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Abstract

From the point of view of basic theorey, a unique conversion from a boundary
representation to a CSG representation is of importance. From the point of view of
application, the extraction of features by convex decomposition is of interest. The Alternating
Sum of Volumes (ASV) is a technique that offers both. However, some algorithmic issues are
still unresolved. This paper is the first of a two-part paper that addresses specialized set
operations and the convergence of the ASV process. In this part, a fast difference operation
for the ASV process and a data structure for pseudo polyhedra are introduced.

A fast difference operation between an object and its convex hull is enabled by the crucial
observation that it only takes linear time to distinguish them. However, it takes O(NlogN)
time to construct a data structure with the proper tags. The data structure supporting the
operation is a pseudo polyhedron, capturing the special relation between an object and its
convex hull. That the data structure is linear in space is also shown.



1. INTRODUCTION

The idea of the Alternating Sum of Volumes (ASV) is to represent an object by a series of
convex components with alternating signs (for volume addition and subtraction). It is a
technique to extract "features" from the boundary representation of a three-dimensional
component [12]. As an example, consider the object in Figure 1. It shows a block with a slot
and a hole . The ASV series of this object is

Hy-H, +H,- Hy

where the H;'s are convex.
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Figure 1. Alternating Sum of Volumes

Formally, the ASV series of an object Q is defined as
Q=X (-1)iH;

where Qy=Q
H; is the convex hull of Q; , CH(,)
Q; is the deficiency and is defined as the regularized set difference

between H; ; and €, ;.



Figure 2 shows how the terms in an ASV are derived for the object in Figure 1. The
deficiency Q is obtained by subtracting ;; from Hy, i=1,2,.... As Q;,, becomes the null

set &, the H;'s are collected starting with Hy. The ASV expression is formed by alternating

"." and "+" signs as in Hy-H;+H; -....

@ Hi = CH(Q)
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Figure 2. Derivation of ASV series

Consider the machining process of the mechanical component in the previous example.
There are two features: a slot and a hole. They can be extracted by algebraic manipulation of its



ASYV as illustrated in Figure 3. Parenthesizing H; and H, forces a change in the sign from + to

-. Subtracting H, from H, yields a new H,' for a disjunctive expression:
Hy-(H,;-Hy)-Hy = Hy'-Hy'-Hy' .

If Hy' is the stock, H;' and H,' can be thought of as volumes to be removed to create the slot
and the hole.
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Figure 3. Algebraic Manipulation of ASV Series into Disjunctive Form

As another illustration of the material joining process, consider Figure 4. The components
adjacent to the - sign are parenthesized yielding a conjunctive expression:

Ho-Hy +Hy=(Hy-H; ) +H =Hy' +H,'.

Here, Hy' is the base plate on which a protrusion H,' is to be joined. These two examples
illustrate that through the manipulation of an ASV series, features of a given object can be



extracteded automatically, which in turn can help the process planners in deciding the suitable
manufacturing operations such as machining or welding. The ability to "disassemble” allows
conversion from boundary based solid modeling systems to those that are CSG-based [8].
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Figure 4. Algebraic Manipulation of ASV Series into Conjunctive Form

As implied in the examples, the terminating condition of an ASV series expansion is when
the deficiency Q, becomes convex, that is, when H, identifies with €. This condition,
however, is not guaranteed. Figure 5 illustrates an example of an infinite ASV series. It has
been shown [12] that an ASV series is non-terminating if and only if there is an integer i such
that H;,; = H;. In such a case, the deficiency €2; is said to be non-convergent. When a

non-convergent deficiency €, is encountered, the ASV expansion can not continue .
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Figure 5. An example of ASV non-convergence

When a deficiency Q, becomes non-convergent, one solution is to divide it into convex
subsets [12]. B.ut there is a drawback. It is known [4] that there can be O(n3) convex subsets,
where n is the number of concave edges, each subset requires further polynomial time to
determine. An alternative is to decompose it into subsets which are themselves convergent so
that the ASV series can expand further. For example, the object Q in Figure 6 is
non-convergent. By separating it along the edge "e¢" into two parts P, and P,, and
performing the ASV expansion on each of them, a finite ASV series of two branches, each of
which is a finite ASV series, results. The observation that the type of edges such as "e" in
Figure 6 may be a very small subset of the set of all concave edges encourages inquiry.
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Figure 6. Remedy for non-convergence

