RECTANGLE LAYOUT OPTIMIZATION

Kai Tang
Stephen Pollock
Department of
Industrial & Operations Engineering
University of Michigan
Ann Arbor, MI 48109-2117
Technical Report 90-26

October 1990

Rectangle Layout Optimization

Kai Tang
Stephen Pollock

Dept. of Industrial and Operations Engineering

The University of Michigan
Ann Arbor, MI 48105

Oct. 14, 1990

1. INTRODUCTION

Floor plan layout is an early stage of VLSI design. It is based on the following
simplified but very realistic assumption [MEAD]: each piece of circuitry or module can be
modeled as a rectangle. In order to obey certain necessary electronic and physical properties
(e.g., two modules must be a certain distance away from each other to prevent possible
magnetic interference or a module can not be made arbitrarily small due to manufacturing
feasibility), a rectangle must have lower-bound limits on its length and width, and each
rectangle must obey some positional constraints relative to some other rectangles. For
example, the width of a wire must be greater than some value A in order to keep the wire
resistance below some threshold; a cut might be required to be totally inside a diffusion so
that they can function properly.

Since the bigger a module is in a VLSI layout the more material it needs, there is a cost
function associated with each module, which can be reasonably simplified as a linear
function of the area of that module. Therefore, one optimization objective in VLSI floor
plan layout design might be to minimize the overall cost of all these modules. Specifically,
suppose there are n modules to be designed in the layout and let oy, o,,...,0, be their final
designed areas, then we would like Z(:)iai (i=1,2,...,n) to be as small as possible, where
each (; 1s a non-negative "cost per unit area” constant.

Another objective in VLSI layout design might require the rectilinear hull of the final
layout to be minimized. The rectilinear hull of a set of rectangles is just the smallest
rectangle that covers the set. (See Figure 1.1.) This requirement can be easily justified by
‘noticing that a layout will often become a module in a higher level layout. For instance, the
VLSI layouts of a micro processor and a memory module usually are designed
independently; their rectilinear hulls are then taken as two individual modules to a higher
stage layout design with some constraints between the two rectilinear hulls only. As an
illustration, the layout design in Figure 1.2 can be viewed as a two level hierarchy design:

first design the layouts of Processor and Memory, and then design the layout of their
rectilinear hulls and two other modules M; and M,.

Rectilinear Hull

/

Figure 1.1. Rectilinear Hull of five rectangles

t

Processor memory

M2

&

¢-u

Figure 1.2. Multi-stage layout design

:

Mi

We now generalize this VLSI layout design to a broader optimization problem: the
Rectangle Layout Optimization (RLO) problem. Study of this problem sheds light on
related applications such as facility layout design in industrial engineering, as well as
exposure to some interesting algorithmic aspects of graph theory.

2. PROBLEM FORMULATION

In this section, we give a rigorous formulation of the RLO problem. First, we present

some definitions and terminology.
2.1. Constraint and Relations

Definition 2.1. A constraint (A;, A,) is an interval on the real positive line; A, and

), are called the lower and upper bounds of the constraint respectively.

Each recténgle in the layout is associated with two constraints (w;,w,) and (h;,h,).
The first constraint (w;,w,) bounds the width of the rectangle. More precisely, it specifies
that the width of the rectangle must be no less than w; and no greater than w;,. The second
constraint (hy,h,) bounds the height of the rectangle.

The following three types of constraint are distinguished.

Definitions 2.2. A constraint (A, A,) is said to be tight if A;=A,. The constraint
(A, o) is an upper-free constraint. A constraint is said to be ordinary if it is neither

tight nor upper-free.

In terms of the design, a rectangle with a tight width constraint (A, A) means that its
width must be of fixed length A. An upper-free height constraint (A, +eo) indicates that its
height must be no shorter than A but can be arbitrarily long.

Two rectangles are related to each other if there are any constraints.among their relative
positions. Figure 2.1 shows an example of two related rectangles O; and O;, with the
following relations: (a) the left side of Oj must be to the right of the left side of O, and their
distance must be in the range (A, A';); (b) the top side of O; should be below that of O; by
a distance bounded by (A, A'5); and (c) the top side of O; must be above the bottom side
of O; such that their distance is within the range (A3, A'3).

