: Uniform Stretching Load.

Defining the independent variables of the phenomenon, the Splash time is the time

taken by the load to sweep across the length of the beam/plate. Non-dimensionalizing

by the first natural period of the beam/plate, we define:

Splash time Tsp =
L

V
and Non−D splash time τ = Tsp

ω1,dry

2π

√
1− ζ2. (2.1)

This condenses the two time-scales into one. The composite time-scale (Eq.(2.1)) is the

independent variable. The DLF is then plotted as a function of τ .

2.2.2 Impact Load

The response of the Kirchhoff’s plate to the uniform stretching load helps establish

the benchmarks of the modal analysis, namely (a) the time-scales, (b) the DLF, and (c)

the RMC. Now we proceed to a more realistic model of the impact force distribution,

defined by a moving jet head, stretching from the keel upwards. The maximum pressure
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is a function of the vertical impact velocity V and the deadrise angle β.
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Figure 2.5: Impact Load.

The impact of the 2-D wedge section on a calm water surface at a downward velocity

V (Fig.2.5) produces a rise up and a spray jet above the mean free surface. The impact

pressure depends on V and the deadrise angle β. The maximum impact pressure oc-

curs at the spray root d(t), which is defined as the jet head translation at that instant.

Pioneering research on impact pressure formulation by Wagner(1932) modelled a singu-

larity in the pressure distribution at the spray root. Subsequent research by Cointe [6],

Korobkin et al [13] and Faltinsen [9] indicates a superposition of asymptotic expansions

of finite high pressures at the spray root and lower pressures away from it.

Peseux et al [12] define a closed form solution of the impact force as a function of

space and time (Fig.2.6), using the following independent variables :

Jet head d(t) =
V tπ

2 tan(β)
, Jet head velocity ḋ(t) =

V π

2 tan(β)
,

Jet Thickness δ(t) =
πV 2d(t)

8ḋ(t)2
.
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The total non-dimensional impact pressure is :

Pimpact =
Pouter + Pinner − Pcommon

1
2
ρwV 2

(2.2)

with components as : Pouter(x, t) =
V d(t)ḋ(t)√

[d2(t)− x2 cos2(β)]
,

and Pcommon(x, t) =
V d(t)ḋ(t)√

2d(t)[d(t)− x cos(β)]
.

Beta = 1, tau 0.1 
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Figure 2.6: Sweeping Load at β = 15 degrees.

The inner pressure Pinner is expressed by Howison et al [7] as a stretching transforma-

tion with respect to the moving jet head d(t). ξ is a parameter for this transformation,

and X(t) is a dummy variable along the horizontal, scaled by the jet thickness and the

deadrise angle β. The details have been given in Appendix 2.

Stretching the length : x cos(β)− d(t) = tan2(β).X

with X =
δ(t)

π

[
6 + 4ξ

1 + ξ
− 4

√
ξ − 1

ξ + 1
+ log

∣∣∣∣ξ + 1

ξ − 1

∣∣∣∣
]

; with ξ > 1, ξ < −1;
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the inner pressure is defined as follows :

Pinner(x, t) = ρwater
ḋ(t)2

2
[1− {ξ −

√
(ξ2 − 1)}2]

The superposition of the outer Pouter(x, t) and inner pressures Pinner(X(t), t) produces a

closed form pressure distribution Pimpact (Eq.(2.2)). The common pressure Pcommon(x, t)

needs to be subtracted since it has been double-counted in this superposition.         

 
Non-dimensionalized  impact  pressure  distribution  at  four  (4)  different  deadrise  angles. 
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Figure 2.7: Impact Pressure Distribution.

The above impact pressure is used to study the response of beams and plates. The

keel pressure is given as P (0, t) = ρwaterV ḋ(t) and the peak pressure is given as

Ppeak =
ρwater

2
ḋ(t)2;

which are the two constants of the stretching load. P (0, t) is utilized in calculating the

DLF at τ = 0. The stagnation pressure of the vertical impact velocity is given as

Pstagnation =
ρwaterV

2

2
.
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All the pressures (Fig.2.7) are non-dimensionalized by the stagnation pressure, and

normalized by the deadrise angle, i.e. multiplying by tan2(β). Thus the maximum

non-D pressure is 2.4674; and the maximum non-D keel pressure, at x = 0, is πtan(β).

Here, the wetting time is defined and non-dimensionalized by the first natural period

of the plate, as follows :

Tsp =
2Lsinβ

V π
; τ =

[
2Lsinβ

V π

]
ω1,dry

2π

√
1− ζ2. (2.3)

This is the independent variable (Eq.(2.3)) of the analysis, and the Dynamic Load

Factor (DLF) is plotted against it, for the four different boundary conditions of the

Kirchhoff’s plate, and four different damping ratios.

2.3 Normal Mode Analysis.

The linear, second-order, homogeneous, governing differential equation for the free,

damped vibration of the Kirchhoff’s plate, ignoring gravity, is given by Eq.(2.4), where

m is the mass per unit area of the uniformly thick plate, D is the flexural rigidity of the

isotropic plate, and the damping c is implicitly calculated from the generalized damping.

The generalized damping is proportional to the generalized mass and the generalized

stiffness of the plate, all of which will be explained later. The dynamic deflection of the

plate as a function of space as time is denoted as Z(x, y, t).

m
∂Z2(x, y, t)

∂t2
+ c

∂Z(x, y, t)

∂t
+ D∇4Z(x, y, t) = 0. (2.4)

The deflection and the slope (curvature) are zero at the CC (SS) edges, given as :

Z(x, y, t) = 0,
∂Z(x, y, t)

∂x
= 0 at x = 0,L; Z(x, y, t) = 0,

∂Z(x, y, t)

∂y
= 0 at y = 0,B.

Z(x, y, t) = 0,
∂2Z(x, y, t)

∂x2
= 0 at x = 0,L; Z(x, y, t) = 0,

∂2Z(x, y, t)

∂y2
= 0 at y = 0,B.
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The displacement and the velocity are zero at time t = 0, i.e.

Z(x, y, 0) = 0;
∂Z(x, y, 0)

∂t
= 0.

2.3.1 Free Vibration Analysis.

The dynamic deflection can be represented as a separation of the space and time

variables as Z(x, y, t) = G(x, y)F(t). Considering the mass and the stiffness to be

uniformly distributed over the area, we get

mG(x, y)
∂2F

∂t2
+ cG(x, y)

∂F

∂t
+D∇4G(x, y)F (t) = 0, which gives (2.5)

F̈ (t)

F (t)
=
D

m

∇4G(x, y)

G(x, y)
= −ω2; where −ω2 is the separation constant.

Considering each of the equations of Eq.(2.5) separately,

F̈ (t)

F (t)
= −ω2 gives the principal coordinates, and

D

m

∇4G(x, y)

G(x, y)
= −ω2 gives the plate modeshape.

The equation for G(x, y) is a fourth order homogenous partial differential equation,

generally not separable into two ordinary differential equations in x and y respectively.

Resorting to the Rayleigh-Ritz method of approximate modeshape functions, the plate

modeshape is assumed to be a weighted superposition of the 2-D beam modeshapes.

The total out-of-plane dynamic deflection Z(x, y, t) is a function of space and time.

Separating the variables into space and time, we assume Φk(x, y) as the kth spatial

shape function, and qk(t) as the temporal function of the kth vibratory mode. The total

out-of-plane dynamic deflection of the plate is approximately a linear superposition of

24



the modal deflections Zk(x, y, t), as given by Eq.(2.6),

Z(x, y, t) = Σ∞k=1Zk(x, y, t) = Σ∞k=1Φk(x, y)qk(t), (2.6)

with the 3-D plate modeshape (shape function) is defined as a series summation as

follows :

Φk(x, y) = Σmodex
j=1 Σmodey

l=1 Ak
jlφj(x)φl(y) = Σmodex

j=1 Σmodey
l=1 Ak

jlGjl(x, y), (2.7)

i.e. Gjl(x, y) = φj(x)φl(y), modex is the number of modes considered in the x -direction,

modey is the number of modes considered in the y-direction, and φj(x) and φl(y) are

the respective 2-D beam modeshapes (forming an orthogonal set of functions). Ak
jl is

the amplitude of each Gjl(x, y) for the kth natural frequency of vibration.

The plate modeshapes, given as a weighted spatial superposition of the product of

the two beam modeshapes, do not form an orthogonal set of functions, i.e.∫ L

0

∫ B

0

Φk(x, y)Φn(x, y)dxdy 6= 0,

for k not equal to n.

The Clamped-Clamped (CC) beam has zero deflection and zero slope at the ends.

Thus the modeshape is given as

φj(x) = cos(γjx)− cosh(γjx)− σjsin(γjx) + σjsinh(γjx).

The Simply-Supported (SS) beam has zero deflection and zero bending moment at

the ends. Thus the modeshape is given as φj(x) = sin(γjx).

Here, γ4
j = m(x)ω2

j/EI(x) is the wave number of the beam vibration.

Substituting Eq.(2.7) in the fourth-order partial differential equation of G(x,y) and

applying Galerkin’s method (Shames and Dym 1991 [63]) Ak
jl is calculated as follows :

ΣpΣr

∫
L

∫
B

GprA
k
jl

[
d4φj

dx4
φl + 2

d2φj

dx2

d2φl

dy2
+ φj

d4φl

dy4
− ω2m

D
φjφl

]
dxdy = 0. (2.8)
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The Eigen value analysis of Eq.(2.8) using Galerkin’s method gives the frequencies

(Eigen values) and modeshapes (Eigen vectors). Note that since the damping is as-

sumed to be independent of space, the analysis results in the damped frequencies but

the undamped modeshapes.

2.3.2 Damping.

There can be two methods to establish the damped frequencies :

1) Assume a damping ratio ζ, such that ωk,damped = ωk,natural

√
(1− ζ2).

2) Use Modal analysis : Generalized damping is defined as [C] = ζ[Ccrit], where the

critical damping is = [Ccrit] = 2
√

[M ][K]; ωk,natural = Eigen Values of [M ]−1[K]; and

ωk,damped = Eigen Values of [K]/[M ] − [C]2/4[M ]2. A similar model of proportional

damping has been used by Man and Wilson [31,32].

Using the same value of the damping ratio ζ, the above two methods have been used

to generate the damped frequencies of vibration for 3 different boundary conditions.

The non-dimensional fundamental damped frequencies for a damping ratio of 10% are

as follows (Table 2.1), which shows that the two methods generate the same damped

frequency of vibration for 7 significant figures.
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Table 2.1 Fundamental damped frequencies of square plates with 10% damping.

The more rigorous Method 2 is important because the generalized damping matri-

ces need to be established for the subsequent modal analysis, and the accuracy of the
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damped frequencies generated thus can be compared to those generated by Method 1 for

consistency. Damping reduces the dynamic amplification of the response of the plate,

and thus reduces the DLF.

Here, the non-dimensional frequency is defined as ωk

√
mL4

D
.

2.3.3 Forced Vibration Analysis.

The governing differential equation for the forced, damped vibration of the Kirch-

hoff’s plate is given by Eq.(2.9), where F (x, y, t) is the transient pressure. The maximum

structural response occurs early in the impact sequence, when the plate is assumed to

be mostly dry. The fluid pressure field is not affected by the structural response.

m
∂Z2(x, y, t)

∂t2
+ c

∂Z(x, y, t)

∂t
+ D∇4Z(x, y, t) = F (x, y, t). (2.9)

Substitution of Eq.(2.6) into Eq.(2.9), and integration with weighting functions over

the space, gives the normal mode expansion of the governing differential equations as

a function of time only; with non-diagonal mass, damping and stiffness matrices, as

follows:

Σmodex∗modey
n=1 Mknq̈n(t) + Σmodex∗modey

n=1 Cknq̇n(t) + Σmodex∗modey
n=1 Kknqn(t) = gfk(t). (2.10)

or writing in the matrix form [M ]{q̈(t)}+ [C]{q̇(t)}+ [K]{q(t)} = {gf(t)}.

The generalized mass is defined as Mkn =
∫ L

0

∫ B

0
Φk(x, y)mΦn(x, y)dxdy, the generalized

stiffness is defined as Kkn =
∫ L

0

∫ B

0
Φk(x, y)D∇4Φn(x, y)dxdy, the generalized forcing is

defined as gfk(t) =
∫ L

0

∫ B

0
Φk(x, y)F (x, y, t)dxdy, and the generalized damping is defined

as [C] = ζ[Ccrit], where the modal critical damping is defined as [C] = 2
√

[M ][K].
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Eq.(2.10) is solved numerically by the stable Euler’s implicit-explicit scheme, to cal-

culate the principal coordinates qk(t) as a function of time. The principal coordinates

are then multiplied by the corresponding plate modeshapes Φk(x, y) to generate the

dynamic plate deflection Z(x, y, t) as a function of space and time. Since pure bending

is assumed and the deflections are small compared to the plate dimensions, the dynamic

stresses developed are linearly proportional to the deflections. The instant and the lo-

cation of the maximum deflection, and the maximum stress, are thus established.

2.3.4 Static Deflection

Commercial ship structural analysis involves the static analysis of a given plate

panel, under an equivalent area load, i.e. the total forcing is assumed to be evenly

distributed over the area of the plate. This work investigates the dynamic behavior of

marine structures, and compares it the the static deflection due to the force of the same

configuration.

The maximum static deflection of a square CCCC plate under a uniformly distributed

load of 1 N/m2 can be calculated by several methods as explained in Shames and Dym

[63] as given below for the following geometric and material properties:

L = 1 m, B = 1 m, h = 0.001 m, E = 205 GPa, ν = 0.3,

1) Timoshenko → 6.7118 x 10−5 m.

2) Ritz Method(1) → 6.8816 x 10−5 m.

3) Ritz Method(2) → 6.7251 x 10−5 m.

4) Kantorovich’s Method → 6.6319 x 10−5 m.

5) Galerkin’s Method → 6.7357 x 10−5 m. (This method is used in this analysis.)
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2.4 Dynamic Load Factor.

The ratio of the dynamic deflection to the corresponding static deflection, under the

equivalent loading conditions, is defined as the Dynamic Load Factor (DLF), i.e.

DLF = Max

[
Z(x, y, t)

Max{Zst(x, y, t)}

]
(2.11)

The static deflection Zst(x, y, t) is calculated by solving the following equation using

Galerkin’s method which includes the contribution of all the 3-D plate modeshapes.

The classic static plate bending equation is :

D∇4Z(x, y, t) = F (x, y, t);

which gives

Zst(x, y, t) = Σmodex
j=1 Σmodey

l=1 HjlGjl(x, y).

Hjl is the amplitude of the Galerkin’s pre-multiplier Gjl(x, y); and thus, it is the

static counterpart of Ak
jl. Thus the DLF (Eq.(2.11)) forms a very important design

parameter for the structural designer, who does the static analysis of the corresponding

area load only.

As the impact load sweeps across the beam or plate (Fig.2.8), the static and the

dynamic deflection both increase. The static deflection first increases and reaches its

maximum at the midpoint when the peak pressure is also at the midpoint. As the

dynamic defection increases, the static deflection has already seen to have started de-

creasing. The dynamic deflection reaches its maximum when the impact pressure has

swept across the midpoint of the structure.
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Figure 2.8: Sweeping load at deadrise β = 15 degrees, with the corresponding static and

dynamic deflection (dry modes : no added mass).
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At 25% wetting, the instantaneous DLF = 0.4271, i.e. the dynamic deflection is only

43% of the static deflection under the same loading configuration. When the impulse

reaches halfway (50% wetting), the DLF rises to 0.9613. Now the static deflection starts

decreasing and the DLF at 75% wetting becomes 2.3718. Once the peak pressure leaves

the beam span, the static deflection decreases further, while the dynamic deflection picks

up. At complete sweep, (100% wetting), the instantaneous DLF = 3.7478.

Once the impulse has swept across, the static deflection asymptotes to zero, but the

dynamic deflection continues in the absence of damping, i.e. the structure keeps ringing

at its natural frequency.

2.5 Relative Modal Contribution.

The total dynamic deflection is the summation of the modeshapes Φk(x, y), weighted

by the time-dependent principal coordinates qk(t). The modeshapes have been normal-

ized to 1, and thus the amplitudes of the principle coordinates generate the Relative

Modal Contribution (R.M.C.). The forced vibration has been studied for 15x15 = 225

modeshapes, which ensures the numerical accuracy of the first 49 modeshapes and fre-

quencies, up to the first 5 significant figures.

The participation of the different modes of vibration with respect to the dominant

first mode was studied to determine the modal truncation limits (Eq.(2.12)). In this

work, the normalized truncation limit is set to 10−3. Modal amplitudes that have a

RMC less than -3 are safely ignored. The relative modal contribution is quite sensitive

to the impact speed. A slow speed or a stiff plate excites only the first few modes,

making it possible to ignore the higher-order modes. A high impact velocity or a softer

plate, on the other hand, excites higher modeshapes, necessitating the inclusion of more
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number of modes, i.e. increasing the modal truncation limit, thereby consuming more

computational time.

High values of the impact speed requires k = 225 modes to meet the O(10−3) trun-

cation criterion

Max

[
qk(t)

Max{q1(t)}

]
≥ 10−3, Log10Max

[
qk(t)

Max{q1(t)}

]
≥ −3 (2.12)

for all time t.

2.6 Parameter Space.

The dynamic response of the elastic plate, subject to transient hydrodynamic im-

pact, is a function of several parameters, namely the added mass, the damping ratio, the

deadrise angle, the aspect ratio, and the boundary conditions. Both the independent

variable τ and the dependent variable DLF are functions of all of them.

2.6.1 Added Mass.

Added mass greatly lowers the natural frequency of the plate. Each modeshape is

associated with its own modal added mass. The decrease in the natural frequencies

depends on the spatial configuration of each modeshape. The time-scale of the problem

gets compressed, thereby squeezing the DLF characteristic to lower values of τ . It, how-

ever, does not influence the peak DLF magnitude, which depends on the impact forcing

magnitude and configuration.

2.6.2 Damping ratio.

Damping reduces the frequency of the plate, and decreases the dynamic amplification
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of the elastic response, thereby reducing the peak DLF. This analysis has been done for

ζ = 0.00 and 0.20. The structural damping is not specified as a material property here,

but as a modal parameter. The generalized damping is assumed to be the damping

ratio ζ times the generalized critical damping for each modeshape. Hence this damping

is proportional to the mass and stiffness properties of the plate. Damping reduces the

peak amplification of the DLF, thus lowering the stress levels generated.

Purcell et al [48] experimentally studied the structural strength and reliability of

patrol boats, subject to hydrodynamic impact loads. The times series of the stresses

generated on the keel, bottom plating and stiffeners showed at damping of around ζ ≈

10%-15%. Thus the range of damping ratios considered in this work are inclusive of the

usual damping present in marine structures.

2.6.3 Deadrise angle.

The deadrise angle β of the vessel, changes the wetting time of the plate, and the

magnitude and distribution of the loading. The smaller the deadrise angle (Fig.2.9), the

faster the wetting, the more localized the hydrodynamic pressure, and the more intense

peak pressure. This analysis has been done for deadrise angles β = 1, 5, 15 and 30

degrees.
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Figure 2.9: Deadrise angle (a) 5 degree and (b) 30 degree.
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2.6.4 Boundary conditions.

This work considers four boundary conditions, namely CCCC, SSSS, CSCS (two

orientations). The natural frequency of vibration of the plate changes due to the end

conditions (Fig.2.10). The clamped end has zero deflection and zero slope, i.e. 100%

fixity. The simply supported end has zero deflection and zero bending moment (curva-

ture), i.e. 0% fixity (Fig.2.11). Thus this work examines the two extremes of end fixities,

which would include all the practical intermediate fixities of structural components of

the hull. Also, the added mass depends on the plate modeshape, which in turn depends

on the end conditions. The stiffness hierarchy remains the same in wet vibration, i.e.

CCCC being the stiffest and SSSS being the softest.
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Figure 2.10: Boundary conditions (a) Simply-Supported and (b) Clamped-Clamped.

The four boundary conditions are as follows :

(a) CCCC : Clamped (built-in) on all sides.

(b) SSSS : Simply supported on all sides.

(c) CSCS : The opposite sides are Clamped and Simply Supported : the forcing is

parallel to SS edges. The CC beam modeshape is along the forcing.

(d) SCSC The opposite sides are Simply Supported and Clamped : the forcing is par-

allel to CC edges. The SS beam modeshape is along the forcing.
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V = vertical impact velocity 

ω = Dry natural frequency, of undamped vibration, of a square plate, with SSSS boundary 

conditions. 
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Figure 2.11: Curvature of the first modeshape of a CC and SS beam.

2.6.5 Aspect ratio.
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the  amplitude  of  the  Galerkin’s  pre-multiplier     ( ,  ). 

 

2.5 Relative modal contribution. 

 

The  total  dynamic  deflection  is  the  summation  of  the  plate  modeshapes  Φk(x,y),  

weighted  by  the  time-dependent  principal  coordinates  qk(t).  The  modeshapes  have  been  

normalized  to  1,  and  thus  the  amplitudes  of  the  principle  coordinates  generate  the  Relative  

Modal  Contribution  (R.M.C.).  The  forced  vibration  has  been  studied  for  6x6  =  36 

modeshapes. 

Relative  Modal  Contribution  (R.M.C.)  is  defined  as   Log      Max  
  ( )

   ,   ( )-
 .         

 

The  participation  of  the  different  modes  of  vibration  with  respect  to  the  dominant  

first  mode  was  studied  to  determine  the  modal  truncation  limits.  The  relative  modal  

contribution  is  quite  sensitive  to  the  impact  speed.   

High  values  of  the  impact  speed  requires  k  =  36  modes  to  meet  the  O(10-3)  

truncation  criterion  :  Max  
  ( )

   ,   ( )-
    10  ,    i.e.   Log      Max  

  ( )

   ,   ( )-
     3  for  all  

time  t.   

 

2.6 Transient loading 

 

                The  moving  impact  force  is  parallel  to  the  X-axis  of  the  rectangular   Kirchhoff’s  plate  

(Fig.  4),  which  has  a  length  L and width B.  The  force  does  not  vary  along  the  Y-direction.  The  

left  edge  of   each  of  the  plates  corresponds  to  the  keel  of  the  high-speed  craft,   the  top  and  

the  bottom  edges  correspond  to  the  stiffeners,  and  the  right  edge  correspond  to  the  

longitudinal  stiffener  of  the  hull.  The keel corresponds to the Y-axis (x=0). For aspect ratio α > 1, 

the hull is transversely stiffened, and for aspect ratio α < 1, the hull is longitudinally stiffened.  

  

 

 

                               Transverse stiffener                                      Keel                                 Longitudinal stiffener 

                           Y   

Wetting                       Wetting 

 

                                                  X 

                                         Aspect Ratio = 4                                                       Y                    Aspect Ratio = 0.25 

 

                                                                                                                                                       X 

 

Fig. 4  Top view of the transient loading on  the  plate  : (a) Impact on a plate with Transverse 

stiffening (b) Impact on a plate with Longitudinal stiffening. 

 Figure 2.12: Transient Load on Rectangular plates.

The aspect ratio (Fig.2.12) changes the natural frequency of the plate and the wet-

ting time. The free vibration analysis has been done for aspect ratios α = 10, 5, 4, 3,

2, 1, 0.5, 1/3, 0.25, 0.2, 0.1. The forced vibration analysis has been done for a fewer

number of aspect ratios, to demonstrate the distinct dynamic behaviors. Plates with α

= a and α = 1/a have different DLF characteristics, except at very low α, when the
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two DLFs approach a unique value. At large aspect ratios, the natural frequencies and

DLFs of CSCS plates approach that of a Clamped-Clamped (CC) beam, and those of

and SCSC plate approach that of a Simply-Supported (SS) beam. The DLFs for α < 1

approach that of an Euler-Bernoulli beam, while the DLFs for α > 1 move away from

the α = 1 characteristic, to a trend where little vibration occurs.