This is the first of a two-part paper. Part I deals with a special difference operation. While
general difference operation [10] may be invoked, the relation between an object and its
convex hull merits investigation. This relation is made concrete by the notion of a pseudo
manifold, as illustrated by Q in Figure 6. It is an entity that is between a two-manifold [2] and
a non-manifold [11]. With the aid of a data structure for pseudo manifolds, an O(nlogn) time
algorithm for computing a convex deficiency is made possible, where n is the number of faces
of the pseudo manifold. The data structure is shown to be O(n) in space which gives an
absolute upper bound to the number of edges of the type “¢" in Figure 6.

The characterization of non-convergence and its remedy as illustrated by Figure 6 is given
in the sequel, Part II of the paper.



2. DOMAIN AND DATA STRUCTURE

In this section the domain of objects and a data structure to represent them are given. An
object Qis a set of points in three-dimensional Euclidean space E3. It must satisfy certain
restrictions. Because ASV performs operations on the boundary of volumes, each object must
be a closed surface that forms the closure of an open set of finite extent in E3. In other
words, an object must be the surface of a volume and must not have "dangling" faces and
edges [8]. In addition to this restriction of homogenous three-dimensionality, the objects
must also be closed under the (regularized) difference operation, i.e., they should have
differential preservability [8]. To define a domain of objects that will meet both the restrictions,
some definitions regarding the interior and boundary points of a three-dimensional point set
need to be clearified.

Definition 1. A point p of a set S in E3 is called an interior point of S if there exists an
open three-dimensional neighborhood that consists of points in S only. A point p is
called a boundary point of S if it is not an interior point. The set B(S) of all boundary
points of S and the set I(S) of all the interior points of S are defined as the boundary
and the interior of S respectively.

The relation between a boundary point and its neighboring points of a set S in E3 is
described by three characterizations, namely, manifold, pseudo manifold, and non-manifold.
A point p in B(S) is called a two-manifold point if it has a three-dimensional neighborhood
such that the subset of the points of S contained in that neighborhood is topologically
equivalent to a hemisphere [11]. A point p is a pseudo manifold point if every
three-dimensional neighborhood of it contains some points in I(S). If a point p has a
three-dimensional neighborhood such that the subset of the points of S contained in that
neighborhood entirely belong to B(S), then it is called a non-manifold point . As an example,
the boundary surface of the object in Figure 7 consists of the six faces of the cube and that
dangling face "f". All the boundary points except "f" (including edge "e") are two-manifold
points. The boundary points on the six faces of the cube, including edge "e", are pseudo
manifold points. The non-manifold points are those on face "f" but noton edge "e".
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Figure 7. Points characterizing a Manifold, a Pseudo-manifold, and a Non-manifold

Definition 2. A point set S in E3is a two-manifold if I(S) is connected and every point
in B(S) is a two-manifold point. S is a pseudo manifold if every point in B(S) is a
pseudo manifold point. S becomes a non-manifold if B(S) contains some non-manifold
points.

A pseudo manifold point is a relaxation of two-manifold, i.e., it only requires that every
neighborhood of the point contains some interior points of the set, but with no topological
constraint on the neighborhoods. A pseudo manifold need not be a connected set either. The
relation of these three sets can be best described by Figure 8. Because an object must have
homogenous three-dimensionality, non-manifolds are immediately excluded from the
consideration. Although two-manifolds satisfy the homogenous three-dimensionality, they are
not closed under regularized difference operation [8]. The generality of pseudo manifolds,
while still conforming to homogenous three dimensionality but also guarantees differential
preservability [8], prove to be the only suitable clan of objects suitable for ASV
representations. Figure 9 illustrates several examples of two-manifolds, pseudo manifolds and
non- manifolds.

