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3.8 Left: plots of Ũε(x, t) (black) and its locally uniform limit U(x, t)
(red) at t = 4 for various values of ε. For these plots, u0(x) :=
2(1+x2)−1. Right: corresponding plots of the error U(x, t)− Ũε(x, t). 94
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CHAPTER I

Introduction

Nonlinear evolution equations as mathematical models are widely used in almost

all science disciplines. For most of nonlinear evolution equations, it is very difficult

to find exact solutions and there is no general solution available in close form. How-

ever, there are some theoretical methods available to study some nonlinear evolution

equations with special properties. For example, the inverse scattering transform can

be used to investigate integrable evolution equations. Here, the integrable evolu-

tion equations are evolution equations that have a Lax pair developed by Lax [42].

The Lax pair of an integrable evolution equation is a pair of linear equations, whose

compatibility condition is this integrable evolution equation. The inverse scattering

transform based on the Lax pair is a very powerful tool to find exact solutions (soli-

ton solutions) and analyze the Cauchy problem of integrable evolution equations.

With the use of the Lax pair, instead of solving a nonlinear evolution equation, one

deals with two linear equations and one of them is a single variable equation, which is

easier to solve. Among integrable evolution equations, the Korteweg-de Vries (KdV)

equation and the nonlinear Schrödinger (NLS) equation are most famous and well-

studied. They can be derived from various physical phenomena. In this dissertation,

1
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we study another integrable evolution equation, the Benjamin-Ono (BO) equation

(1.1) ut + 2uux + εH(uxx) = 0,

where ε is a constant and H is the Hilbert transform defined by

(1.2) (Hf)(x) :=
1

π
−
∫ ∞

−∞

f(y)

y − x
dy.

It arises in modeling internal gravity waves in deep water [5, 18, 59, 12] (see Appendix

A for details). It also describes “morning glory cloud” in Northeastern Australia [64].

The Lax pair of the BO equation was discovered by Nakamura [57], Bock and Kruskal

[6]. By using the Lax pair, Fokas, Ablowitz, Anderson [2, 25] introduced the inverse

scattering transform of the BO equation. They investigated the solutions of the

single variable equation in the Lax pair with four different boundary conditions and

introduced the scattering data that characterize the relation among these solutions.

The time evolution of the scattering data was derived from the other equation in the

Lax pair. Fokas, Ablowitz, Anderson also studied the inverse scattering problem,

which is to calculate solutions of the BO equation by using the known scattering

data. Soliton solutions of the BO equation corresponding to reflectionless scattering

data were obtained by solving the inverse scattering problem. Later, Kaup and

Matsuno [39] analyzed the conservation laws of the BO equation and the asymptotic

behavior of the scattering data. With the real initial condition assumption, they also

proved two identities of the scattering data.

In this dissertation, theoretical methods (Chapter II-IV) and numerical meth-

ods (Chapter V) are used to investigate the BO equation. First, we review the

inverse scattering transform of the BO equation and fill in many mathematical de-

tails and mathematical gaps to make it easy to understand. Next, we study the zero

dispersion limit of the BO equation and its generalizations in Chapter III and IV
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respectively. The contents of Chapter III and the proof of an identity in Appendix

B were published in [56] and the contents of Chapter IV will be published in the

future. In Chapter V, we use numerical methods to investigate the BO equation and

the contents of this chapter will be published in the future. Moreover, we review the

derivation of the BO equation and fill in some mathematical details in Appendix A

and some new ideas to analyze the BO equation are provided in Chapter VI. To be

more precise, first let us talk about the zero dispersion limit.

1.1 Zero Dispersion Limit of the BO Equation

The parameter ε > 0 represents the relation between the nonlinear and dispersive

effects in the BO equation (1.1). The dispersive effect is dominant in the system if

the parameter ε is very large. In this case, a solution of the BO equation can be

approximated by a solution of the linear BO equation with the same initial condi-

tion. On the other hand, if the parameter ε is very small, then the nonlinear effect

becomes the dominant effect. One may expect a solution of the BO equation can be

approximated by a solution of the inviscid Burgers equation (obtained by choosing

ε = 0 in (1.1)) with the same initial condition. This conjecture holds true only for

t < T (see Corollary III.6) because of the formation of a shock wave in the inviscid

Burgers equation in finite time T . What happens to the solutions of the BO equa-

tion after that time is a very interesting question. For the KdV equation, the small

dispersion term forces the shock wave to become approximately periodic traveling

waves [43, 44, 45]. This phenomenon also appears in the solutions of the BO equa-

tion for small ε (see Figure 1.1). Here, Figure 1.1 is taken from [56]. This interesting

phenomenon can be analyzed by studying the zero dispersion limit, where the zero

dispersion limit is the limit of the solution of the Cauchy problem with ε-independent
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Figure 1.1: The evolution of a pulse under the BO equation. Top row: ε = 0.04.
Bottom row: ε = 0.02. In both cases the initial condition is the same:
u0(x) = 2(1 + x2)−1.

initial condition u0(x) as ε ↓ 0. Before we talk about the history of the zero disper-

sion limit of the BO equation, let us first review that of the KdV equation. The KdV

equation [41]

(1.3) ut + 2uux +
1

3
ε2uxxx = 0,

where ε is a constant, has very wide applications in various areas. The KdV equation

describes shallow-water waves with weakly non-linear restoring forces, long internal

waves in a density-stratified ocean, ion-acoustic waves in a plasma and acoustic waves

on a crystal lattice, etc. The inverse scattering transform of the KdV equation intro-

duced by Gardner, Greene, Kruskal and Miura [29, 30] is widely used to investigate

the KdV equation. Especially, the inverse scattering transform provides a simple

way to construct soliton solutions of the KdV equation. On the other hand, the for-

mula for the N -soliton solutions of the KdV equation can be obtained via a bilinear
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method introduced by Hirota [36]. This formula was used by Lax and Levermore

[43, 44, 45] to analyze the zero-dispersion limit of the KdV equation with negative

initial conditions. They approximated the solutions of the KdV equation with neg-

ative initial conditions by N -soliton solutions, which can be written in terms of the

determinant of a huge matrix. Lax and Levermore analyzed the asymptotic behav-

ior of the dominant part of the determinant and obtained a method to calculate the

weak zero dispersion limit of the KdV equation.

The zero-dispersion limit of the BO equation was studied by Matsuno [52, 53],

Jorge, Minzoni, and Smyth [38]. They assumed that the approximately periodic

traveling waves can be modeled by the formula of periodic solutions of the BO equa-

tion where the parameters in the formula varies very slowly for small ε. Based on

this conjecture, they estimate the zero dispersion limit of the BO equation via an

analogue of the method developed by Gurevich and Pitaevskii [32] to study that of

the KdV equation. In [52], Matsuno wrote:

From a rigorously mathematical point of view, however, the various re-

sults presented in this paper should be justified on the basis of an exact

method of solution such as [the inverse-scattering transform], or an analog

of the Lax-Levermore theory for the KdV equation.

In Chapter III, such a rigorous proof is provide. Similarly as the Lax-Levermore

method, we approximate the solutions of the BO equation with admissible initial

conditions by N -soliton solutions. The bilinear method applied to the KdV equation

can also be used to the BO equation to construct N -soliton solutions, which was

done by Matsuno [48]. These N -soliton solutions can also be written in terms of the

determinant of a huge matrix. Instead of analyzing the determinant, we investigate

the eigenvalues of this huge matrix to calculate the weak zero dispersion limit of the
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BO equation. The most surprising result about the zero-dispersion limit of the BO

equation is that the weak zero-dispersion limit can be simply written in terms of the

multivalued solution of the inviscid Burgers equation with the same initial condition

(see Theorem III.5 for details).

1.2 Numerical Methods

Compared to the other evolution equations, analyzing the Cauchy problem of

the BO equation numerically is more challenging due to the presence of the Hilbert

transform. The Hilbert transform in the BO equation is an integral operator, which

is essentially nonlocal. To evaluate the Hilbert transform of a function at one point

requires knowledge of the function at every other point. Thus if one discretizes the

computational domain, one needs to use the values of the approximate solution at

all of the grid points just to compute its Hilbert transform evaluated at only one grid

point. To avoid this difficulty, spectral methods in which the Hilbert transforms of

the basis functions are simple are used. This idea was used by Thomee, Vasudeva,

Murthy [67], James and Weideman [37] to numerically study the BO equation. In

this dissertation, we make a comparison of three different numerical methods and

use one of these methods to illustrate and verify our results of the zero dispersion

limit of the BO equation.

1.3 Outline of Thesis

In Chapter II, we review the inverse scattering transform of the BO equation in

detail by comparing to that of the KdV equation. To provide a better understanding

of the inverse scattering transform, the calculation of an example is given to illustrate

the method to calculate the scattering data of the BO equation. In Chapter III, the
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zero-dispersion limit of the Cauchy problem of the BO equation is studied via an

analogue of the Lax-Levermore method. Moreover, some generalizations of these

results are given in Chapter IV. In Chapter V, three different numerical methods:

the Fourier pseudospectral method, the Radial Basis Function (RBF) method and

the Christov method are described to solve the Cauchy problem of the BO equation

in infinite spatial domains. Furthermore, a comparison of these three methods is

made and the numerical illustrations of the theoretical results are given. Finally,

some discussion about the future work is provided in Chapter VI.

1.4 Notation

In this dissertation, we use capital and lowercase letters in bold font to represent

matrixes and vectors respectively. If n(λ) is a function defined on the complex λ-

plane, we use n+(λ) (n−(λ)) for λ ∈ R to represent the boundary value of n(λ) taken

from the upper (lower) half λ-plane.



CHAPTER II

The Inverse-Scattering Transform for Integrable
Evolution Equations

In this chapter, we first introduce the inverse scattering transform of the KdV

equation and then we discuss the inverse scattering transform of the BO equation in

detail. For those who are familiar with the inverse scattering transform of the KdV

equation, the inverse scattering transform of the BO equation will become easier to

understand by comparing with that of the KdV equation.

2.1 The Inverse-Scattering Transform for the KdV Equation

The Lax pair of the KdV equation [42] is

(2.1) ε2ψxx +
1

3
uψ = −k2ψ

(2.2) εψt = (εux + ρ)ψ − ε

(
2

3
u− 4k2

)
ψx

where ρ is a constant and k is a complex spectral parameter. By letting λ = k2,

the equation (2.1) can be viewed as an eigenvalue problem for the Schrödinger op-

erator −ε2 d2

dx2 − u/3, where λ is the spectral parameter. If u is a real function, the

Schrödinger operator is a self-adjoint operator on L2(R) and its continuous spectrum

is R+.

8
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2.1.1 The Direct Scattering Problem

The equation (2.1) is a second order ordinary differential equation (ODE). By

assuming the potential u lies in L2(R), one can find that if k is a real number, any

solution of the equation (2.1) tends to C1eikx/ε + C2e−ikx/ε as x → ±∞, where C1

and C2 are constants. Let φ(x; k), ψ(x; k), φ̄(x; k) and ψ̄(x; k) to be the solutions of

(2.1) with the boundary conditions:

(2.3) φ(x; k) = e−ikx/ε(1 + o(1)), φ̄(x; k) = eikx/ε(1 + o(1)), as x → −∞,

(2.4) ψ(x; k) = eikx/ε(1 + o(1)), ψ̄(x; k) = e−ikx/ε(1 + o(1)), as x →∞,

where k ∈ R. Then the functions φ(x; k), ψ(x; k), φ̄(x; k) and ψ̄(x; k) satisfy the

following Volterra type integral equations [1]:

(2.5) φ(x; k) = e−ikx/ε − 1

3ε

∫ x

−∞

sin(k(x− y)/ε)

k
u(y)φ(y; k)dy,

(2.6) φ̄(x; k) = eikx/ε − 1

3ε

∫ x

−∞

sin(k(x− y)/ε)

k
u(y)φ̄(y; k)dy,

(2.7) ψ(x; k) = eikx/ε +
1

3ε

∫ ∞

x

sin(k(x− y)/ε)

k
u(y)ψ(y; k)dy,

(2.8) ψ̄(x; k) = e−ikx/ε +
1

3ε

∫ ∞

x

sin(k(x− y)/ε)

k
u(y)ψ̄(y; k)dy.

Here, each of these Volterra type integral equations (2.5)-(2.8) has a unique solution.

The functions ψ(x; k) and ψ̄(x; k) are linearly independent of each other if the real
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number k )= 0, because the Wronskian

(2.9) W [ψ, ψ̄] = ψxψ̄ − ψψ̄x = 2ik )= 0.

Since the equation (2.1) is a second order ODE, any solution of the equation (2.1)

can be written as a linear combination of ψ(x; k) and ψ̄(x; k). This fact implies that

there exist a(k), b(k), ā(k) and b̄(k) such that

(2.10) φ(x; k) = a(k)ψ̄(x; k) + b(k)ψ(x; k); φ̄(x; k) = ā(k)ψ(x; k) + b̄(k)ψ̄(x; k),

where ā(k) = −a∗(k) and b̄(k) = b∗(k). The functions φ(x; k) and ψ(x; k) have

analytic extensions to the upper half complex k−plane and φ̄(x; k) and ψ̄(x; k) have

analytic extensions to the lower half complex k−plane. A complex number kn is

defined to be an eigenvalue, if kn satisfies a(kn) = 0. In fact, λn = k2
n is an eigenvalue

of the eigenvalue problem (2.1) for the Schrödinger operator. A complex number cn is

defined to be the norming constant corresponding to the eigenvalue kn, if cn satisfies

(2.11) vn ∼ cne
iknx/ε, as x →∞,

where vn is the eigenfunction of the eigenvalue problem (2.1) for the Schrödinger

operator corresponding to λn = k2
n and satisfies

(2.12)

∫ ∞

−∞
v2

ndx = 1.

Since the Schrödinger operator is a self-adjoint on operator L2(R) and its continuous

spectrum is R+, the eigenvalue λn has to be a negative number, which implies kn is

a purely imaginary number and if kn is an eigenvalue, the complex conjugate k∗n is

also an eigenvalue. In fact, the norming constant corresponding to k∗n is the complex

conjugate of cn. So we will use kn and k∗n to represent the eigenvalues in the rest of

this section, where imaginary part of kn is positive and that of k∗n is negative.



11

Here the functions a(k, t) and r(k, t) = b(k, t)/a(k, t) and the constants {kn}N
n=1,

{k∗n}N
n=1, {cn}N

n=1 and {c∗n}N
n=1 are called the “scattering data”.

2.1.2 Time Dependence of the Scattering Data

The time evolution of the scattering data for the KdV equation is given by

(2.13) kn(t) = kn(0), cn(t) = cn(0)e4k3
nt/ε3 ,

(2.14) a(k, t) = a(k, 0), r(k, t) = r(k, 0)e8ik3t/ε3 .

2.1.3 The Inverse Scattering Problem

If the scattering data are given, one can construct a Gel’fand-Levitan-Marchenko

equation [1]:

(2.15) K(x, y) + F (x + y) +

∫ ∞

x

K(x, s)F (s + y)da = 0, y ≥ x,

where

(2.16) F (x) =
1

2π

∫ ∞

−∞
r(k, t)eikx/εdk +

N∑

n=1

(
c2
n(t)e−iknx/ε + (c∗n)2(t)e−ik∗nx/ε

)
.

The potential u(x, t) can be calculated by solving the equation (2.15) and using the

relation between the potential u(x, t) and the function K(x, y):

(2.17) u(x, t) = −2ε
∂

∂x
K(x, x).

This calculation can also be done by solving a Riemann-Hilbert Problem.

2.1.4 The Riemann-Hilbert Problem

According to the properties of φ(x; k), ψ(x; k), φ̄(x; k) and ψ̄(x; k) discussed in

§2.1.1, one can find that the row vector function m(k; x, t) = (m1(k; x, t), m2(k; x, t)),

where

(2.18) m1(k; x, t) =
φeikx/ε

a(k)
and m2(k; x, t) = ψe−ikx/ε for ,(k) > 0,
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(2.19) m1(k; x, t) =
φ̄e−ikx/ε

−ā(k)
and m2(k; x, t) = ψ̄eikx/ε for ,(k) < 0,

satisfies the following Riemann–Hilbert Problem.

Riemann-Hilbert problem II.1.

Analyticity: m(k) is analytic in C\(R
⋃
{k1, k2, · · · , kn})

Residue condition:

(2.20) Res
k=kj

m(k) = lim
k→kj

m(k)




0 0

−icn(t)e2iknx/ε 0



 ,

(2.21) Res
k=k∗j

m(k) = lim
k→k∗j

m(k)




0 ic∗n(t)e−2ik∗nx/ε

0 0



 ,

Jump conditions: The boundary values taken on R satisfy: m+(k) = m−(k)vx,t(k)

for k ∈ R, where

(2.22) vx,t =




1− |r(k, t)|2 −r∗(k, t)e−2ikx

r(k, t)e2ikx 1





Normalization: m(k) is normalized at infinity:

(2.23) m(k) → (1, 1) as k →∞.

The potential u(x, t) can be evaluated by solving Riemann-Hilbert Problem II.1

and using the relation between u(x, t) and m(k):

(2.24) u(x, t) = −2iε
∂

∂x
m11(x, t),

where

(2.25) m11 = lim
k→∞

k(m1 − 1).
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2.2 The Inverse-Scattering Transform for the BO Equation

The Lax pair of the BO equation [6, 57] is

(2.26) iεw+
x + λ(w+ − w−) = −uw+

(2.27) iw±
t − 2iλw±

x + εw±
xx − 2iC±(ux)w

± = −ρw±

where ρ is a constant and C± are the Cauchy operators defined by

(2.28) C±(u) = ±1

2
u− 1

2
iH(u).

In fact, the Cauchy operators C± can be equivalently defined as

(2.29) C±(u)(x) = lim
δ↓0

(
1

2πi

∫ ∞

−∞

u(y)

y − (x ± δi)
dy

)
.

The constant ρ will be determined later to match the boundary conditions. Here,

the functions w±(x) represent the boundary values of a function which is analytic

in the upper (+) and lower (-) half x-plane. In this section, we introduce the in-

verse scattering transform of the BO equation, most of which was discussed by Fokas

and Ablowitz in [25]. We also introduce some results given by Kaup and Matsuno

[39, 49, 50]. Moreover, we fill in some mathematical details and mathematical gaps

in this section to consummate the theory and make it easy to understand. Before

talking about that, we discuss the definitions of the Cauchy operators C± and the

Hilbert transform H and introduce the definition of the Hardy space and some basic

properties of the Cauchy operators C±, which will be used later. The Hilbert trans-

form H and the Cauchy operators C± are operators on L2(R). The Hilbert transform

is defined in terms of a principal value integral by (1.2) where the principal value

integral is defined by

(2.30) −
∫ ∞

−∞

f(y)

y − x
dy = lim

δ↓0

(∫ x−δ

−∞

f(y)

y − x
dy +

∫ ∞

x+δ

f(y)

y − x
dy

)
.
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To provide a better understanding of two equivalent definitions of the Cauchy oper-

ators, we calculate the function C+(u)(x) via two different definitions, where u(x) =

1/(x2 + 1). First we use the equation (2.29) to calculate C+(u)(x). By adding an

integral on a contour on the upper half complex plane connecting ∞ and −∞ to the

right hand side of the equation (2.29), one can obtain an integral on a closed con-

tour. After applying Cauchy residue theorem to the right hand side of the equation

(2.29) and letting the contour on the upper half plane go to ∞, one can find that

the integral on the contour on the upper half plane vanishes and that

C+(u)(x) = − lim
δ↓0

(
Res
y=−i

[
1

(y − (x + δi))(y2 + 1)

])

=
i

2(x + i)
.

(2.31)

One the other hand, we first calculate H(u)(x). Since

1

(y − x)(y2 + 1)
=

1

x2 + 1

(
1 + xy

(y − x)(y2 + 1)
− x

y2 + 1

)

=
1

x2 + 1

(
1

y − x
− y

y2 + 1
− x

y2 + 1

)
,

(2.32)

then the function H(u)(x) can be written as

(2.33) H(u)(x) =
1

π(x2 + 1)
−
∫ ∞

−∞

1 + xy

(y − x)(y2 + 1)
dy − x

π(x2 + 1)

(∫ ∞

−∞

1

y2 + 1
dy

)
.

The first integral on the right hand side of the equation (2.33) vanishes based on the

following calculation.

−
∫ ∞

−∞

(1 + xy)dy

(y − x)(y2 + 1)
= lim

L→∞

(
lim
δ↓0

(∫ x−δ

−L

(1 + xy)dy

(y − x)(y2 + 1)
dy +

∫ L

x+δ

(1 + xy)dy

(y − x)(y2 + 1)

))

= lim
L→∞

(
lim
δ↓0

(∫ x−δ

−L

(
1

y − x
− y

y2 + 1

)
dy

))

+ lim
L→∞

(
lim
δ↓0

(∫ L

x+δ

(
1

y − x
− y

y2 + 1

)
dy

))
.

(2.34)
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The fact that y/(y2 + 1) is an odd function tells us that

−
∫ ∞

−∞

(1 + xy)dy

(y − x)(y2 + 1)
= lim

L→∞

(
lim
δ↓0

(∫ x−δ

−L

1

y − x
dy +

∫ L

x+δ

1

y − x
dy

))

= lim
L→∞

(
log

(
|L− x|
|L + x|

))

= 0.

(2.35)

Therefore, one can obtain

H(u)(x) = − x

π(x2 + 1)

(∫ ∞

−∞

1

y2 + 1
dy

)

= − x

x2 + 1
.

(2.36)

Then it is easy to see that

(2.37) C+(u)(x) =
1

2
u(x)− 1

2
iH(u)(x) =

i

2(x + i)
.

The above calculation verifies the fact these two definitions of the Cauchy operator

are equivalent. Next, we introduce the definition of the Hardy space and some basic

properties of the Cauchy operators C±.

Definition II.2. The Hardy space H+ (H−) on the upper half-plane (lower half-

plane) is defined to be the space of holomorphic functions f on the upper half-plane

(lower half-plane) with bounded norm given by

(2.38) ‖f‖H± = sup
y∈R±

[∫

R
|f(x + i y)|2 dx

]1/2

.

The most well-known property of the Cauchy operators is the Plemelj formula

(2.39) [19, 73, 26] in the following theorem. In fact, the Cauchy operator C+ are

orthogonal and complementary projections onto the Hardy spaces H± respectively

[73, 26]. This fact implies the first two statements in Theorem II.3 and the identities

(2.40) and (2.41).
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Theorem II.3. [19, 73, 26] For any function f ∈ L2(R), the function C+(f) (C−(f))

belongs to H+ (H−). On the other hand, if g ∈ H+ (H−), then there exists a function

f ∈ L2(R) such that g = C+(f) (g = C−(f)). Moreover, for any functions f, q ∈ L2,

the following identities hold true:

(2.39) C+(f)− C−(f) = f,

(2.40) C+(C−(f)) = C−(C+(f)) = 0,

(2.41) C±(C±(f)) = C±(f),

(2.42)

∫ ∞

−∞
C±(f)(x)C±(q)(x)dx = 0,

(2.43)

∫ ∞

−∞
C+(f)(x)q(x)dx = −

∫ ∞

−∞
f(x)C−(q)(x)dx.

Here, the identities (2.42) and (2.43) can be directly obtained from an alternative

interpretation of the Cauchy operators (see the identity (2.2) in [26]).

2.2.1 The Direct Scattering Problem

In §2.1, the first equation in the Lax pair can be written as an eigenvalue problem.

Here, this fact also holds true. If w± ∈ H±, by applying the Cauchy operator C+

to each side of the equation (2.26) and using (2.40) and (2.41), the equation (2.26)

becomes

(2.44) iεw+
x + λw+ = −C+(uw+).

Then after using the fact w+ = C+(w+), one can write (2.44) in the form

(2.45) Lw+ = λw+,
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where the operator L is defined by:

(2.46) L := −iε
d

dx
− C+uC+.

This is an eigenvalue problem of the operator L. If u is a real function, the operator

L is an essentially self-adjoint operator on H+ and its continuous spectrum is R+.

For λ ∈ R, if w± are bounded, then uw+ ∈ L2(R). The identity (2.39) implies

that uw+ = C+(uw+)− C−(uw+). Then the equation (2.26) can be written as:

(2.47) iεw+
x + λw+ + C+(uw+) = λw− + C−(uw+).

Since each side of the equation (2.47) is bounded and analytic in the upper and lower

half x-plane, according to Liouville’s Theorem, each side of the equation (2.47) is

equal to a constant denoted by λw0. Then one can obtain an equation for w+:

(2.48) iεw+
x + λ(w+ − w0) = −C+(uw+).

With the use of an integrating factor, one can write w+ as:

(2.49) w+ = w0 + Ceikx/ε +
i

ε

∫ x

−∞
C+(uw+)(y)eik(x−y)/εdy,

where C is a constant. It implies

(2.50) w+ → w0 + Ceikx/ε as x → −∞

(2.51) w+ → w0 +

(
C +

i

ε

∫ ∞

−∞
C+(uw+)(y)e−iky/εdy

)
eikx/ε as x →∞

For λ > 0, the functions M(x; λ), M(x; λ), N(x; λ) and N(x; λ) are assumed to

be the solutions of the equation (2.26) with the following boundary conditions:

(2.52) M(x; λ) = 1 + o(1), as x → −∞,
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(2.53) M(x; λ) = eiλx/ε(1 + o(1)), as x → −∞,

(2.54) N(x; λ) = eiλx/ε(1 + o(1)), as x →∞,

(2.55) N(x; λ) = 1 + o(1), as x →∞.

After applying the Fourier Transform, one can show that for λ > 0, the func-

tions M(x; λ), M(x; λ), N(x; λ) and N(x; λ) satisfy the following Fredholm integral

equations:

(2.56) M(x; λ) = 1 +
1

ε

∫ ∞

−∞
G+(x, y; λ)u(y)M(y; λ)dy,

(2.57) M(x; λ) = eiλx/ε +
1

ε

∫ ∞

−∞
G+(x, y; λ)u(y)M(y; λ)dy,

(2.58) N(x; λ) = eiλx/ε +
1

ε

∫ ∞

−∞
G−(x, y; λ)u(y)N(y; λ)dy,

(2.59) N(x; λ) = 1 +
1

ε

∫ ∞

−∞
G−(x, y; λ)u(y)N(y; λ)dy,

where

(2.60) G±(x, y; λ) = lim
δ↓0

1

2π

∫ ∞

0

ei(x−y)p/ε

p− (λ± iδ)
dp.
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In fact, G±(x, y; λ) are the boundary values of G(x, y; λ) taken from the upper and

lower half λ-plane respectively. Here the function G(x, y; λ) is given by

(2.61) G(x, y; λ) =
1

2π

∫ ∞

0

ei(x−y)p/ε

p− λ
dp for λ /∈ R+.

By using the definition of G± and applying Cauchy’s residue theorem, one can show

that the difference between G+(x, y; λ) and G−(x, y; λ) is given by

(2.62) G+(x, y; λ)−G−(x, y; λ) = iei(x−y)λ/ε for λ > 0.

If λ /∈ R+, after integration by parts, one can find the asymptotic behavior of

G(x, y; λ) as |x|→∞ is given by

(2.63) G(x, y; λ) =
1

2πixλ
+ O(x−2) for λ /∈ R+.

By taking derivative with respect to λ and integration by parts, one can obtain

(2.64)
∂

∂λ
(G(x, y; λ)) = − 1

2πλ
+

i(x− y)

ε
G(x, y; λ),

which implies G±(x, y; λ), the boundary values of G(x, y; λ) also satisfy

(2.65)
∂

∂λ
(G±(x, y; λ)) = − 1

2πλ
+

i(x− y)

ε
G±(x, y; λ).

The corresponding integral equations in §2.1 are Volterra type integral equations,

which are easier to analyze. Here, a different method is used to investigate these Fred-

holm integral equations. To investigate the relation between M(x; λ) and N(x; λ),

we introduce a new function ∆MN(x; λ) = M(x; λ)−N(x; λ). By subtracting (2.59)

from (2.56) and using (2.62), one can find that the function ∆(x; λ) satisfies

(2.66) ∆MN(x; λ) = β(λ)eiλx/ε +
1

ε

∫ ∞

−∞
G−(x, y; λ)u(y)∆MN(y; k)dy

where

(2.67) β(λ) =
i

ε

∫ ∞

−∞
u(y)M(y; λ)e−iλy/εdy.
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The equation (2.66) implies ∆MN(x; λ)/β(λ) is a solution of the equation (2.58).

Since N(x; λ) is the unique solution of the equation (2.58), one can obtain

(2.68) ∆MN(x; λ) = β(λ)N(x; λ).

Therefore, the relation between M(x; λ) and N(x; λ) is given by

(2.69) M(x; λ) = N(x; λ) + β(λ)N(x; λ) for λ > 0.

The same strategy can be used to write N(x; λ) in terms of N(x; λ). After

multiplying each side of the equation (2.58) by e−iλx/ε, differentiating them with

respect to λ and applying the equation (2.65), it is easy to show

(2.70) ∆N(x; λ) = e−iλx/εf(λ) +
1

ε

∫ ∞

−∞
G−(x, y; λ)e−iλ(x−y)/εu(y)∆N(y; λ)dy,

where

(2.71) ∆N(x; λ) =
∂

∂λ

(
N(x; λ)e−iλx/ε

)
and f(λ) = − 1

2πλε

∫ ∞

−∞
u(y)N(y; λ)dy.

Then it is obvious that ∆N(x; λ)eiλx/ε/f(λ) is a solution of the equation (2.59). The

uniqueness of the equation (2.59) and the asymptotic behavior of N(x; λ) as λ → 0+

given in [39] indicate

(2.72) N(x; λ) = eiλx/ε

∫ λ

0

f(k)e−ixk/εN(x, k)dk.

By simply substituting it into (2.69), one can obtain a nonlocal relation between

M(x; λ) and N(x; λ):

(2.73) M(x; λ) = N(x; λ) + β(λ)eiλx/ε

∫ λ

0

f(k)e−ixk/εN(x, k)dk.

Fokas and Ablowitz introduced the functions M(x; λ), M(x; λ), N(x; λ) and N(x; λ)

in their paper [25] and kept using these notations throughout the paper. To provide
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a better understanding of the theory, we introduce a new function W (x, λ). In fact,

the functions M(x; λ) and N(x; λ) are the boundary values of a function W (x, λ)

taken from the upper and lower half λ-plane respectively:

(2.74) M(x; λ) = lim
λ′→λ+i0

W (x, λ
′
); N(x; λ) = lim

λ′→λ−i0
W (x, λ

′
) for λ ∈ R+.

The function W (x, λ) is analytic in C\(R+∪{λ1, · · · , λn}) and satisfies the equation

(2.26) and the following Fredholm integral equation

(2.75) W (x; λ) = 1 +
1

ε

∫ ∞

−∞
G(x, y; λ)u(y)W (y; λ)dy

for λ /∈ R+ ∪ {λ1, · · · , λn}. Here λ1, · · · , λn are simple eigenvalues of the eigenvalue

problem (2.45) (In [25], Fokas and Ablowitz assumed all the eigenvalues correspond-

ing to the problem they discussed are simple eigenvalues), which are negative real

numbers. Assume Φj(x) ∈ H+ is the eigenfunction of the eigenvalue problem (2.45)

corresponding to λj and satisfies

(2.76) λj =
1

2πi

∫ ∞

−∞
u(y)Φj(y)dy,

then it also satisfies the equation (2.26). By applying the Fourier Transform to the

equation (2.26), one can show that Φj(x) satisfies the following Fredholm integral

equation:

(2.77) Φj(x) =
1

ε

∫ ∞

−∞
G(x, y; λj)u(y)Φj(y)dy.

After using (2.63) and (2.76), the (2.77) tells us that

(2.78) Φj(x) ∼ 1

x
as |x|→∞ .