E 1, A1)

Figure 2.1. Constraints between two rectangles

The three constraints (A;, A'}), (Ay, A'y) and (A3, A'3) in Figure 2.1 are called the
binding constraints between O; and O;. A binding constraint is further said to be
homogeneous if the two sides it binds are in a same category, i.e., either both are top
sides, or bottom sides, or left sides, or right sides. Notice that by imposing the different
types on them, various physical meanings are manifested. For example, if (A3, A'3) is a
tight constraint (0,0), then the designing rule specified by it states that the top side of O;
and the bottom side of O; must be coincident.

We shall assume that a constraint between two rectangles can relate to two parallel sides
only. More precisely, a horizontal (vertical) side of a rectangle can only be related to a
horizontal (vertical) side of another rectangle. This disjunction between the horizontal and
vertical sides is directly dué to our definition of a constraint, i.e., it is only a distance
measure. It is not hard to see that between a pair of rectangles there can be at most 16

constraints.
2.2. Feasible Layout

Let O={0y, Oy, ..., O, } represent the n rectangular objects required in the layout. Let
O, have width constraint (w;,w';) and height constraint (h;, h'}), i=1,2,...,n. Let Cij
represent the set of constraints binding O; and Oj, e.g., C;; = {(A, A, (g, Ay, (As,
A'3)} in Figure 2.1. Note that C;; could be an empty set if the two rectangles are not
related. The set S={(w;,w"), (h;, h'}): i=1,2,...,n} and C={Cij : 1<i<n,1<j<n, and i#j)

will be referred to as the self constraint set and mutual constraint set respectively.
Together, (S, C) form the constraint description of the n rectangles. Then, a feasible layout
of O subject to S and C, is the determination of the following two data lists:

(1) (x13 Y1), (X2, Yz), (33} (xn’ yn)
(2). (ay, by), (ag, by), ..., (ay, by)

such that when the lower-left corner of the rectangle O; is placed at the location (x;, y;) and
O, is assigned width a; and height b;, i=1,2,...,n, all the constraints in S and C are

satisfied.
01| 01 (L1 03 0,0) 1
| (2,10) <> 03 \ :
i— i 1
1 (1,15) 1 !
aie]” 0z
(a) (b) (©

(wy,W'p) = (3,10), (hy, h')) = (5,10)
(wqp,w'y) = (1,10), (hy, h'y) = (1,10)
(W3,W'3) = (2,10), (h3, h'3) = (3,10)

Figure 2.2. A constraint description of three rectangles

As an illustration, consider finding a feasible layout of the three rectangles shown in
Figure 2.2. Figure 2.3 shows a feasible layout whose satisfaction of all the constraints
specified in Figure 2.2 can be easily verified. On the other hand, with minor change to
some constraints in Figure 2.2, we might have no feasible layout solution. For instance, if
in Figure 2.2(c) the constraint (1,15), which relates the left side of O, and the right side of
04, 1s changed to (1,1.5), then there will be no feasible layout since this constraint (1,1.5)
conflicts with the other three constraints (2,10), (1,1) and (w3,w'3). Actually, it can be

easily shown that as long as the upper bound in that constraint is less than 2+1+ws, no

feasible layout can exist. We will call a set of constraints S and C invalid if there is no
feasible layout associated with them; otherwise, (S,C) is valid or feasible.

] 1 1 1
1 1]] 1 1 1 1 1
- EEE T T o L
1 1
01: : : : 1 : 1
R W N NN S R [(N DU P
1 1 1 1 1 1]
1 1 N | 1 1 1]
1 1]] 1 1]
F=-r--r-rvr=-r-=-= 1] ==_==a===
1 1 1
Vo 04 b
TN S - - - -
]
03 : Lo
I) N cedecddena
2 1 | 1 -: 1
1 I 1] 1
1 1 1]
l,-- Y - - - T --1--—1---
1]] 1]]] 1 1
1 1 1 1] 1 1]] X
1 1]] 1] 1 1 []
T2 >

Figure 2.3. A feasible layout of the rectangles shown in Figure 2.2.