Three-dimensional sets
Pseudo manifolds

Non-manifol
Two-manifolds on-manifolds

Figure 8. Set relation between Two-manifolds, Pseudo manifolds and Non-manifolds
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(a) Two-manifolds

(b) Pseudo manifolds

~) &

(c) Non-manifolds

Figure 9. Illustration of Two-manifolds, Pseudo manifolds and Non-manifolds

A data structure for the pseudo manifolds is crucial to both the development and analysis
of algorithms. A data structure for polyhedra [13] is not suitable because a pseudo manifold
could have more than two faces meeting at an edge (see Figure 9b). The representation of
general non-manifolds [11] are more than what is needed here, because of the difference
preservability of pseudo manifolds. The concept of pseudo polyhedra is proposed. A pseudo
polyhedron is "almost" a polyhedron except that it allows edges to have more than two
adjacent faces.

Definition 3. A pseudo polyhedron P is a finite collection of planar faces such that (a)
every edge of P has at least two adjacent faces, and (b) if any two faces meet they meet at
a common edge. Specifically, a pseudo polyhedron with n, vertices, n, edges and n;

faces is a quintuple <V, E, F, NORM, E; > which is defined as:
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(@) V = {vq, vy ..., Vpy} is a list storing the n, vertices; each v; is a coordinate

triple (x;, ¥i» Z; )-

(b) E = { <vy 1,V1 2>, <¥2,1,V22> - - » <Vpe,1>Vne,2> | is the edge list. Each entry
<v;,V; o> stands for an edge with v;; and v;, being indices of the two end points;

e.g., <V; 1,V;2> =<3,10> means the end points of the ith edge are v3 and vy

(c) F={F,, F,, ..., Fng} stores face information. Each element F; is itself an array
of the form {<ey j, €12, ...y €111 <€2,15 €225 -r €227 - - +» <€k 15 €25 -+ kx> s
where k is the total number of polygons inface F;.Each <e;,, €5 ..., ¢ 5>
is a simple polygon , and each e;, is the index of an edge in E. For example, by F; = {
<2,4,1>, <5,7,6,3>}, we mean face F; is bounded by two simple polygons; the indices

of the edges of the outer polygon are 2,4,1 and are 5,7,6,3 for the inner polygon. The
edges are ordered clockwise (for outer) or counter-clockwise (for inner).

(d) NORM = { Ny, Ny, . . ., Nng } stores the outward normals of the hf faces.

() E¢ = { <fy 1, fl90 o fLis> <f21, £220 o 22> - - o <Fe 1o fre2s -+ feskne™ }
is a list which describes the edge-face adjacency relation. An entry <f; ,,f;,,....f; ;> says
that edge E; has k; adjacent faces and the indices for them are f;, f;,, ..., fji;. For
example, if <f; 1.f,,....f; x> is <1,7,6,2>, then edge E;has four adjacent faces
and their indices in F are 1,7,6 and 2. Each k; is defined as the face adjacency index
of edge E;. |

The data structure given above, although quite simple, completely describes one family of
pseudo manifolds: planar pseudo manifolds. (Pseudo manifolds with non-planar boundary
surfaces are not considered in this paper.) In the Appendix a detailed proof that the space
requirement of a pseudo polyhedron is linear in the number of its faces is given. It should be
noted that though a pseudo polyhedron completely describes the boundary of a pseudo
manifold, it itself carries no set theoretic information. It is the pseudo manifold, which a
pseudo polyhedron represents, possesses the set in E3.
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3. DIFFERENCE OPERATION

To study the difference operation between a pseudo manifold and its convex hull , the
following notations are used: Q denotes a pseudo manifold object, €, for its convex hull,

and Q for the deficiency Q - Q. The same notations are used to represent their defining

pseudo polyhedra unless noted otherwise.

Consider the convex hull Q, of an object Q. The set €, can be divided into four

disjoint subsets. They are,

&: {I(Q)), the interior points of Q,

&: (B(Qy), the boundary (hull) points of €,

§p: (B(Q)NI(Qy)}, the boundary points of Q excluding those which are
alsoin & ,

Es  (I(Qy) - Q}, interior (deficiency) points of Q, excluding Q.

