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Abstract

This is the second of a two-part paper. As the first part focused on the issues of data structure
and fast difference operation, this part studies the non-convergence of the Alternating Sum of
Volumes (ASV) process. An ASV is a series of convex components joined by alternating
union and difference operations. It is desirable that an ASV series be finite. However, such is
not always the case - that the ASV algorithm can be non-convergent. In this paper, the causes
of this non-convergence are investigated and the conditions responsible for it is found and
proven. Linear time algorithms are then developed for the detection.



1. INTRODUCTION

An Alternating Sum of Volumes (ASV) series is convergent if a deficiency €, is the null
set; otherwise, it is said to be non-convergent. (For computation of efficiency, the detection of
a null deficiency . can be replaced by the determination of the convexity of Q, ,.) Figure 1
illustrates a non-convergent ASV series. The series of deficiencies Q;, ,,..., as derived from
the convex hull (CH) and difference (-) operations never converges to the null set, resulting in
an infinite alternating series: {CH(Q) - CH(Q;) + CH(,) - ... - CH(Q,;.;) + CH(L,,) - ...}.
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Figure 1. llustration of ASV non-convergence



As implied in Figure 1, the non-convergence of an ASV series is determined by the
non-convergence of a deficiency in its expansion. It is known [12] that an ASV series is
non-convergent when the convex hull of a deficiency €2, identifies with the convex hull of the

deficiency of €,,,. For the example in Figure 1, the convex hull CH(€2;) is equal to the convex
hull CH(Q,). As the result of the identification: CH(€2;)=CH(£2;,,), the following relation

between the deficiencies holds: €2;=€2;,, (i<j).

Formally, a deficiency €, is said to be non-convergent if the convex hull of its deficiency
CH(Q;)-Q; is equal to CH(Q;), and convergent otherwise. It is desirable to be able to
characterize the non-convergence of a deficiency €; directly, rather than invoking the
comparision between CH(Q;) and CH(€,)-Q;. This persuit is justified in two regards. First,
four convex hull operations and two set difference operations must be performed to obtain the
datum CH(Q;), CH(Q,)-Q;, and CH(CH(L,)-€;) for the comparision. Set difference operation
on a polyhedron with m vertices is known to take at least O(m?) time prior to the O(mlogm)
result in Part I of this paper. Secondly, even if the fast O(mlogm) difference operation is
involved, detecting the presence of a null set, as the result of the difference, can be numerically
unstable. A fast non-convergence detection algorithm for a pseudo polyhedron without

carrying on the set difference and comparision operations is offered as a new result for this part
of the paper.

Suppose a fast non-convergence detection algorithm for a deficiency is available. One way
to detect the non-convergence of an ASV series is to test for the non-convergence of every
deficiency as it is being computed. The time required by such a detection scheme is heavily
dependent on the depth n of the first non-convergent deficiency €, -- the larger the number n
is, the more time it will take. Alternatively, it may be inquired if the detection of the
non-convergence of a series can be achieved without invoking the ASV process itself. Not
only because the deficiencies thus produced are non-productive if that ASV series does not
converge, but also because a separate scheme may speed up the detection time. From the
theorectic point of view, such a study induces some interesting problems, such as that of
finding the minimum number of faces in a non-convergent deficiency.

These two closely related issues, fast detection of the non-convergence of a deficiency and
that of an ASV series, are investigated in this paper. In the next section, the concepts of strong
hull and weak hull vertices are introduced. The characterization of these two types of vertices



leads to an O(nlogn) algorithm for detecting the non-convergence of a deficiency, where n is
the number of vertices in the deficiency. In Section 3, a sufficient condition for the
non-convergence of an ASV series is given, which requires only linear time to detect.



2. CHARACTERIZATION OF NON-CONVERGENT DEFICIENCIES

In this section, the following problem is to be solved: Given a pseudo polyhedron Q;,
under what condition will the equation CH(£2;,) = CH(CH(Q,) - Q,) hold and how fast can such
a condition be deiected? The symbols "CH" and "-" represent the convex hull and regularized
difference operations, respectively. (Note that every deficiency in an ASV series must be a
pseudo polyhedron, as shown in Part I of this paper. Hereafter, the two terms "pseudo
polyhedron" and "deficiency" will be used interchangeably.) Before the condition for
non-convergence is characterized, it is useful to summarize the relations between the boundary
and interior points of a pseudo polyhedron Q;, its convex hull CH(£,), and its deficiency
CH(RQ;) - ;. The first relation, which has been shown in Part I of this paper, is re-cited

below.

