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ABSTRACT 

Continuous improvement of product quality is crucial to the success of competitive 

automotive manufacturing industry. Machined surfaces for sealing and similar 

applications in automotive powertrain manufacturing require increasingly stringent 

tolerances and higher repeatability. There is a need for engineers to go beyond specifying 

sizes, shapes and peaks, and move toward specifications of various surface functional 

attributes.  

Most previous work on surface functional characterization has focused on surface 

tribological properties (roughness domain) for rotational and moving components, and 

they have made significant contributions. However, because of the limitation of the 

metrology technologies, most of these works were focused on only a small area of a large 

engineering surface. Therefore, characterizing large engineering surface comprehensively 

and rapidly presents significant challenges. Recently, a laser holographic interferometer 

has been developed by Coherix Inc. to rapidly measure a large workpiece surface 

(300mm×300mm) and generate a 3D surface height map in 40 seconds. This technology 

provides an unprecedented platform for developing extraction and characterization 

methods of 3D surface features larger than roughness scale and applying these features to 

predict some other surface functions and detect errors in the machining process. 
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In this research, an improved Gaussian filter is first designed to accurately extract 

3D surface waviness from a large surface height map measured by the interferometer. 

The improved Gaussian filter enhances the performance of the standard Gaussian filter 

when applied to a surface which has large form distortion and many sharp 

peaks/valleys/noise. Following this, a 3D surface waviness feature of the machined 

workpiece is defined and applied to assess tool flank wear conditions. Experimental tests 

for different cutter types, workpiece materials and cutting conditions are implemented of 

using the waviness parameter to detect severe tool wear. The results verify that the 

proposed 3D surface waviness feature is a very good indicator for severe tool wear 

assessment.  

Secondly, a two-channel filter bank diagram is developed that applies a 2D wavelet 

to decompose a 3D surface into multiple-scale subsurfaces.  3D surface features extracted 

from multiple-scale subsurfaces are then used to predict surface functional performances 

and detect machining errors. In the proposed surface decomposition process, two 

important issues: the elimination of border distortion and the transformation between the 

wavelet scale and its physical dimension are addressed. Applications of 2D wavelet 

decomposition to 3D surfaces are demonstrated using several automotive case studies, 

including abrupt tool breakage detection, chatter detection, cylinder head mating/sealing 

surface leak path detection, and transmission clutch piston surface non-clean up 

detection. These case studies demonstrate that the 3D surface features extracted from 

multiple-scale subsurfaces provide valuable information for surface functional 

performance prediction and machining error detection. 
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Finally, a novel and automated surface defect detection and classification system 

for flat machined surfaces is designed. The purpose of this work is to extract microscopic 

surface anomalies and assign each anomaly to a surface defect type commonly found on 

the automotive machined surfaces. A “breadboard” version surface defect inspection 

system using multiple directional illuminations is constructed. Related image processing 

algorithms are developed to detect and identify 5 types of 2D or 3D surface defects (pore, 

2D blemish, residue dirt, scratch, and gouge). Several machined surface samples are 

tested and the results show that the microscopic surface defects which have a minimum 

dimension larger than 300 micron can be accurately detected and classified. 

In summary, this research is dedicated to extract multiple-scale 3D surface texture 

features and apply these features to characterize some workpiece functional 

performances, discover issues in the machining process; and detect and classify certain 

classes of microscopic surface defects that are problematic to the manufacturing process. 
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CHAPTER 1 
INTRODUCTION 

1.1 Motivation 

Metrology is the foundation of manufacturing. As illustrated in Figure 1.1, the 

measurement of a workpiece can be utilized for two different applications: (1) the 

production engineers use it to diagnose and control the manufacturing process and (2) the 

design engineers use it to optimize the functions of the product, such as sealing, loading, 

lubrication and so on. The two blocks, ‘manufacturing’ and ‘function’, are interdependent.  

Figure 1.1  Importance of metrology. 

In practice, workpiece is manufactured and measured sequentially to obtain the 

condition of a manufacturing process. If a workpiece functions satisfactorily, the same 

manufacturing conditions will be used to make the next workpiece. Thus, the 

measurement of the surface is being used as an effective go-gauge for the process and the 

function.  
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In the modern production process, the measurement of surface function becomes 

more and more important, since the surface of a machined component is the only part that 

interacts with its surrounding or mating parts. And it would be highly advantageous if the 

function of a surface is known before the part is tested or assembled.  

Surface texture impacts many surface functions and applications. It is usually 

divided into three frequency domains, the short wavelength (high spatial frequency) 

components are considered as roughness; the long wavelength (low spatial frequency) 

components are referred to as form; the medium ones (middle spatial frequency) are 

treated as waviness [1][2]. Surface features extracted from different frequency bands are 

key indicators to predict various workpiece functional performances and detect errors in 

the manufacturing processes which produce the surface.   

In early days, different instruments and measurement techniques were used to 

capture different wavelength bands. Stylus based instruments were used to measure 

roughness, other special instruments were used to obtain form information. Today, many 

instruments, like a stylus based instrument, can capture roughness, waviness and form. 

As the wavelength bandwidth of measurement instruments increases, mathematical 

methods for separating surface profile data into different wavelength bands are becoming 

popular research topics. Raja et al. [3] reviewed the recent filter techniques used in the 

separation of roughness, waviness and form. These filter techniques are: analog 2RC 

filter [1][4][5], Gaussian filter [2][6][7][8][9] and several newer research methods such as 

the spline filter [10][11], morphological filter [12][13] and wavelet filter [14][15][16] 

[17][18][19].  
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Conventionally, surface texture is characterized with 2D parameters based on the 

data measured by a profilometer or point-based measurement instrument. Researchers 

used 2D parameters to characterize surface functional performance [1][20][21][22]. 

However, sometimes the 2D parameters are inadequate or not capable to characterize the 

surface [23][24].  

In recent years, with the invention of 3D profilometer, optical interferometer and 

other measurement techniques, 3D surface topography measurement has become realistic 

[25][26][27][28][29][30][31][32][33]. The area measurement technology provides 3D 

data that is more comprehensive than the linear profile tracing method. Although some 

analysis of 3D surface topography has been carried out, few parameters and approaches 

to characterizing 3D surfaces have been proposed because of the complexity of surfaces 

and mathematical description difficulties. Thus a set of parameters for characterizing 3D 

surface texture needs to be developed. Dong and Stout et al. [22][23][24][34][35][36][37] 

had done some works on extending the 2D parameters to characterize 3D surfaces. Based 

on the understanding of intrinsic properties of surface topographic features and 

parameters, a primary 3D parameter set was proposed in their papers. Some of the 

parameters included in the primary parameter set were extended from their 2D 

counterparts; others were specifically defined for characterizing 3D surface topography. 

Evidence was given to support the reasons for inclusion of each parameter in the set. 

Besides the mathematical/statistical background of the parameters, the experimental 

results were also obtained by testing a wide range of engineering surfaces to justify the 

proposal. There are also some other people working on 3D surface characterization and 

they have made significant contributions [38][39][40][41][42].   
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Most of the previous work on 3D surface characterization was focused on surface 

tribological properties, and their works are meaningful for some rotational and moving 

components. The extracted 3D surface features/parameters were from surface roughness 

domain (small scale). However, there is little work done on extracting 3D surface 

features from waviness domain (middle spatial frequency domain) and utilizing these 

features to characterize other surface functional performances such as sealing, or to 

defect problems in the machining process, such as tool wear, tool breakage. One basic 

reason for the limitation of the previous work is that, the current 3D surface measurement 

technologies have very small field of view, e.g. from 50 µm to 5 mm and the lateral 

resolution is normally from 0.25 µm to 0.5 µm. Although these measurement techniques 

are able to obtain 3D surface topography and have very high resolution, the small field of 

view property cannot provide comprehensive information for the large whole machined 

part. Besides this, the measurement speed of these methods is usually very slow, thus not 

capable of supporting the cycle time of the manufacturing process, therefore cannot be 

used for inline surface measurement and rapidly detecting problems in the machining 

process. 

Recently, a novel laser holographic interferometer has been developed by Coherix 

Inc. [43], and this optical interferometer has the capability of measuring a workpiece 

surface as large as 300mm×300mm and generating a 3D surface height map within 40 

seconds. To measure a surface larger than the field of view, multiple views of height 

maps can be accurately stitched together with cross-correlation software. The accuracy in 

the height direction can reach micron level. The lateral resolution is only 150 micron, but 

it is enough for analyzing surface features from middle spatial frequency domain (feature 
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size larger than 300micron). Therefore, this 3D surface height measurement instrument 

provides an unprecedented platform to develop filter methods to extract 3D surface 

features from the middle frequency domain and use these features to predict some 

important surface functional performances and detect machining error.  

A key problem for this research is to define and accurately extract 3D surface 

features that characterize surface properties in such a way that they correlate well with 

surface functional behavior and machining process which produces the surface. Therefore, 

in this research, based on the large field of view 3D surface height map measured by the 

holographic interferometer, filter methods will be specially designed to accurately extract 

multiple-scale 3D surface texture features and applied these features to correlate to some 

surface functional performances and detect errors in the machining process. 

Besides extracting 3D surface texture features, this research will also analyze 

abnormal surface features: surface defects. Defect inspection is important for quality 

assurance of critical mating/sealing surfaces in automotive powertrain manufacturing. 

The presence of surface porosity and other types of surface defects located on nominally 

flat surfaces may cause serious coolant, oil, or combustion gas leakages. Therefore 100% 

inline inspection plays an important role for improving product quality.  

Although the techniques of image processing and machine vision have been applied 

to machined surface inspection and well improved in the past 20 years, in today’s 

automotive industry, surface porosity inspection is still done by skilled humans, which is 

costly, tedious, time consuming and not capable of reliably detecting small defects. 

Current machine vision systems cannot reliably distinguish porosity from similar shape 

2D blemish, therefore has an unsatisfied false alarm rate. Also current methods cannot 
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classify different types of surface defects which are problematic to the automotive 

powertrain manufacturing. 

Therefore an automated surface defect detection and classification system for 

mating/sealing surfaces is desired. Our newly constructed machine vision system should 

have the ability to reliablely detect, distinguish and classify different types of surface 

defects commonly found on the mating/sealing surfaces, such as porosity, 2D blemish, 

residue dirt, scratch, and gouge. The cycle time of this system should be sufficiently fast 

thus the implementation of 100% inline inspection is feasible.  
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1.2 Research Objectives 

The ultimate goal of this research is to reliably extract multiple scales of 3D surface 

features and apply these features to characterize workpiece functional performance, 

discover issues in the machining process, and detect and classify certain classes of 

surface defects that are problematic to manufacturing process.  Specific objectives of this 

research are identified as follows: 

(1) To design a filter method to accurately extract 3D surface waviness features from 

surface height map measured by the large field of view holographic interferometer. As 

described before, the advantages of this measurement technology are the speed and large 

field of view. But the disadvantage is that the result contains large amount of noises, and also 

because of the large field of view, the distortion of the surface is much larger than a smaller 

field of view height map. Therefore, the waviness extraction filter should be designed to 

overcome these disadvantages and extract 3D surface waviness without distortion. In addition 

to developing the feature extraction method, a 3D surface waviness feature will be extracted 

as an indicator to detect tool severe wear as a case study of using 3D surface features to 

detect errors in the machining process.  

(2) To develop a wavelet transform method to decompose 3D surface into finer scale 

subsurfaces and extract multiple-scale features from the subsurfaces to better characterize 

functional performances of a surface and detect machining error. Through the multi-scale 

decomposition, 3D surface height data will be converted into the surface representations 

in different scales. Wavelet filter and related algorithms will be designed to automatically 

separate surface features at various zooming scales. Several automotive parts will be 

analyzed in order to demonstrate that the extracted 3D surface features from different 
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scale subsurfaces can used to characterize surface functional performances and detect 

problems in the machining processes. 

(3) To design and construct an automated, reliable and fast surface defect detection 

and classification system which can accurately detect and identify surface porosities and 

other types of surface defects, e.g. residue dirt, 2D blemish, scratch and gouge. This 

system is designed to reliably detect the actual defects, achieve a very low rate of false 

detections, and has the ability to detect the defects with a minimum dimension larger than 

300 microns. According to the requirements, a single camera machine vision system will 

be designed with LED illuminators illuminating the target surface from multiple 

directions. Related algorithms will be developed to realize defect detection and 

classification. Following this, the system will be then tested on actual automotive 

machined parts to demonstrate that the microscopic surface defects can be accurately 

detected and assigned to a surface defect class. 
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1.3 Organization of Dissertation 

This dissertation contains five Chapters. Chapter 1 provides a brief description of 

the motivation and objectives of this doctoral research. Chapter 2 describes the proposed 

filter method to extract 3D surface waviness features and its application to detect severe 

tool wear. The correlation experiments between 3D surface features and tool conditions 

are performed on different cutter types, workpiece materials and cutting conditions. 

Chapter 3 focuses on developing multiple-scale wavelet surface decomposition method 

and applying it for workpiece surface functional performances prediction and machining 

errors detection. In this chapter, the 2D wavelet decomposition approach on 3D surface is 

developed. Case studies of four machined surfaces are demonstrated. In Chapter 4, a 

novel machine vision system has been designed and constructed to detect and classify 

abnormal surface features: surface defects. This system is designed based on 16 LED 

blocks illuminating the target surface from multiple directions. Related image processing 

algorithms are developed to realize the detection and classification of 5 types surface 

defect commonly found on mating/sealing surfaces. One artificially machined surface 

and two actual automotive parts are tested on this system. Finally, Chapter 5 provides the 

conclusions of this research, future work and contributions. 
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CHAPTER 2 
3D SURFACE WAVINESS FEATURE EXTRACTION AND 
APPLICATION TO SEVERE TOOL WEAR ESTIMATION 

2.1 Introduction 

A surface is typically decomposed into three spatial frequency domains, the large 

frequency components are considered as roughness; the small frequency components are 

referred to as form; the medium frequency components are treated as waviness [1][2]. 

Surface features extracted from different frequency bands can be utilized to detect 

various problems in the manufacturing process. Waviness feature is considered as an 

important symptom of machine tool behaviors [1], and some challenging problems in the 

manufacturing process can be understood and solved in an easier way by studying 

waviness.  

As described in the previous chapter, 3D surface height map of a large workpiece 

(e.g., 300mm×300mm) can be measured by the holographic interferometer within 40 

seconds. Although the lateral resolution of the height map is only 150 micron, this 

interferometer technique provides us an unprecedented platform to develop filter methods 

for 3D surface features extraction from the middle spatial frequency domain (waviness 

domain) and use these features to characterize some important surface properties or 

address machining problems. Most of the previous work on 3D surface characterization 

has focused on surface tribological properties, these properties are important for 
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rotational and moving components. However, little work has been done on extracting 3D 

surface waviness features and utilizing these features to characterize surface functions 

other than tribological properties or to detect machining errors, such as tool wear, tool 

breakage. 

Therefore, this chapter will focus on designing a filter method to accurately extract 

3D surface waviness from the surface height map measured by the interferometer and 

applying the waviness feature of workpiece to detect severe tool wear as an application 

example. The large field of view 3D surface height map based on the interferometer 

measurement can provide comprehensive information for the surface condition, but the result 

contains large amount of noises and because of the large field of view, the surface distortion 

cannot be neglected. Therefore, the feature extraction filter should have the ability to remove 

the measurement noises and surface distortion which may otherwise affect the waviness 

extraction result.  

Generally in the automotive industry, the standard spatial cutoff wavelengths for 

surface waviness are: 0.8mm, 2.5mm and 8 mm [2]. The wavelengths of surface 

components longer than cutoff wavelength will have their amplitude transmitted as 

waviness. The lateral resolution (pixel size) of the holographic interferometer is 150 

micron, therefore compared with the cutoff wavelengths:  

• 0.8 mm spatial  wavelength cutoff  equals to 5.33 pixels 

• 2.5 mm spatial wavelength cutoff  equals to 16.67 pixels 

• 8.0 mm spatial wavelength cutoff  equals to 53.3 pixels 

Even the smallest cutoff wavelength (0.8 mm cutoff) is within approximately a 

spatial frequency octave of the theoretical Nyquist limit for data sampling and signal 
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information retention. Therefore, the lateral resolution of this interferometer is capable of 

providing surface waviness for most manufacturing industry cases.  