Figure 10 illustrates these subsets in two dimensions.

Q Ch

Figure 10. Illustrations of &, &, , §p and §,

Definition 4. A point pe ) is a preserved point if for any real number €0, no matter

how small it is, the open neighborhood sphere which centers at p with radius € always
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has a pointin §;. A pointp is alostpoint if itis not a preserved point.
The difference operation between €2, and Q is defined as follows.

Definition 5. The deficiency Q4 of an object Q is a set in E3 consisting of all the
preserved points of €.

The definition of deficiency here agrees with the intuition. The purpose of categorizing the
points of €}, is to relate the interior and the boundary of the deficiency €24 with that of €2 and

its convex hull Q. It is easy to see that because both I(Q) and I(,) are open sets, so must
 be the sets & and &,. By definition of the deficiency, all the points of &, are lost. Since &,
is an open set, every point in it has a neighborhood sphere of points in §; only and thus is
interior to Q4. This means &; must be a subset of the interior of deficiency €. For any point

in ipor g, every neighborhood of it contains some points either in & orin {E3 - Q}, that
is, it contains points not belonging to Q, , and hence by the definition they can not be the

interior of Q4. These observations are summarized in the following lemma.

Lemmal  The deficiency Qg of a pseudo manifold Q is also a pseudo manifold,

whose interior set I(Q,) is the §;-set of Qy and the boundary set B(Qy) is a subset of {&,

ugp].

As noted by Lemma 1, the boundary surface B(Qy) of the deficiency Qg is a subset of

(€, &) of Q. Because of the planarity of the faces, B(Cy) must be a set of some faces of
Q and ;. The key to the algorithm for finding the deficiency is to find these faces as well as

the adjacency relation among them so that the result is a pseudo polyhedron representation of
Q.
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Definition 6. A face of a pseudo manifold Q is a hull face ifitisin & ;otherwise it

is called an internal face.

Lemma2. A hull face f of Q will not exist in the boundary surface B(€2y).

Proof. For any point in the interior set I(f) of f, say p, there must exist an open
neighborhood € of p that belong to I(f) and hence in §; only. Since Q is a pseudo
manifold, every point in €, including p itself, must have a neighborhood sphere that

consists of points in { & U & U {E3- Q;}} only. By the way a preserved point is

defined, p can only be a lost point. Therefore the entire set I(f) are lost points.
Q.E.D.

Lemma 2 asserts that the boundary surface B(Q,) consists of only the internal faces of Q
and the faces of €;, but not the hull faces of Q. This observation leads to the development of
the difference algorithm sought. It accepts as input (V,E,F.E;, NORMy) which is the pseudo

polyhedron representation of a pseudo manifold Q and outputs the pseudo polyhedron
representation of the deficiency €24. Suppose there is a procedure HULLP which takes as

input the pseudo polyhedron (V,E,F,E,NORMy) of a pseudo manifold Q. Its output are
two: one is the pseudo polyhedron of the resultant convex hull €2, and the other is two arrays
Fy and Ey, called hull tag arrays which distinguish those faces and edges of €, that do not
belong to Q. Specifically, Fy(i)=1 means face i of Q, is a face of Q. When Fy(i)=0, the
meaning is reversed. Ey(i)=j means edge i of Q; is edge j of €, whereas Ey(i)=0 means edge i
is not an edge of €. Since most available three-dimensional convex hull algorithms[6,7]
support data structures that embody our pseudo polyhedra, the feasibility of the output of

HULLP is justified. For the convenience of computation it is also assumed that the vertex
array V is unchanged through HULLP, although redundant vertices in the V array of Q;, are

implied. Also, there are two additional arrays, F; and E;. They are the Internality tag arrays
which identify internal faces and internal edges of €. Specifically, Fi(i)=1 means face i of Q
is an internal face and, similarly, Ej(i)=1 means edge i of  is an internal edge. Likewise,

when Fi(i) or E(i) is 0, the meaning is reversed. These two arrays are O(nlogn) derivable
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from Q because the internality of any face f (or edge e) can be identified by checking the
internality of an arbitrary point of I(f) (or I(e) ). Figure 11 demonstrates the functionality of
procedure HULLP on a pseudo polyhedron.

e2
/ e3
e B ¢
e4
fa
Q Q,

Fy: Fy (f) =0; all the other Fy's are 1.