By applying the analytic Fredholm theorem [65] to the Fredholm integral equation

(2.75), one expects a pole at λ = λj. Since the eigenvalues are assumed to be simple
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eigenvalues above, one can write W (x; λ) as

(2.79) W (x; λ) = W (j)(x; λ) + Cj
Φj(x)

λ− λj

where Cj is a constant and W (j)(x; λ) is analytic at λ = λj. Then by substituting

it into the equation (2.75), using (2.77), letting λ tend to λj and using (2.64) and

(2.77), one can obtain

(2.80) W (j)
∆ (x; λj)−

1

ε

∫ ∞

−∞
G(x, y; λj)u(y)W (j)

∆ (y; λj)dy = aj,

where

(2.81) W (j)
∆ (x; λj) = W (j)(x; λj)−

iCj

ε
xΦj(x); aj = 1− Cj

2πελj

∫ ∞

−∞
Φj(y)u(y)dy.

Here W (j)
∆ (x; λj) is analytic at λ = λj. By the Fredholm theory, aj is equal to 0.

It implies that W (j)
∆ (x; λj) is a solution of the equation (2.77). Then W (j)

∆ (x; λj) =

γjΦj(x), where γj is a constant. The constant γj plays a similar role as the norming

constant cn in §2.1. Moreover, after using the fact aj = 0 and the equation (2.76),

one can find the constant Cj = −iε. Therefore,

(2.82) lim
λ→λj

{W (x; λ) + ε
iΦj(x)

λ− λj
} = (x + γj(t))Φj(x).

The above calculation is valid for all complex potential u(x, t). The function

u(x, t) we are interested in is a real function. With the assumption that the potential

u(x, t) is real, Kaup and Matsuno [39] showed

(2.83) f(λ) =
β∗(λ)

2πiλ
, for λ > 0,

and

(2.84) ,(γj(0)) = − 1

2λj
.

The eigenvalues λj j = 1 · · ·n, the constants γj j = 1 · · ·n, and the reflection

coefficient β(λ) where λ > 0 constitute the scattering data, which can be used to

calculate the potential u(x, t) as will be shown later.
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2.2.2 Time Dependence of the Scattering Data

Since the potential u(x, t) varies as time t varies, one expects the scattering data

also vary as time t varies. The variation of the scattering data can be derived from

the equation (2.27). By substituting M(x; λ) into equation (2.27) and applying the

boundary condition (2.52), one can find that the constant ρ in equation (2.27) is

equal to zero. Therefore,

(2.85) iMt − 2iλMx + εMxx − 2iC+(ux)M = 0.

After applying the same strategy to N(x; λ), one can obtain

(2.86) iN t − 2iλNx + εNxx − 2iC+(ux)N = 0.

Then by substituting (2.69) into (2.85) and using (2.86), it is easy to show N(x; λ)

satisfies

(2.87) iβt(λ)N + iβ(λ)Nt − 2iλβ(λ)Nx + εβ(λ)Nxx − 2iC+(ux)β(λ)N = 0.

After using the boundary condition (2.54) and considering the asymptotic behavior

of each side of the equation (2.87), one can obtain βt(λ) = iλ2β(λ)/ε, which implies

(2.88) β(λ, t) = β(λ, 0)eiλ2t/ε.

It follows from (2.83) and (2.88) that the variation of f(λ, t) is given by

(2.89) f(λ, t) = f(λ, 0)e−iλ2t/ε.

In [25], Fokas and Ablowitz stated the number of eigenvalues and the eigenvalues

themselves are constants without a rigorous proof or a detailed calculation. Here,

we provide the proof of this statement. By differentiating each side of the equation
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(2.76) with respect to t and using (1.1), (2.27) and (2.45), we obtain

(λj)t =
1

2πi

∫ ∞

−∞
(u(Φj)t + utΦj) dy

=
1

2πi

∫ ∞

−∞
(u(2λj(Φj)y + iε(Φj)yy + 2C+(uy)Φj) + utΦj) dy

=
1

2πi

∫ ∞

−∞
(u(2C+(uy)Φj − iε(Φj)yy − 2C+((uΦj)y)) + utΦj) dy

(2.90)

Since the function Φj belongs to H+, Φj is a eigenfunction of the Hilbert transform

and satisfies H(Φj) = iΦj. After using this fact, the skew-adjointness of the Hilbert

transform and the asymptotic behavior of u and Φj, we obtain

(2.91)

∫ ∞

−∞
iu(Φj)yydy = −

∫ ∞

−∞
H(uyy)Φjdy

and

∫ ∞

−∞
uC+(uy)Φjdy −

∫ ∞

−∞
uC+((uΦj)y)dy =

∫ ∞

−∞
(uC+(uy)Φj − C−(uy)uΦj) dy

=

∫ ∞

−∞
uuyΦjdy.

(2.92)

Then the equation (2.90) becomes

(λj)t =
1

2πi

∫ ∞

−∞
((2uuy + εH(uyy))Φj + utΦj) dy

=
1

2πi

∫ ∞

−∞
(−utΦj + utΦj) dy

= 0,

(2.93)

which implies the number of eigenvalues and the eigenvalues themselves do not vary

as time varies. Since W (x; λ) and Φj(x) satisfy the equation (2.27), the equation

(2.82) indicates the function (x + γj(t))Φj(x, t) also satisfies the equation (2.27).

By substituting this function into (2.27) and considering the asymptotic behavior

as x tends to infinity, one can obtain (γj)t = 2λj, which implies the explicit time

dependence of the constants γj is given by

(2.94) γj(t) = 2λjt + γj(0).
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2.2.3 The Inverse Scattering Problem

If the scattering data are given, then one can use them to calculate the potential

u(x, t) by analyzing the function W (x; λ). The equation (2.79) indicates one can

write the function W (x; λ) as

(2.95) W (x; λ) = 1− ε
∑

j

iΦj(x)

λ− λj
+ n(x; λ),

where n(x; λ) is analytic in C\R+. By substituting it into (2.69), one can obtain the

jump condition for n(x; λ) on R+:

(2.96) n+(x, λ) = n−(x, λ) + β(λ)N(x, λ),

where n±(x, λ) represent the boundary values of the function n(x, λ). Since n(x; λ)

is analytic in C\R+ and n(x, λ) → 0 as λ → ∞, we learn from the jump condition

(2.96) that

(2.97) n(x, λ) =
1

2πi

∫ ∞

0

β(k)N(x, k)

k − λ
dk.

The equation (2.97) implies that

(2.98) W (x; λ) = 1 +
1

2πi

∫ ∞

0

β(k)N(x, k)

k − λ
dk − iε

∑

j

1

λ− λj
Φj(x).

By substituting (2.98) into (2.82), it is easy to show that

(2.99) (x + γj)Φj(x) + iε
∑

j '=q

1

λj − λq
Φq(x)− 1

2πi

∫ ∞

0

β(k)N(x, k)

k − λj
dk = 1.

This formula can be used to calculate soliton solutions of the BO equation, which

will be discussed later. After letting λ go to the positive real axis from the lower half

λ-plane, the left hand side of the equation (2.98) becomes N(x; λ):

(2.100) N(x; λ) = 1 + lim
δ↓0

(
1

2πi

∫ ∞

0

β(k)N(x, k)

k − λ + iδ
dk

)
− iε

∑

j

1

λ− λj
Φj(x).
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By substituting it into (2.72) and changing the order of integration, one can show

(2.101) N(x; λ) = f(x, λ) +
1

2πi

∫ ∞

0

f̂(x, k)β(k)N(x; k)dk − iε
∑

j

f̂j(x, λ)Φj(x),

where

(2.102) f(x, λ) = eiλx/ε

∫ λ

0

f(k)e−ikx/εdk; f̂j(x, λ) = eiλx/ε

∫ λ

0

f(k)e−ikx/εdk

k − λj

and

(2.103) f̂(x, λ) = lim
δ↓0

(
eiλx/ε

∫ λ

0

f(k)e−ikx/εdk

λ− k + iδ

)
.

By using the equation (2.75) and the asymptotic behavior of W (x; λ) and G(x, y; λ),

one can obtain

(2.104) W (x; λ) −→ 1− C+(u)

λ
, as λ →∞.

By substituting (2.98) into (2.104), it is easy to show that C+(u)(x) can be written

in the form

(2.105) C+(u)(x) =
1

2πi

∫ ∞

0

β(k)N(x, k)dk + iε
∑

j

Φj(x).

If one can obtain N(x, λ) and Φj(x) by solving the equations (2.99) and (2.101), the

potential u(x, t) can be calculated via (2.105) . It is very difficult to use the equations

(2.99) and (2.101) to analyze the asymptotic properties of the BO equation. However,

there is a more powerful tool, the Riemann–Hilbert Problem, available.

2.2.4 The Riemann–Hilbert Problem

Based on the properties of W (x, λ, t) given above, W (x, λ, t) is the solution of the

following nonlocal Riemann-Hilbert Problem. Here W (x, λ, t) is viewed as a function

of λ and x and t are parameters.
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Riemann-Hilbert problem II.4.

Analyticity: W (λ) is analytic in C\(R+
⋃
{λ1, λ2, · · · , λn})

Residue condition:

(2.106) Res
λ=λj

(W (λ)) =
−iε

x + γj(t)

∂

∂λ
(W (λ)(λ− λj))

∣∣∣∣
λ=λj

Jump conditions: The boundary values taken on R+ satisfy

(2.107) W+(λ) = W−(λ) + β(λ)eiλx/ε

∫ λ

0

f(k)W−(k)e−ikx/εdk, for λ ∈ R+

Normalization: W (λ) is normalized at infinity:

(2.108) W (λ) → 1 as λ →∞.

Compared to Riemann-Hilbert problem II.1 in §2.1, Riemann-Hilbert problem

II.4 is much more complicated. The residue condition and the jump condition in

Riemann-Hilbert problem II.1 are local conditions and those in Riemann-Hilbert

problem II.4 are nonlocal conditions.

The equation (2.104) can be rewritten as

(2.109) C+(u) = lim
λ→∞

λ(1−W (λ)).

If one can solve Riemann-Hilbert Problem II.4, then u(x, t) can be obtained via

(2.109).

2.2.5 The Soliton Solutions

Soliton solutions are very important special solutions for nonlinear integrable

evolution equations. The soliton solutions of the BO equation are rational functions

and the corresponding scattering data are reflectionless (the reflection coefficient
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β(λ) ≡ 0). If the potential u(x, t) is a soliton solution, then the equation (2.99)

becomes

(2.110) (x + γj)Φj(x) + iε
∑

j '=q

1

λj − λq
Φq(x) = 1.

The soliton solutions can be calculated by solving this linear algebra problem and

using (2.105). The soliton solutions also can be obtained by solving Riemann–Hilbert

Problem II.4. Since β(λ) ≡ 0, W (x; λ) is analytic in the whole complex λ-plane

except some simple poles on the negative real axis. The normalization condition of

W (x; λ) suggests the function W (x; λ) can be written as

(2.111) W (x; λ) =
λN + aN−1λN−1 + · · · + a0

(λ− λ1) · · · (λ− λN)

where a0, a1, · · · , aN−1 are constants to be determined to match the residue condition.

One can turn it into a linear algebra problem by substituting (2.111) into the residue

condition. In fact, the formulas of the solition solutions obtained via these two

methods are same as the N -soliton formula obtained by Matsuno [48] via a bilinear

transformation method. Matsuno’s N -soliton formula is

(2.112) u(x, t) = 2ε
∂

∂x
, (log(τε(x, t))) ,

where the “tau-function” τε(x, t) := det(I+ iε−1Aε). Here Aε is an N×N Hermitean

matrix given by

(2.113) (Aε)nm = −2λn(x + 2λnt + γn(0)), for n = m,

and

(2.114) (Aε)nm =
2iε(λnλm)1/2

λn − λm
, for n )= m.
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2.2.6 The Multi-phase Solutions

The periodic solutions of the BO equation obtained by Benjamin [5], Ono [59],

Satsuma and Ishimori [66] are given by

(2.115) u(x, t) =
k tanh φ

1 + sechφ cos ξ

with

(2.116) ξ = k(x− at)/ε + ξ0 and a = k coth φ,

where k and φ are real constants and ξ0 is the phase constant. Satsuma and Ishimori

[66] also constructed multi-phase solutions of the BO equation (also called N -periodic

wave solutions in [66]) via a bilinear transformation method. Later, Dobrokhotov

and Krichever [22] obtained the same multi-phase solutions of the BO equation by

using a different approach, which is given by

(2.117) u(x, t) = C +
N∑

n=1

(an − bn)− 2,
(

∂

∂x
(log(det(Q(x, t))))

)

where C < a1 < b1 < a2 < b2 < · · · < aN < bN are real constants. The matrix

Q(x, t) is given by

(2.118) (Q)jm = cmei(am−bm)x/ε−i(a2
m−b2m)t/εδjm −

1

bj − am
,

where δjm is Kronecker delta and the constant cm is defined by

(2.119) cm =

√√√√−
(bm − C)

∏
j '=i(ai − aj)(bi − bj)

(am − C)
∏N

j=1(bi − aj)(ai − bj)
.

In fact, the solutions given by (2.117) are the periodic solutions of the BO equation

when N is equal to 1. The discussion in [22] suggests that the periodic solutions of

the BO equation can be also written in the form

(2.120) u(x, t) = C + a1 − b1 + 20(r(x, t)),
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where r(x, t) satisfies that the function R(λ; x, t) given by

(2.121) R(λ; x, t) = 1 +
r(x, t)

λ− a1

is a solution of the following Riemann-Hilbert problem

Riemann-Hilbert problem II.5.

Analyticity: R(λ; x, t) is analytic in C\{a1}

Residue condition:

(2.122) Res
λ=a1

(R(λ; x, t)) = R(b1; x, t)(c1)
−1ei(b1−a1)x/ε−i(b21−a2

1)t/ε

Normalization: R(λ; x, t) is normalized at infinity:

(2.123) R(λ; x, t) → 1 as λ →∞.

2.2.7 The Conservation Laws

Kaup and Matsuno discussed the conservation laws of the BO equation in [39],

which is introduced below. By employing the strategy used in §2.2.2 to show the

eigenvalues do not vary as time changes, one can show

(2.124)

∫ ∞

−∞
(u(y)N(y; λ))tdy = 0.

The equation (2.124) implies that I is a conserved quantity, where

(2.125) I =

∫ ∞

−∞
u(y)N(y; λ)dy.

By multiplying each side of the equation (2.100), changing the order of integration,

using (2.71), (2.76) and (2.83), one can write I in terms of u, β(λ) and λj:

(2.126) I =

∫ ∞

−∞
u(y)dy +

ε

2π
lim
δ↓0

(∫ ∞

0

|β(k)|2

k − λ + iδ
dk

)
+ 2πε

∑

j

λj

λ− λj
.



31

Kaup and Matsuno [39] expanded N(x; λ) as

(2.127) N(x; λ) =
∞∑

k=0

(−1)kNk+1(x)

λk
.

By substituting it into (2.26), they obtained that N1 = 1 and

(2.128) Nk+1(x) = C+(uNk)(x) + iε
∂Nk

∂x
(x).

The conserved quantity I then can be expanded as

(2.129) I =
∞∑

k=0

(−1)kIk+1

λk
,

where

(2.130) Ik =

∫ ∞

−∞
u(y)Nk(y)dy.

By expanding the right hand side of the equation (2.126) in inverse powers of λ,

Kaup and Matsuno [39] obtained

(2.131) Ik =
(−1)mε

2π

∫ ∞

0

|β(λ)|2λk−2dλ + 2πε
N∑

j=1

(−λj)
k−1 for k = 2, 3, · · · ,

where N is the number of eigenvalues. They showed that the equation (2.131) is

also valid for m = 1 by multiplying (2.100) by u(x), integrating over R, letting λ

tend to 0 and using the asymptotic behavior of N(x; λ) as λ → 0+ given in [39]. In

particular, for m = 1, 2, it is easy to see that

(2.132) 2πNε =
ε

2π

∫ ∞

0

|β(λ)|2

λ
dλ +

∫ ∞

−∞
u(x)dx

and

(2.133)

∫ ∞

−∞

1

2
u2(x)dx = 2πε

n∑

j=1

(−λj) +
ε

2π

∫ ∞

0

|β(λ)|2dλ.
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2.2.8 Matsuno’s Method

Matsuno provided a remarkable method to approximate the eigenvalues corre-

sponding to an ε-independent smooth positive initial condition u0 valid for small

ε > 0 by using the conservation laws (2.131) in his papers [49, 50]. Here, we intro-

duce his method by following the reorganized calculation in [56].

By using the recurrence relation (2.128) with ε = 0, one can calculate the limits

of Ik as ε tend to 0:

(2.134) lim
ε↓0

Ik =

∫

R
u(x)C+(uC+(uC+(· · ·uC+(u) · · · )))(x) dx, k ∈ Z+,

where the Cauchy operator C+ appears k − 1 times in the integrand. Since Ik are

conserved quantities, their limits are also independent of time t, which suggests the

limits of Ik also can be written in the form:

(2.135) lim
ε↓0

Ik =

∫

R
u0(x)C+(u0C+(u0C+(· · ·u0C+(u0) · · · )))(x) dx, k ∈ Z+.

With the use of an identity

(2.136)
∫

R
u0(x)C+(u0C+(u0C+(· · ·u0C+(u0) · · · )))(x) dx =

1

k

∫

R
u0(x)k dx, k ∈ Z+

we proved for the first time (see Appendix B), one can simplify the equation (2.135)

as follow:

(2.137) lim
ε↓0

Ik =
1

k

∫

R
u0(x)k dx, k ∈ Z+.

In fact, the equation (2.137) can also be obtained by an older argument given in

Nakamura’s paper [58].

After substituting (2.131) into (2.137), one can obtain

(2.138) lim
ε↓0

(−1)kε

2π

∫ ∞

0

|β(λ)|2λk−2dλ + 2π lim
ε↓0

ε
N∑

n=1

(−λn)k−1 =
1

k

∫

R
u0(x)k dx,
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for k ∈ Z+. In [49, 50], Matsuno assumed the integral in the first term on the left

hand side of the equation (2.138) is bounded for small ε > 0 and k ∈ Z+, if the

initial condition u0 is positive and smooth. Here the upper and lower bounds are

independent of ε. This assumption is based on a physical argument. By using this

hypothesis, it is obvious the first term on the left hand side of the equation (2.138)

is equal to 0. Then the equation (2.138) becomes

(2.139) lim
ε↓0

ε
N∑

n=1

(−λn)k−1 =
1

2πk

∫

R
u0(x)k dx, k ∈ Z+.

The finite sum in the equation (2.139) can be written in terms of an integral and

then the equation (2.139) becomes

(2.140) lim
ε↓0

∫ 0

−∞
(−λ)k−1

(
N∑

n=1

εδ(λ− λn)

)
dλ =

1

2πk

∫

R
u0(x)k dx, k ∈ Z+,

where δ(λ) is the Dirac delta function. The finite sum in the equation (2.140) con-

verges to an eigenvalue density function F (λ) as ε ↓ 0 in some weak sense. Then the

equation (2.140) becomes

(2.141)

∫ 0

−∞
(−λ)k−1F (λ) dλ =

1

2πk

∫

R
u0(x)k dx, k ∈ Z+.

Matsuno calculated the function F (λ) explicitly by solving the classical moment

problem (2.141). He noticed the integral on the left hand side of the equation (2.141)

can be written as

(2.142)

∫ 0

−∞
(−λ)k−1F (λ) dλ = (−i)k−1dk−1F̂

dξk−1
(0)

where F̂ (ξ) is the Fourier transform of F :

(2.143) F̂ (ξ) :=

∫ 0

−∞
F (λ)e−iξλ dλ.

Then the equation (2.141) becomes

(2.144)
dk−1F̂

dξk−1
(0) =

ik−1

2πk

∫

R
u0(x)k dx, k ∈ Z+.
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If u0(x) ∈ L1(R) ∩ L∞(R), then by expanding F̂ (ξ) about ξ = 0 and using the

equation (2.144) to estimate the coefficients, one can find F̂ (ξ) is an entire function,

which implies the Taylor series of F̂ (ξ) at 0 converges to F̂ (ξ) for ξ ∈ R. Then the

function F̂ (ξ) can be written in the form:

F̂ (ξ) =
∞∑

k=1

1

(k − 1)!

dk−1F̂

dξk−1
(0)ξk−1

=
∞∑

k=1

(iξ)k−1

2πk!

∫

R
u0(x)k dx

=
1

2πiξ

∞∑

k=1

∫

R

[iξu0(x)]k

k!
dx.

(2.145)

Based on the absolute convergence of the combined sum and integral in the equation

(2.145), one can interchange the infinite sum and integral and write F̂ (ξ) as

F̂ (ξ) =
1

2πiξ

∫

R

∞∑

k=1

[iξu0(x)]k

k!
dx

=
1

2πiξ

∫

R

(
eiξu0(x) − 1

)
dx

=
1

πξ

∫

R
eiξu0(x)/2 sin

(
1
2ξu0(x)

)
dx.

(2.146)

After applying the inverse Fourier transform to each side of the equation (2.146), the

equation (2.146) becomes

(2.147) F (λ) =
1

2π
lim
R↑∞

∫ +R

−R

eiξλ

∫

R

eiξu0(x)/2

πξ
sin

(
1
2ξu0(x)

)
dx dξ.

According to Fubini’s Theorem, one can change the order of integration and pass the

limit through the integral in (2.147). Then the equation (2.147) becomes

F (λ) =
1

2π

∫

R

(∫

R
eiξ(λ+u0(x)/2) sin

(
1
2ξu0(x)

)

πξ
dξ

)
dx.

=
1

2π

∫

R
χ[−u0(x),0](λ) dx.

(2.148)

where χ[−u0(x),0](λ) is the indicator function of an interval [−u0(x), 0]. If λ /∈ [−L, 0]

where L is the maximum of the initial condition u0(x) for x ∈ R, then the indicator
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function in (2.148) is always equal to 0. This fact implies F (λ) ≡ 0 for λ /∈ [−L, 0].

If λ ∈ (−L, 0), the equation (2.148) can be simplified as:

(2.149) F (λ) =
1

2π

∫

{x∈R, u0(x)>−λ}
dx, −L < λ < 0.

2.3 An Example for the Scattering theory of the BO Equa-
tion

Kodama, Ablowitz, and Satsuma [40] calculated eigenvalues and eigenfunctions

in the inverse scattering transform of the BO equation with special initial conditions

of the form

(2.150) u(x, 0) =
2v

x2 + 1
,

where v is a constant. In this section, we illustrate their method to calculate the

scattering data corresponding to these special initial conditions.

The eigenfunctions Φj(x; kj) and the functions M(x; k), M(x; k), N(x; k) and

N(x; k) all satisfy the following equation:

(2.151) iεw+
x + λ(w+ − w−) = −uw+.

The right side of the equation (2.151) can be broken down into two parts −C+(uw+)

and C−(uw+) with the use of the identity (2.39). Then the equation (2.151) becomes

(2.152) iεw+
x + λw+ + C+(uw+) = λw− + C−(uw+).

Since the solutions of the equation (2.151) discussed here are bounded, each side

of the equation (2.152) has analytic and bounded extensions to both the upper and

lower half planes. According to Liouville’s Theorem, each side of the equation (2.152)

is equal to a constant denoted by λw0, then the equation (2.152) becomes,

(2.153) iεw+
x + λ(w+ − w0) = −C+(uw+) and λ(w− − w0) = −C−(uw+).
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By using the definition of the Cauchy operator C−, w− can be written as:

(2.154) w− = w0 − lim
δ↓0

(
1

2πiλ

∫ ∞

−∞

1

y − (x− iδ)

(
2v

y2 + 1

)
w+(y)dy

)
.

After applying Cauchy’s residue theorem to the right side of (2.154), one can write

w− as:

(2.155) w− = w0 − lim
δ↓0

(
1

λ
Res
y=i

[
1

y − (x− iδ)

(
2v

y2 + 1

)
w+(y)

])
= w0 −

ivw+(i)

λ(x− i)
.

Then one can obtain a first order ordinary differential equation for w+ by substituting

(2.155) into (2.151):

(2.156) iεw+
x + λ(w+ − w0) +

2v

x2 + 1
w+ +

ivw+(i)

x− i
= 0.

With the use of an integrating factor, one can obtain a general solution of (2.156)

given by

w+(x) = w0 + eiλx/ε

(
x− i

x + i

)v/ε
(

C − 1

ε

∫ x

−∞

vw+(i)

y − i
e−iλy/ε

(
y + i

y − i

)v/ε

dy

+

∫ x

−∞

2w0vi

y2 + 1
e−iλy/ε

(
y + i

y − i

)v/ε

dy

)(2.157)

where C is a constant.

If λj is an eigenvalue and Φj(x) ∈ H+ is the corresponding eigenfunction, then

Φj(x) is a solution of the equation (2.151) for λ = λj. This fact tells us that Φj(x)

can be written as the right hand side of the equation (2.157) with w0 = C = 0:

(2.158) Φj(x) = −v

ε
Φj(i)e

iλjx/ε

(
x− i

x + i

)v/ε ∫ x

−∞

1

y − i
e−iλjy/ε

(
y + i

y − i

)v/ε

dy.

Here, the constants w0 and C are chosen to be equal to 0, because Φj(x) → 0 as

|x|→∞ . But, the equation (2.158) only guarantees Φj(x) → 0 as x → −∞. If it is

also true that Φj(x) → 0 as x → +∞, the eigenvalue λj has to satisfy the following

equation:

(2.159)

∫ ∞

−∞

1

y − i
e−iλjy/ε

(
y + i

y − i

)v/ε

dy = 0.
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In fact, that the equation (2.159) holds true is a necessary and sufficient condition

of λj is an eigenvalue.

If v/ε is a positive integer, then the left hand side of the equation (2.159) can be

calculated explicitly by a recurrence relation. Assume the function Dn(λ) is defined

by

(2.160) Dn(λ) =

∫ ∞

−∞

1

y − i
e−iλy/ε

(
y + i

y − i

)n

dy,

then by integration by parts and applying Cauchy’s residue theorem, one can obtain

D1(λ) = 2πi(1 + 2λ/ε)eλ/ε. After applying integration by parts to Dn+1(λ), one can

obtain

(2.161) Dn+1(λ) =
2n + 1 + 2λ/ε

n + 1
Dn(λ)− n

n + 1
Dn−1(λ),

which is related to the famous three-term recurrence relation for the Laguerre poly-

nomials [3]. Thus Dn(λ) can be written in terms of the Laguerre polynomials:

(2.162) Dn(λ) = 2πieλ/εLn(−2λ/ε),

where Ln(λ) is the Laguerre polynomial of degree n. Therefore, if v/ε = n, then the

eigenvalues are equal to the roots of the Laguerre polynomial of degree n scaled by

−2/ε, which implies the number of eigenvalues is n.

If v/ε is a positive number but not an integer, then there exists an integer n such

that n−1 < v/ε < n. By solving the equation (2.159) numerically, one can find that

the number of eigenvalues is n.

The method introduced above cannot be directly applied to general rational initial

conditions because with general rational initial conditions, the right hand side of the

equation (2.158) may become a sum of two terms with two unknown coefficients and

the relation between these two coefficients is also unknown. In that case, besides the
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eigenvalue λj, the equation (2.159) has another unknown parameter. So, one cannot

calculate the eigenvalue λj only by using the equation (2.159).

If v/ε is equal to an integer n, then from (2.132), one can find that the reflection

coefficient β(λ) ≡ 0 by the following calculation:

(2.163)
1

2π

∫ ∞

0

|β(λ)|2

λ
dλ = 2πn− 1

ε

∫ ∞

−∞
u(x)dx = 2πn− 2πv/ε = 0.

According to the discussion in §2.2.5, a solution of the BO equation is a soliton

solution if the corresponding reflection coefficient is identically equal to zero. This

argument shows that if v/ε is an integer, the solution of the BO equation with the

initial condition (2.150) is a soliton solution.

Kodama, Ablowitz, and Satsuma only calculated the eigenvalues corresponding

to the special initial condition (2.150) in [40]. Since the functions M(x; λ), N(x; λ),

M(x; λ) and N(x; λ) satisfy the equation (2.151), one can calculate them also by

using the equation (2.157) and choosing appropriate values for w0 and C based on

their asymptotic behaviors as |x|→∞ . We provide this calculation here. From the

boundary condition (2.53), by choosing w0 = 0 and C = 1 in the equation (2.157),

the function M(x; λ) can be written in the form

(2.164) M(x; λ) = eiλx/ε

(
x− i

x + i

)v/ε

− v

ε
M(i; λ)eiλx/ε

(
x− i

x + i

)v/ε ∫ x

−∞

1

y − i
e−iλy/ε

(
y + i

y − i

)v/ε

dy.

According to the boundary condition (2.54), by letting w0 = 0 and

(2.165) C = e−2πvi/ε +
v

ε

∫ ∞

−∞

w+(i)

y − i
e−iλy/ε

(
y + i

y − i

)v/ε

dy,
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the function N(x; λ) can be written as:

(2.166) N(x; λ) = eiλx/ε(
x− i

x + i
)ve−2πvi/ε

+
v

ε
N(i; λ)eiλx/ε

(
x− i

x + i

)v/ε ∫ ∞

x

1

y − i
e−iλy/ε

(
y + i

y − i

)v/ε

dy.

Similarly, from the boundary condition (2.52), by choosing w0 = 1 and C = 0, the

function M(x; λ) can be written in the form

(2.167) M(x; λ) = 1 +
v

ε
eiλx/ε

(
x− i

x + i

)v/ε
(
−

∫ x

−∞

M(i; λ)

y − i
e−iλy/ε

(
y + i

y − i

)v/ε

dy

+

∫ x

−∞

2i

y2 + 1
e−iλy/ε

(
y + i

y − i

)v/ε

dy

)
.

According to the boundary condition (2.55), by letting w0 = 1 and

(2.168)

C =
v

ε

(∫ ∞

−∞

w+(i)

y − i
e−iλy/ε

(
y + i

y − i

)v/ε

dy −
∫ ∞

−∞

2i

y2 + 1
e−iλy/ε

(
y + i

y − i

)v/ε

dy

)
,

the function N(x; λ) can be written as:

(2.169) N(x; λ) = 1 +
v

ε
eiλx/ε

(
x− i

x + i

)v/ε
(∫ ∞

x

N(i; λ)

y − i
e−iλy/ε

(
y + i

y − i

)v/ε

dy

−
∫ ∞

x

2i

y2 + 1
e−iλy/ε

(
y + i

y − i

)v/ε

dy

)
.

After letting x in each side of the equation (2.167) tend to infinity and using the

jump condition (2.69) and the boundary conditions (2.52), (2.54) and (2.55), one

can write β(λ) in the form

(2.170) β(λ) =
v

ε
e2vπi/ε

(∫ ∞

−∞

2i

y2 + 1
e−iλy/ε

(
y + i

y − i

)v/ε

dy

−
∫ ∞

−∞

M(i; λ)

y − i
e−iλy/ε

(
y + i

y − i

)v/ε

dy

)
.
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In fact, the formulas (2.164), (2.166), (2.167), (2.169) and (2.170) do not determine

M(x; λ), M(x; λ), N(x; λ), N(x; λ) and β(λ), because M(i; λ), M(i; λ), N(i; λ) and

N(i; λ) can not be determined from them.

As discussed above, the eigenvalues corresponding to the special initial condition

(2.150) are the roots of the Laguerre polynomial of degree n scaled by −2/ε, if

n = v/ε is a positive integer. Here we use this fact and the asymptotic distribution

of the roots of the Laguerre polynomial studied in [20, 47] to verify Matsuno’s results

given in §2.2.8, which has not previous been done. We first recall the definition of

weak-∗ convergence.

Definition II.6. Let X be a normed vector space. Then the dual space of X consists

of all bounded linear functionals on X and is denoted by X∗.

Definition II.7. Let X be a normed vector space and X∗ be the dual space of X.

If φn, φ ∈ X∗ and φn(x) converges pointwise to φ(x) for all x ∈ X, then φn weak-∗

converges to φ(x).