Following the design of filtering method, some correlation experiments are performed 

to use 3D surface waviness feature of the workpiece to detect severe tool wear in the 

machining process. The purpose of these correlation experiments is to demonstrate an 

industry application example of using 3D surface waviness feature. Accurate on-line tool 

condition monitoring is important for improving process efficiency, ensuring product 

quality and reducing unnecessary tool change costs as well as machine downtime. The 

ability to disengage the tool prior to catastrophic failure reduces manufacturing costs and 

excessive machine deterioration. Therefore, tool condition monitoring has been the 

subject of considerable research. In this chapter, we present a new way to determine the 

wear conditions of a cutting tool based on the 3D surface waviness feature of the 

workpiece. 

In general, tool wear assessment methods can be classified as either direct or 

indirect. In the direct approaches, machine vision systems are usually employed to  

capture the images of the tool’s cutting edge and monitor tool wear based on these 

images [44][45][46][47]. These techniques are highly dependent on the reflectance, color 

and specularity of the tool edges as well as the illumination conditions of the light source. 

Moreover, results may be sensitive to coolants and coolant mists. Indirect tool wear 

monitoring on the other hand can be achieved by measuring cutting force, torque, or 

vibration, acoustic emission produced during machining [48][49][50][51][52][53][54][55] 

[56][57]. These methods require sensor systems which are usually expensive and difficult 
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to install and maintain. Also, the signal to noise ratio is often small, leading to 

inaccuracies and false alarms.  

Estimating tool wear conditions using 3D surface features of the workpiece is an 

indirect method. This method provides a spatial signature of the interaction between 

tool’s cutting edge and the part surface [58][59]. However, because of the limitations of 

the previous measurement techniques, considerably less work has been successfully 

performed of using 3D surface texture features to assess tool wear. A line profile of a 

surface obtained from the stylus profilometer or point-based measurement system is 

highly localized and 2D parameters extracted from the profile cannot reliablely represent 

the characteristics of the whole surface. 3D surface features extracted from large field of 

view workpiece surface height map provide more comprehensive information thus can be 

used to detect tool wear. 

The rest part of this chapter is organized as follows: section 2.2 introduces the 

design of filter method for 3D surface waviness extraction. Section 2.3 presents the 

correlation studies of applying 3D surface features to detect severe tool wear for both 

aluminum workpieces and compacted graphite iron (CGI) workpieces This chapter is 

concluded in section 2.4. 

2.2 Filter Design for 3D Surface Waviness Extraction 

2.2.1 Transmission Properties and Limitations of Standard Gaussian Filter 

Researchers developed different filter methods to decompose an engineering 

surface into different frequency bands as mentioned in chapter 1. There are several 

general requirements for the filter design [24]: firstly, the use of surface filtering must be 
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justified by the application, there is not a universal filter good for any applications; 

secondly, only linear or zero phase filters are to be used for topographic component 

separation; thirdly, the surface filter should have a gradual fall-off impulse response thus 

to avoid the ringing effect associated with sharp cut-off. 

Among the filter methods, the analog 2RC filter has serious phase distortion and 

has rarely been used now. Gaussian filter is a good choice because of its zero phase 

transmission characteristic, and 50% amplitude transmission at its cutoff wavelength 

makes it the most straightforward filter method to extract waviness. But it has edge 

distortion and performs poorly on the surface with large form distortion and sharp 

peaks/valleys/noise. Many kinds of spline filters have been recently designed to have the 

transmission characteristics comparable to Gaussian filter while the edge distortion has 

been reduced. Nevertheless, the spline filters have too many parameters that need to be 

defined which makes the use of these methods complicated and less flexible. After 

studying the properties of these filter techniques, Gaussian filter is chosen as the basic 

method to extract 3D surface waviness. (See the next page for some explanation of this 

selection.) 

The weighting function (impulse response) of 2D Gaussian filter is written as [2][6]: 
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Where 2 / 0.2206Intβ π= = , x is the distance from the origin in the x axis, y is the 

distance from the origin in the y axis; λxc and λyc are the cutoff wavelengths in the x and y 

directions respectively. In our study, λxc = λyc=0.8mm, which is the typical cutoff 
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wavelength defined for the surface waviness extraction in the automotive industry.  

Gaussian filter is essentially a low-pass filter, and the frequency response function 

can be written as [24]: 
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(2.2)

 

Where ωxc and ωyc is the cut-off frequency at 50% attenuation ratio. 

The 2D Gaussian weighting function (impulse response) with  λxc = λyc=0.8mm is 

illustrated in Figure 2.1.  

Figure 2.1  2D Gaussian filter weighting function (λxc = λyc=0.8mm). 
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Gaussian filter has some transmission properties which explain why it is chosen as 

the basic method for our application to extract 3D surface waviness. 

1) Gaussian filter has a gradual fall-off, as shown in Figure 2.1, thus it avoids the 

ringing effect associated with sharp cut-off. It has 50% amplitude transmission 

occurring at the cutoff wavelength, wavelengths shorter than the cutoff will 

have their amplitude transmitted as roughness; wavelengths longer than the 

cutoff will have their amplitude transmitted as waviness. Hence, 3D surface 

waviness can be simply extracted by subtracting roughness from the surface. 

2) Gaussian filter is a zero phase filter. As shown in equation 2.2, the frequency 

response H(ωxc,ωyc)>0 over the entire frequency domain, therefore, both the 

high frequency and low frequency can be extracted with a single filtering 

procedure without phase distortion. 

3) 2D Gaussian filter is symmetric and separable: H(ωxc,ωyc)= H(ωxc)H(ωyc), 

therefore practically, when applying 2D Gaussian filter to decompose a large 

3D surface (e.g., 4 million data points), the separability enables the separate 

filtering of successive profile in one direction, followed by the same operation 

in the other, thus greatly simplifies the implementation and brings 

computational efficiency and conceptual simplicity.  

4) Gaussian filter is straightforward and well accepted in the automotive industry, 

and only one parameter (cutoff wavelength) needs to be specified when 

applying Gaussian filter, thus production engineers are comfortable working 

with it. 
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However, Gaussian filter has some limitations including edge distortion and poor 

performance on surface profile with large form distortion and sharp peaks/valleys/noise. 

The 3D surface height map we used is measured by the optical holographic 

interferometer, which has large amount of noises. Besides, because of this measurement 

technique can measure a large field of view surface, the surface form distortion of the 

height map is much larger than the small field of view height map. Therefore, an 

improved Gaussian filter will be developed to overcome the disadvantages of the 

standard Gaussian filter and extract 3D surface waviness accurately. 

2.2.2 Design of Improved Gaussian Filter 

The structure of our improved Gaussian filter is shown in Figure 2.2. There are 

four steps in the improved Gaussian filter. The detail of each step will be explained in 

following sub-sections. 

 

Figure 2.2  Structure of improved Gaussian filter. 
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2.2.2.1 Fitting of a 1st Order Reference Datum to the Surface 

In the first step of the improved Gaussian filter, a 1st order reference datum plane is 

required for nominally flat 3D surface characterization. The purpose of this step is to fit a 

reference datum plane to the surface thus to remove the linear trend of the surface and to 

level the raw topographic data. Basically, a reference datum plane is a base to which 

parameters can be referred. In most cases, the least squares mean plane will be used as 

the reference datum, and it is well defined in mathematics: a plane such that the sum of 

the squares of asperity departures from this plane is a minimum. By this definition, the 

least squares mean plane is unique for a given surface and it minimizes the root mean 

square height in comparison with other planes, thus this eliminates any uncertainty in 

finding the plane.  

However, when there are significant outliers, the normal direction of the least 

squares mean plane may be influenced by the outliers thus not conform to the normal 

direction of the measured surface anymore. An example of an unprocessed 3D surface 

height data measured by the holographic interferometer is shown in Figure 2.3. We can 

see lots of sharp peaks/valleys/noise on the raw data. 
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Figure 2.3  An example of a 3D surface of a cylinder head. 

In this case, robust least squares mean plane can be employed. It is an iteratively 

reweighted least squares fitting, which tends to diminish the influence of outliers 

compared with the ordinary least squares fitting [60]. The weights to be used are related 

to residuals of the surface with respect to the former least squares mean plane. It can be 

shown that such a reweighted least squares mean plane would be convergent to the plane 

where no outliers exist, hence conforming the normal direction of the robust least squares 

mean plane to the normal direction of the measured surface [60]. Figure 2.4 shows the 

robust least squares mean plane of the example in Figure 2.3, an example of a 3D surface 

of a cylinder head. 
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Figure 2.4  An example of a 3D surface of a cylinder head with a robust least squares 
mean plane. 

2.2.2.2 Removal of the Large Form Distortion of the Surface 

The robust least squares mean plane described above is a first order linear plane 

which fits onto a nominally flat surface. In our application, many large engineering 

surfaces, such as cylinder head surface, transmission valve body and so on are all 

nominally flat surfaces, but actually slightly curved because of the machining processes. 

To extract and characterize surface waviness, 3D form curvatures have to be removed. A 

way to deal with this problem is to fit a least squares polynomial surface. This is a very 

widely used method to fit either partial cylindrical forms, partial spheres or arbitrary 

curved forms [61][62]. 

Again, for a surface with large amount of noises, robust least squares fitting 

(iteratively reweighted least squares) as described in the previous step is applied to 

reduce the effect of the outliers. Another important issue in this step is how to determine 

the order of the polynomial surface. Usually it is not so straight forward to determine 
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what order of a polynomial surface is the best fit to a curved surface and how good the 

surface fitting would be. The goodness-of-fit depends statistically and problematically on 

the criteria selected. Here R2 value is used to evaluate the goodness-of-fit [63]. R2 

coefficient of determination is a statistical measure of how well the regression line 

approximates the real data points, as defined in equation 2.3, where yi is measured data 

which has already been divided by a weight factor from the last iteration of the robust 

least squares fitting and fi is modeled (predicted) data. An R2 of 1.0 indicates that the 

regression surface perfectly fits the data.  
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Table 2.1 lists the R2 values of the first order, second order and third order 

polynomial regression surfaces for the cylinder head surface example shown in Figure 

2.3. It can be seen from Table 2.1 that, when the order of the polynomial increases from 

the first order to the second order, R2 value increases; when the order increase from the 

second order to the third order, the R2 value remains almost the same. Therefore, the 

second order polynomial regression model is selected. A higher order regression model is 

not desirable since it will largely increase the processing time and cause over-fit problem. 

Figure 2.5 shows the cylinder head surface with a second order polynomial regression 

surface. Figure 2.6 shows the 3D height map after the form distortion is removed. For this 

example, the first order polynomial regression function can also be adequate. 

Table 2.1: R2 values of polynomial regression surfaces of a cylinder head surface. 

Order of Polynomial Number of Coefficients R2 Value 

1 3 0.9769 
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2 6 0.9806 

3 10 0.9808 

Figure 2.5  3D cylinder head surface with a second order polynomial robust least 
squares regression surface. 
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Figure 2.6  3D surface height map of a cylinder head surface after removal of large 
form distortion. 

This step is extremely important for a large and thin workpiece such as an 

automotive transmission valve body, which may have a significant form distortion 

because of the clamping during the machining process. An example of a valve body 

surface is shown in Figure 2.7. The R2 values of polynomial regression surfaces are 

shown in Table 2.2, we can see clearly that when the order of the polynomial increases 

from the first order to the second order, R2 value increases significantly; when the order 

increases from the second order to the third order, the R2 value increases not significantly. 

Therefore, the second order polynomial regression model is adequate. Figure 2.8 shows 

the surface height map after the removal of the quadratic form shape, we don’t see a 

bending shape anymore. 

Table 2.2: R2 values of polynomial regression surfaces of a transmission valve body 
surface. 

Order of Polynomial Number of Coefficients R2 Value 

1 3 0.0412  

2 6 0.9720  

3 10 0.9818  
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Figure 2.7  3D valve body surface with a second order polynomial robust least 
squares regression surface. 

 

 
Figure 2.8  3D surface height map of a valve body surface after removal of large form 

distortion. 
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2.2.2.3 Removal of Sharp Peaks/Valleys/Noise 

After the linear trend and the form distortion of the surface were removed, a noise 

filter should be designed and applied to the surface in order to efficiently remove the 

large amount of sharp peaks/valleys and measurement noise which may otherwise affect 

the waviness extraction result. In our case, the height map contains important tooling 

mark information (key waviness components), thus a good noise filter should incorporate 

the ability to preserve the sharpness of the tooling marks. An unsuitable filter choice 

would result in useful information being destroyed or noise remaining. Therefore, a 

“dynamic median filter” is designed based on our specific requirements.  

Median filter was introduced in 1974 by Tukey [64], who used the moving 

median as a smoothing technique in time series analysis. Median filter has also been used 

for enhancing images, Pratt [65] made a qualitative study of two dimensional median 

filters of various sizes and shapes and he concluded that the median filter is extremely 

useful for suppressing impulsive and ‘salt and pepper’ noise. However, median filter and 

many of its variants have limitations like blurring of image details due to simultaneous 

noise and signal suppression of median filter affecting the image fidelity badly. 

Researchers are trying to build median filters which will replace only the noise corrupted 

pixels while preserving uncorrupted pixels [66][67][68][69][70][71][72]. 

Median filter considers each pixel in the image in turn and looks at its neighbors 

(e.g., a 3×3 window size, each pixel has 8 neighbors) to decide whether or not it is 

representative of its surroundings by choosing a fixed threshold, if not, replaces it with 

the median of those neighbors. The median is calculated by first sorting all the pixel 

values from the surrounding neighborhood into numerical order and then replacing the 
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pixel being considered with the middle pixel value. By applying median filter, most of 

the sharp peaks/valleys and measurement noises will be removed, however, in our case, 

the tooling marks information on the surface height map which belongs to the surface 

waviness domain may also be smoothed. For some roughly machined surface, the height 

map measured by the optical interferometer may contain large amount of noises, the 

median filter needs to be applied several times to completely remove the noises, but the 

side effect is that the tooling marks may be washed out with the noises. 

Therefore, a dynamic median filter is designed to remove the sharp 

peaks/valleys/noises, but preserve the sharpness of the tooling marks. For the dynamic 

median filter, a dynamic threshold based on statistical analysis of the whole surface 

height data will be selected and recalculated in each iteration. Compared to the ordinary 

median filter, which selects a fixed threshold only based on the surrounding 

neighborhood, the dynamic median filter is more robust and flexible. It selects a 

threshold based on the statistical study of the surface.  

First, for each pixel on the surface, find the median value of its 8 surrounding 

neighborhood (3×3 window size), then calculate the difference between the pixel value 

and the median value of the neighbors, we use di to represent this value, i=1,2,…, N, 

where N is the total number of pixels on this surface; then draw a histogram chart of all di 

for this surface, identify the standard deviation δ for all  di. In the dynamic filtering 

process, we apply the dynamic median filter several times, for each iteration, we 

recalculate di and δ values, the threshold values are listed in Table 2.3, where δj is the 

recalculated standard deviation at iteration j. The total number of iterations is limited by 
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10, however, the noise removal power is designed to be decreasing when applying more 

iterations. For most cases, after iteration 3, the filter does not remove much noise.  

Table 2.3: Threshold value for each iteration of the dynamic median filter 

Iteration 1 2 3 4 5 6 7 8 9 10 

Threshold 3δ1 3.3δ2 3.6δ3 3.9δ4 4.2δ5 4.5δ6 4.8δ7 5.1δ8 5.4δ9 5.7δ10

 

Figure 2.9 shows an example of comparing the reconstruction results by the 

ordinary median filter and dynamic median filter, this example is selected from a cylinder 

head surface. Figure 2.9 (a) is the raw height map, Figure 2.9 (b) is the height map 

filtered by median filter, and Figure 2.9 (c) is the result filtered by the dynamic median 

filter. It can be seen from the results that, both the median filter and dynamic median 

filter can remove the impulsive noises, but the dynamic median filter can preserve the 

sharpness of the original data better, the median filter blurs the details on the height map 

and smoothes the peaks of the tooling mark. 
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        (a)          (b)         (c) 
Figure 2.9  Compare the results of ordinary median filter and dynamic median filter: 

(a) original surface height map, (b) result filtered by ordinary median filter, (c) result 
filtered by dynamic median filter. 