Lemma 1. The deficiency of a pseudo polyhedron €; is also a pseudo polyhedron,
whose interior I(CH(,) - ;) is the set difference {I(CH(Q,)) - I(R;)}, and the boundary
B(CH(Q,) - Q) is a subset of {B(CH(£)) - B(Q;)} that forms the closure of {I(CH(L)))
-1(Q2)}.

A pseudo polyhedron is completely described by its faces and a face is determined by its
edges which themselves are defined by their end points called vertices. Since the vertices of the
convex hull of a set of points must be a subset of that point set, by Lemma 1, the vertices of
the deficiency of €, is a subset of the vertices of Q. In other words, the difference operation
in the ASV expansion can be viewed as a vertex elimination process: After each difference
operation, the deficiency Q; possesses fewer vertices than does the deficiency Q. ; this
process continues until a convex pseudo polyhedron Q,, is reached so that its deficiency Q.

is the null set.

If the vertices in the deficiencies can not be eliminated through the difference operation,
then the ASV series does not converge. A vertex of a pseudo polyhedron , is eliminatable if

it does not exist in its deficiency CH(Q;)-Q;, otherwise it is non-eliminatable. A formal
definition of the non-convergence of pseudo polyhedron is then in order.

Definition 1. A pseudo polyhedron Q; is non-convergent if all of its vertices are



non-eliminatable; otherwise, itis convergent.

To characterize the eliminatability of vertices in Q;, the vertices are categorized into two
groups, hull vertices and internal vertices. The hull vertices are those that are on the boundary
of CH(Q;), whereas those vertices of £; that are not on the boundary of CH(C2,) are internal.
Each of the internal vertices has a three-dimensional neighborhood which is strictly inside
CH(Q,). Furthermore, this neighborhood contains a subset of {I(CH(;)) - I(2;)} since an
internal vertex is also a boundary point of ;. Therefore, by Lemma 1 all the internal vertices

are non-eliminatable. To study the eliminatability of the hull vertices, they are further separated
into weak and strong hull vertices.

Definition 2. In E3, the three-dimensional Euclidean space, a hull vertex of ; is weak if

it has a three-dimensional neighborhood that contains points in {€; U {E3 -CH(;)}} only;

otherwise it is called a strong hull vertex .

Difference operation
o

O : Weak hull vertices
@ : Strong hull vertices

R - Intemnal vertices

Figure 2. Weak, strong hull and internal vertices

As shown in Figure 2, after a difference operation, strong hull and internal vertices remain
whereas all the weak hull vertices are eliminated. Let those faces (edges) of a pseudo
polyhedron Q; be called hull faces (hull edges) if they are completely on the boundary surface

of CH(RQ,), and internal faces (internal edges) otherwise. Referring to Figure 2, it can be

inferred that a hull vertex is weak if and only if all of its incident faces are hull faces of ;.



(Note however that this condition does not hold for incident edges. That is, a hull vertex with
incident hull edges only is not necessarily weak, as shown by Figure 3, where the strong hull
vertex v has no incident internal edges.) The contribution of strong hull vertices to the
non-convergence is manifested by the following lemma.

Figure 3. A strong hull vertex with no incident internal edges

Lemma2. A pseudo polyhedron Q; is non-convergent if and only if all of its hull

vertices are strong.

Proof. First it is noted that the hull and internal vertices partition the entire vertex set
of Q;, due to their mutual exclusivity. By Definition 2, a weak hull vertex has an
open three-dimensional neighborhood within which Q; is equal to CH(2;) and thus there
is no any subset of {I(CH(R;)) - I(€,)} in that neighborhood. Hence, by Lemma 1, all the
weak hull vertices are eliminatable. Conversely, since every three-dimensional
neighborhood of a strong hull vertex contains a subset of {I(CH(Q,)) - 1(€2)}, they are
preserved on the deficiency of Q;, i.c., they are non-eliminatable. By Definition 1 and the

fact that all the internal vertices are non-eliminatable, the proof is complete.
Q.ED.