The eigenvalues λ1, λ2, · · · , λn are the roots of the polynomial Ln(−2λ/ε). Since

the positive integer n is equal to v/ε, the polynomial Ln(−2λ/ε) can be written

as Ln(−2λ/ε) = Ln(−2nλ/v). Then k1, k2, · · · , kn are the roots of the polynomial

Ln(nk), where kj = −2λj/v for j = 1, 2, · · · , n. Let µn be the normalized counting

measure of λ1, λ2, · · · , λn defined by

(2.171) µn(λ) :=
1

n

n∑

j=1

δ(λ− λj).

According to Theorem 3.1 in [20] and Theorem 1 in [47], λ1, λ2, · · · , λn belong to the

interval [−2v, 0] and the measure µn converges in the weak-∗ sense to µ, where µ is

a measure with density f(λ) defined by

(2.172) f(λ) = −
√
−2vλ− λ2

πλv
dλ, λ ∈ [−2v, 0]
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and the support of the measure µ is [−2v, 0]. That is, for each continuous function

g :[-2v, 0]→ C,

(2.173) lim
n→∞

∫ 0

−2v

g(k)dµn(k) =

∫ 0

−2v

g(k)dµ(k).

Here, µn and µ belong to the dual space of C([−2v, 0]), where C([−2v, 0]) is the

function space consisting of all continuous functions on [−2v, 0].

Based on this result, the equation (2.141) with k = 1 and the definition of the

eigenvalue density function F (λ) given in §2.2.8, one can find F (λ) ≡ 0 for λ /∈

[−2v, 0] and

F (λ) = −
√
−2vλ− λ2

πλv
× 1

2π

∫ ∞

−∞
u(x, 0)dx

= −
√
−2vλ− λ2

πλv
× v

= −
√
−2vλ− λ2

πλ
, λ ∈ [−2v, 0].

(2.174)

On the other hand, one can use Matsuno’s results introduced in §2.2.8 to calculate

the eigenvalue density function F (λ) directly. Since the maximum of the function

u0(x) is 2v, F (λ) ≡ 0 for λ /∈ [−2v, 0]. Then by using the equation (2.149), one can

calculate F (λ) for λ ∈ [−2v, 0]:

F (λ) =
1

2π

∫

{x∈R, u0(x)>−λ}
dx

=
1

2π

∫ √−2v/λ−1

−
√
−2v/λ−1

dx

= −
√
−2vλ− λ2

πλ
, λ ∈ [−2v, 0].

(2.175)

The formulas for the eigenvalue density function F (λ) obtained via two different

methods are the same, which verifies Matsuno’s result.



CHAPTER III

Zero dispersion limit of the BO equation for
positive initial conditions

In this chapter, we study the zero-dispersion limit of the Cauchy problem of the

BO equation with a suitable initial condition1.

3.1 The Scattering Data in the Zero-Dispersion Limit

In this section, we give the definition of admissible initial conditions and an

asymptotic approximation of the scattering data {β(λ), {λn}N
n=1, {γn}N

n=1} corre-

sponding to admissible initial conditions valid for small ε > 0. Even though u0

is independent of ε, the scattering data depend on ε since the parameter ε appears

in the equation (2.26). The asymptotic approximation of β(λ) and {λn}N
n=1 is based

on Matsuno’s method introduced in §2.2.8.

3.1.1 Admissible Initial Conditions

The initial conditions for the BO equation (1.1) that we will consider in this

chapter are the admissible initial conditions defined in Definition III.1. Many of the

conditions in Definition III.1 are imposed for our convenience; we make no claim that

they are necessary.

1The content of this chapter is taken almost verbatim from [56] and some modifications and
reorganization are done to make this dissertation more readable.
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Definition III.1. A function u0 : R → R is called an admissible initial condition if

the following properties hold true:

Smoothness: u0 ∈ C3(R).

Positivity: u0(x) > 0 for all x ∈ R.

Existence of a Unique Critical Point: There is a unique point x0 ∈ R for

which u′0(x0) = 0. Moreover,

(3.1) u′′0(x0) < 0,

making x0 the global maximizer of u0.

Tail Behavior: limx→±∞ u0(x) = 0, and

(3.2) lim
x→±∞

|x|q+1u′0(x) = C± for some q > 1,

where C+ < 0 and C− > 0 are constants. These two conditions imply that an

admissible initial condition u0 also satisfies

(3.3) lim
x→±∞

|x|qu0(x) = ∓C±

q
.

Inflection Points: In each bounded interval there exist at most finitely many

points x = ξ at which u′′0(ξ) = 0, and each is a simple inflection point: u′′′0 (ξ) )= 0.

An admissible initial condition u0(x) satisfies all the conditions used in §2.2.8

where we introduced Matsuno’s method. The results in §2.2.8 are valid for the

admissible initial condition u0(x). From the equation (2.141), one can see that the

function F (λ) introduced in §2.2.8 satisfies

(3.4)

∫ 0

−L

F (λ) dλ = M,

where the positive constant L is defined by

(3.5) L := max
x∈R

u0(x),
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and the mass M is defined by

(3.6) M :=
1

2π

∫

R
u0(x) dx.

Here, the tail behavior (3.3) and the boundness of u0 ensure that the mass M is

finite. In fact, since u0 is an admissible initial condition, the function F (λ) can be

written in the form

(3.7) F (λ) :=
1

2π
(x+(λ)− x−(λ)) , −L ≤ λ < 0,

where the turning points x± : [−L, 0) → R are two monotone branches of the inverse

function of u0 and satisfy

(3.8) u0(x±(λ)) = −λ and x−(λ) ≤ x0 ≤ x+(λ) for − L ≤ λ < 0.

Figure 3.1: The graph of an admissible initial condition and the turning points x±(λ).

By choosing k = 1 in the equation (2.139), one can obtain

(3.9) lim
ε↓0

εN = M,

which suggests the number of eigenvalues is asymptotically proportional to 1/ε.
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3.1.2 Formula for Phase Constants

The WKB methods recalled by Lax and Levermore [43] to analyze the Schrödinger

equation in the forward problem for the zero-dispersion limit of the KdV equation

were sufficiently powerful to provide asymptotic formulae for both the discrete spec-

trum (via Bohr-Sommerfeld quantization of the Weyl formula that is the analogue in

the KdV theory of the function F (λ) obtained by Matsuno) and also for the “norming

constants” that in the KdV theory are the analogues of the phase constants {γn}N
n=1

in the BO theory. However, we have not found a way to apply these methods to the

nonlocal operator L, and unfortunately Matsuno’s method does not provide approx-

imations of the phase constants {γn}N
n=1 since they do not enter into the equation

(2.131).

Our contribution to the theory of the spectral analysis of the nonlocal operator

L in the zero-dispersion limit is to provide a new asymptotic formula for the phase

constants. It is difficult to motivate the formula as it arises from the analysis of

the inverse problem that we will describe in the next section, but it is nonetheless

quite easy to present. If λ < 0 is an eigenvalue of L with potential u given by an

admissible initial condition u0, then our approximation to the corresponding phase

constant is given in terms of the turning points x±(λ) as follows:

(3.10) γ ≈ γ(λ) := −1

2
(x+(λ) + x−(λ)), −L ≤ k < 0.

Remark III.2. Our choice of γ(λ) in terms of u0 is specifically designed to ensure the

convergence of ũε(x, t) (to be defined precisely in Definition III.3 below) at t = 0 to

the given ε-independent initial condition u0.
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3.1.3 Modification of the Cauchy Data

Based on the above considerations, we may now make very precise definitions of

formal (not rigorously justified) approximations of the scattering data corresponding

to an admissible condition u0. The first approximation is to neglect the reflection

coefficient by setting

(3.11) β̃(λ) := 0, λ > 0.

Next we define the exact number of approximate eigenvalues (hopefully also the

approximate number of exact eigenvalues) by setting

(3.12) N(ε) :=

⌊
M

ε

⌋
,

which in particular implies that

(3.13) lim
ε↓0

εN(ε) = M.

Then we define approximations to the eigenvalues themselves as an ordered set of

numbers {λ̃n}N(ε)
n=1 ⊂ (−L, 0) obtained by quantizing the Matsuno eigenvalue density

given by (3.7):

(3.14)

∫ λ̃n

−L

F (λ) dλ = ε

(
n− 1

2

)
, n = 1, 2, · · ·N(ε).

Finally, we define approximations to the corresponding phase constants as numbers

{γ̃n}N(ε)
n=1 given precisely by

(3.15) γ̃n := γ(λ̃n), n = 1, . . . , N(ε).

where γ(·) is defined by (3.10).

Now in our analysis of the Cauchy problem for the BO equation with admissible

initial data u0 we take a sideways step that is not a priori justified: we simply
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replace the true solution uε(x, t) of the Cauchy problem with a family ũε(x, t) of

exact solutions of the BO equation (1.1) with the property that for each ε > 0

the scattering data for ũε(x, t) at time t = 0 is exactly the approximate scattering

data just defined. This step was also an important part of the method of Lax and

Levermore [43]. We formalize this modification of the initial data in the following

definition.

Definition III.3. Let u0 be an admissible initial condition. Then, by ũε(x, t) we

mean the exact solution of the BO equation (1.1) given for each ε > 0 by the

reflectionless inverse-scattering formula

(3.16) ũε(x, t) := 2ε
∂

∂x
,{log(τ̃ε(x, t))},

where

(3.17) τ̃ε(x, t) := det
(
I + iε−1Ãε

)

and where Ãε = Ãε(x, t) is an N(ε)×N(ε) Hermitean matrix with elements

(3.18) (Ãε)nm :=
2iε

√
λ̃nλ̃m

λ̃n − λ̃m

, n )= m

and

(3.19) (Ãε)nn := −2λ̃n(x + 2λ̃nt + γ̃n) = −2λ̃n(x + 2λ̃n + γ(λ̃n)).

Here the number N(ε) is defined by (3.12) and the components of the scattering data

{λ̃n}N(ε)
n=1 and {γ̃n}N(ε)

n=1 are given explicitly by (3.14) and (3.15) respectively.

While it is not the case that ũε(x, 0) = u0(x) in general, the relevance of this

definition in connection with the Cauchy problem with initial condition u0 is a con-

sequence of Corollary III.6 in §3.2, which guarantees convergence in the mean square
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sense of ũε(·, 0) to u0(·) as ε ↓ 0. This modification of the initial data is an analogue of

the replacement of the true scattering data by its reflectionless WKB approximation

in the Lax-Levermore theory.

Before introducing our main result about ũε(x, t) we note that Definition III.1

implies a number of properties of the functions F and γ that will be useful later,

so we take the opportunity to record these here. Note that F and γ will frequently

occur in the context of the following functions:

(3.20) D(λ; x, t) := −2λ(x + 2λt + γ(λ)), −L < λ < 0,

and

(3.21) ϕ(λ) :=
√
−λF (λ), −L < λ < 0.

Lemma III.4. Let u0 be an admissible initial condition with decay exponent q > 1,

and let F : [−L, 0) → R be defined by (3.7) and γ : [−L, 0) → R be defined by (3.10).

Then F and γ both belong to C(1)(−L, 0) and F and F ′ are strictly positive on this

open interval. Also, there exists a sufficiently small constant δ > 0 and positive

constants C−L and C0 such that

(3.22)
1

2
C−L

√
L + λ < F (λ) < C−L

√
L + λ,

and

(3.23)
1

4

C−L√
L + λ

< F ′(λ) <
1

2

C−L√
L + λ

both hold for −L < λ < −L + δ, while

(3.24)
1

2
C0(−λ)−1/q < F (λ) < C0(−λ)−1/q,

and

(3.25)
1

2

C0

q
(−λ)−1/q−1 < F ′(λ) <

C0

q
(−λ)−1/q−1
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both hold for −δ < λ < 0. Also,

(3.26) |γ(λ) + x0| ≤ πF (λ) and |γ′(λ)| ≤ πF ′(λ), −L ≤ λ < 0,

inequalities that when combined with (3.22)–(3.25) imply obvious upper bounds for

|γ(λ) + x0| and |γ′(λ)|.

In particular, these estimates show that F (λ) is integrable, and ϕ(λ) and D(λ; x, t)

(and hence also λx±(λ)) are bounded, and that with σ = min(1
2 , 1−

1
q ) ∈ (0, 1), ϕ(·)

is Hölder continuous with exponent σ/2 while D(·; x, t) is Hölder continuous with

exponent σ uniformly for (x, t) in compact sets, on (−L, 0).

Proof. The turning points x±(λ) are clearly of class C(1)(−L, 0), by definition x+(λ) >

x0 > x−(λ) on this open interval, and moreover x+(λ) is strictly increasing while

x−(λ) is strictly decreasing on (−L, 0). These facts immediately imply the desired

basic smoothness properties of F and γ, and the positivity and monotonicity of F ,

as well as the inequalities (3.26).

Since u0(x0) = L and u′0(x0) = 0, the C(2)(R) function u0 satisfies

(3.27) lim
x→x0

u0(x)− L

(x− x0)2
=

u′′0(x0)

2
and lim

x→x0

u′0(x)

x− x0
= u′′0(x0).

Using these together with the inequality u′′0(x0) < 0, the definition of x±(λ) as

branches of the inverse function of u0 shows that

(3.28)

lim
λ↓−L

±(x±(λ)− x0)√
L + λ

=

√
2

−u′′0(x0)
and lim

λ↓−L
±x′±(λ)

√
L + λ =

√
1

−2u′′0(x0)
.

Using these relations in (3.7) and (3.10) establishes the existence of the limits

(3.29) lim
λ↓−L

F (λ)√
L + λ

=
1

π

√
2

−u′′0(x0)
and lim

λ↓−L
F ′(λ)

√
L + λ =

1

2π

√
2

−u′′0(x0)
,

which prove the two-sided estimates (3.22) and (3.23).
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Next, note that the decay conditions (3.2) and (3.3) for u0 and its derivative

together imply that

(3.30) lim
λ↑0

x±(λ)(−λ)
1
q = ±

(
∓C±

q

) 1
q

and lim
λ↑0

x′±(−λ)
1
q +1

= ±1

q

(
∓C±

q

)1
q
,

where ∓C± are the positive constants in (3.2) and (3.3). It follows from (3.7) that

(3.31) lim
λ↑0

F (λ)(−λ)
1
q =

1

2π

[(
−C+

q

) 1
q

+

(
C−

q

) 1
q

]
,

which proves (3.24) and

(3.32) lim
λ↑0

F ′(λ)(−λ)
1
q +1 =

1

2πq

[(
−C+

q

) 1
q

+

(
C−

q

) 1
q

]
,

which proves (3.25).

3.2 The Inverse-Scattering Problem in the Zero-Dispersion
Limit

In this section, we provide our main result and its proof.

3.2.1 Main Theorem

The main result of our analysis is easy to state, but first we need to recall some

basic facts about the inviscid Burgers equation obtained from (1.1) simply by setting

ε = 0. For general sufficiently smooth initial data uB(x, 0) = u0(x) the inviscid

Burgers equation

(3.33)
∂uB

∂t
+ 2uB∂uB

∂x
= 0

does not have a global solution due to gradient catastrophe (shock formation) in

finite time. It does have a global solution as a real multi-sheeted surface over the

(x, t)-plane, which can be obtained by the method of characteristics. The sheets of

this surface are obtained as the real solutions of the implicit equation

(3.34) uB = u0(x− 2uBt),
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and by implicit differentiation it is easy to verify that away from singularities each

sheet of the surface is a function uB = uB(x, t) that satisfies (3.33). A simple conse-

quence of the Implicit Function Theorem is that for sufficiently small |t| there is a

unique solution of (3.34) for all x ∈ R. New sheets of the multivalued solution are

born from breaking points in the (x, t)-plane that are in one-to-one correspondence

with generic inflection points ξ of u0 for which u′0(ξ) )= 0 but u′′0(ξ) = 0. If ξ ∈ R is

such a point, then the corresponding breaking point is given by

(3.35) (xξ, tξ) :=

(
ξ − u0(ξ)

u′0(ξ)
,− 1

2u′0(ξ)

)
.

Each such breaking point is the location of a pitchfork bifurcation for uB with respect

to t holding x− 2u0(ξ)t = ξ fixed, with two new branches emerging as |t| increases.

Thus, assuming that u′0 is a bounded function of total integral zero, the solution of

the Cauchy problem for (3.33) is classical for

(3.36) T− := − 1

2 maxx∈R u′0(x)
< t < − 1

2 minx∈R u′0(x)
=: T+.

Note that under our assumptions on u′0 we have T− < 0 < T+. Also, T− is the

supremum of all tξ < 0 while T+ is the infimum of all tξ > 0. When we consider the

Cauchy problem for t > 0, we will refer to T := T+ as the breaking time.

For t/tξ > 1 there are caustic curves x−ξ (t) < x+
ξ (t) with limiting values as t → tξ

given by x−ξ (tξ) = x+
ξ (tξ) = xξ that bound the triply-folded region emerging from

(xξ, tξ). The caustic curves correspond to double roots of (3.34), and crossing one of

them at a generic point results in a change in the number of sheets by exactly two.

Except along the union of the caustic curves and the breaking points from which they

emerge, the number of solutions of (3.34) is always odd, and all are simple roots.

See Figure 3.2.
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Figure 3.2: Except along the caustic curves x = x−ξ (t) and x = x+
ξ (t) the number of

solutions of (3.34) is of the form 2P + 1, and these solutions are simple
roots. For this figure, u0(x) := 2(1 + x2)−1.

For the initial data u0(x) = 2(1 + x2)−1 used in Figure 1.1, the breaking time

before which there is a unique solution for all x ∈ R and after which there is an

expanding interval in which there are three solutions, is exactly T = 2
√

3/9 ≈ 0.3849.

Snapshots of the evolution of the multivalued solution of (3.33) for this initial data

are shown in Figure 3.3. Our result is then the following.

Figure 3.3: The multivalued solution (black) of (3.33) and the signed sum of branches
(red) corresponding to u0(x) = 2(1 + x2)−1. Left: t = 0. Middle: t = 1.
Right: t = 2. Before the breaking time as well as afterwards but outside
the oscillation interval there is only one solution branch and hence no
difference between the red and black curves.

Theorem III.5. Let uB
0 (x, t) < uB

1 (x, t) < · · · < uB
2P (x,t)(x, t) be the branches of



53

the multivalued (method of characteristics) solution of the inviscid Burgers’ equation

(3.33) subject to an admissible initial condition uB(x, 0) = u0(x). Then, the weak

L2(R) (in x) limit of ũε(x, t) is given by

(3.37) wx−lim
ε↓0

ũε(x, t) =
2P (x,t)∑

n=0

(−1)nuB
n(x, t),

uniformly for t in arbitrary bounded intervals. Note that the right-hand side extends

by continuity to the caustic curves.

The signed sum of branches that is the weak limit is illustrated with red curves

in Figure 3.3 for the same initial data as in Figure 1.1. Of course convergence in the

weak L2(R) (in x) topology means that for every v ∈ L2(R), we have

(3.38) lim
ε↓0

∫

R
ũε(x, t)v(x) dx =

∫

R




2P (x,t)∑

n=0

(−1)nuB
n(x, t)



 v(x) dx

with the limit being uniform with respect to t in arbitrary bounded intervals. Thus,

the weak limit essentially smooths out the rapid oscillations seen in Figure 1.1 and

(if we think of v as the indicator function of a mesoscale interval) represents a kind

of local average in x.

For t before the breaking time T for the inviscid Burgers’ equation, the weak

limit guaranteed by Theorem III.5 may be strengthened as follows.

Corollary III.6. Suppose that 0 ≤ t < T , so that P (x, t) = 0 for all x ∈ R (that is,

the solution uB = uB
0 (x, t) of the inviscid Burgers’ equation with initial data u0(x) is

classical). Then

(3.39) lim
ε↓0

ũε(x, t) = uB
0 (x, t)

with the limit being in the (strong) L2(Rx) topology.
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It should be pointed out that the weak limit formula (3.37) is much more explicit

than the corresponding formula found by Lax and Levermore [43, 44, 45] for the

weak zero-dispersion limit of the Cauchy problem for the KdV equation. Indeed, the

latter requires the solution, for each x and t, of a constrained functional variational

problem, which can be solved in closed form only for the simplest initial data.

3.2.2 Basic Strategy. Outline of the Proof of Main Theorem

According to Definition III.3, ũε(x, t) is expressed in terms of the determinant τ̃ε

as follows:

(3.40) ũε(x, t) =
∂Ũε

∂x
(x, t), Ũε(x, t) = 2ε,{log(τ̃ε(x, t))}.

As the logarithm of a complex-valued quantity is involved, Ũε(x, t) is only defined

modulo 4πε for each (x, t), and naturally one should choose the appropriate branch

for each (x, t) to achieve continuity. We do this concretely in equation (3.42) below.

At this very early point our analysis must take a very different path than that

followed by Lax and Levermore [43] in their study of the zero-dispersion limit for the

KdV equation. Indeed, the expansion of τ̃ε in principal minors that is at the heart

of the Lax-Levermore method would be a poor choice in this situation. One reason

for this is simply that the principal-minors expansion of τ̃ε(x, t) consists of complex-

valued terms of indefinite phase, so the sum cannot be easily estimated by its largest

term. But a more important reason is that the formula (3.40) for Ũε(x, t) involves

not log(τ̃ε) but rather ,{log(τ̃ε)}, that is, we require an estimate of the phase of the

determinant and we are not interested in its magnitude.

So instead of expanding the determinant as a sum, we write it as a product. Let

{αn}N(ε)
n=1 be the real eigenvalues of Ãε(x, t). Then the corresponding eigenvalues of

I + iε−1Ãε(x, t) are of course {1 + iε−1αn}N(ε)
n=1 , so we may expand τ̃ε as a product
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over eigenvalues in the form:

(3.41) τ̃ε(x, t) =
N(ε)∏

n=1

(
1 + iε−1αn

)
.

This yields a suggestive formula for Ũε(x, t) in terms of the eigenvalues of Ãε:

(3.42) Ũε(x, t) := ε

N(ε)∑

n=1

2 arctan
(
ε−1αn

)
.

Here −π/2 < arctan(·) < π/2, so in particular by this definition we have made

an unambiguous choice of the branch of the logarithm. This formula seems at first

not to be of much use because, unlike the principal minor determinants in the Lax-

Levermore method which can be written explicitly in terms of the matrix elements,

the eigenvalues of Ãε are only implicitly known. However, numerical experiments

suggest that some structure emerges in the limit ε ↓ 0. Indeed, the plots shown in

Figure 3.4 provide good evidence that the normalized (to mass M) counting measures

Figure 3.4: Histograms of eigenvalues of Ãε corresponding to the initial condition
u0(x) := 2(1 + x2)−1, x = 5, and t = 2, normalized to have total area
M = 1, compared with the density G(α; x, t) of the limiting absolutely
continuous measure µ.
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µε given for ε > 0 by

(3.43) µε :=
M

N(ε)

N(ε)∑

n=1

δαn , {αn}N(ε)
n=1 eigenvalues of Ãε

might converge in some sense to a measure µ having a density G(α; x, t). This con-

vergence suggests further that the formula (3.42) could be interpreted as a Riemann

sum, for the integral of π sgn(α) (the pointwise limit as ε ↓ 0 of the summand) against

the limiting measure µ. We will prove that indeed Ũε(x, t) converges, uniformly with

respect to x and t in compact sets, to a limit function U(x, t) given by such an

integral in the limit ε ↓ 0.

To obtain an effective formula for U(x, t) we need to analyze the asymptotic

behavior of the measures µε. This part of our analysis is modeled after the work of

Wigner [71, 72] on the statistical distribution of eigenvalues of random Hermitian

matrices with independent and identically distributed matrix elements. Like Wigner,

we use the method of moments because while the measures themselves are not easy

to express in terms of the matrix elements, their moments are:

(3.44)

∫

R
αp dµε(α) =

M

N(ε)

N(ε)∑

n=1

αp
n =

M

N(ε)
tr(Ãp

ε), p = 0, 1, 2, . . . .

We prove the existence of the limit of the right-hand side in equation (3.44) as

ε ↓ 0 for every p using the fact that for small ε the matrix Ãε concentrates near

the diagonal, where it can be approximated by the product of a diagonal matrix

and the Toeplitz matrix corresponding to the symbol f(θ) := i(π − θ), 0 < θ < 2π

(of singular Fisher-Hartwig type due to jump discontinuities). The result of this

asymptotic analysis of moments is the following Proposition, the proof of which will

be given below in §3.2.3.

Proposition III.7. For each nonnegative integer p,

(3.45) lim
ε↓0

∫

R
αp dµε(α) = Qp,
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with the limit being uniform with respect to (x, t) in any compact set, where

(3.46)

Qp :=
1

2π(p + 1)

∫ 0

−L

[
(x + 2λt− x−(λ))p+1 − (x + 2λt− x+(λ))p+1] (−2λ)p dλ.

Given these limiting moments, the next task is to establish the existence of a

corresponding limiting measure µ with these moments, and to prove the existence

of the limit Ũε(x, t) → U(x, t). A remarkable feature of this analysis is that the

solution of the moment problem for µ is carried out by virtually the same procedure

as Matsuno used to obtain the function F (λ) from u0 (see §2.2.8). Our result is the

following Proposition, that will be proved in all details in §3.2.4.

Proposition III.8. Uniformly for (x, t) in compact sets,

(3.47) lim
ε↓0

Ũε(x, t) = U(x, t),

where

(3.48) U(x, t) :=

∫

R
π sgn(α) dµ(α)

and where µ is an absolutely continuous measure of mass M with density G(α; x, t),

and

(3.49) G(α; x, t) := − 1

4π

∫ 0

−L

χ[−2λ(x+2λt−x+(λ)),−2λ(x+2λt−x−(λ))](α)
dλ

λ
.

Here, χ[a,b](z) denotes the indicator function of the interval [a, b].

The limiting measure µ is the closest analogue in the zero-dispersion theory of the

BO equation of the equilibrium (or extremal) measure arising in the Lax-Levermore

theory of the KdV equation. But a significant difference is that in this case the

measure µ is specified explicitly rather than implicitly as the solution of a variational

problem.
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The region of integration in the double integral obtained by combining (3.49)

with (3.48) is illustrated for three different values of (x, t) in Figure 3.5. The points

Figure 3.5: The region of integration −2λ(x + 2λt − x+(λ)) < α < −2λ(x + 2λt −
x−(λ)) for u0(x) = 2(1 + x2)−1 with t = 0.7. Left: x = 2 (to the
left of the oscillatory region for uε(x, t)). Center: x = 2.5 (within the
oscillatory region for uε(x, t)). Right: x = 3 (to the right of the oscillatory
region for uε(x, t)). The line α = 0 of discontinuity of the integrand is
superimposed, and the intersections of the boundary with this line are
indicated with arrows.

where the boundary curves of this region intersect the line α = 0 (where the inte-

grand is discontinuous) obviously will play an important role in the differentiation of

U(x, t) with respect to x. Moreover, these intersection points correspond (simply by

changing the sign) to the branches of the multivalued solution of Burgers’ equation

with initial data u0. This explains their appearance in the formula for the weak limit

of uε(x, t). All details of this calculation will be given in §3.2.5, which will complete

the proof of Theorem III.5.

3.2.3 Asymptotics of Traces of Powers of Ãε. Proof of Proposition III.7

The definition (3.14) implies that where F (λ) is bounded and bounded away

from zero, the numbers {λ̃n}N(ε)
n=1 are locally nearly equally spaced, but they are more

dilute near the “soft edge” of the spectrum λ = −L and more dense near the “hard

edge” of the spectrum λ = 0. Taking into account the soft edge behavior we may

obtain a uniform estimate:
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Lemma III.9. There is a constant Cλ > 0 independent of ε such that

(3.50) |λ̃n − λ̃m| ≤ Cλε
2/3|n−m|2/3

holds for all n and m between 1 and N(ε).

Proof. Since F is a monotone increasing function with F (−L) = 0, it is bounded

away from zero except in a right-neighborhood of λ = −L. Using the lower bound

given in (3.22) from Lemma III.4 we obtain a lower bound F (λ) ≥ C
√

L + λ valid

uniformly for −L < λ < 0 with 0 < C ≤ C−L/2. Then, using the definition (3.14)

we have (assuming n ≥ m without loss of generality)

(3.51)

ε|n−m| =

∫ λ̃n

λ̃m

F (λ) dλ ≥ C

∫ λ̃n

λ̃m

√
L + λ dλ ≥ C

∫ |λ̃n−λ̃m|

0

√
ξ dξ =

2C

3
|λ̃n− λ̃m|3/2,

so the desired inequality follows with Cλ := (2C/3)−2/3.

We decompose the matrix Ãε into a sum Ãε = D + H of its diagonal part

(3.52) D := diag(D1, D2, . . . , DN(ε)), Dk := D(λ̃k; x, t),

where D(λ; x, t) is defined by (3.20), and its off-diagonal part H whose matrix ele-

ments are given by

(3.53) (H)nm =
2iε

√
λ̃nλ̃m

λ̃n − λ̃m

, for n )= m, and (H)nn = 0.

We also will soon need the quantities {ϕn}N(ε)
n=1 defined by

(3.54) ϕn := ϕ(λ̃n), n = 1, . . . , N(ε),

where ϕ(λ) is given by (3.21).
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Lemma III.10. There is a constant Cϕ > 0 and for each R > 0 there is a constant

CD,R > 0 such that

(3.55) |ϕn| ≤ Cϕ

and

(3.56) sup
x2+t2≤R2

|Dn| ≤ CD,R

both hold for all ε > 0 and all n between 1 and N(ε). Also,

(3.57) |ϕn − ϕm| ≤ Cϕεσ/3|n−m|σ/3

and

(3.58) sup
x2+t2≤R2

|Dn −Dm| ≤ CD,Rεσ/3|n−m|σ/3

both hold for all ε > 0 and for all n and m between 1 and N(ε). Here σ is the positive

Hölder exponent of Lemma III.4.

Proof. This is an easy consequence of the Hölder continuity of ϕ(·) and D(·; x, t) guar-

anteed by Lemma III.4, and of the spacing estimate for {λ̃k}N(ε)
k=1 given in Lemma III.9.

In fact, since D is Hölder continuous with exponent σ while ϕ has exponent σ/2 the

most natural bound for |Dn−Dm| is proportional to ε2σ/3|n−m|2σ/3, and to obtain

(3.58) we use the fact that ε|n −m| ≤ 2εN(ε) is uniformly bounded to reduce the

exponent to σ/3.

Lemma III.11. There is a constant CH > 0 such that

(3.59) |(n−m)(H)nm| ≤ CH

and

(3.60) |(n−m)(H)nm − 2iϕnϕm| ≤ CHεσ/3|n−m|σ/3



61

both hold for all ε > 0 and all n )= m between 1 and N(ε). Again, σ > 0 is the Hölder

exponent of Lemma III.4.

Proof. Suppose without loss of generality that n > m, implying that λ̃m < λ̃n < 0.

Then

−i(n−m)(H)nm = 2

√
−λ̃n

√
−λ̃m

ε(n−m)

λ̃n − λ̃m

≤ ([−λ̃n] + [−λ̃m])
ε(n−m)

λ̃n − λ̃m

= ε(n−m)− 2λ̃n
ε(n−m)

λ̃n − λ̃m

.

(3.61)

Now, recalling the definition (3.14) of the numbers {λ̃k}N(ε)
k=1 and applying the Mean

Value Theorem we may write the latter difference quotient as F (ξ) for some ξ with

λ̃m ≤ ξ ≤ λ̃n, and since F is increasing we have F (ξ) ≤ F (λ̃n), so

(3.62) −i(n−m)(H)nm ≤ 2ε(n−m)− 2λ̃nF (λ̃n) = 2ε(n−m) + 2ϕ2
n,

where we have also replaced ε(n−m) with 2ε(n−m). On the other hand, we may

write

(3.63) −i(n−m)(H)nm = 2ε(n−m)

√
−λ̃n

√
−λ̃m + λ̃m

λ̃n − λ̃m

− 2λ̃m
ε(n−m)

λ̃n − λ̃m

.