To better compare the results filtered by the two filters, Figure 2.10 (a) shows a 

column section on the result of applying ordinary median filter, we can see that, the noise 

suppression of the ordinary median filter reduces the sharpness of the tooling marks thus 

affects the fidelity of the surface height map. Figure 2.10 (b) and (c) show the results of 

applying dynamic median filter, it can be observed from the height data after applying 

dynamic median filter in 3 iterations that the sharp peaks/valleys/noises are all removed 

while the tooling marks information is well preserved. By comparing the height data after 

applying dynamic median filter 3 iterations and 10 iterations, we can see that, not too 
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many more peaks/valleys are removed after 3 iterations. This is example is representative 

for the aluminum parts. 
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(c) 
Figure 2.10  Compare the results of ordinary median filter and different iterations of 

dynamic median filter. 

In order to measure the performance of the dynamic median filter, the most 

commonly used parameter: peak signal-to-noise ratio (PSNR) [73] is applied to evaluate 

the goodness of a noise filter. The equations listed below show the calculation logic of 

the PSNR. Where I(i,j) is the pixel height value on the original image, K(i,j) is the pixel 

height value on the reconstructed image, MAXI means the maximum possible height 

value on the original image. PSNR is defined based on the mean squared error, and a 

higher PSNR would normally indicate that the reconstruction is of higher quality.  
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Since in the real world, there is no way to obtain a surface height map without 

noises, therefore, we will simulate an original height map, then intentionally add some 
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noises, then compare the filtered results with the original data. In Figure 2.11 (a), we 

simulated a surface which is similar to the machined surface with tooling marks, in 

Figure 2.11 (b), we added 10% impulsive noise to the original data. Figure 2.11 (c) shows 

the reconstruction height map after applying ordinary median filter. Figure 2.11 (d) is the 

result after applying dynamic median filter. We can see from the images that, the 

dynamic median filter preserves the sharpness of the tooling mark information better than 

the ordinary median filter.  

The PSNR value (calculated base on equation 2.4 and 2.5) of the median filter for 

this example is 19 dB, and the PSNR for the dynamic median filter is 26dB, which 

indicates the dynamic median filter can reconstruct the original data at a higher quality. 

                     (a) 
 

                                  (b) 
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                                  (c)                                   (d) 

Figure 2.11  (a) A simulated image, (b) 10% impulsive noises are added to the image in (a), 
(c) the reconstruction image of applying median filter on (b), (d) the reconstruction image 

of applying dynamic median filter on (b). 

2.2.2.4 Extraction 3D Surface Waviness 

After the previous three steps, 2D Gaussian filter as introduced in section 2.2.1 is 

then applied to extract 3D surface waviness. When 2D Gaussian filter is performed on 

finite-size image, edge distortion occurs, thus in the improved Gaussian filter, the first 

and last half cutoff wavelength is discarded in order to avoid edge distortion. Compared 

to the large dimensions of the surface data (300mm×300mm), discarding less than 1 

millimeter edge data does not prevent us from collecting the entire surface information 

(cutoff wavelength is typically 0.8mm or 2.5mm, less than 1% data is discarded). 

An example of 3D surface raw height data and waviness data extracted by a 

standard 2D Gaussian filter and the improved Gaussian filter are shown in Figure 2.12, 

here in order to show the data clearly, only a small area of the cylinder head surface is 

shown. It can be seen from the results that, standard Gaussian filter is seriously affected 

by the sharp peaks/valleys/noises on the surface; but the improved Gaussian filter is 

robust over these peaks/valleys/noises, thus can extract the surface waviness without 
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distortion. Compared to the raw surface data, surface waviness data reveals purely the 

tooling mark features on the surface. Also, we can see from Figure 2.12 (c) and (d) that 

applying dynamic filters in more iterations will not affect too much of the waviness 

extraction result. 

(a) (b) 

(c) (d) 
Figure 2.12  (a) An example of 3D surface height data, (b) 3D surface waviness extracted 

from the height map in (a) by standard Gaussian filter, (c) 3D surface waviness extracted by 
improved Gaussian filter (using dynamic median filter 3 iterations), (d) 3D surface waviness 

extracted by improved Gaussian filter (using dynamic median filter 10 iterations. 

 In order to compare the results more clearly, a line section on the surface is 

illustrated in Figure 2.13. We can see that, the waviness profile by applying the standard 

Gaussian filter is affected by the peaks/valleys/noises on the surface profile; but the 
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improved Gaussian filter is not affected by these sharp peaks/valleys/noises, and Besides 

the noises, the high frequency components which belong to the roughness regime are also 

clearly separated from waviness. Also, in the noise filtering step, applying dynamic filter 

more than 3 iterations will almost not affect the waviness extraction result. 

(a) 

(b) 
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(c) 

(d) 
Figure 2.13  Compared the waviness extraction results of standard Gaussian filter and 

improved Gaussian filter.  

2.3 Case Study: Severe Tool Wear Detection using 3D Surface Features 

In order to show that surface waviness feature provides important information for 

detecting issues in the machining process, a correlation case study between surface 

waviness feature and tool flank wear is performed in this section. Flank wear occurs on 

the tool flank as a result of abrasion between the machined surface of the workpiece and 
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the tool flank. The metric used to evaluate tool flank wear is VB, the flank wear width, as 

shown in Figure 2.14. When tool gradually loses its edge, the cutting force increases 

significantly with flank wear, and the extra stress involved is then starting to set up 

machine vibrations, creating a periodic variation of tool cutting depth, therefore reducing 

the quality of the surface finish and causing some problems to the workpiece functions, 

e.g., causing serious coolant, oil, or combustion gas leakages of some nominally flat 

mating surfaces in the automotive industry. In addition, flank wear in the corner actually 

shortens the cutting tool thus may introduce dimensional error in machining. Eventually, 

if the amount of flank wear exceeds some critical value, the excessive cutting force may 

cause tool failure.  

 
Figure 2.14  Flank wear observed in cutting tools. 

 

2.3.1 Feature I: 3D Surface Waviness Parameter 

In the correlation study, a 3D surface waviness feature Swa, which is the average 

of the absolute value of waviness profile heights over the sample area, is defined and 
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correlated to tool flank wear. The formula of Swa is: 

M

1 1

1 ( , )
N

wa i i
i j

S w x y
MN = =

= ∑∑  (2.6)

Where ( , )i iw x y  is the waviness surface extracted from the 3D surface height map, 

and MN means the total number of points on the surface. The reason for choosing this 

parameter is that, it can represent the amplitude information for the 3D waviness and 

compared to the extreme parameter (peak-to-valley parameter), it is not that sensitive to 

the noise. 

2.3.1.1 Experimental Results for Aluminum Workpieces 

In the first experiment, a polycrystalline diamond (PCD) insert was used to mill 

samples made by 308 aluminum, which is a hypoeutectic aluminum-silicon alloy widely 

used for die cast automotive powertrain components. A sample part is shown in Figure 

2.15 (a), the 3D surface height map of this part is shown in Figure 2.15 (b). Nine sample 

parts were machined for this correlation study by single tooth face milling at a spindle 

speed of 2000 rpm and a feed rate of 0.1 mm/rev (typical cutting parameters in the 

automotive industry for 308 Aluminum). The cutter lead, axial rake, and radial rake 

angles were all five degrees. The surface samples were generated by cutting two 80mm × 

60mm paths on the top surface in opposite directions, without overlap between the two. 

Between samples, iron blocks were machined to accelerate wear.  

Flank wear VB of the tool used to machine the nine sample parts is listed in Table 

2.4. The microscopic images of a new tool and worn tool with flank wear VB are shown 

in Figure 2.16. In our experiment, tool wear VB was measured manually by selecting the 
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maximum wear distance based on a microscope image of tool’s major cutting edge. 

Based on our experiences, the maximum flank wear a PCD insert can achieve (before 

breakage) is about 180 micron, and if the flank wear of an insert is larger than 150 micron, 

it enters the severe wear phase; if the flank wear of an insert is less than 30 micron, it is 

still in its break-in phase; otherwise, the insert is in its steady wear phase. 

Table 2.4: Tool flank wear of nine sample workpieces. 

Workpiece # Tool Flank Wear VB (µm) Tool Wear Phase 
1 0 Break-in Wear 
2 15 Break-in Wear 
3 25 Break-in Wear 
4 40 Steady Wear 
5 60 Steady Wear 
6 90 Steady Wear 
7 130 Steady Wear 
8 160 Severe Wear 
9 180 Severe Wear 

 
 

 

                   
                           (a)                                                                   (b) 

Figure 2.15  Photo of aluminum parts used in experiment 1. 
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(a) (b) 

Figure 2.16  Microscopic images of PCD tool: (a) new PCD tool, (b) PCD tool with 
flank wear. 

Figure 2.17 shows the 3D surface waviness parameter Swa of the nine machined 

workpieces versus the tool flank wear VB. It can be seen clearly that when the tool enters 

its severe wear phase, Swa value increases rapidly. That is a result of significant tool 

vibration when tool is severely worn. Since tool vibration will also increase the tool wear 

rate [74], they are interacting. Therefore, it can be concluded that the onset of severe tool 

wear can be detected using 3D surface waviness parameter Swa. 

Figure 2.17 3D surface waviness parameter Swa values for nine Al308 sample 
parts versus tool flank wear VB. 
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2.3.1.2 Experimental Results for Compacted Graphite Iron Workpieces 

More experiments were preformed to check the correlation between 3D surface 

waviness parameter Swa value and tool flank wear VB. In these experiments, a multiphase 

coated tungsten carbide insert was used to machine compacted graphite iron (CGI) 

samples, a material commonly used for diesel engines. Two different cutting conditions 

were selected, as shown in Table 2.5.  

Table 2.5: Selected cutting parameters for CGI workpieces. 

 Workpiece 
Material 

Tool Insert  
Type 

spindle 
speed 

feed 
rate 

Maximum 
VB 

Total 
machined 

workpieces 
Experiment 2 CGI Multiphase Coated 

Tungsten Carbide 
700 
rpm 

35mm/
min 

290μm 9 

Experiment 3 CGI Multiphase Coated 
Tungsten Carbide 

470 
rpm 

140m
m/min 

316μm 19 

 Figure 2.18 shows the microscopic images of new carbide insert and the insert 

with some flank wear respectively. Figure 2.19 shows tool flank wear of nine samples 

used in experiment 2 described in Table 2.5.  

  
(a) (b) 

Figure 2.18  Microscopic images of carbide insert: (a) new carbide insert, (b) carbide 
insert with flank wear. 
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Figure 2.19  Tool flank wear of nine sample workpieces in experiment 1. 

Figure 2.20 shows 3D surface waviness parameter Swa versus tool flank wear VB in 

experiment 2 We can see that when the tool enters its severe wear phase, Swa increases 

rapidly, the trend is similar to that observed from the PCD insert machining aluminum 

parts in Figure 2.17.  

 
Figure 2.20 3D surface waviness parameter Swa values for nine CGI sample parts versus 

tool flank wear VB in experiment 1. 
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which make the tool wear more slowly thus more workpieces can be machined until the 

maximum tool wear. Figure 2.21 shows the 3D surface waviness parameter Swa versus 

the tool flank wear VB in experiment 3. It can be seen clearly the result that when tool 

enters its severe wear phase, Swa increases rapidly, which agrees with the results of  

experiment 2 as well as the results of experiment 1 (using PCD insert machining the 

aluminum workpieces). 

Figure 2.21 3D surface waviness parameter Swa values for nineteen CGI sample parts 
versus tool flank wear VB in experiment 2. 

In summary, in the experiments of both using PCD insert on aluminum workpieces 

and using carbide insert on CGI parts, when the tool started to wear, the 3D surface 

waviness parameter Swa first decreased and then stayed steady, and when the tool entered 

its severely wear phase, the Swa value increased rapidly. Reducing spindle speed and 

increasing feed rate wear the tool more slowly, but this change will not affect the 

changing trend of Swa values. In the future implementation on a real production line, a 

suitable threshold can be set according to the cutter types, workpiece materials, cutting 
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parameters and the requirements of surface finish. 

2.3.2 Feature II: Image Intensity Distribution Parameter 

Besides 3D surface waviness feature, there are also some other 3D surface 

features which can be used to correlate to tool flank wear conditions. In this section, we 

studied another 3D surface feature called image intensity distribution parameter.  It is 

generated from the gray image of the machined workpiece surface captured by a 

monochrome camera with a pixel size of 7.4× 7.4 μm2. The illumination system consists 

of 24 LEDs specially designed to produce uniform illumination and wide angular 

distribution of the incident light so that small features on the surface can be captured by 

the camera. 

The pixels of the gray image are represented in 256 gray levels (0~255).The gray 

levels are equally divided into 51 non-overlapping categories: [0, 5, 10, … , 255]. The 

number of pixels at category i is denoted by ni and the total number of pixels N = n1 + n2 

+…+ n51. Then the gray-level intensity histogram is normalized and regarded as a 

probability distribution: 

51

1
/ , 0, 1i i i i

i
p n N p p

=

= ≥ =∑  (2.7)

According to equation 2.7, a histogram chart showing gray-level intensity 

probability distribution can be generated. The histogram charts of part #2 surface 

(machined by the tool in the break-in wear phase), part #5 (machined by the tool in the 

steady wear phase) and part #9 surface (machined by the tool in the severe wear phase) 

are shown in Figure 2.22. 
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Figure 2.22  Image intensity histograms of part#2 (machined by break-in wear 
tool), part# 5 (machined by steady wear tool) and part#9 (machined by severe 

wear tool). 

It should be noticed that the intensity level of an image is highly dependent on the 

reflectance, color and specularity of the surface, thus the intensity itself of a surface is not 

a good indicator for tool condition. However, as the tool wears and its edge becomes 

rounded, both the peaks and valleys of the machined surface become flattened and 

deformed. Also, small chips may adhere to the part surface and make the surface exhibit 

more irregularities in the reflection pattern compared to a part surface produced by the 

new tool. As a consequence, when tool wear increases, the gray-level intensity 

probability distribution of the workpiece surface has a lower peak and spreads broader as 

shown in Figure 2.22. Therefore, the total number of non-zero probability categories 

could perform as a good indicator for tool wear detection.  

Figure 2.23 shows the total number of non-zero probability categories of the 

sample parts machined by the PCD insert with different flank wear. As can be seen, when 
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tool enters severe wear phases, the total number of non-zero probability categories 

increases rapidly. 

Figure 2.23  Total number of non-zero probability categories of intensity histogram 
versus tool flank wear. 

2.3.3 Feature III: 3D Peak-to-Valley Height 

Another 3D surface feature which varies with tool wear is 3D peak-to-valley 

height. As the cutting edge becomes more rounded and the flank wear becomes larger, 

there will be increased plowing on the workpiece surface which flattens surface peaks 

and valleys, hence reduces the surface peak to valley height.  

An extreme parameter: height difference between the highest peak and the lowest 

valley within the surface sample area is too sensitive to the noise. Instead of using that, a 

statistical extreme parameter is calculated as the average value of the absolute height of 

the five highest peaks and the absolute depth of the five deepest valleys within the sample 

area, as shown in the following formula: 
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Where ( , ) ( , ) ( , )i i i i i ix y z x y f x yη = − is the residual surface, which is the 

difference between the original surface ( , )i iz x y and the reference datum ( , )i if x y . The 

reference datum is a least squares mean plane of the original 3D surface height data. 3D 

peak-to-valley height parameter is a peak definition dependent parameter, and the value 

is determined by the numbers of neighboring points involved in the calculation. Thus it is 

necessary to specify the definition of a peak/valley. In this calculation, a peak/valley is 

defined based on the nearest eight neighbors, that is to say, for a pixel, first find its 

immediate eight neighbor pixels, if the height value of this pixel is larger than the height 

values of all the eight neighbors, this pixel is defined as a peak; if the height value of this 

pixel is smaller than the height values of all the eight neighbors, this pixel is defined as a 

valley. After finding all the peaks and valleys on the sampled surface area, the top five 

highest peaks and top five deepest valleys are selected for calculating Sz in equation 2.8. 