2.7 Family of problems.

Including the above parameters, the following vibration problems are solved, as listed

below. Table 2.2 lists the parameter space of the dry beam vibration problem.

            β (Deadrise angle) 

 

 

 

            α (Aspect ratio)                                                         ς (Damping Ratio) 

                                                            

ω 

   

                                                                    

 

       γ (Beam wave number)                                   a (Added Mass coefficient) 

 

Uniform loading (dry and wet) 

4ς   x  7α  x  4 B.C.s  =  224 

             y = B 

 

 
     

   

             y = 0 

          x = 0                                 x = L                

 

Dry Beam 
Boundary  

Conditions 
Damping Ratio % 

Deadrise Angle 

(degrees) 

Uniform Load CC SS 0 1 5 10 20  

Impact Load CC SS 0 1 5 10 20 1 5 15 30 
 

Dry Plate 
Boundary 

Conditions 

Damping 

Ratio % 

Deadrise Angle 

(degrees) 
Aspect Ratio 

Uniform Load 
CC 

CC 

SS 

SS 

CS 

CS 

SC 

SC 
0 20  1 

2 5 10 

0.5 0.2 0.1 

Impact Load 
CC 

CC 

SS 

SS 

CS 

CS 

SC 

SC 
0 20 1 5 15 30 1 

2 5 10 

0.5 5 10 
 

Table 2.2 Family of dry beam vibration problems.

Table 2.3 shows the parameter space of the dry plate vibration problem. The ad-

ditional parameter of aspect ratio multiplies the number of problems, and hence the

computation time. The parameter space for the wet plate vibration is the same as that

of the dry vibration.

            β (Deadrise angle) 

 

 

 

            α (Aspect ratio)                                                         ς (Damping Ratio) 

                                                            

ω 

   

                                                                    

 

       γ (Beam wave number)                                   a (Added Mass coefficient) 

 

Uniform loading (dry and wet) 

4ς   x  7α  x  4 B.C.s  =  224 

             y = B 

 

 
     

   

             y = 0 

          x = 0                                 x = L                

 

Dry Beam 
Boundary  

Conditions 
Damping Ratio % 

Deadrise Angle 

(degrees) 

Uniform Load CC SS 0 1 5 10 20  

Impact Load CC SS 0 1 5 10 20 1 5 15 30 
 

Dry Plate 
Boundary 

Conditions 

Damping 

Ratio % 

Deadrise Angle 

(degrees) 
Aspect Ratio 

Uniform Load 
CC 

CC 

SS 

SS 

CS 

CS 

SC 

SC 
0 20  1 

2 5 10 

0.5 0.2 0.1 

Impact Load 
CC 

CC 

SS 

SS 

CS 

CS 

SC 

SC 
0 20 1 5 15 30 1 

2 5 10 

0.5 0.2 0.1 
 

Table 2.3 Family of dry plate vibration problems.
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CHAPTER III

DRY VIBRATION OF EULER-BERNOULLI BEAM

3.1 Beam Vibration : Modal Analysis.

The transient impact loads can be modelled as a distributed stretching load moving

across a beam of unit breadth, at a constant speed c. Considering undamped forced

vibrations, the dynamic response Z(x, t) of the beam as a function of space and time

is evaluated numerically by the fourth-order Runge-Kutta method. Since the funda-

mental mode is assumed dominant, it is sufficient to consider only pure bending of the

beam (Euler-Bernoulli beam), ignoring shear deformation and rotary inertia (Timo-

shenko beam). The corresponding static deflections Zst(x,t) are calculated by numerical

integration, given the impact load F(x, t). The ratios of the dynamic and static deflec-

tions give the DLF.

3.1.1 Free Vibration

The free vibration equation of motion for the beam, ignoring gravity, is

m(x)
d2Z(x, t)

dt2
+ EI(x)

d4Z(x, t)

dx4
= 0. (3.1)

The mass m(x) and the stiffness EI(x) is assumed to be uniformly distributed over the

length of the beam. The longitudinal strain due to the small amplitude vibrations of

the beam are assumed to be too small to cause negative lateral strains. So the Poisson’s

ratio term in the flexural rigidity is ignored.

The deflection is a linear superposition of the Eigen vectors

Z(x, t) = Σ∞j=1φj(x)qj(t)
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where φj(x) = jth modeshape function and qj(t) = jth principle coordinate. The mode-

shape are the Eigen vectors of Eq.(3.1)

φj(x) = A1jcos(γjx) + A2jsin(γjx) + A3jcosh(γjx) + A4jsinh(γjx). (3.2)

where γj = ω2
j,dry

(
m
EI

)
are the corresponding Eigen values of Eq.(3.1). The four constants

A1, A2, A3 and A4 in Eq.(3.2) are calculated from the four boundary conditions of the

beam, i.e.

Z(0, t) = Z(L, t) = 0;
dZ(0, t)

dx
=
dZ(L, t)

dx
= 0 for a Clamped-Clamped beam;

Z(0, t) = Z(L, t) = 0;
d2Z(0, t)

dx2
=
d2Z(L, t)

dx2
= 0 for a Simply-Supported beam.

(a) (b)

 
 

 

CC_Uniform Load_Undamped_RMC  SS_Uniform Load_Undamped_RMC 

 

 
 

CC_Impact Load_1deg_RMC  SS_Impact Load_1deg_RMC 
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Figure 3.1: First 10 beam modeshapes (a) CC beam, (b) SS beam.

There are an infinite number of distinct values of γj, each of which corresponds to

distinct natural frequencies ωj and modeshapes φj(x
′) (Fig.3.1). The CC modeshapes

are given as: φj(x
′) = cos(γjx

′)− cosh(γjx
′)− σjsin(γjx

′) + σjsinh(γjx
′).
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The first five wave numbers are γ = 4.7300, 7.8532, 10.9956, 14.1372, 17.2787. The

higher order wave numbers are given as γj = (2j + 1)π
2

(Gonclaves[70]). For modes

> 5, the closed form expressions for the modeshape φj(x
′) are given in Appendix 1.

Calculation of γj determines ωj,dry, the dry natural frequencies of the beam.

The SS modeshapes are given as φj(x
′) = sin(γjx

′); with the wave number given as

γj = jπ.

3.1.2 Forced Vibration

The forced vibration equation of motion for the beam is given as

m(x)
d2Z(x, t)

dt2
+ EI(x)

d4Z(x, t)

dx4
= F (x, t).

The governing system of differential equations is non-dimensionalized with respect length

and time as dt′ = ω1,dry dt and dx′ = dx
L

. Thus the governing differential equation,

including the hydrodynamic external sectional force (N
m

), is given as :

m(x′)Σ∞j=1φj(x
′)
d2qj(t

′)

dt′2
+ EI(x′)Σ∞j=1

d4φ(x′)

dx4
qj(t

′) = F (x′, t′). (3.3)

Taking advantage of the orthogonality property of the Eigenvectors φj(x), the set of

equations (Eq.(3.3)) is pre-multiplied by the jth modeshape and integrated over the

length. The resulting uncoupled non-dimensional modal equation of motion follows:

Mjjω
2
1,dry

d2qj(t
′)

dt′2
+Kjjqj(t

′) = gfj(x
′, t′), (3.4)

where Generalized mass is given as Mjj =
∫
L
φj(x

′)m(x′)φj(x
′)dx′;

Generalized forcing is given as = gfj(t
′) =

∫
L
φj(x

′)F (x′, t′)dx′;

Generalized stiffness is given as Kjj =
∫
L
φj(x

′)EI(x′)
d4φj(x

′)
dx′4 dx′ and

Kjj

Mjj
= ω2

j,dry.
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Utilizing the above relations, Eq.(3.4) can be re-written as follows :

d2qj(t
′)

dt′2
+

(
ω2
k,dry

ω2
1,dry

)
qj(t

′) =
gfj(t

′)

Mjjω2
1,dry

. (3.5)

Thus we obtain the uncoupled system of ordinary differential equations (Eq.(3.5))

for the principal coordinates qj(t). This system of non-dimensional governing differen-

tial equations is solved by numerical time integrators, Euler’s implicit-explicit scheme

and the Fourth order Runge-Kutta method. Once the principle coordinates qj(t) have

been evaluated, they are multiplied by the pre-calculated modeshape functions φj(x) to

generate the total dynamic deflection Z(x, t) as a function of space and time. Fig.3.2

shows the deflection, velocity and the acceleration of the mid-point of the beam as a

function of time.
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= 2.0.
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3.1.3 Dynamic Loading Factor

The dynamic load factor DLF can be defined in one of the following four ways, where

Z(x, t) is the dynamic deflection and Zst(x, t) is the equivalent static defection.

1) The dynamic deflection is divided by the maximum possible static deflection in space

and time. The ratio is a function of space and time. The maximum ratio in space and

time is defined as the DLF1.

DLF1 = Max

[
Z(x, t)

Z1st

]
. (3.6)

2) The dynamic deflection at every time step is divided by the maximum static deflection

at the corresponding time-step. The ratio itself is a function of time, and the maximum

of that is chosen as DLF2.

DLF2 = Max

[
Z(x, t)

Z2st(t)

]
.

3) The dynamic deflection at every location is divided by the maximum static deflection

at the corresponding location. The ratio itself is a function of space, and the maximum

of that is chosen as DLF3.

DLF3 = Max

[
Z(x, t)

Z3st(x)

]
.

4) The dynamic deflection at every location and time-step is divided by the static de-

flection at the corresponding location and the time-step. The ratio is a function of space

and time. The maximum of this ratio is DLF4.

DLF4 = Max

[
Z(x, t)

Zst(x, t)

]
.

Warning : Do not divide by Zst(0, t), since the deflection is zero to the ends.
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For the analysis and discussion, DLF1 (Eq.(3.6)) is chosen. It is the most robust

DLF, since the structural designer will not require the spatial and temporal distribu-

tion of the static deflection to calculate the corresponding maximum dynamic deflection.

3.1.4 Relative Modal Contribution

For the loading conditions studied in this work, the fundamental mode of vibra-

tion Z1(x,t) is the principal contributor to the total displacement, the contributions of

the higher modes decreasing exponentially. Modal truncation studies of Section 3.2.2

demonstrate that modes contributing less than 10−6 times the fundamental mode can

be safely ignored. The jth principle coordinate qj(t) is normalized by the fundamen-

tal principle coordinate q1(t) to generate the Relative Modal Contribution (RMC) for

different impact velocities, i.e.

RMCj = log10

[
Max

qj(t
′)

Max{q1(t′)}

]
. (3.7)

In the beam vibration analysis in this thesis, the first 30 modes of vibration have been

considered, which renders RMC30 < −7. This means that the highest mode has a con-

tribution 10−7 times that of the fundamental mode, and hence can be safely ignored

within the limits of engineering accuracy.

3.1.5 Response at zero wetting time.

For zero wetting time, i.e. τ = 0, the uniform load acts over the whole of the beam

from time t = 0 onwards. This represents an impact at infinite speed; or a plate of zero

stiffness/infinite mass. The forced vibration equation of motion for the beam is given as

m(x′)
d2Z(x′, t′)

dt′2
+ EI(x′)

d4Z(x′, t′)

dx′4
= 1. (3.8)
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3.2 Dynamic response of beams to uniform stretching load.

               Translating sectional force         

                                                                      c 

   

 

 

 

       x’ = 0                                                                                                              x’ = 1 

 

Figure 3.3: Uniform load moving across the beam at a speed c.

The dynamic response of a uniform beam to a uniformly distributed load of unit

magnitude, stretching at a speed c across the beam (Fig.3.3), is analyzed with normal

mode summation, generating the dynamic load factor (DLF) and the modal contribution

(RMC) surface.

Tsp =
L

c
, τ =

L

c

ω1,dry

2π
.

3.2.1 Dynamic Loading Factor.

At large values of τ , the dynamic and static deflection at the midpoint of the beam

both rise as the wetting time as shown in Fig.3.4. Then Z(x, y, t) oscillates about the

static deflection time series. The DLF equals 1.0204, i.e. the dynamic overshoot is

only 2.04% more than the Zst(x, y, t). At this τ , the behavior is seen to be quasi-static.

Inclusion of 5% damping reduces the DLF to 1.0203. The Z(x, y, t) asymptotes to less

than ±0.1% of Zst(x, y, t) after about 15 oscillations. Reducing the wetting time leads to

a more dynamic response as shown in Fig.3.5. Undamped vibration at τ = 0.5 produces

a DLF of 1.8562, i.e. the dynamic overshoot is as much as 85.6%. Inclusion of 5%

damping reduces the DLF to 1.7385.
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Figure 3.4: Time Series of a CC beam at τ = 2.0, for (a) 0% damping and (b) 5%

damping.
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Figure 3.5: Time Series of a C-C beam at τ = 0.05, for (a) 0% damping and (b) 5%

damping.
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The DLF of the CC and SS beams to the above moving load has been shown in Fig.3.6

and Fig.3.7 respectively. At low speeds, it is close to 1, i.e.the structural response is

nearly quasi-static. Thus this response cannot be considered as a slamming-response.

For both the boundary conditions, static analysis is expected to suffice for τ ≥ 2.5.

For τ ≤ 2, the dynamic response becomes increasingly prominent, showing con-

siderable overshoots above the static analysis. At smaller τ the DLF steeply rises to

asymptote to ∼2.00, which is the DLF for a uniformly distributed load instantaneously

acting on the beam. The response for τ < 1 can be said to be a slamming-response,

which is somewhat restricted by the damping. The response at zero damping provides

the upper limit of the response characteristic for a range of τ .

The designer aims to design structure with the boundary conditions and, stiffness and

damping such that the composite time-scale τ is greater than 2.5 for the most probable

impact velocities. To operate in the quasi-static range, the forcing speed should be low,

or the natural frequency of the beam must be high. A craft meant for inland operations

(i.e. calm waters) can afford a softer structure, where slamming is less common. A

sea-going vessel, on the other hand would require a stiffer bottom structure to ensure

a quasi-static response. High-speed vessels, though use mostly in calm waters, needs

stiffer material, since the varying dynamic lifts (partially supporting the craft weight)

cause repeated slamming of the bow at high impact speeds.
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Figure 3.6: DLF of C-C Beam in response to Uniform Stretching Load, at five different

damping ratios.
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3.2.2 Relative Modal Contribution.

The modal contribution of the CC and SS beams to the above uniform stretching

load at various transient speeds has been shown in Fig. 3.8 and 3.9. It is seen that the

20th mode contributes to the order of 10−6 times the first mode. This modal truncation

study serves as a representative guideline for other forcing configurations, where the

modal superposition limit is set to the first 20 modes. The even modeshapes integrate to

zero, whereas the odd ones integrate to non-zero. Since the load is uniformly distributed

over the length, the odd modeshapes are more likely to be excited than the even ones.

Interestingly, at relatively high speeds (small τ), the RMC surface shows a particular

higher mode (hence a corresponding higher frequency of vibration) is excited for a given

speed. The modal contribution for τ < 0.25 is not as smooth, with each speed associated

with a particular vibratory overtone.
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Figure 3.8: RMC of C-C beam for uniform load.
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Figure 3.9: RMC of S-S beam for uniform load.
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Fig.3.10 shows the RMC contours of a CC and SS beam to a uniform load over a

range of values of τ . Inclusion of the first 30 modeshapes for a CC beam shows that

the RMC for the highest mode is less than -6; and for a SS beam, it is less than -7.

The higher the modeshape index, the less is its contribution to the dynamic response,

because the loading configuration excites only the first few modeshapes. The pattern is

consistent except for very small values of τ , when the impact speed is so much that the

higher order modes also contribute to the deflection.

3.2.3 Response at Zero Wetting time.

For τ = 0, the numerical analysis for a uniformly distributed load acting on the beam

instantaneously (Eq.3.8) yields the following results (Table 3.1).

CC  Impact Load at 1 degree  tau = 0.2 DLF = 0.7140 

CC  Impact Load at 1 degree  tau = 2.5 DLF = 1.1136 

 

 

 
 

CC  Impact Load at 1 degree    tau = 1.0 DLF = 1.6508 

CC  Impact Load at 1 degree (20% damped)   tau = 1.0 DLF = 1.3045 

 

 
 

Impact load DLF at tau = 0, for CC and SS beams.  

 

 

Response at zero tau 

 

Uniform Load ζ = 0%  ζ = 1%  ζ = 5%  ζ = 10%  ζ = 20%  

CC 2.008 1.978 1.863 1.737 1.533 

SS 2.000 1.970 1.857 1.732 1.529 

 

Table 3.1 DLF at τ = 0 for CC and SS beams, at 5 damping ratios.

The DLF for a CC beam asymptotes to 2.008, while that of a SS beam goes to 2

within numerical accuracy. Damping reduces this maxima to a lower dynamic amplifi-

cation. The CC beam consistently shows a DLF greater than the SS beam, due to its

greater curvature (bending moments).

3.3 Dynamic response of beams to impact load.

The response of the beam to the uniform stretching load helps establish the bench-

marks of the modal analysis, namely the time-scales, DLF, and RMC. Now we proceed
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to a more realistic model of the impact force distribution, defined by a moving jet head,

stretching from the keel upwards (from x′ = 0 to x′ = 1 and beyond). The maximum

pressure is a function of the vertical impact velocity V and the deadrise angle β.

3.3.1 Dynamic Loading Factor.

Applying the impact forcing on the dry beam at various impact speeds, the dynamic

load factor (DLF) is estimated by the normal mode analysis. At large τ , the response

is nearly quasi-static (DLF ≈ 1) irrespective of the deadrise angle.

Fig.3.11 shows the time series of the dynamic and static deflection of the midpoint

of a clamped-clamped beam at τ = 1.0, for a deadrise angle of β = 15 degrees. The

undamped vibration produces a DLF = 1.6508, i.e. the dynamic overshoot is about

65% more than the static deflection under an equivalent loading. Inclusion of 20%

damping reduces the DLF to 1.3048, i.e. a 30.5% dynamic overshoot over the static

deflection. It is interesting to note that, with 20% damping, there is only one dynamic

oscillation greater than the static maximum (the first one). Sufficient damping causes

the subsequent dynamic stress maximum to be less than the static maximum.

Fig.3.12 shows the times series of the dynamic and static deflection of the midpoint of

a clamped-clamped beam at τ = 0.2 and 2.5, for a deadrise angle of β = 15 degrees. The

behavior at τ = 2.5 is quasi-static, with the dynamic deflection rising approximating the

static deflection during the impulsive wetting, and then ringing about the zero mean.

The static deflection is negligible after the impact load has passed. The DLF is 1.1136,

i.e. only 11.4% dynamic overshoot greater than the static deflection.
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Figure 3.11: Undamped and damped time series of a C-C beam at τ = 1.0 for (a) 0%

damping and (b) 20% damping, in response to impact loading at β = 15 degrees.
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Figure 3.12: Undamped time series of a C-C beam at (a)τ = 0.2, (b)τ = 2.5, in response

to impact loading at β = 15 degrees.
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Figure 3.13: DLF for CC beam, subject to Impact loading, at 5 damping ratios and 4

deadrise angles. 52
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Figure 3.14: DLF for SS beam, subject to impact loading, at 5 damping ratios and 4

deadrise angles.
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The behavior at τ = 0.2 is interesting, with the DLF at 0.7140, i.e. the maximum

dynamic deflection is only 71% of the maximum static deflection. However, the first

dynamic maxima is reached after the impulse has passed over and the static deflection

has subsided to almost zero. The time series shows more irregular behavior, with aperi-

odicity present. This occurs due to the excitation of higher order modeshapes at greater

the impact speeds.

Figures 3.13 and 3.14 show the DLF of Clamped-Clamped and Simply-Supported

beams respectively, at four different deadrise angles β = 1, 5, 15, and 30 degrees; and

at five different damping ratios ζ = 0%, 1%, 5%, 10%, and 20%. The time-scale is non-

dimensionalized with respect to the deadrise angle, and hence the DLF characteristic is

almost the same for a range of deadrise angles. Between 1 < τ < 2.5, a smaller deadrise

angle produces a greater DLF due to more severe and concentrated impact pressure.

A greater deadrise angle smears and spreads the impact pressure distribution, thereby

producing a slightly smaller DLF. Beyond τ = 2.5, all the deadrise angles produce a

quasi-static behavior.

Damping is seen to reduce the dynamic amplification and hence the maximum DLF.

3.3.2 Relative Modal Contribution.

Fig.3.15 shows the Relative Modal Contribution (RMC) contours for undamped CC

and SS beams, subject to impact loading at a deadrise angle of β = 1 degree. Inclusion

of the first 30 modeshapes in the normal mode analysis ensures that the RMC of the

highest modeshape is less than -5 for a CC beam, and less than -6 for a SS beam; for

most of the τ range. Interesting rises in the RMC contour is seen at very small τ for

both the boundary conditions, when higher order modes get excited to as much as 10−3
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Figure 3.15: RMC at zero τ , subject to Impact loading at β = 1 degree, for (a) CC

beam and (b) SS beam.

times of the fundamental modeshape. Still, the modal truncation limit of 30 is sufficient

to guarantee engineering accuracy of the dynamic deflection.

3.3.3 Response at Zero Wetting time.

Fig.3.16 shows the DLF at τ = 0 for CC and SS beams, for a range of deadrise angles

β. The DLF asymptotes to a non-zero value for zero wetting time, for β > 0. The SS

beam consistently shows a greater DLF for τ = 0 than a CC beam. Statically, the beam

feels the peak pressure; but dynamically, the beam feels only the keel pressure, or the

pressure at x′ = 0. The maximum static deflection under a smack force F ≈ δ(x,t) gives

a very large static stress.

3.4 Discussion.

A hydroelastic study of an Euler-Bernoulli beam subjected to various loading con-

55



 
 

 

 
 

 

 
 

 

0.0E+00

2.0E-02

4.0E-02

6.0E-02

8.0E-02

1.0E-01

1.2E-01

0 5 10 15 20 25 30

Deadrise Angle

SS

CC

DLF

Figure 3.16: DLF at τ = 0 for CC and SS beams.

ditions is presented. The primary motivation behind this work was to provide a basic

interface between dynamic response to concentrated moving loads and marine slam-

induced vessel vibrations. A straightforward numerical analysis of an elastic beam yields

several dynamic response results and non-dimensional formulations. The dynamic re-

sponse of the Euler-Bernoulli beam subjected to a uniform load sweeping across at a

constant speed, is considered as a benchmark result of this investigation. Applying im-

pact forcing as an external force on the dry beam at various deadrise angles results in

typical trends of the DLF, with parameters like deadrise angle and boundary conditions

causing little difference. The non-dimensionalization of the loading time (Splash time)

by three distinct parameters, i.e. natural frequency, deadrise angle, and damping can

serve as a generic vibration analyses parameter.

The non-D splash time τ serves as input to evaluate the local elastic responses of

structures subjected to impact loads. For example, a 1 m bow frame of a vessel with

a fundamental natural frequency of 10 Hz, slamming against the water at a vertical
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velocity of 15 m/s, generates a non-dimensional splash time of 0.67. The corresponding

DLF can be read from Fig.3.7 and Fig.3.8, where the impact pressure is modelled as

a uniform stretching load. At large deadrise angles (β > 20 degrees), the pressure

configuration is almost like a uniform stretching load. The maximum DLF in response

to the uniform load is around 2.00, while that in response to the impact loading is

around 1.70. Thus the uniform stretching load can be considered as an upper limit of

the impact loading, from the perspective of response analyses. The DLF for high speed

crafts subjected to impact loading would be better estimated from Fig.3.13 and Fig.3.14,

since they have lower deadrise angles and operate widely under different operational and

environmental conditions.