Again the difference quotient may be replaced by F (ξ) ≥ F (λ̃m), and since

(3.64)

√
−λ̃n

√
−λ̃m

λ̃n − λ̃m

= −
√
−λ̃m√

λ̃n +
√

λ̃m

≥ −1,

we obtain

(3.65) −i(n−m)(H)nm ≥ −2ε(n−m)− 2λ̃mF (λ̃m) = −2ε(n−m) + 2ϕ2
m.

Combining (3.62) and (3.65) gives

(3.66) |(n−m)(H)nm − 2iϕnϕm| ≤ 2ε|n−m| + 2 max{ϕn, ϕm}|ϕn − ϕm|,
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and then applying Lemma III.10 we obtain

(3.67) |(n−m)(H)nm − 2iϕnϕm| ≤ 2ε|n−m| + 2C2
ϕεσ/3|n−m|σ/3.

Now, 0 ≤ ε|n−m| ≤ 2εN(ε), and this upper bound has a limit as ε ↓ 0, so ε|n−m|

is nonnegative and bounded. Since σ ≤ 3 we have therefore proved (3.60). Since

ϕnϕm and ε|n−m| are bounded, (3.59) then follows from (3.60).

For any nonnegative integer power p, the pth moment of the measure µε can be

written in terms of D and H with the use of (3.44):

(3.68)

∫

R
αpdµε(α) =

p∑

j=0

Zpj,

where Zpj contains the contribution to the trace coming from products of matrices

involving exactly j factors of H:

(3.69) Zpj :=
M

N(ε)

∑

d1+d2+···+ds=p−j
h1+h2+···+hs=j

tr
(
Dd1Hh1 · · ·DdsHhs

)
,

and where d1 ≥ 0 and hs ≥ 0, while dk > 0 for 2 ≤ k ≤ s and hk > 0 for

1 ≤ k ≤ s− 1. Since p is a fixed number, it will suffice to compute the limit of Zpj

as ε ↓ 0 for j = 0, . . . , p. Actually, it will be enough to consider even values of j as

the following result shows.

Lemma III.12. If j is an odd number, then Zpj = 0.

Proof. Since tr(M) = tr(MT) for all square matrices A,

N(ε)

M
Zpj =

∑

d1+d2+···+ds=p−j
h1+h2+···+hs=j

tr
((

Dd1Hh1 · · ·DdsHhs
)T

)

=(−1)j
∑

d1+d2+···+ds=p−j
h1+h2+···+hs=j

tr
(
HhsDds · · ·Hh1Dd1

)(3.70)
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where in the second line we have used the facts that DT = D and HT = −H. By

relabeling the terms in the sum we therefore obtain

(3.71)
N(ε)

M
Zpj = (−1)j N(ε)

M
Zpj.

Since N(ε) > 0 and M < ∞, the desired result follows.

An important role will be played below by the Toeplitz (discrete convolution)

operator Tf : 32(Z) → 32(Z) defined by

(3.72) (Tfc)n :=
∑

m∈Z
fn−mcm, {cm}m∈Z ∈ 32(Z),

where {fn}n∈Z ∈ 32(Z) is the sequence

(3.73) fn :=






n−1, n )= 0

0, n = 0.

Lemma III.13. For any even positive integer j, we have

(3.74)
∑

n2,...,nj∈Z
f−n2

[
j−1∏

)=2

fn!−n!+1

]
fnj =

(iπ)j

j + 1
,

where the j − 1-fold infinite sum converges absolutely.

Proof. Note that since {fn}n∈Z ∈ 32(Z), {gn}n∈Z ∈ 32(Z) as well, where gn := |fn|

for all n ∈ Z. The corresponding Fourier series converge in the mean-square sense

to functions f(·) and g(·) in L2[0, 2π]:

(3.75) f(θ) :=
∑

n∈Z
fne

inθ = i(π − θ), 0 < θ < 2π

and

(3.76) g(θ) :=
∑

n∈Z
gne

inθ = − log(2(1− cos(θ))), 0 < θ < 2π.
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First we establish the absolute convergence of the series on the left-hand side of

(3.74). Using (3.72), observe that

(3.77)
∑

n2,...,nj∈Z
|f−n2|

[
j−1∏

)=2

|fn!−n!+1
|
]
|fnj | =

(
T j−1

g g
)
0

where Tg is the Toeplitz operator associated with the sequence {gn}n∈Z. Now, g(·)

has a logarithmic singularity at θ = 0 (mod 2π), but this is sufficiently mild that

g(·)m ∈ L2[0, 2π] ⊂ L1[0, 2π] for any positive integer power m. Now for any function

k(·) ∈ L2[0, 2π], the corresponding Fourier coefficients are

(3.78) kn :=
1

2π

∫ 2π

0

k(θ)e−inθ dθ,

so in particular we see that (T j−1
g g)0 is the average value of the function whose

Fourier coefficients are {(T j−1
g g)n}n∈Z. But by the convolution theorem:

(3.79) wn :=
∑

m∈Z
un−mvm ⇐⇒ w(θ) = u(θ)v(θ),

so it follows that

(3.80)
(
T j−1

g g
)
0

=
1

2π

∫ 2π

0

g(θ)j dθ

which is finite because g(·)j ∈ L1[0, 2π].

Now we find the exact value of the j− 1-fold infinite sum by the same reasoning:

(3.81)
∑

n2,...,nj∈Z
f−n2

[
j−1∏

)=2

fn!−n!+1

]
fnj =

(
T j−1

f f
)
0

=
1

2π

∫ 2π

0

f(θ)j dθ,

and by direct calculation using (3.75),

(3.82)
1

2π

∫ 2π

0

f(θ)j dθ =
1

2π

∫ 2π

0

[i(π − θ)]j dθ =
(iπ)j

j + 1

for j even (the integral vanishes by symmetry for j odd).

Now we consider separately each of the terms in Zpj for j even.
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Lemma III.14. If j is an even number and h1+· · ·+hs = j while d1+· · ·+ds = p−j,

then

(3.83) lim
ε↓0

M

N(ε)
tr

(
Dd1Hh1 · · ·DdsHhs

)
=

(2π)j

j + 1

∫ 0

−L

D(λ; x, t)p−jϕ(λ)2jF (λ) dλ,

with the limit being uniform with respect to (x, t) in any compact set.

Proof. Recalling the matrix elements Dn and (H)nm of D and H respectively, we

have

(3.84) tr
(
Dd1Hh1 · · ·DdsHhs

)
=

N(ε)∑

a1,a2,...,aj=1

[
j∏

i=1

Dmi
ai

] [
j−1∏

)=1

Ha!a!+1

]
Haja1 ,

where the exponents m1, . . . ,mj are given by

(3.85) mi :=






d1, i = 1

db+1, i = 1 + h1 + h2 + · · · + hb for some 0 < b < s

0, otherwise.

Note that m1 + m2 + · · · + mj = d1 + d2 + · · · ds = p− j.

Now, the matrix element (H)nm is relatively small unless n ≈ m, and this suggests

that the j-fold sum in (3.84) should concentrate near the diagonal, where ak = a1

for all k. Making this precise, given any r > 0 we will first show that

(3.86) lim
ε↓0

ZOD(ε) = 0,

where

(3.87) ZOD(ε) :=
M

N(ε)

N(ε)∑

a1,a2,...,aj=1

∃k:|ak−a1|>ε−r

[
j∏

i=1

Dmi
ai

] [
j−1∏

)=1

Ha!a!+1

]
Haja1 ,

with the limit being uniform for (x, t) in compact sets. Indeed, if x2 + t2 ≤ R2, then
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using (3.56) from Lemma III.10 and (3.59) from Lemma III.11 we obtain

|ZOD(ε)| ≤
MCp−j

D,RCj
H

N(ε)

N(ε)∑

a1,a2,...,aj=1

∃k:|ak−a1|>ε−r

[
j−1∏

)=1

|fa!−a!+1
|
]
|faj−a1|

=
MCp−j

D,RCj
H

N(ε)

N(ε)∑

a1=1

N(ε)∑

a2,a3,...,aj=1

∃k:|ak−a1|>ε−r

[
j−1∏

)=1

|fa!−a!+1
|
]
|faj−a1|

≤
MCp−j

D,RCj
H

N(ε)

N(ε)∑

a1=1

∑

a2,a3,...,aj∈Z
∃k:|ak−a1|>ε−r

[
j−1∏

)=1

|fa!−a!+1
|
]
|faj−a1|.

(3.88)

With the inner sum extended over Zj−1 in this way, it becomes independent of the

outer sum index a1 as can be seen by the substitution nk = ak−a1 for k = 2, 3, . . . j.

Thus

(3.89) |ZOD(ε)| ≤ MCp−j
D,RCj

H

∑

n2,n3,...,nj∈Z
∃k:|nk|>ε−r

|f−n2|
[

j−1∏

)=2

|fn!−n!+1
|
]
|fnj |,

and the latter upper bound is of course independent of (x, t) with x2 + t2 ≤ R2 and

tends to zero for r > 0 by Lemma III.13.

It follows from (3.86) that

(3.90) lim
ε↓0

M

N(ε)
tr

(
Dd1Hh1 · · ·DdsHhs

)
= lim

ε↓0
ZD(ε)

where the diagonally-concentrated terms are

(3.91) ZD(ε) :=
M

N(ε)

N(ε)∑

a1,a2,...,aj=1

∀k:|ak−a1|≤ε−r

[
j∏

i=1

Dmi
ai

] [
j−1∏

)=1

Ha!a!+1

]
Haja1 .

We will analyze ZD(ε) under the additional assumption that r < 1.

The first step is show that if r < 1 each occurrence of (H)nm in (3.91) may

be replaced by 2iϕnϕmfn−m without affecting the limiting value of ZD(ε) as ε ↓ 0.

Indeed, by making this substitution j times in succession each time keeping track
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of the error using Lemma III.11 along with the estimates (3.55) and (3.56) from

Lemma III.10, one sees that with KR > 0 defined by

(3.92) KR := Cp−j
D,R

j∑

k=1

(2C2
ϕ)k−1Cj−k+1

H ,

for all j-tuples of integers a1, . . . , aj between 1 and N(ε) satisfying |ak − a1| ≤ ε−r

for all k,

(3.93)

∣∣∣∣∣

[
j∏

i=1

Dmi
ai

] [
j−1∏

)=1

Ha!a!+1

]
Haja1 − (2i)j

[
j∏

i=1

Dmi
ai

ϕ2
ai

] [
j−1∏

)=1

fa!−a!+1

]
faj−a1

∣∣∣∣∣

≤ KRε(1−r)σ/3

[
j−1∏

)=1

|fa!−a!+1
|
]
|faj−a1|.

Therefore, if we define a modification of ZD(ε) by

(3.94) ZI
D(ε) :=

(2i)jM

N(ε)

N(ε)∑

a1,a2,...,aj=1

∀k:|ak−a1|≤ε−r

[
j∏

i=1

Dmi
ai

ϕ2
ai

] [
j−1∏

)=1

fa!−a!+1

]
faj−a1 ,

we have

∣∣ZD(ε)− ZI
D(ε)

∣∣ ≤ MKRε(1−r)σ/3

N(ε)

N(ε)∑

a1,a2,...,aj=1

∀k:|ak−a1|≤ε−r

[
j−1∏

)=1

|fa!−a!+1
|
]
|faj−a1|

≤ MKRε(1−r)σ/3

N(ε)

N(ε)∑

a1=1




∑

a2,a3,...,aj∈Z

[
j−1∏

)=1

|fa!−a!+1
|
]
|faj−a1|



 .

(3.95)

By the substitution n) = a) − a1 one sees that the inner sum is independent of a1,

and it is finite by Lemma III.13. Since σ > 0 and r < 1, we therefore have

(3.96) lim
ε↓0

ZD(ε) = lim
ε↓0

ZI
D(ε)

uniformly for x2 + t2 ≤ R2.

The second step is to show that if r < 1 we may replace Dmi
ai

ϕ2
ai

with Dmi
a1

ϕ2
a1

for each i in (3.94) without changing the limiting value of ZI
D(ε). Indeed, applying

Lemma III.10 we see that with KI
R > 0 defined by

(3.97) KI
R := (p + j)Cp−j

D,RC2j
ϕ ,
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we see that for all j-tuples of integers a1, . . . , aj between 1 and N(ε) satisfying |ak −

a1| ≤ ε−r for all k,

(3.98)

∣∣∣∣∣

j∏

i=1

Dmi
ai

ϕ2
ai
−Dp−j

a1
ϕ2j

a1

∣∣∣∣∣ ≤ KI
Rε(1−r)σ/3.

Hence, definining a subsequent modification of ZI
D(ε) by

(3.99) ZII
D(ε) :=

(2i)jM

N(ε)

N(ε)∑

a1=1

Dp−j
a1

ϕ2j
a1

N(ε)∑

a2,a3,...,aj=1

∀k:|ak−a1|≤ε−r

[
j−1∏

)=1

fa!−a!+1

]
faj−a1 ,

we see that

∣∣ZI
D(ε)− ZII

D(ε)
∣∣ ≤ 2jMKI

Rε(1−r)σ/3

N(ε)

N(ε)∑

a1=1

N(ε)∑

a2,a3,...,aj=1

∀k|ak−a1|≤ε−r

[
j−1∏

)=1

|fa!−a!+1
|
]
|faj−a1|

≤ 2jMKI
Rε(1−r)σ/3

N(ε)

N(ε)∑

a1=1




∑

a2,a3,...,aj∈Z

[
j−1∏

)=1

|fa!−a!+1
|
]
|faj−a1|



 ,

(3.100)

and so exactly as before

(3.101) lim
ε↓0

ZI
D(ε) = lim

ε↓0
ZII

D(ε)

uniformly for x2 + t2 ≤ R2.

The third step is to show that if r < 1 one may neglect a small fraction of the

terms in the outer sum corresponding to a1 ≤ 1 + ε−r and a1 ≥ N(ε)− ε−r without

changing the limiting value of ZII
D(ε). Indeed, defining the index set

(3.102) Sε := {n ∈ Z, 1 + ε−r < n < N(ε)− ε−r},

and then setting

(3.103) ZIII
D (ε) :=

(2i)jM

N(ε)

∑

a1∈Sε

Dp−j
a1

ϕ2j
a1

N(ε)∑

a2,a3,...aj=1

∀k:|ak−a1|≤ε−r

[
j−1∏

)=1

fa!−a!+1

]
faj−a1 ,
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we easily obtain from (3.55) and (3.56) in Lemma III.10 that

∣∣ZII
D(ε)− ZIII

D (ε)
∣∣ ≤

2jMCp−j
D,RC2j

ϕ

N(ε)

N(ε)∑

a1=1
a1 '∈Sε

N(ε)∑

a2,a3,...,aj=1

∀k:|ak−a1|≤ε−r

[
j−1∏

)=1

|fa!−a!+1
|
]
|faj−a1|

≤
2jMCp−j

D,RC2j
ϕ

N(ε)

N(ε)∑

a1=1
a1 '∈Sε

∑

a2,a3,...,aj∈Z

[
j−1∏

)=1

|fa!−a!+1
|
]
|faj−a1|.

(3.104)

But the inner sum is independent of a1 and is convergent by Lemma III.13 and the

outer sum has O(ε−r) terms while N(ε) is proportional to ε−1, so with r < 1 we have

(3.105) lim
ε↓0

ZII
D(ε) = lim

ε↓0
ZIII

D (ε)

uniformly for x2 + t2 ≤ R2.

The next step in analyzing ZD(ε) is to deal with the inner sum in the definition

(3.103) of ZIII
D (ε). Taking into account the conditions on a1 in the outer sum, it is

obvious that the conditions 1 ≤ ak ≤ N(ε) are superfluous in the inner sum:

(3.106) ZIII
D (ε) =

(2i)jM

N(ε)

∑

a1∈Sε

Dp−j
a1

ϕ2j
a1

∑

a2,a3,...,aj∈Z
∀k:|ak−a1|≤ε−r

[
j−1∏

)=1

fa!−a!+1

]
faj−a1 .

By introducing the differences nk = ak− a1 it now becomes clear that the inner sum

is independent of a1:

(3.107) ZIII
D (ε) =

(2i)jM

N(ε)

(
∑

a1∈Sε

Dp−j
a1

ϕ2j
a1

)



∑

n2,n3,...,nj∈Z
∀k:|nk|≤ε−r

f−n2

[
j−1∏

)=2

fa!−a!+1

]
fnj




.

Now, according to Lemma III.13, the latter sum has the limit (iπ)j/(j + 1) as ε ↓ 0

with r > 0, so

(3.108) lim
ε↓0

ZIII
D (ε) = lim

ε↓0
ZIV

D (ε),

uniformly for x2 + t2 ≤ R2, where

(3.109) ZIV
D (ε) :=

(2π)j

j + 1
· M

N(ε)

∑

a1∈Sε

Dp−j
a1

ϕ2j
a1

.
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The final step in the analysis of ZD(ε) is simply to evaluate the limit on the

right-hand side of by recognizing the sum as a Riemann sum for an integral:

(3.110) lim
ε↓0

ZD(ε) = lim
ε↓0

ZIV
D (ε) =

(2π)j

j + 1

∫ 0

−L

D(λ; x, t)p−jϕ(λ)2jF (λ) dλ.

Note that since the summand Dp−j
a1

ϕ2j
a1

is polynomial in x and t, the convergence of

the Riemann sum is uniform for (x, t) in compact sets. Comparing with (3.90) we

see that the proof is complete.

Now we may complete the proof of Proposition III.7. Lemma III.14 shows that

each of the terms in the formula (3.69) for Zpj has the same limit as ε ↓ 0. Therefore,

for all even j,

lim
ε↓0

Zpj =
∑

d1+d2+···ds=p−j
h1+h2+···+hs=j

(2π)j

j + 1

∫ 0

−L

D(λ; x, t)p−jϕ(λ)2jF (λ) dλ

=

(
p

j

)
(2π)j

j + 1

∫ 0

−L

D(λ; x, t)p−jϕ(λ)2jF (λ) dλ.

(3.111)

Combining this result with Lemma III.12 and the formula (3.68) for the pth moment,

we obtain

(3.112) Qp = lim
ε↓0

∫

R
αpdµε(α) =

-p/2.∑

k=0

(
p

2k

)
(2π)2k

2k + 1

∫ 0

−L

D(λ; x, t)p−2kϕ(λ)4kF (λ) dλ,

uniformly for (x, t) in compact sets. Now we apply the identity

(3.113)
-p/2.∑

k=0

1

2k + 1

(
p

2k

)
a2kbp−2k =

(b + a)p+1 − (b− a)p+1

2a(1 + p)
,

holding for any integer p ≥ 0 and real numbers a and b. (This identity can be

most easily obtained by expanding the binomials on the right-hand side.) Recalling

the definitions (3.20) and (3.21) of D(λ; x, t) and ϕ(λ), and using the fact that

x±(λ) = ±πF (λ)− γ(λ) then completes the proof of Proposition III.7.
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3.2.4 Convergence of Measures and Locally Uniform Convergence of Ũε.
Proof of Proposition III.8

Recall the measures µε defined by (3.43).

Lemma III.15. For each nonnegative integer p,

(3.114) lim
ε↓0

∫

R
αp dµε(α) =

∫

R
αp dµ(α)

where µ is the absolutely continuous (with respect to Lebesgue measure on R) measure

defined by dµ(α) = G(α; x, t) dα, and the compactly supported integrable density

function G(α; x, t) is given by (3.49). The limit is uniform with respect to (x, t) in

compact sets. Also, like each µε, µ is a measure with mass M .

Proof. Recalling Proposition III.7, we first show that the given measure µ satisfies

(3.115)

∫

R
αp dµ(α) = Qp,

where Qp is given by (3.46), for all nonnegative p ∈ Z. Equivalently, we may construct

a measure with the desired moments as follows: the characteristic function of the

measure µ is the Fourier transform

(3.116) Ĝ(ξ; x, t) :=

∫

R
G(α; x, t)e−iαξ dα,

and this function necessarily has the desired moments {Qp}∞p=0 as its derivatives at

ξ = 0:

(3.117)
dpĜ

dξp
(0; x, t) = (−i)pQp.

So Ĝ(ξ; x, t) has the Taylor series

(3.118) Ĝ(ξ; x, t) =
∞∑

p=0

(−iξ)p

p!
Qp.
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Now from the obvious inequality |x + 2λt− x±(λ)| ≤| x− x0| + 2L|t| + 2πF (λ), we

obtain

|Qp| ≤
1

π(p + 1)

∫ 0

−L

(|x− x0| + 2L|t| + 2πF (λ))p+1 (−2λ)p dλ

≤ 1

π(p + 1)

∫ 0

−L

(2L|x− x0| + 4L2|t|− 4πλF (λ))p(|x− x0| + 2L|t| + 2πF (λ)) dλ.

(3.119)

Also, from Lemma III.4, there is a constant K > 0 such that 0 ≤ −λF (λ) ≤ K, so

for (x− x0)2 + t2 ≤ R2,

|Qp| ≤
(2LR + 4L2R + 4πK)p

π(p + 1)

∫ 0

−L

(|x− x0| + 2L|t| + 2πF (λ)) dλ

≤ (LR + 2L2R + 2πM)

π(p + 1)
(2LR + 4L2R + 4πK)p

≤ 1

π
(LR + 2L2R + 2πM)(2LR + 4L2R + 4πK)p,

(3.120)

where in the last step we used (3.4). This inequality implies that the Taylor series

(3.118) converges for all ξ ∈ C to an entire function of exponential type.

Now we will sum the Taylor series (3.118) in closed form by substituting from

the formula (3.46) and exchanging the order of summation and integration. Indeed,

since

(3.121)
∞∑

p=0

(−iξ)p

p!
· (−2λ)p(x + 2λt− x±(λ))p+1

p + 1
=

e2iξλ[x+2λt−x±(λ)] − 1

2iξλ
,

we obtain the formula

(3.122) Ĝ(ξ; x, t) =

∫ 0

−L

e2iξλ[x+2λt−x−(λ)] − e2iξλ[x+2λt−x+(λ)]

4πiξλ
dλ.

Computing the inverse Fourier transform

(3.123) G(α; x, t) =
1

2π

∫

R
Ĝ(ξ; x, t)eiαξ dξ

by exchanging the order of integration leads directly to the claimed formula (3.49).
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It is obvious that G(α; x, t) is a nonnegative function, and since by Lemma III.4

(3.124)

inf
−L<λ<0

−2λ(x + 2λt− x+(λ)) > −∞ and sup
−L<λ<0

−2λ(x + 2λt− x−(λ)) < +∞

for every (x, t), it is clear that G(α; x, t) has compact support. It is also straightfor-

ward to verify that µ has mass M :

∫

R
dµ(α) =

∫

R
G(α; x, t) dα

= − 1

4π

∫

R

∫ 0

−L

χ[−2λ(x+2λt−x+(λ)),−2λ(x+2λt−x−(λ))](α)
dλ

λ
dα

= − 1

4π

∫ 0

−L

1

λ

∫

R
χ[−2λ(x+2λt−x+(λ)),−2λ(x+2λt−x−(λ))](α) dα dλ

= − 1

4π

∫ 0

−L

1

λ

∫ −2λ(x+2λt−x−(λ))

−2λ(x+2λt−x+(λ))

dα dλ

=

∫ 0

−L

F (λ) dλ

= M,

(3.125)

according to (3.4). Therefore µ is indeed an absolutely continuous compactly sup-

ported (nonnegative) measure of mass M .

Note that the reconstruction of the the measure µ from its moments is virtually

the same calculation as took place on the direct scattering side in our discussion of

Matsuno’s method in §2.2.8.

Lemma III.16. There is a compact interval Ω ⊂ R containing the support of all

of the measures {µε}ε>0 as well as that of the measure µ, and Ω may be chosen

independent of (x, t) in any given compact set.

Proof. Since µ has compact support certainly contained within the interval

(3.126) inf
−L<λ<0

[2λx+(λ)]− 2L|x|− 4L2|t| ≤ α ≤ sup
−L<λ<0

[2λx−(λ)] + 2L|x| + 4L2|t|
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that is clearly bounded uniformly for (x, t) in any compact set, it is enough to show

that the support of µε is uniformly bounded as ε ↓ 0. But by definition of µε this is

equivalent to showing that the eigenvalue of Aε with the largest magnitude remains

uniformly bounded as ε ↓ 0.

Since the matrix Ãε is Hermitian, we have

(3.127) ‖Ãε‖2 = max
1≤j≤N(ε)

|αj|,

so to prove that the eigenvalue of Ãε with the largest magnitude remains uniformly

bounded, it is completely equivalent to prove that the 32 (induced) matrix norm of

Ãε is uniformly bounded as ε ↓ 0 independent of (x, t) in any given compact set.

Recalling the decomposition Ãε = D + H from the proof of Proposition III.7

given in §3.2.3, the triangle inequality gives ‖Ãε‖2 ≤ ‖D‖2 + ‖H‖2, and since D is

diagonal,

‖D‖2 = max
1≤n≤N(ε)

|2λ̃n(x + 2λ̃nt + γ(λ̃n))|

≤ sup
−L<λ<0

|2λ(x + 2λt + γ(λ))|

≤ sup
−L<λ<0

|2λγ(λ)| + 2L|x| + 4L2|t|,

(3.128)

so since λγ(λ) is bounded according to Lemma III.4, and H is independent of x and

t, it is sufficient to show that ‖H‖2 remains bounded as ε ↓ 0.

To estimate ‖H‖2, we write H in the following form: H = BTB + E where

(3.129) B = diag

(
eiπ/4

√
−2λ̃1F (λ̃1), . . . , e

iπ/4
√
−2λ̃N(ε)F (λ̃N(ε))

)
,

and T is the N(ε) × N(ε) Toeplitz matrix with elements (T)nm = fn−m, where

the sequence {fn}n∈Z is defined by (3.73). Of course E := H − BTB. Therefore

‖H‖2 ≤ ‖B‖2
2‖T‖2 + ‖E‖2. Because B is diagonal,

(3.130) ‖B‖2
2 ≤ max

1≤n≤N(ε)
[−2λ̃nF (λ̃n)] ≤ sup

−L<λ<0
[−2λF (λ)]
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which is finite by Lemma III.4. The Toeplitz matrix T can be written as T = PTfP ,

where P is the orthogonal projection from 32(Z) onto CN viewed as a subset of

32(Z) associated with components having indices {1, 2, . . . , N(ε)} ⊂ Z, and where

Tf : 32(Z) → 32(Z) is the Toeplitz operator defined by (3.72) from §3.2.3. The 32(Z)

operator norm of P is clearly equal to one, and since

(3.131)
∑

l∈Z
fle

ilθ = i(π − θ), 0 < θ < 2π,

the Pythagorean Theorem in L2(0, 2π) gives

∑

n∈Z
|(T c)n|2 =

1

2π

∫ 2π

0

∣∣∣∣∣
∑

n∈Z
(T c)ne

inθ

∣∣∣∣∣

2

dθ

=
1

2π

∫ 2π

0

∣∣∣∣∣
∑

n∈Z

∑

m∈Z
fn−mcmeinθ

∣∣∣∣∣

2

dθ

=
1

2π

∫ 2π

0

∣∣∣∣∣
∑

m∈Z
cmeimθ

∑

n∈Z
fn−mei[n−m]θ

∣∣∣∣∣

2

dθ

=
1

2π

∫ 2π

0

(π − θ)2

∣∣∣∣∣
∑

m∈Z
cmeimθ

∣∣∣∣∣

2

dθ

≤ π2 1

2π

∫ 2π

0

∣∣∣∣∣
∑

m∈Z
cmeimθ

∣∣∣∣∣

2

dθ

= π2
∑

m∈Z
|cm|2,

(3.132)

the 32(Z) operator norm of Tf is bounded by π. It follows that ‖H‖2 ≤ π + ‖E‖2, so

it suffices to show that ‖E‖2 remains bounded as ε ↓ 0.

So far, we have exploited the special structure of the dominant parts of the matrix

Ãε and applied correspondingly specialized norm estimates to these terms. The error

term E has less structure, but is it smaller; to estimate its norm it will be sufficient

to use the rather crude inequality ‖E‖2 ≤ ‖E‖HS and work with the Hilbert-Schmidt

norm

(3.133) ‖E‖2
HS :=

N(ε)∑

n=1

N(ε)∑

m=1

|(E)nm|2,
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where the elements of E are explicitly given by

(3.134)

(E)nm := 2i



ε
√

λ̃nλ̃m

λ̃n − λ̃m

−

√
λ̃nF (λ̃n)λ̃mF (λ̃m)

n−m



 , for n )= m, and (E)nn = 0.

If we introduce continuous variables a := (n − 1
2)ε and b := (m − 1

2)ε, then it is

easy to see that the square of the Hilbert-Schmidt norm of E is a Riemann sum

approximation of a certain double integral:

(3.135) lim
ε↓0
‖E‖2

HS =

∫∫

[0,M ]2
e0(a, b) da db,

provided the double integral exists, where

(3.136)

e0(a, b) := 4

[ √
m−1(a)m−1(b)

m−1(a)−m−1(b)
−

√
m−1(a)F (m−1(a))m−1(b)F (m−1(b))

a− b

]2

,

and where m−1(·) denotes the inverse function to the monotone function m(·) given

by

(3.137) m(λ) :=

∫ λ

−L

F (λ′) dλ′.

By changing variables to κ = m−1(a) and λ = m−1(b),

(3.138)

∫∫

[0,M ]2
e0(a, b) da db =

∫∫

[−L,0]2
e(κ, λ) dκ dλ,

where

(3.139) e(κ, λ) := 4

[ √
κλ

κ− λ
−

√
κF (κ)λF (λ)

m(κ)−m(λ)

]2

F (κ)F (λ).

Note that since F ≥ 0 by Lemma III.4, e(κ, λ) ≥ 0 for (κ, λ) ∈ [−L, 0]2. To complete

the proof of the Lemma it is enough to show that the double integral on the right-

hand side of (3.138) is finite.

In order to estimate the double integral, we divide the square [−L, 0]2 into polyg-

onal regions as follows (see Figure 3.6):
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• The square [−L,−L + δ]2 contains those ordered pairs (κ, λ) for which both κ

and λ are near the “soft edge” of the eigenvalue spectrum at−L. We divide this

square into diagonal and off-diagonal parts according to whether (κ + L)/2 ≤

λ + L ≤ 2(κ + L) (the diagonal part, SD) or not (the off-diagonal parts, SOD).

• The square [−δ, 0]2 contains those ordered pairs (κ, λ) for which both κ and

λ are near the “hard edge” of the eigenvalue spectrum at 0. We divide this

square into diagonal and off-diagonal parts according to whether 2κ < λ < κ/2

(the diagonal part, HD) or not (the off-diagonal parts HOD).

• The remaining part of [−L, 0]2 contains those ordered pairs (κ, λ) for which

at least one of the coordinates lies in the “bulk” of the eigenvalue spectrum,

bounded away from both edges. This is divided into a diagonal part BD and

two off-diagonal parts BOD along two straight line segments parallel to the

diagonal as indicated in Figure 3.6.

Here, the constant δ > 0 is as specified in Lemma III.4. As e(κ, λ) = e(λ, κ) it will be

enough to show integrability of e over the part of [−L, 0]2 with κ < λ, an inequality

that we will assume tacitly below.

First we consider integrating e(κ, λ) over the “off-diagonal” shaded regions SOD,

BOD, and HOD shown in Figure 3.6. An upper bound for e(κ, λ) useful in these

regions is easily obtained from the inequality (a− b)2 ≤ 2a2 + 2b2:

(3.140)

e(κ, λ) ≤ 8κF (κ)λF (λ)

[
1

(κ− λ)2
+

F (κ)F (λ)

(m(κ)−m(λ))2

]
, (κ, λ) ∈ (−L, 0)2.

Applying the Mean Value Theorem to this estimate yields

(3.141) e(κ, λ) ≤ 8κF (κ)λF (λ)

(κ− λ)2

[
1 +

F (κ)F (λ)

F (ξ)2

]
,
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Figure 3.6: The square [−L, 0]2 in the (κ, λ)-plane is covered by the six regions SD,
SOD, BD, BOD, HD, and HOD.

where κ ≤ ξ ≤ λ. Finally, since F is monotone increasing according to Lemma III.4

we obtain

(3.142) e(κ, λ) ≤ 8κF (κ)λF (λ)

(κ− λ)2

[
1 +

F (λ)

F (κ)

]
=

8κF (κ)λF (λ)

(κ− λ)2
+

8κλF (λ)

(κ− λ)2
F (λ).

