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ABSTRACT 

MOLECULAR GENETICS OF DEAFNESS:  

THE ROLES OF MYO15 AND THYROID HORMONE 

by 

Qing Fang 

Chair: Sally A. Camper 

        Deafness affects about 250 million people, and genetics contributes to 

approximately half of the cases.  Environmental influences include exposure to 

noise, ototoxic drugs, physical trauma, and systemic diseases, such as 

hypothyroidism.  This thesis presents functional analysis of a Mendelian cause of 

human deafness, mutations in the unconventional myosin MYO15, and a 

genetically complex disorder, susceptibility to hearing impairment due to 

hypothyroidism. 

        Mutations in the motor or tail domain of MYO15 cause congenital deafness 

and vestibular dysfunction.  These domains are required for stereocilia 

elongation and WHIRLIN transport.  Some isoforms of MYO15 contain a proline-

rich region of unknown function.  We generated a mouse model of a human 

mutation that eliminates these isoforms.  These mutants have profound deafness 

but lack severe vestibular abnormalities, and have unique cochlear stereocilia 

pathology.  Initial elongation occurs but is not maintained, implicating the proline-



x 
 

rich region in hair bundle preservation.  There is no evidence of allelic 

complementation for hearing or hair bundle maintenance in compound 

heterozygotes with different combinations of mutant alleles, proving functional 

importance of the full length MYO15 isoform. 

        Thyroid hormone (TH) has pleiotropic effects on cochlear development, and 

genomic variation influences the severity of the hearing problem.  Prop1df and 

Pou1f1dw mutant mice lack pituitary thyrotropin, which causes severe TH 

deficiency and variable hearing impairments.  DW-Pou1f1dw mutants have 

multiple cochlear abnormalities and are profoundly deaf.  In contrast, DF-Prop1df 

mutants have mild hearing impairment and few permanent abnormalities.  

Transfer of these embryos to surrogates demonstrated that their susceptibility to 

hearing impairment is intrinsic to the fetus.  A genome scan conducted on 

hearing progeny of an F1 intercross between DW-Pou1f1dw carriers and Mus 

castaneus identified a single locus on chromosome 2, modifier of dw hearing, 

Mdwh, that rescues hearing despite persistent hypothyroidism.  A known modifier 

in this region is neither necessary nor sufficient to rescue DW hearing, 

suggesting that Mdwh is a novel protective locus.  Microarray analysis identified 

cochlear gene expression changes caused by hypothyroidism in Pou1f1dw mice 

that are positional candidates for the modifier gene.  Identification of the 

protective modifier will enhance our understanding of the mechanisms of 

hypothyroidism-induced hearing impairment and may lead to rational 

therapeutics. 
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CHAPTER 1 

 

Introduction 

 

        Deafness is a common human health problem with about 250 million people 

affected worldwide.  Approximately half of the deaf cases have a genetic basis.  

Hereditary deafness can be categorized by their genetic inheritance pattern 

(dominant, recessive, sex chromosome-linked, mitochondria-related), by their 

accompanying symptoms (syndromic, non-syndromic), and by age of onset (pre-

lingual, post-lingual).  More than 150 loci that cause genetic deafness have been 

mapped, although the genes underlying many of these loci have not been 

identified yet (Van Camp and Smith, Hereditary Hearing Loss Homepage: 

http://hereditaryhearingloss.org).  Other causes of deafness include exposure to 

noise, ototoxic chemicals or medications, physical trauma, and systemic 

diseases.   

        The sensory cells critical for hearing are the hair cells.  The number of hair 

cells is limited; for example, there are only about 3,000 hair cells in one mouse 

cochlea (Chen and Corey, 2002).  Hair cells do not regenerate in humans and 

other mammals, which makes combating deafness a challenging task in the 

clinic.   



  2 

        There are several important advantages of the mouse that make it an ideal 

model system for the study of functional genomics of human deafness: the 

striking similarities in auditory structure and physiology between mice and 

humans, the relatively close evolutionary relationship of the two mammalian 

genomes, the ability to genetically manipulate mouse genome with desired 

genetic variation, and the convenient accessibility of mouse tissues for 

pathological analyses.   

        In this dissertation, I present my research in two areas: 1) a mouse model I 

developed of a human Mendelian, autosomal recessive deafness disorder 

DFNB3 and 2) the variable effects of congenital hypothyroidism on hearing acuity 

using existing spontaneous, autosomal recessive mouse models of secondary 

hypothyroidism.  

        The model I generated of DFNB3 precisely mimics a human mutation in the 

N-terminal proline-rich domain of the MYO15 gene that causes congenital 

deafness.  I show that this domain is essential for hearing and maintenance of 

cochlear stereocilia, but not required for gross vestibular function or the 

development of cochlear stereocilia. These discoveries lead to the hypothesis 

that the proline-rich domain is involved in transportation of novel cargo proteins 

that maintain the stereocilia.  

        The spontaneous mutants Prop1df and Pou1f1dw lack thyroid hormone 

because of pituitary dysfunction, and the degree of hearing deficit in both 

mutants is strongly influenced by genetic background.  I present studies on the 

mechanism of thyroid hormone action in the cochlea and genetic studies that 
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address the influence of genetic background on the phenotype.  I found that the 

predominant action of the genetic background is intrinsic to the fetus and not a 

maternal effect.  I also present evidence that the modifier of hypothyroidism-

induced deafness is a novel locus on Chr 2 that could be identified by 

conventional approaches. 

        Overall these studies lead us to a better understanding of the 

developmental and physiological mechanisms underlying the auditory processes 

in a Mendelian nonsyndromic deafness disorder, DFNB3, and a complex 

syndromic hearing impairment that can be caused by genetics and enviroment: 

thyroid hormone regulation of hearing acuity.  

 

Inner ear structure  

        The mammalian ear consists of the outer, the middle and the inner ear (Fig. 

1-1).  The major role of the outer and the middle ear is to collect the sound and 

conduct it to the inner ear by vibration of the eardrum and movement of the 

ossicular chain within the middle-ear cavity.  The inner ear is composed of 

vestibular and cochlear compartments, where the mechanical sound waves are 

converted into neural impulses and transmitted through the post-cochlear 

auditory pathway to the brain.  The vestibular compartments contain the otolithic 

organs (saccule and utricle) and the semi-circular canals, which detect linear and 

rotational acceleration, respectively.  The cochlea, a snail-shaped structure, 

contains the organ of Corti and is responsible for hearing.  The organ of Corti is 

the sensory epithelium running along the inside of the cochlea from the base to 
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the apex.  Two types of highly specialized sensory cells, inner hair cells (IHCs) 

and outer hair cells (OHCs), exist in the organ of Corti and are critical for 

mechano-electro-transduction (MET).  On the apical surface of each hair cell, 

actin-rich cellular projections, called stereocilia, are arranged in a staircase 

pattern and bundled by lateral links and tip links connecting the adjacent rows.  

MET channels are located on the cell membranes of the shorter stereocilia and 

are thought to be close to and associated to the tip-link attachment sites (Beurg 

et al., 2009).  When the sound waves cause the deflection of stereocilia bundles 

towards the longest rows, the tension of the tip links generates the mechanical 

force that opens the ion channels.  Cations, mostly potassium, enter through the 

channels and depolarize the hair cells, which results in neurotransmitter release 

and excitation of the auditory nerves connected to the base of the hair cells.   

 

Unconventional myosins in the inner ear   

        The myosin protein superfamily is large.  The human genome contains ~40 

myosin genes that can be divided into ~12 classes based on analysis of their 

head and tail domain structures (Berg et al., 2001).  Class II myosins, also called 

conventional myosins, are primarily expressed in skeletal muscles.  All of the 

other myosins expressed in non-muscle cells are known as unconventional 

myosins.   

        Myosins are actin-based motors with a conserved catalytic domain (motor 

domain), which hydrolyzes ATP and produces energy to create force and 

mechanical movement along actin filaments.  The C-terminal tails found in most 
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myosins are quite diverse and are involved in binding different proteins.  An N-

terminal extension beyond the motor domain is present in some myosins and 

thought to endow class-specific properties. 

        Unconventional myosins participate in many cellular processes such as cell 

movement and signal transduction (Mermall et al., 1998).  Recent research 

shows unconventional myosins also play the fundamental roles in establishing 

cell polarity (Yin et al., 2000) and the polymerization of actin (Evangelista et al., 

2000; Lechler et al., 2000; Lee et al., 2000).  Stereocilia of hair cells in the inner 

ear are actin-based structures.  Five unconventional myosins are expressed in 

cochlear hair cells: MYO1, MYO3A, MYO6, MYO7A and MYO15A.  Defects in 

these myosins are responsible for deafness in both humans and mice (Table 1-

1). I discuss each of these myosins in the next section.   

 

MYO1  

        Class I myosins include eight isozymes, that exhibit different expression 

levels in auditory and vestibular epithelia (Dumont et al., 2002).  MYO1A is 

mutated in human hereditary deafness DFNA48 (Donaudy et al., 2003). MYO1C 

is located near both ends of the tip links (Garcia et al., 1998), which is consistent 

with the identification of MYO1C as the adaptation motor of MET in the inner ear 

(Gillespie, 2004).  Adaptation serves to reset the open probability of transduction 

channels near the rest value after stereocilia bundle deflection.  No mutations in 

MYO1C have been reported in humans to date.  A mouse missense mutation in 

Myo1c gene causes altered adaptation, but knocking out Myo1c gave 
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inconclusive results (Gillespie, 2004; Stauffer et al., 2005).  It is possible that 

more than one MYO1 isozyme contributes to the adaptation motor. 

 

MYO3A 

        Mutations in a human class III myosin cause progressive, nonsyndromic 

hearing loss DFNB30 (Walsh et al., 2002).  MYO3A is localized at the tips of 

stereocilia, and is thought to be important for the elongation of stereocilia 

(Schneider et al., 2006).  Mechanistically, MYO3A is thought to be required for 

transporting espin 1 to the plus ends of actin filaments (Salles et al., 2009). Espin 

is an actin-bundling protein that acts as a scaffold to determine the placement, 

dimensions, flexibility and signaling of stereocilia (Sekerkova et al., 2006).  

        Both MYO3A and its ortholog NINAC in Drosophila contain domains N-

terminal to the motor that display serine and threonine kinase activity (Ng et al., 

1996).  The protein kinase domain is required for normal visual processing in 

Drosophila (Li et al., 1998). Site-specific mutations in the protein kinase domain 

and the myosin domain, however, lead to different phenotypes: mutation of the 

kinase domain results in a defective electroretinography (ERG) phenotype but no 

retinal degeneration, while mutation in the myosin domain causes both an 

abnormal ERG phenotype and retinal degeneration (Porter and Montell, 1993). In 

mouse cochlea, the absence of the MYO3A kinase domain causes a stereocilia 

phenotype that is distinct from mutants lacking of the tail domain (Schneider et 

al., 2006).  Thus, the MYO3A/NINAC example provides precedent for 

independent functions of the protein domains N-terminal to the myosin motor. 