The choice of the definition of the DLF is based on returning a complete maximum

dynamic response corresponding to the equivalent maximum static response. The eval-

uation of the configuration of the dynamic deflection in space and time need not be a

part of the already long design procedure.

Ward [27] investigated the impact stresses on the bow of a sailboat, assuming a con-

stant stretching load, whose magnitude remains a constant during the forcing (thereby

reducing the peak pressure like a rectangular hyperbola px = P0 sweeping across the

plate, where p is the force per unit length, P0 is the total pressure magnitude, and x is

the wetted length). He predicted the quasi-static response well (DLF ≈ 1), but gener-

ated a very small DLF (< 20% of the static deflection) at very large impact speeds. The

latter is true for the Impact loading model, but not for a Uniform load model, where

the DLF approached 2 for very high impact speeds. Also, the peak DLF is estimated

to be approximately 1.5, which is nearly the same as the peak DLF in the impact load

response studied here. The crude representation of the impact force model with a uni-
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form load model hampers the interpretation of the results with respect to the physics

of the impact.

The dry vibration assumes that the maximum structural response (hence the maxi-

mum stresses and strains) occurs early in the impact sequence, with most of the beam

dry. Thus, the impact forcing can be considered as an external loading on a dry beam.

In the other limit, the completely wet vibration assumes that the maximum structural

response occurs later in the impact sequence, when the beam is completely submerged.

Now, the impact forcing gets augmented by a radiation pressure, which is the inertia of

the fluid set into motion by the beam. This completely wet vibration condition is the

subject of Chapter 5.

The impact-induced local hull vibrations involve complicated hydrodynamics, with

the maximum response occurring with the beam nearly halfway into the water. Local

changes in the structure geometry, stiffness, deadrise angle further complicate the re-

sponse and its analysis. The impact forcing model would also be affected by the wet

chines. A probabilistic analysis in various sea states with forward vessel speed can, in

fact, generate the slamming spectrum and the slam-induced flexural response spectra

for both long-crested and short-crested seas.
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CHAPTER IV

DRY VIBRATION OF KIRCHHOFF PLATE

This chapter examines the vibration characteristics of a dry Kirchhoff’s plate, subject

to transient loads using one-way coupling between the fluid and the structure, and the

numerically efficient normal mode analysis. The natural frequencies and modeshapes

for a very large number of modes can be generated for the free vibration. Admissible

functions, satisfying the boundary conditions, have been used to generate the plate

modeshapes, and the corresponding natural frequencies. Modal analysis generates the

coupled system of non-homogeneous modal dynamic governing differential equations,

which are solved by stable numerical time-integration. The superposition of the modal

dynamic deflections gives the total dynamic deflection Z(x,y,t).

The ratio of the largest Z(x,y,t) to the largest Zst(x,y,t) is defined as the dynamic

load factor (DLF). First, the DLF in response to a uniform unit stretching load is

established followed by the DLF in response to an impact load under different deadrise

angles β. The behavior of the structure is qualitatively dynamic or quasi-static, with

DLF varying between the range of 0 and 2, for a range of impact speeds of the moving

load.

To determine modal truncation guidelines, the modal contributions with respect to

the dominant fundamental mode are studied for different impact speeds V and deadrise

angles β. Inclusion of a greater number of modes increases the numerical accuracy, but

also increases computational time. Those higher-order modes which contribute negligi-

bly in comparison to the fundamental modeshape are ignored in order to optimize the
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trade-off between the analysis accuracy and computational efficiency.

4.1 Free dry vibration of plates.

The free vibration (Eigen Value) analysis of the square plate (Fig.4.1), with Galerkin’s

method; having different end conditions; yields the natural frequencies ωk (Eigenvalues)

and the modeshapes Φk(x, y) (Eigenvectors). The details have been given in Appendix

3. The Eigen value analysis, of the homogeneous system of equations of free vibration,

gives the Eigen values −ω2 (natural frequencies) and the Akjl. The kth natural frequency

has one dominant associated modeshape, as well as lesser contributions from the others,

whose amplitudes are given by Akjl (Leissa [36]).

The amplitudes are non-dimensionalized by the largest Akjl for a given Eigen value.

The natural frequency is non-dimensionalized by the geometric and material properties,

i.e. the length of the plate L, the mass per unit area of the plate m, and the stiffness of

the plate D.

guidelines, the modal contributions with respect to the dominant fundamental mode are studied 
for different impact speeds and different deadrise angles. First, the DLF for a uniform unit 
stretching load is established, followed by the DLF for an impact load under different deadrise 
angles.  The behavior of the structure is qualitatively dynamic or quasi-static, with DLF varying 
between the range of 0 and 2, for a range of velocities of the moving load. 
 
2.  THEORETICAL BACKGROUND 

A part of the bow section of the vessel is a modeled as a flexible isotropic plate, undergoing 
pure bending, subject to impact loads, with the rest of the bow section rigid (Fig.1). The four 
edges are considered to be clamped, i.e. the edge deflection and slope are zero at all times. The 
constant vertical impact velocity is ‘V’. The water is assumed to be initially calm, and the vessel 
has zero heel. The deadrise angle is β. The structure has no flexural deflection or vibratory 
velocity at time t = 0. Upon impact, the plate is set into flexural vibrations, with all the natural 
frequencies excited to different degrees.  
              
                                                                                                               V 
                                                                                                       c 
                                                      β  
                                                                                          Plate                                                                          

    Fig. 1       Slamming model of a typical high-speed craft. 
 

If the fundamental mode is assumed dominant (Faltinsen 1999), it is sufficient and efficient 
to consider ‘pure bending’ (Kirchhoff’s plate, Fig.2), ignoring shear deformation and rotary 
inertia (Midlin’s plate). This is a dual time-scale problem, with the splash time (time taken by the 
hydrodynamic load to sweep across the length of the plate) and the fundamental natural 
frequency of the plate both influencing the dynamic load factor. The corresponding static 
deflection is calculated by Galerkin’s method.  
 
2.1 Modal Analysis 

The total dynamic out-of-plane displacement z(x,y,t) of the plate can be considered to be 
linear superposition of the displacements of its natural modes of vibration. A short summary is 
given below. 

            y = L 
 

     
   Fig. 2      Square  Kirchhoff’s plate :  pure bending. 
              y = 0 
        x = 0   x = L                
The governing differential equation for the free, undamped vibration of the clamped-clamped 
square Kirchhoff’s plate, ignoring gravity, is given by Eq(1).  

0),,(),(),,(),( 4
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∂
⋅ tyxzyxD

t
tyxzyxm                          (1) 

Figure 4.1: Kirchhoff’s plate.

The non-dimensional plate frequency (Non-D ω) is defined as ωk

√
D
mL4 , where D =

Eh3

12(1−ν2)
. They are tabulated below, after verification with respect to existing values,

namely, Leissa [36] (Non-D ω1 = 35.98) and Young[35] (Non-D ω1 = 35.99). The nu-
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merical convergence of the frequencies has been studied with an Eigen analysis of 30x30

= 900 modeshapes.

 

CCCC  plate’s  DLFs  for  1x1,  2x2,  3x3  and  6x6  modes,  at  zero  damping  and  at  β  =  1  degree. 

 

 

 

 

DLF  at  zero  wetting  time  for  four  (4)  boundary  conditions  and  four(4)  deadrise  angles. 

 

Deadrise  angle CCCC SSSS CSCS SCSC 

1  degree 4.03E-06 4.04E-06 4.03E-06 4.04E-06 

5  degrees 4.83E-04 4.86E-04 4.83E-04 4.85E-04 

15  degrees 1.32E-02 1.33E-02 1.32E-02 1.32E-02 

30  degrees 1.25E-01 1.27E-01 1.26E-01 1.27E-01 

 
 

 

Convergence  of  the  CCCC  plate  fundamental  frequency  with  higher  modal  truncation  limits. 

 

Modes 1  x  1 3  x  3 5  x  5 10  x  10 20  x  20 30  x  30 

Freq 36.10867 36.00676 35.99149 35.98623 35.98525 35.98520 
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Table 4.1 Convergence of the CCCC plate fundamental frequency up to 5 significant

figures, with higher modal truncation limits.

Consider a two degree-of-freedom (2-DOF) system, vibrating freely. The Eigen values

analysis of the system of governing equations of free vibration gives the Eigen Values

(λ) and the Eigen Vectors. The characteristic equation is a quadratic in λ, given as

aλ2 + bλ + c = 0, where a, b, and c are real, arbitrary constants. The discriminant of

the equation is D =
√
b2−4ac
2a

. The nature of the two roots λ1 and λ2 given by the value

of D is as follows:

(1) D = 0 → the roots are real and equal, e.g, λ2 − 2λ+ 1 = 0 gives λ1, λ2 = 1.

(2) D > 0 and a perfect square → the roots are real, rational and unequal, e.g,

λ2 + 5λ+ 4 = 0 gives λ1 = -1, λ2 = -4.

(3) D > 0 and a not perfect square → the roots are real, irrational and unequal, occur-

ring as surd pairs, e.g, λ2 + 4λ+ 1 = 0 gives λ1 = -2+
√

3, λ2 = -2-
√

3.

(4) D < 0 → the roots are complex and unequal, occurring as complex conjugate pairs,

e.g, λ2 + λ+ 1 = 0 gives λ1 = −1+i
√

3
2

, λ2 = −1−i
√

3
2

.

(5) b = 0 → the roots are purely imaginary, occurring as complex conjugate pairs, e.g,

λ2 + 2 = 0 gives λ1 = i
√

2, λ2 = -i
√

2.

Framing of the Eigen value problem of free vibration of the plate, involving 10x10 mode-

shapes, generates the characteristic equation of the order of λ100. Thus the equation
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has 100 roots, some of which are unique and some occur in pairs. The details have been

explained in Appendix 3.

4.1.1 Frequencies

Table 4.1 gives the first 5(five) significant figures of the fundamental natural fre-

quency for the 30x30 = 900 modeshapes. Inclusion of more and more modeshapes leads

to increased accuracy of higher and higher frequencies. The 30x30 = 900 analysis con-

verges the 100th frequency to 4 significant figures. For higher convergence of the same,

a 40x40 = 1600 analysis might be necessary.

There are three(3) kinds of frequencies of a CCCC /SSSS plate.

Type(a) Unique frequencies : when j = l.

Type(b) Repeated frequencies (j 6= l) or Identical twins : when j is odd and l is even,

or vice-versa. Their modeshapes occur in pairs, i.e. they are identical, only rotated in

space by 90 degrees.

Type(c) Non-repeated but very close frequencies (j 6= l) or Fraternal twins : when j

and l are both odd, or both even. Their modeshapes are very different from each other.

These frequencies occur when the contributing beam modeshape(s) and its(their) cur-

vature(s) are not orthogonal to each other.

The three kinds of frequencies occurs for CCCC plates. The SSSS plate has either

unique or repeated frequencies, since its contributing beam modeshapes and their cur-

vatures are orthogonal to each other. For a CSCS plate, all the frequencies are unique.

Table 4.2 contains the first 7x7 = 49 non-dimensional natural frequencies of the

various boundary conditions and converged to five significant figures. It contains the

following components for the three different boundary conditions.
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k = Plate modeshape index, listed in the ascending order of the frequency magnitudes.

j = Dominant beam modeshape index in the X-direction.

l = Dominant beam modeshape index in the Y-direction.

Non-D ω = non-dimensional natural frequency of the plate, accurate for 5 significant

figures.

As an example, j = 3 and l = 5 signifies Ak35 is the largest amplitude in the series sum-

mation of Φk(x, y).

4.1.2 Modeshapes

Table 4.3 gives the first 7x7 = 49 modeshapes (Φk
jl) of a CCCC plate. The diagonal

of the table contains the Unique (Type a) frequencies, in which we find the chessboard-

like deflection configuration. The diagonals on either side of the main diagonal contains

the repeated frequencies (Type b) frequencies. The diagonals adjacent to them contains

the non-repeated (Type c) frequencies. The Type b and Type c frequencies appear

alternately in the outer sub-diagonals.

Table 4.4 contains the Akjl for the first six modeshapes. For k = 1, The contributing

modehapes are A11 = 1, A13 = A31 = 0.014, A33 = 0.003, and so on. The odd beam

modeshapes φj(x) and φl(y) contribute the most, while the even beam modeshapes

contribute the least. e.g. A22 = O(10−14). A11 and A44 matrices are exactly symmetrical.

For k = 2 and 3 modes, A12 and A21 contribute almost equally. The A2
jl and A3

jl matrices

are nearly transposes of each other; each producing bilaterally symmetrical modeshapes.

Similarly, for k = 5 and 6, A13 and A31 contribute equally. However, A5
jl is skew-

symmetric, while A6
jl is symmetric; each generating radially symmetrical modeshapes.
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 CCCC SSSS CSCS 

k j l NonD  ω j l NonD  ω j (CC) l (SS) NonD  ω 
1 1 1 35.985 1 1 19.739 1 1 28.951 

2 1 2 73.393 1 2 49.348 1 2 54.743 

3 2 1 73.393 2 1 49.348 2 1 69.327 

4 2 2 108.21 2 2 78.957 2 2 94.585 

5 3 1 131.58 3 1 98.696 1 3 102.22 

6 1 3 132.20 1 3 98.696 3 1 129.10 

7 3 2 165.00 3 2 128.30 2 3 140.20 

8 2 3 165.00 2 3 128.30 3 2 154.78 

9 1 4 210.52 1 4 167.78 1 4 170.35 

10 4 1 210.52 4 1 167.78 3 3 199.81 

11 3 3 220.03 3 3 177.65 2 4 206.70 

12 4 2 242.15 4 2 197.39 4 1 208.39 

13 2 4 243.14 2 4 197.39 4 2 234.59 

14 3 4 296.33 3 4 246.74 1 5 258.61 

15 4 3 296.33 4 3 246.74 3 4 265.20 

16 1 5 308.97 1 5 256.61 4 3 279.65 

17 5 1 309.23 5 1 256.61 2 5 293.76 

18 5 2 340.66 5 2 286.22 5 1 307.39 

19 2 5 340.66 2 5 286.22 5 2 334.03 

20 4 4 371.34 4 4 315.83 4 4 344.54 

21 3 5 392.86 3 5 335.57 3 5 351.12 

22 5 3 394.00 5 3 335.57 1 6 366.82 

23 1 6 427.35 1 6 365.18 5 3 379.36 

24 6 1 427.35 6 1 365.18 2 6 401.08 

25 6 2 458.22 6 2 394.78 6 1 425.91 

26 2 6 458.81 2 6 394.78 4 5 429.68 

27 4 5 467.38 4 5 404.65 5 4 444.15 

28 5 4 467.38 5 4 404.65 6 2 452.91 

29 3 6 510.64 3 6 444.13 3 6 457.45 

30 6 3 510.64 6 3 444.13 1 7 494.87 

31 5 5 562.41 5 5 493.48 6 3 498.53 

32 1 7 565.38 1 7 493.48 2 7 528.48 

33 7 1 565.54 7 1 493.48 5 5 528.89 

34 6 4 583.13 6 4 513.22 4 6 535.17 

35 4 6 584.33 4 6 513.22 6 4 563.38 

36 2 7 596.36 2 7 523.09 7 1 564.21 

37 7 2 596.36 7 2 523.09 3 7 584.02 

38 7 3 647.61 7 3 572.44 7 2 591.50 

39 3 7 648.42 3 7 572.44 5 6 633.81 

40 5 6 677.89 5 6 602.05 7 3 637.42 

41 6 5 677.89 6 5 602.05 6 5 647.93 

42 4 7 720.47 4 7 641.52 4 7 660.95 

43 7 4 720.47 7 4 641.52 7 4 702.45 

44 6 6 792.45 6 6 710.61 6 6 752.47 

45 5 7 813.33 5 7 730.35 5 7 758.97 

46 7 5 814.56 7 5 730.35 7 5 786.99 

47 7 6 927.68 7 6 838.92 6 7 877.11 

48 6 7 927.68 6 7 838.92 7 6 891.34 

49 7 7 1062.2 7 7 967.22 7 7 1015.7 

 

Table 4.2 First 7x7 natural frequencies of a square CCCC, SSSS and CSCS plate.
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First  7x7  modeshapes  of  a  square  CCCC  plate. 

 

 

 
 

 

 

 

 

 

Table  3 

First  7x7  natural  frequencies  of  a  square  CCCC,  SSSS  and  CSCS  plate 
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Table 4.3 First 7x7 modeshapes of a square CCCC plate.
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       Eigen Vectors of Square plates 
k = 1 

Modes  

            x 

y 

1 2 3 4 5 

1 1 -1.5E-08 0.01421 -1E-07 0.001994 

2 -1.5E-08 2.95E-14 6.06E-09 -3.1E-14 1.25E-09 

3 0.01421 6.06E-09 -0.00315 4.52E-08 -0.00097 

4 -1E-07 -3.1E-14 4.52E-08 -6.8E-13 1.76E-08 

5 0.001994 1.25E-09 -0.00097 1.76E-08 -0.00045 

k = 2 

Modes  

            x 

y 

1 2 3 4 5 

1 -2.5E-08 -1 6.33E-09 -0.01011 1.83E-07 

2 -0.97973 2.03E-07 -0.04007 3.68E-07 -0.0069 

3 5.92E-09 -0.0409 -1.1E-08 0.002312 -4E-08 

4 -0.0099 3.76E-07 0.002265 -1E-07 0.001156 

5 1.8E-07 -0.00704 -3.9E-08 0.00118 -4.7E-08 

k = 3 

Modes  

            x 

y 

1 2 3 4 5 

1 1.12E-09 -0.91154 1.9E-08 -0.00921 1.69E-07 

2 1 -9.1E-09 0.040896 -3.9E-07 0.007038 

3 -2E-08 -0.03728 4.72E-10 0.002108 -3.2E-08 

4 0.010106 3.55E-07 -0.00231 4.65E-09 -0.00118 

5 -1.9E-07 -0.00642 3.56E-08 0.001075 2.09E-09 

 

 

 

 

Table 4.4 Akjl for the first six frequencies of square plates.
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       Eigen Vectors of Square plates 
k = 4 

Modes  

            x 

y 

1 2 3 4 5 

1 1.6E-14 -8.5E-08 4.59E-12 -8.9E-09 1.67E-13 

2 -8.5E-08 -1 9.04E-08 -0.03278 5.95E-07 

3 -5.4E-12 9.04E-08 -4.4E-14 -5.3E-09 2.89E-14 

4 -8.9E-09 -0.03278 -5.3E-09 0.00206 -2.5E-08 

5 9.81E-14 5.95E-07 1.65E-13 -2.5E-08 1.13E-13 

k = 5 

Modes  

            x 

y 

1 2 3 4 5 

1 -3.1E-13 -2.7E-08 -1 7.06E-07 -0.00856 

2 2.73E-08 -5.8E-12 3.19E-07 -3.5E-13 1.48E-09 

3 1 -3.2E-07 1.49E-12 -8.5E-07 0.014542 

4 -7.1E-07 4.07E-15 8.47E-07 2.09E-14 -2.5E-09 

5 0.008559 -1.5E-09 -0.01454 2.54E-09 -8E-14 

k = 6 

Modes  

            x 

y 

1 2 3 4 5 

1 0.028015 -1.8E-08 -1 4.71E-07 -0.00541 

2 -1.8E-08 6.18E-14 2.47E-07 6.49E-13 -9.8E-09 

3 -1 2.47E-07 -0.12846 7.26E-07 -0.01199 

4 4.71E-07 6.59E-13 7.26E-07 4.04E-12 -8.6E-08 

5 -0.00541 -9.8E-09 -0.01199 -8.6E-08 0.002117 

 

Table 4.4 Akjl for the first six frequencies of square plates.
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4.2 Dynamic response of plates to uniform stretching load.

A unit load stretches across the plate of length L at a speed of V. The plate is

set into small-amplitude flexural vibrations, which are analyzed by the modal analysis

methodology. The dynamic load factor (DLF) is plotted against the non-dimensionalized

wetting time

τ =
L

V

ω1,dry

2π

√
1− ζ2, (4.1)

for the four different boundary conditions of the Kirchhoff’s plate, and four different

damping ratios.

4.2.1 Dynamic Loading Factor.

Fig.4.2 shows the DLF results of a square Kirchhoff’s plate, subject to transient

uniform loading over a wide range of impact velocities. For τ > 2, the dynamic behavior

of the plate is restricted to 0%-5% of the static response. With decreasing τ , the DLF

steadily and steeply rises to a little over 2.00 for undamped vibration. Damping reduces

the peak DLF and also smoothens the DLF characteristic in the quasi-static zone.

Interestingly, the CCCC and the CSCS plate behave similarly except for very small

τ . Similarly, the DLFs of the SSSS and SCSC plate superimpose over each other except

very small τ . This highlights the fact that the beam modeshape parallel to the direction

of the forcing (x -direction here) is a major factor influencing the dynamic behavior. The

beam modeshape (i.e. boundary conditions on y = 0 an y = L) perpendicular to the

forcing direction (y-direction here) has little or no influence on the nature of the DLF.

Also, the CSCS and SCSC DLFs deviate from the CCCC and SSSS DLFs respec-

tively, and approach each other at very low τ values, showing that the orientation of
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the forcing becomes insignificant at very high impact speeds. For a damping of 5%, the

maximum DLF asymptotes to an average of 1.89. For a damping of 10%, the maximum

DLF asymptotes to an average of 1.76.

Fig.4.3 shows the time series of the dynamic and static deflection of the midpoint of

the plate, at τ = 1.0 and 0.5. At larger values of τ (Fig.4.3a), when the fundamental plate

modeshape is the prime contributor, the dynamic deflection time-series is periodic. Thus

a short record length, including only one dynamic peak in the time series, is sufficient

to calculate the global DLF at that τ . This reduces the computation time, since the

time-integration is required for a limited number of time steps, enough to include one

fundamental time-period of the plate.

Reducing the τ (Fig.4.3b) cause the higher order modeshapes to participate in the

deflection, leading to aperiodicity in the time-series, as seen in Fig.4.3b. At such wetting

speeds, the DLF becomes a function of the record length, explaining the erratic behavior

of the DLF characteristic for τ < 0.4 in Fig.4.2. Elaborating, Fig.4.3b shows that the

first dynamic peak is less than the second in the time series. A record length of a

single fundamental period would return a lower value of DLF than a record length of

two fundamental periods. This aperiodicity becomes more and more pronounced for

smaller and smaller τ , due to the increased presence of the higher order modes, causing

an ambiguity in the accuracy of the DLF, and leading to rough DLF characteristics.

However, this uncertainty is present only for undamped vibration. Damping causes

the vibration to decay with time, with the higher modes damped faster than the first

mode; typically giving the first dynamic peak as the global maximum in the time se-

ries, irrespective of the record length. This is clearly seen in Fig.4.2b, where the DLF

characteristics for all the four boundary conditions are smooth even for very small τ .
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DLF  at  zero  wetting  time  for  four  (4)  boundary  conditions  and  four(4)  damping  ratios. 

 

Boundary  conditions CCCC SSSS CSCS SCSC 
  Damp  =  0% 2.0939 2.0000 2.0528 2.0528 
Damp  =  5% 1.9154 1.8633 1.8941 1.8941 

  Damp  =  10% 1.7730 1.7413 1.7611 1.7611 
Damp  =  20% 1.5530 1.5382 1.5486 1.5486 

                                                                                                                                     

    

 

DLF  for  uniform  loading  for  plates  for  four(4)  boundary  conditions,  ζ  =  (a)  0%,  (b)  20%. 
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Figure 4.2: DLF for uniform loading for plates for four(4) boundary conditions, ζ = (a)

0%, (b) 20%.
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Figure 4.3: DLF as a function of the record length, for τ = (a) 1.0, (a) 0.50.
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4.2.2 Relative Modal Contribution.