Figure 2.24 (a) and (b) show 3D height maps of the surface machined by the new 

PCD tool (part #1) and by the worn PCD tool (part# 9) respectively after the data 

processing. In order to clearly see the difference between these two surface maps, small 

region with the size of 40 50mm mm× is shown.    
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(a) 

 
(b) 

Figure 2.24 (a) 3D height map of the surface machined by new tool 
(part#1) (b) 3D height map of the surface machined by worn tool 

(part#9), the region shown has a size of 40mm× 50mm. 
 

Figure 2.25 shows the ten-point peak-to-valley height Sz of the nine sample 

workpieces calculated using equation 2.8 versus the corresponding tool wear metric VB. 

The correlation coefficient between the ten-point peak-to-valley height Sz and tool wear 

metric VB is equal to -0.941. This means that the two variables are highly correlated. 
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Therefore, the 3D surface parameter Sz can be used as a good indicator to monitor tool 

wear conditions and determine tool change time. But it is defined based on the extreme 

peaks and valleys, which might be too sensitive to the peaks/valleys/noise, thus may 

generate some false alarms. 

Figure 2.25 Surface ten-point peak-to-valley height versus tool wear VB. 

2.4 Conclusions 

In this chapter, an improved Gaussian filter was designed to accurately extract 3D 

surface waviness information from the surface height map measured by the large field of 

view holographic interferometer. The improved Gaussian filter was specially designed to 

improve the performance of a standard Gaussian filter when applying on a surface which 

has large form distortion and lots of sharp peaks/valleys and measurement noises. In this 

chapter we described each step in the improved Gaussian filter in detail and compared the 

waviness extraction results using the standard Gaussian filter and the improved Gaussian 
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filter, the results show that the improved Gaussian filter is more robust over the noises 

and can extract true surface waviness.  

In order to show that 3D surface waviness provides important information for 

detecting errors in the machining process, a correlation case study between surface 

waviness parameter and tool flank wear is performed. The experimental results show that 

the 3D surface waviness parameter Swa is a good indicator for detecting severe tool wear 

in the machining process. Besides surface waviness parameter, two other 3D surface 

features are also clearly defined and tested, and they can both be used to detect the onset 

of the severe tool wear. 
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CHAPTER 3 
3D SURFACE DECOMPOSITION AND MULTIPLE-SCALE 

SURFACE FEATURE EXTRACTION 

3.1 Introduction 

Besides roughness, waviness and form, a surface can be decomposed into finer 

frequency bands. Separating a surface into different frequency bands properly has been 

an important research topic for decades. Raja et al. [3] reviewed the recent filter 

techniques used in the separation of roughness, waviness and form. They studied the 

advantages and disadvantages of the filter techniques like 2RC [1][22][4][5], Gaussian 

[22][6][7][8][9], and several newer research methods such as the spline[10][11], 

morphological[12][13], and wavelet[14][15][16][17][18][19]. In addition to these 

methods, Fourier transforms [75][76] are also used to decompose surface data into 

different frequency components. However, during Fourier transforming to the frequency 

domain, spatial information is lost. The short-time Fourier transform was invented 

[77][78] to solve this problem, and provides some information about both where and at 

which frequencies an issue occurs. But the decomposed resolution is determined by the 

size of the window, which is the same for all frequencies. 

Wavelet transform is a mathematical method that can separate a given function into 

different frequency bands and study each band with a spatial resolution that matches its 

scale. This special property perfectly meets our need for decomposing a surface into 
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multiple-scale subsurfaces. In wavelet analysis, a signal is decomposed into a series 

frequency bands using a family of wavelet bases. Large-scale bases represent low 

frequency components while small-scale bases represent high frequency components. 

Therefore, wavelet filter is selected as the basic method in this chapter to decompose an 

engineering surface into multiple-scale subsurfaces, large scale wavelet bases will be 

chosen for separating low frequency components while small scale bases will be selected 

for separating high frequency components. 

The development of wavelets can be linked to several separate trains of thought, 

starting with Haar's work in the early 20th century [79]. Notable contributions to wavelet 

theory include Zweig’s discovery of the continuous wavelet transform in 1975 [80] and 

Daubechies’ orthogonal wavelets with compact support in 1988 [81][82].  

More recently, many researchers have developed wavelet techniques and applied 

them to characterize surface functions [19][83][84][85][86][87][88][89][90]. Raja et al. 

[85] compared different wavelet bases from two basic categories: orthogonal and 

biorthogonal wavelets, and concluded that biorthogonal 6.8 wavelet bases have very good 

amplitude and linear phase transmission characteristics when applied to engineering 

surfaces. Stout et al. [19] proposed a lifting wavelet representation for extraction of 

different frequency components of a surface according the intended requirements of 

functional analysis. Josso et al. [86] developed frequency normalized wavelet transform 

for surface roughness analysis and characterization. Olortegui-Yume et al. [88] studied 

crater wear patterns and their evolution on a series of multi-layer coated tools after 

machining based on the techniques of multi-scale 1D and 2D wavelets to eliminate noise 

and to decouple the large/small scale wear features. Li et al. [89] proposed an in-line 
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quality inspection method to detect seams, a major type of surface defect in rolling. They 

used a 1D discrete wavelet transform to extract the features of the images of suspect 

seams (converted to 1D sequence), and established a T2 control chart to discriminate 

between real seams and false positives.  

In most of the previous researches, surface has been characterized with 2D 

parameters based on the data measured by a profilometer or similar methods. However, 

sometimes the 2D parameters are inadequate or not capable of characterizing all surface 

attributes of engineering significance [23]. In particular, a set of parameters for 

characterizing 3D surface texture needs to be developed and applied to diagnose 

corresponding manufacturing processes. Moreover in recent years, with the invention of 

optical interferometers, extracting parameters for 3D surfaces has become more feasible. 

Dong and Stout et al. [22][23][24][34][35][36][37] have done some researches on 

extending the 2D parameters to characterize 3D surface. They also reported in another 

paper [91] that the wear rate of surfaces in operational service can be determined by 

roughness, waviness and the multi-scalar topographical features of the surfaces, such as 

random peak/pits and ridge/valleys. Zeng et al. [92] developed a dual-tree complex 

wavelet transform technique to separate and extract frequency components such as 

surface roughness, waviness and form. These researches have made significant 

contributions to 3D surface function characterization.  

Nevertheless, it is impossible to have all the data to define accurately the 

“functionality” of a workpiece surface to predict how it will perform. Most of the 

previous works were focused on tribological properties for the rotational or moving 

components [22][24][34][35][36][37][38][39][40][41][42][91][92]. And these works 
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were more focused on the 3D small scale surface features from roughness domain. There 

is little work done on extracting 3D surface features from middle frequency domain 

(waviness domain) and utilizing these features to characterize surface functional 

performance such as sealing property, or to defect machining errors, such as tool wear, 

tool breakage.  

In this chapter, we focus on extracting surface features from large machined surface 

(e.g., 300mm×300mm). The method of applying 2D wavelets to decompose 3D surface 

height map into multi-scale subsurfaces is first developed and demonstrated on actual 

machined part. When applying 2D wavelets to decompose a large 3D surface, a two-

channel filter bank diagram is proposed to enable the separate filtering of successive 

profile in one direction, followed by the same operation in the other, thus greatly 

simplifies the implementation and brings computational efficiency and conceptual 

simplicity. We also discuss two issues in the 3D surface wavelet decomposition process: 

(1) border distortion elimination and (2) the linkage between wavelet scale and its 

physical dimension. These issues are important when using 2D wavelets to decompose an 

engineering surface.  

Because it is impossible for the surface feature parameters to characterize all the 

surface functional aspects, the parameters discussed in this chapter are focused on some 

significant functional property of a flat mating surface, e.g., sealing property. Also some 

amplitude and energy parameters will be defined and used to detect the machining errors, 

e.g., abrupt tool breakage. In these case studies, the surfaces of actual automotive parts 

are decomposed into multiple-scale subsurfaces, and selected 3D feature parameters are 

extracted from different subsurfaces and applied to predict surface functions and detect 
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errors in the machining process. 

The rest of this chapter is organized as follows: Section 3.2 first presents the 

method of applying wavelets to decompose 3D surface height map into multi-scale 

subsurfaces. In section 3.3, several case studies are reported, which demonstrate that the 

3D multiple-scale surface features extracted using 2D wavelets are good indicators for 

surface functional performances prediction and machining errors detection. This chapter 

is summarized in section 3.4.  

3.2 Application of Wavelets to Surface Decomposition 

3.2.1 One-dimensional Discrete Wavelet Surface Profile Decomposition 

Wavelet transform is a mathematical method used to divide a given function into 

different frequency components and study each component with a resolution that matches 

its scale. A wavelet is a waveform of effectively limited duration that has an average 

value of zero. A mother wavelet is a finite energy function (square integrable) ( )xψ  with 

zero mean [80]: 

2( ) , ( ) 0x dx x dxψ ψ
∞ ∞

−∞ −∞

< ∞ =∫ ∫
 

(3.1)

A family of wavelets can be obtained by scaling and translating the mother wavelet 

with a scale factor s and a translation factor t:  

,
1( ) ( )t s

x tx
ss

ψ ψ −
=

 
(3.2)

A wavelet transform is defined as the sum over time of the signal multiplied by 

scaled, shifted versions of the mother wavelet function ( )xψ . The Discrete Wavelet 
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Transform (DWT) is most commonly used in digital signal and image analysis, where the 

scale factor s and translation factor t are sampled at discrete steps. Mallat [80] developed 

an efficient way to sample the scale factor s and translation factor t based on powers of 

two (so called dyadic sampling), that is 2 ks −= and t i s= ⋅ , where 1, 2,...,i N= and N is the 

number of discrete steps. According to Mallat’s method, a family of discrete wavelets can 

be written as [80]: 

/ 2
, [ ] 2 (2 ) , ( 1, 2,..., )k k

i k n n i n Nψ ψ= − = (3.3)

The one dimensional DWT of a function [ ]f n can be written as: 

*

1
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(3.4)

Assuming the scale level is J, then the discrete scaling function at scale 2J is defined 

as [80]: 

/ 2
, [ ] 2 (2 ) , ( 1, 2,..., )J J

i J n n i n Nφ φ= − = (3.5)

Actually, a scaling function is a square integrable function (with zero mean), and 

for all k Z∈ , , [ ]i k nφ  is an orthonormal family, and a multiresolution approximation is the 

vector space generated by this family of functions. 

Thus, the low frequency approximation of a function [ ]f n  is: 
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(3.6)

[ ]f n  can then be decomposed into an approximation and multiple scale details: 
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A 1D surface profile data from a cylinder head surface measured by a Taylor 

Hobson Profilometer and sampled at 4 micron intervals for a length of 40 mm, is used as 

an example. The linear trend of the profile was first removed by least squares fitting to 

yield the data shown in Figure 3.1 (a). The Fourier spectrum of this profile is shown in 

Figure 3.1 (b), and the spectrum shows that there are two dominant frequencies present in 

the profile, one at 0.025 cycle/mm (long wavelength) and the other at 0.325 cycle/mm 

(short wavelength). No other structure in the signal is evident.  

 
(a) 

 
(b) 

Figure 3.1 An example of 1D profile data measured from a cylinder head surface, (b) 
Fourier spectrum of profile data in (a). 

For comparison, multi-scale wavelet decomposition is applied to the same profile 

data by using the filter bank on the low-pass data profile recursively. Assuming the 

profile is decomposed into 12 levels, the decomposition logic is shown in equation 3.8, 

where s is the profile (signal), ai stands for approximation signal at level i, di stands for 

detail signal at level i. 
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The multi-scale wavelet decomposition basically consists of two processes: filtering 

and down-sampling. A diagram for 3-level 1D wavelet decomposition is shown in Figure 

3.2. The process is iterative, with successive approximations being filtered by the low-

pass filter (LP) and high-pass filter (HP), so that the signal can be broken down into an 

approximation and multiple details eventually. A down-sampling process is applied to 

make the data length of the approximation and detail half the length of the previous 

approximation, thus to keep the total length of the decomposed data the same as that of 

the original data. This down-sampling does not discard any information if the 

representation is orthogonal [80].  

Figure 3.2 Multi-scale filter bank diagram for 1D wavelet decomposition. 

Figure 3.3 shows the results of the wavelet decomposition of the profile in Figure 

3.1 (a), the results contain one approximation sub-profile and 12 detail sub-profiles. In 

this study, a biorthogonal 6.8 wavelet is used, since Raja’s precious work on 1D wavelet 
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decomposition showed that biorthogonal 6.8 wavelet has good amplitude and linear phase 

transmission characteristics for analyzing engineering surfaces [85].  

In this example, the surface profile is decomposed into 12 levels. Detail at level 12 

(d12) corresponds to the largest scale (lowest frequency) component and detail at level 1 

(d1) corresponds to the smallest scale component. The approximation a12 shows some low 

frequency surface distortion, the detail d12 represents the coarse tooling marks, and other 

small scale features of the surface are well separated. From this example, we can see that 

Fourier transform analysis treats all frequency components with an equal resolution in 

both the spatial and frequency domains, but wavelet transform decomposes data into 

multiple scale (frequency) components and permits study of each component with a 

resolution that matches its scale, which provides more information to predict surface 

functional performances or detect errors in the machining process.  
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Figure 3.3 1D wavelet decomposition example. 

3.2.2 Extend Discrete Wavelet to Decompose Three-dimensional Surfaces  

In this section, 1D wavelet function is extended to decompose three-dimensional 

surface. The extension is quite straightforward, the 2D function can be defined as a tensor 

product of 1D function. The scaling function is given by: 

(3.9))()(),( yxyx φφφ =
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The difference between 1D and 2D wavelet is that, instead of one wavelet function, 

the 2D wavelet has three wavelet functions in the horizontal, vertical and diagonal 

direction respectively, which can be defined as: 

( , ) ( ) ( ),
( , ) ( ) ( ),
( , ) ( ) ( ).

H

V

D

x y x y
x y x y
x y x y

ψ φ ψ

ψ ψ φ

ψ ψ ψ

=

=

=  
(3.10)

To implement 2D wavelet on 3D surface decomposition, Figure 3.4 proposes a 

multi-scale two-channel filter bank algorithm. The basic idea is the same as one 

dimensional wavelet filter bank shown in Figure 3.2. The difference is that the rows and 

columns of the surface are filtered and down-sampled perpendicularly (two-channel). 

This decomposition strategy is especially designed for a surface map with large amount 

of data points, which can largely reduce the number of arithmetic operations to calculate 

the convolution sum, thus speed up the whole calculating process. 

Figure 3.4 Multi-scale two-channel filter bank diagram for 2D wavelet decomposition. 

The cylinder head surface shown in Figure 3.5 (a) is an example of applying 2D 

wavelets on 3D surface decomposition. This surface height map was measured using the 
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holographic interferometer developed by Coherix Inc. [43] as we introduced before. In 

order to show the details on the surface clearly, only a part of the surface is selected, as 

shown in Figure 3.5 (b). In this example, the biorthogonal 6.8 wavelet is still used. The 

original surface is decomposed into approximation subsurface 1A  and 3 detail subsurfaces

1
VD , 1

HD  and D
1D in the horizontal, vertical and diagonal directions respectively. Then the 

approximation subsurface 1A  is decomposed again into the next level approximation and 

detail subsurfaces. This decomposition process is performed recursively as shown in the 

decomposition logic in equation 3.11.  

  
 

(a) (b) 

Figure 3.5 (a) 2D height map of a cylinder head surface, (b) part of the height map 

in (a) selected as wavelet decomposition example. 
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Figure 3.6 (a) shows the 2D view of the approximation subsurface A3 and then A3 is 

decomposed into the next level approximation subsurface A4 and detail subsurfaces

4 4 4, ,H V DD D D in the horizontal, vertical and diagonal directions. Figure 3.6 (b) shows a 2D 

view of A4 and Figure 3.6 (c) shows a summation of the detail subsurfaces 4 4 4
H V DD D D+ + .  

(a) (b) (c) 

Figure 3.6 2D wavelet decomposition example: (a) approximation subsurface A3, (b) 

approximation subsurface A4, (c) detail subsurface 4 4 4
H V DD D D+ + . 