Ey: All the Ey's are non-zero.

Fi: F(f) =F; (f) =F; (f5) = F; (f4) = 1; all the other Fy's are 0.
E;: E;j(e)) =E;(ey) =E;(e5) =E (e4) = 1; all the other Ey's are 0.

Figure 11. Functionality of procedure HULLP

The first algorithm MERGE to be given below adds those edges and faces of €2, that do
not belong to Q to the description arrays E and F of Q and updates E; correspondingly. A
constant time function named INSERT _E, (E;, i,j) is used. It either sets E(i) to "j" if E(i) is
not previously defined, or appends "j" to E(i).

Procedure MERGE (n,, n,, n;, V,E,FE;NORM, F;, E|,
n',,n',, nt, V,E\F.E,NORM';, Fy,Ey)
/*purpose: Updates the pseudo polyhedron representation of a pseudo manifold € by
adding the newly generated hull faces and hull edges of its convex hull to it.
input:  (ny, n,, ng, V,EF.E,NORMy, F;, Ej)-------- pseudo polyhedron Q, F;and E;



output:

*/

step 1.

step 2.

step 3.
step 4.

step 5.

step 6.
step 7.

step 8.
step 9.

16

are the internality tag arrays of its faces and edges.
(n'y, n'y, n'y, V.EFE'r,NORM';, Fy,Ey)-------- pseudo polyhedron
representation of the convex hull Q, of Q, F;and Ey are the hull tag arrays
of its faces and edges.
(ny, n, ng, V,EF.E ,NORM;, Fy, Ep)-------- updated pseudo polyhedron of Q
with the newly generated hull faces and hull edges of Q; added, F; and E;
are updated with the following convention:
FG@) =0 face i is a hull face of Q
=1 face iis an internal face
=2 face i is a face of €, but not a face of Q

Ei =0 edge i is a hull edge of Q
=1 edge i is an internal edge
=2 edgeiis an edge of Q; but not an edge of Q.

ETOP =n,
FTOP = n¢
fori=1, n', do
EMAP(i) =0
end do {step 1}
for i=1, n'y do
if Fy(i)=0 then
FTOP <-- FTOP + 1
(€162, . - € ) < F(i)
forj=1,1 do
if EH(ej) =( then
if EMAP(cj)=O then
ETOP <-- ETOP +1
EMAP (e;) <-- ETOP
E(ETOP) <-- E'(e;)
E{(ETOP) <-- 2
end if
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else
step 6. EMAP(e;) <-- Eg(g;))

end if
step 10. call INSERT_E, (E, EMAP(e;), FTOP)

end do {step 5}
step 11. F(FTOP) <-- (1, (EMAP(e,),EMAP(e,),....EMAP(e))))
step 12. NORM; (FTOP) <-- NORM'(i)
step 13. F(FTOP) <-- 2
end if
end do {step 2}

step 14. ng=FTOP
n, = ETOP

end {(MERGE)