It is thus imperative to verify the validity of a set of constraints, prior to the search for a
feasible layout and for various optimization objectives (which will be discussed later). To
facilitate this verification process, we adopt the concept of a binding graph. Let T;, B;, L;
and R; denote the top,bottom, left and right sides of the rectangular object O, i=1,2,...,n.
The vertical binding graph of the n rectangles Oy, O,, ..., O, is a labeled directional graph
with 2n nodes; each of these nodes represents a top or bottom side of a rectangle; an edge is
drawn from a node to another node if the former is required to be above the latter by a
constraint, and the constraint itself is the label of this edge. The value of a node v, denoted
as Val(v), is defined to be the Y coordinate of the side represented by v. The horizontal
binding graph is defined in a similar manner on the left and right sides of the rectangles.
Figure 2.4 shows the horizontal and vertical binding graphs of the rectangles and their
constraints in the Figure 2.2.

(3,10

(b)

Figure 2.4. (a) Horizontal and (b) vertical binding graphs of the constraints in
Figure 2.2

The horizontal and vertical binding graphs of a set of n rectangles and their associated
constraints possess all the information for verifying the validity of the constraints. The two
graphs themselves can be obviously constructed in O(n+m) time and space from the
constraint description (S, C) where m is the total number of the constraints. Finding a fast
algorithm to check for the validity, however, is expected to be very challenging. We will

discuss this in the following.
2.3. Optimization Objectives
Given a constraint description (S,C) with at least one feasible layout, we can impose

certain optimization objectives. Particularly, the following three optimization objectives are

in order.

Minimization of Rectilinear Hull (MRH). Given {S,C}, a feasible layout ({(xy, y;),

(X2 ¥2)s s (Xpy Y0}, {(ay, by), (ag, by), .., (ay, by)}) satisfies the minimization of

rectilinear hull if the following product is minimized:

(Max{x;+ a;: 1<i<n} - Min{x; : 1<i<n}) * (Max{y;+ b;: 1<i<n} - Min{y; : 1<i<n}).

Minimization of Overall Cost (MOC). Let w;, ®,, ..., ®, be n non-negative real cost
coefficients. A feasible layout ({(X1, ¥1), (X2, ¥2)s «os Ky Yo }s {(@1, by), (2, b), ...,
(ay, by)}) is said to have the minimum overall cost if the following summation is

minimized:

2w; a; b, (i=1,2,...,n).

Minimization of Area Measure (MAM). The area measure of a set of rectangles is the

area of the union of the rectangles. A feasible layout ({(xy, y1), (X2, ¥2)s s (Xp ¥n) s
{(a;, by), (ay, by), ..., (a,, by)}) has a minimum area measure if the area measure of the n

rectangles in the layout is minimized.

S éVéy/

N\

b1

7 757
% " A

N

7

NN

al

~,

a3

C= mlalbl + (1)232b2 + (o3a3b3

(a) Rectilinear Hull (MRH) (b) Overall Cost (MOC) (c) Area Measure (MAM)

Figure 2.5. Definitions of Rectilinear Hull, Overall Cost, and Area Measure

Figure 2.5 illustrates these three definitions. When the cost coefficients ;’s are all

equal, the MOC problem reduces to the problem of minimizing the summation of the areas

of n rectangles. We will call this reduced MOC problem the Minimization of Overall Area
problem, or simply MOA. The inequivalence between MOA and MAM is apparent. For the
example shown in Figure 2.5, if the areas of O;, O, and O; are 2, 1.8, and 2 respectively
and the overlapping area between O; and Os is 0.15, then the overall area is 2+1.8+2,

whereas the area measure will be 2+1.84+2-0.15.
3. RLO Under Upber-free Constraints

In this section, we investigate a special case of the RLO problem when the constraint
description (S,C) contains upper-free constraints only. As defined in the preceding section,
an upper-free constraint is a semi-open interval [A,+e) on the positive real axis. For
simplicity, we will hereafter use the lower-bound A only to represent an upper-free

constraint, with the understanding that its upper-bound is free.