  7 

 

MYO6 

        MYO6 is mutated in humans with dominant deafness DFNA22, recessive 

deafness DFNB37 and Snell’s Waltzer mice, which have recessive deafness and 

vestibular dysfunction (Avraham et al., 1995; Melchionda et al., 2001; Ahmed et 

al., 2003).  MYO6 is unique among motor myosins because it moves towards the 

negative end of the actin filaments, i.e. from the tips of the stereocilia to the 

cuticular plate at the apical surface of the hair cells.  In the inner ear, the 

expression of MYO6 is concentrated at the cuticular plate at the base of the 

stereocilia (Hasson et al., 1997).  The stereocilia of Snell’s Waltzer mutants start 

to develop normally, then fuse together to form giant stereocilia (Self et al., 

1999), suggesting that the role of MYO6 is to anchor the membrane at the base 

of the stereocilia on the apical hair cell surface.  In addition, MYO6 and otoferlin 

interact to recycle synaptic vesicles at the IHC ribbon synapse at the base of the 

hair cells (Roux et al., 2009).  Otoferlin is the major calcium sensor and essential 

for the exocytosis at the ribbon synapses in IHCs with innervation of afferant 

nerves (Roux et al., 2006). 

 

MYO7A 

        Myo7a is the unconventional myosin gene affected in shaker 1 mice and a 

large allelic series of mouse mutants, and in humans, mutations in MYO7A cause 

two forms of non-syndromic deafness DFNA11 and DFNB2 and one syndromic 

deafness Usher syndrome type 1B (USH1B) (Guilford et al., 1994; Gibson et al., 
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1995; Weil et al., 1995; Tamagawa et al., 1996; Liu et al., 1997b; Liu et al., 

1997a; Weil et al., 1997).  Within the inner ear, MYO7A is expressed in the 

stereocilia, cuticular plate and the cytoplasm of both IHCs and OHCs (Hasson et 

al., 1995).   

        In stereocilia, MYO7A interacts with Harmonin, Sans and Protocadherin 15 

(PCDH15) (Boeda et al., 2002; Adato et al., 2005; Senften et al., 2006), which 

are also Usher syndrome type 1 proteins that form the network to control the 

cohesion of the growing hair bundle during inner ear development. MYO7A is 

also involved in regulating the length of stereocilia by interacting with Twinfilin-2 

(Peng et al., 2009; Rzadzinska et al., 2009).  Twinfillin-2 is a capping protein for 

the barbed ends of actin filaments, that is localized at the tips of the shorter rows 

of stereocilia.  During stereocilia development, Twinfilin-2 restricts excessive 

elongation of the shorter row of stereocilia, thereby maintaining the mature 

staircase architecture of cochlear hair bundles (Peng et al., 2009). 

 

MYO15 

 MYO15 is important for elongation of the vestibular and cochlear 

stereocilia.  Myo15 is identified as the gene mutated in human deafness, DFNB3, 

and mouse deafness mutants shaker 2 (sh2) and shaker 2J (sh2J) (Liang et al., 

1998; Probst et al., 1998; Anderson et al., 2000).  The molecular motor of 

MYO15 is inactivated in sh2 mice by an amino acid substitution in the highly 

conserved putative actin-binding domain.  The lesion in sh2J mice deletes the 

FERM and PDZ ligand domains in the mysoin tail.  Both sh2 and sh2J mutants 



  9 

exhibit short cochlear and vestibular stereocilia, profound deafness, and balance 

dysfunction that results in circling behavior and head bobbing.  The PDZ binding 

domain, which is located at the carboxy terminus of MYO15, and the motor 

domain are necessary for binding WHIRLIN and transporting it to the stereocilia 

tips.  These conclusions are based on the fact that shaker 2 and shaker 2J 

mutants are unable to transport WHIRLIN properly (Anderson et al., 2000; 

Belyantseva et al., 2003).  MYO15 protein contains an N-terminal proline-rich 

domain, in which two mutations were found to cause deafness in humans (Nal et 

al., 2007).  The function of this proline-rich domain of MYO15A is unknown and is 

the focus of my research presented in Chapter 2. 

  

         Overall, given that the normal function of inner ear hair cells relies on 

filamentous actin structures, it is not surprising that multiple unconventional 

myosins play important roles in the development and physiology of hair cells.  

Each of these myosins has an independent, unique function, as mutations 

specific to each myosin gene cause distinguishable hair cell phenotypes.  A full 

understanding of the function of each myosin gene and protein will improve our 

knowledge of the normal auditory system.  We anticipate that advancing the 

basic understanding will ultimately improve the patient care and rehabilitation of 

hearing loss in clinical settings .  
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Thyroid Hormone and Hearing 

        Hearing is one of the most sensitive functions controlled by thyroid hormone 

(TH).  Deafness arises if there is insufficient TH available during sensitive periods 

in the fetal and early neonatal period in both humans and rodents (Trotter, 1960; 

Deol, 1973; Uziel, 1986).  TH is required for the timely coordination of a complex 

set of differentiation events in the maturing cochlea.  The mechanisms that 

prompt the progression of these developmental events are poorly understood.  

 

Physiology of the hypothalamic-pituitary-thyroid axis    

        The brain produces thyrotropin-releasing hormone (TRH), which stimulates 

the thyrotrope cells of the anterior pituitary gland to secrete thyroid-stimulating 

hormone (TSH) (Fig. 1-2).  TSH stimulates the thyroid gland to produce and 

secrete TH into the blood stream where it is carried to target organs all over the 

body.  The thyroid gland releases two major forms of TH, T4 and T3.  T3 is the 

main active form of hormone, although T4 is more abundant than T3 in the 

serum.  TH is transported through the cell membrane by specific TH transporters.  

At the target tissue, T3 is generated from T4 by type 2 deiodinase (encoded by 

the Dio2 gene) and is inactivated by type 3 deiodinase (encoded by the Dio3 

gene).  Thyroid hormone receptors (THR) in the pituitary and hypothalamus 

sense the levels of thyroid hormone and regulate TRH and TSH production in 

order to maintain homeostasis.  THR in the target organs are ligand-modulated 

transcription factors that affect expression of many genes.  
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Animal models for study on hypothyroidism-induced hearing loss   

       The etiology of hypothyroidism can be classified into two major types 

according to where the abnormality resides.  Primary hypothyroidism is caused 

by defective thyroid glands, and secondary hypothyroidism is caused by a lack of 

thyroid gland stimulation because of hypothalamus or pituitary gland dysfunction.  

Thyroid hormone resistance (RTH), caused by defects in THRs or reduced 

intracellular availability of activated TH in peripheral tissues, can produce 

phenotypes similar to those caused by TH deficiencies.  

        A models have been used to study the pathophysiological mechanism of 

hypothyroidism-induced hearing loss.  Most of these animals exhibit primary 

hypothyroidism caused by loss of response to pituitary stimulation. Tshrhyt/hyt mice 

have poorly functioning TSH receptors, which influence thyroid gland function 

(O'Malley et al., 1995; Li et al., 1999).  Pax8-/- mice have defective development 

of both the thyroid gland and the otocyst, consistent with the normal expression 

of this transcription factor in both structures during embryogenesis (Christ et al., 

2004).  Another approach is to induce hypothyroidism by administering thyrotoxic 

agents, such as propothiouracil (PTU) or methimidiazole (MMI), that destroy 

thyroid gland function directly in rats or mice (Uziel et al., 1983; Uziel et al., 

1985b; Uziel et al., 1985a; Knipper et al., 2000).  Animal models that carry 

mutations in THRs (Thrb-/- mice) exhibit severe hearing impairment, providing a 

model for human endocrine disorder of RTH (Forrest et al., 1996).  Mice lacking 
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Dio2 enzyme activity (Dio2-/- mice) are unable to produce bioactive TH (Ng et al., 

2004). 

 

Thesis Review 

       In my dissertation, I chose to study two secondary hypothyroidism mouse 

models: Pou1f1dw and Prop1df.  These two strains carry mutations in the pituitary 

transcription factors Pou1f1 and Prop1, respectively, which cause thyrotropin 

(TSH) deficiency and secondarily, the absence of TH.  Compared to other mouse 

models of hypothyroidism, Pou1f1dw and Prop1df mutants have several 

advantages.  1) The mutant mice are viable and live ~ 40% longer than their 

normal littermates, while Pax8-/- mice die at young age (P21).  This makes it 

impossible to determine whether processes are temporarily affected because 

developmental delay or permanently disrupted.  2) There is no need for drug 

treatment to create the TH deficiency, which avoids the potential side effects of 

thyrotoxic agents.  3) The simple, autosomal recessive inheritance of 

hypothyroidism simplifies breeding and compared to THR double mutants.  4) 

The ability to correct the defects by TH replacement makes these mouse models 

superior to other genetic models. 

        It is very interesting that despite the same extent of hypothyroidism, 

Pou1f1dw and Prop1df mutants exhibit very different degrees of hearing 

impairment. Pou1f1dw mutants are profoundly deaf while Prop1df mutants only 

have a mild hearing loss (Karolyi et al., 2007).  Genetic background accounts for 

the differential hearing losses between these two mouse strains.  Thus, Pou1f1dw 
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and Prop1df mutants provide invaluable tools to identify the genes and pathways 

that are the most sensitive to TH regulation in inner ear development.  

        Chapters 3 to 5 in this dissertation describe my research projects on 

hypothyroidism-induced deafness.  Chapter 3 focuses on the detailed 

morphological, physiological, and gene expression analyses of Pou1f1dw mutants 

during the course of cochlear development.  The processes affected  in Pou1f1dw 

mutants, shown in Chapter 3, were examined in Prop1df mutants in Chapter 4.  

Moreover, in Chapter 4, we designed embryo transfer experiments to prove that 

the fetal genetic backgrounds, but not maternal effects, are the major factors 

underlying differential hearing impairment in Pou1f1dw and Prop1df mutants.  

Further work on identifying a genetic modifier of hypothyroidism-induced 

deafness was carried out and the progress towards indentifying this modifier is 

presented in Chapter 5. 

Control of TH action by hormone availability in the cochlea 

        TH activity can be controlled at several steps preceding its regulation on a 

target gene through binding to THR.  Cellular uptake of TH is mediated by 

various types of transporters including L type amino acid, organic anion and 

monocarboxylate families (Abe et al., 2002; Friesema et al., 2005; Taylor and 

Ritchie, 2007).  MCT1 and MCT2 monocarboxylate transporters were found to be 

expressed in the inner ear (Okamura et al., 2001).  Mutations in MCT8 are 

associated with syndromes that include hearing impairment, for example, human 

X-linked neurological syndrome and Allen-Herndon-Dudley syndrome, with which 

patients have symptoms as global developmental delay, central hypotonia, 
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spastic quadriplegia, dystonic movements, rotary nystagmus, and impaired gaze 

and hearing (Dumitrescu et al., 2004; Verma, 2008).  This underscores the 

importance of TH transport for inner ear function.  