Comments on MERGE: Step 1 initializes two stack pointers FTOP and ETOP which
stand for the numbers of current faces and edges in Q, respectively. Array EMAP is the index
mapping between E' and E, e.g., EMAP(i) = j means edge i of Qy, is edge j of (current) Q.
Steps 3 through 13 are performed once for each face of € that is not a face of Q (Fy = 0). For
each edge of a selected face, whether it is also an edge of € is first checked. If it is not (when
its Ey = 0) and it has not been previously added to Q, itis then added to E with its E; set to 2
and its EMAP set to a unique number ETOP (see steps 6 through 9). Otherwise its EMAP is
assigned with its Ey which is the index of this edge in the original Q (step 6'). At step 10 the
face adjacency relation of this edge in Q is updated as reflected by the insertion of this selected
face. Steps 11 and 12 append the selected face and its normal to F and NORM; of Q. (Note
that, because €y, is convex, every face of it has only one bounding polygon.) Step 13 assigns
2 to the F; of this face that indicates the added face is not a face of the original . To analyze
the time requirement of MERGE, notice that each edge of €, has exactly two adjacent faces
in Q. At most twice will an edge of €, be checked, retrieved and stored. Steps 12 and 13
take constant time. As the result, the loop from step 2 through step 13 are O(n', + n's).
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The output of MERGE, let it be called the PS description of Q and denoted as Qpg, is a
pseudo polyhedron. Figure 12 lists the V,E,F,E; entries of the PS description of a pseudo
manifold. Qpg itself, however, no longer represents a legitimate pseudo manifold, as it
contains all the intermediate data for obtaining the deficiency Q. For the pseudo manifold Q
in Figure 12, the boundary of its deficiency Q4 consists of the faces fy, fs, f, f7, fg, fo,f;( as
defined in the F entry of Qpg; the vertices of Qy are vy, v3, vy, Vs, Vg, V7, Vg 0f Qpg; and the
edges of Q, are ey, s, €, €7, €3, €9, €10, €115 €12, €13, €14, €15 Of Qpg. The procedure
DIFFBUILD given next will generate Qg utilizing Qpg. A constant time routine called
INSERT(L,i) will be used in the algorithm which appends an integer i into an integer list L.

v3

MERGE

Q

Vo= (v, vy, V3, V4, Vs, Vg, Vg, Vg }

E = {<V1,V2>, <V),V3>, <V1,V4>, <Vs,Vg>, <Vs5,V7>, <Vg,Vg>, <Vs,Vy>, <Vs,V3>,
<Vs,V42, <Vy,V3>, <V3,V4>, <V4,V2>, <Vg, V72, <V7,Vg>, <Vg,Vg> )

F = {<1,10,3>,«<1,2,11>,<3,12,2>,<10,11,12>,<13,4,6>,<5,4,14>,<6,5,15>,
<10,7,9>,<8,7,11>,<9,8,12>}

Er = {<1,2>,<2,3>,<3,1>,<5,6>,<6,7>,<7,5>,<8,9>,<9,10>,<10,8>,<1,4>,

<2,4>,<3,4>)

Figure 12. An example of the PS description Qpg
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Procedure DIFFBUILD (n,, n,, ng, V, E, F, E;, NORM;, Fy, E;,
Ngy» Nges Nt Va» Eg» Fg» Egy NORMg¢ )
/* purpose: . Finds the deficiency €4 of a pseudo manifold €2 and outputs the pseudo
polyhedron representation of Q to the external.
input: (ny, n,, ng, V,E,F.E,NORM¢, Fy, Ef ) -------- The P description of Q.
output:  (ngy, Nge, Ngpy Vo Egs Fy, Egp, NORMyg)-------- The pseudo polyhedron
representation of deficiency Q.

*

begin

stepl.  ng<-0
Nge <-- 0
Ngy <-- 0

step2.  fori=l, ng do

if Fy(i}#1 then
step 3.1 Ny <--ng+ 1
step 3.2 Fy(ngs) < F(1)
step 3.3 FMAP() <-- ng
if Fy(i) = 0 then
step 3.4 NORM(( ny4s ) <-- NEG(NORM(i))
else
step 3.4' NORM(( ng ) <-- NORM(i)
end if
end if
end do {step 2}

step4. fori=1,n,do
VMAP() <-- 0
end do {step 4}
stepS.  for i=1, n,, do
step 5.1 <f}.fy,. . fg> <-- E(i)
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step 5.2 NewEg <-- nil
step 5.3 for j=1, k, do

if Fy(f;) # 1 then
step 5.4 call INSERT(NewEg, FMAP(f)))
end if
continue {step 5.3}
if NewEg # nil then
step 5.5 Ng <-- Nge + 1
step 5.6 E4f nge ) <-- NewEg
step 5.7 EMAP(i) <-- ny,
step 5.8 <vy,vo> <-- E(i)
if VMAP(v,) =0 then
step 5.9 ng, <-- ng, +1
V4 (ng) <-- V(vy)
VMAP (v;) <-- ngy
end if
if VMAP(v,) =0 then
step 5.10 ng, <-- ng, +1
V4(ng) <-- V(vp)
VMAP (v,) <-- ng,
end if
step 5.11 Eq (ng,) <--(VMAP(v,), VMAP(v,))
end if