As discussed in the preceding section, given a constraint description (S,C), solving the
RLO problem consists of two stages: first verifying the validity of the vertical and
horizontal binding graphs; then (if both graphs are valid) finding a feasible layout which
meets the optimization objective.

3.1. Verifying the Validity of a Binding graph

A binding graph, from the way it is defined, is equivalent to a set of inequalities, each
two of which corresponds to a single constraint. For example, the set of the inequalitiés
corresponding to the horizontal binding graph in Figure 2.4(a) is listed below:

R1-L123, R1-L1<10
R2-1221, R2-L2<10
R3-1322, R3-L3<10

R1-L1222, R1-L2<10
R3-L221, R3-L2<15
L3-R121, L3-Rl<l

R2-R320, R2-R3<0.

The first group corresponds to the self constraints S, and the second group is due to the
mutual constraints C.

Thus, the verification of the validity of a binding graph is equivalent to a linear
programming problem with no optimization objective. More precisely, whether or not a
binding graph is valid can be answered by verifying the feasibility of the set of inequalities
implied by the binding graph. Such a linear programming approach, however, needs to be
considered with caution. Although in practice the average running time of most current
linear programming algorithms is almost linear in the number of variables and constraints,
its upper bound is exponential with the input size [MURTY]. Thus, resorting to-a general
linear programming method might not be appropriate.

If all the constraints are upper-free, only "2" inequalities exist. For example, if all the
constraints of the binding graph in Figure 2.4(a) are upper-free, the corresponding
inequalities are the following seven:

R1-L123
R2-1221
R3-1L32>2

R1-1222
R3-1L221
L3-R121
R2 - R3 0.

It is therefore desirable to have a worst case linear time algorithm that checks the validity of
a set of "2" inequalifies. Let the lower-bound of the upper-free constraint associated with
an edge in a binding graph be called the weight of that edge, and correspondingly. the
summations of the weights of the edges along a path the weight of that path. The following
lemma provides a method for linear-time feasibility checking.

Lemma3.1. Let G=(V,E) be a binding graph with upper-free constraints only. G is
invalid if and only if there exist two vertices v and v' in V such that there is a cycle

passing through v and v' whose weight is not zero.

Proof. Suppose there is a path n(v,v') from v to v' and another path ©t'(v',v) from v'
to v; the summations of the weights of m(v,v') and n'(v',v) are W, and W,

respectively. m(v,v') and ©'(v',v) imply two inequalities:

10

Val(v) - Val(v) 2W,, and Val(v))- Val(v)2W,. (3-1)
Clearly, such two inequalities are solvable if and only if both W and W, are zeros.

Conversely, assume there is no non-zero weight cycle in G. We claim G must be
valid. Suppose G is invalid and let v and v' be two offending vertices, i.e., they violate
the two inequalities in (3-1). Only two cases are possible as the result of the induction
of the constraints: (1) Val(v) - Val(v') 2A and Val(v') - Val(v) 2B, or (2) Val(v) -
Val(v') 2 A and Val(v) - Val(v') <B, where A and B are some non-negative real
numbers and at least one of them is non-zero, and in case (2) B is less than A. The first
case would imply a cycle between v and v' with total non-zero weight A+B, which
violates our assumption. The second case contradicts the assumption that all the
constraints are upper-free, because for any path from v to v', we can always arbitrarily
increase its total weight. Q.E.D.

Lemma 3.1 implies that when the weights of all the edges of a binding graph are greater
than zero, (in which case the graph is said to be in regular form), its validity can be
verified by merely testing the acyclicity of the graph, i.e., the graph is valid if and only if it
has no cycles. Since the test for acyclicity of a directed graph can be achieved by a depth-
first search in time and space linear with the number of vertices and the edges of the graph
[AHO], we immediately conclude that the verification of the validity of a regular binding
graph can be done in linear time and space.