        Both Dio2 and Dio3 are expressed in the cochlea (Campos-Barros et al., 

2000; Ng et al., 2009).  Dio2, is induced in the cochlea before auditory function 

begins (Campos-Barros et al., 2000).  The most pronounced neurological 

phenotype in Dio2−/− mice is deafness, suggesting that this enzyme amplifies 

local T3 levels to stimulate the onset of hearing (Ng et al., 2004).  Dio3−/− mice 

display deafness with premature cochlear differentiation, indicating a protective 

role for type 3 deiodinase in auditory development (Ng et al., 2009). 

        The CRYM gene encodes mu-crystallin, which is an intracellular, cytosolic 

T3 binding protein (Suzuki et al., 2007).  Human CRYM mutations cause 

nonsyndromic deafness (Abe et al., 2003).  One mutation in the CRYM gene 

causes deafness by impairing the ability of the protein to bind T3 (Oshima et al., 

2006).  Auditory function is normal in Crym−/− mice (Suzuki et al., 2007), however, 

which may reflect the difference in the chain of events that lead to cellular 

response to TH between humans and mammals.  

 

Deafness genes could be affected by hypothyroidism 

 The regulation of gene expression by TH is mediated by THR.  There are 

multiple thyroid hormone receptor genes and isoforms.  The majority of the 

isoforms have domains that confer transcriptional activation, DNA binding, ligand 

binding, and protein dimerization.  Thyroid hormone response elements (TRE) 
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are the DNA fragments that bind THRs directly.  Depending on the TRE 

sequence in any given regulatory element, TH can induce transcriptional 

activation or repression.  The mechanism is that the binding of TH to THR 

induces a conformational change that converts THR from a transcriptional 

repressor to an activator or vice versa, dictated by the sequence of the TRE.  TH 

and the TRE regulate the recruitment of co-repressors or co-activators to THRs.  

Thus, a normal level of TH is necessary to have the proper balance of gene 

repression and activation. 

 In order to understand the mechanism whereby TH affects the structural 

development and physiological function of the inner ear, the genes that are 

activated and repressed by TH in the cochlea need to be identified.  There are 

already several examples of the genes that are affected by hypothyroidism and 

are proven to be relevant to genetic forms of deafness (Table 1-2).  Here, we 

give a brief review of these hypothyroidism-related deafness genes. 

 

        Tecta and Tectb genes encode α- and β-tectorin, respectively.  Both 

proteins are important components of the tectorial membrane (TM) in the organ 

of Corti in the cochlea.  The TM, a collagen-rich extracellular matrix, makes 

contact with the tips of the stereocilia of cochlear hair cells.  The sound 

transduced into the inner ear will vibrate the basilar membrane that contains the 

sensory epithelium against the TM.  These vibrations activate mechanoelectrical 

transduction of the hair cells.  Both Tecta and Tectb mutant mice exhibit 

moderate-to-severe hearing impairment while the hearing loss in Tectb-/- mice is 
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only evident at low frequencies (< 20 kHz), and TECTA mutations are also linked 

with deafness in humans (Richardson et al., 2008).  THRβ mutant mice, Thrb-/-, 

have significantly elevated expression levels of α- and β-tectorin and obvious 

thickening and enlargement of TM (Winter et al., 2009).  These results indicate 

that transcription of Tecta and Tectb genes may be repressed by TH/THR 

pathway, and that alterations in Tecta and Tectb gene expression can influence 

the composition and morphology of the TM.  It is important to note, however, that 

the functional significance of thyroid hormone dependent alterations in Tecta and 

Tectb expression are not clear given the highly pleiotropic effects of thyroid 

hormone.  

 

        Prestin (Slc26A5) is the motor protein of cochlear OHCs and responsible 

for OHC electromotility and cochlear amplification (Zheng et al., 2000; Liberman 

et al., 2002).  TH appears to regulate the expression and localization of prestin 

by binding THRβ (Weber et al., 2002; Winter et al., 2006).  I show, however, that 

Pou1f1dw mutants, which have a permanent TH deficiency, eventually develop 

normal prestin expression and subcellular localization despite the persistent 

absence of TH (Chapter 3).  In humans, mutations in prestin are associated with 

profound deafness (Liu et al., 2003). 

 

        Kcnq4 encodes a voltage-dependent potassium channel that is localized to 

the basolateral membrane of hair cells (Beisel et al., 2000; Rocha-Sanchez et al., 

2007).  In humans, KCNQ4 mutations cause non-syndromic, autosomal 
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dominant deafness, DFNA2 (Kubisch et al., 1999).  A mouse model of Kcnq4 

loss of function has progressive hearing loss and evolving degeneration of OHCs 

(Kharkovets et al., 2006).  THRα mutant mice, Thra-/-, have normal expression of 

KCNQ4 in the OHC even under conditions of induced hypothyroidism (Winter et 

al., 2006), which suggests that Kcnq4 gene expression is regulated by THRα that 

may repress the transcription. 

 

        Kcnma1 encodes the α-subunit of the large Ca2+-activated potassium 

channels, named BK or maxi-K channels.  BK channels are localized at the 

apical aspect of IHCs, just below the cuticular plate, while BK is concentrated in 

the basal portion of the OHCs (Hafidi et al., 2005).  Hypothyroid animal models 

have a significant reduction in BK expression in IHCs and OHCs (Brandt et al., 

2007; Sendin et al., 2007; Winter et al., 2007).  BK expression in the OHCs 

developed normally even under hypothyroidism induced by MMI treatment in 

Thra-/- mice, which indicates that THRα exerts a repressive action on the 

expression of BK in OHCs (Winter et al., 2007).  BKα mutant mice, BKα-/-, exhibit 

progressive hearing loss (Ruttiger et al., 2004).   

 

        SK2 is calcium-activated, small conductance potassium channel, encoded 

by the Kcnn2 gene.  SK2 channels are required both for expression of functional 

acetyl choline receptors (AChRs), and for establishing and/or maintaining 

efferent terminals in the cochlea (Kong et al., 2008).  In SK2-/- mice, there is no 

significant threshold shift on Auditary Brainstem Response (ABR) test, but the 



  18 

efferent-evoked suppression of Distortion Product of Otoacoustic Emissions 

(DPOAEs) is absent (Murthy et al., 2009).  SK2 expression is reduced in 

hypothyroid rats but preserved in Thra-/- mice (Winter et al., 2007). 

 

        Otoferlin (Otof) is thought to be the major calcium sensor and essential for 

exocytosis at the ribbon synapses at the bases of cochlear hair cell (Roux et al., 

2006).  Mutations in the human OTOF gene cause nonsyndromic, autosomal 

recessive deafness, DFNB9 (Mirghomizadeh et al., 2002; Varga et al., 2003).  

Athyroid Pax8-/- mice and methimazole (MMI)-treated hypothyroid rats have 

significantly reduced or completely absent expression of OTOF (Brandt et al., 

2007), which implies that TH regulates OTOF expression, either directly or 

indirectly. 

         

        In conclusion, TH has pleiotropic effects on the development and 

maintenance of auditory function.  TH deficiency causes abnormalities in multiple 

processes within the inner ear that can contribute to hearing impairment.  

Uncovering the deafness genes regulated by TH could help us have a better 

understanding of the development and physiology of normal hearing. 
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Figure 1-1. Structure of the inner ear.  Schematic drawing from Dror AA and 
Avraham KB, Hearing loss: mechanisms revealed by genetics and cell biology, 
Annu. Rev. Genet. 43:411-437, 2009.  
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Figure 1-2.  Hypothalamic-Pituitary-Thyroid Axis.  Picture from Dayan CM 
and Panicker V, Novel insights into thyroid hormones from the study of common 
genetic variation, Nature Reviews Endocrinology, 5: 211-218, 2009. 
D1=deiodinase 1, D2=deiodinase 2, D3=deiodinase 3, rT3=reverse T3, RXR= 
retinoid X receptor, T2=di-iodothyronine, THR=thyroid hormone receptor, 
TSHR=TSH receptor.  
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Table 1-1.  Unconventional myosins and deafness in mouse and human 
 Mouse Human  

Gene mutants features types features 
MYO1 Myo1cY61G Inhibited fast and 

slow adaptation 
DFNA48 
(MYO1A) 

Post-lingual, 
progressive, 
moderate-to-severe 

MYO3A N.A. N.A. DFNB30 Post-lingual, 
progressive 

DFNA22 Post-lingual, 
progressive 

MYO6 Snell’s Waltzer Deafness 
Vestibular 
dysfunction 
Fused stereocilia;  
abnormal retinal 
electrophysiology 

DFNB37 Congenital 
deafness, other 
features vary 

DFNA11 Progressive 
deafness 

DFNB2 Congenital 
deafness 

MYO7A shaker 1 
 
(There is a series 
of Myo7a alleles 
with different 
stereocilia 
phenotypes.) 

Deafness 
Vestibular 
dysfunction 
Disorganized 
stereocilia 
 
 

USHER 1B Deafness and 
progressive 
blindness 

MYO15 shaker 2, 
shaker 2J 

Deafness  
Vestibular 
dysfunction 
Short stereocilia 

DFNB3 Congenital 
deafness, vestibular 
dysfunction 
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Table 1-2.   Deafness genes potentially regulated by TH 
 
Gene 

 
Mutant hearing 
loss   
 

 
Function in the inner ear 

Tecta, Tectb Moderate to severe Composition of tectorial membrane 

Prestin (Slc26a5) Congenital, 
profound 

OHC molecular motor 

KCNQ4 Post-lingual, 
progressive 

Maintain the resting potential of OHCs 

BK channel (Kcnma1, 
Slo1) 

Progressive Fast after-hyperpolarization (AHP) 
following action potentials of OHCs 

SK2 No elevation of 
ABR thresholds, 
but absent  
efferent-evoked 
suppression of 
DPOAEs  

Generating a hyperpolarizing response 
to efferent stimulation 

Otoferlin Severe to profound Ca2+ sensor, exocytosis 
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CHAPTER 2 

 

Proline-rich domain of MYO15 is necessary for hearing and stereocilia 

maintenance 

 

ABSTRACT 

        Mutations in the unconventional myosin Myo15 are responsible for profound 

congenital deafness and vestibular dysfunction in shaker 2 (sh2) and shaker 2J 

(sh2J) mice (Probst et al., 1998; Anderson et al., 2000).  The sh2 mutation is 

thought to inactivate the motor, while the sh2J deletion is expected to produce a 

protein lacking the C-terminal PDZ ligand domain that is important for binding 

WHIRLIN (WHRN) and transporting it to the tips of the stereocilia, which is 

required for normal elongation of the stereocilia.  Stereocilia are abnormally short 

in sh2, sh2J and Whrn mutants, and WHRN transport is defective in both the sh2 

and sh2J mutants.  Mutations in the human ortholog, MYO15, cause deafness, 

DFNB3 (Wang et al., 1998).  Alternatively spliced MYO15 transcripts predict 

multiple isoforms of MYO15 (Liang et al., 1999).  The presence or absence of a 

large evolutionarily conserved proline-rich region N-terminal to the motor domain 

of MYO15 is dictated by inclusion or exclusion of exon 2, and lesions in exon 2 
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cause deafness in humans (Nal et al., 2007).  Elegant studies in cochlear 

explants demonstrated that isoforms lacking the proline rich domain are sufficient 

to rescue stereocilia elongation and WHRN transport (Belyantseva et al., 2005).  