Lemma 2 implies that the detection of the non-convergence of a pseudo polyhedron £, is
equivalent to distinguishing its strong hull vertices from the weak ones. Such a process takes
two steps: classify the hull and internal faces of ;, and then check if £, has a vertex which has

incident hull faces only. Whether a face is internal can be identified by way of checking that of
one of its interior points. (Such a point must not be on an edge of the face since an internal face
may have hull edges only, e.g. face f in Figure 3.) €2, is then non-convergent if and only if no



weak hull vertex exists.

The algorithm given below follows the two steps just described. It is assumed that a
procedure HULL(N,V,V,,,) is in hand, which takes a list V of N points as input and outputs

a property array V,, such thatif Vi, (i) is "true” then point i in V is a hull vertex of CH(V);

and "false" if it is an internal vertex.

Algorithm DETECT ()
/* Detect the non-convergence of a pseudo polyhedron €2,

The vertex list V and face list F of £, have n, vertices and ng faces, respectively */

begin
step 1. for k=1to ng¢do
V(n,+k) <-- an interior point of face k in F
end do

step2.  call HULL(n,+ng,V,V,,,)
step 3. set array VP(1: n,) to "true”

step4.  fork=1tongdo

for every vertex v of face k in F do

VP(v) <-- VP(V)NV(n,+k)
enddo
end do

stepS. fork=1ton,do
if VP(k)="true" then
return (‘convergence')
end if
end do



step 6.  return ('non-convergence’)
end DETECT

In the algorithm DETECT, the n; interior points of the faces of Q; are first appended to
the vertex array V of Q. Since each interior point of a face can be obtained in constant time by
considering any two adjacent edges of that face, step 1 takes O(ny) time. The convex hull
procedure HULL is called at step 2 which requires only O((n,+n¢)log(n,+ny)) time [6]. At
step 3, a property array VP(1:n,) is preset to "true". At step 4, the following is carried out: if a
face k is internal, i.e., its interior point tag V ,,(n,+k) is "false", the corresponding entries in
VP for all the vertices of face k are reset to "false". Such a process obviously takes O(D) time,
where D=Zd; (i=1,2,...,n,), and d; is the degree of vertex i. It is shown in the Appendix of
Part I of this paper that D is O(n¢). Finally, at step 5, the array VP is scanned and Q; is

identified as convergent if some entry in VP is "true", and non-convergent otherwise. The time
complexity of the algorithm DETECT is summarized by the following theorem.

Theorem 1. The detection of the non-convergence of a pseudo polyhedron ; with n
vertices can be done in O(nlogn) time.

Compared to the simple comparision method: CH(Q;) = CH(CH(Q,)-Q,) [12], the new
detection algorithm DETECT avoids both the time consuming difference operation and the
identification of a null set which could be numerically unstable. Two convex hull operations
are also saved.

It may be noted that the detection algorithm DETECT disregards the disconnectedness of
a set. The pseudo polyhedron €, in Figure 4(a) is non-convergent by Lemma 2. The

deficiency €2;,,, however, consists of two separate pseudo polyhedra P, and P,. Though €,
is non-convergent as a single set, it is convergent if represented as ASV(;,;) = ASV(P,+P,)
= ASV(P,) + ASV(P,) because P, and P, are both convergent. It results in a convergent ASV
tree ASV()) =H- Q;,; =H - ASV(Q,,,) =H - (ASV(P,) + ASV(P,)), which branches at the
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deficiency €2;,;. In some other cases, a pseudo polyhedron, though connected, might be
separated uniqﬂely at some edges such that the separated subsets are all convergent. For
example, the pseudo polyhedron €2; in Figure 4(b) is non-convergent by Lemma 2, it is
however convergent if expressed as Q; =H - Q;,; =H - (P1+ P, + P; + P,) since allP; , P,

, P; and P, are convergent.

Qi+l -~ -
] P DQ é"

(b)

Figure 4. Convergence by set separation

Both examples of set separation on ,,; shown in Figure 4 bear a crucial property: the
boundary of the separated pseudo polyhedron remains unchanged. Unlike polyhedral
decomposition [4], such a property guarantees that the boundary after the separation will have
the same sets of vertices, edges, and faces, with only the adjacency and incidence relations
among them altered. Furthermore, it will be shown next that such a separation is unique, thus
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justifying the existence of a deterministic algorithm. To define set separation rigrously, the
concept of well-connectedness is needed.