We can see from the approximation subsurface A3 that the tooling marks of the 

machined surface are not separated from the surface form yet, but from the 

approximation subsurface A4, it can be seen that the tooling marks (shown in the detail 
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subsurface) of the surface were separated from the surface form (shown in approximation 

subsurface) completely.  

Figure 3.7 shows a 3D view of the decomposition results, we can see more clearly 

that the tooling marks are totally separated at the decomposition level 4.  

(a) (b) 

(c) (d) 

Figure 3.7 3D view of 2D wavelet decomposition example: (a) original surface data, (b) 

approximation subsurface A3, (c) approximation subsurface A4, (d) summation of  

detail subsurfaces 4 4 4
H V DD D D+ + . 
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3.2.3 Eliminate Border Distortion in 2D Wavelet Decomposition 

The algorithm for 2D discrete wavelet decomposition is basically a convolution, 

and when a convolution is performed on finite-size images, border distortion occurs. The 

distortion is even worse when the surface is an engineering surface, since the border of an 

engineering surface is complicated, and it is not a regular shape, such as a rectangular. To 

eliminate border distortion, extension of borders for the original height map is needed 

before the decomposition and truncation is necessary after the decomposition.  

There are several border extension methods, such as zero padding, symmetrical 

padding, smooth padding, and periodic padding [93]. In this study, the simplest extension 

method, zero padding, is applied, because it is impossible to predict the height value 

outside the border and the height value outside the border will be truncated afterwards. 

By using zero padding method, it is assumed that the height value of the 3D surface is 

zero outside the original support.  

In the truncation step, a simple method is developed: multiplying the decomposed 

subsurface with a surface mask. The surface mask is obtained from the original height 

map, in which pixels with valid height values are assigned a binary value of 1, while 

pixels without valid height values are assigned a binary value of 0. Figure 3.8 (b) shows a 

mask for the surface shown in Figure 3.5 (b). Figure 3.8 (a) and (c) show the subsurface 

before and after border distortion removal. It can be seen from the result that the border 

distortion effect can be completely eliminated by this simple extension and truncation 

method. 
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(a) (b) (c) 

Figure 3.8 Border distortion elimination: (a) approximation subsurface A3 before removal 

of border distortion, (b) surface mask obtained from original surface, (c) approximation 

subsurface A3 after removal of border distortion. 

3.2.4 Transformation between Wavelet Scale and Physical Dimension 

The wavelet analysis is not spatial frequency view of a signal, but scale view of a 

signal. There is a correspondence between wavelet scales and frequencies as revealed by 

wavelet analysis: 

Small scale s => compressed wavelet => high frequency ω, 

Large scale s => stretched wavelet => low frequency ω.  

Besides the correspondence, there is a need to quantify this relationship: build a 

connection between the scale of the wavelet at each decomposition level and the physical 

dimension (spatial frequency/period). The quantified relationship can play the role of 

guidance in the applications.  
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A method of quantifying this relationship using the center frequency Fc of the 

wavelet is proposed as: 

1Pseudo-frequency: ; Physical dimension :c
s s

s

FF D
s F

= =
⋅Δ  

(3.12)

Where s is the scale, Δ is the sampling period of the original data, Fc is the center 

frequency of a wavelet, Fs is the pseudo-frequency corresponding to the scale s and Ds is 

the physical dimension (pseudo-period) of scale s. The idea is to associate with a given 

wavelet a purely periodic signal of frequency Fc.  

Figure 3.9 shows an example of fitting the center frequency of a wavelet with a 

periodic signal. The center frequency-based approximation captures the main wavelet 

oscillations, so the center frequency is a representative characterization of the leading 

dominant frequency of the wavelet. If we associate the frequency Fc to the wavelet 

function, then when the wavelet is dilated by a scale factor s, this center frequency 

becomes Fc / s. Lastly, if the underlying sampling period is Δ, it is natural to associate to 

the scale s the frequency: /s cF F s= ⋅Δ . In our case, the sampling period of the original 

surface height map Δ=0.15mm.  

 
Figure 3.9 Fitting the center frequency of a wavelet with a periodic signal. 
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Figure 3.10 Transformation chart between the scale and its physical dimension (pseudo-

period). 
 

Table 3.1: Transformation between scale and the physical dimension (pseudo-period) 

 

Level 1 2 3 4 5 6 7 8 
Scale 2 4 8 16 32 64 128 256 

Pseudo-period (mm) 0.39 0.78 1.57 3.14 6.28 12.55 25.10 50.20
  

Table 3.1 and Figure 3.10 show the transformation between the scale s and the 

corresponding pseudo-period (mm) of the biorthogonal 6.8 wavelet, assuming the 

decomposition levels is 8. Consequently, by using equation 3.12, a connection between 

the scale of the wavelet and the physical dimension at each decomposition level can be 

built, thus people can have a general sense of the leading dominant frequency of a 

wavelet. 
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3.3 Case Studies of Machined Surface Analysis Based on Features 
Extracted from Multi-scale Subsurfaces 

A three-dimensional machined surface can be separated into different frequency 

bands using wavelet decomposition algorithm developed in the previous sections. By 

analyzing multiple-scale subsurfaces, we can map appropriate subsurfaces (frequency 

bands) to the machining process steps which produce the surface and detect errors in the 

manufacturing process. We can also use the multi-scale subsurface features to predict the 

functional performance of the surface. In this section, we will show how we extract the 

important surface features from the multi-scale subsurfaces and use these features from 

different scales to detect machining conditions, such as abrupt tool breakage, chatter, and 

also to predict some important surface functions, such as non-clean up of rotating parts 

and possible leak path of mating/sealing surfaces. 

3.3.1 Case Study 1: Abrupt Tool Breakage Detection 

In this case study, an example is given to demonstrate the detection of abrupt tool 

breakage using selected feature parameters extracted from subsurfaces based on wavelet 

decomposition. In this example, 16 sample V6 cylinder head joint surfaces are studied. 

One of the parts, part 10, was machined by a tool which broke during the cut. The 

original surface height maps for part 1, cut without incident, and part 10 are shown in 

Figure 3.11 (a) and (b). From the original surface, we cannot tell which surface was 

machined by a broken tool arbitrarily.  

2D wavelets are then used to decompose the cylinder head surfaces. Figure 3.11 (c) 

and (d) show the subsurface 4 4 4
H V DD D D+ + of part 1 and part 10 respectively (at level 4). 

From the subsurfaces, the parts which were machined by a good tool or a broken tool can 
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be clearly discriminated. 

(a) (b) 

  

(c) (d) 

Figure 3.11 (a) Original surface height map of part 1, (b) original surface height map of part 10, (c) 

detail subsurface 4 4 4
H V DD D D+ + of part 1 (at level 4), (d) detail subsurface 4 4 4

H V DD D D+ + of part 10 

(at level 4). 

In the following steps, several features (parameters) are defined and extracted to 

detect tool breakage. 

Let ( , )f x y be the original surface of size M×N, and ( , )d x y be the decomposed 

detail subsurface of 4 4 4
H V DD D D+ + at level 4. The first parameter St is a statistical 

extreme parameter, calculated as the average value of the absolute height of the five 

highest peaks and the absolute depth of the five deepest valleys on the detail subsurface
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4 4 4
H V DD D D+ + , as shown in equation 3.13 below. In this calculation, the peak is defined 

based on the nearest 5×5 neighbors. 

5 5

1 1

1 ( , ) ( , )
5t p i i v i i

i i
S d x y d x y

= =

⎛ ⎞
= +⎜ ⎟

⎝ ⎠
∑ ∑

 
(3.13)

The second parameter Sa is a statistical average parameter, which is defined as the 

average of the absolute value of profile heights over the detail subsurface 4 4 4
H V DD D D+ + : 

1 1

1 ( , )
N N

a i i
i j

S d x y
MN = =

= ∑∑
 

(3.14)

In this case study, we also use the energy function to identify a texture pattern. At a 

decomposition level j, the wavelet decomposition results in four subsurfaces: one 

approximation subsurface ( , )j
LLf x y , and three detail subsurfaces ( , )j

LHf x y , ( , )j
HLf x y ,

( , )j
HHf x y , which represent the horizontal, vertical and diagonal directional subsurfaces. 

The energy function of each decomposed subsurface can be calculated as follows:  

The energy of the approximation subsurface at level J: 

2[ ( , )]J J
a LL

x y
E f x y=∑∑

 
(3.15)

The energy of the horizontal detail subsurface at level j,  j=1,2,…,J. 

2[ ( , )]j j
h LH

x y
E f x y=∑∑

 
(3.16)

The energy of the vertical detail subsurface at level j, j=1,2,…,J. 

2[ ( , )]j j
v HL

x y
E f x y=∑∑

 
(3.17)
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The energy of the diagonal detail subsurface at level j, j=1,2,…,J. 

2[ ( , )]j j
d HH

x y
E f x y=∑∑

 
(3.18)

The total energy of the subsurface at level J is give by: 

1 1 1

J J J
J j j j
a h v d

j j j
E E E E E

= = =

= + + +∑ ∑ ∑
 

(3.19)

The energy parameters defined and applied in this case study are: 
4

4 a
a

EE
E

= , the 

normalized energy of the approximation subsurface at level 4; 
4

4 h
h

EE
E

= , the normalized 

energy of the horizontal detail subsurface at level 4; 
4

4 v
v

EE
E

= , the normalized energy of 

the vertical detail subsurface at level 4; 
4

4 d
d

EE
E

= , the normalized energy of the diagonal 

detail subsurface at level 4; 4 4 4 4 4
t a h v dE E E E E= + + + , the total normalized energy of the 

approximation subsurface and detail subsurfaces at level 4.  

Figure 3.12 shows the plots of: (a)-(b), St and Sa as defined in euqation 3.13 and 

3.14; (c)-(g), energy parameters at wavelet decomposition level 4: (c) 4
tE total 

normalized energy, (d) 4
aE normalized energy of the approximation subsurface, (e)-(g)

4
hE , 4

vE  , 4
dE  normalized energy of the detail subsurfaces in the horizontal, vertical and 

diagonal directions. 
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(a) 

 
(b) 

 
(c) 
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(d) 

 
(e) 

 
(f) 
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(g) 

Figure 3.12 (a)-(b), plots of parameter St and Sa as defined in function 3.13 and 3.14, (c)-(g), 

plots of energy parameters at wavelet decomposition level 4: (c) 4
tE total normalized energy, 

(d) 4
aE normalized energy of the approximation subsurface, (e)-(g) 4

hE , 4
vE  , 4

dE  normalized 

energy of the detail subsurfaces in the horizontal, vertical and diagonal directions. 

 

As shown in Figure 3.12(a) and (b), both the St and Sa values calculated from the 

detail subsurface height are good indicators to detect the defective part, part 10. The plots 

of the energy parameters in Figure 3.12 (c) and (d) indicate that the total normalized 

energy 4
tE and the normalized energy of approximation subsurface 4

aE  at level 4 are not 

good indicators of surface detail condition changes caused by the broken tool, since the 

approximation subsurface is a smooth subsurface of the original surface and it only 

reveals the wavelength components larger than 3.14mm. Also the total energy 4
tE is not 

sensitive to the detail change because the approximation subsurface holds most of the 

energy. On the other hand, Figure 3.12(e), (f), (g) shows that the energy of the detail 

subsurfaces 4
hE , 4

vE and 4
dE are all good indicators, especially the subsurfaces in the 
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vertical direction, since the tooling marks are almost along the vertical direction.  

Based on these results, we can conclude that the selected height or energy 

parameters extracted from wavelet decomposed subsurfaces can reveal surface texture 

changes caused by machining errors such as abrupt tool breakage, and can be used to 

monitor cutter conditions and to check for proper setup after a cutter change. 

3.3.2 Case Study 2: Chatter Detection 

Chatter in machining can cause scrap, tool breakage, and machine damage. Chatter 

can be detected based on the analysis of decomposed subsurfaces. As an example, we 

consider the machining of a compacted graphite iron (CGI) plate using a cutter with 

multiphase coated tungsten carbide inserts.  

An example of surface height map of a part for which chatter occurred is shown in 

Figure 3.13 (a). When the surface is decomposed using biorthogonal wavelet 6.8 to 8 

levels, the detail subsurfaces at level 5, which shows the features with scale between 3.14 

to 6.28 mm, revealed the chatter marks most clearly. The approximation subsurface A5 is 

shown in Figure 3.13 (b) and the summation of the detail subsurfaces 5 5 5
H V DD D D+ + is 

shown in Figure 3.13 (c). We can see from the figures that the chatter marks can be 

completely separated from the surface form at level 5.  

Further, a threshold can be set up to filter out only the chatter marks on the surface, 

as shown in the binary image of Figure 3.13 (d), where the white pixels (with value 1) 

show the pixels on the chatter marks. Therefore, if chatter occurs, it can be detected 

rapidly from the decomposed subsurfaces. The efficacy of countermeasures can also be 

easily assessed using this method. 
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(a) 

 

(b) 

 

(c) 

 

(d) 

Figure 3.13 Example of chatter detection using wavelet decomposition: (a) original 

surface, (b) approximation subsurface A5 (at level 5), (c) detail subsurface 5 5 5
H V DD D D+ +

(at level 5), (d) binary image shows the chatter marks (in white pixels). 
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3.3.3 Case Study 3: Cylinder Head Mating/Sealing Surface Leak Paths 
Detection 

This case study illustrates the application of wavelet decomposition to predict 

possible gasket leak paths for a cylinder head mating surface (deck surface). Leakage is 

always a serious concern for surfaces manufactured to contain pressurized gases in 

engine, compressor, and similar applications. Leakage in an internal combustion engine 

can lead to compression loss, power reduction, and engine overheating. Typically, a 

conformable interface (gasket) is applied to provide sealing between the rigid engine 

block and the engine head, thus to prevent leakage from or into the joined objects while 

under compression [94][95]. In this type of interface, long wavelengths (form distortion) 

can be tolerated by the conformability of the gasket material. Furthermore, some 

roughness effects can be tolerated [96]. However, the presence of significant middle 

wavelengths (large waviness peak-to-peak variation) cannot be tolerated and may result 

in highly localized contact and leakage. 

In current practice, surface leakage is detected by measuring a limited number of 

points along the combustion chambers, using a Coordinate Measuring Machine (CMM), 

which is not reliable. The wavelet method we proposed is based on the large field of view 

holographic interferometer height map, which can measure the entire mating surface 

within 2 minutes [43] (surface larger than 300mm×300mm requires stitching of multiple 

images) and provide comprehensive information for the leak paths detection. 

An example of a cylinder head surface height map is shown in Figure 3.14 (a). This 

cylinder head surface passed the leaking test by CMM, but still has serious leaking 

problem. We decompose the surface using biorthogonal wavelet 6.8 into 8 levels, and the 
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detail subsurfaces at level 4, which contain the features with the physical dimension 

between 1.57 to 3.14 mm, reveal the tooling marks on this surface most clearly. It can be 

seen from Figure 3.14 (b) that the darker color (red and blue alternating) shows the 

tooling marks with the largest peak-to-peak variation. The larger the peak-to-peak values 

of the tooling marks, the higher the possibility of leakage.  

(a) (b) (c) 
Figure 3.14 (a) Height map of cylinder head mating surface (b) sumation of detail 

subsurfaces 4 4 4
H V DD D D+ + (at level 4), (c) possible leak paths (highlight in red) along the 

combustion chambers. 

To better assess possible leak paths, three paths around the combustion chambers of 

the surface are selected as shown in Figure 3.14 (c). Take path 1 as an example, Figure 

3.15 shows the wavelet decomposition results of path 1. The detail sub-profile at 

decomposition level 4 reveals tooling marks most clearly, and is selected for the next step 

of analysis. The total length of this path is 320 mm, which is divided into 32 sections, 10 

mm for each section. The peak-to-peak variation is calculated for each section as shown 

in Figure 3.16. A customer defined threshold can be set up (5 micron in this case study), 
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and if more than 3 consecutive peak-to-peak values are larger than the threshold, which 

means over 30mm length of the path has peak-to-peak variation larger than 5 micron, the 

section is flagged as a possible leaking path. The result of this case study is shown in 

Figure 3.14 (c), where thick red lines mark possible leak paths along the cylinder head 

combustion chambers. 