- end do {step 5}

step 6 for i=1, ny, do
<€1,62,. . &> <-- F4(i)
F4(i) <-- <EMAP(e,),EMAP(e,),. . .EMAP(e})>
end do {step 6}

end (DIFFBUILD)
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Comments on DIFFBUILD: Variables ny4, n4, and ng4, are the numbers of faces, edges
and vertices of Q, that have been found. Three arrays FMAP, EMAP and VMAP are the
mappings from the preserved faces, edges and vertices of Q to those of 4. For example,
FMAP(5)=2 means faces 5 of ﬂp is face 2 of ;. At step 1 the total number of faces, edges
and vertices in Q4 is 0. The loop at step 2 generates the NORM; set NORMy¢of €24 : if a face
of €, is an internal face of £, it is preserved on Qg and its normal should be negated (step

3.4). Otherwise it is also preserved but its normal should be the same as the original (step
3.4). Step 3.2 retrieves the current preserved face of 2 into the F set of Q4 while step 3.3

establishes the index mapping FMAP between them. The edge indices of the faces in F; are
still the originals from E and they will be mapped to E4 once EMAP are established. The
mapping VMAP is initialized at step 4. The entire loop of step 5 generates the V , E and E;
arrays of Qy4, V4, Egand E4, as well as establishing the mappings VMAP and EMAP. Step
5.1 retrieves all the faces of (2, that are adjacent at an edge of €. By checking their Fj, those

unpreserved faces (step 5.3 to step 5.4) are filtered out. If the remainder is not empty, this edge
as well as its end points must be preserved on 4. This is done by the following: step 5.6
insert the (Q) face adjacency relation of the edge into the E¢ array Ey¢ of €4; step 5.7 assigns

the mapping EMAP of the edge. Steps 5.9 and 5.10 establish the mapping VMAP of the two
end points of the edge and store their coordinates from V of € into the V array V4 of Q4. At

step 5.11 this edge with its new end point indices of V is stored into E array E; of 4. Finally
at step 6, the edge indices in F4 are replaced with their mappings in Eg.

Theorem 1. The deficiency Q4 of a pseudo manifold € can be obtained in O(NlogN+K)
time where N is max{n,, n,, n,} of Q, and K is the sum of the face adjacency indices of
Q.

Proof.  Since the Qp of Q is O(NlogN) derivable from Q (see the comments on

procedure MERGE), it is only necessary to analyze the procedure DIFFBUILD. The

overall time from step 1 through step 4is O(N). The total time for the loop at step 5 plus

the inner loop at step 5.3 is O(K). Analogously, the loop at step 6 is O(K) as well.
Q.E.D.

The occurrence of K can be somewhat unpleasant because of its seemingly
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non-deterministic relation with N. Fortunately, K is shown to be O(ng) where n is the total

number of the faces of the pseudo manifold. (Refer to the Appendix.) Therefore, the deficiency
of a pseudo manifold can be obtained in O(NlogN) time.
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Appendix. Space Linearity of a Pseudo Polyhedron

In this appendix, the space required by a pseudo polyhedron is shown to be linear in the
number of its faces. Refering to Definition 3, let P=<V,E,F,NORM,E¢> be a pseudo

polyhedron with n, vertices, n, edges and n¢ faces. The numbers n, and n, are shown to be
both O(ny) (for the items V and E). In addition, the sum of the face adjacency indices of all the
edges are shown to be linear in n¢ (for F and E;). The face adjacency index of an edge is the

number of the faces that meet at that edge. First, several definitions are introduced.

Well-Adjacency of edges: An edge of a pseudo polyhedron is called a well-adjacent
edge if its face adjacency index is 2; otherwise it is an ill-adjacent edge.