Definition 3. Two points p and q of a pseudo polyhedron Q; are said to be well

connected in Q; if there exists a curve ¢ between p and q such that all the points in c,
except for possibly p and q, are in I(€2,). €; is a well-connected set if all of its points are

well connected in it, otherwise it is a ill-connected set. (Refer to Figure 5.)

[ [\

(a) Well-Connected set (b) ll-Connected set
Figure 5. Well-connected set vs. Ill-connected set

The Q;,, in Figure 4(a) and both Q; and Q;,, in Figure 4(b) are ill-connected pseudo
polyhedra. A well connected pseudo polyhedron is also called a robust set , meaning its interior

is all connected. A subset { of a pseudo polyhedron Q; is a maximally well-connected set
(MWCS) of Q; if {is a well-connected set and any addition of non-{ points of Q; to { will

constitute an ill-connected set. As an example, only P;, P, , P; and P, are the MWCSs of the

pseudo polyhedron €2,,, in Figure 4(b).

It is desirable that an ASV series be expanded as much as possible so that more features
can be extracted. Once a non-convergent and ill-connected deficiency is encountered, it should
be separated into the MWCSs and the ASV process can then be performed on each of them.
This leads to the notion of strong and weak non-convergence.

Definition 4. A non-convergent pseudo polyhedron Q; is strongly non-convergent if

both itself and its deficiency are robust. Otherwise, €, is weakly non-convergent.

As examples, the deficiency Q, in Figure 1 is strongly non-convergent since both itself
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and its deficiency Q, are robust, whereas each Q; in Figure 4 is weakly non-convergent

because either itself or its deficiency £, is ill-connected.

The detection of the strength of non-convergence of a pseudo polyhedron €; of n faces
requires three steps: the identification of its non-convergence, the computation for the
deficiency of Q,, and the classification of the well-connectedness of Q; and/or its deficiency.
The first step can be done, by Theorem 1, in O(nlogn) time. The difference operation also
requires O(nlogn) time as shown in Part I of this paper. Thus, if the classification of the
robustness of Q; can be done in O(nlogn) time, so can the detection of the strong
non-convergence. Since ; is robust if and only if its MWCS separation contains only one

MWCS, i.e., itself, the goal becomes the finding of an O(nlogn) time MWCS separation
algorithm

In implementing such an algorithm, it is noted that, by definition of a pseudo polyhedron,
the well-connectedness of its boundary point set will ensure it to be a well-connected set . This
fact ensures that the MWCSs of a pseudo polyhedron can be detected by checking only the
well-connectedness of its faces.

Let two faces of a pseudo polyhedron be well-adjacent to each other if they share a
common edge and are well-connected to each other. It can be easily shown that two faces A
and B of a pseudo polyhedron are well-connected if and only if either they are well-adjacent or
there exist a number of faces f, f,, ..., fy such that A is well-adjacent to f;, f is well-adjacent

tof,, ..., and f, is well-adjacent to B. For example, in Figure 6, faces A and B are not

well-connected because the curve ¢ connecting points p and q passes through edge "e" ,
which does not belong to the interior of that pseudo polyhedron.

edge ©
f
fm A |\‘ ........ J— son \ . .l”‘ m B
point p }nvec pointq

Figure 6. Ill-connectedness of faces of a pseudo polyhedron
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To characterize face well-adjacency, let fy, f, ..., £, be the faces incident to a common
edge, ordered by their spatial angles. (In Figure 7, f,.f,,...f, are the intersections between
the faces sharing a common edge and a plane orthogonal to that edge.) Apparently, the
well-adjacent face of face f; (i=1,2,...,m) is either f; ; or f;,; (mod m), depending on the
direction of the outward normal of f;. Such a pairing process can be done in O(m) time. The
following recursive procedure MWCS_FACES finds the faces of a maximally
well-connected set of a pseudo polyhedron Q;. The input is the pseudo polyhedron

representation {V.E,F,NORM,E;} of Q; and the index of a face of €. The output are the
indices of those faces of €, that form the boundary of a MWCS of Q.

Figure 7. Well-adjacency of faces.

Procedure MWCS_FACES (f, Q)

™ Find those faces of a maximum well-connected set of pseudo polyhedron Q;
f is the index of a face that is required to be on the MWCS.