 

Figure 3.15 Wavelet decomposition results of path 1 around the cylinder head combustion 

chambers. 
 

 

Figure 3.16 Peak-to-peak variation (sample length of 10mm) of detail sub-profile at level 4. 
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3.3.4 Case Study 4: Transmission Clutch Piston Surface Non-clean Up 
Region Detection 

In case study 4, we consider the detection of non-clean up (non-machined) regions 

of a surface. Non-cleanup occurs due to casting dimensional variations, improper 

clamping, or improper tolerance stackups. In this case study, a transmission clutch piston 

surface is selected as an example. As shown in Figure 3.17 (a), the left lower corner of 

this surface was not machined as intended. Compared to the machined surface, the non-

machined (cast) surface has higher roughness. Therefore, we decomposed the height map 

shown in Figure 3.17 (b) using biorthogonal wavelet 6.8.  Figure 3.17 (d) shows the 

summation of the detail subsurfaces 1 1 1
H V DD D D+ + at level 1, which contains features 

with scale less than 0. 39 mm. This detail subsurface shows the non-clean up region most 

clearly.  

 

(a) 
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(b) (c) 

  

(d) (e) 

Figure 3.17 (a) Gray image of a non-clean up transmission clutch piston surface, (b) 

heght map of the piston surface, (c) approximation subsurface A1 (at level 1), (d) the 

summation of detail subsurfaces 1 1 1
H V DD D D+ + (at level 1), (e) binary image which shows 

the non-clean up region in white pixels. 

For further analysis, the non-clean up region can be automatically detected by 

setting up a threshold. Figure 3.17 (e) shows a binary image in which the pixels in the 

non-cleanup region are assigned a value of 1. This case study demonstrated that the detail 

subsurfaces at level 1 (feature scale less than 0.39 mm) can be utilized to detect the non-

clean up defective region when machining a cast surface. 
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3.4 Conclusions 

This chapter developed a multiple-scale two-channel filter bank wavelet 

decomposition algorithm for 3D engineering surface separation. Firstly, a 1D discrete 

wavelet was applied to decompose a 1D surface profile on a cylinder head surface 

measured by a profilometer. Then the 1D wavelet transform was extended to decompose 

and analyze a 3D surface. A two-channel filter bank diagram algorithm was designed to 

simplify the implementation and brings computational efficiency when applying 2D 

wavelets to decompose a 3D surface which contains large amount of data points. The 3D 

height map of a cylinder head surface measured by the holographic interferometer was 

used for demonstration. During the decomposition process, two important issues: the 

elimination of the border distortion and the transformation from the wavelet scale to the 

physically meaningful dimension were studied as well.  

Following this, four automotive case studies were used to illustrate the application 

of wavelet decomposition techniques to surface functions prediction and machining 

errors detection. These case studies included abrupt broken tool detection, chatter 

detection, leak path identification, and non-clean up region detection. In these case 

studies, we decomposed the 3D surface into multiple-scale subsurfaces and extracted 

surface features from different subsurfaces to detect issues during the machining process 

and predict surface functional performances. The tool breakage detection and cylinder 

head mating/sealing surface leak paths identification were all based on the features from 

the detail subsurfaces which have the feature scale between 1.57 and 3.14 mm (tooling 

marks’ scale), while the chatter detection used the features with the scale larger than 3.14 

mm. In the case study of non-clean up region detection, the features at scale smaller than 
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0.39mm were of most interest. These case studies demonstrated that the two-channel 

wavelets decomposition is a very good tool to rapidly assess surface functional 

performance and detect errors in the machining processes based on the 3D surface 

features extracted from the multi-scale decomposed subsurfaces. 
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CHAPTER 4 
SURFACE DEFECT DETECTION, FEATURE 

EXTRACTION AND CLASSIFICATION 

4.1 Introduction 

The presence of surface defects on flat machined surfaces such as cylinder 

heads/blocks and transmission cases may allow leaks of coolant, oil, or combustion gas 

between critical mating surfaces, thus causing damage to the engine or transmission. 

Reliable defect detection could remove defective parts before additional assembly and 

test costs are incurred; it could also reduce service costs when engines or transmissions 

fail after delivery to the consumer. Manufacturers have employed manual visual 

inspection methods to detect surface porosity after the machining for 30 years [97]. The 

human inspectors are able to look for porosities larger than 500 µm in diameter within 

20-30 seconds for a part. This is time consuming, tedious, and not capable of reliably 

detecting defects smaller than 500 µm. Automated surface defect detection not only saves 

huge amount of labor cost, but also is able to reliably detect smaller defects in a shorter 

time. Because of this, researchers are seeking a rapid and reliable automated machine 

vision method for 100% inspection of machined surfaces. 

Machine vision based techniques seeking low-cost, high-speed and high quality 

detection of defects, therefore have been applied to machined surface inspection. Much 

research on surface inspection is devoted to texture recognition and defect detection in 
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textured surfaces such as fabric, wood, sand paper [98][99][100][101][102][103][104] 

[105]. Defect detection normally relies on identification of regions that differ from either 

a uniform background or a textured background. The methods used for inspection include 

gray-level thresholding, edge detection, eigenfilters, neural networks, discrete Fourier 

transform, Gabor filters, wavelet transforms, model-based clustering and so on. Kumar 

has reviewed the advantages and limitations of all these methods [98]. Gabor filter 

methods were successfully applied to texture segmentation because of its joint spatial-

frequency representation properties. Paper [101] investigated unsupervised web 

inspection using multichannel filtering scheme based on Gabor filters, and evaluated their 

method on a variety of fabric defects. Escofet [102] proposed a method of image 

processing to detect local defects in materials with periodic regular texture. In that 

proposed method, a multi-scale and multi-orientation Gabor filter scheme algorithm was 

designed to automatically segments defects from regular texture. His group also 

developed an automatic segmentation technique for detecting flaws in woven fabrics by 

applying Fourier analysis to the sample image under inspection, without considering any 

reference image [103]. Tsai et al. [104] implemented wavelet reconstruction method for 

inspecting surface defects embedded in homogeneous structural and statistical textures, 

with proper selection of a smooth sub-image or the combination of detail sub-images at 

different multi-resolution levels for image reconstruction. As a result of this method, the 

global repetitive texture pattern can be effectively removed and only local anomalies 

were preserved in the restored image, and then a simple binary thresholding was therefore 

used to separate the defective regions from the background. 
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Works on machined surface inspection based on machine vision techniques were 

mainly focused on texture recognition of machine tool wear and abnormal surface 

appearance [106][107][108]. There are a small number of people working on machined 

surface defect detection. Ramana et al. [109] proposed the inspection of machined 

surface (e.g., grinding, milling and shaping) using a widely used statistical method: co-

occurrence matrix approach. The features calculated from these matrices were correlated 

well with surface parameters, such as roughness. Steiner et al. [110] developed 

measurement techniques for the inspection of pores on the machined surfaces. They 

presented a technique to detect and measure the correct size of a pore on machined 

surfaces and check the depth of the pore by using two cameras to reduce false detection. 

This technique was demonstrated and validated on the joint face of an engine cylinder 

head. However, they used a line scan camera and moved the engine cylinder head along x 

axis. The disadvantage for the line scan camera is that it does not generate a complete 

image at once and requires an external hardware to build up images from multiple line 

scans. Therefore, both the cameras needed to be placed at exactly the same distance from 

the inspected surface to eliminate the need for registration in the y direction. Besides they 

had to process registration on the x axis using the leading edge of the engine cylinder 

head, which may add some distortions and errors to the images. Furthermore, this device 

was designed only to detect pores on the machined surface, and is not capable of 

detecting and distinguishing other types of surface defects.  

Therefore, in today’s automotive industry, surface defect inspection is still done by 

skilled human operators, the automated defects inspection is still a topic of considerable 

research and people are continue proposing different techniques to realize a reliable, 
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robust and fast enough surface inspection system to detect and classify all kinds of 

surface microscopic defects. Taking powertrain manufacturing as an example, Table 4.1 

lists 5 types of surface defects commonly found on flat mating/sealing surfaces of 

machined components, which may cause serious coolant, oil, or combustion gas leakage. 

Table 4.1: Definitions and characterizations of 5 types of machined surface defect. 

Defect 

Type 
Typical cause XY Size range 

Above 

Surface? 

At 

Surface?

Below 

Surface?

Pore material defect < 1 mm to several mm N N Y 

2D Blemish stain, corrosion, mark, 
dried detergent residue < 1 mm to several cm N Y N 

Residue 
Dirt 

handling residue, 
machining residue, 

deposition 
<1 mm to several mm Y N N 

Scratch sharp scraping action width <1 mm, 
length =  mm to cm N N Y 

Gouge sharp digging action < 1 mm to several mm N N Y 
 

The requirements for an acceptable in-line automated surface defect inspection and 

classification system are described in the following items: 

(1) Accurately detect and classify 5 types of surface defects as described in Table 

4.1. A successful surface defect detection system must incorporate the ability to detect, 

distinguish and understand the microscopic 2-dimensional and 3-dimensional surface 

defects that may otherwise be confused with each other. (The root causes of thesis defects 

are different.) 

(2) Reliably detect the actual surface defects as well as achieve a low false alarm 

rate. Poor performance on either side of the decision process would reduce the value of 

the detection process.  
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(3) The system must have a spatial resolution sufficient to reliably detect defects 

which have a minimum dimension larger than 300 microns (except for scratches which 

may be smaller in their minimum dimension).  

(4) The detection process must be rapid enough to follow the cycle time of the 

manufacturing process so that 100% inspection can be assured. 

In this chapter, a novel machine vision system was designed and built using 

multiple-directional LED illumination. Related image processing algorithms were 

developed to realize 5 types of surface defects detection and classification. Our technique 

was demonstrated and validated on both an artificially machined surface and actual 

powertrain machined parts. The experimental results show that the 2D and 3D 

microscopic surface defects can be accurately detected and classified.  

The rest part of this chapter is organized as follows: Section 4.2 presents the 

proposed approaches to realize defect detection and classification. In this section, the 

inspection procedures: (1) Image acquisition and contrast enhancement, (2) defect 

segmentation and feature extraction and (3) defect classification are described in detail. 

In Section 4.3, the results of case studies on actual automotive parts (a transmission pump 

surface and a cylinder head surface) are reported. According to the results, we conclude 

that our technique can be successfully applied to microscopic defect inspection and 

classification on the flat machined surfaces. This chapter is summarized in section 4.4. 

4.2 Approaches 

Figure 4.1 illustrates the flow chart of the overall algorithm of the defect detection 

and classification process. There are three main steps: step 1, image acquisition and 
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contrast enhancement; step 2, defect segmentation and feature extraction; and step 3, 

defect classification. The following contents will explain each step in detail. 

 

Figure 4.1 Overall algorithm flow chart of the defect detection and classification 
process. 

4.2.1 Image Acquisition and Contrast Enhancement  

4.2.1.1 Image Acquisition: Multiple Directional Illumination Structure Construction 

Machine vision system has been applied to surface inspection for 30 years, but most 

of the efforts have been put on developing fast and reliable image processing algorithms 

to recognize surface texture or segment surface defects. There are only a few researchers 

concerned and discussed the effect of illumination directions on the feature extraction and 
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classification. Chantler [111] showed that the directed illumination used in image 

acquisition process can act as a directional filter of three-dimensional texture in his paper. 

His work theoretically and empirically proved that changes in the illuminant direction do 

significantly affect the characteristics of image texture. Besides this work, Racky et al. 

[112] used several images taken under different illumination directions to segment 

surface deformations and embossed patterns. Lindner and Leon [113][114] presented a 

new method to segment images of structured surfaces from illumination series based on a 

parallel light source at different incident angles. They investigated meaningful surface 

features based on the intensity signal as well as frequency decomposition with respect to 

the illumination directions, and these features were then utilized to robustly segment a 

wide variety of textures on structured surfaces. Leung and Malik [115] provided a unified 

model to construct a vocabulary of prototype tiny surface patches with associated local 

geometric and photometric properties extracted from images under directional lights, and 

they studied a large collection of images of different materials such as concrete, rug, 

marble, leather to build 3D texton vocabulary and then used the vocabulary to 

characterize any materials.  

In this study, the fact that illumination direction is fundamental to the surface defect 

detection and classification process is highly concerned, thus a multiple directional 

illumination structure is designed and built to acquire a series of images. The multiple 

directional illuminations act in combination as a directional filter of three-dimensional 

surface features. The inspection system and related image processing algorithms are 

developed to detect and classify 5 types of surface defects: pore, 2D blemish, residue dirt, 

scratch and gouge as listed in Table 4.1.  
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Porosity (pore) is caused during the casting process, if air bubbles are trapped inside 

a part. When the part is machined, the bubbles appear on the surface as porosity. Porosity 

is a type of defect below the surface and it absorbs oblique light making it appear as dark 

area. 2D blemish such as stain, detergent residue also appear as dark areas to the camera, 

which will be easily confused with pore. We used image series captured under multiple 

directional illuminations to distinguish 2D blemish from pore. Gouge also looks like a 

pore except that the shape of a gouge is less irregular compared to a pore. Scratch is 

another common type of defect on machined surfaces, and normally its width is less than 

1 mm and its length ranges from millimeters to centimeters. When the illumination 

direction is perpendicular to the long edge of a scratch, it appears bright; otherwise it will 

be hard to observe from the background. Residue dirt appears as a bright spot on the 

image and the shadow will be created if illuminating the residue dirt from a low elevation 

angle and it will occur along the same direction of the illumination. In the applications of 

surface texture recognition, the result may suffer from shadows and reflections, but in our 

study, shadow of residue dirt and reflections from the edges of pore or gouge will be 

extracted as important surface features for defect classification.  

A single image of surface provides not enough information to perform multiple 

types of defect segmentation and classification, but image series generated based on 

multiple directional illuminations provide a much richer information set sufficient for 

reliable classification. 
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(a) 

 

 
(b) 

Figure 4.2  (a) Schematic of the illumination system, (b) structure of LED array mounting block. 
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Figure 4.3  Directional illumination described by the azimuth angle φ and 

elevation angle θ. 

Figure 4.2 (a) shows a schematic of the illumination structure: a single camera 

vision system involving 16 computer controlled LED blocks. The elevation angles of all 

the LED blocks are fixed (θ=20 degree), the azimuth angles (φ) are evenly distributed 

along a circle. The LED light sources illuminate the target surface with a small elevation 

angle from the side at different azimuth angles sequentially. The azimuth angle φ and 

elevation angle θ of the directional illumination are defined and shown in Figure 4.3. 

In this machine vision system, a monochrome camera with 3248×4864 pixels is 

used and the photosensor pixel size is 7.4 µm×7.4 µm. Since this system is aiming to 

detect surface defects larger than 300 micron, the magnification of the system is designed 

to be 1/5, thus XY resolution of the system is 37.5 micron (defect larger than 300micron 

will contain at least 8 pixels in dimension). The camera captures 3 frames per second of 

12 bits image, so that the gray level value is from 0 to 4095.  
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As shown in Figure 4.2 (b), for each LED block, 6 LEDs are mounted on the block, 

therefore each LED array has almost 160 degree spread angle, which can be seen as a 

parallel lighting source. For each LED block, a holographic diffuser is put in front of the 

LEDs, which has the transmission efficiency larger than 85%. The purpose of the diffuser 

is to make the illumination more uniform, and can be replaced with vellum paper to 

reduce the cost. For each LED block, a top and a bottom cover are added to channel the 

illumination to the target workpiece surface area. These covers are painted to be 

lambertian diffusive surfaces and have larger than 95% reflection. 

The breadboard construction of the surface defect detection and classification 

system is shown in Figure 4.4. In our system, the field of view is 150mm×225mm, if the 

inspected surface is larger than the field of view, multiple views of images can be 

accurately stitched together with cross-correlation software. The system employs a XY 

moving table, which is controlled by the computer. The image sequences acquisition, 

image processing, and the results display are all controlled by the computer. 
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Figure 4.4  Breadboard structure of the surface defect detection and classification system. 