Now, for (κ, λ) ∈ BOD, we have that κ − λ is bounded away from zero while by

Lemma III.4 κF (κ) and λF (λ) are bounded (and of course |κ| < L) while F (λ) is

integrable. Hence we easily conclude that e(κ, λ) is integrable on BOD.

If (κ, λ) ∈ HOD with κ < λ, then we have the inequality

(3.143) (κ− λ)2 =
([

λ− κ

2

]
+

[
−κ

2

])2

≥ κ2

4
,

and also since both −δ < κ < 0 and −δ < λ < 0 we may use the upper bound for F
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given in (3.24) from Lemma III.4 to replace (3.142) with

(3.144) e(κ, λ) ≤ 32C2
0(−κ)−1−1/q(−λ)1−1/q + 32C2

0(−κ)−1(−λ)1−2/q,

where C0 > 0 and q > 1 are the constants in (3.24). This estimate is easily seen

to be integrable on the component of HOD with κ < λ by direct calculation of the

iterated integrals.

If (κ, λ) ∈ SOD with κ < λ, then we have the inequality

(3.145) (κ− λ)2 =

([
λ + L

2

]
+

[
λ + L

2
− (κ + L)

])2

≥ (λ + L)2

4
,

and also since both −L < κ < −L + δ and −L < λ < −L + δ we may use the upper

bound for F given in (3.22) from Lemma III.4 along with the inequalities |κ| < L

and |λ| < L to replace (3.142) with

(3.146) e(κ, λ) ≤ 32L2C2
−L(κ + L)1/2(λ + L)−3/2 + 32L2C2

−L(λ + L)−1.

This upper bound is obviously integrable on the component of SOD with κ < λ.

Now we consider integrating e(κ, λ) over the “diagonal” unshaded regions SD, BD,

and HD shown in Figure 3.6. By the Mean Value Theorem and the monotonicity of

F guaranteed by Lemma III.4, we obtain an upper bound more useful when κ ≈ λ:

(3.147) e(κ, λ) ≤ 4κF (κ)λF (λ)

[
F (κ)− F (λ)

m(κ)−m(λ)

]2

, (κ, λ) ∈ (−L, 0)2.

Again using the Mean Value Theorem and monotonicity of F we may make the upper

bound larger for κ < λ:

(3.148) e(κ, λ) ≤ 4κλF (λ)F ′(ξ)2

F (κ)
,

where κ ≤ ξ ≤ λ.

For (κ, λ) ∈ BD with κ < λ, both κ and λ are bounded away from the soft and

hard edges of the eigenvalue spectrum, so Lemma III.4 guarantees that F and F ′
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are bounded, and F is also bounded away from zero by strict monotonicity and the

boundary condition F (−L) = 0. It follows from (3.148) that e(κ, λ) is bounded and

hence integrable on BD.

If (κ, λ) ∈ HD then we may use the estimates (3.24) and (3.25) from Lemma III.4

to replace (3.148) with

(3.149) e(κ, λ) ≤ 8C2
0

q2
(−κ)1+1/q(−λ)1−1/q(−ξ)−2/q−2 ≤ 8C2

0

q2
(−κ)1+1/q(−λ)−1−3/q.

The double integral of this upper bound over the region HD with κ <λ is easily

computed by iterated integration and is clearly finite as a consequence of the fact

that q > 1.

Finally, if (κ, λ) ∈ SD with κ < λ, then we may use the estimates (3.22) and

(3.23) from Lemma III.4 together with the inequalities |κ| < L and |λ| < L to

replace (3.148) with

(3.150)

e(κ, λ) ≤ 2L2C2
−L(κ + L)−1/2(λ + L)1/2(ξ + L)−1 ≤ 2L2C2

−L(κ + L)−3/2(λ + L)1/2,

an upper bound that is clearly integrable over the part of SD with κ <λ .

Lemma III.17. The measure µε converges in the weak-∗ sense to µ, uniformly for

(x, t) in compact sets. That is, for each continuous function f : R → C,

(3.151) lim
ε↓0

∫

R
f(α) dµε(α) =

∫

R
f(α) dµ(α),

with the limit being uniform with respect to (x, t) in compact sets.

Proof. According to Lemma III.15, for each polynomial p(α) we have the following

limit, uniform for (x, t) in compact sets:

(3.152) lim
ε↓0

∫

R
p(α) dµε(α) =

∫

R
p(α) dµ(α).
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But by Lemma III.16 we can equivalently integrate over the compact interval Ω

(independent of (x, t) in any given compact set) with the same result. Now by the

Weierstraß Approximation Theorem, given any continuous function f : R → C and

any ρ > 0 there is a polynomial pf
ρ(α) for which

(3.153) sup
λ∈Ω

|f(α)− pf
ρ(α)| <

ρ

M
,

so for any measure ν of mass M with support in Ω (like µε and µ),

(3.154)

∣∣∣∣
∫

R
[f(α)− pf

ρ(α)] dν(α)

∣∣∣∣ ≤
∫

Ω

|f(α)− pf
ρ(α)| dν(α) < ρ.

Let ω > 0 be an arbitrarily small positive number. Then if we write

(3.155) ν[g] :=

∫

Ω

g(α) dν(α),

we have

∣∣∣∣
∫

R
f(α) dµε(α)−

∫

R
f(α) dµ(α)

∣∣∣∣ = |µε[f ]− µ[f ]|

=
∣∣∣
[
µε[p

f
ω/3]− µ[pf

ω/3]
]

+ µε[f − pf
ω/3]− µ[f − pf

ω/3]
∣∣∣

≤
∣∣∣µε[p

f
ω/3]− µ[pf

ω/3]
∣∣∣ +

∣∣∣µε[f − pf
ω/3]

∣∣∣ +
∣∣∣µ[f − pf

ω/3]
∣∣∣

<
∣∣∣µε[p

f
ω/3]− µ[pf

ω/3]
∣∣∣ +

2

3
ω,

(3.156)

with the last inequality following from (3.154). But with ω > 0 fixed, (3.152) implies

that ε > 0 may be chosen sufficiently small, independently of (x, t) in any given

compact set, that

(3.157)
∣∣∣µε[p

f
ω/3]− µ[pf

ω/3]
∣∣∣ <

1

3
ω,

which implies

(3.158)

∣∣∣∣
∫

R
f(α) dµε(α)−

∫

R
f(α) dµ(α)

∣∣∣∣ < ω

thereby completing the proof.
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Now we are in a position to complete the proof of Proposition III.8. We begin by

writing Ũε(x, t) as defined by (3.42) in terms of the normalized (to mass M) counting

measure µε:

(3.159) Ũε(x, t) =

[
εN(ε)

M

] ∫

R
2 arctan(ε−1α) dµε(α).

Define the continuous functions

(3.160) a+(α) := π + 4H(−α) arctan(α), a−(α) := −a+(−α), α ∈ R,

where H(·) denotes the Heaviside step function. It is then easy to check (see Fig-

ure 3.7) that for any E > 0,

Figure 3.7: The graphs of a−(α) < a+(α) (black) and several graphs of 2 arctan(ε−1α)
for ε ≤ 1 (gray).

(3.161) 0 < ε ≤ E =⇒ a−(E−1α) ≤ 2 arctan(ε−1α) ≤ a+(E−1α), α ∈ R.

Therefore, for any E > 0 and all 0 < ε < E,

(3.162)

∫

R
a−(E−1α) dµε(α) ≤

∫

R
2 arctan(ε−1α) dµε(α) ≤

∫

R
a+(E−1α) dµε(α).

Using Lemma III.17 we may pass to the limit ε ↓ 0 in the lower and upper bounds

to obtain

(3.163) lim inf
ε↓0

∫

R
2 arctan(ε−1α) dµε(α) ≥

∫

R
a−(E−1α) dµ(α)



83

and also

(3.164) lim sup
ε↓0

∫

R
2 arctan(ε−1α) dµε(α) ≤

∫

R
a+(E−1α) dµ(α).

In these statements, E > 0 is an arbitrary parameter, and the limits are uniform

for (x, t) in compact sets. But a±(E−1α) are uniformly bounded functions that both

tend pointwise for α )= 0 to the same limit function π sgn(λ) as E ↓ 0, while µ is a

fixed measure that is absolutely continuous with respect to Lebesgue measure on R,

so by the Lebesgue Dominated Convergence Theorem,

(3.165) lim
E↓0

∫

R
a±(E−1α) dµ(α) =

∫

R
π sgn(α) dµ(α).

By letting E ↓ 0, it then follows from (3.163) and (3.164) that

(3.166) lim
ε↓0

∫

R
2 arctan(ε−1α) dµε(α) =

∫

R
π sgn(α) dµ(α)

with the limit being uniform for (x, t) in any given compact set. Finally, according

to (3.13), we have (independent of x and t)

(3.167) lim
ε↓0

εN(ε)

M
= 1,

so combining this result with (3.166) and noting that dµ(α) = G(α; x, t) dα completes

the proof of Proposition III.8.

3.2.5 Differentiation of Ũε. Burgers’ Equation and Weak Convergence of
ũε

Let φ ∈ D(R) be a test function. Then by integration by parts and the uniform

convergence of Ũε(x, t) to U(x, t) on compact sets in the (x, t)-plane guaranteed by

Proposition III.8,

lim
ε↓0

∫

R
ũε(x, t)φ(x) dx = lim

ε↓0

∫

R

∂Ũε

∂x
(x, t)φ(x) dx

= − lim
ε↓0

∫

R
Ũε(x, t)φ′(x) dx

= −
∫

R
U(x, t)φ′(x) dx.

(3.168)
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Lemma III.18. The limit function U(x, t) is continuously differentiable with respect

to x, and if (x, t) is a point for which there are 2P (x, t)+1 solutions uB
0 (x, t) < · · · <

uB
2P (x,t)(x, t) of the implicit equation (3.173),

(3.169)
∂U

∂x
(x, t) =

2P (x,t)∑

n=0

(−1)nuB
n(x, t),

and the above formula is extended to nongeneric (x, t) by continuity.

Proof. Exchanging the order of integration in the double-integral formula for U(x, t)

obtained by substituting dµ(α) = G(α; x, t) dα with G given by (3.49) into (3.48),

we obtain

(3.170) U(x, t) =

∫ 0

−L

J(λ; x, t) dλ,

where

(3.171) J(λ; x, t) := − 1

4λ

∫ −2λ(x+2λt−x−(λ))

−2λ(x+2λt−x+(λ))

sgn(α) dα.

Note that for λ ∈ [−L, 0] the upper limit of integration is greater than or equal to the

lower limit. Moreover the integral in J(λ; x, t) is easily evaluated; for −L < λ < 0,

(3.172) J(λ; x, t) =






−πF (λ), x + 2λt− x−(λ) < 0,

x + 2λt + γ(λ), x + 2λt− x+(λ) ≤ 0 ≤ x + 2λt− x−(λ)

πF (λ), x + 2λt− x+(λ) > 0.

It follows from the relations x±(λ) = ±πF (λ) − γ(λ) that for an admissible initial

condition u0, J is a continuous function of x for each fixed t, uniformly with respect

to λ ∈ [−L, 0], and hence also from (3.170) that U(·, t) is continuous on R for each t.

To prove that U(·, t) is continuously differentiable it will therefore suffice to establish

continuous differentiability on the complement of a finite set of points and that the

resulting piecewise formula for ∂U/∂x extends continuously to the whole real line.
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To use the formula (3.172) in the representation (3.170) we therefore need to

know those points λ ∈ (−L, 0) at which one of the two quantities x + 2λt− x+(λ) <

x+2λt−x−(λ) changes sign. Under the variable substitution λ = −uB, the definition

of the turning points x±(λ) as branches of the inverse function of u0 implies that the

union of solutions of the two equations x + 2λt− x±(λ) = 0 is exactly the totality of

solutions of the implicit equation

(3.173) uB = u0(x− 2uBt).

In other words, the transitional points λ for the formula (3.172) correspond under

the sign change uB = −λ to the branches of the multivalued solution of Burgers’

equation

(3.174)
∂uB

∂t
+ 2uB∂uB

∂x
= 0

subject to the admissible initial condition uB(x, 0) = u0(x).

Note that admissibility of u0 implies (see Definition III.1) that given any t ∈ R

there exist only a finite number of breaking points (xξ, tξ) with tξ in the closed interval

between 0 and t. Indeed, the breaking points correspond to values of ξ ∈ R for which

u′′0(ξ) = 0 but u′′′0 (ξ) )= 0, and the breaking times are tξ = (−2u′0(ξ))
−1; since u′0(ξ)

decays to zero for large ξ, bounded breaking times tξ correspond to bounded ξ, and

there are only finitely many of these by hypothesis. Moreover, each breaking point

(xξ, tξ) generates a new fold in the solution surface lying between two caustic curves

emerging in the direction of increasing |t| from (xξ, tξ), and because u′′′(ξ) )= 0 there

are exactly two more sheets of the multivalued solution of Burgers’ equation born

within the fold as a result of a simple pitchfork bifurcation. Therefore, the union of

caustic curves and breaking points meets any line of constant t in the (x, t)-plane

in a finite set of points {xcrit
j (t)}, and on every connected component of the set
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St := {(x, t)|x ∈ R \ {xcrit
j (t)}}, there is a finite, odd, and constant (with respect to

x) number 2P (x, t)+1 of roots of the equation (3.173), and all roots are simple (and

hence differentiable with respect to x).

If t ≥ 0, then by admissibility of u0 the quantity b−(λ; x, t) := x + 2λt − x−(λ)

is strictly increasing as a function of λ on the interval (−L, 0), and therefore in this

interval there can exist at most one root of b−(λ; x, t), regardless of the value of

x ∈ R. Moreover, b−(λ; x, t) → +∞ as λ ↑ 0, so there will be exactly one root in

(−L, 0) if b−(−L; x, t) = x−x0− 2Lt < 0 and no root in (−L, 0) if x−x0− 2Lt > 0.

Since b+(λ; x, t) := x+2λt−x+(λ) < b−(λ; x, t) for −L < λ < 0, if x−x0− 2Lt < 0,

all roots of b+(λ; x, t) in (−L, 0) must lie to the right of the root of b−(λ; x, t). Thus,

for x ∈ St \ {x0 + 2Lt}, we either have

U(x, t) =

∫ 0

−uB
0

(x + 2λt + γ(λ)) dλ

+
P (x,t)∑

p=1

[
π

∫ −uB
2p−2

−uB
2p−1

F (λ) dλ +

∫ −uB
2p−1

−uB
2p

(x + 2λt + γ(λ)) dλ

]

+ π

∫ −uB
2P (x,t)

−L

F (λ) dλ, x ∈ St, x > x0 + 2Lt,

(3.175)

in which case uB
0 (x, t) < · · · < uB

2P (x,t)(x, t) are all roots of b+(−uB; x, t), or

U(x, t) =

∫ 0

−uB
0

(x + 2λt + γ(λ)) dλ

+
P (x,t)∑

p=1

[
π

∫ −uB
2p−2

−uB
2p−1

F (λ) dλ +

∫ −uB
2p−1

−uB
2p

(x + 2λt + γ(λ)) dλ

]

− π

∫ −uB
2P (x,t)

−L

F (λ) dλ, x ∈ St, x < x0 + 2Lt,

(3.176)

in which case uB
0 (x, t) < · · · < uB

2P (x,t)−1(x, t) are roots of b+(−uB; x, t) while uB
2P (x,t)(x, t)

with uB
2P (x,t)(x, t) > uB

2P (x,t)−1(x, t) is a root of b−(−uB; x, t). In both cases, the con-

dition x ∈ St guarantees that all roots are differentiable with respect to x, so we may
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calculate ∂U/∂x by Leibniz’ rule:

∂U

∂x
(x, t) = b+(−uB

2P (x, t); x, t)
∂uB

2P

∂x
(x, t) +

2P−1∑

n=0

(−1)nb+(−uB
n(x, t); x, t)

∂uB
n

∂x
(x, t)

+
2P∑

n=0

(−1)nuB
n(x, t), x ∈ St, x > x0 + 2Lt,

(3.177)

or

∂U

∂x
(x, t) = b−(−uB

2P (x, t); x, t)
∂uB

2P

∂x
(x, t) +

2P−1∑

n=0

(−1)nb+(−uB
n(x, t); x, t)

∂uB
n

∂x
(x, t)

+
2P∑

n=0

(−1)nuB
n(x, t), x ∈ St, x < x0 + 2Lt,

(3.178)

where in both cases P = P (x, t) is a constant nonnegative integer on each connected

component of St. The terms on the first line in each of these formulae arise from

differentiating the limits of integration and using x±(λ) = ±πF (λ)− γ(λ), while the

terms on the second line arise from the explicit partial differentiation of the integrand

x+2λt+γ(λ) with respect to x. It follows from our division of the solutions of (3.173)

among the roots of b+ and b− that in both cases the terms on the first line vanish

identically, with the result that

(3.179)
∂U

∂x
(x, t) =

2P (x,t)∑

n=0

(−1)nuB
n(x, t), x ∈ St \ {x0 + 2Lt}.

This expression is clearly continuous in x on each connected component of St \{x0 +

2Lt}. Moreover, it extends continuously to the finite complement in Rx (at fixed

t ≥ 0) because at caustics pairs of solution branches entering into (3.179) with

opposite signs simply coalesce. Therefore U(·, t) is indeed continuously differentiable

for t ≥ 0 and its derivative is given by the desired simple formula (3.169). Virtually

the same argument applies to t ≤ 0 with the roles of b±(λ; x, t) reversed, and the

resulting formula for ∂U/∂x is the same.
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It follows from this result that we may integrate by parts in (3.168) and obtain

(3.180) lim
ε↓0

∫

R
ũε(x, t)φ(x) dx =

∫

R

∂U

∂x
(x, t)φ(x) dx

for every test function φ ∈ D(R). Now let v ∈ L2(R). Since D(R) is dense in L2(R),

for each σ > 0 there exists a test function φσ ∈ D(R) such that

(3.181) ‖φσ − v‖2
2 :=

∫

R
|φσ(x)− v(x)|2 dx < σ2.

Then,

∫

R

[
ũε(x, t)− ∂U

∂x
(x, t)

]
v(x) dx =

∫

R

[
ũε(x, t)− ∂U

∂x
(x, t)

]
φσ(x) dx

+

∫

R

∂U

∂x
(x, t) [φσ(x)− v(x)] dx

−
∫

R
ũε(x, t) [φσ(x)− v(x)] dx.

(3.182)

Observe that, according to the definition (see Definition III.3) of ũε(x, t) in terms

of the modified scattering data, it follows from (2.133) that

(3.183)

∫

R
ũε(x, t)2 dx = −4πε

N(ε)∑

n=1

λ̃n.

This Riemann sum converges as ε ↓ 0:

(3.184) lim
ε↓0

∫

R
ũε(x, t)2 dx = −4π

∫ 0

−L

λF (λ) dλ =

∫

R
u0(x)2 dx,

where the second equality follows from the identities (2.141), which essentially define

F (λ) in terms of the admissible initial condition u0. Therefore, ‖ũε(·, t)‖2 is bounded

for sufficiently small ε, independently of t.

Also, ∂U/∂x is independent of ε and from the formula (3.169) it is easy to check

that it is positive and bounded above by the constant L for all (x, t). Therefore

(3.185)

∥∥∥∥
∂U

∂x
(·, t)

∥∥∥∥
2

2

≤ L

∫

R

∂U

∂x
(x, t) dx.
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By the formula (3.169), the latter integral is equal to the area between the graph of

the multivalued solution curve for Burgers’ equation and the x-axis. Since points on

the graph at the same height move with the same speed, this area is independent of

time t, and hence we have

(3.186)

∥∥∥∥
∂U

∂x
(·, t)

∥∥∥∥
2

2

≤ 2πLM,

where the mass M is defined in terms of the initial condition u0 by (3.6). In fact,

for 0 ≤ t < T , where T is the breaking time, it follows from the fact that ∂U/∂x as

given by (3.169) reduces to the classical solution uB
0 (x, t) of Burgers’ equation with

initial data u0, which conserves exactly the L2(Rx) norm, that

(3.187)

∥∥∥∥
∂U

∂x
(·, t)

∥∥∥∥
2

2

= ‖uB
0 (·, t)‖2

2 =

∫

R
u0(x)2 dx, 0 ≤ t < T.

We will use this fact below in §3.3 when we prove Corollary III.6. In any case, these

considerations show that for all ε > 0 sufficiently small there exists a constant K > 0

independent of t such that

(3.188)

∥∥∥∥
∂U

∂x
(·, t)

∥∥∥∥
2

+ ‖ũε(·, t)‖2 ≤ K

holds for all t ≥ 0.

Now, by Cauchy-Schwarz it follows that

(3.189)
∣∣∣∣
∫

R

∂U

∂x
(x, t) [φσ(x)− v(x)] dx−

∫

R
ũε(x, t) [φσ(x)− v(x)] dx

∣∣∣∣ ≤ K‖φσ − v‖2.

Given ω > 0 arbitrarily small, we then choose σ = ω/(2M) and then (3.182) implies

that

(3.190)
∣∣∣∣
∫

R

[
ũε(x, t)− ∂U

∂x
(x, t)

]
v(x) dx

∣∣∣∣ ≤
∣∣∣∣
∫

R

[
ũε(x, t)− ∂U

∂x
(x, t)

]
φω/(2M)(x) dx

∣∣∣∣ +
ω

2
.
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Finally, since φω/(2M) is a test function independent of ε, we may use (3.180) to

choose ε > 0 so small that the first term on the right-hand side is less than ω/2.

This proves that

(3.191) wx−lim
ε↓0

ũε(x, t) =
∂U

∂x
(x, t)

(weak L2 convergence) uniformly for t in bounded intervals. Combining (3.169) with

(3.191) completes the proof of Theorem III.5.

3.3 Strong Convergence Before Breaking

In this brief section we give a proof of Corollary III.6, following closely Lax and

Levermore (see Theorem 4.5 in part II of [43]). Starting from the identity

(3.192)

‖ũε(·, t)− uB
0 (·, t)‖2

2 =

∫

R
ũε(x, t)2 dx +

∫

R
uB

0 (x, t)2 dx− 2

∫

R
ũε(x, t)uB

0 (x, t) dx,

we note that for 0 ≤ t < T , where T is the breaking time, (3.184) and (3.187) imply

that

(3.193) lim
ε↓0
‖ũε(·, t)− uB

0 (·, t)‖2
2 = 2

∫

R
u0(x)2 dx− 2 lim

ε↓0

∫

R
ũε(x, t)uB

0 (x, t) dx.

But uB
0 (·, t) ∈ L2(R) is independent of ε, so by Theorem III.5,

(3.194) lim
ε↓0

∫

R
ũε(x, t)uB

0 (x, t) dx =

∫

R
uB

0 (x, t)2 dx =

∫

R
u0(x)2 dx,

with the second equality following from (3.187) for 0 ≤ t < T . Therefore

(3.195) lim
ε↓0
‖ũε(·, t)− uB

0 (·, t)‖2 = 0

as desired, and the proof is complete.
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3.4 Numerical Verification

To illustrate the weak convergence of ũε(x, t) as guaranteed by Theorem III.5,

and to attempt to empirically quantify the rate of convergence, we have directly

used the exact formula (3.42) for Ũε(x, t) having first chosen the modified scattering

data corresponding to the admissible initial condition u0(x) = 2(1+x2)−1 as specified

in Definition III.3, and compared the result for several different values of ε with the

limiting formula (3.48) for U(x, t). Our results are shown in Figure 3.8. These plots

clearly display the locally uniform convergence specified in Proposition III.8. An

interesting feature is the apparent regular “staircase” form of the graph of Ũε(x, t) as

a function of x; that the steps have nearly equal height is a consequence of the fact

that near the leading edge of the oscillation zone for uε (which lies approximately in

the range 4 < x < 16 in these plots) the undular bore wavetrain that is generated

from the smooth initial data resolves into a train of solitons of the BO equation, each

of which has a fixed mass proportional to ε (independent of amplitude and velocity).

To the eye, the size of the error between Ũε(x, t) and U(x, t) appears to scale

with ε. To confirm this more quantitatively, we collected numerical data from several

experiments, each performed with a different value of ε at the fixed time t = 4. The

supremum norm, calculated over the interval −10 < x < 20, of the error resulting

from each of these experiments is plotted in Figure 3.9. On this plot with logarithmic

axes, the data points appear to lie along a straight line, and we calculated the least

squares linear fit to the data to be given by

(3.196) log10(‖Ũε(·, 4)− U(·, 4)‖∞) = 0.988 log10(ε) + 0.523

where the slope and intercept are given to three significant digits. This strongly

suggests a linear rate of convergence, in which the error is asymptotically proportional
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to ε as ε ↓ 0.

The initial data u0(x) = 2(1 + x2)−1 was chosen for these experiments because it

is the only initial condition (up to a constant multiple) for which the exact scattering

data is known for a sequence of values of ε tending to zero. This is the result of a

calculation of Kodama, Ablowitz, and Satsuma [40], which is introduced in §2.3.

They showed that if u0(x) = 2(1+x2)−1, then the reflection coefficient β(λ) vanishes

identically if ε = 1/N for any positive integer N . Moreover, there are in this case

exactly N eigenvalues λ1 < λ2 < · · · < λN of the operator L defined by (2.46), and

they are the roots of the following equation

(3.197) LN

(
−2λ

ε

)
= LN (−2Nλ) = 0,

where LN is the Laguerre polynomial of degree N . The corresponding phase con-

stants γn all vanish exactly. The approximate eigenvalues determined from the initial

condition u0 via the formula (3.14) do not agree exactly with the scaled roots of the

Laguerre polynomial of degree N (although the approximate phase constants agree

exactly with the true phase constants), so it is a worthwhile exercise to compare the

function ũε(x, t) as specified by Definition III.3 with the true solution uε(x, t) of the

Cauchy problem for the BO equation with initial data u0(x) = 2(1+x2)−1. Of course

Corollary III.6 guarantees strong convergence in L2 at t = 0 (that is, ũε(·, 0) is L2-

close to u0(·)) but this alone does not guarantee that ũε(x, t) approximates uε(x, t) in

any sense for t > 0. We made the comparison for several values of ε > 0 correspond-

ing to a reflectionless exact solution of the Cauchy problem constructed2 from the

2In fact this is the numerical method we used to create the plots in Figure 1.1. This has a
tremendous advantage over taking a more traditional numerical approach to the Cauchy problem
for the BO equation (that is, one involving time stepping) since the calculations necessary to find
the solution for any two given values of t are completely independent, so errors do not propagate
(and to find the solution for any given time t it is not necessary to perform any calculations at all for
intervening times from the initial instant). The only source of error in the use of the determinantal
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determinantal formula (2.112) at the time t = 4, which is well beyond the breaking

time. Our results are shown in Figure 3.10. These plots show that the modification

of the scattering data used to construct ũε(x, t) results in a phase shift relative to

uε(x, t) that is proportional to ε, the approximate wavelength of the oscillations. In

particular, ũε(x, t) does not remain close to uε(x, t) after the breaking time in any

strong sense, although is appears highly likely that convergence is restored in the

weak topology.

formula (2.112), at least if the differentiation is carried out explicitly resulting in a sum of N
determinants, is due to round-off.
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Figure 3.8: Left: plots of Ũε(x, t) (black) and its locally uniform limit U(x, t) (red)
at t = 4 for various values of ε. For these plots, u0(x) := 2(1 + x2)−1.
Right: corresponding plots of the error U(x, t)− Ũε(x, t).
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Figure 3.9: Circles: log10(‖Ũε(·, 4)−U(·, 4)‖∞) for ε = 1/25, 1/30, 1/35, 1/40, 1/45,
1/50, and 1/100, as a function of log10(ε). In red: The least-squares
linear fit.
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Figure 3.10: Left: plots of ũε(x, t) (black) shown together with uε(x, t) (red) for the
initial data u0(x) = 2(1 + x2)−1 shown for several values of ε at t = 4.
Right: The error uε(x, t)− ũε(x, t).



CHAPTER IV

Generalizations of the Zero-Dispersion Limit of
the BO Equation

In this chapter, we provide generalizations of Theorem III.5 and their proof by

introducing the higher-order BO equations.

4.1 Higher-Order BO Equations and Their Soliton Solutions

The higher-order BO equations introduced by Matsuno [51] are

(4.1) ut = −∂Kn(u)

∂x
, n = 3, 4, 5, . . . ,

where the variational derivatives Kn(u) are defined by

(4.2) Kn(u) :=
δIn

δu
, n = 3, 4, 5, . . . .

Here In are defined by the equation (2.130) and the recurrence relation (2.128).

The variational derivatives Kn(u) can be calculated by using the recurrence relation

(2.128), the equation (2.130) and the definition of Kn(u). It is easy to obtain that

(4.3) K3(u) = u2 + εH(ux),

which implies the higher-order BO equation (4.1) is the BO equation (1.1) for n = 3.

97
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The formula of the N -soliton solutions of the higher order BO equations for

n = 4, 5, 6 obtained by Matsuno [51] via the bilinear transformation method is

(4.4) u(x, t) = 2ε
∂

∂x
, (log(τn(x, t; ε))) ,

where the “tau-function” τn(x, t; ε) := det(I + iε−1An(ε)). Here An(ε) is an N ×N

Hermitean matrix given by

(4.5) (An(ε))lm = −2λm(x + (−1)n−1(n− 1)λn−2
m t + γm), for l = m,

and

(4.6) (An(ε))lm =
2iε(λlλm)1/2

λl − λm
, for l )= m.

In fact, the formula (4.4) is valid for n = 3, 4, 5, · · · , which is proved by Matsuno in

[54].

4.2 Generalizations

By comparing the formula of the N -soliton solutions of the higher order BO

equations and the formula of the N -soliton solutions of the BO equation, one can

find the only difference between the formula (4.4) and the formula (2.112) is the

diagonal entries of the matrix Aε are −2λm(x + 2λmt + γm) and the diagonal entries

of the matrix An(ε) are −2λm(x + (−1)n−1(n− 1)λn−2
m t + γm). Then we introduce a

new function un(x, t; ε):

(4.7) un(x, t; ε) = 2ε
∂

∂x
, (log(τn(x, t; ε))) ,

where the “tau-function” τn(x, t; ε) := det(I + iε−1An(ε)). Here An(ε) is an N(ε)×

N(ε) Hermitean matrix given by

(4.8) (An(ε))lm = −2λ̃m(x + (−1)n+1(n + 1)λ̃n
mt + γm), for l = m,
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and

(4.9) (An(ε))lm =
2iε(λ̃lλ̃m)1/2

λ̃l − λ̃m

, for l )= m.

Here, the number N(ε) is defined by (3.12) and {λ̃n}N(ε)
n=1 and {γ̃n}N(ε)

n=1 are defined by

(3.14) and (3.15) respectively. In fact, the function un(x, t; ε) is a N -soliton solution

of the (n + 2)th order BO equation. The function un(x, t; ε) is same as the function

ũε(x, t) defined by (3.16) when the integer n = 1. By following the approach used in

Chapter III, one can obtain a generalization of Theorem III.5. The proof is provided

in §4.3.

Theorem IV.1. Let u0
n(x, t) < u1

n(x, t) < · · · < u2P (x,t)
n (x, t) be the branches of the

multivalued (method of characteristics) solution of the following equation

(4.10)
∂un

∂t
+ (n + 1)(un)n ∂un

∂x
= 0

subject to an admissible initial condition

(4.11) un(x, 0) = u0(x).

Then, the weak L2(R) (in x) limit of un(x, t; ε) is given by

(4.12) wx−lim
ε↓0

un(x, t; ε) =
2P (x,t)∑

m=0

(−1)mum
n (x, t),

uniformly for t in arbitrary bounded intervals.