*/

begin

step 1.  output

step2. €, &,..., €, <-- edges of face f

step3. forj=1,k do

step 3.1. f' <-- the index of the face well-adjacent to f at edge ¢;

step 3.2. if (f' has not been output) then call MWCS_FACES(f',L,)
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end do (step 3}
end MWCS_FACES

Suppose a total of m edges €1,€,,...,.6, of &; are found in a MWCS, denoted by P,
through MWCS_FACES. Let k; and k;' be the face adjacency indices of €; and P at edge e;
respectively (i=1,2,...,m). Step 1 takes constant time and thus the overall time spent at step 1
when MWCS_FACES terminates is O(n), where n is the number of faces on P. Since each
face of P is processed only once, the overall time required by step 2 is O( 2(k;) (i=1,2,...,m)).
As for the loop at step 3, note that the indices of the faces of £; adjacent to edge e; are stored
in the order of their spatial angles in an entry of the Eg list of €;. So, only O(logk;) time is

needed to locate the position of f in that entry, hence, the index f' of the face well-adjacent to

face f at an edge €;. As a result, the overall time taken by step 3.1 is O(Z(k;'logk;)

(i=1,2,...,m)). The total time cost of MWCS_FACES is therefore O(n + (Z(k;'logk;)
(i=1,2,...,m))).

Before presenting the complete algorithm to carry out the MWCS separation, it is
necessary to clarify that, given the indices of n faces that form the boundary of a MWCS of €;,

only O(n) time is needed to construct the pseudo polyhedron representation
<V,E,F,NORM,E;> of that MWCS, say P;. To see this, note that all the V,E,F,NORM and E;

lists of P;are readily available in the <V,E,F,NORM, E¢> of ;. The only work needed
besides the retrieval is to re-index the vertices, edges and faces of P; once they are retrieved
from Q. For example, if only vertices {Vv3,v4,v7,V9,V;5} are on P;, and there is an edge on P;
whose entry in the E list of Q is <9,4>, then this edge will become <4,2> in the E list of P,
because vertices vg and v, now sit at the forth and second positions of the V list of P;.
Analogously, if edges {e,,e7.€10.¢13) are on P; and P; has a face stored in the F list of Q; as
<10,7,13>, then this face will become <3,2,4> due to the re-indexing of {e,,€7,€10,€13}-

Clearly, this re-indexing process can be done in O(n) time through simple index mapping. Let
MWCS_OUTPUT be such a process, which takes as input a pseudo polyhedron €; and a

list L of indices of the faces of Q; and outputs the pseudo polyhedron representation of a
MWCS of Q; whose faces are those of §; with indices in L. Utilizing both procedures
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MWCS_FACES and MWCS_OUTPUT, the algorithm given next performs the MWCS
separation.

Algorithm MWCS_SEPARATION (Q)

/* Compute the MWCS's of a pseudo polyhedron Q, and output them  */
begin

step 1. unmark all the faces in the F list of

step 2.  while (there is a face f in F which is not marked) do

step 2.1. L <-- MWCS_FACES (f, Q)

step 2.2.  call MWCS_OUTPUT(L,Q)

step 2.3. mark all the faces with indices in L
end do {step 2}
end MWCS_SEPARATION

Lemma 3. The MWCS separation of a pseudo polyhedron €, with n¢ faces can be done
in O(ndogny) time and O(ny) space.

Proof. In the algorithm MWCS_SEPARATION, step 1 takes O(ng) time. For the
while loop at step 2, since each face can only be in one MWCS, the overall time cost of
step 2.2 and step 2.3 is clearly O(n). The time taken by each execution of the procedure

MWCS_FACES is in the form of O(n + (Z(k;'logk;) (i=1,2,...,m))), where n and m
are the numbers of the faces and edges on that particular MWCS, k; and k;' are numbers of
the faces of €; and that MWCS adjacent to an edge of the MWCS respectively. By the

same reason that a face of Q; can only be in one of its MWCS's, the sum of

2k, (i=1,2,..,m) over all the edges of Q, is O(Xk; (i=1,2,...,n,)), where n, is the total
number of edges of Q;. Therefore, after the termination of MWCS_SEPARATION the

overall time taken by step 2.1 is O(n¢+ (Zk;) logn ), that is, O(n¢logn;), since 2k, (i=
1, 2,...,n,) is O(ny). Q.E.D.
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With Theorem 1 and Lemma 3, the following is in order.