However, when a binding graph is not in a regular form, (i.e.,‘it has some zero weight
edges), the depth-first search might fail, because a zero cycle does not contribute to the
invalidity. To account for this, we can use the concept of a transitive closure. The transitive
closure of a directed graph G is also a directed graph G*, which has the same vertex set as
G, but has an edge from a vertex v to a vertex v' of weight W if and only if there is a path
of weight W from v to v' in G. Once having the transitive closure G* of a binding graph
G(V,E), we can then perform a trimming operation. Specifically, if there is more than one
edge from a vertex v to a vertex v' in G*, only the one with the maximum weight will be
kept after the trimming operation. Calling the "trimmed" graph G**, it is straightforward to
show that the set of inequalities for G** is equivalent to that for G*. Also, although we do
not give a proof, such a trimming operation can be easily embedded into a transitive closure
construction algorithm without changing its asymptotic time complexity. (See, for example,

11

[AHO].) Since the transitive closure of a directed graph with n vertices can be found in
O(n3) time, so can the trimmed one. After G** is found, we then perform the following
simple comparison between each pair of vertices v and v' on G**: if there is an edge of
weight W from v to v' and another edge of weight W' from v' to v, and W and W' are not
both zero, then G is invalid. Clearly, these comparisons can be done in O(n?) time.
Therefore, the validity of a binding graph with n vertices can be verified in O(n3) time.

One disadvantage of the transitive closure method is that the O(n3) time bound is tight;
that is, it is independent of the number of the edges in the graph. In many applications, the
number of edges in a graph is much less than n(n-1). To take advantage this, we propose
an algorithm whose time bound is sensitive to the number of the edges. The algorithm is
based on the simple idea of merging the vertices of a zero weight cycle into a single vertex.
We define a merging operation that transforms a binding graph with zero weight cycles into
an equivalence graph of regular form. The term equivalence here is defined in the sense that
the “>” inequalities of the two binding graphs are essentially the same. As already shown in
the proof of Lemma 3.1, a zero weight cycle enforces all the vertices on this cycle to have
the same value (or coordinate) in any feasible solution. The merging operation thus replaces
these vertices by a single vertex and correspondingly deletes the associated zero weight
cycle from the binding graph. To keep the equivalence, each edge coming into or out of any
vertex in this cycle is assigned to the replacing vertex. Figure 3.1 shows an example. The
original binding graph in Figure 3.1(a) has a zero weight cycle v2-v3-v4-v5-v2; it is
replaced by the single vertex v', as in Figure 3.1(b). Since v'-v6-v' is a zero-weight cycle;
it is in turn replaced by a new vertex v". The result is the equivalent binding graph of
regular form as shown in Figure 3.1(c).

It turns out that a maximal set of vertices, such that between any two vertices in this set
there exists a zero weight path, is a strongly connected component™ of the binding graph
with all the non-zero weights excluded. This suggests a straightforward algorithm for
implementing the merging operation, which is presented in Appendix 1, where we also
show that the time complexity of the algorithm is O(IVI+|El), an obvious improvement over
the transitive closure method.

* A subset V' of V of a directed graph G(V.,E) is a strongly connected set if for any pair of vertices in V'
there is a cycle passing through them.

12

v' -v1l23
v'-vl27
vl-v" 210
v7-v"' 20

©

Figure 3.1. Merging the vertices of zero weight cycles

3.2. Minimization of the Rectilinear Hull

In this section, we present an algorithm that finds a feasible layout of a constraint
description (S,C) that satisfies the MRH property, i.e., the area of its rectilinear hull is
minimized. The algorithm depends crucially on the (assumed) independence between
vertical and horizontal directions. Let (S,C)y and (S,C)y denote the vertical and horizontal
constraints in (S,C) respectively. The terms feasible layout, MRH, MCO, and MMA can be
analogously transplanted to (S,C)y and (S,C)y. For example, the MCO problem of (S,C)y
is to find two real number lists (yy, y3, ..., ¥5) and (by, by, ..., by), such that when the
lower end point of the vertical line segment i is placed at the height y; and with the length
b;, i=1,2,...,n, all the constraints in (S,C)y are met and the sum 2 m.b; (i=1,2,...,n) is

minimized, where o, (i=1,2,...,n) are some given non-negative constants.

13

A Rectangle Layout Optimization problem of (S,C) is said to satisfy the separation
condition if it can be solved by independently solving the RLO problems of (S,C)y and
(S,C)y, respectively.