Similarly as the inviscid Burgers equation, the multivalued solution of the equa-

tion (4.10) can be constructed by the method of characteristics. In fact, the multival-

ued solution of the equation (4.10) can be obtained by solving the following implicit

equation

(4.13) un = u0 (x− (n + 1)(un)nt) .
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Furthermore, after substituting (4.4) into (4.1), one can find the N -soliton solutions

of the higher order BO equations u(x, t) given by (4.4) satisfy

(4.14)
∂

∂t

(
2ε

∂

∂x
, (log(τε(x, t)))

)
= −∂Kn(u)

∂x
, n = 3, 4, 5, · · · .

This equation suggests

(4.15) Kn(u) = −2ε
∂

∂t
, (log(τε(x, t))) + C(t) for n = 3, 4, 5, · · · .

where C(t) is a function of t. According to the definitions of Kn(u) and τε(x, t), the

first term of the equation (4.15) and Kn(u) tend to zero, as x tends to infinity. This

fact implies C(t) ≡ 0. Then one can obtain the formula of Kn(u) corresponding to

the N -soliton solutions of the higher order BO equations:

(4.16) Kn(u) = −2ε
∂

∂t
, (log(τε(x, t))) for n = 3, 4, 5, · · · .

Since the function u(x, 0) defined by the equation (4.4) with λm = λ̃m and γm =

2λ̃mt̄ + γ(λ̃m) for m = 1, 2, · · · , N is equal to ũε(x, t̄) defined by (3.16), Kn(u(x, 0))

corresponding to u(x, 0) is equal to Kn(ũε(x, t̄)) corresponding to ũε(x, t̄). Then the

equation (4.16) suggests

(4.17) Kn+2(ũε(x, t̄)) = − ∂Ũε

∂tn
(x, t1, t2, . . . , tn)

∣∣∣∣∣
t1=t̄,t2=···=tn=0

where Ũε(x, t1, t2, . . . , tn) is given by (3.40) with −2λ̃k(x+2λ̃kt) replaced by −2λ̃k(x+

2λ̃kt1 − 3λ̃2
kt2 + 4λ̃3

kt3 − 5λ̃4
kt4 + · · · + (−1)n+1(n + 1)λ̃n

ktn. Assume the limit of

Ũε(x, t1, t2, . . . , tn) as ε → 0+ exists:

(4.18) U(x, t1, t2, . . . , tn) = lim
ε↓0

Ũε(x, t1, t2, . . . , tn),

then by following the approach used in Chapter III, one can obtain a formula for

derivatives of U(x, t1, t2, . . . , tn), which are given in the following proposition. The

proof is provided in §4.4.
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Proposition IV.2. Let uB
0 (x, t) < uB

1 (x, t) < · · · < uB
2P (x,t)(x, t) be the branches of

the multivalued (method of characteristics) solution of the inviscid Burgers equation

(3.33) subject to an admissible initial condition uB(x, 0) = u0(x). Then the function

U(x, t1, t2, . . . , tn) satisfies

(4.19) − ∂U

∂tn
(x, t1, t2, . . . , tn)

∣∣∣∣
t1=t,t2=···=tn=0

=
2P (x,t)∑

m=0

(−1)muB
m(x, t)n.

If (x, t) satisfies P (x, t) = 0, then the following conjecture holds true because of

Corollary III.6. If (x, t) satisfies P (x, t) )= 0, then the solutions of the BO equation

become approximately periodic traveling waves in finite time. An alternative inter-

pretation of the weak limit in x (tn) is that the weak limit can be viewed as the local

average with respect to x (tn). The formula of the periodic traveling solutions of the

BO equation suggests that the weak limit in x is same as the weak limit in tn, which

suggests Conjecture IV.3 holds true. The proof will be finished in the future as a

part of ongoing work.

Conjecture IV.3. Let uB
0 (x, t) < uB

1 (x, t) < · · · < uB
2P (x,t)(x, t) be the branches of

the multivalued (method of characteristics) solution of the inviscid Burgers equation

(3.33) subject to an admissible initial condition uB(x, 0) = u0(x). Then, the weak

L2(R) (in x) limit of Kn+2(ũε(x, t)) where n is a positive integer, is given by

(4.20) wx−lim
ε↓0

Kn+2(ũε(x, t)) =
2P (x,t)∑

m=0

(−1)muB
m(x, t)n,

uniformly for t in arbitrary bounded intervals.

4.3 Proof of Theorem IV.1

According to the definition of the function un(x, t; ε), one can write un(x, t; ε) as:

(4.21) un(x, t; ε) =
∂Un

∂x
(x, t; ε), Un(x, t; ε) = 2ε, (log(τn(x, t; ε))) .
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By the exactly same analysis as was done in Chapter III, one can obtain

(4.22) Un(x, t) = lim
ε↓0

un(x, t; ε) =

∫ 0

−L

Jn(λ; x, t) dλ,

where

(4.23) Jn(λ; x, t) := − 1

4λ

∫ −2λ(x+(−1)n+1(n+1)λnt−x−(λ))

−2λ(x+(−1)n+1(n+1)λnt−x+(λ))

sgn(α) dα.

Since the union of solutions of the two equations x+(−1)n+1(n+1)λnt−x±(λ) = 0 is

exactly {−u0
n(x, t),−u1

n(x, t), · · · ,−u2P (x,t)
n (x, t)}, by following the calculation done

in §3.2.5, it is easy to show that

(4.24) wx−lim
ε↓0

un(x, t; ε) =
∂Un(x, t)

∂x
=

2P (x,t)∑

m=0

(−1)mum
n (x, t).

4.4 Proof of Proposition IV.2

By applying the exactly same method used in Chapter III, one can find that

(4.25) U(x, t1, t2, . . . , tn) =

∫ 0

−L

J(λ; x, t1, t2, . . . , tn) dλ,

where the function J(λ; x, t1, t2, . . . , tn) is defined by

(4.26) J(λ; x, t1, t2, . . . , tn) := − 1

4λ

∫ −2λ(x+2λt1+···+(−1)n+1(n+1)λntn−x−(λ))

−2λ(x+2λt1+···+(−1)n+1(n+1)λntn−x+(λ))

sgn(α) dα.

By differentiating each side of the equation (4.25) and letting t1 = t and t2 = · · · =

tn = 0, the equation (4.25) becomes

(4.27)
∂U

∂tn
(x, t, 0, . . . , 0) =

∫ 0

−L

∂J

∂tn
(λ; x, t, 0, . . . , 0) dλ.

Here, the integrand of the integral on the right hand side of the equation (4.27) can

be written as

∂J

∂tn
(λ; x, t, 0, . . . , 0)

=
(−1)n+1(n + 1)λn

2
(sgn(−2λb−(λ; x, t))− sgn(−2λb+(λ; x, t)))

=
(−1)n+1(n + 1)λn

2
(sgn(b−(λ; x, t))− sgn(b+(λ; x, t))) for λ ∈ [−L, 0),

(4.28)
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where

(4.29) b±(λ; x, t) = x + 2λt− x±(λ).

According to the discussion in §3.2.5, the union of solutions of the two equations

b±(λ; x, t) = 0 is exactly {−uB
0 (x, t),−uB

1 (x, t), · · · ,−uB
2P (x,t)(x, t)} and one of the

two quantities b±(λ; x, t) changes sign at λ = −uB
m(x, t) for m = 0, 1, · · · , 2P (x, t).

Since b+(λ; x, t) ≤ b−(λ; x, t) for λ ∈ [−L, 0), sgn(b−(λ; x, t)) − sgn(b+(λ; x, t)) is

equal to 0 or 2. These facts imply sgn(b−(λ; x, t)) − sgn(b+(λ; x, t)) changes from 0

to 2 or changes from 2 to 0 at λ = −uB
m(x, t) for m = 0, 1, · · · , 2P (x, t). Therefore,

the fact b−(−L; x, t) = b+(−L; x, t) and the equation (4.28) tell us that

(4.30)
∂J

∂tn
(λ; x, t, 0, . . . , 0) = (−1)n+1(n + 1)λn for λ ∈ Λ

(4.31)
∂J

∂tn
(λ; x, t, 0, . . . , 0) = 0 for λ ∈ [−L, 0)\Λ

where Λ is defined by

(4.32) Λ = [−uB
0 (x, t), 0]∪[−uB

2 (x, t),−uB
1 (x, t)] · · · [−uB

2P (x,t)(x, t),−uB
2P (x,t)−1(x, t)].

After substituting (4.30) and (4.31) into (4.27), the equation (4.27) becomes

∂U

∂tn
(x, t, 0, . . . , 0)

=

∫ 0

−uB
0 (x,t)

(−1)n+1(n + 1)λndλ +
P (x,t)∑

m=1

(∫ −uB
2m−1(x,t)

−uB
2m(x,t)

(−1)n+1(n + 1)λndλ

)

=−
2P (x,t)∑

m=0

(−1)muB
m(x, t)n+1,

(4.33)

which proves Proposition IV.2.



CHAPTER V

Numerical Methods

In this chapter, we choose the parameter ε in the BO equation (1.1) to be 1.

Then the BO equation becomes

(5.1) ut + 2uux + H(uxx) = 0.

To numerically solve the BO equation. we first discretize the spatial domain. Assume

the grid points are x1, x2, · · · , xN . Then the evolutions of u(x, t) at these grid points

are given by:

(5.2) um
t (t) = −2um(t)ux(xm, t)−H(uxx)(xm, t) for m = 1, 2, · · · , N,

where the function um(t) is the value of u(x, t) at the grid point xm

(5.3) um(t) = u(xm, t).

Since the function u(x, t) is an unknown function, ux(xm, t) and H(uxx)(xm, t) cannot

be written in terms of u1(t), u2(t), · · · , uN(t). However, ux(xm, t) and H(uxx)(xm, t)

can be approximated in terms of u1(t), u2(t), · · · , uN(t). Assume the function u(x, t)

can be approximated by

(5.4) u(x, t) ≈
N∑

k=1

ak(t)6k(x),

104



105

where the functions ak(t) and 6k(x) satisfy

(5.5) u(xm, t) =
N∑

k=1

ak(t)6k(xm) for m = 1, 2, · · · , N.

Here, 61(x), 62(x), · · · , 6N(x) are called basis functions. Different basis functions will

be used in the different methods introduced below. The equation (5.5) can also be

written as

(5.6) u(t) = Aa(t)

where

(5.7) u(t) = (u(x1, t), u(x1, t), · · · , u(xN , t))T; a(t) = (a1(t), a2(t), · · · , aN(t))T

and the interpolation matrix A is defined by

(5.8) (A)mn = 6n(xm).

Then a1(t), a2(t), · · · , aN(t) can be written in terms of u1(t), u2(t), · · · , uN(t):

(5.9) a(t) = A−1u(t).

So ux(xm, t) and H(uxx)(xm, t) can be approximated by

(5.10) ux(xm, t) ≈
N∑

k=1

(A−1u(t))k(6k)x(xm) for m = 1, 2, · · · , N

(5.11) H(uxx)(xm, t) ≈
N∑

k=1

(A−1u(t))kH(6k)(xm) for m = 1, 2, · · · , N.

Then by using (5.10) and (5.11), the equation (5.2) can be approximated by a coupled

system of nonlinear ordinary differential equations (ODEs) in time:

(5.12) um
t (t) = ϑm(u1(t), · · · , uN(t)) for m = 1, 2, · · · , N,
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where the function ϑm(u1(t), · · · , uN(t)) is given by

(5.13) ϑm(u1(t), · · · , uN(t)) = −
N∑

k=1

(A−1u(t))k

(
2uk(6k)x(xm) + H(6k)(xm)

)
.

If u1(t), · · · , uN(t) are known, the algorithm to calculate a1(t), · · · , aN(t) by directly

using the equation (5.9) is very expensive. However, this can be done via the Fast

Fourier Transform (FFT) when some special basis functions 61(x), · · · , 6N(x) are

used, which will be discussed later. In this chapter we use the ODEs (5.12). More-

over, the ODEs (5.12) is equivalent to the following ODEs.

(5.14) at = A−1ϑ((Aa)1(t), (Aa)2(t), · · · , (Aa)N(t))

where

(5.15) ϑ = (ϑ1, ϑ2, · · · , ϑN)T.

The method described above is called the “method of lines”, which will be applied

to all of the algorithms used to solve the BO equation in this chapter. The time-

marching scheme used to solve the ODEs (5.12) in this chapter is the fourth order

Runge-Kutta method. In this chapter, three different numerical methods are de-

scribed and a comparison of them is made. Here these three numerical methods are

the Fourier pseudospectral method, the Christov method and the Gaussian radial

basis function method. Furthermore, we numerically illustrate the theoretical re-

sults obtained in Chapter III and study the traveling wave solution of the cubic BO

equation numerically. The new contributions of this chapter are the following: (1)

the comparison of these three different numerical methods is made; (2) the Christov

method and the Gaussian radial basis function method are applied to the BO equa-

tion for the first time; (3) the homotopy perturbation method has not previously

used to study the traveling wave solutions of the cubic BO equation.
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5.1 Fourier Pseudospectral Method

To use the Fourier pseudospectral method, one has to truncate the spatial domain

to [−πL, πL] and assume the function u(x, t) satisfies the periodic boundary condition

u(−πL, t) = u(πL, t) for all t ≥ 0, where L is a parameter used to determine the size

of the spatial domain. The Fourier approximation of the function u(x, t) is

(5.16) u(x, t) ≈
N/2∑

k=−N/2+1

ak(t)e
ikx/L,

where N is the number of the grid points and eikx/L are the basis functions. According

to the definition of the the discrete Fourier transform (DFT), the FFT can be used

to calculate ak(t). The FFT algorithm is most efficient if the number of the grid

points N is a power of two. To optimize the algorithm, typically, one chooses

(5.17) N = 2n,

where n is a positive integer.

The Hilbert transform of a function corresponds in the Fourier domain to multi-

plication of its Fourier transform by isgn(k) in the Fourier domain. Since the Fourier

pseudospectral method requires domain truncation, the interpretation of the Hilbert

transform given (1.2) is not valid. So we use the interpretation introduced above.

Under this interpretion, evaluating the dispersion term in the BO equation is triv-

ial for the Fourier pseudospectral method because the Fourier basis functions are

eigenfunctions of the Hilbert transform operator H:

(5.18) H(eikx) = i sgn(k) eikx for k )= 0.

The dispersion term in the BO equation is the Hilbert transform of the function

uxx. The derivative operator inside the Hilbert transform causes no difficulty because

the derivative operator commutes with the Hilbert transform operator:
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Proposition V.1. [61] For any function f(x),

(5.19)
d

dx
(H(f)) = H

(
df

dx

)
.

In other words, the differential operator d/dx commutes with the Hilbert transform

operator H.

Therefore, to calculate the dispersion term in the BO equation, one can evaluate

the Hilbert transform of the basis functions (for any of the three basis sets used here)

and then take the second derivative of the result.

The fourth order Runge-Kutta time marching scheme for the Fourier method is

stable if the time step δt satisfies the inequality

(5.20) δt ≤ 11.2
L2

N2
= 0.28h2,

which is derived in §5.4.

The Fourier pseudospectral method is easy to implement and its algorithm is

made efficient by using the FFT. The Fourier pseudospectral method provides bet-

ter approximations for periodic solutions of the BO equation, since the periodic

boundary conditions built into the numerical scheme are consistent with the physical

problem being studied. For nonperiodic solutions of the BO equation, for example,

soliton solutions, a large domain has to be used to capture the features of these

solutions in the region far from the origin, which is expensive. Moreover, there are

other boundary difficulties which will be addressed later.

5.2 Rational Basis Function Method

One way to solve evolution equations with vanishing boundary conditions on an

unbounded domain is to replace the Fourier harmonics with localized basis functions.
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In particular, rational basis functions are a popular choice. In this section, we de-

scribe three different orthogonal rational basis function sets: the Higgins functions,

the Christov functions, and the rational Chebyshev functions. These three basis

function sets are defined as follows:
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Figure 5.1: The graphs of the Higgins functions CH4(x) (blue) and SH3(x) (red)
with L = 1

Definition V.2. [7] The functions CH2n(x) and SH2n+1(x) given by

(5.21) CH2n(x) =
1

2
(µn(x) + µ−n(x)) for n ∈ Z+ ∪ {0}

and

(5.22) SH2n+1(x) =
1

2i
(µn+1(x)− µ−n−1(x)) for n ∈ Z+ ∪ {0}

are called the Higgins functions, where

(5.23) µn(x) =
(ix− L)n

(ix + L)n
for n ∈ Z

and L is a positive real constant. The functions µn(x) are called the complex Higgins

functions.
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The Higgins functions were introduced by Higgins [35] in his book.

Definition V.3. [7] The functions CC2n(x) and SC2n+1(x) given by

(5.24) CC2n(x) =
1

2
(φn(x)− φ−n−1(x)) for n ∈ Z+ ∪ {0}

and

(5.25) SC2n+1(x) = − 1

2i
(φn(x) + φ−n−1(x)) for n ∈ Z+ ∪ {0}

are called the Christov functions, where

(5.26) φn =
(ix− L)n

(ix + L)n+1
for n ∈ Z

and L is a positive real constant. The functions φn(x) are called the complex Christov

functions.

The Christov functions were introduced by Christov [14] in his paper.
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Figure 5.2: The graphs of the Christov functions CC4(x) (blue) and SC5(x) (red)
with L = 1
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Definition V.4. [7] The functions TBn(x) given by

(5.27) TBn(x) = Tn

(
y

(L + y2)
1
2

)

are called the rational Chebyshev functions of the first kind, where the functions

Tn(x) are the Chebyshev polynomials of the first kind and L is a positive real con-

stant. The functions UBn(x) given by

(5.28) UBn(x) = Un

(
y

(L + y2)
1
2

)

are called the rational Chebyshev functions of the second kind, where the functions

Un(x) are the Chebyshev polynomials of the second kind and L is a positive real

constant.
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Figure 5.3: The graphs of the rational Chebyshev functions TB2(x) (blue) and
UB2(x) (red) with L = 1

The rational Chebyshev functions were introduced by Boyd [7] in his paper. The

relations among these three different basis function sets were also discussed by Boyd

[7] and to describe them, we recall the following two propositions from his paper.
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Proposition V.5. [7] The Christov functions and the Higgins functions are related

to the Chebyshev rational functions as

(5.29) CC2n(x) =
L

L2 + x2
UB2n(x); SC2n+1(x) =

1

(L2 + x2)
1
2

TB2n+1(x),

(5.30) CH2n(x) = TB2n(x); SH2n+1(x) =
L

(L2 + x2)
1
2

UB2n+1(x).

Proposition V.6. [7] With the mapping x = L cot(s/2), we have

(5.31) TBn(x) = cos(
n

2
s); UBn(x) =

sin(n+1
2 s)

sin( s
2)

,

(5.32) CC2n(x) =
cos(ns)− cos((n + 1)s)

2L
; SC2n+1(x) =

sin((n + 1)s)− sin(ns)

2L
,

(5.33) CH2n(x) = cos(ns); SH2n+1(x) = sin((n + 1)s).

Proposition V.6 also suggests that the FFT can be applied to all these rational

basis function methods by a change of coordinate, which makes the algorithm to

calculate ak(t) more efficient. However, there is no simple formula for the Hilbert

transform of the Chebyshev functions TBn(x) and UBn(x) for odd integer n. The

Higgins functions are not integrable in R, which implies that the Hilbert transform of

a Higgins function is not well-defined. The Hilbert transform of a Christov function

is easy to calculate because of the following proposition.

Proposition V.7. If n ≥ 0, then

(5.34) H(CC2n(x)) = −SC2n+1(x); H(SC2n+1(x)) = CC2n(x).
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Proof. If m ≥ 0, then the function φm(x) belongs to the Hardy space H−. According

to the identity (2.40), one can have C+(φm) = 0, which implies H(φm) = −iφm. If

m < 0, then the function φm(x) belongs to the Hardy space H+. According to the

identity (2.40), one can obtain C−(φm) = 0, which implies H(φm) = iφm. So, for any

integer m, the function φm(x) is an eigenfunction of the Hilbert transform operator

H and satisfies

(5.35) H(φ0) = −iφ0; H(φm) = −isgn(m)φm if m )= 0.

After applying the Hilbert transform H to each side of the equations (5.24) and

(5.25) and using (5.35), one can obtain

H(CC2n(x)) =
1

2
(H(φn(x))−H(φ−n−1(x)))

=
1

2
(−iφn(x)− iφ−n−1(x))

= −SC2n+1(x)

(5.36)

and

H(SC2n+1(x)) = − 1

2i
(H(φ−n−1(x)) + H(φn(x)))

= − 1

2i
(−iφn(x) + iφ−n−1(x))

= CC2n(x).

(5.37)

James and Weideman [37] used the complex-valued rational functions

(5.38) ϕn(x) = (−1)n+1φ−n−1(x)

as basis functions to solve the BO equation, where φ−n−1(x) are the complex Christov

functions. The basis functions ϕn(x) are closely related to the Christov functions.

The algorithm is efficient and easy to implement because the functions ϕn(x) are also
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the eigenfunctions of the Hilbert transform operator H and the FFT can be applied

to it. Since we are interested in real-valued solutions of the BO equation, in this

section, we use the real version of the basis functions used by James and Weideman,

the Christov functions, as basis functions to solve the BO equation.

A Christov approximation is

(5.39) u(x, t) ≈
N∑

n=0

an(t)CC2n(x) + bn(t)SC2n+1(x).

Since the Christov functions are rational functions in R and decay to zero alge-

braically, domain truncation is not necessary. To implement the Christov method by

using the FFT requires the use of evenly spaced grid points after change of coordi-

nate from x to s. Furthermore, because the soliton solutions of the BO equation are

rational functions, the Christov method can provide good approximations for such

solutions.

The constant L in definition V.3 is a parameter in the Christov method. To

investigate the role of L in the Christov method, we calculate the errors of the

numerical solutions obtained by applying the Christov method with different choices

of the parameter L and the number of the grid points N . Here the errors are defined

to be the maximum of the absolute value of the difference between the exact solutions

and the numerical solutions. The results are provided in Figure 5.2. Figure 5.2

suggests that an appropriate choice of the parameter L provides a better accuracy.

5.3 Radial Basis Function Spectral Algorithm

Another choice of localized basis functions could be one with exponential decay,

like Gaussian radial basis functions. Here a set of basis functions 6k(x) that can be

written in the form 6k(x) = f(x− xk) where f is a function and xk are constants is

called the radial basis functions.
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Figure 5.4: Comparison of the errors in t ∈ [0, 5] using the Christov method to
solve the BO equation with different choices of the parameter L and the
number of the grid points N . Here the initial condition is u(x, 0) =
2/(x2 + 1) and the exact solution is u(x, t) = 2/((x− t)2 + 1).

5.3.1 Gaussian RBF Method

A Gaussian RBF approximation of u(x, t) is

(5.40) u(x, t) ≈
N∑

k=1

ak(t) exp

(
−α2

h2
k

(x− xj)
2

)

where xk are “centers” and exp
(
−α2

h2
k

(x− xj)2
)

are the basis functions. In fact,

usually the centers are chosen to be the grid points. The constant α in the equation

(5.40) is the “relative inverse width”, which is typically chosen to satisfy

(5.41)
1

4
≤ α ≤ 1

2
.

As discussed in [24, 70, 11], the interpolation matrix is very ill-conditioned for small

α and very inaccurate for α ≥ 1. The parameters hj in the equation (5.40) is chosen
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to be equal to h for all j, if the grid spacing h is constant. If a nonuniform grid is

used, the constants hj is chosen to be approximately equal to the local grid spacing

xj+1 − xj. If nonuniform grid points are used, then one has to directly use the

equation (5.9) to calculate the coefficients ak, which is very expensive. On the other

hand, if uniform grid points are used, then the FFT algorithm can be applied to

calculate ak(t), which is discussed in §5.3.2.

The dispersion term in the BO equation is the Hilbert transform of the function

uxx. Using the Gaussian RBF method to solve the BO equation requires knowledge

of evaluating the Hilbert transform of the Gaussian basis functions, which is provided

in the following theorem.

Theorem V.8. [69] The Hilbert transform of Gaussian functions can be written in

the form

(5.42) H(exp(−a2(y − s)2))(x) = − 2√
π
daw(a[x− s]),

where daw(x) is Dawson’s Integral given by:

(5.43) daw(y) ≡ e−y2

∫ y

0

ez2
dz = −e−y2 i

2

√
π erf(iy).

There are very efficient algorithms available to numerically evaluate Dawson’s

integral given in [15, 68, 69, 10].

5.3.2 Uniform Grid: Toeplitz Matrices

Proposition V.9. The RBF interpolation matrix is a Toeplitz matrix if and only if

the grid spacing is constant and the width of all RBFs is the same.

Proof. A matrix A with elements Ajk is a Toeplitz matrix if and only if Ajk can be

written in the form

(5.44) Ajk ≡ g(|j − k|) for a single variable function g
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For a uniform grid with hj = h, the elements of the RBF interpolation matrix are

(5.45) Ajk = exp

(
−α2

h2
(xj − xk)

2

)
= exp

(
−α2(j − k)2

)
.

It is obvious that the function Ajk in the equation (5.45) satisfies the Toeplitz con-

dition (5.44). On the other hand, if the grid is not uniform, then

(5.46) Aj1 = exp

(
−α2

h2
1

(xj − x1)
2

)

cannot be written as g(|j − 1|). If the grid is uniform but the constants hj in the

equation (5.40) are not same, then

(5.47) A1k = exp

(
−α2

h2
k

(x1 − xk)
2

)

cannot be written as g(|1− k|).

According to Proposition V.9, if the uniform grid points are used, then the ele-

ments of the RBF interpolation matrix A can be written as Ajk = g(|j − k|). By

using the convolution theorem, one can obtain

(5.48) g ∗ a = F−1 (F(g) · F(a)) ,

where g = (g(0), g(1), · · · , g(N − 1))T and a is defined by (5.7). Here, F represents

the DFT and F−1 represents the inverse DFT. Then according to the equation (5.6),

one can have

(5.49) u = F−1 (F(g) · F(a)) .

The above line of reasoning leads us to conclude that a can be calculated via the

FFT algorithm.
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5.3.3 Strengths of the RBF Method

Grid-Flexibility: There is no constraint on choosing the grid points in the RBF

approximation given in §5.3.1. To capture the behavior of a solution that has very

rapid oscillation in a small region and is very smooth in the remaining region, the

use of a nonuniform grid that has many grid points in the oscillation region and few

points elsewhere is very efficient. Such nonuniform grids can be easily handled with

the RBF method. Moreover, the optimal grid can be adaptively chosen on the fly to

follow moving structures. Driscoll and Heryudono [23] provide an adaptive algorithm

for the RBF method in their paper.

Simple Implementation of the Hilbert Transform: The Gaussian basis functions

are not eigenfunctions of the Hilbert transform. However, the Hilbert transform of a

Gaussian basis function is a Dawson’s function, which is easy to calculate numerically.

5.3.4 Drawbacks of the RBF Method

Relatively Expensive Algorithm: The Christov method and the Fourier pseu-

dospectral method can be implemented by using the FFT, which makes the algo-

rithms efficient. The FFT algorithms used in these two methods have an O(n log2 n)

complexity per time step. However, the FFT algorithm is not applicable to the RBF

method with a nonuniform grid. To evaluate the nonlinear term and the dispersion

term in the BO equation, multiplication of the interpolation matrix and the vector

of coefficients is used, which has an O(n2) complexity. Compared to the Christov

method and the Fourier pseudospectral method, the algorithm of the RBF method

is more expensive.
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5.4 Courant-Friedrichs-Lewy (CFL) Time Step Limit

If an explicit time-marching scheme is used to solve a nonlinear time evolution

equation, to make the scheme stable, the time step has to be less than the “CFL

limit” named after Courant, Friedrichs and Lewy [16, 17] who first discussed it in

their paper for finite difference schemes. The CFL limit is determined by the time-

marching algorithm, the time evolution equation and the spatial resolution. The

wave dispersion mainly determines the CFL limit, if the wave dispersion is not too

weak and the nonlinearity is not too strong. Therefore, one can obtain a good

estimate of the CFL limit of a nonlinear time evolution equation by calculating the

CFL limit of its linearization.

We will use a theoretical method to derive the formula of the CFL limit of the

linear BO equation

(5.50) ut + H(uxx) = 0

for the Fourier pseudospectral method below and estimate the CFL limit for the

BO equation by this formula. In fact, this theoretical method can be generalized to

apply to other linear time evolution equations.

If one truncates the spatial domain to [−πL, πL] and uses N grid points, then

the grid spacing is h = 2πL/N and the approximation of the function u(x, t) is

(5.51) u(x, t) =
N/2∑

k=−N/2+1

ak(t)e
ikx/L.

By substituting it into the linear BO equation and using the identity (5.18), the linear

BO equation becomes an uncoupled set of ordinary differential equations (ODE):

(5.52)
dak

dt
= i ω

(
k

L

)
ak for k = −N

2
+ 1,−N

2
+ 2, · · · ,

N

2
,
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where ω(λ) = −sgn(λ)λ2. If one applies the fourth order Runge-Kutta method to

an ODE in the form:

(5.53)
du

dt
= iωu,

where ω is real, the scheme is stable if and only if the time step δt satisfies the

inequality [8]

(5.54) δt ≤ 2.8

|ω| .

In the equation (5.52), the wave number k satisfies −N/2 + 1 ≤ k ≤ N/2, which

implies

(5.55)

∣∣∣∣ω
(

k

L

)∣∣∣∣ ≤
N2

4L2
.

So the time marching scheme for the linear BO equation is stable if and only if the

time step δt satisfies

(5.56) δt ≤ 11.2
L2

N2
= 0.28h2.

Therefore, 0.28h2 is our estimate for the CFL limit of the Fourier pseudospectral

scheme for the BO equation. The CFL instability for the linear BO equation is also

discussed in Fig. 11.5, pg. 209 of [8].

There is no simple theoretical analysis of the CFL limits of the linear BO equation

for the Christov method and the RBF method. However, since the time marching

scheme will quickly become unstable if the time step is larger than the CFL limit, one

can estimate the CFL limits for these methods by implementing them with different

choices of the time step. The CFL limits for different methods obtained by numerical

experiments are given in Figure 5.5. Figure 5.5 suggests that the CFL limits for three

different methods are inversely proportional to the square of the number of the grid
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Figure 5.5: The CFL limit of the linear BO equation for the Fourier method, the
RBF method and the Christov method.

points. Based on the numerical experiments and Figure 5.5, formulas of the CFL

limits for three different methods are derived to provide a simple way to evaluate the

CFL limit of the BO equation. These formulas are given in Table 5.1.

5.5 Aliasing Instability and Dealiasing

Aliasing instability, a strictly nonlinear phenomenon was discovered by Phillips

[62]. He did a numerical experiment of his two-layer model, the first “general circu-

lation model” (GCM) of the atmosphere. Several days later, the winds predicted by

his simulation were supersonic and he was forced to stop. Phillips [63] later explained
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Method and Parameter Formula for the CFL limit δt
Fourier Method δt = 0.28(∆x)2 = 0.28W 2/N2.
Christov Method δt = 2.9L2/N2.

RBF Method with α = 0.5 δt = 0.36(∆x)2 = 0.36W 2/N2.
RBF Method with α = 1 δt = 0.72(∆x)2 = 0.72W 2/N2.

Table 5.1: Formulas for the CFL limit of the linear BO equation. The number W
in the formulas is the width of the domain and L is a parameter in the
Christov method.

this catastrophic failure as “aliasing instability”, which we now explain.

5.5.1 Aliasing Instability

If the spatial domain is [−πL, πL] and the function u(x, t) is approximated by a

Fourier series:

(5.57) u(x, t) =
N/2∑

k=−N/2+1

ak(t)e
ikx/L,

where N is the number of the grid points, then the grid spacing is h = 2πL/N . The

shortest wavelength in this Fourier series is

(5.58) λ =
2π

N/2L
=

4πL

N
= 2h.