To test whether the proline-rich region has a distinct function, we generated a 

mouse model that recapitulates a human nonsense mutation in the proline-rich 

domain using knock-in technology.  These knock-in mutants have profound 

deafness, but they differ from sh2 and sh2J mice in hair bundle morphology and 

the absence of circling behavior.  Vestibular evoked response tests are 

consistent with subtle vestibular abnormalities.  Cochlear stereocilia initially 

appear normally elongated with WHRN localized at the tips, but the stereocilia 

are not maintained, implicating the proline-rich region in preserving the hair 

bundle.  Classic genetic analysis of compound heterozygous mice containing 

different combinations of Myo15 mutant alleles revealed no evidence of allelic 

complementation for hearing or hair bundle maintenance, consistent with the 

functional importance of full length MYO15 isoforms containing the proline-rich 

domain for normal mammalian hearing.  This new, isoform-specific Myo15 

mutant mouse demonstrates a unique function for the proline-rich domain that is 

more critical for auditory function than for vestibular function. 

 

INTRODUCTION 

        Myosin XV (MYO15) is an unconventional myosin protein specifically 

expressed in the inner ear, pituitary gland, and selected cell types in other 

endocrine organs (Liang et al., 1999; Lloyd et al., 2001).  Mutations in Myo15 are 
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responsible for profound congenital deafness and vestibular dysfunction in two 

spontaneous mouse mutants: shaker 2 (sh2) and shaker 2J (sh2J), and in 

humans with DFNB3 (Liang et al., 1999).  There is no evidence to date for 

endocrine organ dysfunctions associated with MYO15 mutations.  MYO15 

localizes at the tips of stereocilia in both auditory and vestibular sensory cells 

(Belyantseva et al., 2003), and MYO15 is required for the elongation of 

stereocilia of both cell types during inner ear development (Belyantseva et al., 

2005).  Both sh2 and sh2J mice have very short stereocilia (Anderson et al., 

2000).  The sh2 mutation is thought to inactivate the motor, while the sh2J 

deletion is expected to produce a protein lacking the C-terminal PDZ ligand 

domain that is important for binding WHIRLIN (WHRN) and transporting it to the 

tips of the stereocilia (Belyantseva et al., 2005).  Whirlin mutants have short 

stereocilia similar to those in sh2 and sh2J mutants (Anderson et al., 2000; 

Mustapha et al., 2007). 

        Multiple isoforms of MYO15 are predicted by alternatively spliced transcripts 

(Liang et al., 1999).  Inclusion of exon 26 in the Myo15 transcript predicts 

truncation of the protein following the IQ motifs (the regulatory domain of the 

myosin that binds to myosin light chains), which would eliminate over 1400 amino 

acids of the tail, including domains of myosin tail homology, FERM, PDZ, and 

SH3 (Liang et al., 1999).  The presence or absence of a large proline-rich region 

N-terminal to the motor domain of MYO15 is dictated by inclusion or exclusion of 

exon 2 (Fig. 2-1).  For simplicity, we use P to represent the proline-rich domain, 

M for the motor domain and T for the tail domains of MYO15.  Thus, MYO15 
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isoforms PMT, PM and MT refer to the full-length isoform with all domains, short 

isoform with only proline-rich domain plus motor domain and short isoforms with 

only motor plus tail domains, respectively (Fig. 2-1). 

        The 1223 amino acid N-terminal proline-rich domain is about one third of the 

full length MYO15 and mostly encoded by the unusually large exon 2 of Myo15 

gene (Liang et al., 1999).  The proline-rich domain is evolutionarily conserved, 

and the function is unknown, although proline-rich motifs are often involved in 

binding proteins with SH3 domains (Holt and Koffer, 2001).  The mutations, 

E1105X and G1112fsX1124, are located in exon 2 and cause deafness in two 

human families (Nal et al., 2007).  The degree of hearing loss among the affected 

family members ranged from severe to profound.  Both mutations predict the loss 

of full-length MYO15 proteins, while maintaining isoforms produced from 

transcripts without exon 2.  This suggests that isoforms of MYO15 containing the 

proline-rich domain (PMT and/or  PM) are critical for normal hearing.  

        The MYO15 isoform MT, which lacks the N-terminal proline-rich domain, is 

sufficient to rescue the short stereocilia defect in sh2 mutant cochlea explants 

(Belyantseva et al., 2005).  Hair cells transfected by the gene gun exhibited 

stereocilia elongation and transportation of WHRN to the tips.  This suggests that 

the proline-rich domain of MYO15 may not be necessary for grossly normal 

stereocilia morphology or WHRN transportation. Yet the proline-rich domain may 

be required for other more specific aspects of stereocilia morphology or hearing 

function based on the fact that mutations within exon 2 are associated with 

hearing impairment in human patients.   
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        We hypothesize that the N-terminal proline-rich region of MYO15 has a 

distinct function different from that of the motor and tail domains of MYO15 

protein for hearing.  To test this hypothesis, we generated isoform-specific 

antibodies for MYO15 and a mouse model that recapitulates a human nonsense 

mutation in the proline-rich domain using knock-in technology.  In normal mice, 

MYO15 isoforms bearing the proline rich region are enriched in the short 

stereocilia rows, while isoforms bearing only the motor and tail regions are 

predominate in the longest stereocilia rows.  The Myo15 knock-in mutants exhibit 

profound deafness, but differ from sh2 and sh2J mice in the absence of circling 

behavior and the characters of hair bundle pathology.  Cochlear stereocilia in 

Myo15 knock-in mutants appear to be normally elongated initially, but the 

sereocilia are not maintained, implicating the proline-rich region in structural 

preservation.  Classic genetic analysis of compound heterozygous mice 

containing different combinations of Myo15 mutant alleles revealed no allelic 

complementation, consistent with the functional importance of a full length 

MYO15 isoform containing the proline-rich domain for normal mammalian 

hearing. 

 

MATERIALS & METHODS  

Generation of Myo15E1086X/E1086X Mice 

        The position equivalent to human E1105X in the mouse is E1086X.  Fig. 2-

2A shows the scheme of the gene-targeting strategy to generate a mouse model 

of the human E1105X mutation Myo15 gene. Briefly, two homologous 
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combination arms containing the genomic sequences of exon 2 (5’ arm) and 

exon 3 to exon 7 (3’ arm) of Myo15 were amplified by PCR using 129X1/SvJ 

genomic DNAs as the template.  The GAG to TAA mutation of amino acid 1086, 

which creates a new cutting site of restrictive enzyme MseI, was introduced into 

5’ arm by using QuickChange II XL Site-Directed Mutagenesis Kit from 

Stratagene.  The two arms were inserted into the plasmid vector pflox (Chui et 

al., 1997), which was previously modified by removing the HSVtk cassette.  All 

constructs were sequenced.  We screened 480 R1 ES cells resistant to 

neomycin for homologous recombination and monoinsertion events by Southern 

blot analysis (Fig. 2-2 B)(Nagy et al., 1993).  Two clones were injected into 

C57BL/6J blastocysts to create chimeric animals.  Male chimeras were mated 

with C57BL/6 females.  Germline transmission of the mutant Myo15 allele was 

detected from two independent ES clones by PCR amplification of a fragment in 

the NEO cassette in agouti pups.  Positive F1 progeny were crossed with EIIA–

Cre mice (Lakso et al., 1996).  F2 animals carrying an allele in which the 

neomycin-resistant selection cassette was deleted were detected by PCR 

(primers 5’-CCACAGTCTGAGGACCGAGT-3’ and 5’ 

GGTCTTGGTCTGGATGCTCT-3’) and MseI digestion.  The wild type allele 

generates 445 bp and 30 bp products and Myo15E1086X allele generates 324 bp, 

121 bp and 30 bp products (Fig. 2-2 C).  The heterozygous animals were 

intercrossed to generate Myo15E1086X/E1086X, Myo15+/E1086X and Myo15+/+ mice.  

For simplicity, ΔP is used to refer to E1086X mutation in this article. 
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Mice 

        Shaker 2, shaker 2J, and C57BL/6J mice were obtained from the Jackson 

Laboratory (Bar Harbor, ME, USA).  All procedures were approved by the 

University of Michigan Committee on Use and Care of Animals.  The Myo15ΔP/ΔP 

mice were bred to Myo15+/sh2J mice to generate Myo15ΔP/sh2J F1 progeny mice. At 

least three animals of each genotype were analyzed at each age.  P0 is 

designated as the day of birth. 

 

Assessment of Hearing  

        Auditory brainstem responses (ABRs) and Distortion Product Otoacoustic 

Emissions (DPOAEs) were recorded and analyzed as described (Karolyi IJ et al., 

2007).  Five to six animals of each genotype were tested at 4, 20, and 48 kHZ for 

ABRs and 12, 24, and 48 kHz for DPOAEs. 

 

Scanning Electron Microscopy 

        Animals were euthanized and temporal bones were removed and fixed with 

2.5% glutaraldehyde in 0.1M of sodium cacodylate buffer pH 7.4 with 2mM CaCl2 

(Electron Microscopy Sciences, Cat # 15960).  Cochleae were processed using 

the OTOTO method, which involves immersing the tissues alternately in 

thiocarbohydrazide and osmium tetroxide (Osborne and Comis, 1991).  Cochleae 

were critical point dried and mounted on stubs using colloidal silver paste.  

Samples were examined with an Amray 1000B SEM or a field-emission SEM (S-

4800, Hitachi). 
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Antibodies  

        PB888 antisera is a gift from Dr. Thomas Friedman at the NIDCD.  It was 

produced against an epitope in the mouse Myo15 gene just 5’ to the E1086X 

mutation.  PB48 antibody was generated in rabbits against an epitope in the tail 

region of MYO15 (Lloyd et al., 2001).  Generation of the WHRN antibody 

(HL5137) was previously described (Belyantseva et al., 2005). 

 

Immunofluorescence Study 

        The cochleae were dissected and fixed with 4% paraformaldehyde in PBS 

for 2 h. The organ of Corti (OC) sensory epithelia were permeabilized in 0.5% 

Triton X-100 in PBS for 30 min followed by three time 10-min washes in PBS.  