The modal truncation is set at 15x15 = 225 modeshapes, since the highest mode-

shapes have R.M.C. < -3, i.e. the contribution of the highest modeshape in this limit

is 10−3 times that of the fundamental modeshape. At high values of τ (> 3), the plate
DLF  for  uniform  loading  for  plates  for  four(4)  boundary  conditions,  ζ  =  (a)  0%,  (b)  20%. 
 

 

 

 

RMC  of  a  CCCC  plate  subject  to  uniform  loading  at  τ    =    0.1  ( ),    5  ( ). 

Max.  DLF  for  plates  subjected  to  impact  loads,  for  ζ  =  5%,  10%;  and  the  corresponding  τ 

  CCCC SSSS CSCS SCSC 

ζ  → 5% 10% 5% 10% 5% 10% 5% 10% 

 

1  

degree 

DLF 1.693 1.552 1.610 1.512 1.583 1.483 1.873 1.709 

τ 0.45 0.45 0.4 0.4 0.45 0.5 0.35 0.35 

5  

degrees 

DLF 1.692 1.552 1.610 1.512 1.583 1.483 1.872 1.709 

τ 0.45 0.45 0.4 0.4 0.45 0.5 0.35 0.35 

15  

degrees 

DLF 1.695 1.549 1.611 1.513 1.584 1.485 1.867 1.704 

τ 0.4 0.4 0.4 0.4 0.4 0.45 0.35 0.35 

30  

degrees 

DLF 1.699 1.556 1.618 1.518 1.595 1.495 1.846 1.682 

τ 0.35 0.40 0.35 0.35 0.4 0.4 0.3 0.3 
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Figure 4.4: RMC of a CCCC plate subject to uniform loading at τ = 0.1, 5.0.

behaves quasi-statically, with the DLF nearly 1. For smaller values of τ , there is a more

pronounced dynamic behavior. Fig.4.4 illustrates the comparative RMC, of a CCCC

plate, subject to uniform loading, for the strongly dynamic response (τ = 0.1) and the

quasi-static response (τ = 5.0). The behavior at τ = 5.0 shows a marginally greater

RMC for nearly all the higher order plate modeshapes than the behavior at τ = 0.1.

Since the load is uniformly distributed in both directions, the odd beam modeshapes
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contribute significantly, and the even beam modeshapes have very little contribution.

As seen below, the modeshapes with indices k = 4 (j = 2, l = 2), 12 (j = 4, l = 2), 13 (j

= 2, l = 4) and 20 (j = 4, l = 4), have very little contribution O( 10−8) compared to the

fundamental modeshape. However, they are not exactly zero, since the static coupling

of the stiffness matrix causes the principal coordinate qk(t) to be non-zero, even though

the corresponding generalized forcing is zero. Also, the repeated frequencies (Type b

frequencies) have equal contribution and RMC. E.g. both the modeshapes k = 2 (j =

1, l = 2) and k = 3 (j = 2, l = 1) have the same RMC at a given τ . But, k = 5 (j = 3,

l = 1) and k = 6 (j = 1, l = 3), having very close frequencies (Type c frequencies) but

very different modeshapes, show close but unequal RMC.

4.2.3 Response at zero wetting time.DLF  at  zero  wetting  time  for  four  (4)  boundary  conditions  and  four(4)  damping  ratios. 

 

Boundary  conditions CCCC SSSS CSCS SCSC 

Damp  =  0% 2.0939 2.0000 2.0528 2.0528 

Damp  =  5% 1.9154 1.8633 1.8941 1.8941 

Damp  =  10% 1.7730 1.7413 1.7611 1.7611 

Damp  =  20% 1.5530 1.5382 1.5486 1.5486 
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Table 4.5 DLF at zero wetting time for 4 boundary conditions and 4 ζ’s.

For zero wetting time, the uniform load acts over the whole of the plate from time

t = 0 onwards. Table 4.5 above shows that the DLF at zero wetting time is same for

CSCS and SCSC orientations up to the first 5 significant figures. This also stands for

the response of an extremely soft or an infinitely massive structure. The CCCC plate

has a higher DLF than the SSSS plate, since the former has more spatial curvature than

the latter, and thus produces a greater dynamic amplification.
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4.2.4 Generalization of the time-scale by the wave number of the beam mode-

shapes.

This exercise is done to generalize the DLF of the plates of different boundary con-

ditions as far as possible, for the convenience of the structural designer. The plate

modeshapes Φk(x, y) are a weighted sum of the product of the beam modeshapes in the

x and y directions, as reiterated below.

Φk(x, y) = Σmodex
j=1 Σmodey

l=1 Akjlφj(x)φl(y) = Σmodex
j=1 Σmodey

l=1 AkjlGjl(x, y).

However, it is the beam modeshape (dependent on the end conditions), parallel to the

direction of the forcing, φj(x), which strongly influences the DLF characteristic. The

perpendicular modeshape, φl(y), has significantly less influence of the nature of the

DLF. For this, we first revisit the beam vibration problem.

The undamped free vibration of an Euler-Bernoulli beam has the following linear,

homogeneous, second order, governing differential equation :

m(x)
∂2z(x, t)

∂t2
+ EI(x)

∂4z(x, t)

∂x4
= 0.

The dependent unknown 2-D dynamic deflection Z(x,t) is a function of x and t. Sepa-

ration of variables leads to : Z(x,t) = G(x )F (t). Thus

F̈ (t)

F (t)
=
EI(x)

m(x)

GIV (x)

G(x)
= −ω2,

where ω is the separation constant, which generates two independent equations. The

principal coordinates are generated by F̈(t)+ω2F(t) = 0, and the beam modeshapes are

generated by GIV (x) = m(x)ω2

EI(x)
G(x). Replacing γ4

j =
m(x)ω2

j

EI(x)
, the general solution to the

beam modeshape is :
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φj(x) = A1jcos(γjx) +A2jsin(γjx) +A3jcosh(γjx) +A4jsinh(γjx). The four constants,

A1, A2, A3 and A4 are calculated from the end conditions. γj is the wave number of

the jth beam vibration modeshape.

(a) The Clamped-Clamped (CC) beam has zero deflection and zero slope at the ends.

Thus the modeshape is φj(x) = cos(γjx)− cosh(γjx)− σjsin(γjx) + σjsinh(γjx); with

the fundamental wave number γCC = 4.7300. Here, σj =
cos(γjL)−cosh(γjL)

sin(γjL)−sinh(γjL)
. The general-

ization of the time-scale with respect to the clamped-clamped (CC) beam wave number

is done as

τCC =

(
L

V

)
ω1

2π

√
1− ζ2

√
4.73

γn
, (4.2)

with n = 1,2,3,4. Here, γ1,2 = 4.73 for the CCCC and CSCS plates; and γ3,4 = π for

the SSSS and SCSC plates.

(b) The Simply-Supported (SS) beam has zero deflection and zero bending moment

at the ends. Thus the modeshape is φj(x) = sin(γjx); with the fundamental wave num-

ber γSS = π. The generalization of the time-scale with respect to the simply-supported

(SS) beam wave number is done as

τSS =

(
L

V

)
ω1

2π

√
1− ζ2

√
π

γn
, (4.3)

with n = 1,2,3,4. Here, γ1,2 = 4.73 for the CCCC and CSCS plates; and γ3,4 = π for

the SSSS and SCSC plates.
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DLF  for  uniform  loading  for  plates  for  four(4)  BCs  generalized  w.r.t.  CC  wave  number,  

with  ζ  =  (a)  0%,  (b)  20%. 

       
DLF  for  uniform  loading  for  plates  for  four(4)  BCs  generalized  w.r.t.  SS  wave  number,  

with  ζ  =  (a)  0%,  (b)  20%. 
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Figure 4.5: Uniform Load DLF generalized to the beam wave numbers.
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This modifies the time-scale such that the DLFs for all the four plate boundary

conditions (CCCC, SSSS, CSCS and SCSC) are similar within the region of practical

interest of the structural designer, i.e. 0.5 < τ < 2. The self-similar behavior becomes

more and more pronounced for higher and higher damping. For a liberal damping ratio

of 20%, it is seen that a single DLF characteristic represents the response of the plate

with all the four boundary conditions, in both the modified time-scales (Fig.4.5). It

also shows that the first quasi-static behavior (DLF = 1), for all the four boundary

conditions, occurs at τCC = 1.85 (Eq.(4.2)) and τSS = 1.50.(Eq.(4.3))

4.3 Dynamic response of plates to impact load.

The response of the Kirchhoff’s plate to the uniform stretching load helps establish

the benchmarks of the modal analysis, namely the time-scales, the DLF, and the RMC

for square plates. Now we proceed to a more realistic model of the impact force distri-

bution, defined by a moving jet head, stretching from the keel upwards. The maximum

pressure is a function of the vertical impact velocity V and the deadrise angle β.

4.3.1 Dynamic Loading Factor.

The Dynamic Load Factor (DLF) characteristics for a square Kirchhoff’s plate sub-

ject to impact loading at four deadrise angles, i.e. 1, 5, 15 and 30 degrees, is shown

below (Fig.4.6 and Fig.4.7). There are two different damping ratios : 0% and 20%,

for the four different boundary conditions of the Kirchhoff’s plate (i.e. CCCC, SSSS,

CSCS, and SCSC). The non-D splash time is given by Eq.(4.1). It is seen that damping

lowers the peak DLF, and moves it to a slightly higher τ . However, since the time-scale

is non-dimensionalized with respect to the fundamental damped frequency of vibration,
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the quasi-static behavior begins from a fixed τ , for a given deadrise angle. Grouping the

four deadrise angles for a constant damping, the results are as follows. A high τ means

slower impact speed, or a stiffer/light plate. A low τ means a faster impact speed, or a

softer/massive plate.

Large values of τ causes a quasi-static behavior of the plate for all deadrise angles,

all boundary conditions, and all damping ratios. Decreasing τ leads to a steady increase

in the DLF, which reaches a peak, and then sharply drops to a virtually zero DLF.

At extremely low τ , the impact pressure sweeps across the plate so quickly that the

plate does not get the time to respond (quasi-stationary response). At very high impact

speeds, i.e. τ < 0.6, the smaller deadrise angle has a marginally lower DLF than the

larger deadrise angle, since the pressure sweep is faster for a smaller τ , giving the

structure less time to react.

Mild roughness in the DLF characteristic is seen around the peak, which again occurs

due to aperiodicity in the time-series of the dynamic deflection, explained in Sec.4.2.1.

It becomes smooth again for lower τ , unlike the Uniform Load DLF (Fig.4.2), because

the almost instantaneous impact sweep barely excites the higher order modeshapes.

For structural designers, the region 1 < τ < 2 is of practical interest, since the

coalesced time-scales of typical marine design problems lie here. In this region, a smaller

deadrise angle produces a slightly higher DLF for a given τ . This is because the plate,

at a smaller deadrise angle, suffers a much larger and more localized impact pressure,

which causes far severe dynamic deflections and hence, greater dynamic flexural stresses

and strains. Hence the lower-most DLF in the following charts stands for β = 30 degrees

and the uppermost DLF stands for β = 1 degree.
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DLF  for  the  CCCC  plate  at  four  (4)  deadrise  angles,    ζ  =  (a)  0%,  (b)  20%. 

 

     
DLF  for  the  SSSS  plate  at  four  (4)  deadrise  angles,  ζ  =  (a)  0%,  (b)  20%. 
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Figure 4.6: Impact Load DLF of CCCC and SSSS plates.
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DLF  for  the  CSCS  plate  at  four  (4)  deadrise  angles,  ζ  =  (a)  0%,  (b)  20%. 

 

   

DLF  for  the  SCSC  plate  at  four  (4)  deadrise  angles,  ζ  =  (a)  0%,  (b)  20%. 

 

 

0

0.5

1

1.5

2

0 1 2 3 4 5

D

L

F

τ
0

0.5

1

1.5

2

0 1 2 3 4 5

D

L

F

τ

0

0.5

1

1.5

2

0 1 2 3 4 5τ

D

L

F

0

0.5

1

1.5

2

0 1 2 3 4 5
τ

D

L

F

30 degrees 

30 degrees 

30 degrees 

1 degree 

1 degree 

1 degree 

1 degree 

30 degrees 

Figure 4.7: Impact Load DLF of CSCS and SCSC plates.
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Table 4.6 below shows the maximum DLFs for plates with 5% and 10% damping,

at deadrise angles β = 1, 5, 15 and 30 degrees; and also the corresponding τ at which

they occur. The DLF for these intermediate damping ratios show similar trends as the

above plots, except that the damping reduces the peak DLF.

DLF  for  uniform  loading  for  plates  for  four(4)  boundary  conditions,  ζ  =  (a)  0%,  (b)  20%. 
 

 
 

RMC  of  a  CCCC  plate  subject  to  uniform  loading  at  τ    =    0.1  (  ),    5  (  ). 

 

Max.  DLF  for  plates  subjected  to  impact  loads,  for  ζ  =  5%,  10%;  and  the  corresponding  τ. 

 

  CCCC SSSS CSCS SCSC 

ζ  → 5% 10% 5% 10% 5% 10% 5% 10% 

 

1  

degree 

DLF 1.693 1.552 1.610 1.512 1.583 1.483 1.873 1.709 

τ 0.45 0.45 0.4 0.4 0.45 0.5 0.35 0.35 

5  

degrees 

DLF 1.692 1.552 1.610 1.512 1.583 1.483 1.872 1.709 

τ 0.45 0.45 0.4 0.4 0.45 0.5 0.35 0.35 

15  

degrees 

DLF 1.695 1.549 1.611 1.513 1.584 1.485 1.867 1.704 

τ 0.4 0.4 0.4 0.4 0.4 0.45 0.35 0.35 

30  

degrees 

DLF 1.699 1.556 1.618 1.518 1.595 1.495 1.846 1.682 

τ 0.35 0.40 0.35 0.35 0.4 0.4 0.3 0.3 
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Table 4.6 Maximum DLF for plates subjected to impact loads, for ζ = 5%, 10%; and

the corresponding τ .

Also, a larger deadrise angle has a smaller corresponding τ for the peak DLF, i.e.

the peak DLF shifts left on the τ -axis for increasing deadrise angle. For decreasing τ ,

the DLF for smaller deadrise angles drops earlier, since the pressure sweeps across too

fast to amplify the dynamic response.

4.3.2 Relative Modal Contribution.

To highlight why and to what extent the higher order modes are important, the

following (Fig.4.8) is shown, with a comparison of a CCCC plate’s DLFs for 1x1, 2x2,

3x3 and 6x6 modes, i.e. for a summation of 1, 4, 9, and 36 plate modeshapes respectively,

at zero damping and at a deadrise angle of 1 degree. For τ > 3, all the four DLFs show
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a similar behavior. However, decreasing the τ makes the contribution of the higher

modeshapes more and more pronounced. At the peak DLF, the second modeshape is

seen to have ∼17% increase in the maximum. Hence the inclusion of the higher order

modeshapes is imperative.

 

CCCC  plate’s  DLFs  for  1x1,  2x2,  3x3  and  6x6  modes,  at  zero  damping  and  at  β  =  1  degree. 

 

 

 

 

DLF  at  zero  wetting  time  for  four  (4)  boundary  conditions  and  four(4)  deadrise  angles. 

 

Deadrise  angle CCCC SSSS CSCS SCSC 

1  degree 4.03E-06 4.04E-06 4.03E-06 4.04E-06 

5  degrees 4.83E-04 4.86E-04 4.83E-04 4.85E-04 

15  degrees 1.32E-02 1.33E-02 1.32E-02 1.32E-02 

30  degrees 1.25E-01 1.27E-01 1.26E-01 1.27E-01 
 

 

 

Convergence  of  the  CCCC  plate  fundamental  frequency  with  higher  modal  truncation  limits. 

 

Modes 1  x  1 3  x  3 5  x  5 10  x  10 20  x  20 30  x  30 

Freq 36.10867 36.00676 35.99149 35.98623 35.98525 35.98520 
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Figure 4.8: CCCC plate’s DLFs at ζ = 0 and at β = 1 degree.

To demonstrate the relative contribution of each modeshape, the following (Fig.4.9)

is the RMC of a CCCC plate’s dynamics for 15x15 modes, at zero damping and at a

deadrise angle of β = 1 degree. The RMC of only the first 7x7 = 49 modes have been

presented for clarity.

The modal truncation for the impact loading is set at 15x15 = 225 modeshapes. For

τ ∼0.05, the highest modeshapes have R.M.C. < -3, i.e. the contribution of the highest

modeshape in this limit is 10−3 times that of the fundamental modeshape. However,
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for τ > = 0.5, the highest modeshapes have R.M.C. < -5, i.e. the contribution of the

highest modeshape in this limit is only 10−5 times that of the fundamental modeshape.

It is seen that for a lower value of τ (greater impact speed), the higher order modeshapes

have a greater contribution than at higher values of τ (slower impact speeds).

   

 

Comparative  DLF  for  the  four  BCs  at  5%  damping,  at  β  =  1  degree,  generalized  to  the (a)  SS  

and  (b)  CC  beam  fundamental  wave  number  γ. 

 

 

 

RMC  of  a  CCCC  plate  for  15x15  modes,  at  zero  damping,  and  at  a  deadrise  angle  of  

beta  =  1  degree,  for  τ  =  0.05  ( ),  τ  =  0.5  ( ),  τ  =  5.0  ( ) 
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Figure 4.9: RMC of a CCCC plate for 15x15 modes, at zero damping, and at β = 1

degree, for τ = 0.05, 0.5, 5.0.

The impact load is uniformly distributed in the Y-direction, and thus odd beam

modeshapes along the Y-axis contribute significantly, and the even beam modeshapes

have very little contribution (Refer Sec.3.2.2). This loading configuration has a con-

centrated load at the jet head, which excites the odd modeshapes along the X-axis,
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also.

As seen above, the modeshapes with indices k = 25 (j = 6, l = 2), 26 (j = 2, l =

6), 34 (j = 6, l = 4) and 35 (j = 4, l = 6), have very little contribution of O( 10−7.5)

compared to the fundamental modeshape. However, like the beam vibration RMC, they

are not exactly zero, since the static coupling of the plate stiffness matrix causes the

principal coordinate qk(t) to be non-zero, even though the corresponding generalized

forcing is zero.

Also, the (Type b) repeated frequencies (having similar modeshapes), have equal

contributions and RMC. E.g. both the modeshapes k = 9 (j = 1, l = 4) and k = 10 (j

= 4, l = 1) have the same RMC at a given τ . Similarly, modeshapes k = 14 (j = 3, l =

4) and k = 15 (j = 4, l = 3) also have the same RMC.

However, k = 32 (j = 1, l = 7) and k = 33 (j = 7, l = 1), having very close (Type

c) frequencies but very different modeshapes, have close but unequal RMC. The time-

scale of the pressure aligns nearly equally with both the non-repeated frequencies, but

its spatial configuration aligns differently with them, and hence the difference in their

RMCs.

4.3.3 Response at zero wetting time.

For zero wetting time under impact, the keel pressure acts over the whole plate from

time t = 0 onwards. Damping has no influence over this limiting value of the DLF for

any deadrise angle or any boundary condition. Table 4.7 shows the limiting values of

the DLF for the four boundary conditions. Unlike the uniform loading limiting DLFs,

the CCCC and CSCS show almost equal DLFs at zero wetting time, and likewise, the

SSSS and SCSC DLFs approach each other. For the impact loading configuration, the
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loading direction is important at τ = 0 also.

 

CCCC  plate’s  DLFs  for  1x1,  2x2,  3x3  and  6x6  modes,  at  zero  damping  and  at  β  =  1  degree. 

 

 

 

 

DLF  at  zero  wetting  time  for  four  (4)  boundary  conditions  and  four(4)  deadrise  angles. 

 

Deadrise  angle CCCC SSSS CSCS SCSC 

1  degree 4.03E-06 4.04E-06 4.03E-06 4.04E-06 

5  degrees 4.83E-04 4.86E-04 4.83E-04 4.85E-04 

15  degrees 1.32E-02 1.33E-02 1.32E-02 1.32E-02 

30  degrees 1.25E-01 1.27E-01 1.26E-01 1.27E-01 

 
 

 

Convergence  of  the  CCCC  plate  fundamental  frequency  with  higher  modal  truncation  limits. 

 

Modes 1  x  1 3  x  3 5  x  5 10  x  10 20  x  20 30  x  30 

Freq 36.10867 36.00676 35.99149 35.98623 35.98525 35.98520 
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Table 4.7 DLF at zero wetting time for 4 boundary conditions and 4 deadrise angles.

The deadrise angle of 1 degree is seen to produce an extremely small deflection,

virtually a quasi-stationary response. Increasing the deadrise angle leads an increasing

limiting value of the DLF, though only ∼12% of the static deflection, under exactly the

same pressure distribution.

4.3.4 Generalization of the time-scale by the wave number of the beam mode-

shapes.

For impact loading, the generalization of the time-scale with respect to the wave

number of the beam modeshape, parallel to the direction of the transient forcing, is

done as follows. It is different from the generalization used for the uniform loading. The

generalization of the time-scale with respect to the clamped-clamped (CC) beam wave

number is done as

τCC =

(
2Lsinβ

V π

)
ω1

√
1− ζ2

2π

[
4.73

γn

]1/4

, (4.4)

with n = 1,2,3,4. Here, γ1,2 = 4.73 for the CCCC and CSCS plates; and γ3,4 = π for

the SSSS and SCSC plates. The generalization of the time-scale with respect to the

simply-supported(SS) beam wave number is done as

τSS =

(
2Lsinβ

V π

)
ω1

√
1− ζ2

2π

[
π

γn

]1/4

, (4.5)
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with n = 1,2,3,4. Here, γ1,2 = 4.73 for the CCCC and CSCS plates; and γ3,4 = π for

the SSSS and SCSC plates.

   

 

Comparative  DLF  for  the  four  BCs  at  5%  damping,  at  β  =  1  degree,  generalized  to  the (a)  SS  

and  (b)  CC  beam  fundamental  wave  number  γ. 

 

 

 

RMC  of  a  CCCC  plate  for  15x15  modes,  at  zero  damping,  and  at  a  deadrise  angle  of  

beta  =  1  degree,  for  τ  =  0.05  ( ),  τ  =  0.5  ( ),  τ  =  5.0  ( ) 
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Figure 4.10: Comparative DLF for the four BCs at 5% damping, at β = 1 degree,

generalized to the (a) SS and (b) CC beam fundamental wave number γ.

This modifies the time-scale such that the DLFs for all the four plate boundary con-

ditions (CCCC, SSSS, CSCS and SCSC) are similar within a region of practical marine

design interest, i.e. 1.5 < τ < 2.5. (Fig.4.10). The quasi-static behavior, i.e. DLF =

1, begins at the same τ (Eq.(5.4) and Eq.(5.5)) for all the four boundary conditions,

for both the γ-generalizations. Also, at τ < 0.4, all the four boundary conditions, once

again, show self-similar behavior. The maximum DLF, too, is seen to occur at around

the same τ for all the four boundary conditions, with both the generalizations.

4.4 Vibration of Rectangular plates.

A new dimension has been added to the parameter space of the problem, i.e. the

aspect ratio. The previous work has been extended from a square plate to a more
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practical rectangular plate. The response of plate with aspect ratios α > 1 and α <

1 have been both studied, since the vessels may be either longitudinally framed or

transversely framed. The vibration of plates for large aspect ratios have been compared

to that of an Euler-Bernoulli beam [60], since the formers’ frequencies approach the

latter’s.