  
(a) 
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(b) 

 
(c) 

Figure 4.5  Illumination image sequences example of an artificially machined surface. 
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Figure 4.5 shows some examples of the image sequences of an artificially machined 

surface under different illumination directions. The artificially machined part contains 4 

types of defects: pore, 2D blemish, residue dirt and scratch. From these images, we can 

tentatively observe that: if the defect is a pore below the surface, the shining edges will 

change when the illuminating direction changes; if the defect is a residue dirt above the 

surface, the direction of its shadow which is along the illuminating direction will change; 

if the defect is a 2D blemish on the surface, nothing changes when the illuminating 

direction changes. The scratches are bright in some images while cannot be observed in 

the others. 

4.2.1.2 Image Contrast Enhancement 

The first step, image acquisition provides multiple image series as the source for 

surface detect feature extraction and classification. Another important treatment before 

feature extraction is image contrast enhancement. In our illumination system, the 

directional lightings illuminate the target surface from the side at small elevation angle, 

thus the distance from each pixel on the surface to the light source is different. Not only 

the gray level intensity contrast of each individual image needs to be compensated, the 16 

images in a series need to be adjusted to the same intensity level as well, since the 

uniformity of the acquired images plays a vital role in segmenting defects and 

simplifying the algorithms in the following steps. 
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(a) 

 
(b) 

Figure 4.6  (a) An example of image before contrast enhancement, (b) after individual 
contrast enhancement. 
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Firstly, the contrast enhancement for individual image is processed. As shown in 

Figure 4.6 (a), the background of the original image is not uniform, the upper left corner 

is shinier than the rest part of the image. If the background of each individual image is 

not uniform, the feature extraction process in the next step will be greatly affected. The 

method implemented to normalize individual image intensity is to fit a polynomial 

regression surface to the image. The polynomial regression functions are shown in 

equation 4.1. The first order, second order and third order polynomial models are tried to 

fit to the image in Figure 4.6 (a). Then the R2 values (range from 0~1) are compared to 

check the goodness of the fits. In the regression operation, the R2 coefficient of 

determination is a statistical measure of how well the regression plane approximates the 

real data points. An R2 value of 1.0 indicates that the regression plane perfectly fits the 

data. The computation of R2 value is defined in equation 4.2, where yi is the observed 

data while fi is the modeled (predicted) value, SSerr is the sum of squares of residuals and 

SStot is the total sum of squares [63].                
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Figure 4.7 shows the polynomial surfaces fitted to the image, we can compare the 

R2 values that when the order of the polynomial function increases from the first order to 

the second order, R2 value increases significantly, but when the order increases from the 

second order to the third order, the R2 value does not increase significantly. That means 

the second order polynomial regression model is adequate, a higher order model will 
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largely increase the calculating time and may cause over-fit problem. After removing the 

background difference, the image is shown in Figure 4.6 (b). We can see that the 

background intensity of the image become more uniform. 

 

(a) (b) (c) 
Figure 4.7  Polynomial regression planes fitted to the image: (a) first order polynomial plane, 

(b) second order polynomial plane, (c) third order polynomial plane. 

Secondly, contrast enhancement is performed for all the 16 images captured under 

multiple illumination directions in an illumination sequence. Shown in Figure 4.8 (a) and 

(b), are two images from the image sequence, the gray level intensities are not at the same 

level. We can also see the difference from the probability density function (pdf) chart 

shown in Figure 4.8 (c) and the cumulative distribution function (cdf) chart shown in 

Figure 4.8 (d) that both the mean intensity value and the intensity distribution are 

different for the two images. The contrast equalization among images is desired, since 

this will make the feature exaction process in the next step much simpler and faster. 
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(a) 

 

 
 (b) 



102 

 

 
(c) 

 

 
(d) 

Figure 4.8  An example of contrast equalization of 16 images (a) Reference image (can be any 
one of the 16 images), (b) an example of input image (one from the rest 15 images), (c) pdf 
charts of the reference and input images, (d) cdf charts of the reference and input images. 

Gain/offset correction and histogram equalization are two classic algorithms that 

make the input image span the entire dynamic range of the output intensity channel [116]. 

Gain/offset correction method relies on assuming an underlying pdf of the pixel 

intensities, which can be assumed to be uniform or Gaussian. But the method is very 
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sensitive to noise and image content. The method of histogram equalization is to 

transform the input image in such a way that the output image has a uniform pdf [116]. In 

our image processing algorithms, for each anomaly segmented from the image, 16 frames 

of this segmented anomaly will be analyzed together. The similarity of the intensity 

levels among these image series is more important than whether the distribution spans a 

uniform pdf or not. In other words, the 16 images are required to approximately have the 

same pdf distribution. Therefore, in our algorithms, a histogram equalization operation is 

performed by selecting one of the 16 images as the reference image (can be any one of 

the 16 images), and enhancing the contrast of other images by transforming the values in 

the intensity image, so that the histogram of the output image approximately matches the 

histogram of the reference image.  

Let’s define K=4096 for the 12 bits gray image, ( )p k denotes the frequency at 

intensity value k (the number of pixels at gray level k divided by the total number of 

pixels at all gray levels), 0,1,..., 1k K= − . The cumulative distribution function (cdf) of 

intensity value x is defined as: 
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Where, u(.) is the unit step function, only when  , ( ) 1k x u x k≤ − = , otherwise, 

( ) 0u x k− = .  

Suppose the cdf of the reference image at intensity value x is:  
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The cdf of input image at intensity value x is:  
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The transformation is then defined as: 

))()(:()),(()( 1 xFyFtoequivalentxFFxTy XRXR === − (4.6)

Which means for each input ki (pixel intensity value), it should be mapped to a 

value ko that: 

( ) ( )R o X iF k F k= (4.7)

We can also express the transformation in the following way: 
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In the numerical calculation, ko can be obtained by: 
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(4.9)

By using equation 4.9, the output image is shown in Figure 4.9 (b), it can be seen 

that the contrast of Figure 4.9 (b) is enhanced to be similar to Figure 4.9 (a), which is the 

reference image. Figure 4.9 (c) shows the cumulative distribution histogram charts for the 

reference and output images, we can see clearly that the cumulative histogram chart of 

the output image is approaching that of the reference image. This procedure is repeated to 

all of the rest 14 images. Consequently, after the histogram equalization process, the 

intensity values of the image serious will all have similar intensity distribution. 
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(a) 

 
(b) 
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(c) 
Figure 4.9  Reference image, (b) output image, (c) cdf charts of reference and output images 

4.2.2 Defect Segmentation and Feature Extraction 

4.2.2.1 Defect Segmentation from Background 

After image acquisition and contrast enhancement, the next step is defect 

segmentation and feature extraction. For initial segmentation, the core portion of each 

anomaly is first extracted from the background, which does not contain the shadow of an 

anomaly (if applicable). To process the segmentation, the 16 images are added together to 

obtain an average intensity map, as shown in Figure 4.10. The advantage of segmenting 

anomalies from an averaged image is that, this process can smooth and average out the 

tooling marks on the machined, which may affect the defect segmentation. After the 

initial segmentation based on the average intensity map, the bounding box of each 
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anomaly can be found. And then, for each anomaly, only the pixels inside the bounding 

box are processed in order to speed up the calculation.  

 

Figure 4.10  Average intensity map of the 16 frames. 

The methods for image segmentation are generally based on one of the two basic 

properties of image intensity values: discontinuity and similarity [116][117]. The 

approach of the first category is to segment an image based on abrupt changes in 

intensity, such as edges. The method in the second category is based on partitioning an 

image into regions that are similar according some predefined criteria. In our case, we are 

aiming to extract small anomalies from the background, thus we use the approaches in 

the first category. In the first category, edge detectors and thresholding methods are the 

most popular methods to segment anomalies based on the intensity differences [117]. In 

our study, a global thresholding method is proposed because of its intuitive properties and 
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simplicity of implementation. And based on the specific application of our case, the edge 

pixels of anomalies are extracted to improve the global thresholding result. 

Figure 4.11 Schematic diagram of thresholding method based on 
histogram distribution. 

As shown in Figure 4.11, three classes C1, C2, C3 are defined and two thresholds k1, 

k2 are used for separating the three classes. The pixels with intensity less than k1 belongs 

to Class C1, they are dark objects. Pixels with intensity larger than k2 are in Class C3, they 

are bright objects. Pixels between k1 and k2 are background pixels, in Class C2. The key 

point in this step is to find optimal thresholds k1 and k2 thus to properly segment both the 

bright and dark objects from the background.  

The method we proposed is choosing global thresholds based on the image 

histogram distribution, but not all the pixels on the surface are considered, since in our 

application, the background pixels are dominant compared to the objects pixels. A good 

threshold can be selected when the histogram peaks are tall, narrow, symmetric and 

separated by deep valleys. If the background pixels compared to the objects are 

dominant, the peaks of both bright and dark objects will be submerged into noises. 

Therefore, one approach we use to improve the shape of histograms is considering only 

those pixels that near the edges between the objects and background. This way, the 

histogram would be less dependent on the relative sizes of objects and the background. 
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The probability that any of those pixels lie on objects would be approximately equal to 

the probability that they lie on the background, thus improving the symmetry of the 

histogram chart.  

Any edge detector is applicable to extract the pixels lie on the edges. In our study, 

Canny edge detector [118] is used, since it is the optimal edge detection algorithm [116], 

and “optimal” means: good detection, good localization. Besides these, Canny edge 

detector is also robust over image noises. Then a morphological dilation operation was 

performed to extract the pixels near the edges of the objects.  

Figure 4.12 (a) shows the histogram chart of all the pixels on the image, and 

because of the domination of the background pixels, the bright objects and dark objects 

are submerged into background pixels. Figure 4.12 (b) shows the histogram chart of only 

the pixels near the edges of the objects, we can see clearly three well separate peaks. 

Therefore the two thresholds k1=650, k2=1950 can be easily defined by smoothing the 

histogram chart and finding the thresholds between the peaks. 

(a) (b) 
Figure 4.12 (a) Histogram chart of all the pixels on the image, (b) histogram chart of only 

considering the pixels near the edges of the objects. 
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According to the thresholding process, both the dark and bright objects can be 

properly extracted from the background. A morphological opening operation is then used 

to eliminate the objects which contain less than 60 pixels. An anomaly with size smaller 

than 60 pixels (dimension less than 300 micron) is not considered as surface defect. The 

exacted anomalies are marked by the white pixels in the binary image in Figure 4.13 (b). 

After the segmentation, the bounding box of each anomaly can be found, as shown in 

Figure 4.13 (c). In order to include the shadows (if applicable) in the region of interest for 

each anomaly, the bounding box is enlarged by 30 pixels at each side to define the region 

of interest for each anomaly. 
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(b) 

Figure 4.13  (a) Binary image of Figure 4.10 where the while pixels show the extracted Class C1 

(dark objects) and Class C3 (bright objects) pixels, (b) bounding box of each anomaly. 

4.2.2.2 Defect Feature Analysis 

After initial segmentation, each anomaly can be analyzed independently and several 

anomalies can be analyzed in parallel to speed up the process and only the pixels defined 

as the region of interest of each anomaly will be processed. Each anomaly has 16 frames 

captured under different LED illumination directions. The bright portion and dark portion 

(shadow) of an anomaly are segmented separately, if some anomaly does not have bright 

or dart portion, the segmented bright or dark region will be empty. Figure 4.14 (a) shows 

the intensity map (one of the 16 frames) of an anomaly as an example. With a 

thresholding process, the white pixels in Figure 4.14 (b) shows the selected pixels which 

have the intensity larger than the threshold; in Figure 4.14 (c), the selected point clouds 
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containing less than 15 pixels are removed; and in Figure 4.14 (d) among the remaining 

point clouds, the largest point cloud is extracted as the bright portion of this anomaly. 

The same algorithms are processed for the segmentation of the dark portion of this 

anomaly, the steps are shown in Figure 4.14 (e)-(h). One thing has to be pointed out that, 

this method is extremely useful for extracting the dark portion of an anomaly, since the 

contrast between the dark portion and the background is lower than the contrast between 

the bright portion and the background in our application. 
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Figure 4.14 (a)-(d) The procedures for bright portion segmentation for an anomaly, (e)-
(h) the procedures for dark portion segmentation for an anomaly. 

After segmenting the bright and dark portion of an anomaly, the bright to dark 

angle and the dark to bright angle of each anomaly are calculated. The definition of these 

angles is shown in Figure 4.15 (a) and Figure 4.16 (a) respectively. If an anomaly does 

not contain bright portion or dark portion, it will not have the bright to dark angle or the 

dark to bright angle.  

The purpose of calculating the bright to dark angle and the dark to bright angle of 

each anomaly is to fit a correlation coefficient between these angles and the LED 

illumination angles. Figure 4.15 (b) shows an example of a scatter plot of the LED 

illumination angles (azimuth angles) versus the bright to dark angles of the anomaly 

shown in Figure 4.15 (a) and a robust least squares regression line fitted to these data.  

Figure 4.16 (b) shows another example of a scatter plot of the LED illumination angles 
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versus the dark to bright angles and a robust least squares regression line fitted to the 

data. The correlation coefficient of the regression will be later used to classify the 

anomalies. The LED illumination angles of the 16 frames are listed in Table 4.2.  

Figure 4.17 (a)-(d) show the images of four anomalies we selected as the examples 

in the following analysis. Table 4.3 lists some important features calculated for the four 

anomalies in order to classify these anomalies into different defect classes. Feature “core 

area” is measured as the number of pixels inside the edge of the core area of an anomaly. 

Feature “major axis length” is the distance between two farthest pixels, which is also 

measured in pixels. Feature “minimum width” is approximately equal to the core area 

divided by the major axis length. Roundness is defined in equation 4.10, the roundness 

value of a perfect circle is 1, while that of a line is 0.  

2

4 AreaRoundness
Perimeter
π ×

= (4.10)

 
 

 
(a) (b) 

Figure 4.15 Definition of the “bright to dark angle”, (b) LED illumination angles versus the bright to 
dark angles for 16 frames. 
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(a) (b) 
Figure 4.16 (a) Definition of the “dark to bright angle”, (b) LED illumination angles versus the 

dark to bright angles for 16 frames. 
 

(a) (b) 

(c) (d) 
Figure 4.17 Intensity maps of (a) Anomaly #1, (b) Anomaly #2, (c), 

Anomaly #3 (d) Anomaly #4. 
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Table 4.2: LED illumination angles (azimuth angle φ) of the 16 frames. 

Frame # 1 2 3 4 5 6 7 8 
LED Illumination Angles 

(degree) 22.5 45 67.5 90 112.5 135 157.5 180

Frame # 9 10 11 12 13 14 15 16 
LED Illumination Angles 

(degree) 202.5 225 247.5 270 292.5 315 337.5 360

 

Table 4.3: Important features of anomaly #1, #2, #3 and #4. 

 Core 
Area 

Core Area 
Intensity 

Background 
Intensity Roundness Major Axis 

Length 
Minimum 

Width 
Anomaly #1 290 2389 941 0.8004 21 13 
Anomaly #2 236 639 975 0.6753 19 12 
Anomaly #3 438 650 930 0.6280 26 17 
Anomaly #4 259 1373 954 0.1481 133 3 

 Valid # of Bright to Dark angles Angle Correlation Coefficient 
Anomaly #1 12 0.992 
Anomaly #2 11 0.995 
Anomaly #3 3 Not valid 
Anomaly #4 5 0.326 

 

4.2.3 Defect Classification 

Table 4.4 lists 5 classes of surface defect we studied in this research. In the future 

work, the classes of defect can be extended. There are many types of classification 

methods, the most widely used classifiers are the neural network, support vector 

machines, k-nearest neighbors, Gaussian mixture model, naive Bayes, decision tree and 

RBF (radial basis function) classifiers [119][120][121][122]. Classifier performance 

depends greatly on the characteristics of the data to be classified. There is no single 

classifier that works best on all given problems. Determining a suitable classifier for a 

given problem is however still more an art than a science. In our case, we choose a 

decision tree classifier. The advantages of the decision tree classifier are: firstly, it is 



117 

 

simple to understand and interpret; secondly, every class needs not be tested to arrive at a 

decision; thirdly, it is easy to extend to more classes [121][122]. In the classification 

process, the multiple dimensional feature space is split into unique region sequentially. 