Nonspecific binding sites were blocked by 5% goat serum and 2% BSA in PBS 

for 1 h at room temperature.  Samples were incubated with primary antibodies 

(1:200 dilution for PB48, PB888 and HL5137 antibodies) at 4oC for overnight.  

The next day, samples were rinsed in PBS for several times and incubated with 

the anti-rabbit TRITC-conjugated secondary antibody (Amersham Pharmacia 

Biosciences) for 40 min.  F-actin was visualized by Alexa 488–phalloidin staining 

(Invitrogen).  Tissues were photographed and analyzed by confocal microscopy 

with a Zeiss laser scanning microscope LSM-510. 

 

RESULTS 

Hearing function is impaired in Myo15ΔP/ΔP mice  
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        The ABR test was used to measure the hearing levels of Myo15ΔP/ΔP mice at 

2,4, and 6-weeks of age.  A representative ABR threshold graph at 20kHz is 

shown in Fig. 2-3 A.  Myo15ΔP/ΔP mice exhibit 70~80 dB SPL thresholds at 2-

weeks old, which represent a severe degree of hearing loss.  At 4-weeks old, the 

ABR thresholds of Myo15ΔP/ΔP mice are elevated to ~100 dB SPL, and this 

profound hearing loss level is also detected at 6-weeks of age.  Our ABR results 

of Myo15ΔP/ΔP mice show that within the first couple weeks after the onset of 

hearing at 2-weeks old in normal mice, the auditory function of Myo15ΔP/ΔP mice 

undergoes progressive degeneration.  

        To further characterize the hearing impairment in the Myo15ΔP/ΔP mice, we 

assessed the outer hair cell (OHC) function by tests of DPOAE.  The Myo15ΔP/ΔP 

mice demonstrated no DPOAE beyond that of postmortem animals since 2-

weeks old.  Fig. 2-3 B is the representative DPOAE graphs from 2-weeks and 6-

weeks old wild type littermates and mutant animals at a stimulation frequency of 

12 kHz.  This data indicates that the OHCs in the Myo15ΔP/ΔP mice are 

dysfunctional from an early development stage. 

 

MYO15 protein isoforms exhibit differential localization in hair cell 

stereocilia  

       The E1086X mutation is predicted to produce normal and truncated MYO15 

protein isoforms.  MYO15 isoforms containing the proline-rich domain (isoforms 

PMT and PM) will be truncated, but isoforms containing only motor and tail 

domains (isoform MT) will be retained as intact, normal isoforms.  In order to 
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examine the expression and localization of different MYO15 isoforms in the 

Myo15ΔP/ΔP mice, we did immunostaining on a whole-mount preparation of 

auditory sensory epithelia using antibodies that specifically recognize the proline-

rich domain (PB888) or the tail domain (PB48) of MYO15, respectively.  The 

positions of epitopes recognized by these two antibodies are shown in Fig. 2-4 A. 

PB888 staining of P17 mice reveales MYO15 isoforms containing the proline-rich 

domain (PMT and PM) localize at the tips of shorter rows of stereocilia in both 

IHCs and OHCs (Fig. 2-4 B and C, arrow).  Myo15ΔP/ΔP mice have little or no 

staining with PB888 (Fig. 2-4 D and E).  The same staining results were seen in 

P32 mice (data not shown).  This suggests that truncated MYO15 protein 

isoforms are unstable and/or are diffusely distributed because there is no 

localization in the stereocilia.  In contrast, staining results with the MYO15 tail-

specific antibody, PB48, show tail containing isoforms of MYO15 (PMT and MT) 

in the tips of long and short stereocilia of wild type mice.  Only the isoform MT is 

left in the longest stereocilia of Myo15ΔP/ΔP mice (Fig. 2-4 F-I, arrowhead).  This 

suggests that the proline-rich domain, encoded by exon 2, is necessary for 

localization of MYO15 to the shorter stereocilia. 

 

Stereocilia in the cochlear hair cells form normally but degenerate later in 

Myo15ΔP/ΔP mice 

        In Myo15sh2/sh2 and Myo15sh2J/sh2J mice, both IHCs and OHCs exhibit very 

short lengths of stereocilia (Anderson et al., 2000), which suggests that MYO15 

is important for elongation of hair bundles during development.  We examined 
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the stereocilia morphology of Myo15ΔP/ΔP mice by SEM.  Interestingly, we found 

that the lengths and stair-case pattern of stereocilia are pretty well preserved in 

both IHCs and OHCs of Myo15ΔP/ΔP mice at early development ages (Fig. 2-5 B).  

By P50, however, the shorter rows of stereocilia have degenerated and 

disappeared, while the longest rows of stereocilia are still normally maintained 

(Fig. 2-5 E).  The degeneration of shorter rows in mutant mice is first observed at 

about 4 weeks of age, which is also the age that mutant mice exhibited no ABR 

response to sound (Fig. 2-3 A).  Since the MYO15 isoforms PMT and PM are 

specifically localized at the tips of shorter rows of stereocilia (Fig. 2-4), loss of 

these isoforms in Myo15ΔP/ΔP mice may account for the degeneration of 

stereocilia where they are located. 

 

Normal transportation of WHRN in Myo15ΔP/ΔP mice 

        In Myo15sh2/sh2 and Myo15sh2J/sh2J mice, WHRN cannot be transported to the 

tips of stereocilia because the motor domain and PDZ binding domain at the C-

terminus of MYO15 are required (Belyantseva et al., 2005).  However, in 

Myo15ΔP/ΔP mice, the transportation of WHRN is not affected by the loss of 

Myo15 isoforms PMT and PM (Fig. 2-6). Because WHRN was not detected at the 

tips of stereocilia in sh2 or sh2J mice, we conclude that the transportation of 

WHRN in the stereocilia does not require MYO15 N-terminal proline-rich domain. 

 

Myo15 E1086X and sh2J alleles cannot complement each other 

        Myo15+/ΔP mice were bred with Myo15+/sh2J mice to obtain Myo15ΔP/sh2J 
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offspring, in which only MYO15 isoform MT and isoform PM exist in the hair cells.  

The ABR test results showed that Myo15ΔP/sh2J mice exhibit ~100 dB SPL 

threshold at all frequencies tested (Fig. 2-7 A), which means Myo15 E1086X and 

sh2J alleles cannot complement on hearing function.  The stereocilia morphology 

of Myo15ΔP/sh2J mice was examined by SEM. We found that the Myo15ΔP/sh2J 

mice have the similar phenotype of stereocilia as Myo15ΔP/ΔP mice: hair cell 

stereocilia form normally but short rows degenerate at late development stage 

(Fig. 2-7 C, arrows).  Our data shows that Myo15 E1086X and sh2J alleles 

cannot complement on both hearing function and stereocilia morphology. 

Therefore, it is necessary for the proline-rich domain of MYO15 protein to be 

assembled with motor and tail domains together for normal hearing. 

 

DISCUSSION 

MYO15 isoforms have different subcellular localizations 

        It is not unusual for genes expressed in auditory hair cells to produce 

multiple protein isoforms with different spatial and temporal expression patterns.  

Examples of such proteins include ion channels (e.g. KCNQ4), scaffold proteins 

(e.g. Harmonin), and tip link proteins (e.g. Protocadherin15) (Reiners et al., 2005; 

Ahmed et al., 2006; Xu et al., 2007).  Here, we show that MYO15 protein 

isoforms also have different localizations: isoforms containing the proline-rich 

domain are mostly at the tips of the short rows of stereocilia, while isoforms with 

only the motor and tail domains are enriched at the tips of the longest stereocilia.  

Previous studies with a MYO15 antibody that recognizes the tail domain revealed 
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that immunoreactivity is scaled to the lengths of stereocilia, with the most robust 

staining in the longest rows of stereocilia (Rzadzinska et al., 2004).  Here, using 

antibodies that differentially recognize the proline-rich domain and the tail domain 

of MYO15, we showed in this study that different MYO15 isoforms localize in 

different stereocilia rows.  These observations imply that the distinct subcellular 

localization of different MYO15 isoforms contributes to the apparent gradient of 

overall MYO15 protein concentration in the stereocilia.  Thus, the phenotypes of 

the Myo15ΔP/ΔP mice are unlikely to be caused by reduced dosage of the whole 

MYO15 protein pool within the cells.  Instead, MYO15 isoforms containing the 

proline-rich domain have specific roles in the maintenance and function of the 

shorter stereocilia.    

        The E1086X mutation introduces a stop codon into exon 2 of the Myo15 

gene.  Quantitative PCR analyses demonstrate that transcripts spliced from exon 

2 to exon 3 are present in the similar quantities in normal and mutant mice (data 

not shown).  This reveals that the Myo15 transcripts containing the mutation do 

not undergo nonsense-mediated decay.  We found no evidence for MYO15 

isoforms PMT and PM in the shorter rows of stereocilia in the Myo15ΔP/ΔP mice, 

however.  Thus, the truncated isoforms PMT and PM are not stable and 

degraded quickly.  Based on immunostaining results, an appropriate amount of 

isoform MT is still preserved at the tips of longest row of stereocilia.  This 

suggests that the transcription, splicing and translation processes involved in 

producing this isoform are not affected by the E1086X mutation.  This provides 

additional evidence that the phenotypes of Myo15ΔP/ΔP mice are not likely to be 
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due to the disruption of the whole MYO15 protein pool, and it also supports the 

hypothesis that the N-terminal proline-rich domain of MYO15 has distinct 

function(s) in the cochlear hair cells. 

 

MYO15 isoforms with proline-rich domain are important for maintenance of 

shorter stereocilia 

        MYO15 is important for stereocilia elongation and transporting WHRN to the 

tips of stereocilia (Belyantseva et al., 2005).  The sh2 and sh2J mice are unable 

to localize WHRN at the stereocilia tips and accordingly all rows of stereocilia are 

very short in these Myo15 mutants and in whirler mutants (Belyantseva et al., 

2005; Delprat et al., 2005).  Compared to sh2 and sh2J mice, the phenotype of 

Myo15ΔP/ΔP mice is striking; the transportation of WHRN and elongation of 

stereocilia appears normal initially, but stereocilia degenerate later.  This proves 

that the N-terminal proline-rich domain of Myo15 is not required for transportation 

of WHRN or stereocilia elongation.  This is also consistent with the results of 

previous experiments that demonstrated correction of stereocilia lengths in sh2 

mutant cochlear explants by introduction of a MYO15 expression construct 

bearing only motor and tail domains (Belyantseva et al., 2005).  The ex-vivo 

nature of the explant experiment, however, made it impossible to test the 

physiological function of the transfected hair cells.  Here, the Myo15ΔP/ΔP mouse 

model proves that without the proline-rich domain of MYO15, normal hearing is 

not acquired even though the stereocilia reach normal lengths. 