     
 

Dry DLF (Red) vs. Wet DLF (Wet) of (a) CCCC plate, (b) SSSS plate. 

 

 

 

 

 

  

 

 

 

Table 5  : Undamped DLF of rectangular plates at τ = 0 (zero wetting time) for Uniform load, for four 

Boundary conditions. 

 

α 0.1 0.2 0.25 0.33 0.5 1 2 3 4 5 10 

CCCC 2.010 2.001 1.988 1.993 2.232 2.094 2.232 1.993 1.988 2.001 2.010 

SSSS 1.996 1.997 2.143 2.220 2.044 1.999 2.044 2.220 2.143 1.997 1.996 

CSCS 2.010 2.002 1.995 1.990 2.223 2.052 2.016 2.223 2.151 1.992 1.995 

SCSC 1.995 1.992 2.151 2.223 2.016 2.052 2.223 1.990 1.995 2.002 2.010 
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Figure 4.11: CSCS plate with aspect ratios (a) α = 0.25 and (b) α = 4.

Fig.4.11 shows a CSCS plate the aspect ratios 0.25 and 4, with the forcing direction

shown. For (a), the plate vibrates like a CC beam, with the beam modeshape parallel to

the forcing direction. The beam modeshape parallel to the direction of the forcing gets

excited, as shown. For (b), the vibration in either axis is restricted, leading to erratic

DLF characteristics. Here, the beam modeshape parallel to the direction of the forcing

is restricted by the narrow beam, leading to a disturbed response.

4.4.1 Free vibration of Rectangular plates.

The dry analysis of rectangular plates (CCCC, SSSS, CSCS) has been done for

100 modes to establish the accuracy of the first four significant figures of the first 36

frequencies, non-dimensionalized by
√

D
mL4 , to generate the Non-D ωk,dry (Table 4.8).
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Table 4 : Non-dimensional dry natural frequencies of plates with four boundary conditions. 

 

α 0.1 0.2 0.25 0.33 0.5 1 2 3 4 5 10 

CCCC 22.43 22.63 22.79 23.19 24.57 35.98 24.57 23.19 22.79 22.63 22.43 

SSSS 9.968 10.26 10.48 10.96 12.33 19.73 12.33 10.96 10.48 10.26 9.968 

CSCS 22.42 22.59 22.71 22.99 23.81 28.95 13.68 11.35 10.64 10.34 9.978 

SCSC 9.978 10.34 10.64 11.35 13.68 28.95 23.81 22.99 22.71 22.59 22.42 

 

 

 
 

Non-D dry natural frequencies of plates with four different BCs. 
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Table 4.8 Fundamental frequencies of rectangular plates with four boundary conditions.

Table 4 : Non-dimensional dry natural frequencies of plates with four boundary conditions. 

 

α 0.1 0.2 0.25 0.33 0.5 1 2 3 4 5 10 

CCCC 22.43 22.63 22.79 23.19 24.57 35.98 24.57 23.19 22.79 22.63 22.43 

SSSS 9.968 10.26 10.48 10.96 12.33 19.73 12.33 10.96 10.48 10.26 9.968 

CSCS 22.42 22.59 22.71 22.99 23.81 28.95 13.68 11.35 10.64 10.34 9.978 

SCSC 9.978 10.34 10.64 11.35 13.68 28.95 23.81 22.99 22.71 22.59 22.42 

 

 

 
 

Non-D dry natural frequencies of plates with four different BCs. 
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Figure 4.12: Fundamental frequencies of rectangular plates.

The aspect ratio changes (a) the natural frequency of the plate and (b) the wetting

time. This analysis has been done for 11 aspect ratios. At large α, the natural frequencies

and DLFs of CCCC plates approach that of a Clamped-Clamped (CC) beam, and those

of and SSSS plate approach that of a Simply-Supported (SS) beam. A CSCS plate tends

to vibrate like a CC beam at a low aspect ratio; and as a SS beam at a high aspect

ratio. Likewise, a SCSC plate vibrates like a SS beam at a low aspect ratio; and as a

CC beam at high aspect ratio. Fig.4.12 shows the frequencies plotted as a function of

log10(α).
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k j l α = 0.1 j l α = 0.2 j l α = 0.5 j l α = 2 j l α = 5 j l α = 10

1 1 1 22.43 1 1 22.64 1 1 24.58 1 1 24.58 1 1 22.64 1 1 22.43

2 1 2 22.62 1 2 23.45 1 2 31.84 2 1 31.84 2 1 23.45 2 1 22.62

3 1 3 22.93 1 3 24.90 1 3 44.80 3 1 44.80 3 1 24.90 3 1 22.93

4 1 4 23.38 1 4 27.05 1 4 63.36 4 1 63.36 4 1 27.05 4 1 23.38

5 1 5 23.98 1 5 30.04 2 1 64.00 1 2 64.00 5 1 30.04 5 1 23.98

6 1 6 24.72 1 6 33.85 2 2 71.12 2 2 71.12 6 1 33.85 6 1 24.72

7 2 1 61.75 2 1 62.01 2 3 83.41 3 2 83.41 1 2 62.01 1 2 61.75

8 2 2 61.99 2 2 63.00 1 5 87.33 5 1 87.33 2 2 63.00 2 2 61.99

9 2 3 62.40 2 3 64.69 2 4 100.9 4 2 100.9 3 2 64.69 3 2 62.40

10 2 4 62.96 2 4 67.03 1 6 116.4 6 1 116.4 4 2 67.03 4 2 62.96

11 2 5 63.72 2 5 70.20 3 1 123.3 1 3 123.3 5 2 70.20 5 2 63.72

12 2 6 64.59 2 6 73.99 2 5 124.0 5 2 124.0 6 2 73.99 6 2 64.59

13 3 1 121.0 3 1 121.3 3 2 130.5 2 3 130.5 1 3 121.3 1 3 121.0

14 3 2 121.3 3 2 122.3 3 3 142.7 3 3 142.7 2 3 122.3 2 3 121.3

15 3 3 121.7 3 3 124.1 2 6 152.2 6 2 152.2 3 3 124.1 3 3 121.7

16 3 4 122.3 3 4 126.6 3 4 159.9 4 3 159.9 4 3 126.6 4 3 122.3

17 3 5 123.1 3 5 129.9 3 5 182.6 5 3 182.6 5 3 129.9 5 3 123.1

18 3 6 124.1 3 6 133.8 4 1 202.3 1 4 202.3 6 3 133.8 6 3 124.1

19 4 1 200.0 4 1 200.2 4 2 209.5 2 4 209.5 1 4 200.2 1 4 200.0

20 4 2 200.2 4 2 201.3 3 6 210.1 6 3 210.1 2 4 201.3 2 4 200.2

21 4 3 200.7 4 3 203.2 4 3 221.8 3 4 221.8 3 4 203.2 3 4 200.7

22 4 4 201.3 4 4 205.8 4 4 238.9 4 4 238.9 4 4 205.8 4 4 201.3

23 4 5 202.2 4 5 209.2 4 5 261.6 5 4 261.6 5 4 209.2 5 4 202.2

24 4 6 203.1 4 6 213.2 4 6 288.7 6 4 288.7 6 4 213.2 6 4 203.1

25 5 1 298.7 5 1 299.0 5 1 301.1 1 5 301.1 1 5 299.0 1 5 298.7

26 5 2 299.0 5 2 300.1 5 2 308.4 2 5 308.4 2 5 300.1 2 5 299.0

27 5 3 299.5 5 3 302.1 5 3 320.9 3 5 320.9 3 5 302.1 3 5 299.5

28 5 4 300.1 5 4 304.7 5 4 338.0 4 5 338.0 4 5 304.7 4 5 300.1

29 5 5 301.1 5 5 308.3 5 5 360.8 5 5 360.8 5 5 308.3 5 5 301.1

30 5 6 302.0 5 6 312.3 5 6 387.9 6 5 387.9 6 5 312.3 6 5 302.0

31 6 1 417.1 6 1 417.4 6 1 419.5 1 6 419.5 1 6 417.4 1 6 417.1

32 6 2 417.4 6 2 418.5 6 2 426.9 2 6 426.9 2 6 418.5 2 6 417.4

33 6 3 417.9 6 3 420.5 6 3 439.4 3 6 439.4 3 6 420.5 3 6 417.9

34 6 4 418.5 6 4 423.2 6 4 456.6 4 6 456.6 4 6 423.2 4 6 418.5

35 6 5 419.5 6 5 426.8 6 5 479.5 5 6 479.5 5 6 426.8 5 6 419.5

36 6 6 420.4 6 6 430.9 6 6 506.5 6 6 506.5 6 6 430.9 6 6 420.4

Table 4.9 First 6x6 = 36 Non-dimensional Frequencies of rectangular CCCC plates,

with the dominant beam indices, for 6 different aspect ratios.
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Table 4.9 shows the first 6x6 = 36 frequencies of a CCCC plate at 3x2 = 6 different

aspect ratios. For α = 0.1, the fundamental modeshape in the x-direction, i.e. j = 1

dominates the first six plate plate modeshapes. The next six frequencies are dominated

by j = 2 beam modeshape, the next six by j = 3 beam modeshape, and so on. The

trend is reversed for the plate with α = 10. Here, the fundamental modeshape in the

y-direction, i.e. l = 1 dominates the first six plate modeshapes. The next six frequencies

are dominated by l = 2 beam modeshape, the next six by l = 3 beam modeshape, and

so on. There is a large difference of magnitude between the 6th and the 7th frequency,

the 12th and the 13th frequency and so on.

The above trend is replicated by the plates with α = 0.2 and α = 5 respectively.

This shows that the plate behaves almost like a beam, with the higher modeshapes along

the shorter edge hardly participating in the vibration. The frequency-magnitudes can

be easily grouped into six sequential sets with a common j value, i.e. there are quantum

leaps in the frequency magnitude down the frequency table.

As the plate becomes more squarish, the beam modeshapes along the shorted edge

become more prominent, and the above sequencing gets distorted, with the plate with

α = 0.5 having the plate modeshape k = 5 dominated by j = 2 and l = 1 beam mode-

shapes, instead of j = 1 and l = 5 beam modeshapes. This trend is mirrored by the

plate with α = 2 having the plate modeshape k = 5 dominated by j = 1 and l = 2

beam modeshapes, instead of j = 5 and l = 1 beam modeshapes. The increase in the

frequency magnitude is far more gradual, with k = 7 (j = 2, l = 3) and k = 8 (j = 1, l =

5) having close frequencies, indicting similar excitement under forcing, and comparable

modal contribution in vibration.
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4.4.2 Response to Uniform Loading.

A unit load stretches across the plate of length L and width B, at a speed of V. The

plate is set into small-amplitude flexural vibrations. The dynamic load factor (DLF) is

plotted against the non-dimensionalized wetting time τ for the four different boundary

conditions of the Kirchhoff’s plate.

4.4.2a Dynamic Loading Factor.

Plates with α = a and α = 1/a have different DLF characteristics, except at very

low τ , when the two DLFs asymptote to a unique value. The DLFs for α < 1 approach

that of an Euler-Bernoulli beam, while the DLFs for α > 1 blur away from the α = 1

characteristic to a trend where little vibration occurs.

Fig.4.13(a) shows the DLF of CC and SS beams under Uniform stretching load, at

zero damping. Fig.4.13(b) shows the DLF of the plates with aspect ratio α = 0.1. The

SSSS and SCSC plates behave like a SS beam at low aspect ratios, while the CCCC and

CSCS plates behave like a CC beam at low aspect ratios.

The Fig.4.14 above shows that for α = 0.5, the CCCC and CSCS plates behave

similarly, and so do the SSSS and SCSC plates. But for α = 2, The CCCC and SCSC

behave similarly, while the SSSS and the CSCS plates behave similarly. This trend

continues for α = 5 and 10 as shown below in Fig.4.15.

As seen in the following plots, plates with all the four boundary conditions have the

same DLF at very low wetting times, for aspect ratios α = 0.1, 5, 10. This is because

the forcing works on the whole plate almost instantaneously, making the direction of

forcing immaterial with respect to the boundary conditions.
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Figure 4.13: (a) CC and SS beam DLF to Uniform load, (b) DLF of plates at α = 0.1

to uniform load, for zero damping.

92



 

 

 

 

 

1

1.2

1.4

1.6

1.8

2

2.2

2.4

0 1 2 3 4 5

DLF

CCCC, CSCS

SSSS, SCSC

τ dry

1

1.2

1.4

1.6

1.8

2

2.2

2.4

0 1 2 3 4 5τ dry

DLF

CCCC, SCSC

SSSS, CSCS

Figure 4.14: (a) DLF of plates at α = 0.5 to uniform load, (b) DLF of plates at α = 2

to uniform load, for zero damping.
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Figure 4.15: (a) DLF of plates at α = 5 to uniform load, (b) DLF of plates at α = 10

to uniform load, for zero damping.
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4.4.2b Relative Modal Contribution.

To study the influence of aspect ratio on the modal truncation limits, the Relative

Modal Contribution(R.M.C.) of the first 6x6 = 36 plate modeshapes is estimated for

the rectangular plate, at two different non-D wetting times τ = 0.1 and 5.0.

Fig.4.16(a) shows the RMC for a plate at α = 10, i.e. the forcing is parallel to the

longer edge. Modes having the dominant y-direction beam mode odd, have a consider-

able contribution to the dynamic deflection; and those having the dominant y-direction

beam mode even, have an insignificant contribution, less than O(10−7). Making the

plate more squarish, fig.4.16(b) shows the RMC for a plate at α = 2. Modeshapes

with a dominant x-direction beam mode odd, have a large contribution; and those with

a dominant x-direction beam mode even, have an insignificant contribution, less than

O(10−7).

Turning the plate by 90 degrees, such that the forcing is parallel to the shorter edge,

Fig.4.17(a) shows the RMC for plate at α = 0.5. Repeating the trend, modes having an

odd dominant y-direction beam mode have a considerable contribution to the dynamic

deflection. Modes having an even dominant y-direction beam mode, have an negligible

contribution, less than O(10−6). Making the plate more rectangular, fig.4.17(b) shows

the RMC for a plate at α = 0.1. Once again, modeshapes with a dominant x-direction

beam mode odd, have a large contribution; and those with a dominant x-direction beam

mode even, have an insignificant contribution, less than O(10−4).

If the longer edge is parallel to the forcing (x-direction), the beam modeshapes along

the y-direction are excited at least 100 times less than the same when the shorter edge

is parallel to the forcing. Thus hulls with longitudinal framing excite a larger number

of modes, to a greater extent.
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RMC  for rectangular plates to Uniform Load 
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Figure 4.16: (RMC in response to uniform load at τ = 0.1 and τ = 5.0 for aspect ratios

(a) 10, (b) 2.
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RMC  for rectangular plates to Uniform Load 
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Figure 4.17: (RMC in response to uniform load at τ = 0.1 and τ = 5.0 for aspect ratios

(a) 0.5, (b) 0.1.
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4.4.2c Response at zero wetting time.

For τ = 0, the uniform load acts over the whole of the plate from time t = 0 onwards

(Table 4.10). below shows that the DLF at zero wetting time for 11 different aspect

ratios.

 

 

 

Uniform load : Zero tau 

α 0.1 0.2 0.25 0.33 0.5 1 2 3 4 5 10 

CCCC 2.010 2.001 1.988 1.993 2.232 2.094 2.232 1.993 1.988 2.001 2.010 

SSSS 1.996 1.997 2.143 2.220 2.044 1.999 2.044 2.220 2.143 1.997 1.996 

CSCS 2.010 2.002 1.995 1.990 2.223 2.052 2.016 2.223 2.151 1.992 1.995 

SCSC 1.995 1.992 2.151 2.223 2.016 2.052 2.223 1.990 1.995 2.002 2.010 
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Table 4.10 Undamped DLF of rectangular plates at τ = 0 (zero wetting time) for

Uniform load, for four Boundary conditions.

The DLF is same for α = a and α = 1/a for both CCCC and SSSS plates. The DLF

for CSCS plate at α = a equals the DLF for SCSC plate at α = 1/a. At small α, the

CSCS and SCSC DLFs approach those of CCCC and SSSS respectively. At large α, the

CSCS and SCSC DLFs approach that of SSSS and CCCC respectively.

4.4.3 Response to Impact loading.

An impact load sweeps across the plate of length L and width B, at two extreme

deadrise angles, i.e. β = 1 and 30 degrees. The dynamic load factor (DLF) is plotted

against the non-dimensionalized splash time τ for the two different boundary conditions

of the Kirchhoff’s plate, i.e. CCCC and SSSS.

Fig.4.18 shows the dry DLF of CCCC plates at α = 0.1, 0.2, 0.5, 2, 5, and 10; in

response to impact loads at β = 1 and 30 degrees. For α < 1, the DLF is less than 2 for

all deadrise angles. For α > 1, the DLF rises higher , with α = 5 showing the highest

dynamic deflections at around τ ≈ 1.1.
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DRY CCCC 

 
DLF of rectangular plates to impact load at beta  = 1 degree. 

 
DLF of rectangular plates to impact load at beta  = 30degree. 

 

WET CCCC 
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Figure 4.18: Dry DLF of rectangular CCCC plates for impact forcing, at six(6) aspect

ratios, and two(2) deadrise angles β = 1, 30 degrees, and zero damping.
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Figure 4.19: RMC of rectangular CCCC plates for impact forcing, at four(4) aspect

ratios, and deadrise angle β = 1 degree, at τ = 0.05.

Comparing Fig.4.18(a) and Fig.4.18(b), it is seen that a smaller deadrise angle pro-

duces a larger dynamic deflection, due to larger and more concentrated impulse pressure.

For β = 30 degrees, the maximum DLF is less than 3.5 for α = 5. The same rises close

to 6.6 for β = 1 degree, at around the same non-D wetting time. Making the plate

more squarish (α→1) makes the DLF characteristic approach the square plate DLF

characteristic as discussed earlier in section 3.3. Lengthening the edge parallel to the

forcing, i.e. α >> 1 decreases the DLF again, since the plate is unable to react due to

its restricted motion along the width.

The Relative Modal Contribution (RMC) of CCCC plates subject to impact loading

at β = 1 degree, is shown in Fig.4.19 for α = 0.1, 0.5, 2, and 10; at a non-D wetting

time of τ = 0.05. The trends are similar as those in Fig.4.16 and Fig.4.17.
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4.5 Discussion

A detailed, meticulous and intricate study of the elastic dynamics of a Kirchhoff’s

plate is presented. Here, four different boundary conditions have been used; and struc-

tural damping has been incorporated. The free vibration analysis has been done for

the three boundary conditions of the plate with a very high numerical accuracy, using

15x15 = 225 plate modeshapes. The plate modeshapes, generated by the Eigen value

analysis of the governing differential equation of free vibration, have been tabulated sys-

tematically for 7x7 = 49 modeshapes. The three types of natural frequencies have been

distinguished with respect to the modeshapes, and also the dominant beam modeshape

contributions Akjl. The frequencies, and their relative modal contributions to the DLF,

have been studied in detail.

The independent variable of the analysis, the time-scale τ , has been generalized with

respect to the damping ratio ζ, the deadrise angle β, and the beam modeshape wave

number γ parallel to the direction of the forcing. All these generalizations consolidate

the self-similarity of the various DLFs, aiding the structural designer in interpretation

of the charts.

The dynamic load factor (DLF) of Kirchhoff’s plates, subject to the benchmark uni-

form loading and the more realistic impact loading have been clearly established. The

quasi-static and the dynamic behavior of the structure subject to such transient loadings

have been clearly demarcated. Damping is shown to lower the peak DLF. The static

deflection is analyzed as a function of time by the Galerkin’s method, under exactly

the same loading configuration, which when multiplied by the DLF at the appropri-

ate Φk(x, y), generates the maximum dynamic deflection of the plate, and thus, the

corresponding maximum pure bending strains and stresses.

101



The limiting case of the transient forcing, with τ = 0, has also been studied separately

for both the uniform and impact loading. Their dependence on the boundary conditions

of the plate and the forcing configuration, and independence from the damping ratio,

have all been established.

The free and forced vibration of rectangular plates have been studied, with the

fundamental natural frequencies of plates Kirchhoff’s plate with three different boundary

conditions (CCCC, SSSS, and CSCS), and the first 36 natural frequencies of rectangular

CCCC plates established for the first four significant figures. The consistent DLF and

RMC trends of the rectangular plates to uniform loading have been established, and

compared with the beam vibration results. The impact loading response has been

evaluated for two extreme deadrise angles of β = 1 and 30 degrees, showing 6-7 times

the static deflection zst for α > 1, as compared to DLF ≈ 2 for plates with α = 1.

Kunow-Baumhauer [64] investigated the response of a plate to a transient pressure

wave load. He calculated the static deflection by considering an area load representa-

tion of the pressure load, and concluded that the propagation direction is not important

for the plate response. The sinusoidal wave load causes the principal coordinates to

be formulated analytically. However here, the the static deflection has been calculated

as a function of time, considering the exact transient loading configuration as used for

the dynamic analysis. The propagation direction is important for the mixed boundary

conditions used here, CSCS and SCSC. The principal coordinates have been numerically

evaluated by time-integration, since the forcing is arbitrary and does not have an analyt-

ical formulation. Also, the dissertation has investigated the relative modal contribution,

modal convergence for both free and force vibrations and clearly established the modal

truncation limits.
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CHAPTER V

WET VIBRATION OF KIRCHHOFF’S PLATE.

Following the detailed dry vibration analysis, we recall that the slam-induced re-

sponse of marine and high-speed vessels involves the wet vibrations of the bow, keel,

and the wetdeck. The natural frequency of vibration of elastic structures is consid-

erably reduced in water as compared to in air. The marine structure is subjected to

intense moving hydrodynamic pressures (Fig.5.1), which sets it into high frequency,

weakly damped submerged vibrations. Vibration analysis becomes mandatory for effi-

cient structural design of susceptible marine structures under vulnerable environmental

conditions. Water inertia augments the inertia of the dynamic system, predisposing it

to greater dynamic response.

 

 

 

     Plate V 

 

Wedge impacting against the water, with a section of the hull as an elastic plate at time t = 0, (b) time t < 

L/V, and (c) time t >> L/V. 
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Figure 5.1: Wedge impacting against the water, with a section of the hull as an elastic

plate at time t = 0, (b) time t < L
V

, and (c) time t >> L
V

.

This chapter investigates the elastic response of rectangular plates in contact with

water on one side (Fig.5.2), subject to intense localized moving hydrodynamic impact

loads. Dry vibration analysis is first done to generate the dry natural frequencies (Eigen

values) and modeshapes (Eigen vectors) of the plate [35-38]. The dry modeshapes are

utilized in the wet vibration modal analysis.
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The boundary value problem has been framed with the kinematic body boundary

condition, i.e. transverse velocity of the plate is equal to the normal velocity of the

water in contact with the surface. Three-dimensional (3D) constant-strength source

distribution panels have been used to model the water vibrating in contact with the

plate, utilizing the relation between the dry plate modeshape and the fluid velocity

potential. This is followed by evaluating the modal added masses. The wet natural

frequency has been then calculated for rectangular plates, using square panels. The

variation of the added mass with different plate aspect ratios and boundary conditions

has been studied.
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Wedge impacting against the water, with a section of the hull as an elastic plate at time t = 0, (b) time t < 

L/V, and (c) time t >> L/V. 
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Figure 5.2: Submerged vibration.