Theorem 2. Whether a pseudo polyhedron Q; is strongly non-convergent or not can be
detected in O(nlogn) time, where n is the number of the faces of €2,

It is worth noting that in the ASV process, the algorithm MWCS_SEPARATION not
only detectes the strong non-convergence of a deficiency £2;, but also constructs the MWCS's
of the deficiency €,,,. The pseudo polyhedron representation of the MWCS's can then be used

for the subsequent convex hull and difference operations, along the corresponding branches
after Qi+1'
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3. FAST DETECTION FOR ASV NON-CONVERGENCE

An ASV series is non-convergent if it has a non-convergent deficiency Q. A way to

detect the non-convergence of an ASV series is to check the non-convergence of every
deficiency in the series. The time required by such a detection sets an upper bound.

Theorem 3. It needs at most O(nZlogn) time to decide whether the ASV series
of a pseudo polyhedron Q is convergent or not, where n is the number of vertices of L.

Proof. Recall that the difference operation is a vertex elimination process. That is, a
non-convergent deficiency Q, in ASV(Q) always has fewer vertices than that of Q, ;. In
the worst case, suppose only one vertex is eliminated after each difference operation. To
obtain the deficiency Q, through ASV process, k convex hull and difference operations

are needed, resulting in an overall time requirement of 20(ilogi)(i=n,n-1,...,n-k).

Therefore, at most 20(ilogi)(i=n,n—1,...,1)SO(n2logn) time is needed to detect whether
ASV(£2) converges or not. QE.D.

In an attempt to improve this upper bound, the local cause of the ASV non-convergence of
a pseudo polyhedron Q is sought. Such a study results in a sufficient condition for the ASV
non-convergence, which eventually leads to a linear detection algorithm. In search for this local
cause, it is useful to invoke the mechanics of regularized intersection [9].

Definition 5. The regularized intersection of two pseudo manifolds A and B, denoted by
A*B, is a pseudo manifold whose interior is I(A)NI(B).

Figure 8 gives two examples of regularized intersection. As shown in Figure 8(a), the

regularized intersection A*B is the null set ¢ even though the ordinary set intersection ANB
yields two faces. The result of the regularized intersection in Figure 8(b) is a non-convergent
pseudo polyhedron. A tantalizing finding is revealed by the example of Figure 8(b): if there
exists a (non-empty) subset (prior to the reqularized intersection) which is non-convergent,
then the ASV series to be expanded is non-convergent. Such an observation is not an
coincidence, the basis of which is shown by the following lemma.



G

(b)

Figure 8. Regularized set intersection

Lemma4. Let { be a subset of the vertices of a pseudo polyhedron Q. If the

regularized intersection between Q and CH({) is a non-convergent pseudo polyhedron,

the ASV series of Q is non-convergent.

Proof.  Assume that Q*CH({) is a non-convergent pseudo polyhedron. It is claimed
that all the vertices in { are non-eliminatable. Suppose there is a deficiency ; in

ASV(Q), whose vertex set is a superset of {, such that some vertex v in { is lost on the

deficiency Q,,,. By Lemma 2, this means that all the incident faces of v are the hull
faces of Q. Since CH({) is a subset of CH(Q;), it follows that v is also a weak hull

vertex of Q*CH({), which is contractory to the assumption that Q*CH({) is
non-convergent. QE.D.

Lemma 4 provides a sufficient condition for the non-convergence of an ASV series,
without invoking the ASV process itself. A direct implement of such an algorithm is, however,
infeasible since there are O(n!) number of subsets. To reduce this high complexity, the
characterization of local subsets of vertices, i.e., those that are adjacent to a common vertex, is
investigated.



19

Let two vertices of a pseudo polyhedron be said to be adjacent to each other if they are the
two end points of an edge.

Definifon 6. A vertex v of a pseudo polyhedron Q is supportable if there exists a plane

containing v such that the point set &, lie on its one side, (where §, consists of

those vertices that are adjacent to v); otherwise v is a non-supportable vertex.

As an example, all the vertices except for v of the pseudo polyhedron in Figure 9(a) are
supportable. Also shown in Figure 9(b), a vertex v is non-supportable if and only if it is
strictly inside the convex hull of the vertices adjacent to it.

(b)
Figure 9. Supportable and non-supportable vertices

Lemma 5. If a pseudo polyhedron Q has a non-supportable vertex, then the ASV
series of Q is non-convergent.