        We detected the degeneration of shorter rows of stereocilia in young 
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Myo15ΔP/ΔP mice, revealing a functional role for the N-terminal proline-rich 

domain in maintaining the integrity of hair bundles.  This function may be 

accomplished by interaction between the proline-rich domain of MYO15 and its 

binding proteins involved in regulation of actin polymerization at the tips of 

stereocilia.  Many proline-rich proteins participate in delivering actin monomers to 

specific cellular locations where actin-rich membrane protrusions, such as ruffles, 

filopodia and microspikes, are formed (Holt and Koffer, 2001).  A potential 

interacting protein with proline-rich motifs that regulates actin polymerization is 

Profilin.  There are no reports of mutations in the profilin gene causing deafness 

in both mammals and humans.  A couple of examples, however, illustrate the 

connection of unconventional myosin with actin regulating protein in hair cells.  

Twinfilin 2 plays a role in the regulation of stereocilia elongation by restricting 

excessive elongation of the shorter row stereocilia (Peng et al., 2009).  This 

function of Twinfilin 2 is fulfilled by interacting with MYO7A (Rzadzinska et al., 

2009).  MYO3A and espin, an actin bundling protein, interact directly to boost the 

elongation of stereocilia (Salles et al., 2009).  It is noteworthy that the tips of the 

shorter stereocilia are the site of mechanoelectrical transduction (MET).  It is 

possible that the turnover and dynamic localization of the actin regulating 

protein/myosin complex are influenced by interactions between MYO15 and 

components of the MET machinery, and vice-versa. 

 

MYO15 N-terminal proline-rich domain and mechanoelectrotransduction 
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        Mechanically sensitive transducer channels are present only at the bottom 

of the tip links, not in the tallest row stereocilia, as demonstrated by measuring 

calcium entry during hair bundle stimulation (Beurg et al., 2009).  The co-

localization of MET channels and MYO15 proline-rich domain containing 

isoforms leads us to hypothesize that these MYO15 isoforms are involved in the 

regulation of MET at the tips of the short rows of stereocilia.  The interaction 

between the proline-rich domain of MYO15 and components of the transduction 

channel may not be direct, however, and may differ between IHCs and OHCs.  In 

support of this idea, IHCs of Myo15sh2/sh2 mice have defects in the fast adaptation 

and calcium sensitivity aspects of MET, though the MET response has a normal 

amplitude and speed of activation (Stepanyan and Frolenkov, 2009).  The OHCs 

of Myo15sh2/sh2 mice, however, have normal MET and maintain a very slight 

staircase structure.  Stepanyan and Frolenkov hypothesize that the abnormalities 

in Myo15sh2/sh2 IHC function are attributable to the absence of the staircase 

pattern.  Our preliminary data suggests that IHCs of young (P3-P9) Myo15ΔP/ΔP 

mice exhibit MET currents in the normal range and fast adaptation (Frolenkov 

and Indzhykulian, unpublished data).  If confirmed, this is consistent with the idea 

that MET requires the staircase architecture of the hair bundle. 

 

The integrated long isoform of MYO15 is required for normal hearing 

        Compound heterozygous mice, Myo15ΔP/sh2J, have profound hearing 

impairment and pathology of stereocilia maintenance similar to Myo15ΔP/ΔP mice.  

The Myo15ΔP/sh2J mice are expected to have half doses of isoforms PM and MT 
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in the hair cells.  Even though the proline-rich domain and tail domain exist 

individually coupled to the motor domain within the cells, these proteins cannot 

execute all the functions necessary for hearing.  Thus, normal hearing requires 

the integrated isoform PMT of MYO15, a single molecule containing all three 

domains.  This indicates the possibility of intramolecular interaction between 

MYO15 proline-rich domain and tail domain to regulate protein activity.  

        MYO7A and Diaphanous 1 are examples of hair cell proteins with 

intermolecular regulation.  The tail of Drosophila Myo7a can bind to its head-neck 

domain and inhibits the ATPase activity of the protein (Yang et al., 2009).  

Diaphanous 1, which is mutated in humans with DFNA1, is activated by binding 

of its GBD domain to GTP-Rho, disrupting the intramolecular association 

between the GBD domain and the tail (Watanabe et al., 1999).  Although the 

importance of these intramolecular interactions for hearing function remains 

unclear, it is likely that this mechanism is involved in the highly dynamic 

regulation of hair cell stereocilia.  To examine whether there is an autoregulation 

between the proline-rich domain and other domains within MYO15 protein, 

biochemical and biophysical assays need to be developed in the future.  

         

        In conclusion, we created a novel mouse model, Myo15ΔP/ΔP,  that 

eliminates isoforms with the proline-rich domain of MYO15 protein while 

preserving other MYO15 isoforms.  Myo15ΔP/ΔP mice are differentiated from sh2 

or sh2J mice in vestibular function, hair bundle pathology, and transport of 

WHRN protein, which indicates that the proline-rich domain of MYO15 plays a 
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distinct role in the development and maintenance of auditory sensory cells.  

Myo15ΔP/ΔP mice will be an invaluable tool for us to understand the function of 

unconventional myosins in normal hearing.  
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Figure 2-1. Myo15 gene structure and protein isoforms.  
The Myo15 gene has 66 exons.  Exon 2 encodes the proline-rich domain of 
MYO15.  Two translation start sites are located in exon 2 and exon 3, 
respectively.  Alternative splicing of exon 2 results in the inclusion or exclusion of 
the proline-rich domain in MYO15.  Alternative splicing involving exon 26 would 
produce a protein that is truncated shortly after the IQ motifs.  Arrows indicate 
two spontaneous mouse mutations, sh2 and sh2J, and the induced mutation, 
E1086X, that is discussed in the thesis.  Selected MYO15 isoforms are 
designated as PMT, PM and MT (P=proline-rich domain, M= motor domain, T= 
tail domain). 
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Figure 2-2. Targeted mutation in exon 2 of the Myo15 gene. 
A, Maps of Myo15 wild-type allele, the targeting construct and the resulting 
mutant alleles, which contain the E1086X mutation in exon 2 of Myo15 gene.  
The E1086X mutation creates a new MseI cutting site.  White boxes represent 
exons, arrowheads indicate loxP sites.  The neomycin cassette was secondary 
removed using Cre recombinase, generating the Myo15E1086X (Myo15ΔP) allele.  
The two probes used to validate homologous recombination in ES cells by 
Southern blot analysis are indicated.  B, Southern blot analysis of Asp718 and 
NsiI-digested genomic DNA derived from neomycin-resistant ES cell clones as 
well as negative controls.  C, PCR analysis of wild-type (+/+), heterozygous 
(+/ΔP), and homozygous mutant (ΔP/ΔP) mice.  
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Figure 2-3. Assessment of hearing impairment in Myo15ΔP/ΔP mice. 
A, Representative ABR thresholds at 20 kHz for wild type (white columns) and 
Myo15ΔP/ΔP (black columns) mice at ages of 2, 4 and 6 weeks old.  B, 
Representative DPOAE measurements at 12 kHz for living wild-type and 
Myo15ΔP/ΔP mice at ages of 2 and 6 weeks old (white squares and black 
triangles, respectively).  The noise floor is shown as DPOAEs of postmortem wild 
type mice (grey dashed line with dots).  
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Figure 2-4. Localization of different MYO15 isoforms in the stereocilia of 
wild type and Myo15ΔP/ΔP mice. 
A, Schematic representation of full-length MYO15 protein and its domains. 
Horizontal red rectangles indicate the location of the amino-acid residues of the 
antigens that were used to immunize rabbits.  (B-E), Immunostaining by PB888 
antibody on whole mount preparation of sensory epithelia from wild type and 
Myo15ΔP/ΔP mice.  Arrows indicate the localization of MYO15 isoforms containing 
the proline rich domain, which is recognized by the PB888 antibody, in the short 
rows of stereocilia in IHCs and OHCs of wild type mice.  (F-I), Immunostaining 
with the PB48 antibody on whole mount preparations of sensory epithelia from 
wild type and Myo15ΔP/ΔP mice.  PB48 recognizes all the MYO15 isoforms 
carrying the tail domain, which localize in all rows of stereocilia in wild types, but 
are absent from the short rows in Myo15ΔP/ΔP mice (indicated by the arrowheads). 
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Figure 2-5. Stereocilia morphology of Myo15ΔP/ΔP mice. 
(A-C), SEM images of OHCs stereocilia in wild type (A), Myo15ΔP/ΔP (B) and 
Myo15sh2/sh2 (C) mice at P6~P8 days old.  All samples are from approximately the 
same mid-cochlear location.  (A’-C’), Higher magnification images of the areas in 
the dashed line rectangles in (A-C).  (D, E), SEM images of OHCs stereocilia in 
wild type (D) and Myo15ΔP/ΔP (E) mice at P50 days old.  Red arrows indicate a 
few remaining stereocilia undergoing degeneration in the short rows.  Most of the 
stereocilia in the shortest row have been lost completely at this time. 
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Figure 2-6. Transportation of WHIRLIN appears normal in Myo15ΔP/ΔP mice. 
An anti-WHIRLIN antibody was used to immunostain whole mount preparations 
of cochlear sensory epithelia of wild type (A, C) and Myo15ΔP/ΔP (B, D) mice (red) 
and phallodin staining (green) reveals actin rich structures.  
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Figure 2-7. E1086X and sh2J alleles of Myo15 do not complement each 
other in hearing function or stereocilia morphology. 
A, ABR thresholds of Myo15+/ΔP and Myo15sh2J/+ΔP mice at 20 kHZ.  (B-E), SEM 
images of stereocilia from IHCs and OHCs of Myo15sh2J/+ΔP (B,C) and 
Myo15sh2J/sh2J (D,E) mice.  Red arrows indicate the degenerating stereocilia in the 
short row of Myo15sh2J/+ΔP OHCs. 
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APPENDIX  
 

 

Disruption of the proline rich domain of MYO15 results in subtle vestibular 

dysfunction but no circling behavior or hyperactivity disorder 

 

INTRODUCTION 

        The inner ear contains the developmentally related cochlea and peripheral 

vestibular labyrinth.  Given the similar physiology between these two organs, 

hearing loss and vestibular dysfunction may be expected to occur simultaneously 

in some individuals segregating mutations in inner ear genes.  Many mouse 

mutants with hearing deficits also exhibit head tossing and circling behavior that 

is thought to be associated with vestibular dysfunction.  The close association 

with deafness and circling behavior, however, may represent an ascertainment 

bias because the hyperactivity disorder is obvious and easy to detect in 

spontaneous mutants or in mutagenesis screens.  Recent mutagenesis projects 

have incorporated hearing testing as a routine screen (Hardisty-Hughes et al., 

2010) and identified many deafness mutants without vestibular defects 

(Schwander et al., 2007).  The Otoferlin (Otof) mutant mouse is such an 

example.  Otoferlin protein is highly expressed in both cochlear and vestibular 

hair cells of mouse inner ears (Roux et al., 2006), yet mice carrying mutations in 

Otof gene, either the genetically engineered Otof-deficient mice (Roux et al., 

2006) or mice with ENU-induced mutations (Longo-Guess et al., 2007; 

Schwander et al., 2007), are deaf but have apparently normal vestibular function. 
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Different alleles of a gene that cause inner ear defects may or may not include an 

obvious vestibular abnormality.  For example, waltzer mutants have a null allele 

of Cdh23 that causes a circiling and head tossing phenotype, while an ENU-

induced missense mutation in Cdh23 does not arouse this behavior in salsa mice 

(Wilson et al., 2001; Schwander et al., 2009).  The discrepancy between auditory 

and vestibular phenotypes could arise from differences in timing of 

developments, proteins or protein isoform expression, interacting proteins, and/or 

functional requirements between cochlea and vestibular organs. 