The decrease in the natural frequency from dry to wet vibration has been studied for

different solid-to-fluid density ratios and plate thicknesses. The non-dimensional added

virtual mass increment (NAVMI) factor has been established for different aspect ratios

and boundary conditions, for the first 6x6 = 36 modeshapes of each plate. This factor

shows the influence of the plate modeshape on the added mass effect.

Free vibration leads to the forced vibration modal analysis, with two different forc-

ing configurations, moving at different wetting speeds V, namely (a) Uniform stretching
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load and (b) Impact load at five different deadrise angles β. The plate has been again

modelled with four different boundary conditions, several aspect ratios α, and two dif-

ferent damping ratios ζ. The wet modal governing differential equations of motion are

numerically time-integrated by the Euler’s explicit-implicit method, to generate the dy-

namic deflection as a function of time. Galerkin’s method has been used to generate the

time series for the corresponding static deflection, under identical loading configuration.

The maximum dynamic deflection, in space and time, has been normalized by the

maximum static deflection under the same loading configuration, to generate the dy-

namic loading factor (DLF). The quasi-static and the dynamic zones of the DLF, as a

function of τ , have been clearly demarcated. The dry and the wet analysis results have

been compared for all the parameters. For thin plates, the bending stresses are linearly

proportional to the vibratory deflection of the plate. Thus the DLF plots, as a function

of τ , set the stress criteria for structural design of marine crafts.

Modal truncation limits are studied for free and forced vibration, by investigating the

modal contribution of the first 6x6 = 36 modeshapes. The accuracy of the wet natural

frequencies of rectangular plates up to four significant figures has been established. The

contribution of higher order modeshapes becomes prominent at high wetting speeds and

for softer/massive structures.

The DLF at zero wetting time is evaluated to establish the time-scale limit of the

dynamic behavior. For the uniform load, DLF at τ = 0 is the maximum in the DLF

plot, while for the impact load, it is the minimum.

5.1 Free wet vibration of square plates.

When the impact force acts for a duration long enough to immerse the whole plate,
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and the maximum deflection occurs later in the impact sequence, the fluid inertia can-

not be ignored. The radiation forces have to be included in the governing differential

equation for this fluid-structure interaction. Here, the beam is considered to be deeply

submerged, such that the free surface (air-water interface) effects can be ignored. The

total excitation force is considered to be a linear superposition of the impact force and

the radiation force.

5.1.1 Radiation pressure formulation

The radiation problem is framed as shown in Fig.5.3. The elastic plate is deeply

submerged in water and vibrates at all its frequencies. The free surface of the water is

not disturbed. The water is considered to be inviscid, incompressible and irrotational.

The normal fluid velocity on the elastic plate equals the structural velocity. The normal

fluid velocity on the rest of the rigid hull structure is zero.

Fig.5.3 shows the radiation boundary value problem, with AB as the elastic plate,

and DA and BC the rigid parts of the hull section, surrounded by fluid on one side. The

velocity of the fluid tends to zero at an infinite distance from the plate, which is the

semi-circle DC.

The governing differential equation for free, damped, wet vibration of a Kirchhoff’s

plate is given by Eq.(5.1). The shear deformation and the rotary inertia are ignored,

taking into account only the pure bending of the plate. Here m is the mass per unit

area of the plate; D is the flexural rigidity and c the damping.

m
∂Z2(x, y, t)

∂t2
+ c

∂Z(x, y, t)

∂t
+D∇4Z(x, y, t) = Pradiation(x, y, 0, t) (5.1)

The radiation pressure is formulated as the Bernoulli’s pressure, whose linear compo-

106



 

 

 

     Plate V 

 

Wedge impacting against the water, with a section of the hull as an elastic plate at time t = 0, (b) time t < 
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Figure 5.3: Radiation Boundary Value Problem.

nent is considered to act on the plate. (Non-linear terms are ignored).

m
∂Z2(x, y, t)

∂t2
+ c

∂Z(x, y, t)

∂t
+D∇4Z(x, y, t) = −ρwater

∂Ψ(x, y, 0, t)

∂t
.

Assuming modal superposition, the total dynamic deflection is given as a superposition

of the modal deflections, given by Eq.(5.2).

Z(x, y, t) = Σ∞k=1Zk(x, y, t) = Σ∞k=1Φk(x, y)qk(t). (5.2)

5.1.1a Boundary Value Problem

The velocity potential is considered to be a linear superposition of an infinite number

of modal velocity potentials, given by Eq.(5.3), each of which satisfies the corresponding

modal structural equation of motion.

Ψ(x, y, z, t) = Σ∞k=1Ψk(x, y, z, t) = Σ∞k=1Ψ
∗
k(x, y, z)

dqk(t)

dt
, (5.3)

where Ψ∗k(x, y, z) is the velocity potential per unit modal velocity of the structure.
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For the kth modal velocity potential, the governing differential equation in the fluid

domain is ∇2Ψ∗k(x, y, z) = 0, subject to the following boundary conditions.

1) Body boundary condition on the plate (No fluid penetration)

Σ∞k=1

∂Ψ∗k(x, y, 0)

∂n

dqk(t)

dt
= Σ∞k=1Φk(x, y)

dqk(t)

dt
. (5.4)

2) Boundary condition elsewhere on the structure (No fluid penetration)

Σ∞k=1

∂Ψ∗k(x, y, 0)

∂n

dqk(t)

dt
= 0.

3) Boundary condition at infinity ∇Ψ→ 0.

Considering the velocity of the principal coordinates to be orthogonal (linearly indepen-

dent), the corresponding coefficients of Eq.(5.4) are equated to establish the following

time-independent relation:-

∂Ψ∗k(x, y, 0)

∂z
= Φk(x, y). (5.5)

5.1.1b Boundary Element Method

Consider the fluid domain of volume V bounded by a surface S. Let ϕ(x, y, z) and

ψ(x, y, z) be arbitrary harmonic functions, i.e. they satisfy the Laplace Equation, and

have continuous second partial derivatives in the volume V, i.e ∇2ϕ = 0 and ∇2ψ = 0.

By Green’s second identity, we satisfy:∫ ∫ ∫
V

[
ϕ∇2ψ − ψ∇2ϕ

]
d∇ =

∫ ∫
S

[
ϕ
∂ψ

∂n
− ψ∂ϕ

∂n

]
dS. (5.6)

Putting ϕ = Ψ (the fluid velocity potential), and ψ = G (3-D Green’s function), we get∫ ∫ ∫
V

[
ΨP∇2GPQ −GPQ∇2ΨP

]
d∇ =

∫ ∫
S

[
ΨQ

∂GPQ

∂nQ
−GPQ

∂ΨQ

∂nQ

]
dSQ,
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where P = Field point (x,y,z ), Q = Source point (ξ, η, ς). The 3D Green’s Function at

P with respect to Q is given by

G(x, y, z; ξ, η, ς) =
−1

4π
√

(x− ξ)2 + (y − η)2 + (z − ς)2
, such that

G(x− ξ, y − η, z − ς) = 0 if P 6= Q , and G(x− ξ, y − η, z − ς) =∞ if P = Q;

and

∫ ∫ ∫
V

∇2Gd∇ = 1.

Substituting the above in Eq.(5.6), we get

ΨP =

∫ ∫
S

[
ΨQ

∂GPQ

∂nQ
−GPQ

∂ΨQ

∂nQ

]
dSQ.

Thus the velocity potential at the field point is given as

ΨP (x, y, z) =

∫ ∫
S

[
ΨQ(ξ, η, ς)

∂GPQ(x, y, z; ξ, η, ς)

∂nQ
−GPQ(x, y, z; ξ, η, ς)

∂ΨQ(ξ, η, ς)

∂nQ

]
dSQ.

By defining the appropriate interior problem, we may reduce the above equation to

a surface distribution of sources with strength σQ(ξ, η, ς, t).

ΨP (x, y, z, t) =

∫ ∫
S

σQ(ξ, η, ς, t)GPQ(x, y, z; ξ, η, ς)dSQ.

The fluid velocity potential is evaluated separately for P 6= Q and for P = Q, i.e.

ΨP =

∫ ∫
S−ε

σQGPQdSQ +

∫ ∫
ε

σQGPQdSQ,

where ε is defines as the infinitesimal area around the source Q, located on the plate

surface. Differentiating it with respect to z, the vertical fluid velocity is given as

∂ψP
∂z

=

∫ ∫
S

σQ
∂GPQ

∂z
dSQ =

∫ ∫
S−ε

σQ
∂GPQ

∂z
dSQ +

∫ ∫
ε

σQ
∂GPQ

∂z
dSQ. (5.7)
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For a flat plate, a source located at Q does not induce any vertical velocity at P. Thus

the first term in the RHS of Eq.(5.7) is zero. Thus

∂ΨP

∂z
=

∫ ∫
ε

σQ
∂GPQ

∂z
dSQ. (5.8)

5.1.1c Body Boundary Condition

Now, applying the body boundary condition (BBC) in Eq.(5.4) into Eq.(5.8),

∂ΨP

∂z
= Σ∞k=1

∂Ψ∗k(ξ, η, 0)

∂z

dqk(t)

dt
= Σ∞k=1

∫ ∫
ε

σQk(t)
∂GPQ

∂z
dSQ ≡ Σ∞k=1Φk(ξ, η)

dqk(t)

dt
.(5.9)

The series summation in Eq.(5.9) can be separated into k distinct equations, utilizing

the orthogonality of the principal coordinates qk(t). Thus, for the source Q located at

(0,0,0), the kth Body boundary condition in Eq.(5.5) becomes :

∂Ψ∗k
∂z

(ξ, η, 0).
dqk(t)

dt
=

∫ ∫
ε

σQk(t).
∂GPQ

∂z
dSQ ≡ Φk(ξ, η).

dqk(t)

dt
. (5.10)

As the surface area around the singularity (source)→ 0, the source strength density σQ

can be assumed to be constant over the area ε. Thus Eq.(5.9) becomes ,

Φk(ξ, η).
dqk(t)

dt
= σQk(t)

∫ ∫
ε

∂GPQ

∂z
dSQ.

The 3-D Green’s function and its vertical derivative are given as :

G(x, y, z; 0, 0, 0) =
−1

4π
√
x2 + y2 + z2

=
−1

4πr
,

∂G(x, y, z; 0, 0, 0)

∂z
=

z

4π[
√
x2 + y2 + z2]3

.

As ε → 0, and z→0, the integral is over a circle of radius R. Substituting the above in

Eq.(5.10),

Φk(ξ, η)
dqk(t)

dt
= LimR→0,z→0σk(t)

∫ R

0

∫ 2π

0

∂GPQ

∂z
rdrdθ = LimR→0,z→02πσk(t)

∫ R

0

∂GPQ

∂z
rdr

= LimR→0,z→02πσk(t)

∫ R

0

zrdr

4π[
√
r2 + z2]3

= LimR→0,z→02πσk(t)
z

4π
√

(R2 + z2)
=
σk(t)

2
.

Thus, Φk(ξ, η)
dqk(t)

dt
=
σk(t)

2
. (5.11)
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Thus the source strength can be calculated from the plate modeshape, as given by

Eq.(5.11). Substituting Eq.(5.10) and Eq.(5.11) in Eq.(5.3), the kth velocity potential

at the field point P(x,y,0), is given as

Ψk(x, y, 0, t) = Ψ∗k(x, y, 0).
dqk(t)

dt
=

∫ ∫
S

σQk(t)GPQdSQ

=

∫ ∫
S

[
2Φk(ξ, η)

dqk(t)

dt

]
GPQ(x, y; ξ, η)dSQ =

[∫ ∫
S

2Φk(ξ, η)GPQdSQ

]
dqk(t)

dt

or Ψ∗k(x, y, 0) =

∫ ∫
S

2Φk(ξ, η)GPQ(x, y; ξ, η)dSQ. (5.12)

5.1.2 Wet vibration formulation : Modal Analysis

The governing differential equation for the free, wet, damped vibration of a Kirch-

hoff’s plate is:

Σ∞k=1mΦk(x, y)
d2qn(t)

dt2
+ Σ∞k=1cΦk(x, y)

dqn(t)

dt
+ Σ∞k=1D∇4Φk(x, y)qn(t)

= Pradiation(x, y, 0, t) = −ρwaterΣ∞k=1Ψ
∗
k(x, y, 0)

d2qk(t)

dt2
. (5.13)

Lumping the fluid pressure distribution in Eq.(5.13) with the plate inertia to establish

a homogeneous second-order linear differential equation yields:

Σ∞k=1 [ρsolidhΦk(x, y) + ρwaterΨ
∗
k(x, y, 0)]

d2qn(t)

dt2

+Σ∞k=1cΦk(x, y)
dqn(t)

dt
+ Σ∞k=1D∇4Φk(x, y)qn(t) = 0. (5.14)

Substituting Eq.(5.12) into Eq.(5.14) gives

Σ∞k=1

[
ρsolidh+ ρwater

∫ ∫
S

2Φk(ξ, η)GPQdSQ

]
Φk(x, y)

d2qn(t)

dt2

+Σ∞k=1cΦk(x, y)
dqn(t)

dt
+ Σ∞k=1D∇4Φk(x, y)qn(t) = 0.
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Premultiplying Eq.(5.14) by the rth plate modeshape Φr(x, y), and integrating over

the surface area LxB of the plate, gives the generalized mass, generalized added mass,

generalized damping and generalized stiffness.∫ L

0

∫ B

0

ΦrΣ
∞
k=1ρsolidhΦk

d2qk(t)

dt2
dxdy +

∫ L

0

∫ B

0

ΦrρwaterΣ
∞
k=1Ψ

∗
k(x, y, 0)

d2qk(t)

dt2
dxdy

+

∫ L

0

∫ B

0

ΦrΣ
∞
k=1cΦk

dqk(t)

dt
dxdy +

∫ L

0

∫ B

0

ΦrΣ
∞
k=1D∇4Φkqk(t)dxdy = 0.

The integral of the sum is the sum of the integrals. Thus :

Σ∞k=1

[∫ L

0

∫ B

0

Φr(x, y)ρsolidhΦk(x, y)dxdy

]
d2qk(t)

dt2

+Σ∞k=1

[∫ L

0

∫ B

0

Φr(x, y)ρwaterΨ
∗
k(x, y, 0)dxdy

]
d2qk(t)

dt2

+Σ∞k=1

[∫ L

0

∫ B

0

Φr(x, y)cΦk(x, y)dxdy

]
dqk(t)

dt

+Σ∞k=1

[∫ L

0

∫ B

0

Φr(x, y)D∇4Φk(x, y)dxdy

]
qk(t) = 0

or Σk
n=1(Mkn + Akn)

d2qn(t)

dt2
+ Σk

n=1Ckn
dqn(t)

dt
+ Σk

n=1Kknqn(t) = 0; (5.15)

where the generalized mass is Mkn =
∫ L

0

∫ B
0

Φk(x, y)ρsolidhΦn(x, y)dxdy; the general-

ized added mass is Akn =
∫ L

0

∫ B
0

Φk(x, y)ρwaterΨ
∗
n(x, y, 0)dxdy; the generalized stiffness

is Kkn =
∫ L

0

∫ B
0

Φk(x, y)D∇4Φn(x, y)dxdy; the generalized damping is [C] = ζ[Ccrit];

where the modal critical damping is defined as [Ccrit] = 2
√

[M ][K]. Eq.(5.15) is the kth

modal governing differential equation of free vibration.

5.1.3 Forced wet vibration

The structural governing differential equation of vibration of the thin plate, with the
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impact and radiation forces, is given as :

Σ∞k=1ρsolidhΦk(x, y)
d2qk(t)

dt2
+ Σ∞k=1cΦk(x, y)

dqk(t)

dt
+ Σ∞k=1D∇4Φk(x, y)qk(t)

= Pimpact(x, y, 0, t) + Pradiation(x, y, 0, t) = Ptotal(x, y, 0, t). (5.16)

Premultiplying Eq.(5.16) by the rth plate modeshape Φr(x, y), and integrating over the

surface area LxB of the plate, gives the set of modal differential equations of motion.

The kth modal governing equation is given as :

Σk
n=1(Mkn + Akn)

d2qn(t)

dt2
+ Σk

n=1Ckn
dqn(t)

dt
+ Σk

n=1Kknqn(t) = gfk(t). (5.17)

The generalized forcing is gfk(t) =
∫ L

0

∫ B
0

Φk(x, y)F (x, y, t)dxdy. This set of equations

(Eq.(5.17)) is integrated numerically by stable Euler’s implicit-explicit scheme to evalu-

ate the principal coordinates qk(t) as a function of time. The qk(t) is then multiplied by

the corresponding plate modeshape Φk(x, y) to generate the modal dynamic deflection

of the plate. All the modal deflections are superimposed to give the total vibratory

displacement of the plate as a function of space and time.

5.2 Wet natural frequencies.

Rewriting Eq.(5.15) in matrix form yields:

[Mkn]{q̈n(t)}+ [Akn]{q̈n(t)}+ [Ckn]{q̇n(t)}+ [Kkn]{qn(t)} = 0. (5.18)

The total inertia is given as [Ikn] = [Mkn] + [Akn]. The Eigen values of [Ikn]−1[Kkn] give

the wet natural frequencies λk,wet of the plate, by solving the equation [Kkn]−λwet[Ikn] =

0. The Eigen values of [Mkn]−1[Kkn] had earlier given the dry natural frequencies ωk,dry

of the plate, by solving [Kkn] − λdry[Mkn] = 0. The decrease in frequency is accounted
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by the increase in total inertia of the system. Combining the above equations, we get

λdry[Mkn] = λwet[Ikn]. Fig.5.4 shows the generalized added mass of a CCCC plate for

 
 

 

 

 
 

 

 

Figure 5.4: Generalized Added Mass for CCCC and SSSS plates with 15x15 = 225 plate

modeshapes.

the first 15x15 = 225 modeshapes, with 20x20 = 400 panels. It is seen that the diagonal

term Akk is (much) larger than the non-diagonal terms Akn.

Table 5.1 shows the fundamental wet natural frequency of a CCCC plate and the

corresponding NAVMI factor, tabulating their convergence with respect to the number

of panels and the number of mdoeshapes. The frequency is seen to converge to the first

four significant figures, and the NAVMI factor for the first three significant figures. This

analysis is used for 10x10 = 100 modes with a 20x20 = 400 panels. Since the mass

matrix is diagonal and the added mass matrix shown is almost diagonal(Fig.5.4), we

can approximately write,

λk,wet ∼= λk,dry
Mkk

Ikk
or ωk,wet = ωk,dry

√
Mkk

Ikk
or ωk,wet =

ωk,dry√
1 + Akk

Mkk

. (5.19)

The wet natural frequencies (Eq.(5.19)) are non-dimensionalized by
√
D/(mL4),
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Dry DLF (Red) vs. Wet DLF (Wet) of (a) CCCC plate, (b) SSSS plate. 

 

 1 2 5 10 

     

     

     

     

 

Density 

Aluminium 2.7 

Steel 7.85 

Gold 19.3 

Sea water  1.025 

 

 

 

Modes 6 x 6 =  36 10 x 10 =  100 15 x 15 =  225 20 x 20 =  400 

Panels Wet freq NAVMI Wet freq NAVMI Wet freq NAVMI Wet freq NAVMI 

2 x 2 1.3807E+01 0.4438 1.3620E+01 0.4581 1.3533E+01 0.4650 1.3518E+01 0.4662 

3 x 3 1.5002E+01 0.3642 1.4979E+01 0.3655 1.4938E+01 0.3679 1.4925E+01 0.3687 

4 x 4 1.5276E+01 0.3486 1.5149E+01 0.3556 1.5137E+01 0.3562 1.5135E+01 0.3564 

5 x 5 1.5233E+01 0.3510 1.5187E+01 0.3534 1.5182E+01 0.3537 1.5177E+01 0.3539 

10 x 10 1.5177E+01 0.3541 1.5174E+01 0.3542 1.5173E+01 0.3542 1.5171E+01 0.3543 

15 x 15 1.5164E+01 0.3548 1.5160E+01 0.3549 1.5160E+01 0.3549 1.5160E+01 0.3549 

20 x 20 1.5159E+01 0.3551 1.5155E+01 0.3552 1.5155E+01 0.3552 1.5155E+01 0.3552 

25 x 25 1.5157E+01 0.3553 1.5153E+01 0.3554 1.5152E+01 0.3554 1.5152E+01 0.3554 

30 x 30 1.5155E+01 0.3553 1.5151E+01 0.3554 1.5151E+01 0.3554 1.5151E+01 0.3554 

40 x 40 1.5154E+01 0.3554 1.5150E+01 0.3555 1.5150E+01 0.3555 1.5150E+01 0.3555 

 

 

1

1.2

1.4

1.6

1.8

2

0 1 2 3 4 5τ dry τ wet

DLF

CSCS Plate

1

1.2

1.4

1.6

1.8

2

0 1 2 3 4 5τ dry τ wet

DLF

SCSC Plate

Table 5.1 Convergence of the non-dimensional fundamental wet natural frequency and

NAVMI factor of a square CCCC plate.

to generate the Non-D ωk,wet. Now Mkk =
∫ L

0

∫ B
0

Φk(x, y)mΦk(x, y)dxdy, and Akk =∫ L
0

∫ B
0

Φk(x, y)ρwaterΨ
∗
k(x, y, 0)dxdy, which gives the ratio of the fluid kinetic energy to

the solid kinetic energy in Eq.(5.20) as follows :

Akk
Mkk

=

[
ρwaterL

ρsolidh

][ 1
L

∫ L
0

∫ B
0

Φk(x, y)Ψ∗k(x, y, 0)dxdy∫ L
0

∫
0

Φk(x, y)Φk(x, y)dxdy

]
=

[
ρwaterL

ρsolidh

]
∗NAVMI. (5.20)

This ratio is also added mass coefficient Ca of the kth plate modeshape. This coef-

ficient (Eq.(5.21)) varies with the densities of the solid and the fluid, and the thickness

of the plate. The part of the ratio that depends on the plate modeshape is called the

Non-dimensional Added Virtual Mass Increment (NAVMI) factor; and it is defined as[
1
L

∫ L
0

∫ B
0

Φk(x, y)Ψ∗k(x, y, 0)dxdy∫ L
0

∫ B
0

Φk(x, y)Φk(x, y)dxdy

]
. (5.21)

It is a function of the plate modeshape, i.e. it depends on the boundary conditions and

the aspect ratio α of the plate. It is a constant for a given plate modeshape, and hence

if the NAVMI factor (Eq.(5.22)) is known, the Ca can be estimated from Eq.(5.20).
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Table 5.2 shows that the CCCC plate is the stiffest while the SSSS plate is the softest,

vibrating in contact with water. Table 5.3 shows that the NAVMI factors increase with

increasing aspect ratio for all the boundary conditions. For CCCC and SSSS plates,

aspect ratios α = a and α = 1/a would have the same set of NAVMI factors. For the

mixed boundary conditions, the CSCS plate with α = a and the SCSC plate with α =

1/a would have the same set of NAVMI factors.

 

 

                         Transverse stiffener                                      Keel                                Longitudinal stiffener 

                      Y   

Wetting                       Wetting 
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Top view of the transient loading on  the  plate  : (a) Impact on a plate with Transverse stiffening (b) 

Impact on a plate with Longitudinal stiffening. 

 

 

 

 

Table 1 : Wet Natural frequencies and NAVMI factors of Square plates.  