Proof.  Let v be a non-supportable vertex of Q and &, be the point set consisting of

those vertices that are adjacent to v. The lemma is proven by showing that Q*CH(&,) is
a non-convergent pseudo polyhedron.

Since v is internal to CH(E), all its incident faces have portions that are internal to
CH(&,). Then, in each of these faces, there is a point which has an open three-

dimensional neighborhood that contains a subset of I(Q) that is strictly inside CH(E,).

By definition of the regularized intersection, this neighborhood is preserved on

Q*CH(E,). In other words, Q*CH(&,) must be a pseudo polyhedron since its interior is
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not empty.

Now, consider a hull vertex p of Q*CH(&)), as illustrated in Figure 10(a). If p belongs to
€. as none of the incident faces of v can be a hull face of CH(&,), p can only be a strong
hull vertex of Q*CH(E,). If p does not belong to &, it must be an intersection point
between some face f of Q and a hull face of CH(E,). (Refer to Figures 10(b) and (c).)
Since face f has a portion internal to CH(§,), which becomes an internal face of
Q*CH(E,), p must be a strong hull vertex of Q*CH(E,). Therefore, all the vertices of

Q*CH(&,) are either internal or strong. By Lemma 2, Q*CH(§,) is non-convergent.
Q.E.D.

©

Figure 10. Proof of Lemma 6

As an illustration of Lemma 5, vertex v of the pseudo polyhedron in Figure 9(a) is

non-supportable. The regularized intersection between the pseudo polyhedron and CH(E ),

where & are those six vertices adjacent to v, is another pseudo polyhedron as in Figure 9(b)

which is non-convergent. By Lemma 5, the ASV series of the pseudo polyhedron in Figure
9(a) does not converge, which can be easily verified.

An extension to the supportability of vertices is the supportability of edges. Consider the
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pseudo polyhedron Q in Figure 11(a). Its ASV series can be easily shown to be
non-convergent, though all its vertices are supportable.

(a) (b)
Figure 11. Non-supportable vertex introduced by a non-supportable edge

Definition 7. An edge e of a pseudo polyhedron is supportable if there exists a plane
containing e such that all the faces incident to e are on one side of that plane; otherwise
edge e is non-supportable.

Lemma 6. If pseudo polyhedron Q has a non-supportable edge e, then ASV(Q)
is non-convergent.

Proof.  Assume that the non-supportable edge e has k incident faces fy, f,,...,f;, and
v, and v, are its two vertices. Let p be an arbitrary point on e, but not v, or v,. Also
let p;, which is not v, or v,, be a vertex on face f; (i=1,2,...,k). Since the line segment
[p,p;] is on a face f; of Q, the addition of p to the vertex set of {2 as well as the addition of
edges [p,v11.[p,v2l,..., and [p,p;] (i=1,2,...k) to the edge set of Q introduce a new
pseudo polyhedron representation of €, as in Figure 11(b). Since e is non-supportable, all
the points in it, except for possibly v, or v,, are strictly inside CH({v,v2,p1,p2,..-.P})-
This implies that the vertex p is non-supportable. By Lemma 5, ASV(Q) is non-
convergent. Q.E.D.

It should be mentioned that Lemma 5 and Lemma 6 supply a sufficient but not necessary
condition for non-convergence. As an example, all the vertices and edges of the polyhedron in
Figure 12 are supportable. Yet, its ASV series is non-convergent.
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| I
Figure 12. Non-convergent polyhedron with no non-supportable vertices or edges

Nevertheless, a linear time algorithm for detecting the sufficiency of non-convergence
offers an attractive alternative to the O(n2logn) time for both necessity and sufficiency.

Let o be the origin and (x;,¥1,21),(X2,¥2,Z2),---»(X-Yk-Zi) be k points in the three-
dimensional space. If the point o is supportable against (x,y;,2;), (X3,¥2,22); s (XY Zk)
the angle between the normal vector N, of a supporting plane P, and the vector (x;,y;,z;) must

not be greater than 90° for all the i=1,2,..., k. (See Figure 13.) Conversely, if there exists a
vector N, such that the angle between it and a vector (x;y;,z;) (i=1,2,...,k) is less than or

equal to 90°, then the plane passing through o and orthogonal to N, is clearly a supporting
plane. Therefore, the detection of the supportability becomes the following: Given k vectors
(X1,¥1521)» (X9,¥2:29), -, (X1,¥5o2Zg), find another non-zero vector (A,B,C) such that
Ax;+By;+Cz;20 (i=1,2,...,k). It is known [6] that the solution to this three-variable problem,
if it exists, can be obtained in O(k) time.