 Myo15 is expressed in both cochlear and vestibular hair cells and is 

crucial in regulating the elongation of stereocilia of both sensory cell types during 

inner ear development (Belyantseva et al., 2003).  In addition to profound, 

congenital deafness, all previously described alleles of Myo15 exhibit head 

tossing and circling behavior, which indicate vestibular dysfunction (Probst et al., 

1998).  This includes sh2, sh2J, sh2-2J, and sh2-3J mutant mice (Mouse 

Genome Informatics (MGI) website, http://www.informatics.jax.org/).  The 

vestibular hair cells in sh2 and sh2J mutants have extremely short stereocilia and 

lack whirlin staining at the tips (Belyantseva et al., 2005), which presumably 

leads to lack of vestibular function. 

 Here, we report that a unique, highly conserved, proline-rich domain of 

MYO15 protein may have different roles in  auditory and vestibular systems.  The 

stereocilia of cochlear and vestibular hair cells of Myo15ΔN/ΔN mice differ from 

previously reported alleles in that they seem normal initially, and although the 

mutant mice are deaf, they do not show any obvious head tossing or circling 
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behavior.  We have begun to investigate the vestibular function in Myo15ΔN/ΔN 

mice and find evidence of subtle deviations in electrophysiology from normal 

mice.  Here we report progress to date on this analysis. 

  

RESULTS 

 We compared the behavior of Myo15ΔN/ΔN and Myo15sh2/sh2 mutants in their 

cages.  Myo15sh2/sh2 mutants spontaneously circle and toss their heads.  They 

occasionally stop circling, but if handled or suspended by the tail, they begin to 

circle when released in the cage.  In contrast, wild type mice were not observed 

to circle, even after handling.  The Myo15ΔN/ΔN mutants were indistinguishable 

from wild type, and they showed no obvious signs of excessive movement or 

hyperactivity of any kind.   

 To obtain a more quantitative behavioral assessment, the Myo15ΔN/ΔN mice 

were analyzed at 6 weeks and 3 months of age by the Center for Integrative 

Genomics at University of Michigan. SHIRPA (SmithKline Beecham 

Pharmaceuticals; Harwell, MRC Mouse Genome Centre and Mammalian 

Genetics Unit; Imperial College School of Medicine at St Mary’s; Royal London 

Hospital, St Bartholomew’s and the Royal London School of Medicine; 

Phenotype Assessment) protocol was used for the assessment (Rogers et al., 

1997).  As the primary screen in the protocol, each mouse begins by being 

observed undisturbed in a viewing jar.  Then the mouse is transferred to the 

arena for testing of transfer arousal and observation of normal behavior.  A 

sequence of manipulations follows with tail suspension and use of the grid across 
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the width of the arena.  Finally, the animal is restrained in a supine position to 

record autonomic behaviors prior to measurement of the righting reflex.  There 

were no significant differences between Myo15ΔN/ΔN mice and controls for all the 

behavioral tests in the primary screen.   

 A more challenging test is part of the secondary screen in the SHIRPA 

protocol.  An accelerating rota-rod is used to quantify the balance and 

coordination abilities of the mice.  The time that a mouse can remain on a 

rotating drum was recorded, and there was no significant difference between 

Myo15ΔN/ΔN and control mice, although substantial variations were seen among 

the mice in the same genotype group (Fig. 2-8 A).  In contrast, the Myo15sh2/sh2 

mutants are not even able to attempt the rota-rod task.  Thus, Myo15ΔN/ΔN mice 

do not show obvious balance or hyperactivity disorder on the basis of these 

behavioral assessments.  

        To more directly test for vestibular function at the electrophysiological level, 

we measured vestibular evoked potentials (VsEPs) on Myo15ΔN/ΔN mice.  VsEPs 

are elicited by stimuli that activate vestibular sensors and vestibular neurons and 

recorded via electrodes placed on the surface of the scalp (Jones et al., 2005).  

Compared to wild type controls, Myo15ΔN/ΔN mice have significantly elevated 

VsEP thresholds at 8 weeks of age (Fig. 2-8 B, Myo15ΔN/ΔN:  -1.5 +/- 2.5 dB, 

controls:  -11.1 +/- 2.5 dB).  The P1-N1 peaks on VsEPs measurement are 

generated by the peripheral vestibular nerve innervating the utricle and saccule.  

The latency of P1-N1 peaks provides a measure of the timing of neural 

transmission and conduction through the vestibular neural pathways, and the 
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amplitude of the peaks reflects the size and general synchrony of the population 

of neurons responding to the stimulus.  It shows that the Myo15ΔN/ΔN mice have 

significantly prolonged P1-N1 latencies (Fig. 2-8 C) and significantly reduced P1-

N1 amplitudes (Fig. 2-8 C).  These results are consistent with loss of end organ 

sensitivity and slowed sensory transduction/neural activation in the Myo15ΔN/ΔN 

vestibular system.   

        The stereocilia morphology of vestibular hair cells was examined by 

phalloidin staining and scanning electronic microscopy (SEM).  Unlike sh2 and 

sh2J mutants, the lengths of vestibular stereocilia in Myo15ΔN/ΔN mice are similar 

to wild type controls at P50 (Fig. 2-9), which indicates that the elongation and 

maintenance of vestibular stereocilia does not require the proline-rich domain of 

MYO15 protein.   

 

DISCUSSION 

 We discovered that Myo15ΔN/ΔN mice differ from all previous mutant alleles 

of Myo15 by having normal activity.  No overt evidence of hyperactivity, head 

tossing or circling were observed, and quantitative tests confirmed normal 

locomotor activity, coordination and balance.  We cannot rule out differences in 

behavior with more challenging tasks such as swimming test or vestibular colic 

reflex (See Future Directions). 

 Despite the normal activity and coordination of Myo15ΔN/ΔN mice, we 

detected electrophysiological abnormalities.  There are other examples of mice 

whose behavior was judged as normal, but VsEPs were severely diminished 
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(Jones et al., 2005).  It is not surprising, therefore, that Myo15ΔN/ΔN mice exhibit 

normal behavior with reduced vestibular sensory input on VsEPs measurements.  

The reason probably comes from the remarkable plasticity and compensation 

abilities in the vestibulomotor systems. 

 The phenotypes of the shaker 2 and shaker 2J mutants revealed that 

Myo15 is required for elongation of cochlear and vestibular stereocilia.  The 

Myo15ΔN/ΔN mice demonstrated that the proline-rich domain is not necessary for 

elongation, but it is required for maintenance of cochlear stereocilia.  The 

cochlear stereocilia of Myo15ΔN/ΔN mice initially elongate and form the staircase 

pattern normally, but the stereocilia deteriorate prior to adulthood (see Chapter 

2).  While we did not observe any obvious degeneration of vestibular stereocilia, 

preliminary studies suggest that the proline-rich isoform is expressed in only a 

small subset of vestibular hair cells, and this area could have been missed (Bird, 

unpublished).  Further analyses that define the spatial and temporal expression 

of different Myo15 isoforms in the vestibular system more precisely will be 

informative for future studies that investigate whether vestibular stereocilia of 

Myo15ΔN/ΔN mice undergo degeneration during maturation or aging (See Future 

Directions).   

        In conclusion, this novel Myo15ΔN/ΔN mouse model has severe auditory 

deficits but mild electrophysiological, vestibular dysfunction and no obvious 

balance or behavioral disorder.  Therefore, Myo15ΔN/ΔN mice are an unique tool to 

elucidate the distinct functions of the Myo15 proline-rich domain in the 

development and/or function of auditory and vestibular systems. 
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Figure 2-8. Assessment of vestibular function in Myo15ΔN/ΔN mice. 
A, The length of time that wild type and Myo15ΔN/ΔN mice remain on the rota-rod 
in the behavior assay. B, Representative waveforms of VsEP measurements for 
wild type (left) and Myo15ΔN/ΔN (right) mice. All responses shown here were 
recorded at +6 dB re: 1.0 g/ms. C, Latency of P1 waves and P1-N1 amplitudes 
for wild type (black circles) and Myo15ΔN/ΔN (open circles) mice. 
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Figure 2-9. Stereocilia morphology of vestibular hair cells in Myo15ΔN/ΔN 
mice. 
A, Images of phalloidin staining on stereocilia in the saccule, utricle and ampulla 
of wild type (upper row) and Myo15ΔN/ΔN (lower row) mice. B, SEM images of 
stereocilia in vestibular hair cells for wild type (left) and Myo15ΔN/ΔN (right) mice. 
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CHAPTER 3 

Hypothyroidism causes deafness and permanent defects in potassium 

channel gene expression and function in Pit1dw mutants 

 

ABSTRACT 

 The absence of thyroid hormone (TH) during late gestation and early 

infancy can cause irreparable deafness in both humans and rodents.  A variety of 

rodent models have been utilized in an effort to identify the underlying molecular 

mechanism.  Here, we characterize a mouse model of secondary 

hypothyroidism, pituitary transcription factor 1 (Pit1dw), which has profound, 

congenital deafness and is responsive to oral TH replacement.  These mutants 

have tectorial membrane abnormalities, including a prominent Hensen’s stripe, 

elevated β-tectorin composition, and disrupted striated-sheet matrix.  They lack 

distortion product otoacoustic emissions and cochlear microphonic responses, 

and exhibit reduced endocochlear potentials, suggesting defects in outer hair cell 

function and potassium recycling.  Auditory system and hair cell physiology, 

histology and anatomy studies reveal novel defects of thyroid hormone deficiency 

related to deafness: (1) permanently impaired expression of KCNJ10 in the stria 

vascularis of Pit1dw mice, which likely contributes to the reduced endocochlear 
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potential, (2) significant outer hair cell loss in the mutants, which may result from 

cellular stress induced by the lower KCNQ4 expression and current levels in 

Pit1dw mutant outer hair cells and (3) sensory and strial cell deterioration, which 

may have implications for thyroid hormone dysregulation in age related hearing 

impairment.  In summary, we suggest that these defects in outer hair cell and 

strial cell function are important contributors to the hearing impairment in Pit1dw 

mice. 