 

 CCCC SSSS CSCS/SCSC 

k Non-D ωk,wet NAVMI Non-D ωk,wet NAVMI Non-D ωk,wet NAVMI 

1 15.15 0.355 7.824 0.410 11.84 0.381 

2 41.49 0.163 26.82 0.182 30.06 0.177 

3 41.49 0.163 26.82 0.182 38.85 0.167 

4 67.61 0.119 47.81 0.132 58.22 0.125 

5 80.33 0.129 59.64 0.133 63.20 0.123 

6 85.01 0.108 62.08 0.116 80.65 0.119 

7 110.9 0.093 84.40 0.100 93.11 0.097 

8 110.9 0.093 84.40 0.100 103.1 0.096 

9 144.5 0.086 113.8 0.089 115.9 0.088 

10 144.5 0.086 113.8 0.089 139.8 0.079 

11 155.5 0.077 123.0 0.082 142.6 0.084 

12 171.8 0.075 137.8 0.080 145.8 0.079 

13 174.0 0.073 139.2 0.077 166.3 0.075 

14 218.8 0.064 179.0 0.068 186.3 0.071 

15 218.8 0.064 179.0 0.068 194.1 0.066 

16 221.5 0.072 183.3 0.073 204.8 0.066 

 

 

Table 2 : Fundamental NAVMI Factors for Rectangular plates for six different aspect ratios. 

 

α 1 2 3 4 5 10 

CCCC 0.355 0.492 0.583 0.649 0.700 0.855 

SSSS 0.410 0.564 0.646 0.732 0.796 0.996 

CSCS 0.381 0.536 0.622 0.726 0.796 1.128 

SCSC 0.381 0.515 0.598 0.664 0.714 0.920 

Table 5.2 Non-Dimensional wet natural frequencies and NAVMI factors of Square

plates.
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Top view of the transient loading on  the  plate  : (a) Impact on a plate with Transverse stiffening (b) 

Impact on a plate with Longitudinal stiffening. 

 

 

 

 

Table 1 : Wet Natural frequencies and NAVMI factors of Square plates.  

 

 CCCC SSSS CSCS/SCSC 

k Non-D ωk,wet NAVMI Non-D ωk,wet NAVMI Non-D ωk,wet NAVMI 

1 15.15 0.355 7.824 0.410 11.84 0.381 

2 41.49 0.163 26.82 0.182 30.06 0.177 

3 41.49 0.163 26.82 0.182 38.85 0.167 

4 67.61 0.119 47.81 0.132 58.22 0.125 

5 80.33 0.129 59.64 0.133 63.20 0.123 

6 85.01 0.108 62.08 0.116 80.65 0.119 

7 110.9 0.093 84.40 0.100 93.11 0.097 

8 110.9 0.093 84.40 0.100 103.1 0.096 

9 144.5 0.086 113.8 0.089 115.9 0.088 

10 144.5 0.086 113.8 0.089 139.8 0.079 

11 155.5 0.077 123.0 0.082 142.6 0.084 

12 171.8 0.075 137.8 0.080 145.8 0.079 

13 174.0 0.073 139.2 0.077 166.3 0.075 

14 218.8 0.064 179.0 0.068 186.3 0.071 

15 218.8 0.064 179.0 0.068 194.1 0.066 

16 221.5 0.072 183.3 0.073 204.8 0.066 

 

 

Table 2 : Fundamental NAVMI Factors for Rectangular plates for six different aspect ratios. 

 

α 1 2 3 4 5 10 

CCCC 0.355 0.492 0.583 0.649 0.700 0.855 

SSSS 0.410 0.564 0.646 0.732 0.796 0.996 

CSCS 0.381 0.536 0.622 0.726 0.796 1.128 

SCSC 0.381 0.515 0.598 0.664 0.714 0.920 

Table 5.3 Fundamental NAVMI Factors (k = 1) for plates of 6 aspect ratios.
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Table 3 :  Set of NAVMI factors for the first nine modeshapes of Square plates. 

 

k 1 2 3 4 5 6 7 8 9 

CCCC 0.355 0.163 0.163 0.119 0.129 0.108 0.093 0.093 0.086 

SSSS 0.410 0.182 0.182 0.132 0.133 0.116 0.100 0.100 0.089 

CSCS 0.381 0.177 0.167 0.125 0.123 0.119 0.097 0.096 0.088 

 

 

   
CCCC plate      SSSS plate 

   
CSCS plate       SCSC plate 

 

NAVMI factors for the first six modeshapes for Rectangular plates      (a) CCCC plate,   (b) SSSS plate, 

(c) CSCS plate,  (d) SCSC plate. Modeshape bar code :                   (1),                     (2),                     (3),  

             (4),                   (5),       and                     (6). 
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Figure 5.5: NAVMI factors for the first six modeshapes for Rectangular plates.
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The added mass associated with the fundamental modeshape is the highest, and

it decreases with the higher-order modeshapes; e.g for a CCCC square plate, the 4th

modeshape NAVMI factor is only ∼33.5% and the 9th modeshape NAVMI factor is only

∼ 24% of the fundamental NAVMI factor. This is because the volume enclosed under

the 3D plate modeshape decreases with higher modes. Also, the boundary conditions

seem to have a less and less influence on the NAVMI magnitude with increasing mode-

shape index. Fig.5.5 shows the NAVMI factors for four boundary conditions, the first

six modeshapes, and over a range of aspect ratios. The trends are seen to be similar for

all boundary conditions and modes.

5.3 Dynamic response of plates to Uniform Stretching Load.

A uniform load of unit magnitude stretches across the plate at a speed of V. The plate

is set into small-amplitude flexural vibrations, which are analyzed by the modal analysis

methodology. The dynamic load factor (DLF) is plotted against the non-dimensionalized

wetting time given as

τwet =

(
L

V

)
ω1,wet

2π

√
1− ζ2, as opposed to τdry =

(
L

V

)
ω1,dry

2π

√
1− ζ2, (5.22)

for the four different boundary conditions and two damping ratios. Comparing the dry

and the wet vibration analysis:

(a) Dry Vibration uses the (i) dry natural frequencies and the (ii) impact pressure.

The governing differential equation is non-dimensionalized by plate inertia mω2
dry, and

is numerically integrated with the time-step ∆tdry as the independent variable.

(b) Wet Vibration uses the (i) wet natural frequencies and the (ii) impact pressure

augmented by the radiation pressure. The radiation pressure is lumped together with
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the structural mass inertia term on the left hand side of the governing differential equa-

tion, which is non-dimensionalized by total (plate + fluid) inertia (m + a)ω2
wet, and is

numerically integrated with the time-step ∆twet at the independent variable.

5.3.1 Wet Dynamic Loading Factor.

Fig.5.6 and Fig.5.7 shows the dynamic loading factor (DLF) of the wet vibration

square plates, under the uniform stretching load, for zero damping and 50% damping,

respectively. The trends are similar to the dry plate vibration analysis results, detailed

in Chapter 4.

The following interpretations are reiterated :

(a) Damping reduces the amplification factor, thereby decreasing the peak DLF.

Damping also smooths the DLF characteristic in the quasi-static zone, and also at

very small values of τ ; where the DLF becomes a function of the record length due

aperiodicity in the time-series of the deflection, owing to the increased presence of the

higher-order modeshapes.

(b) The CCCC and the CSCS plate behave almost similarly, while the SSSS and the

SCSC plates behave nearly identically. This shows that the beam modeshape parallel

to the direction of the forcing is important in determining the dynamic response, and

the modeshapes perpendicular to the direction of the forcing are not important.

(c) The CSCS response diverges from the CCCC response, and the SCSC diverges

from the SSSS response, only at very low τ (Eq.5.24). In this dynamic response region,

the CSCS and the SCSC responses approach each other, because the orientation of the

plate becomes immaterial to the forcing direction at very high impact speeds.
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    Wet DLF of square plates (a) without damping, (b) with 50% damping. 
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Figure 5.6: Wet DLF of square plates without damping.
 

 

 
 

    Wet DLF of square plates (a) without damping, (b) with 50% damping. 
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Figure 5.7: Wet DLF of square plates with 50% damping.
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Fig.5.8 shows the dry and wet DLFs of square plates with all the four boundary con-

ditions. There is hardly any difference between the DLF evaluated by the dry analysis

and the wet analysis. The dry DLF is plotted against the dry non-dimensional wetting

time τdry = Tsp
ω1,dry

√
1−ζ2

2π
, and the wet DLF is plotted against the wet non-dimensional

wetting time τwet = Tsp
ω1,wet

√
1−ζ2

2π
. This demonstrates that dry and the wet analysis are

almost identical, when different time-scales are used. The two analyses show approxi-

mately self-similar results.
 

 

 
 

Dry DLF (Red) vs. Wet DLF (Wet) of (a) CCCC plate, (b) SSSS plate. 
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Steel 7.85 
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Figure 5.8: Dry DLF vs. Wet DLF of (a) CCCC plate, (b) SSSS plate, (c) CSCS plate,

(d) SCSC plate, subject to Uniform stretching load.
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5.3.2 Relative Modal Contribution.

 
RMC for a CCCC square plate subject to uniform loading, at two different wetting times : τ = 0.05 (blue) 

and τ = 5 (red). 

 

     
CC and SS beam DLF to Uniform load.   DLF of plates at α=0.1 to uniform load. 
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Figure 5.9: RMC for a CCCC square plate subject to uniform loading, at two different

wetting times : τ = 0.05 and τ = 5.

Fig.5.9 shows the Relative Modal Contribution (RMC) of the 6x6 = 36 modeshapes

of a square CCCC plate, subject to uniform loading at two different speeds, i.e. at τ =

0.05 (dynamic zone) and τ = 5 (quasi-static zone). Inclusion of the first 36 modeshapes

ensures that all the contributing higher-order modeshapes (k > 36) are at least 4 orders

of magnitude below the fundamental modeshape contribution, or even less. E.g., it is

seen the k = 34, 35 have contribution less than 10−4 times the fundamental principal

coordinate. Hence the modeshapes higher than k = 36 can be ignored within the limits

of engineering accuracy. Repeated frequencies have identical modeshapes, and hence

show equal contribution, e.g. k = 2 and k = 3. Those modeshapes which are primarily

defined by the even beam modeshapes have the minimum contribution, e.g., k = 4, 12,
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13, 20. This is because the forcing configuration predominantly excites the odd beam

modeshapes in either direction.

5.4 Dynamic response of plates to Impact Load.

The hydroelastic analysis of the plate to the uniform stretching load helps establish

the benchmarks of the results, i.e. the time-scales, the DLF, and the RMC. Now we

advance to the more realistic model of the impact transient force distribution, defined

by a moving jet head, stretching from the keel (x′ = 0) upwards. The maximum pressure

is a function of the vertical impact velocity V and the deadrise angle β.

5.4.1 Dynamic Loading Factor.

Fig.5.10 shows the wet vibration DLF of square CCCC and SSSS plates, at four

different deadrise angles, i.e. β = 1, 5, 15 and 30 degrees. The wet and the dry DLFs

are again, almost identical. The details of the plots have been explained in Section

4.3.1. The dry DLF is plotted with respect to the dry non-dimensionalized wetting time

τdry, while the wet DLF has been plotted with respect to the wet non-dimensionalized

wetting time τwet (Eq.(5.22)).

Fig.5.11 shows that the DLF characteristics of rectangular CCCC plates subject to

impact loading at a deadrise angle of β = 1 degree, for three different aspect ratios α

= 10, 2 and 0.2, under wet vibration analysis, are nearly the same as that under dry

vibration analysis. The solid lines are the Dry DLF results, while the dashed ones are

the Wet DLF results.
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Dry (red) and wet (blue) DLF of square (a) CCCC  and (b) SSSS plates at beta = 1, 5, 15, 30 degrees. 

 

 

 
 

Fig.18.  CC and SS beam DLF at Impact loading at 1degree deadrise angle, zero damping. 

 

          
     

           
              

   

0

0.5

1

1.5

2

0 1 2 3 4 5

DLF

τ dry τ wet

DRY

WET

0

0.5

1

1.5

2

0 1 2 3 4 5

DLF

τ dry τ wet

DRY

WET

0

0.5

1

1.5

2

0 1 2 3 4 5

CC
SS

τ dry

DLF

Figure 5.10: Dry and wet undamped DLF of square (a) CCCC and (b) SSSS plates at

β = 1, 5, 15, 30 degrees.

 
 

Comparative Dry and Wet DLF of rectangular CCCC plates to impact load at β  = 1 degree. 
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Figure 5.11: Dry and wet undamped DLF of rectangular CCCC plates at β = 1 degree,

α = 10, 5, and 0.2.
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WET CCCC 

 

DLF of rectangular plates to impact load at β  = 1 degree. 

 

 

DLF of rectangular plates to impact load at β  = 30 degree. 
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Figure 5.12: Wet DLF of rectangular CCCC plates for impact forcing, at six(6) aspect

ratios, and two(2) deadrise angles β = 1, 30 degrees, and zero damping.
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WET SSSS 

 
DLF of rectangular plates to impact load at β  = 1 degree. 

 
DLF of rectangular plates to impact load at β = 30 degree. 
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Figure 5.13: Wet DLF of rectangular SSSS plates for impact forcing, at six(6) aspect

ratios, and two(2) deadrise angles β = 1, 30 degrees, and zero damping.
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Fig.5.12 and Fig.5.13 shows the DLF of CCCC and SSSS plates at α = 0.1, 0.2, 0.5,

2, 5, and 10; in response to impact loads at β = 1 and 30 degrees. They reacts almost

similarly, in response to impact loads, with the α < 1 plates having DLFs restricted to

2 and below. Plates with α > 1 produce much larger DLFs, with a smaller deadrise

angle β producing more severe dynamic deflections and bending stresses.

5.4.2 Relative Modal Contribution.

Fig.5.10. below shows the relative modal contribution of the first 6x6 = 36 mode-

shapes of a square CCCC plate, subject to impact loading at a deadrise angle of β = 1

degree, at two different wetting times, i.e. τ = 0.05 and τ = 5. The higher the wetting

speed, the more is the likelihood of a higher-order modeshape being excited. We find

RMC at τ = 0.05 is higher than that at τ = 5. So the truncation limit is enough to meet

the accuracy criterion for the response at τ = 5 (below 10−3), but not for the response

at τ = 0.05 (above 10−3).

5.5 Discussion

This chapter presents the wet vibration of elastic plates in contact with water on one

side. The boundary value problem has been framed, with the elastic plate as a part of

an infinite rigid plate, with air on one side and water on the other. The external pressure

is augmented by the fluid radiation pressure, altering time-scales of the problem. The

body boundary condition, i.e. the fluid velocity at the fluid-structure interface is equal

to the structural velocity, is used to generate the relation between the plate modeshape

and the source density, using flat constant-strength panels.

The free wet vibration analysis yields the wet natural frequencies, modal added

127



 

 
 

Fig.18.  CC and SS beam DLF at Impact loading at 1degree deadrise angle, zero damping. 

 

          
     

           
              

   

 
      

Fig.19  RMC for beta = 1 degree for a CCCC square plate, subject to impact loading, at two wetting 

times, i.e. τ = 0.05 (blue) and τ = 5 (red). 
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Figure 5.14: RMC for beta = 1 degree for a CCCC square plate, subject to impact

loading, at two wetting times, i.e. τ = 0.05 and τ = 5.

masses, and the NAVMI factors for rectangular plates with three different boundary

conditions. Their convergence with respect to both the number of modes and panels

have been studied.

Proceeding to the forced vibration, the dry and the wet analyses of the uniform

stretching load-induced vibration generate nearly identical DLF characteristics, provided

the times-scale normalizations are done correspondingly, i.e. the wetting time is non-

dimensionalized by the dry and wet fundamental period of the plate for the dry and

wet analysis, respectively. The Relative Modal Contribution (RMC) and the modal

truncation limits of the plates also remain the same.

The impact-induced response analyses produce similar results for dry and wet vi-

bration, except for the peak DLF. Wet vibration in impact loading excites more modes.

The response characteristics superpose over each other, reiterating the approximate self-

similarity between the dry and the wet vibration analysis methodology.
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CHAPTER VI

CONCLUSIONS AND FUTURE RESEARCH

6.1 Discussion and Conclusions.

To summarize, the numerically efficient Modal analysis has been used to study the

dynamic elastic response of Kirchhoff’s plates, subject to transient hydrodynamic im-

pact loads. This is useful for marine structural designers, who typically conduct a static

analysis, and thus, need the Dynamic Loading Factor (DLF) as a safety factor to ac-

commodate for the dynamic stresses generated due to the severe hydrodynamic impacts.

The severity of the slam may be misunderstood as the magnitude of the hydrodynamic

load on a rigid structure; but it is far more relevant to express this severity with respect

to the flexural stresses generated in the structure in response to the slam. A very high

impact pressure of ∼8205 N, at a deadrise of β = 1 degree, may appear dangerous; but

it produces an extremely small flexural deflection at τ ≈ 0.

The time-scales of the problem incorporate a wide range of magnitudes of deadrise

angles, damping ratios, aspect ratios, and four boundary conditions (end fixities). Thus

the designer is given a variety of parameters to choose from, may estimate the τ by

coalescing all the time-scales, and subsequently determine the corresponding DLF.

For example, a square CCCC plate of side length 1 m, impacting against the water at

20 m/sec, has a wetting time of 0.05 sec under the assumption of uniform loading model.

With a thickness of 3 mm, a density of 7850 kg/m3, Young’s modulus of 209 GPa, and

a Poisson’s ratio of 0.3, the plate has a fundamental natural period of 0.037 sec. Thus

τ = 1.34, and the corresponding undamped DLF ≈ 1.25, i.e. the dynamic deflection
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and stresses are 25% above those calculated by the static analysis. A SSSS plate with

the same parameters and properties has τ = 0.74, and a corresponding undamped DLF

≈ 1.57, i.e. the dynamic deflection and stresses are 57% above those calculated by the

static analysis.

The details of the summary are tabulated as follows:

1. This Normal Mode analysis study provides a comprehensive estimate of the DLF,

bypassing the computationally intensive FEA.

2. A part of the above effort was concentrated in the study of the free vibration

of the plate. The Governing Differential Equation (GDE) of free vibration cannot be

factorized into two independent equations in x and y. The natural dry frequencies of

rectangular plates have been determined to 5 significant figures (Table 4.2 and Table

4.3), and wet natural frequencies have been determined to 4 significant figures (Table

5.2). Modal truncation studies have been utilized to improve the accuracies of both free

and forced vibrations (Table 4.1).

3. Galerkin′s method was used to estimate the admissible functions and their

weights, i.e. the relative contributions of all the modeshapes at a particular natural

frequency (Table 4.4). The corresponding static deflection was also calculated similarly,

at each location and time step.

4. Damping compresses the time scale, stunts the DLF peak by reducing the dynamic

amplification, and evens out the intermittent quasi-static responses. It also reduces

(almost removes) the ambiguity of the DLF magnitude at low values of τ , when the DLF

becomes a function of the record length of the time-series of the dynamic deflection (in

the numerical analysis) (Fig.4.3).
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5. 0.7 < τ < 2.5 is the usual region of interest for practical ship-designers, given

the material properties of the vessel and the most probable impact speeds. The DLF

characteristic in this region (and beyond) has been clearly established for the selected

parameter space (Fig.4.6 and Fig.4.7).

6. The influence of the different parameters like aspect ratios, boundary conditions,

damping ratios, and the deadrise angle into the time scale have been combined into a

single parameter τ .

7. The SS and the CC end conditions represent the two extremes of end fixities

(0% and 100%), and the mixed end conditions are found to respond within the band of

responses bordered by the SSSS and CCCC boundary conditions. The bending moments

generated by the flexural deflection depend on the end fixities of the plate, which lie in

between the above two fixities.

8. Asymptotic behavior of the DLF at zero splash time has been studied, when the

hydrodynamic load is assumed to act on the structure instantaneously. It gives the

maximum possible DLF of the structure due to the uniform stretching load; and the

minimum possible DLF due to the impact loading (Table 4.5 and Table 4.7).

9. The wet vibration analysis results have been compared to those of the dry vi-

bration analysis, illustrating the fact that non-dimensionalization of time-scales almost

self-similarizes the Dynamic Load Factor (DLF) over the range of wetting speeds and

material properties.

6.2 Future Research.

1. Stiffening of the plate. The marine vessel is made of stiffened panels, which

are subject to hydrodynamic impact loads. This study assumes the mass and stiff-
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ness distribution to be independent of space. Stiffening changes the mass and stiffness

distributions of the panel, both which influence its natural frequency of vibration.

2. Two-way coupling between the fluid and the structure. The structural deflection

itself influences and alters the pressure field, modifying the excitation force. The two-way

coupling studies the pressure-velocity interaction at the fluid-solid interface, satisfying

the body-boundary-condition (BBC) at all times, and generates the structural deflection

and the hydrodynamic pressure simultaneously as a function of time, given the changing

wetted surface of the structure (partial wetting).

3. Waves instead of calm water. This analysis uses a constant vertical velocity V.

In reality, the vertical impact velocity is a function of time, subject to the velocity of

the free surface of water, and also the extent of immersion of the craft. In an irregular

sea, if the most probable wave frequency equals the frequency of the structure, it leads

to temporal resonance. If the most probable wavelength aligns with the modeshape

of the structure, it leads to spatial resonance. The vertical impact velocity and the

probability/frequency of slamming, is collectively determined by the most probable wave

height, the wave frequency, the vessel speed and the heading direction.

4. Dynamic response to repeated impulsive loadings in a stochastic seaway. Slam-

ming occurs repeatedly in a seaway. This analysis considered the impact load being

applied just once on the structure. Repeated hydrodynamic loads produce cumulative

impact pressures, cumulative deflections, and thus, cumulative bending stresses. If a

subsequent slam occurs when the structure is already flexed due to the previous slam,

the deflections might be large, whose analysis would be beyond the scope of the Kirch-

hoff’s plate model.
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APPENDIX 1

Beam Modeshape Formulation for Clamped-Clamped End Conditions

The free vibration equation of motion for the beam, ignoring gravity, is

m
d2Z(x, t)

dt2
+ EI

d4Z(x, t)

dx4
= 0.

The modeshape are the Eigen vectors of the above equation.

φj(x) = A1jcos(γjx) + A2jsin(γjx) + A3jcosh(γjx) + A4jsinh(γjx).

where γj = ω2
j,dry(m/EI) are the corresponding Eigen values. The four constants A1,

A2, A3 and A4 are calculated from the four boundary conditions of the beam, i.e.

Z(0, t) = Z(L, t) = 0;
dZ(0, t)

dx
=
dZ(L, t)

dx
= 0 for a Clamped− Clamped beam

There are an infinite number of distinct values of γj, each of which corresponds to

distinct natural frequencies ωj and modeshapes φj(x). The CC modeshape is

φj(x) = cos(γjx)− cosh(γjx)− σj sin(γjx) + σj sinh(γjx),

where σj =
cos(γjL)− cosh(γjL)

sin(γjL)− sinh(γjL)

Substitution of the BCs into the modeshape leads to cos(βjL) cosh(βjL) = 1. The dif-

ferent values of βj calculated by the Newton-Raphson method, with the error less than

10−15.
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Index(j) γ σ

1 4.730040744862704 0.982502214576238

2 7.853204624095838 1.000777311907269

3 10.995607838001671 0.999966450125409

4 14.137165491257464 1.000001449897657

5 17.278759657399480 0.999999937344383

6 20.420352245626059 1.000000002707595

7 23.561944902040455 0.999999999882994

8 26.703537555508188 1.000000000005056

9 29.845130209103253 0.999999999999782

10 32.986722862692822 1.000000000000000

The higher order wave numbers are given as γj = (2j + 1)π/2.

For j > 5, the exact modeshape is given by :

φj(x) = e−βjx − cos(βjx) + [1 + ν] sin(βjx)− ν sinh(βjx),

where ν =
e−βjL − cos(βjL) + ν sin(βjL)

sinh(βjL)− sin(βjL)

Calculation of γj determines φj and the dry natural frequencies of the beam ωj.
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APPENDIX 2

Impact Load Formulation

The numerical formulation of the impact forcing are done as follows :-

1) Select deadrise angle β and set τ .