No

1 % yi, 2)
=

Figure 13. Angular relation between the normal of a supporting plane
and the adjacent vertices

Let SUPPORT(k,L) be such a supportability detection procedure, which takes a list L of
k points as input and outputs either "true" if the origin is supportable against L or "false"
otherwise. With the procedure SUPPORT, the following algorithm is in order.
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Algorithm NSV_DETECT (Q)
/* Detect the existence of non-supportable vertices in a pseudo polyhedron Q with
n, vertices.

*/ V
begin
stepl.  fori=1,n,do
step 1.1 v <-- the ith vertex in the vertex list V of Q
step 1.2. {P1, P2»---Px} <-- those vertices in V that are adjecent to vertex v
step 1.3. translate {p;, py,....Px} by a displacement of -v
step 1.4. if SUPPORT (k,{p;, Pp,----px})="false' then

return with "non-supportable vertex found"

end if
end do

step 2.  return with "no non-supportable vertex found"
end NSV_DETECT

To device an algorithm for detecting the supportability of an edge e of a pseudo
polyhedron Q, let v and v' be the two end points of e, p be its center point, and fy, f5,..., f be

the faces of Q incident to e. Also let p; be a point on face f; such that the line segment [p,p;]
completely belongs to f; (i=1,2,...,k). (See Figure 14.) Such a point p; can be obtained in the
constant time from the (clockwise or counter-clockwise) order of the edges. Let FS(p, f;)
denote the function which returns the point p;. Referring to the proof of Lemma 6, ¢ is
supportable if and only if p is supportable against the point set {v,v',py, p3,....pi}. This
equivalence relation gives rise the following algorithm.



24

Figure 14. Finding the point p; on face f;

Algorithm NSE_DETECT (Q)
/* Detect the existence of non-supportable edges in a pseudo polyhedron  with
n, Vertices.
*/
begin
stepl.  fori=1,n.do
step 1.1 v, V' <-- the two vertices of the ith edge in the edge list E of Q
step 1.2. p <-- the center point of [v,v']
step 1.3. f}, f5,....fx <-- those faces in Q that are adjecent to the edge [v,v']
step 1.4. P1s P2s---Px < FS(p, f1), FS(p, ) , ..., FS(p, fy)
step 1.5. translate {v,v', p;, P2,-..Px} by a displacement of -p
step 1.6. if SUPPORT (k+2,{v,v',p;, P2,..-.px})="Talse' then
return with "non-supportable edge found"

end if
end do
step2.  return with "no non-supportable edge found"
end NSE_DETECT

Lemma 7. The existence of non-supportable vertices and non-supportable edges of a
pseudo polyhedron Q with n, vertices, n, edges, and n¢ faces can be detected in at most

O(nf) time.

Proof.  The theorem is proven by showing that both the algorithms NSV_DETECT
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and NSE_DETECT are O(ng) in time.

For the algorithm NSV_DETECT, because the procedure SUPPORT runs in linear
time, the time complexity required by the loop at step 1 is linear in 2d;(i=1,2,..., n,),
where d, is the degree of the ith vertex in Q, which has been proven to be O(ny) in the
Appendix of Part I of this paper. Therefore, NSV_DETECT runs in O(n;) time.

For the algorithm NSE_DETECT, by a similar reasoning, the time required by the

loop at step 1 is linear in Xk (i=1,2,..., n,), where k; is the face adjacency index of the ith

edge in Q. In the Appendix of Part I of this paper, it is shown that Xk;(i=1,2,..., n,) is
O(ny). Therefore, NSE_DETECT runs in O(ny) time. QED.
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4. SUMMARY

It has been established that it takes O(nZlogn) time to determine if the ASV seris of a given
Q converges. In particular, it takes O(nlogn) time to detect if a deficiency Q; is
non-convergent. To remedy the non-convergence, an O(nlogn) time algorithm is offered to
separate the culprit deficiency €2, into maximally well-connected sets.

As an expedient alternative to the O(nZlogn) time detection for non-convergence, the
sufficiency condition for non-convergence can be detected in O(n) time.
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