On a discrete grid, short waves whose wavenumbers k are larger than the aliasing limit

k = π/h, will be “aliased” to the long waves with lower wavenumbers as illustrated

in Chapter 9 of [8], because the short and long waves are indistinguishable when

sampled on the numerical grid. However, according to the following trigonometric

identities:

(5.59) cos a cos b =
cos(a− b) + cos(a + b)

2
; sin a sin b =

cos(a− b)− cos(a + b)

2

(5.60) sin a cos b =
sin(a + b) + sin(a− b)

2
; cos a sin b =

sin(a + b)− sin(a− b)

2
,
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a quadratically nonlinear term like uux in the BO equation is approximated by a

Fourier series including waves whose wavenumbers are larger than the aliasing limit.

Energy that should cascade to short waves is spuriously aliased to long waves, which

often leads to explosive instability. To illustrate the phenomenology, we used the

benchmark in Fig 5.6.

Figure 5.6: The benchmark case used to demonstrate aliasing instability in the BO
equation. With 256 grids points, a timestep of δt = 0.004 is stable.
The initial condition evolves into three solitons on the periodic domain
x ∈ [−5π, 5π].

One complication manifesting even in Phillips’ computations is that a nonlinear

computation may be accurate and stable for a considerable time and then suddenly

crash with overflow errors. The reason is that it is common in fluid flows for a smooth

initial condition to spontaneously evolve regions of higher spatial gradient and a plot

of the Fourier coefficients becomes flatter as shown in Fig 5.7.

When the evolution equation is integrable, the flattening of the Fourier spectrum

and the growth of narrow features do not proceed indefinitely. if the computation

has not blown up by the time of flattest spectrum, then it can integrated stably for
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Figure 5.7: Canonical run but with n = 512 grid points and a timestep of 1/1000.
The Fourier coefficients are plotted every one-fifth in t with the lowest
curve showing the initial curve; the slope monotonically decreases with
time.

a very long time.

Shortening the time step cannot eliminate the aliasing instability. It is a funda-

mental difficulty caused by underresolution in the spatial domain. Figs. 5.6 and 5.7

show that the benchmark cases are stable with N = 256 and N = 512. When the

spatial resolution is reduced to N = 128, instability begins.

The empirical precursor of aliasing instability is the appearance of waves whose

wavelength is 2h. From Fig 5.8 and 5.9, one can see that when the Fourier spectrum

becomes sufficiently flat, the high wavenumbers near the aliasing limit go bad and

deviate from the linear slope of the accurate solution shown in the previous figure.

The noise can be seen in Fig. 5.9.
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Figure 5.8: Canonical run but with n = 128 grid points and a timestep of 1/250. The
Fourier coefficients are plotted every one-tenth in t with the lowest curve
showing the initial curve; the slope monotonically decreases with time.
At the final time, the error in physical space is 5000% (not illustrated on
this graph).

5.5.2 Dealiasing

Phillips [63] showed aliasing could be eliminated by taking the Fourier transform

of u(x, t) and filtering the upper one-half of the wavenumber spectrum. Later, Orszag

pointed out, in a note, that it is actually sufficient to filter just the upper one-third

of the wavenumber spectrum [60], which is called the “Orzag Two-Thirds Rule” [8].

Dealiasing is easy to implement in the Fourier method. The drawback of dealias-

ing is that additional FFTs are needed, so there is a significant jump in cost. Fur-

thermore, the effective resolution is lowered to (2/3)N .

For the BO benchmark, dealiasing makes a tremendous difference. Without

dealiasing or other forms of dissipation, the coarsest resolution which is stable for
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Figure 5.9: Canonical run but with n = 128 grid points and a timestep of 1/250.
u(x, t) are plotted every one-tenth in t; the slope monotonically decreases
with time. The flow blows up catastrophically with overflow between
t = 3.4 and t = 3.5.

the benchmark is N = 256.

With dealiasing, even a very coarse resolution of N = 32 is stable. A resolution

of N = 128 is necessary to make the exact and computational solutions graphically

indistinguishable. However, even the N = 32 solution is qualitatively correct: the

initial hump splits into three solitons.

5.6 Boundary Difficulties

5.6.1 Moving Coordinate System

A common difficulty in numerically solving the Cauchy problem of the BO equa-

tion is that a soliton of the BO equation will move rightwards and eventually exit the

region spanned by the spatial grid points. If the goal of the numerical calculation is
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Figure 5.10: Comparison of the exact benchmark solution at t = 10 with the solution
as computed using Orszag-Phillips dealiasing with resolutions of N =
32, N = 64 and N = 128 grid points. In each frame, the true solution is
shown as the dashed curve; the solid curve with the circles is the lower
resolution dealiased approximation. The lower right shows the N = 128
grid point solution without dealiasing: there is no graph because the
aliased computation is unstable and overflows to Not-a-Number (NaN)
at every grid point. This difficulty cannot be fixed by shortening the
timestep.

to track a single feature, such as the largest soliton, or to make a movie in which the

frame is centered on the largest soliton, it is helpful to shift into a moving coordinate

system by writing

(5.61) s = x− ctranst

where ctrans is the speed of the moving coordinate. Then the BO equation becomes

(5.62) ut + (2u− ctrans)us + H(uss) = 0

which may be numerically solved in exactly the same way as the original unmodified

BO equation.
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5.6.2 Fourier Pseudospectral Method

The Fourier pseudospectral method requires domain truncation and periodic

boundary conditions. So after a solution with non-negligible amplitude hits the

right boundary of the domain, it will wrap around to reappear on the left, and simi-

larly the left edge of the dispersing transient will wrap around to the right boundary.

This phenomenon is illustrated in Fig 5.11. It is correct if the solution is a periodic

solution. But if the solution is a non-periodic solution in R, a collision between

leftward-propagating (but wrapped-around) dispersive transients and the rightward-

propagating solitons is completely unphysical.
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Figure 5.11: Waterfall plot using the Fourier pseudospectral method to solve the
BO equation with N = 512 grid points and a timestep of 1/50000.
u(x, t) plotted every one-tenth in t. The initial condition of u(x, t) is
u(x, 0) = 2/(x2 + 1) for x ∈ [−π, π] and u(x, 0) = u(x + 2π, 0) for all
x ∈ R.

5.6.3 Christov Method

We use evenly spaced grid points in the Christov method after change of coordi-

nate from x to s. However, the grid used in x is nonuniform. Most of the grid points

are in the region close to the origin and the grid spacing becomes very large in the
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region far away from the origin. So when a solution moves away from the origin, it

becomes more and more inaccurate because of underresolution. This phenomenon is

illustrated in Fig 5.12.
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Figure 5.12: Waterfall plot using the Christov method to solve the BO equation with
N = 128 grid points and a timestep of 1/1000. u(x, t) plotted every one-
fourth in t. The initial condition of u(x, t) is u(x, 0) = 2/(x2 + 1)

5.6.4 RBF Method

The interpolation in §5.3 provides a good approximation in the domain of the

grid points. However, the values of the interpolation function are very small outside

the domain of the grid points because the Gaussian functions decay exponentially.

This fact does not cause any problem if the function uxx is very small outside the

domain of the grid points. However, when a solution with non-neglible amplitude

approaches the boundary of the domain of the grid points, it is not true any more

and the solution becomes inaccurate. This phenomenon is illustrated in Fig 5.13.
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Figure 5.13: Waterfall plot using the RBF method to solve the BO equation with
N = 256 grid points and a timestep of 1/5000. u(x, t) plotted every
two-tenth in t. The initial condition of u(x, t) is u(x, 0) = 2/(x2 + 1)

5.7 Summary: Comparisons of Three Spectral Methods

In this section, we compare the three different spectral methods discussed in this

chapter and list the results in Table 5.2 at the end.

5.7.1 Cost

The FFT can be applied to the Fourier pseudospectral method and the Chris-

tov method, which makes the algorithms fast. The implementations of the Fourier

pseudospectral method and the Christov method have an O(n log2 n) complexity per

time step, if the FFT is used. On the other hand, the FFT cannot be applied to the

RBF method, unless a uniform grid is used. To implement the RBF method with a

nonuniform grid, one has to calculate the inverse of the interpolation matrix, which

has an O(n3) complexity, but this must be done only once at the beginning of the

implementation, unless an adaptive grid is used. Then, to evaluate the nonlinear
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term and the dispersion term in the BO equation, multiplication of matrixes and

vectors is used, which has an O(n2) complexity. Therefore, the RBF method is more

expensive than the Fourier pseudospectral method and the Christov method.

5.7.2 Domain Truncation

The domain of the basis functions in the RBF method and the Christov method

is R. It is therefore not necessary to truncate the domain in order to solve a prob-

lem with a vanishing boundary condition on R. To use the Fourier pseudospectral

method, domain truncation is required since the basis functions in the Fourier pseu-

dospectral method are periodic functions. However, there are boundary difficulties

for the RBF method and the Christov method.

5.7.3 Boundary Difficulty

In the Fourier pseudospectral method, periodic boundary conditions are implicitly

used by the scheme. As we discussed in §5.6, after a non-periodic solution hits the

right (left) boundary of the domain, it will wrap around to reappear on the left

(right) side of the domain, which is completely unphysical.

The grid used in the Christov method is nonuniform. Most of the grid points

are concentrated in the region close to the origin. The numerical solution becomes

inaccurate when it exits the vicinity of the origin because of underresolution.

In the RBF method, the method to evaluate the Hilbert transform of uxx provides

accurate results only when the function uxx is very small outside the domain of the

grid points. When a solution approaches the boundary of the domain, this condition

is not satisfied and then the solution becomes inaccurate.
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5.7.4 Grid-Flexibility

To use the FFT in the Christov method and the Fourier pseudospectral method,

we have to choose evenly spaced grid points in the Fourier pseudospectral method

and evenly spaced grid points in the Christov method after change of coordinate

from x to s. There is no freedom to choose the grid points. Once the truncated

domain and the number of the grid points in the Fourier pseudospectral method and

the number of the grid points in the Christov method are chosen, the grid points are

already determined. In contrast, nearly any grid at all can be used with the RBF

method.

Table 5.2: Comparison of Numerical Methods
Term Fourier Christov RBF

FFT-applicable Yes Yes No
flops/timestep O(N log2(N)) O(N log2(N)) O(N2)

Domain Truncation Yes No No
Grid-Flexible No No Yes

Boundary Difficulty Wrap around Underresolution Inaccuracy caused by
the nonlocal operator H

5.8 Numerical Experiments on the Zero-Dispersion Limit of
the BO Equation

In Chapter III, the zero dispersion limit of the BO equation was studied analyti-

cally. In this section, we investigate this limit numerically to illustrate and verify our

theoretical result. Here, we use the Fourier pseudospectral method. The number of

the grid points N we use in the numerical experiments depends on the value of the

small parameter ε in the BO equation. The number of the grid points N has to be

large enough so that the numerical scheme is not subject to aliasing instability and

that the numerical solutions are accurate. On the other hand, one has to choose N

not too large, otherwise the numerical algorithm is too expensive. So we calculate
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the errors of the numerical solutions with different choices of the small parameter ε

and the number of the grid points N to help us make the best choice. Since we do

not know the solutions of the BO equation for small ε, the error could be computed

approximately as the difference between uNmax(x, t) and uN(x, t):

(5.63) E(N) = max
x∈R,t∈[0,3]

|uNmax(x, t)− uN(x, t)|,

where Nmax is the largest N chosen and uN(x, t) is the numerical solution obtained

by using N grid points. The results are listed in Table 5.8.

ε=0.1 ε=0.05 ε=0.025 ε=0.0125
Nmax = 1024 Nmax = 2048 Nmax = 4096 Nmax = 8192

N=64 NaN NaN NaN NaN
N=128 NaN NaN NaN NaN
N=256 1.7099E-04 NaN NaN NaN
N=512 1.7789E-09 1.5311E-03 NaN NaN
N=1024 3.9309E-08 2.5320E-02 NaN
N=2048 2.4590E-07 4.0966E-01
N=4096 7.2139E-07

Table 5.3: Error of small dispersion limit calculation. The initial condition of u(x, t)
is u(x, 0) = (cos x + 1)/2.

With this information in hand, we may now start to do the numerical experiments

on the zero dispersion limit of the BO equation. According to Theorem III.5 in

Chapter III, for any function f ∈ L2(R) and positive time t, the following equation

holds true:

(5.64) lim
ε↓0

∫

R
f(y)uε(y, t)dy =

∫

R
f(y)




2P (y,t)∑

n=0

(−1)nuB
n(y, t)



 dy.

Here, we illustrate and verify the above theoretical result for the function f given by

(5.65) f(y) = 1 for y ∈ [−4π, x]; f(y) = 0 for y /∈ [−4π, x].
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Then by substituting (5.65) into (5.64), the equation (5.64) becomes

(5.66) lim
ε↓0

∫ x

−4π

uε(y, t)dy =

∫ x

−4π




2P (y,t)∑

n=0

(−1)nuB
n(y, t)



 dy.
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Figure 5.14: The red curve is the right hand side of the equation (5.66) and the blue
curve is the left hand side of the equation (5.66) with ε = 0.05. The
initial condition used in the calculation is u(x, 0) = 2/(x2 + 1)

Here, we numerically calculate the integral on the left hand side of the equation

(5.66) with ε = 0.05 and the integral on the right hand side of the equation (5.66),

which theoretically are very close in value. We illustrate and verify this fact by

plotting the numerical results in Figures 5.14–5.16.

5.9 Traveling Wave Solutions of the Cubic BO Equation

The numerical methods we discussed above can also be applied to the cubic BO

equation:

(5.67) ut + 3u2ux + H(uxx) = 0.
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Figure 5.15: The red curve is the right hand side of the equation (5.66) and the blue
curve is the left hand side of the equation (5.66) with ε = 0.05. The
initial condition used in the calculation is u(x, 0) = 2/(x2 + 1)
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Figure 5.16: The red curve is the right hand side of the equation (5.66) and the blue
curve is the left hand side of the equation (5.66) with ε = 0.05. The
initial condition used in the calculation is u(x, 0) = 2/(x2 + 1)
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This is really one of the best options for studying (5.67), since the equation (5.67)

is not known to be integrable. Here, we apply the numerical methods to study the

traveling wave solutions of the cubic BO equation.

5.9.1 Derivation of the Cubic BO Traveling Wave Equation and Its Scal-
ing

If u(x, t) is a traveling wave solution of the cubic BO equation with a vanishing

boundary condition, then u(x, t) can be written as u(x, t) = f(x − ct) where the

constant c is the speed of the traveling wave solution. Here the function f satisfies

the following equation

(5.68) (3f 2 − c)fx + H(fxx) = 0

with the boundary condition

(5.69) lim
x→±∞

f(x) = 0.

After integrating each side of the equation (5.68) from −∞ to x and applying the

boundary condition (5.69), one can obtain the cubic BO traveling wave equation:

(5.70) f 3 − cf + H(fx) = 0.

To study the traveling wave solutions of the cubic BO equation, without loss of

generality, one can assume the constant c in (5.68) and (5.70) is equal to 1, based on

the following proposition.

Proposition V.10. If v(x, t) = g(x− t) is a traveling wave solution of the cubic BO

equation with speed 1, then u(x, t) = f(x − ct) where f(x) =
√

cg(cx) is a traveling

wave solution of the cubic BO equation with positive speed c.
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5.9.2 A Numerical Method to Find A Traveling Wave Solution of the
Cubic BO Equation

The formula for the traveling wave solution (the single soliton solution) of the

BO equation is very simple. However, there is no explicit formula for the traveling

wave solution of the cubic BO equation available in the literature. So we introduce

a numerical method to find a traveling wave solution of the cubic BO equation with

speed 1. Here, we use the cubic BO traveling wave equation (5.70) with c = 1 and

the boundary condition (5.69). Assume the real function f(x) can be written as:

(5.71) f(x) =
∞∑

n=−∞
anφn(x)

where an are complex numbers and φn(x) is the complex Christov function defined

above by the equation (5.26) with L = 1:

(5.72) φn(x) =
(ix− 1)n

(ix + 1)n+1
.

Since the function f(x) is a real function, the constants an satisfy a−1−n = −a∗n,

where a∗n is the complex conjugate of an. If f(x) is a solution of the equation (5.70),

then f(x + d) is also a solution of the equation (5.70) for any constant d. Therefore,

we also require the solution we are looking for to be an even function. Then an must

satisfy that a−1−n = −an and an are real numbers. So the function f(x) can be

written as:

(5.73) f(x) =
∞∑

n=0

anψn(x)

where the function ψn(x) is defined by

(5.74) ψn(x) = φn(x)− φ−1−n(x) for n ≥ 0.

Combining the equation (5.35) and that the function φn(x) satisfies

(5.75) (φn(x))x = i

(
n

2
φn−1(x)− 2n + 1

2
φn(x) +

n + 1

2
φn+1(x)

)
,
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one can show that H((ψn)x) can be written in the form:

H((ψn)x) = H((φn)x)−H((φ−n−1)x)

=
1

2
(nψn−1 − (2n + 1)ψn + (n + 1)ψn+1) .

(5.76)

It is easy to see that the function H(fx) can be written as

(5.77) H(fx) =
1

2

∞∑

n=0

bnψn(x),

where the constants bn are defined by

(5.78) b0 = a1 − a0; bn = nan−1 − (2n + 1)an + (n + 1)an+1 for n > 0.

By substituting (5.73) and (5.77) into (5.70), one can obtain

(5.79)
∞∑

n=0

(
1

2
bn + an

)
ψn(x) =

( ∞∑

n=0

anψn(x)

)3

.

In practice, to use a numerical method, we approximate the function f by

(5.80) fN(x) ≈
N∑

n=0

anψn(x),

then the equation (5.79) becomes

(5.81)
N∑

n=0

(
1

2
bn + an

)
ψn(x) =

(
N∑

n=0

anψn(x)

)3

.

It is easy to show for any n, m ∈ Z, the functions φn(x)φm(x) can be written as:

(5.82) φn(x)φm(x) =
1

2
(φn+m(x)− φn+m+1(x)),

which implies the function ψnψm can be written in the form:

(5.83) ψnψm =
1

2
(ψm+n − ψm+n+1 + ψn−m − ψn−m−1) for n > m

and

(5.84) ψnψm =
1

2
(ψ2n − ψ2n+1 + 2ψ0) for n = m.
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Therefore, the right hand side of the equation (5.81) can be written as a linear

combination of ψn n = 0, 1, 2, · · · , 3N + 2. By matching the coefficients of ψn, n =

0, 1, 2, · · · , N , the equations (5.81) can be reduced to N+1 nonlinear equations for the

N + 1 coefficients a0, a1, · · · , aN . Then one can calculate the values of a0, a1, · · · , aN

via Newton’s method. However, to use Newton’s method, we need have a pretty good

first guess such that the iterations will converge. The first guess can be obtained by

the homotopy perturbation method that we now describe.

5.9.3 Homotopy Perturbation Method

Lian [46] first developed the homotopy analysis method to study a simple pen-

dulum. Later, the homotopy perturbation method, an analogue of the homotopy

analysis method, was introduced by He [33, 34]. Here, we use He’s homotopy per-

turbation method to find the traveling wave solution of the cubic BO equation. To

use this method, we introduce the following equation

(5.85) H(ux)− u + u2 = δ(u2 − u3),

where δ is a parameter. In fact, the equation (5.85) is the equation (5.70) when

δ = 1.

We assume the solution of the equation (5.85) can be written as

(5.86) u(x; δ) = u0(x) + δu1(x) + δ2u2(x) + · · ·

where

(5.87) u0(x) =
2

1 + x2
= ψ0(x)

is a solution of the equation (5.85) with δ = 0. Here the function u0(x) characterizes

the known traveling wave solutions of the BO equation. By substituting (5.86) into
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(5.85) and matching the coefficients of δn, one can obtain that the function un(x)

(n > 0) satisfies the following equation.

(5.88)

H((un)x)−un +2unu0 =
n−1∑

m=0

umun−1−m−
n−1∑

m=0

(
n−1−m∑

j=0

umujun−1−m−j

)
−

n−1∑

m=1

umun−m

If u0(x), · · · , un−1(x) are known, then the equation (5.88) is an integro-differential

equation for un(x). Assume the functions un(x) can be written as

(5.89) un(x) =
N∑

j=0

a(n)
j ψn(x) for n > 0,

where a(n)
j are constants. By using the equations (5.83) and (5.84), the equation

(5.88) can be reduced to N + 1 linear equations for a(n)
0 , a(n)

1 , · · · , a(n)
N , which is easy

to solve by Gaussian elimination. For small δ, the equation (5.86) provides a pretty

good approximation of a solution for the equation (5.85). However, for relatively large

δ, for example δ = 1, the equation (5.86) is not able to give a good approximation.

Instead of using the equation (5.86) directly, we calculate the Padé approximation

[4] of the equation (5.86) with respect to δ, for relatively large δ. To show that the

Padé approximation will provide a better approximation, we calculate the maximum

value of δ such that 0 < δ ≤ 1 and by using the solution we obtained as the first

guess, Newton’s method for the equation (5.85) will converge. From Table 5.4, we

Method δmax Method δmax Method δmax

1st order 0.952 2nd order 0.537 Padé[1,1] 1
3rd order 0.688 4th order 0.541 Padé[2,2] 1
5th order 0.591 6th order 0.524 Padé[3,3] 1

Table 5.4: Maximum of δ such that 0 < δ ≤ 1 and by using the solution we obtained
as the first guess, Newton’s method for the equation (5.85) will converge

find that the Padé does provide a better approximation. To evaluate the errors in

Figure 5.17, we use different methods to calculate the solution of the equation (5.85)
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u(x) for different δ and compute the errors given by max |u(x)−uexact(x)|, where the

function uexact(x) is obtained by using the Padé[1,1] solution as the first guess and

applying Newton’s method.
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Figure 5.17: Comparison of the errors of different methods for the cubic BO equation

From Figure 5.17, one can find that the Padé approximation does provide a better

approximation. One also can find that the sequence in the equation (5.86) converges

for 0 ≤ δ < 0.5 and diverges for 0.5 ≤ δ, which explains the reason in Table 5.4

that the first order method provide a better first guess for Newton’s method when

δ > 0.5.



CHAPTER VI

Future Work

6.1 The Zero-Dispersion Limit of the BO Equation with
Negative Initial Conditions

6.1.1 Introduction

For negative initial conditions u0(x), the main contribution is from the reflection

coefficient. Neglecting the discrete spectrum, Riemann-Hilbert Problem II.4 becomes

Riemann-Hilbert problem VI.1.

Analyticity: W (λ) is analytic in for λ ∈ C\R+.

Jump conditions: The boundary values taken on R+ satisfy

(6.1) W+(λ) = W−(λ) + β(λ)eiλx/ε

∫ λ

0

β∗(k)

2πik
W−(k)e−ikx/εdk, for λ ∈ R+.

Normalization: W (λ) is normalized at infinity:

(6.2) W (λ) → 1 as λ →∞.

And the conservation laws (2.131) for the BO equation become

(6.3) lim
ε↓0

Ik =
(−1)kε

2π

∫ ∞

0

|β(λ)|2λk−2dλ.

142
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The equation (2.137) implies that the limit of the conserved quantity Ik can be

written as

(6.4) lim
ε↓0

Ik =
1

k

∫

R
u0(x)k dx =

(−1)k

2π
lim
ε↓0

(
ε

∫ ∞

0

|β(λ)|2λk−2dλ

)
.

This equation suggests that

(6.5)
1

k

∫ ∞

−∞
(−u0(x))kdx =

1

2π

∫ ∞

0

p(λ)λk−1dλ,

where the function p(λ) is defined by

(6.6) p(λ) = lim
ε↓0

ε
|β(λ)|2

λ
.

Assume g(ξ) is the Fourier transform of p(λ). Then the nth derivative of g(ξ) can

be written in the form

(6.7) g(n)(ξ) =

∫ ∞

0

(−iλ)ne−iξλp(λ)dλ for n = 0, 1, 2, · · · .

After choosing ξ = 0 in (6.7) and substituting (6.5) into (6.7), we have

g(n)(0) =

∫ ∞

0

(−iλ)np(λ)dλ

=
2πi

n + 1

∫ ∞

−∞
(iu0(x))n+1dx for n = 0, 1, 2, · · · .

(6.8)

If the initial condition u0(x) ∈ L1(R) ∩ L∞(R), by expanding g(ξ) about ξ = 0 and

using the equation (6.8) to calculate the upper and lower bounds of the coefficients,

one can obtain that g(ξ) is an entire function, which implies g(ξ) can be written as:

g(ξ) =
∞∑

n=0

g(n)(0)
ξn

n!

= 2πi

∫ ∞

−∞

∞∑

n=0

(
(iξu0(x))n+1

ξ(n + 1)!

)
dx

=
2πi

ξ

∫ ∞

−∞

(
eiξu0(x) − 1

)
dx

= −4π

∫ ∞

−∞
eiξu0(x)/2 sin(ξu0(x)/2)

ξ

(6.9)
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Since g(ξ) is the Fourier transform of p(λ), by simply applying the inverse Fourier

transform to each side of the equation (6.9), we have

p(λ) =
1

2π

∫ ∞

−∞
eiλξg(ξ)dξ

= 2

∫ ∞

−∞

∫ ∞

−∞
eiξ(u0(x)/2+λ) sin(−ξu0(x)/2)

ξ
dxdξ

= 2π

∫ ∞

−∞
χ[0,−u0(x)](λ)dx

= 2π

∫

−u0(x)≥λ

dx

(6.10)

where L = maxx∈R(−u0(x)). Since p(λ) ≡ 0 for λ >L , the function β(λ) satisfies

|β(λ)| = O(1) for λ >L and

(6.11) |β(λ)| =

(
2πλ

ε

∫

−u0(x)≥λ

dx

)1/2

+ O(1) for 0 < λ ≤ L,

as ε → 0+.

Based on the above discussion, one can approximate the scattering data corre-

sponding to the negative initial condition u0(x) as follows: there are no eigenvalues

and the approximation of the reflection coefficient β(λ, t) is given by

(6.12) β̄(λ, t) := r(λ)ei(λ2t+s+(λ))/ε,

where the function s+(λ) is given by the equation (6.16) below and the function r(λ)

is given by

(6.13) r(λ) =

(
2πλ

ε

∫

−u0(x)≥λ

dx

)1/2

.

According to the equation (6.13), r(λ) ≡ 0 for λ > L. In the rest of this section, we

will use β̄(λ, t) instead of β(λ, t). Now, we introduce a new notation, which will be

used below to simplify several equations.

Definition VI.2. The function B±(W )(λ) is defined for λ ∈ R+ by

(6.14) B±(W )(λ) = W (λ)∓ r(λ)eiθ±(λ)/ε

∫ λ

0

r(k)

2πik
W (k)e−iθ±(λ)/εdk,
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where the function θ±(λ) is defined by

(6.15) θ±(λ) = xλ + tλ2 + s±(λ)

and the function s±(λ) is given by

(6.16) s±(λ) = −
∫ λ

0

x∓(k)dk for λ ∈ [0, L].

By using β̄(λ, t) instead of β(λ, t) in the jump condition in Riemann-Hilbert

problem VI.1, Riemann-Hilbert problem VI.1 becomes the following Riemann-Hilbert

problem.

Riemann-Hilbert problem VI.3.

Analyticity: W (λ) is analytic in for λ ∈ C\[0, L]

Jump conditions: The boundary values taken on [0, L] satisfy

(6.17) W+(λ) = B−(W−)(λ) for λ ∈ [0, L]

which is equivalent to

(6.18) W−(λ) = B+(W+)(λ) for λ ∈ [0, L]

Normalization: W (λ) is normalized at infinity:

(6.19) W (λ) → 1 as λ →∞.

By solving Riemann-Hilbert Problem VI.3 and using (2.109), one can obtain an

approximation of u(x, t), which we denote by ûε(x, t). If the initial condition u0(x)

is a negative, “single hump”, smooth function, then one can obtain the asymptotic

property of ûε(x, t) as ε → 0+, which is given in the following two conjectures.
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Moreover, for such a initial condition, if λ ∈ (0, L], the function r(λ) can be written

in terms of the turning points x±(λ)

(6.20) r(λ) =

(
2πλ

ε
(x+(λ)− x−(λ))

)1/2

,

where the turning points x±(λ) : (0, L] → R are two monotone branches of the

inverse function of u0(x) and satisfy

(6.21) u0(x±(λ)) = −λ and x−(λ) ≤ x0 ≤ x+(λ) for 0 < λ ≤ L

and x0 is the global minimum point of u0(x).

Conjecture VI.4. If x and t ≥ 0 satisfy that there is only one branch of the mul-

tivalued (method of characteristics) solution of the inviscid Burgers equation (3.33),

which is denoted by uB(x, t), then

(6.22) lim
ε↓0

ûε(x, t) = uB
0 (x, t).

Conjecture VI.5. If x and t ≥ 0 satisfy that there are three branches of the mul-

tivalued (method of characteristics) solution of the inviscid Burgers equation (3.33),

which are denoted by uB
0 (x, t) < uB

1 (x, t) < uB
2 (x, t), then

(6.23)

ûε(x, t) =
2∑

n=0

(−1)nuB
n + 2

(uB
1 − uB

2 )(uB
1 − uB

0 +
√

(uB
2 − uB

0 )(uB
1 − uB

0 ) cos ϕ)

uB
2 + uB

1 − 2uB
0 + 2

√
(uB

2 − uB
0 )(uB

1 − uB
0 ) cos ϕ

+ o(1)

as ε → 0+, where the functions ϕ(x, t) and A3(λ) are defined by

(6.24) ϕ =
1

ε
(θ+(−uB

2 (x, t))− θ+(−uB
1 (x, t))) + A3(−uB

1 (x, t))− A3(−uB
2 (x, t))

and

(6.25) A3(λ) = − 1

2π
−
∫

Γ
m

log

(∣∣∣∣
θ′+(k)

θ′−(k)

∣∣∣∣

)
dk

k − λ
.

Here the curve Γ
m

is defined in §6.1.3.
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The phase function s+(λ) in (6.12) is constructed such that ûε(x, 0) satisfies

(6.26) lim
ε↓0

ûε(x, 0) = u0(x).

The rigorous proof of Conjecture VI.4 and VI.5 have not been finished yet. However,

the methodology and some preliminary results are provided in §6.1.2 and §6.1.3.

6.1.2 Methodology and Preliminary Results Related to Conjecture VI.4

The nonlocal jump condition in the Riemann-Hilbert problem is the main diffi-

culty to prove Conjecture VI.4. Our strategy is to approximate the solution of the

nonlocal Riemann-Hilbert problem by a solution of a Riemann-Hilbert problem with

a local jump condition. For x and t satisfying x + 2Lt < x0 (x + 2Lt > x0), we

construct a curve Γs in the lower half complex plane (the upper half complex plane)

connecting the points 0 and L and satisfying

1. Γs is a smooth curve.

2. θ−(λ) (θ+(λ)) and r(λ) have analytic extensions from the real interval [0, L] to

Γs

3. There exists a point λ0 on the curve Γs such that the imaginary part of θ−(λ)

(θ+(λ)) is increasing when λ moves from 0 or L to λ0 along the curve Γs.

The area between the real axis and the curve Γs is denoted by Ωs. Since the

integrand of the integral in B− (B+) is analytic in Ωs, we can move the jump from

real axis to the curve Γs by making the following substitution:

(6.27) Ŵ s(λ) = W (λ) for λ /∈ Ωs; Ŵ s(λ) = B∓(W )(λ) for λ ∈ Ωs.

Then the function Ŵ s(λ) satisfies the following Riemann-Hilbert problem.
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Figure 6.1: Left: the curve Γs corresponding to x and t satisfying x + 2Lt < x0

Right: the curve Γs corresponding to x and t satisfying x + 2Lt > x0

Riemann-Hilbert problem VI.6.

Analyticity: Ŵ s(λ) is analytic in for λ ∈ C\Γs

Jump conditions: The boundary values taken on Γs satisfy

(6.28) Ŵ s
+(λ) = B−(Ŵ s

−)(λ)
(
Ŵ s

−(λ) = B+(Ŵ s
+)(λ)

)
for λ ∈ Γs

Normalization: Ŵ s(λ) is normalized at infinity:

(6.29) Ŵ s(λ) → 1 as λ →∞.