If only a feasible layout is sought, because of the lack of dependence between vertical
and horizontal constraints, the positions of the top and bottom sides (left and right sides)
of the rectangles depend only on the vertical (horizontal) constraints. As a result, they.
satisfy the separation condition, and hence can be determined by the vertical and horizontal
binding graphs respectively. We should be careful, however, to confirm this independence
if an optimization objective is pursued. This is particularly important in our case since all
the three optimization objectives MRH, MOC, and MMA involve areas which are two
dimensional. Fortunately, as we are to show, the separation condition is applicable to both
MRH and MOC.

Suppose we have a valid constraint description (S,C). After the merging process, its
vertical and horizontal binding graphs become two partial order trees, i.e., directed graphs
without cycles. As a convention, let those vertices in a tree that have no "IN" incident edges
be called source vertices and those that have no "OUT" incident edges be called sink
vertices. * A vertex with no incident edges, which is both a source and sink vertex, will be
referred as an isolated vertex. For a non-trivial partial order tree **, clearly there should be
at least one source vertex and one sink vertex. A longest path in a partial order tree is a
path from a source to a sink whose weight is the maximum (there could be more than one).
A longest path of a binding graph with weight W requires that its sink vertex must be
below (to the right of) its source vertex by at least a distance W. Therefore, the width and
the height of the minimum rectilinear hull of a constraint description (S,C) must be at least
the weights of the longest paths of the horizontal and vertical binding graphs, respectively.
If we can find a feasible layout whose rectilinear hull width and height are no greater than
these two weights, it is certainly a MRH layout.

To facilitate the design of the algorithm, a minor augmentation is needed for the binding
graph G(V,E). We add a dummy source vertex ROOT to V and assign an edge of zero
weight from ROOT to every source vertex in V. It is easy to see the equivalence between

* An edge e is an “IN” edge of a vertex v if v is the head of this edge; e is an “OUT” edge of v if v is its tail
Vertex.

A partial order tree is trivial if it has no edges.

14

the original G(V,E) and this augmented graph. We will also assume that a binding graph
always has a unique single source vertex. The algorithm PO_TREE given in Appendix 2
assigns real numbers to the vertices of a partial order tree such that these numbers will
satisfy the constraints implied by the edges of the tree. The algorithm is essentially carried
out by a recursive procedure ASSIGN. We assume that the partial order tree is
represented by the adjacency list data structure [AHO]. Associated with each vertex v are
three pieces of data: Vél(v) is a real number variable which will eventually store the value
assigned to the vertex v; Count(v) is an integer variable that is initially the number of the
"IN" edges incident at v; List(v) is a list of pointers that point to the child vertices of v. (A
vertex w is a child of a vertex v if there is an edge from v to w.)

Refer to the algorithms PO_TREE and ASSIGN. At step 1 of PO_TREE, we
initialize the Val of every vertex. ROOT is assigned 0 value since it is the only source
vertex. All the other vertices are initialized with +eo that will later be updated by the
procedure ASSIGN. In ASSIGN(v), we first check to see if Count(v) is zero. If yes,
this means all the parent vertices of v have been assigned the final Val, and the following
steps are taken for every child w of v: At step 1, the weight A of the edge from v to w is
retrieved. Since w must be less than Val(w) by at least A, step 2 will assign Val(w) the
number Val(v)-A if it is less than the current Val(w). At step 3, we decrease Count(w) by
one, which means one "IN" edge (constraint) of w has been processed. Finally, at step 4,
the recurrence ASSIGN(w) is called. That the Val's of all the vertices (after PO_TREE
terminates) satisfy all the constraints can be easily verified by the minimization of step 2 in
ASSIGN. More importantly, since step 2 of ASSIGN always tries to assign the Val(w)
as large as possible, (notice Val(w) is initially +oo), and by the fact that the partial order tree
G(V,E) has only one source vertex ROOT and no isolated vertices, we conclude that the
number Min{Val(v): ve V} is maximized. That is, the number -Min{Val(v): ve V} is

equal to the weight of the longest path of G(V,E).
Lemma 3.2. Algorithm PO_TREE runs in O(IEl) time and space.