Well-Orientation of vertices: A vertex v of a pseudo polyhedron is said to be
well-oriented if the faces that are incident at v bear an order f;, f5,.....fy such that f; is

adjacent to f,, f, is adjacent to f3, . . ., fi ; is adjacent to f, and f, is adjacent to f,; otherwise

v is an ill-oriented vertex.

@)
All the edges except ¢ are well-adjacent All the vertices except v are well-oriented

Figure A-1. Well-Adjacency and Well-Orientation
Figure A-1 illustrates an example of well-adjacency and well-orientation. Based on these

two characterizations of edges and vertices, two operations are defined next on those
ill-oriented vertices and ill-adjacent edges.
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Vertex Homogenization: A Vertex Homogenizing Operation (VHO) on an ill-oriented
vertex v is a replacement by a set of new vertices (vy, vy, ..., V) such that all the v;'s are well-

oriented and they have the same coordinates as v.

Edge Homogenization: An Edge Homogenizing Operation (EHO) on an ill-adjacent edge
e is a replacement by a set of new edges (e;, €,, ..., €,) such that all the ¢;'s are well-adjacent

and they have the same coordinates as e.

Figure A-2 and A-3 demonstrate VHO and EHO operations respectively.

VHOonv

Vertices v1 and v2 have the same coordinates as v.

Figure A-2. lllustration of a Vertex Homogenizing Operation

e

Edges el,e2, and e3 have the same coordinates as e.

Figure A-3. Illustration of Edge Homogenizing Operation
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By utilizing these two micro operations VHO and EHO, an operation on a pseudo
polyhedron is defined below.

Polyhedron Homogenization: A Polyhedron Homogenizing Operation (PHO) on a pseudo
polyhedron P is a series of VHO's and EHO's such that the resultant pseudo polyhedron P'
has well-oriented vertices and well-adjacent edges only. See Figure A-4 for an example.

Figure A-4. lllustration of a Polyhedron Homogenizing Operation
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Lemma A. The resultant pseudo polyhedron P' of a PHO on a pseudo polyhedron P is
either a single polyhedron or a set of polyhedra.

Proof.  Note that a polyhedron is a special case of pseudo polyhedra such that (a) all the
faces of it are connected, and (b) all its vertices are well-oriented and all its edges
are well-adjacent. By definition, PHO bears property (b) but not always (a).

Q.E.D.

The following theorem is induced by Lemma A.

Theorem A. Let P(n,, n,, ng) be a pseudo polyhedron, with n, vertices, n, edges, and
ny faces. Then the following three claims are true:

(2 n, is O(ng),

(b) N, is O(ny), and

(c) K=Zk; is O(ny);
where k; is the face adjacency index of edge e; (i=1,2,...,N,).

Proof. Let P,,P,,...,P, be the polyhedra of P'(n,',n,',nf) which is the resultant
pseudo polyhedron of PHO on P, each of them has V; vertices, E; edges and F; faces
(i=1,...,m). By Euler formula [2], V; < 2F;- 4 and E; < 3F;- 6 (i=l,...,m). Summing
both sides of the inequality yields n,'=V+V,+..+V < 2(F|+F,+..+F)) - 4m = 2n; -
4m, and n,'=E|+E,+...+E < 3(F;+Fy+...+Fy) - 6,=3n; - 6m. Since n, <n,' and n, <
n,, n, <2n¢- 4m and n, < 3n; - 6m. To prove (c), let L be the total number of ill-adjacent

edges of P. Each EHO operation replaces an ill-adjacent edge of P with a number of
well-adjacent  edges. For an ill-adjacent edge e;, exactly (k;/ 2) -1 new edges will be

generated. This implies, however, that the sum K' = Zk; over all the L ill-adjacent edges

of Pis 2(n, - n,) + 2L. The sum K" = Xk; over the rest n, - L well-adjacent edges of P
is certaintly 2(n,-L). Therefore, K=K'+ K" = 2n,’' € 6n; - 12m. Q.ED.
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