Table 4.5 lists a description of the selected feature vector and the threshold vector based 

on the experimental results. Figure 4.18 shows the flow chart of the decision tree for 

surface defect classification process. 

Table 4.4: Defect classes and names. 

Classes  Defect Names 
S1  Pore  
S2  Residue Dirt  
S3  2D Blemish  
S4  Scratch  
S5  Gouge 
S6 Unknown 

 

 

Table 4.5: Description of feature vector and related threshold values. 

Feature Vector  Z Feature Name Threshold Vector Th
Z(1) Core Area Intensity Th(1)=950 
Z(2) Bright to Dark Angle Correlation Coefficient Th(2)=0.9 
Z(3) Dark to Bright Angle Correlation Coefficient Th(3)=0.9 
Z(4) Major Axis Length/Minimum Width Th(4)=8 
Z(5) Roundness Th(5)=0.3 

Z(6) Number of data points satisfy "Dark to 
Bright Angle Changing Ratio<0.1" Th(6)=5 
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Figure 4.18 Flow chart of decision tree classifier for surface defect 
classification. 

As illustrated in Figure 4.18, the feature vector Z (described in Table 4.5) is first 

calculated for each anomaly, and then sequential decisions are made to arrive at a defect 

class. For example, considering anomaly#1 shown in Figure 4.17(a): Z(1), core area 

intensity is larger than Th(1), background intensity; and Z(2), bright to dark angle 

correlation coefficient is larger than Th(2), thus anomaly #1 is therefore classified as 

defect type S2, residue dirt. This is because, if the core portion of an anomaly is brighter 

than its surrounding background, and the direction of its shadow is highly correlated to 

the LED illumination angles, it is residue dirt.  

Another example, anomaly#3 shown in Figure 4.17(c): Z(1), core area intensity is 

smaller than Th(1), background intensity; and Z(3), dark to bright angle correlation 

coefficient is smaller than Th(3), therefore, anomaly #3 is therefore classified as defect 

type S3, 2D blemish. It is because, if the core portion of an anomaly is darker than the 

surrounding background, and when the LED illumination direction changes, the image of 

this anomaly does not change or the change does not related to the LED illumination 

directions, this anomaly is classified as a 2D blemish. If the core portion of an anomaly is 
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darker than the surrounding background, and the dark to bright angles are highly 

correlated to the LED illumination angles, this anomaly will be classified as a pore. We 

will discuss the difference between the defect type pore and gouge later in the case study. 

4.2.4 Result Display 

Based on the classification method described in the previous section, the result of 

defect detection and classification for the artificially machined part is shown in Figure 

4.19. The location of a defect which means the XY coordinates of the centroid point of 

this defect, the bounding box and the type (name) of the defect are superimposed on the 

image and marked with different colors. The defect type of gouge is not on the artificially 

machined part and will be shown later in the case study section.  

In our process, if a defect is classified as porosity, the exact size of the pore is then 

re-calculated using the Laplacian of Gaussian edge filter [117]. The flow chart of the 

algorithms is shown in Figure 4.20 (d). Laplacian filter is a derivative filter used to find 

areas of rapid change (edges) in images. Since the derivative filter is very sensitive to 

noise, it is common to smooth the image (e.g., using a Gaussian filter) before applying 

the Laplacian. The combination of Laplacian filter and Gaussian filter is called Laplacian 

of Gaussian filter.  

Here for anomaly #2 (shown in Figure 4.17 (b)), the size of the pore calculated by 

the Laplacian of Gaussian edge filter is 221 pixels, which is a little bit different from the 

size of 236 calculated based on the binary image using thresholding method (the features 

are listed in Table 4.3). The reason for the difference is that the pore size calculated by 

the thresholding method will be affected by the selection of the threshold value. 
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Figure 4.19 Result display of the defects inspected on the 

artificially machined part. 
 

 

Figure 4.20 (a) An image of a pore on the artificially machined surface (anomaly #2), 
(b) binary image where the white pixels show the edge points of the pore detected by 
the Laplacian of Gaussian edge filter, (c) the boundary and the centroid point of the 

pore, (d) the flow chart of the algorithms of Laplacian of Gaussian edge filter. 
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4.3 Case Studies of Automotive Parts  

4.3.1 Case Study 1: Transmission Pump Surface 

To test the performance of the surface defect detection and classification system on 

an actual powertrain machined part surface, all the image processing steps are the same 

as those used for inspecting the artificially machined surface. However an actual part 

contains intentional surface features (larger than the defect dimensions) which are 

unnecessary information for machined surface defect detection and will confuse the 

defect segmentation results thus should be removed before the detecting process.  

We developed an algorithm to automatically extract the feature-free surface using 

morphological operations based on the gray image of the target surface. By doing this, we 

don’t need any prior knowledge about the intentional features that may be offered by a 

template. The gray image of the target surface is captured based on the on-axis diffuse 

illumination. The assumption for the algorithm is that the contrast between the gray level 

of the machined surface and the un-machined surface is large, which is reasonable. The 

morphological operations are: (a) threshold the image, (b) label the connected groups on 

the binary image, (c) select the largest group, (d) fill in the holes which are smaller than 

the smallest intentional feature size inside the selected group. By doing this, the pixels 

not of interest will be removed.  

Figure 4.21 (a) shows the gray image of a selected part of a transmission pump 

surface illuminated by the on-axis diffuse light source and Figure 4.21 (b) is a binarized 

image showing the feature-free surface exacted by the morphological operations. Figure 

4.22 (a) shows an image illuminated by the directional LED light source, and Figure 4.22 

(b) shows the feature-free surface based on the binary mask shown in Figure 4.21 (b), 
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Figure 4.22 (c) shows that a defect (a pore) was detected on the transmission pump 

surface. 

  
(a) (b) 

Figure 4.21 (a) Gray image (illuminated by the on-axis diffuse light source) of a selected 
part of a transmission pump, (b) binary image of the feature-free surface. 

  

  
(a) (b) 
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(c) 
Figure 4.22 (a) Gray image illuminated by the directional LED light source, (b) feature-free 
surface of the image in (a), (c) defect detected (a pore) on the transmission pump surface. 

4.3.2 Case Study 2: Cylinder Head Surface 

Normally in the inspection process, a user-defined region will be selected to 

perform the inspection, and these regions will be selected near to the edges of the surface 

that may cause serious leaking problem. We can also inspect the whole surface. In case 

study 2, a cylinder head surface is inspected using the full field of view of the system. 

Figure 4.23 shows the inspection result. In order to display the defect clearly, we 

enlarged the region near the defect shown in Figure 4.23 (c).  

In this case study, the defect type is a gouge. In Table 4.5, we defined the feature 

vector, where Z(6) is the number of data points satisfy "dark to bright angle changing 

ratio<0.1”, and a threshold Th(6)=5 is selected based on our experiences. Here the dark to 

bright angle changing ratio is calculated by the difference between two consecutive dark 

to bright angles divided by the mean value of these two angles. Figure 4.24 (b) shows the 

dark to bright angle changing ratio of this defect (a gouge) on the cylinder head, and we 

can see that 7 out of 11 data points are under 0.1. Compared to the defect type of a pore, 
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as shown in Figure 4.24 (d), the only difference between the pore and gouge is that the 

pore only has 2 out of 10 data points satisfy “dark to bright angle changing ratio <0.1”. 

The reason for this difference is that, the edge of a gouge is less irregular compared to a 

pore (close to a rectangle shape), therefore, when the LED illumination angle changes 

within some range, the shining edge of a gouge may not change. But for a pore, the edges 

are close to a circular shape, the shining edge will rotate with the changing LED 

illumination angle. 

 
(a) 
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(b) 

 
(c) 

Figure 4.23 (a) Gray image (illuminated by the on-axis diffuse light source) of a cylinder head 
surface, (b) feature-free surface of the cylinder head, (c) defect detected (a gouge) on the cylinder 

head surface. 
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(a) (b) 

 
(c) (d) 

Figure 4.24 (a) LED illumination angles versus the dark to bright angles of a gouge on the cylinder 
head, (b) the scatter plot of the dark to bright angle changing ratio of (a), (c) LED illumination angles 
versus the dark to bright angles of a pore on the artificially machined part, (d) the scatter plot of the 

dark to bright angle changing ratio of (c). 
 

4.4 Conclusions 

In this chapter, a novel automated defect detection and classification system has 

been designed and constructed to extract surface abnormal features and classify them into 

different defect types. This system is a machine vision system using multiple directional 

illuminations to produce image series providing robust three-dimensional defect 
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information. The image processing algorithms were developed to realize 5 types of 

surface defect (pore, 2D blemish, residue dirt, scratch, and gouge) detection and 

classification. In the previous sections, the steps of image processing: (1) image 

acquisition and contrast enhancement (2) defect segmentation and feature extraction (3) 

defect classification, were introduced in detail. We tested this system on an artificially 

machined surface and two actual automotive machined part surfaces: a transmission 

pump surface and a cylinder head surface. The experimental results showed that the 

microscopic surface defects which have the minimum dimension larger than 300 micron 

can be accurately detected and assigned to a certain surface defect class. 
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CHAPTER 5 
CONCLUSIONS AND FUTURE WORK 

5.1 Conclusions 

This doctoral research is focused on developing image processing method to 

reliably extract multiple-scale 3D surface texture features from a large field of view 3D 

surface height map measured by an optical holographic interferometer. And these 

features were then applied to characterize 3D surface functional performances and detect 

errors in the machining process. We also designed and constructed an automated machine 

vision system to extract the abnormal surface features and classify these anomalies into 

certain defect types that are problematic to the manufacturing process. 

First, we developed an improved Gaussian filter to accurately extract 3D surface 

waviness and applied the waviness feature of machined workpiece to assess severe tool 

wear. Compared to the standard Gaussian filter, the improved Gaussian filter was 

specially designed to improve the filter performance when applying on an engineering 

surface height map which has lots of sharp noises and large distortion shape. In this work, 

in addition to 3D surface waviness feature, other two 3D surface texture parameters of 

machined workpiece (image intensity histogram distribution and 3D peak-to-valley 

height) were also studied and applied to assess tool wear. Experimental results on 

aluminum and compacted graphite iron workpieces showed that these 3D surface texture 

parameters can all be used to detect the onset of severe tool wear.  



129 

 

Second, a method of using 2D wavelet to decompose a large field of view 3D 

engineering surface into multiple-scale frequency bands was developed. Compared to the 

work in the first part, the wavelet based method can decompose a surface into finer 

frequency bands. In this work, we developed a two-channel filter bank diagram for 

multiple-scale 3D surface decomposition. The two-channel filter bank diagram enables 

the separate filtering of successive profile in the row direction, followed by the same 

operation in the column direction, thus greatly simplifies the implementation and brings 

computational efficiency. A three-dimensional cylinder head surface height map 

measured using the holographic interferometer was used for the demonstration. During 

the decomposition process for an engineering surface, two important issues: the 

elimination of the border distortion and the transformation between the scale of the 

wavelet at each decomposition level and its physical dimension were also studied. 

Following this, four automotive case studies were used to demonstrate the application of 

using multi-scale 3D surface features to predict surface functional performances and 

detect issues in the machining process. These case studies included abrupt broken tool 

detection, chatter detection, mating/sealing surface leak paths identification, and surface 

non-clean up region detection. These case studies showed that the wavelet transform 

decomposition method is a very good tool to rapidly assess surface functions and detect 

machining faults based on the comprehensive surface information. 

Finally, a novel automated surface defect detection and classification system has 

been designed and constructed. This system is based on multiple directional illuminations 

to produce information set providing robust 3D surface defect feature information. 

Related image processing algorithms were developed to detect and classify 5 types of 
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surface defect (pore, 2D blemish, residue dirt, scratch, and gouge) which are commonly 

found on the automotive powertrain mating/sealing surfaces. The steps of image 

processing: (1) image acquisition and contrast enhancement (2) defect segmentation and 

feature extraction (3) defect classification, were clearly presented. We demonstrated our 

technique on an artificially machined surface and two actual automotive machined part 

surfaces: a transmission pump surface and a cylinder head surface. The experimental 

results showed that the microscopic surface defects which have the minimum dimension 

larger than 300 micron can be accurately detected and assigned to a surface defect class. 

The breadboard system is a successful step toward the implementation of a product to 

implement 100% inline inspection of surface defects in a production machining line. 

5.2 Future Work 

A number of future research topics are recommended following the studies in this 

dissertation: 

(1) A specially designed wavelet, e.g., a wavelet formed by the lifting algorithm, can 

be developed to better decompose a 3D engineering surface into multiple-scale 

subsurfaces. Different frequency components of the surface can be separated, extracted 

and then reconstructed according to the intended requirements of the surface functional 

analysis. As introduced in [19][91], the lifting wavelet representation is to initially 

decompose an original surface into a sequence of subsets, without an assessment of the 

frequency content of the original signal. Next, different frequency components can be 

interrogated via a flexible transmission bank according to the intended functional 

inferences which need to be drawn from it. Finally, the required surfaces can be 
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reconstructed in the spatial domain. This future work requires a solid mathematical 

background and familiarity to the manufacturing process.  

(2) In the future work, people can think about how to better predict a product’s 

functionality with the dimensional and surface characteristics information. A better 

measurement scheme which allow the engineers to measure less characteristics on one 

part while taking more product samples from the production line can be studied. How to 

represent the complex surface data in a consistent way with other quality features while 

not loosing much information poses a big challenge, especially when all the quality 

characteristics are needed as the inputs in the prediction model. Moreover, other non-

dimensional, non-surface quality characteristics, e.g. material properties, defects and 

residual stresses, can also be integrated into the surface functionality characterization.  

(3) Inspirited by paper [104], the surface defect detection algorithm can be improved 

by combining the wavelet technique. A multiresolution approach can be used for the 

inspection of local defects embedded in the surface with strong tooling marks. By 

properly selecting the smooth subimage or the combination of detail subimages at 

different resolution levels for image reconstruction, the surface background containing 

tooling marks can be effectively removed and only the local anomalies are preserved in 

the restored image. Therefore, the surface defects extraction algorithm can be simpler, 

faster and more robust.  

(4) The applications of the machine vision inspection system can be extended to 

detect and classify defects on many types of surfaces, such as fabric, wood, sand paper, 

and so on. 
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5.3 Contributions 

The main contributions of this dissertation are summarized as follows: 

I. Scientific Contributions: 

(1) Developed an improved Gaussian filter technique to accurately extract 3D 

surface waviness from large field of view 3D engineering surface height map 

which has large form distortion and contains lots of sharp peaks/valleys/noise. 

(2) Developed a two-channel filter bank algorithm diagram for applying 2D 

wavelet on multiple-scale 3D surface decomposition. Exploited a simple but 

effective border distortion elimination method when applying 2D wavelet to 

decompose a 3D engineering surface. Quantified the transformation between 

the wavelet scale and its physical dimension. 

(3) Designed and constructed a novel, automated and fast machine vision system 

to detect and classify 5 types of microscopic surface defects commonly found 

on the mating/sealing surface. This system is a single camera system with 16 

LED blocks illuminating the target surface from multiple directions 

sequentially. 

(4) Improved the image histogram equalization algorithm by choosing a reference 

image and enhancing the contrast of other images by transforming the 

intensity values of the input image so that the histogram of the output image 

approximately matches the distribution of the reference image. 

(5) Enhanced the global thresholding image segmentation algorithm by adding an 

edge filter and considering only the pixels near the edges between the objects 
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and background. This method makes the intensity distribution of the image 

less dependent on the relative sizes of the objects and the image background. 

II. Engineering Contributions: 

(1) Presented a new way to detect severe tool wear based on the 3D surface 

waviness feature of the workpiece; the experimental results of different cutter 

types, workpiece materials and cutting conditions showed that the 3D surface 

waviness feature is a good indicator for detecting severe tool wear. 

(2) Defined some surface height and energy features from multiple-scale 

subsurfaces and applied them to several automotive case studies. These case 

studies demonstrated that the different-scale surface features can be used to 

predict various surface functional performances and detect machining faults. 

(3) Tested the “breadboard” surface defect detection and classification system on 

an artificially machined surface and two actual automotive parts. The 

experimental results showed that this system has the ability to detect and 

distinguish 2D or 3D microscopic surface defects which are problematic to the 

powertrain manufacturing. 
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