Proof. Notice that step 1 through step 4 in ASSIGN(v) will be executed only when
Count(v) becomes zero. This guarantees that the "OUT" edges incident at v will be
processed exactly once throughout the recurrence of ASSIGN. By introduction from
ROOT which has no "IN" edges, we conclude that each edge in E will be processed
only once. Therefore, PO_TREE runs in O(IEl) time. The proof for the linearity of the
space requirement is trivial. Q.E.D.

15

For a given constraint description (S,C), by calling PO_TREE twice, once for the
vertical binding graph and once for the horizontal binding graph, we can obtain the Y
coordinates of the top and bottom sides and the X coordinates of the left and right sides of
the rectangles. The induced layout of these rectangles is a feasible layout meeting the MRH
optimization objective. Since constructing the binding graphs take time linear in the number
of the constraints, it follows that the MRH problem of a valid (S,C) can be solved in linear

time and space. We summarize this in a theorem.

Theorem 3.1. The Minimum Rectilinear Hull problem of a valid constraint
description (S,C) can be solved in time and space linear in the number of the

constraints.
3.3. Minimization of Overall Cost: a Heuristic Procedure

Although the algorithm PO_TREE can be used to achieve the minimization of
rectilinear hull of a feasible layout, we can not expect it to be directly applicable to the
MOC problem. Figure 3.2(a) shows the (S,C) of three rectangles A, B and C. The feasible
MRH layout after applying the algorithm PO_TREE to its vertical and horizontal binding
graphs is shown in Figure 3.2(b). Figure 3.2(c) shows another feasible layout. Obviously,
the sum (a*area(A) + bxarea(B) +c*area(C)) of the layout in Figure 3.2(b) is always

strictly larger than that of the layout in Figure 3.2(c), for any cost coefficients a,b,c > 0.

16

17

A p 3 ' 1 B
>l ¥ 19
- B
7 31
T(A) - B(A) 22, R(A) -L(B)>4
T@®) - B(B) 22, R(B) -L(B)>2
T(C)-B(C)>1, R(C)-L(C) =5
(a)
i i - i
3
L 6 6
B
11 11 v-
>t Y »ta B '|'1 Y
j =T - —T--
| |1 '|1
| I
(b) (©)

Figure 3.2. Inequivalence between MRH and MOC problems

The difficulty in having a general solution to the MOC problem stems from the
dependence of the objective function on the cost coefficients. Suppose there are only two
rectangles O; and O,, and the constraints are: B(O;)-T(0,)21, R(O,)-L(0,)=2, B(O,)-
T(0,)21, R(0O,)-L(0;)22, B(0,)-T(0,)23, B(0,)-T(0,)=2. Figure 3.3(a) and Figure
3.3(b) show the MOC layouts when the cost coefficients (®;, ®,) are (100,1) and (1,100)
respectively. Moreover, instances can be designed to show that the MOC problem does not

satisfy the separation condition, thus precluding even using a linear programming method.

1 2 3 4 5 1 2 3 4 5
| |] > | 1 —
O2 (0)1 (0]
1- 1
2 2
01
4~ 4

@1, 02)=(100,1) @1, 02)=(1,100)
(2) (b)

Figure 3.3. Dependence of MOC on the cost coefficients

Instead of searching for an exact solution to the MOC problem, we turn the attention
getting a "good", but possibly sub-optimal solution. The main idea is "shrinking". To
reduce the height (width) of a rectangle in a layout means to shrink its top (left) and bottom
(right) sides toward each other as much as possible. Examining a layout output from the
algorithm PO_TREE, we see that every vertex v achieves its possible maximum
coordinate, i.e., the value Val(v) is maximized. Because of this maximization, no bottom
(right) sides of the rectangles in a layout output from PO_TREE can be moved up (to the
left). The top (left) sides, however, can still be possibly moved down (to the right), such as
T(B) in Figure 3.2(b).