Based on a formal calculation, a reasonable guess one can make is that the main

contribution of the integral in B− (B+) in the jump condition is from the end points

where Laplace’s method [55] can be applied, which suggests that

(6.30) θ′−(λ)Ŵ s
+(λ) ≈ θ′+(λ)Ŵ s

−(λ) for λ ∈ Γs.

Therefore, we use the solution of the following Riemann-Hilbert problem with local

jump condition to approximate the solution of Riemann-Hilbert problem VI.6.

Riemann-Hilbert problem VI.7 (local).
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Analyticity: W
s
(λ) is analytic in for λ ∈ C\Γs

Jump conditions: The boundary values taken on Γs satisfy

(6.31) θ′−(λ)W
s
+(λ) = θ′+(λ)W

s
−(λ)

Normalization: W
s
(λ) is normalized at infinity:

(6.32) W
s
(λ) → 1 as λ →∞.

Riemann-Hilbert problem VI.7 is easily solved, and the solution is characterized

in the following Proposition.

Proposition VI.8. Riemann-Hilbert Problem VI.7 has a unique solution W
s
(λ) and

W
s
(λ) satisfies

(6.33) lim
λ→∞

20((1−W
s
(λ))λ) = uB

0 (x, t).

The next task is to show the solution of Riemann-Hilbert problem VI.6 is approx-

imately equal to the solution of Riemann-Hilbert problem VI.7 for small ε > 0. Let

Ŵ s(λ) = W
s
(λ)Es(λ). Then the error Es(λ) satisfies the following Riemann-Hilbert

Problem.

Riemann-Hilbert problem VI.9 (error).

Analyticity: Es(λ) is analytic in for λ ∈ C\Γs

Jump conditions: The boundary values taken on Γs satisfy

(6.34) W
s
+(λ)Es

+(λ) = B−(W
s
−Es

−)(λ) for λ ∈ Γs

which is equivalent to

(6.35) W
s
−(λ)Es

−(λ) = B+(W
s
+Es

+)(λ) for λ ∈ Γs
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Normalization: Es(λ) is normalized at infinity:

(6.36) Es(λ) → 1 as λ →∞.

Before we discuss the properties of the function Es(λ), we give the definition of

the Hölder spaces and Hölder norm.

Definition VI.10. The Hölder space C0,η(Γ) where 0 < η ≤ 1 consists of the

functions f on Γ a bounded subset of C for which

(6.37) ‖f‖C0,η = sup
x∈Γ

|f(x)| + sup
x,y∈Γ

|f(x)− f(y)|
|x− y|η

is finite. The norm ‖ ·‖ C0,η is called the Hölder norm.

Since Es(λ) is analytic in C except on the curve Γs, we assume that Es(λ) can

be written as

(6.38) Es(λ) = 1 +
1

2πi

∫

Γs

ρ(k)

k − λ
dk,

where ρ(λ) is in the Hölder space C0,η(Γs). The last step is to establish the following

proposition using the theory of singular integral equations.

Proposition VI.11. There exist a real number η satisfying 0 < η ≤ 1 and a unique

function ρ(λ) corresponding to η in the Hölder space C0,η(Γs) such that the function

Es(λ) given by the equation (6.38) is a solution of Riemann-Hilbert Problem VI.9

and

(6.39) ‖ρ(λ)‖C0,η = o(1) as ε → 0.

By using Proposition VI.8 and Proposition VI.11, one can prove Conjecture VI.4.

However, the rigorous proof of Proposition VI.11 has not been completed yet. This

remains work for the future.
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6.1.3 Methodology and Preliminary Results Related to Conjecture VI.5

The strategy we use here is same as the strategy used in §6.1.2, which is to

approximate the solution of the nonlocal Riemann-Hilbert problem by a solution of

a Riemann-Hilbert problem with a local jump condition. We construct a curve Γm

in the complex plane connecting the points 0 and L and satisfying

1. Γm is a smooth curve.

2. Γm = Γm
+ ∪ Γm

− , where Γm
+ is in the upper half complex plane connecting the

points λ0 and L, Γm
− is in the lower half complex plane connecting the points 0

and λ0, and λ0 is a point on real axis and satisfying −uB
1 < λ0 < −uB

0 .

3. θ′−(λ) and r(λ) have analytic extensions from the real interval [0, λ0] to Γm
− and

θ′+(λ) and r(λ) have analytic extensions from the real interval [λ0, L] to Γm
+ .

4. There exist a point λ1 on the curve Γm
− and a point λ2 on the curve Γm

+ such

that the imaginary part of θ−(λ) is increasing when λ moves from 0 or λ0 to

λ1 along the curve Γm
− and the imaginary part of θ+(λ) is increasing when λ

moves from λ0 or L to λ2 along the curve Γm
+ .

Figure 6.2: The graph of the curve ΓM
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The area between the real axis and the curve Γm
± is denoted by Ωm

± . Since the

integrand of the integral in B± is analytic in Ωm
± , we can move the jump from real

axis to the curve Γm by making the following substitution:

(6.40) Ŵm(λ) = W (λ) for λ /∈ Ωm
+ ∪Ωm

− ; Ŵm(λ) = B±(W )(λ) for λ ∈ Ωm
± .

The function Ŵm(λ) satisfies the following Riemann-Hilbert problem.

Riemann-Hilbert problem VI.12.

Analyticity: Ŵm(λ) is analytic in for λ ∈ C\Γm

Jump conditions: The boundary values taken on Γ satisfy

(6.41) Ŵm
± (λ) = B∓(Ŵm

∓ )(λ) for λ ∈ Γm
∓

Normalization: Ŵm(λ) is normalized at infinity:

(6.42) Ŵm(λ) → 1 as λ →∞.

Again formally applying Laplace’s method to the integrals, a reasonable guess

one can make is that the main contribution of the integral is from the end points,

which suggests that

(6.43) θ′−(λ)Ŵm
+ (λ) ≈ θ′+(λ)Ŵm

− (λ) for λ ∈ Γm.

However, it may not be true for λ ∈ Γm close to λ0 because there are two points −uB
1

and −uB
2 on the path of integration in B−, which are stationary points in asymptotic

analysis. The contribution from these two stationary points is

(6.44) e−iπ/4 9(−uB
1 )√

θ′′+(−uB
1 )

+ eiπ/4 9(−uB
2 )√

−θ′′+(−uB
2 )
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where

(6.45) 9(λ) = −
√

εe−iθ+(λ)/ε r(λ)

−
√

2πiλ
Ŵm(λ).

By using the definition of r(λ), the function 9(λ) can be written as:

(6.46) 9(λ) = −ie−iθ+(λ)/ε

√
−θ′−(λ)

λ
Ŵm(λ).

The contribution from these two stationary points is not small compared to the

contribution from the end points for λ ∈ Γm close to λ0, if it is not equal to 0.

Therefore, we will use a solution of the following Riemann-Hilbert problem with

local jump condition and the condition that the above quantity is equal to 0 to

approximate the solution of Riemann-Hilbert problem VI.12.

Riemann-Hilbert problem VI.13.

Analyticity: W̃m(λ) is analytic in for λ ∈ C\Γm

Jump conditions: The boundary values taken on Γm satisfy

(6.47) θ′−(λ)W̃m
+ (λ) = θ′+(λ)W̃m

− (λ)

Cancellation condition: The values of W̃m(λ) at −uB
1 and −uB

2 satisfy

(6.48) e−iπ/4 9(−uB
1 )√

θ′′+(−uB
1 )

+ eiπ/4 9(−uB
2 )√

−θ′′+(−uB
2 )

= 0

Normalization: W̃m(λ) is normalized at infinity:

(6.49) W̃m(λ) → 1 as λ →∞.

Next, we construct a solution of Riemann-Hilbert problem VI.13. As mentioned

in Chapter I, the solutions of the BO equation become approximately periodic trav-

eling waves in finite time for small ε. According to the discussion in [52, 53, 38],
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Figure 6.3: The graph of the curves Γm and Γ
m

these approximately periodic traveling waves are well-modeled by periodic traveling

solutions of the BO equation. This fact and the formula for the exact periodic trav-

eling solutions of the BO equation (2.120) suggest a method to construct a solution

of Riemann-Hilbert problem VI.13. Let

(6.50) A1(λ) = 1 +
C

λ + uB
1

where C is a constant that will be determined later to satisfy the cancellation con-

dition and

(6.51) A2(λ) = exp

(
1

2πi

∫

Γ
m

log

(
θ′+(k)

θ′−(k)

)
dk

k − λ

)
.

Then W̃m(λ) is given by

(6.52)

W̃m(λ) = A1(λ)A2(λ) for λ /∈ Ω
m

; W̃m(λ) =

(
θ′−(λ)

θ′+(λ)

)±1

A1(λ)A2(λ) for λ ∈ Ω
m
± ,

where Ω
m

= Ω
m
+ ∪Ω

m
− . In the following Proposition, we give the value of constant C

such that W̃m(λ) given by (6.52) is a solution of Riemann-Hilbert problem VI.13.

Proposition VI.14. If

(6.53) C =
(uB

2 − uB
1 )

√
uB

1 − uB
0

ei(θ+(−uB
2 )−θ+(−uB

1 ))/εei(A3(−uB
1 )−A3(−uB

2 ))
√

uB
2 − uB

0 +
√

uB
1 − uB

0

.
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then W̃m(λ) is a solution of Riemann-Hilbert problem VI.13 and satisfies

(6.54) lim
λ→∞

20(−(W̃ s(λ)− 1)λ)

=
2∑

j=0

(−1)juB
j + 2

(uB
1 − uB

2 )(uB
1 − uB

0 +
√

(uB
2 − uB

0 )(uB
1 − uB

0 ) cos ϕ)

uB
2 + uB

1 − 2uB
0 + 2

√
(uB

2 − uB
0 )(uB

1 − uB
0 ) cos ϕ

.

To show the difference between W̃m(λ) and Ŵm(λ) is small, we introduce the

following Riemann-Hilbert problem.

Riemann-Hilbert problem VI.15 (local).

Analyticity: W
m

(λ) is analytic in for λ ∈ C\Γm

Jump conditions: The boundary values taken on Γm satisfy

(6.55) θ′−(λ)W
m
+ (λ) = θ′+(λ)W

m
− (λ)

Normalization: W
m

(λ) is normalized at infinity:

(6.56) W
m

(λ) → 1 as λ →∞.

The next task is to show the difference between the solution of Riemann-Hilbert

problem VI.12 and the solution of Riemann-Hilbert problem VI.13 is small. Let

Ŵm(λ) = W̃m(λ) + W
m

(λ)Em(λ). Then the error Em(λ) satisfies the following

Riemann-Hilbert Problem.

Riemann-Hilbert problem VI.16 (error).

Analyticity: Em(λ) is analytic in for λ ∈ C\Γm

Jump conditions: The boundary values taken on Γm satisfy

(6.57) W̃m
± (λ) + W

m
± (λ)Em

± (λ) = B∓(W̃m
∓ + W

m
∓Em

∓ )(λ) for λ ∈ Γm
∓
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Normalization: Em(λ) is normalized at infinity:

(6.58) Em(λ) → 0 as λ →∞.

We want now to establish the following Proposition.

Proposition VI.17. There exist a real number η satisfying 0 < η ≤ 1 and a unique

function ρ(λ) corresponding to η in the Hölder space C0,η(Γs) such that the function

Em(λ) given by

(6.59) Em(λ) =
1

2πi

∫

Γm

ρ(k)

k − λ
dk,

is the unique solution of Riemann-Hilbert Problem VI.16 and

(6.60) ‖ρ(λ)‖C0,η = o(1) as ε → 0.

By using Proposition VI.14 and Proposition VI.17, one can prove Conjecture

VI.5. However, the rigorous proof of Proposition VI.17 has not been completed yet.

We will try to prove them in the future.

6.2 Numerical Analysis for the Stability of the Traveling
Wave Solution of the Cubic BO Equation and the Lim-
ited Area Model

The generalized BO equation

(6.61) ut + (p + 1)upux + H(uxx) = 0

where p > 0 is a constant is not known to be integrable if p )= 1. So the inverse

scattering transform cannot be applied to the generalized BO equation if p )= 1.

However, the numerical methods to solve the BO equation discussed in Chapter V

can be used to study the generalized BO equation.
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6.2.1 Instability of the Traveling Wave Solutions of the Cubic BO Equa-
tion

In §5.9.2, we use two different numerical methods to calculate the traveling wave

solution of the cubic BO equation. The numerical simulations suggest that the

traveling wave solutions of the cubic BO equation with small amplitude are stable

and those with large amplitude are unstable. The instability of the traveling wave

solutions of the cubic BO equation is an interesting phenomena, which will be studied

by a numerical method, the limit area model, in the the future.

6.2.2 Limited Area Model

The limited area model is a mathematical model widely used in weather forecast-

ing [21, 31, 27, 28, 9]. To provide accurate weather forecasing, a high resolution grid

should be used. However, it is too expensive to use a high resolution grid in a global

climate model. A compromise is to use a high resolution grid only in the area of

interest, an approach called the limited area model. In that case, a coarse resolution

global model is used to simulate the global climate, which provides the boundary

condition for the limited area model.

A high resolution grid should be used to study the perturbed solution of the cubic

BO equation. We will use the limited area model such that the high resolution grid

is only used in the area we are interested in. This technique makes the algorithm

cheaper.
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APPENDIX A

Derivation of the BO Equation

The calculation in this appendix is given in [13] and we fill in many mathematical

details to make it easy to understand. Figure A.1 illustrates a two-layer inviscid and

h
2

!
1
!
1
!
1

!
2

h
1

"(x,t)

z

x

Figure A.1: Two-layer Fluid

incompressible fluid, where h1 and h2 are the undisturbed thicknesses of the upper

and lower layers respectively. The BO equation describes internal gravity waves at

the interface of these two layers with the assumption that the wavelength L is much

larger than the thickness of the upper layer h1 and the thickness of the lower layer

h2 is infinite. The wavelength L can be measured by the initial data. Moreover,
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the upper layer is assumed to be initially irrotational and the lower layer is assumed

to be irrotational for all time. Since the fluid is incompressible and inviscid, the

density ρi, the velocity components in Cartesian coordinates (ui, vi) and the pressure

pi (i = 1 and i = 2 correspond to the top and bottom layers respectively) satisfy the

continuity equation (corresponding to incompressibility)

(A.1)
∂ui

∂x
+

∂vi

∂z
= 0

and the Euler equations (representing conservation of momentum)

(A.2) ρi

(
∂ui

∂t
+ ui

∂ui

∂x
+ vi

∂ui

∂z

)
= −∂pi

∂x

(A.3) ρi

(
∂vi

∂t
+ ui

∂vi

∂x
+ vi

∂vi

∂z

)
= −∂pi

∂z
− ρig,

where x is the horizontal coordinate, z is the vertical coordinate, and g = 9.80665m/s2

is the gravitational constant. Here we assume ρ1 < ρ2 so that the fluid is stable and

use z = 0 to represent the location of the unperturbed flat interface. The boundary

conditions at the surface and the bottom of the fluid are assumed to be:

(A.4) v1(x, h1, t) = 0; v2(x,−h2, t) = 0.

At the interface, the kinematic boundary conditions are

(A.5) ζt + u1ζx = v1; ζt + u12ζx = v2; p1 = p2 at z = ζ(x, t),

where ζ(x, t) is the displacement of the interface.

In the upper layer, to non-dimensionalize all variables and functions in the equa-

tions (A.1)-(A.3) and the boundary conditions (A.4)-(A.5), we rescale all variables

as

(A.6) x = Lx∗; z = h1z
∗; t = (L/U0)t

∗; ζ = h1ζ
∗,
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and all functions as

(A.7) p1 = (ρ1U
2
0 )p∗1; u1 = U0u

∗
1; v1 = U0v

∗
1,

where U0 =
√

gh1 is an intrinsic velocity scale for the upper layer. Then the conti-

nuity equation (A.1) and the Euler equations (A.2) and (A.3) become

(A.8)
∂u∗1
∂x∗

+ γ
∂v∗1
∂z∗

= 0,

(A.9)
∂u∗1
∂t∗

+ u∗1
∂u∗1
∂x∗

+ γv∗1
∂u∗1
∂z∗

= −∂p∗1
∂x∗

,

(A.10) γ
∂v∗1
∂t∗

+ γu∗1
∂v∗1
∂x∗

+ v∗1
∂v∗1
∂z∗

= −∂p∗1
∂z∗

− 1

and the boundary conditions (A.4) and (A.5) become

(A.11) v∗1(x
∗, 1, t∗) = 0;

(A.12) ζ∗t∗ + u∗1ζ
∗
x∗ = γv∗1 at z∗ = ζ∗(x∗, t∗),

where γ = h1/L is a dimensionless parameter. With the use of the assumption that

the wavelength L is much larger than the thickness of the upper layer h1, we can

assume that γ : 1. By rescaling v∗1 as v∗1 = γv∗∗1 , the continuity equation (A.8) and

the Euler equations (A.9) and (A.10) become

(A.13)
∂u∗1
∂x∗

+
∂v∗∗1
∂z∗

= 0

(A.14)
∂u∗1
∂t∗

+ u∗1
∂u∗1
∂x∗

+ v∗∗1
∂u∗1
∂z∗

= −∂p∗1
∂x∗

(A.15)
∂p∗1
∂z∗

= −1− γ2

(
∂v∗∗1
∂t∗

+ u∗1
∂v∗∗1
∂x∗

+ v∗∗1
∂v∗∗1
∂z∗

)
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and the boundary conditions (A.11) and (A.12) become

(A.16) v∗∗1 (x∗, 1, t∗) = 0,

(A.17) ζ∗t∗ + u∗1ζ
∗
x∗ = v∗∗1 at z∗ = ζ∗(x∗, t∗).

After integrating each side of the continuity equation (A.13) with respect to z∗ from

ζ∗ to 1 and using the boundary conditions (A.16) and (A.17), the continuity equation

(A.13) becomes

(A.18) (1− ζ∗)(u∗1)x∗ − ζ∗t∗ − u∗1ζ
∗
x∗ = 0,

which can be written as

(A.19) η1
t∗ + (η1u∗1)x∗ = 0,

where η1 = 1− ζ∗. Here g is defined to be the vertical average given by

(A.20) g(x∗, t∗) =
1

η1

∫ 1

ζ∗
g(x∗, z∗, t∗)dz∗

for any function g. Then by integrating each side of the equation (A.14) with respect

to z∗ from ζ∗ to 1 and using the notation (A.20), the equation (A.14) becomes

(A.21) η1(u∗1)t∗ +
1

2
η1(u∗1u

∗
1)x∗ +

∫ 1

ζ∗
v∗∗1 (u∗1)z∗dz∗ = −η1(p∗1)x∗ .

After apply integration by parts to the third term on the left side of the equation

(A.21) and using the equation (A.13) and the boundary conditions (A.16) and (A.17),

the equation (A.21) can be written as

(A.22) (η1u∗1)t∗ + (η1u∗1u
∗
1)x∗ = −η1(p∗1)x∗ .

Then by integrating each side of the equation (A.15) with respect to z∗ from ζ∗ to

z∗ and using the boundary condition (A.17), one can obtain

(A.23) p∗1 = −(z∗ − ζ∗) + P (x∗, t∗) + O(γ2).
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If one writes u∗1 as u∗1 = u∗(0)1 + O(γ2), then (A.14) and (A.23) suggest

(A.24) u∗(0)1 = u∗(0)1 (x∗, t∗) if u∗(0)1z∗ = 0 at t = 0.

The assumption that the upper layer is initially irrotational indicates [12] that u∗(0)1z∗ =

0 at t = 0, which implies that u∗(0)1 is independent of z∗. Therefore, η1u∗1u
∗
1 can be

written as

(A.25) η1u∗1u
∗
1 = η1u∗1u

∗
1 + O(γ2).

By substituting (A.23) and (A.25) into (A.22) and using (A.19), then the equation

(A.22) becomes

(A.26) (u∗1)t∗ + u∗1(u
∗
1)x∗ = −ζ∗x∗ − Px∗ + O(γ2).

In the lower layer, the assumption that the flow is irrotational implies that the

velocity components u2, v2 can be written as (u2, v2) = (φx, φz), where φ is the

velocity potential. Then by substituting (u2, v2) = (φx, φz) into (A.1)-(A.5), the

continuity equation (A.1) and the Euler equations (A.2) and (A.3) become

(A.27) φxx + φzz = 0.

(A.28) φtx +
1

2
(φ2

x + φ2
z)x = − 1

ρ2
(p2)x

(A.29) φtz +
1

2
(φ2

x + φ2
z)z = − 1

ρ2
(p2)z − g

and the boundary conditions (A.4) and (A.5) become

(A.30) φz(x,−h2, t) = 0

(A.31) ζt + φxζx = φz, at z = ζ(x, t).
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Here, the Euler equations (A.28) and (A.29) imply that the pressure p2 can be written

as

(A.32) p2 = −ρ2

(
φt +

1

2

(
φ2

x + φ2
z

)
+ gz

)
+ C(t)

where C(t) is a function of t. After substituting z = ζ(x, t) into (A.32), differentiating

it with respect to x and using the boundary condition (A.31), the equation (A.32)

becomes

(A.33) (p2)x = −ρ2

(
1

2

(
2φt + φ2

x + φ2
z

)
x

+
ζx

2

(
2φt + φ2

x + φ2
z

)
z
+ gζx

)
,

at z = ζ(x, t). In the lower layer, to non-dimensionalize all variables and functions in

the equations (A.27)-(A.29) and the boundary conditions (A.30)-(A.31), we rescale

all variables as

(A.34) x = Lx∗, z = Lz∗∗, t = (L/U0)t
∗, ζ = h1ζ

∗,

and all functions as

(A.35) p2 = (ρ1U
2
0 )p∗2, φ = γU0Lφ∗.

Then the equations (A.27) and (A.33) become

(A.36) φ∗x∗x∗ + φ∗z∗∗z∗∗ = 0,

(A.37) (p∗2)x∗ = −r (γφ∗t∗x∗ + ζ∗x∗) + O(γ) at z∗∗ = γζ∗(x∗, t∗),

where r = ρ2/ρ1 and the boundary conditions (A.30) and (A.31) become

(A.38) φ∗z∗∗(x
∗,−h2/L, t∗) = 0,

(A.39) ζ∗t∗ + γφ∗x∗ζ
∗
x∗ = φ∗z∗∗ , at z∗∗ = γζ∗(x∗, t∗).
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With the use of the assumption that the thickness of the lower layer h2 is infinite,

one can write the boundary condition (A.38) as

(A.40) φ∗z∗∗(x
∗,−∞, t∗) = 0.

After applying the Fourier transform with respect to x∗ to each side of the equation

(A.36), the equation (A.36) becomes

(A.41) φ̃∗z∗∗z∗∗(ξ, z
∗∗, t∗)− ξ2φ̃∗(ξ, z∗∗, t∗) = 0,

where g̃ is defined to be the Fourier transform of g:

(A.42) g̃(ξ, z∗∗, t∗) =

∫ ∞

−∞
g(x∗, z∗∗, t∗)e−iξx∗dx∗ for any function g ∈ L2(R).

Then the general solution of the equation (A.41) is

(A.43) φ̃∗(ξ, z∗∗, t∗) = C1(ξ, t
∗)ez∗∗ξ + C2(ξ, t

∗)e−z∗∗ξ,

where C1(ξ, t∗) and C2(ξ, t∗) are functions of ξ and t∗. By imposing the boundary

conditions (A.39) and (A.40), one can obtain the formula for φ̃∗(ξ, z∗∗, t∗):

(A.44) φ̃∗(ξ, z∗∗, t∗) = sgn(ξ)
ζ̃∗t∗
ξ

ez∗∗sgn(ξ) + O(γ).

After applying the inverse Fourier transform with respect to x∗ to each side of the

equation (A.44), differentiating it with respect to x∗ and letting z∗∗ = γζ∗(x∗, t∗),

one can obtain

φ∗x∗(x
∗, γζ∗(x∗, t∗), t∗) =

1

2π

∫ ∞

−∞
isgn(ξ)ζ̃∗t∗e

iξx∗dξ + O(γ)

=
1

2π

∫ ∞

−∞
H̃(ζ∗t∗)e

iξx∗dξ + O(γ)

= H(ζ∗t∗) + O(γ).

(A.45)

Then by substituting it into (A.37), the equation (A.37) becomes

(A.46) (p∗2)x∗ = −r (γH(ζ∗t∗t∗) + ζ∗x∗) + O(γ2) at z∗∗ = γζ∗(x∗, t∗).
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The boundary condition (A.5) implies that p1 = p2 at the interface. Moreover, the

rescalings (A.6), (A.7), (A.34) and (A.35) indicate (p∗1)x∗ = (p∗2)x∗ at the interface.

Then by substituting z∗ = ζ∗ into (A.23) and differentiating each side of the equation

(A.23) with respect to x∗, the equation (A.23) becomes

(A.47) (p∗1)x∗ = Px∗(x
∗, t∗) + O(γ2) at z∗ = ζ∗(x∗, t∗).

After comparing (A.46) and (A.47), we have

(A.48) Px∗ = −r (γH(ζ∗t∗t∗) + ζ∗x∗) + O(γ2) at z∗ = ζ∗(x∗, t∗).

By writing H(ζ∗t∗t∗) as H(ζ∗t∗t∗) = −H(η1
t∗t∗) and using (A.19), the equation (A.48)

becomes

(A.49) Px∗ = −r
(
γH((η1u∗1)x∗t∗) + ζ∗x∗

)
+ O(γ2) at z∗ = ζ∗(x∗, t∗).

After letting z∗ = ζ∗(x∗, t∗) in (A.26) and substituting (A.49) into (A.26), the equa-

tion (A.26) becomes

(A.50) (u∗1)t∗+u∗1(u
∗
1)x∗+(1− r) ζ∗x∗ = rγH((η1u∗1)x∗t∗)+O(γ2) at z∗ = ζ∗(x∗, t∗).

Because of the weakly nonlinear assumption, we rescale u∗1 as u∗1 = γu∗∗1 and

rescale ζ∗ as ζ∗ = γζ∗∗, and then (A.19) and (A.50) become

(A.51) ζ∗∗t∗ − (u∗∗1)x∗ + γ(ζ∗∗u∗∗1)x∗ = 0 at z∗ = ζ∗(x∗, t∗),

(A.52) (u∗∗1)t∗ + γu∗∗1 (u∗∗1 )x∗ + (1− r) ζ∗∗x∗ = rγH((u∗∗1)x∗t∗) + O(γ2)

at z∗ = ζ∗(x∗, t∗). The leading order terms in (A.51) and (A.52) can be reduced to a

linear wave equation with wave velocity c0 =
√

r − 1. We are interested in nonlinear

and dispersive properties of the system. In order to best capture these, we introduce
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the new coordinates corresponding to moving at the linear wave speed and speeding

up the slow dynamics:

(A.53) X = x∗ − c0t
∗, T = γt.

Then under the new coordinates, the equation (A.51) and (A.52) become

(A.54) (u∗∗1 )X = γζ∗∗T − c0ζ
∗∗
X + γ(ζ∗∗u∗∗1 )X ,

(A.55) γ(u∗∗1 )T + (γu∗∗1 − c0)(u∗∗1 )X + (1− r) ζ∗∗X = −c0rγH((u∗∗1)XX) + O(γ2)

at the interface. Therefore, after substituting (A.54) into (A.55), one can obtain the

BO equation:

(A.56) ζ∗∗T + c1ζζ∗∗X + c2H(ζ∗∗XX) = 0,

where c1 = −3c0/2 and c2 = c0r/2.
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APPENDIX B

Proof of an Integral Identity

In this appendix, we provide the proof of an identity used in §2.2.8. The identity

(B.1)

∫

R
u0(x)C+(u0C+(u0C+(· · ·u0C+(u0) · · · )))(x) dx =

1

k

∫

R
u0(x)k dx, k ∈ Z+,

where the Cauchy projector C+ occurs k − 1 times in the integrand, holds true for

any function u0(x) ∈ L1(R)∩L∞(R). Here, we use Ik to represent the left hand side

of the identity (B.1) and rewrite Ik as:

(B.2) Ik =

∫

R
u0(x)J+

k (x) dx, k = 1, 2, 3, . . . ,

where the function J+
k (x) is given by the following recurrence relation:

(B.3) J+
1 (x) = 1; J+

k+1(x) = C+(u0J
+
k )(x), k = 1, 2, 3, . . . .

To simplify the proof, we introduce new functions J−k (x), which are given by the

following recurrence relation:

(B.4) J−1 (x) = 1; J−k+1(x) = C−(u0J
−
k )(x), k = 1, 2, 3, . . . .

Then we can write Ik in the form

(B.5) Ik =

∫

R
J−1 (x)u0(x)J+

k (x) dx, k = 1, 2, 3, . . . .
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By using the identity (2.43), we have, for 1 ≤ s ≤ k − 1

(B.6)

∫

R
J−s (x)u0(x)J+

k+1−s(x) dx = −
∫

R
J−s+1(x)u0(x)J+

k−s(x) dx.

This equation implies that Ik can also be written as:

(B.7) Ik = (−1)s−1

∫

R
J−s (x)u0(x)J+

k+1−s(x) dx, for 1 ≤ s ≤ k.

Then after summing each side of the equation (B.7) from s = 1 to s = k, one can

obtain

(B.8) kIk =

∫

R
u0(x)

(
k∑

j=1

(−1)k−jJ+
j (x)J−k+1−j(x)

)
dx.

In fact, the sum in the equation (B.8) is equal to uk−1
0 , which will be proved below by

the mathematical induction. We use Ok to represent the sum in the equation (B.8):

(B.9) Ok =
k∑

j=1

(−1)k−jJ+
j J−k+1−j.

It is obvious that

(B.10) O1 = 1; O2 = u0.

Assume Ok = uk−1
0 for k ≤ m, then we write Om+1 as:

(B.11) Om+1 =
m∑

j=1

(−1)m+1−jJ+
j J−m+2−j + J+

m+1.

To show Om+1 = um
0 , we introduce new functions Jm+1,s(x), which can be written in

terms of J−s (x) and J+
m+1−s(x):

(B.12) Jm+1,s = C+(u0J
−
s J+

m+1−s) for s = 1, 2, · · · , m.



170

Then by using the identities (2.39), (2.40) and (2.41), we have, for 1 ≤ s ≤ m− 1,

Jm+1,s = C+(u0J
−
s J+

m+1−s)

= −C+(C−(u0J
−
s )J+

m+1−s) + C+(u0J
−
s )J+

m+1−s

= −C+(J−s+1J
+
m+1−s) + C+(u0J

−
s )J+

m+1−s

= −C+(u0J
−
s+1J

+
m−s) + C+(u0J

−
s )J+

m+1−s

= −Jm+1,s+1 + C+(u0J
−
s )J+

m+1−s.

(B.13)

From the definition of Jm+1,s(x), it is obvious that

(B.14) Jm+1,m = C+(u0J
−
m)J+

1 and Jm+1,1 = J+
m+1.

The equations (B.13) and (B.14) imply that the last term on the right side of the

equation (B.11) J+
m+1 can be written as:

(B.15)

J+
m+1 = Jm+1,1 =

m∑

j=1

(−1)j−1C+(u0J
−
j )J+

m+1−j =
m∑

j=1

(−1)m−jJ+
j C+(u0J

−
m+1−j).

Then after substituting it into (B.11) and using the identity (2.39) and the assump-

tion Ok = uk−1
0 for k ≤ m, we have

Om+1 =
m∑

j=1

(−1)m−jJ+
j

(
C+(u0J

−
m+1−j)− J−m+2−j

)

=
m∑

j=1

(−1)m−jJ+
j u0J

−
m+1−j

= u0Om

= um
0 .

(B.16)

Thus, we conclude that Ok = uk−1
0 for k ∈ Z+. By substituting this into (B.8), we

complete the proof of the identity (B.1) as follows:

(B.17) Ik =
1

k

∫

R
u0(x)Okdx =

1

k

∫

R
uk

0(x)dx for k ∈ Z+.
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