2) Calculate Splash time by multiplying τ with the fundamental period of the plate, i.e.

Tsp = τ
[ω1,dry

2π

]
.

3) Set Time-step : ∆t = Tsp

N
, where N is spatial discretization along the length L. (∆x =

L
N

). Also, set counters for both space and time steps, i.e. x = (i-1)∆x, for i = 1 through

N+1, and t = (k-1)∆t, for k = 1 through T, where T is the number of time steps.

4) Non-dimensionalize the time-step : ∆t′ = ω1,dry ∆t.

5) Calculate the speed of the wetting along the plate = Valong = L
Tsp

.

6) Calculate ḋ(t) = Valong cos(β), which is the speed of the jet head translation. This

also gives the vertical impact velocity

V = ḋ(t)
2 tan(β)

π
.

7) Calculate the stagnation pressure of the vertical impact velocity

Pstagnation =
ρwater

2
V 2.

8) Calculate the jet head translation d(t) = ḋ(t)∆t.

9) Calculate the jet thickness

δ(t) =
πV 2

8ḋ(t)2
.
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Fig.A2.1 (a) Stretching Parameter u, (b) non-dimensional stretching parameter s.

10) Define the parameter (Fig.A2.1)of the stretching transformation u as follows.

For i = 1 to N/2, u(i) =
[

2(i−1)
N

]2
;

for i = N/2+1, u(N/2+1) = 1;

and for i = N/2+2 to N+1, u(N+2-i) =
[

2(i−1)
N

]4
.

11) Set the non-dimensional parameter

s(i) = 1−
[

1− u(i)

1 + u(i)

]2

.

12) Calculate the outer pressure, which is zero beyond the jet head d(t).

Pouter(i) = ρwater
V ḋ(t) tan2 β√

[1− s(i)2]
.

13) Calculate the common pressure, which is also zero beyond the jet head d(t).

Pcommon(i) = ρwater
V ḋ(t) tan2 β√

2[1− s(i)]
.

14) Calculate the inner pressure

Pinner(i) = ρwater
ḋ(t)2

2
s(i).
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Fig.A2.2 Components of the Impact pressure.

15) Calculate the Total pressure as a superposition of the components (Fig.A2.2)

Pimpact =
Pouter + Pinner − Pcommon

1
2
ρwaterV 2

.

The pressure is non-dimensionalized by the stagnation pressure of the vertical impact

velocity, i.e. Pstagnation.

16) Defining the independent variable of the stretching transformation as follows :

(a) For X < d(t), i.e. within the jet head,

X(t, i) = d(t) +
δ(t)

π

[
2log[u(i)]− 4

u(i)
− 1

u2(i)
+ 5

]
.

(b) At the jet head location, X(t, i) = d(t) = V tπ
2 tanβ

.

(c) For X > d(t), i.e. beyond jet head

X(t, i) = d(t) +
δ(t)

π
[−2log[u(i)]− 4u(1, i)− u2(i) + 5].
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Fig.A2.3 Impact pressure : space discretization.

The Impact pressure Pimpact(i) is plotted against X(t, i) as shown in Fig.A2.3. The

discretization is very fine near the jet head, which helps define the concentrated impulse

configuration. It is affordable to have a coarser discretization away from the jet head,

where the pressure configuration becomes more uniform.
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APPENDIX 3

Modal Analysis of CCCC plate : Free vibration

Governing differential equation of free vibration of a square plate, with uniform mass

and stiffness distributions is :

m
∂Z2(x, y, t)

∂t2
+ c

∂Z(x, y, t)

∂t
+ D∇4Z(x, y, t) = 0.

The independent variables are space (x, y) and time (t). The dependent variable is the

dynamic deflection Z(x, y, t). Applying separation of variables : Z(x, y, t) = G(x, y)F (t).

Substituting this into the free vibration GDE :

mG(x, y)
∂2F

∂t2
+ cG(x, y)

∂F

∂t
+D∇4G(x, y)F (t) = 0, which gives

F̈ (t)

F (t)
=
D

m

∇4G(x, y)

G(x, y)
= −ω2; where − ω2 is the separation constant.

Considering each of the equations separately,

F̈ (t)

F (t)
= −ω2 gives the principal coordinates, and

D

m

∇4G(x, y)

G(x, y)
= −ω2 gives the plate modeshape.

But, the fourth-order equation of G(x, y) cannot be factorized into two quadratic equa-

tions of φ(x) and φ(y). Thus G(x, y) is assumed to be a weighted average of the product

of the C-C beam modeshapes along the two directions :

G(x, y) = Σ∞j=1Σ
∞
l=1Ajlφj(x)φl(y) = Σ∞j=1Σ

∞
l=1AjlGjl(x, y).

Substituting the above into the previous relation :-

∇4[Σ∞j=1Σ
∞
l=1Ajlφj(x)φl(y)] =

mω2

D
[Σ∞j=1Σ

∞
l=1Ajlφj(x)φl(y)].
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Expanding the biharmonic operator :

Σ∞j=1Σ
∞
l=1Ajl

[
d4φj(x)

dx4
φl(y) + 2

d2φj(x)

dx2

φl(y)

dy2
+ d4φj(x)

φl(y)

dy4
− mω2

D
φj(x)φl(y)

]
= 0.

Premultiplying the above system by the Galerkin’s premultiplier Hrs = φr(x)φs(y) and

integrating it over the plate surface area by utilizing the orthogonality of the beam

modeshapes gives:-∫ L
0

∫ B
0 φr(x)φs(y)dxdy = 1 for j = l ; and

∫ L
0

∫ B
0 φr(x)φs(y)dxdy = 0 for j 6= l.

1) First Term. ∫ L

0

∫ B

0
φr(x)φs(y)Σ∞j=1Σ

∞
l=1Ajl

[
dφj(x)

dx4
φl(y)

]
dxdy

=
∫ L

0

∫ B

0
φr(x)φs(y)Σ∞j=1Σ

∞
l=1Ajl

[
β4
jφj(x)φl(y)

]
dxdy

=
∫ L

0

∫ B

0
φr(x)φs(y)Ars

[
β4
rφr(x)φs(y)

]
dxdy

=
∫ L

0
φr(x)β4

rφr(x)dx
∫ B

0
φs(y)φs(y)dy = Arsβ

4
r .

2) Second Term. ∫ L

0

∫ B

0
φr(x)φs(y)Σ∞j=1Σ

∞
l=1Ajl

[
2
dφj(x)

dx2

dφl(y)

dy2

]
dxdy

= Σ∞j=1Σ
∞
l=12Ajl

[∫ L

0
φr(x)

d2φj(x)

dx2
dx

] [∫ B

0
φs(y)

d2φl(y)

dy2
dy

]
= Σ∞j=1Σ

∞
l=12AjlPrjQsl.

Here, Prj =
∫ L
0 φr(x)dφj(x)

dx2 dx and Qsl =
∫ L
0 φs(y)dφl(y)

dy2
dy.

3) Third Term. ∫ L

0

∫ B

0
φr(x)φs(y)Σ∞j=1Σ

∞
l=1Ajl

[
φj(x)

dφl(y)

dy4

]
dxdy

=
∫ L

0

∫ B

0
φr(x)φs(y)Σ∞j=1Σ

∞
l=1Ajl

[
φj(x)β4

l φl(y)
]
dxdy

=
∫ L

0

∫ B

0
φr(x)φs(y)Ars

[
φr(x)β4

sφs(y)
]
dxdy

=
∫ L

0
φr(x)φr(x)dx

∫ B

0
φs(y)β4

sφs(y)dy = Arsβ
4
s .
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4) Fourth Term.∫ L

0

∫ B

0
φr(x)φs(y)Σ∞j=1Σ

∞
l=1Ajl [φj(x)φl(y)] dxdy = Ars.

Writing in the matrix form

β4
1 + β4

1 + P11Q11 P11Q12 P12Q11 P12Q12

P11Q21 β4
1 + β4

2 + P11Q22 P12Q21 P12Q22

P21Q11 P21Q12 β4
2 + β4

1 + P22Q11 P22Q12

P21Q21 P21Q22 P22Q21 β4
2 + β4

2 + P22Q22





A11

A12

A21

A22



=



0

0

0

0


The Eigen values of the square matrix gives the square of the non-dimensional natural

frequencies of the plate.∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

β4
1 + β4

1 + P11Q11 − λ P11Q12 P12Q11 P12Q12

P11Q21 β4
1 + β4

2 + P11Q22 − λ P12Q21 P12Q22

P21Q11 P21Q12 β4
2 + β4

1 + P22Q11 − λ P22Q12

P21Q21 P21Q22 P22Q21 β4
2 + β4

2 + P22Q22 − λ

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
= 0.

Writing in the matrix form :

[PrjQsl − λδ(r, j; s, l) + δ(r, j; s, l)β4
r + δ(r, j; s, l)β4

s ](Ajl) = (0),

where δ(r, j; s, l) = 1 for r = j and s = l ; and δ(r, j; s, l) = 0 for r 6= j or s 6= l. This

frames the Eigen value problem. The Eigen values give the natural frequencies of the

CCCC plate, and the Eigenvectors give the plate modeshapes.
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For the λ associated with β4
j + β4

l + PjjQll, the nature of the roots depend on the

following:

(1) If j = l, λ is unique.

(2) If j 6= l, and j is odd(even) and l is even(odd), λ’s are repeated.

(3) If j 6= l, and j and l are both even or both odd, λ’s are close but unequal.
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APPENDIX 4

Numerical Time Integration

1. Beam vibration.

The system of uncoupled, second-order, ordinary differential equations for the vibra-

tion of beams is given as :

d2qj(t)

dt2
+

(
2ζ

ω1,dry

)
dqj(t)

dt
+

(
ω2
k,dry

ω2
1,dry

)
qj(t) =

gfj(x, t)

Mjjω2
1,dry

.

Since the equations are uncoupled, the jth modal equation can be solved independent

of the other modes, by using numerical time integration schemes.

The Standard Form utilizes the following relations : q̇j(t) = vj(t); qj(t) = uj(t);

Re-writing the equations in the Standard Form, we get two first-order ordinary differ-

ential equations.

dvj(t)

dt2
+

(
2ζ

ω1,dry

)
duj(t)

dt
+

(
ω2
k,dry

ω2
1,dry

)
uj(t) =

gfj(x, t)

Mjjω2
1,dry

.

u̇j(t) = vj(t);

The initial conditions are :

uj(t
1) = 0; and vj(t

1) = 0; i.e. the initial displacement and velocity are zero. Let the

time-step be ∆t, and let Mjjω
2
1,dry = m, 2ζ

ω2
1,dry

= c,
ω2

k,dry

ω2
1,dry

= k.

1.1 The Euler’s explicit integration scheme is given as:
vj(tn+1)−vj(tn)

∆t

uj(tn+1)−uj(tn)

∆t

 =

 − c
m

−k
m

1 0



vj(t

n)

uj(t
n)

+


gfj(tn)

m

0


or


vj(t

n+1)

uj(t
n+1)

 =

 1− c∆t
m

−k∆t
m

∆t 1



vj(t

n)

uj(t
n)

+


gfj(tn)

m
∆t

0


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This gives the modal displacement and velocity as a function of time.

1.2 The Euler’s implicit scheme is given as : vj(tn+1)−vj(tn)

∆t

uj(tn+1)−uj(tn)

∆t

 =

 − c
m

−k
m

1 0



vj(t

n+1)

uj(t
n+1)

+


gfj(tn)

m

0


or

 1 + c∆t
m

k∆t
m

−∆t 1



vj(t

n+1)

uj(t
n+1)

 =

 1 0

0 1



vj(t

n)

uj(t
n)

+


gfj(tn)

m
∆t

0


or


vj(t

n+1)

uj(t
n+1)

 =
1

1 + c∆t
m

+ k∆t2

m

 1 −k∆t
m

∆t 1 + c∆t
m


 1 0

0 1



vj(t

n)

uj(t
n)


+

1

1 + c∆t
m

+ k∆t2

m

 1 −k∆t
m

∆t 1 + c∆t
m




gfj(tn)

m
∆t

0


This generates the time series of the modal displacement and velocity.

1.3 The Euler’s explicit-implicit scheme is given as : vj(tn+1)−vj(tn)

∆t

uj(tn+1)−uj(tn)

∆t

 =

 − c
m

−k
m

1 0




vj(tn)+vj(tn+1)

2

uj(tn)+uj(tn+1)

2

+

 gfj(tn)+gfj(tn+1)

2m

0



or

 1 + c∆t
2m

k∆t
2m

−∆t 2



vj(t

n+1)

uj(t
n+1)

 =

 1− c∆t
2m

−k∆t
2m

∆t 2



vj(t

n)

uj(t
n)

+


gfj(tn)+gfj(tn+1)

2m
∆t

0



2. Plate vibration.

The system of second-order, ordinary differential equations for the vibration of plates

is given as :

Σmodex∗modey
n=1 Mkn

d2qn(t)

dt2
+ Σmodex∗modey

n=1 Ckn
dqn(t)

dt
+ Σmodex∗modey

n=1 Kknqn(t) = gfk(t).

The Standard Form utilizes the following relations : q̇n(t) = vn(t); qn(t) = un(t);
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Re-writing the equations in the Standard Form, we get two first-order ordinary differ-

ential equations.

[Mkn] {v̇n(t)}+ [Ckn] {u̇n(t)}+ [Kkn] {un(t)} = {gfk(t)} .

u̇n(t) = vn(t);

or {v̇n(t)}+ [Mkn]−1[Ckn] {u̇n(t)}+ [Mkn]−1[Kkn] {un(t)} = [Mkn]−1 {gfk(t)} .

u̇n(t) = vn(t);

or {v̇n(t)}+ [Bkn] {u̇n(t)}+ [Akn] {un(t)} = {Fk(t)} .

u̇n(t) = vn(t);

where [Bkn] = [Mkn]−1[Ckn]; [Akn] = [Mkn]−1[Kkn]; [Fkn] = [Mkn]−1 {gfk(t)}.

The initial conditions are :

uj(t
1) = 0; and vj(t

1) = 0; i.e. the initial displacement and velocity are zero.

The plate vibration equations are statically coupled. Due to the incorporation of pro-

portional damping, the damping matrix is also coupled. Considering the first two modal

equations of motion, the Euler’s explicit-implicit scheme is used to solve the above sys-

tem of equations as follows:

1 +B11∆t A11∆t B12∆t A12∆t

−∆t 2 0 0

B21∆t A21∆t 1 +B22∆t A22∆t

0 0 −∆t 2





v1(tn+1)

u1(tn+1)

v2(tn+1)

u2(tn+1)


=
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

1−B11∆t −A11∆t −B12∆t −A12∆t

∆t 2 0 0

−B21∆t −A21∆t 1−B22∆t −A22∆t

0 0 ∆t 2





v1(tn)

u1(tn)

v2(tn)

u2(tn)


+



F1(tn)+F1(tn+1)
2

∆t

0

F2(tn)+F2(tn+1)
2

∆t

0


.

This time-integration gives the modal displacements and velocities.
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APPENDIX 5

Code Outputs

The outputs from the MATLAB code are as follows :

1) Natural Frequencies of square plates ωdry.

2) Beam Modeshapes φ(x).

3) Plate Modeshapes Φ(x, y).

4) Static Deflection as a function of space and time Zst(x, y, t).

5) Dynamic Deflection as a function of space and time Z(x, y, t).

6) Dynamic Load Factor (DLF).

7) Relative Modal Contribution (RMC).

8) Added mass.

9) DLF at zero wetting time.

10) DLF as a function of space and time.

11) Modal truncation limits for free and forced vibrations.

12) Proportional damping and Modal damping c.

13) Wet natural frequencies ωwet.
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APPENDIX 6

Modal Analysis of CCCC plate : Forced vibration

The governing differential equation for the forced, damped vibration of the Kirchhoff’s

plate is given

m
∂Z2(x, y, t)

∂t2
+ c

∂Z(x, y, t)

∂t
+ D∇4Z(x, y, t) = F (x, y, t).

The total out-of-plane dynamic deflection of the plate is approximately a linear super-

position of the modal deflections Zk(x, y, t), as given as:

Z(x, y, t) = Σ∞k=1Zk(x, y, t) = Σ∞k=1Φk(x, y)qk(t),

with the 3-D plate modeshape (shape function) is defined as a series summation as

follows :

Φk(x, y) = Σmodex
j=1 Σmodey

l=1 Ak
jlφj(x)φl(y) = Σmodex

j=1 Σmodey
l=1 Ak

jlGjl(x, y),

i.e. Gjl(x, y) = φj(x)φl(y), modex is the number of modes considered in the x -direction,

modey is the number of modes considered in the y-direction, and φj(x) and φl(y) are

the respective 2-D beam modeshapes (forming an orthogonal set of functions). Ak
jl is

the amplitude of each Gjl(x, y) for the kth natural frequency of vibration. Substituting

for the plate modeshape in the GDE :

mΣ∞k=1Φk(x, y)q̈k(t) + cΣ∞k=1Φk(x, y)q̇k(t) + D∇4Σ∞k=1∇4Φk(x, y)qk(t) = F (x, y, t).

Pre-multiplying by the plate modeshape and integrating over the plate surface area :∫ L

0

∫ B

0

Φp(x, y)mΣ∞k=1Φk(x, y)q̈k(t)dxdy +

∫ L

0

∫ B

0

Φp(x, y)cΣ∞k=1Φk(x, y)q̇k(t)dxdy

+

∫ L

0

∫ B

0

Φp(x, y)D∇4Σ∞k=1∇4Φk(x, y)qk(t)dxdy =

∫ L

0

∫ B

0

Φp(x, y)F (x, y, t)dxdy.
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In the matrix form, the system of governing differential equation is:

Σmodex∗modey
k=1 Mpk

d2qk(t)

dt2
+ Σmodex∗modey

k=1 Cpk
dqk(t)

dt
+ Σmodex∗modey

k=1 Kpkqk(t) = gfp(t).

where the generalized mass, stiffness and forcing are the following respectively :

Mpk = m

∫ L

0

∫ B

0

Φp(x, y)Φk(x, y)dxdy

= m

∫ L

0

∫ B

0

[Σmodex
r=1 Σmodey

s=1 Ap
rsφr(x)φs(y)][Σmodex

j=1 Σmodey
l=1 Ak

jlφj(x)φl(y)]dxdy

= mΣmodex
r=1 Σmodey

s=1 Σmodex
j=1 Σmodey

l=1 Ak
jlA

p
rs

∫ L

0

∫ B

0

φr(x)φs(y)Ak
jlφj(x)φl(y)dxdy

= mΣmodex
r=1 Σmodey

s=1 Σmodex
j=1 Σmodey

l=1 Ak
jlA

p
rs

∫ L

0

φr(x)φj(x)dx

∫ B

0

φs(y)φl(y)dy = mAk
jlA

p
rs.

Fp =

∫ L

0

∫ B

0

Φp(x, y)f(x, y, t)dxdy =

∫ L

0

∫ B

0

[Σmodex
r=1 Σmodey

s=1 Ap
rsφr(x)φs(y)]f(x, y, t)dxdy

= Σmodex
r=1 Σmodey

s=1 Ap
rs

∫ L

0

φr(x)f(x, t)dx

∫ B

0

φs(y)dy.

Kpk = D

∫ L

0

∫ B

0

Φp(x, y)∇4Φk(x, y)dxdy = D[K1pk + 2K2pk +K3pk], where

K1pk = D

∫ L

0

∫ B

0

[Σmodex
r=1 Σmodey

s=1 Ap
rsφr(x)φs(y)][Σmodex

j=1 Σmodey
l=1 Ak

jl

d4φj(x)

dx4
φl(y)]dxdy

= Σmodex
r=1 Σmodey

s=1 Σmodex
j=1 Σmodey

l=1 Ak
jlA

p
rs

∫ L

0

φr(x)β4
jφj(x)dx

∫ B

0

φs(y)φl(y)dy = Dβ4
jA

k
jlA

p
rs,

K2pk =

∫ L

0

∫ B

0

[Σmodex
r=1 Σmodey

s=1 Ap
rsφr(x)φs(y)][Σmodex

j=1 Σmodey
l=1 Ak

jl

d2φj(x)

dx4

d2φl(y)

dy2
]dxdy.

= Σmodex
r=1 Σmodey

s=1 Σmodex
j=1 Σmodey

l=1 Ak
jlA

p
rs

∫ L

0

φr(x)
d2φj(x)

dx2
dx

∫ B

0

φs(y)
d2φl(y)

dy2
dy,
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K3pk = D

∫ L

0

∫ B

0

[Σmodex
r=1 Σmodey

s=1 Ap
rsφr(x)φs(y)][Σmodex

j=1 Σmodey
l=1 Ak

jlφj(x)
d4φl(y)

dy4
]dxdy

= Σmodex
r=1 Σmodey

s=1 Σmodex
j=1 Σmodey

l=1 Ak
jlA

p
rs

∫ L

0

φr(x)φj(x)dx

∫ B

0

β4
l φs(y)φl(y)dy = DAk

jlβ
4
l A

p
rs.

Owing to the orthogonality of the beam modeshapes, the three matrices [M],[K1] and

[K3] are diagonal.
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APPENDIX 7

Velocity Potential Numerical formulation

Considering a flat surface panel with a constant-strength distribution σ per unit area,

bounded by four straight lines, (Katz and Plotkin)[63] the velocity potential at an

arbitrary point P(x,y,0) is given as follows:

Φ(x, y, 0) =
σ

4π
[−(y − y1)dx

d12

log

(
r1 + r2 + d12

r1 + r2 − d12

)
+

(x− x2)dy

d23

log

(
r2 + r3 + d23

r2 + r3 − d23

)

−(y − y3)dx

d34

log

(
r3 + r4 + d34

r3 + r4 − d34

)
+

(x− x4)dy

d41

log

(
r4 + r1 + d41

r4 + r1 − d41

)
]

where rk =
√

(x− xk)2 + (y − yk)2 and dij =
√

(xi − xj)2 + (yi − yj)2.

SQUARE SOURCE 

This is the velocity potential at an arbitrary point P(x,y,0) 
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Square Source Panel.

The square source panel is modelled as shown in the figure above. Thus, d12 = dx,

d23 = dy, d34 = dx, d41 = dy. Or,

Φ(x, y, 0) =
σ

4π
[−(y − y1)log

(
r1 + r2 + d12

r1 + r2 − d12

)
+ (x− x2)log

(
r2 + r3 + d23

r2 + r3 − d23

)

−(y − y3)log

(
r3 + r4 + d34

r3 + r4 − d34

)
+ (x− x4)log

(
r4 + r1 + d41

r4 + r1 − d41

)
]
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Since it is a square panel,

dx = dy = a, rk =
ak√

2
, x− x2 = −a

2
, y − y1 =

a

2
, x− x4 =

a

2
, y − y3 = −a

2
.

or

Φ(x, y, 0) =
σ

4π
[−a

2
log

(
r1 + r2 + d12

r1 + r2 − d12

)
− a

2
log

(
r2 + r3 + d23

r2 + r3 − d23

)

−a
2
log

(
r3 + r4 + d34

r3 + r4 − d34

)
− a

2
log

(
r4 + r1 + d41

r4 + r1 − d41

)
].

Substituting, (
r1 + r2 + d12

r1 + r2 − d12

)
=

a√
2

+ a√
2

+ a
a√
2

+ a√
2
− a

= 3 + 2
√

2.

Thus the potential at the collocation point is

Φ(x, y, 0) =
σa

2π
log[3 + 2

√
2].
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