To facilitate such a top (left) side shrinking operation, the mechanics of the complement
graph is needed. The complement graph of a directed graph G(V,E) is another graph,

denoted as G¢(V,E°), such that there is an edge in E¢ from a vertex v to a vertex w if and

only if there is an edge in E from w to v. Figures 3.4(a) and (b) depict the vertical binding
graph of the (S,C) shown in Figure 3.2(a) and its complement graph. Obviously, if
G(V,E) is a partial order tree, so must be its complement graph G¢(V,E°). To abide with
the convention that a partial order tree always has a single source vertex, a minor
modification on augmenting is needed. This time, in addition to adding the vertex ROOT, a
sink vertex SINK is also added such that for every sink vertex we assign a zero weight
edge from it to SINK. Figures 3.5(a) and 3.5(b) show such an augmentation of the partial
order tree of Figures 3.4(a) and 3.4(b). The equivalence between an original partial order
tree and its augmented one is obvious.

18

19

(a) (b)

Figure 3.5. Augmenting a partial order tree and its complement

With the help of the complement graph, an algorithm for performing the shrinking
becomes quite straightforward. It consists of three phases as given below:

Phase 1: On the binding graph G(V,E) (which is (§,C)y and (S,C)y), perform an
execution of PO_TREE that assigns values to the vertices in G(V,E).

Phase?2: for every top (left) side vertex v in G(V,E) do
Val(v) <-- -0

20

end do

Phase 3: Compute the complement graph G¢(V, E°) and call the procedure
SHRINK on the SINK vertex of the G¢(V,E), where SHRINK is

essentially the same as ASSIGN except that step 2 is changed to
"Val(w)<-- Max{Val(w), Val(v)+A}".

The reader can easily verify that the layout in Figure 3.2(c) can be obtained by these
three phases.

The behavior of this heuristic algorithm is currently being explored.

References

[AHO] A.V. Aho, J.E. Hopcroft, and J.D. Ullman: The Design and Analysis of
Algorithms, Addison-Wesley, Mass., 1974.

[MEAD] C. Mead and L. Conway, Introduction to VLSI systems, Addison-Wesley,
Mass, 1980.

[MURTY] K.G. Murty: Linear and Combinatoria Programming, Robert E Krieger
Publication Co., Florida, 1985.

21

Appendix 1.

Algorithm MERGE (G(V.E), G'(V',E"))

/¥ Merge the vertices of zero weight cycles in a binding graph G(V,E) and delete the zero
weight cycles. The resultant binding graph is G'(V',E").

*/

begin
step 1. T <-- G(V,E) with its non-zero weight edges excluded

step 2. {S1,S,, ..., S} <-- the strongly connected components in T

step 3. ~ foreachedgeeinE do

step 3.1. S; <-- the strongly connected component that the tail vertex of e
belongs
S; <-- the strongly connected component that the head vertex of
belongs
step 3.2. if (the weight W of edge e is not zero) then
assign an edge of weight W from S; to S; and store this edge
datato E'
end if

end do
step4. return (V'=(S;, Sy, ..., S}, E)

end MERGE

Lemma. Algorithm MERGE runs in O(IVI+IEl) time.

Proof. Step 1 needs only O(IVI+IEl) time. Step 2 also requires O(IVI+IEI) time [AHO].
During step 2, we can easily, in linear time, establish a unique mapping from V to {S;,

Sy, ..., S,). Because of this mapping, step 3 can be done in O(IEl) time.
Q.E.D.

Appendix 2.

Algorithm PO_TREE(G(V,E))
/* Assign numbers to the vertices of a partial order tree G(V,E) such that these numbers
will satisfy the constraints implied by the edges of the tree.

*/
begin
step 1. Val(ROOT) <-- 0
for every vertex vin V do
Val(v) <-- +o0
end do
step 2. call ASSIGN(ROOT)
end PO_TREE

procedure ASSIGN(v)

/¥ Assign numbers to v and all the decedents of v in a partial order tree. */
begin
if Count(v)=0 then
For each child w of v do
step 1. A <-- the weight of the edge from v to w
step 2. Val(w) <-- Min {Val(w), Val(v) - A}
step 3. Count(w) <-- Count(w) - 1
step 4. call ASSIGN(w)
end do

end if
end ASSIGN