 

INTRODUCTION 

 The organ of Corti is a neuroepithelium with sensory cells known as inner 

(IHC) and outer hair cells (OHC).  Its maturation in the early postnatal period in 

mice and during the late prenatal period in humans is highly sensitive to thyroid 

hormone (TH), as TH deficiency during these periods can cause irreparable 

hearing deficits (Deol, 1973; Van't Hoff and Stuart, 1979; Uziel et al., 1983; 

Vanderschueren-Lodeweyckx et al., 1983; Uziel, 1986).  TH activates and 

represses expression of many genes by interacting with TH receptors (THR).  

Some TH regulated genes encode functionally important proteins that are 

involved in structural development and/or physiological processes of the inner 

ear.  Although several candidate genes have been proposed based on studies 

with rodent models of hypothyroidism, the molecular basis for the permanent 

nature of hypothyroidism-induced hearing loss is still unclear (Uziel, 1986; 

Knipper et al., 1998; Rusch et al., 1998; Knipper et al., 2000; Zheng et al., 2000; 
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Abe et al., 2003; Cantos et al., 2003; Rueda et al., 2003; Winter et al., 2006; 

Brandt et al., 2007; Sendin et al., 2007).   

 To explore the mechanism whereby TH affects the development and 

function of the inner ear, we characterized Snell dwarf (Pit1dw, officially 

Pou1f1dw), a mouse model of secondary hypothyroidism.  These mice have an 

inactivating missense mutation in the Pit1 gene, which encodes a POU-

homeodomain transcription factor that is highly expressed in the pituitary gland 

(Camper et al., 1990; Li et al., 1990).  The gene is necessary for development of 

the cells that produce growth hormone (GH), prolactin (PRL), and thyroid-

stimulating hormone (TSH) (Gage et al., 1996).  If untreated, homozygous 

mutants exhibit growth insufficiency, infertility, hypothyroidism, and deafness.  

Auditory brainstem response (ABR) testing revealed profound deafness in Pit1dw 

mutants at both 3 weeks and 6 weeks of age, but continuous oral thyroid 

hormone supplementation initiated late in gestation was effective in preventing 

hearing deficits (Karolyi et al., 2007).  These mutant mice are viable and healthy, 

living approximately 40% longer than their normal littermates (Brown-Borg et al., 

1996).  We selected these mutants for further characterization because of their 

viability, profound deafness, simple, autosomal recessive inheritance of 

hypothyroidism, and responsiveness to TH supplementation (Karolyi et al., 

2007).  

 We report physiological, morphological, and gene expression analyses 

over the course of cochlear development in normal and Pit1dw mutant mice.  

Tectorial membrane (TM) composition, morphology, and ultrastructure are 
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altered.  OHC function is permanently compromised, as demonstrated by the 

absence of distortion product oto-acoustic emissions (DPOAE) and cochlear 

microphonics (CM).  In addition to defects in OHC function, Pit1dw mice have 

reduced endocochlear potential (EP).  We examined expression of prestin and 

KCNQ4 in OHCs, as well as KCNQ1 and KCNJ10 in the stria vascularis, as 

candidates for underlying mechanisms.  We identified some processes that are 

developmentally delayed but eventually mature in the absence of thyroid 

hormone and others that suffer lasting deficits, likely contributing to the 

permanent hearing problems caused by hypothyroidism.  This study advances 

our understanding of the role of TH in development of normal hearing, including 

permanent effects on the tectorial membrane, expression of the potassium 

channel genes KCNQ4 and KCNJ10, the survival of OHC cells, and deterioration 

of the intermediate cells in the stria vascularis.   

 

METHODS    

Animal care and genotyping 

 All experiments were approved by the University Committee on the Use 

and Care of Animals and conducted in accord with the principles and procedures 

outlined in the NIH Guidelines for the Care and Use of Experimental Animals.  

Mice were obtained from the Jackson Laboratory (Bar Harbor, ME, USA) in 1990 

and maintained at the University of Michigan.  Previously described procedures 

for animal care and genotyping were used, including feeding mice a higher fat 

chow designed for breeding (PMI5020), delaying weaning of mutants until 
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approximately 35 days, and housing mutants with normal littermates to provide 

warmth (Karolyi et al., 2007).  In all experiments, at least 3 animals of each 

genotype were analyzed for each age group studied unless stated otherwise.  

Postnatal day zero (P0) is designated as the day of birth. 

 

Histology and gene expression analysis  

Western blot analysis was performed with organ of Corti protein extracts 

collected from postnatal animals.  Protein samples were homogenized in T-PER 

buffer (Pierce, Thermo Fisher Scientific, Rockford, IL), denatured in Laemmli 

sample buffer, and loaded onto SDS-polyacrylamids gels (12%).  Gels were 

blotted onto nitrocellulose filters, and filters were probed with rabbit anti-beta 

tectorin antibody (gift from Dr. Richardson, University of Sussex, UK) at 1:1000 

dilution.  As a loading control, blots were subsequently probed with anti-

glyceraldehyde-3-phosphate dehydrogenase (GAPDH) antibody (Santa Cruz 

Biotechnology sc-25778) at the dilution of 1:2000 and developed with an HRP-

conjugated goat anti-rabbit (Pierce Biotechnology cat# 31462).   Blots were 

developed with ECL substrate (Santa Cruz Biotechnology sc-2048).  

 Animals aged P8 and older were killed by CO2 inhalation or decapitation.  

The temporal bones were avulsed and cochleae were quickly transferred into 4% 

paraformaldehyde in 0.1 M phosphate-buffered saline (PBS), pH 7.4.  The 

footplate of the stapes was removed and each cochlea was perfused with the 

fixative introduced through the oval and round windows and extruded through a 

small opening made at the apex.  The tissues were exposed to the fixative for 2 
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hours, followed by overnight incubation (with shaking) at 4 degrees in 8% EDTA 

for decalcification.  No decalcification was applied to ears from animals younger 

than P10. 

 Fixed tissues were prepared for sectioning by embedding in paraffin or 

OCT. Soft bone specimens were dehydrated through a graded ethanol series 

and embedded in paraffin wax, sectioned at 6µm thickness, mounted, dried for 2 

hours and stored at room temperature.  Alternatively, soft bone specimens were 

incubated in 30% sucrose overnight at 4°C, embedded in OCT, cryosectioned at 

6 µM thickness, mounted, dried for 15 minutes, and stored at -20°C. 

 Cochlear cryosections were blocked with 5% goat or donkey serum and 

0.1% Triton X-100 in 0.1M PBS for 1 hour at room temperature, and incubated 

overnight at 4°C with a rabbit anti-serum against KCNJ10 (1:300, Alomone), or a 

rabbit polyclonal antibody against KCNQ4 (1:300) (Kharkovets et al., 2006), 

which was kindly provided by T. Jentsch (Hamburg University, Germany).  

Cochlear paraffin sections were dewaxed, rehydrated and boiled in 10 mM citric 

acid, pH 6, for 10 min to unmask epitopes followed by 1:1 H2O2:methanol (v/v) for 

20 min to quench the endogenous peroxidase activity.  The sections were 

incubated overnight at 4°C with a goat polyclonal antibody against prestin (N-20) 

(1:200, Santa Cruz) and mouse monoclonal antibody against synaptophysin 

(1:400, Sigma). Immunolabeling was visualized with TRITC-labeled secondary 

antibody (1:200, Jackson Immunoresearch) or Alexa Fluor 488 conjugated 

secondary antibodies (1:200, Invitrogen) and counter-stained with DAPI (Vector 

Laboratories). Sections from wild type and mutant animals were processed in 
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parallel for histology and immunostaining. Tissues were analyzed and 

photographed on a Leica DMRB epifluorescence microscope using identical light 

and exposures for mutant and wild type littermates. 

 For transmission electron microscopy analysis, animals were anesthetized 

and fixed by intracardiac perfusion with 2.5% glutaraldehyde in 0.15 M 

cacodylate buffer, pH 7.2, containing 1% tannic acid. The inner ear was removed 

and immersed into the same fixative for 2 h. The tissues were decalcified for 1 

week in 3% EDTA with 0.25% glutaraldehyde at 4°C. The inner ears were post-

fixed with 1% osmium tetroxide in phosphate buffer for 1 h. The specimens were 

dehydrated in increasing ethanol concentrations and embedded in Embed 812 

epoxy resin. Sections were taken on a Leica Ultracut R using a diamond knife, 

stained with uranyl acetate and lead citrate, and examined on a Philips CM-100 

TEM (Beyer et al., 2000) (Russell et al., 2007).  

          Scanning electron microscopy, whole mount and phalloidin 

epifluorescence analyses were carried out as previously described (Beyer et al., 

2000; Mustapha et al., 2007).   

 

Standard tests of auditory physiology 

 DPOAEs and EP were conducted as previously described (Karolyi et al., 

2007). 

 CM measurements were carried out on mice that were anesthetized 

(ketamine 65 mg/kg, xylazine 3.5 mg/kg, and acepromazine 2 mg/kg) and given 

a dose of glycopyrrolate (0.2 mg/kg) to reduce secretions during surgery. Body 
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temperature was maintained through the use of water circulating heating pads 

and heat lamps.  Additional anesthetic (ketamine and xylazine) was administered 

if needed to maintain anesthesia at a depth sufficient to insure immobilization 

and relaxation.  Mice were placed into a head holder.  The external pinna was 

removed and soft tissue dissected away from the bulla.  The bulla wall was 

opened, and a single ball electrode, approximately 100 micrometer in diameter, 

was placed in the round window niche.  The electrode was made from 2T 90% 

platinum/10% iridium wire and teflon coated, except for the ball.  A teflon-coated 

silver return electrode was placed subcutaneously on the jawline.  For CM 

recordings, the output frequency from the SRS 830 lock-in amplifier was stepped 

from 4 to 30 kHz, with a time constant of one second and a dwell time of 300 

microseconds.  The signal was passed through a programmable attenuator (TDT 

PA5) to produce a constant-amplitude signal.  The signal from the round window 

electrode (Teflon-coated silver wire, with reference in the contralateral jawline) 

was sent though a Grass P15 amplifier (filter 0.1-50 kHz) to the input of the 

SRS830 lock-in amplifier.  Signals were generated and data recorded with a 

MATLAB script written in-house. 

 

Patch-clamp electrophysiology 

Preparations of semi-intact mouse organ of Corti were obtained from mice 

2 to 6 weeks old.  Mice were anesthetized by intraperitoneal injection of ketamine 

(65 mg/kg) and xylazine (7 mg/kg) and killed by rapid decapitation.  The bony 

labyrinth was extracted into cold perilymph-like saline (in mM, 142.0 NaCl, 5.8 
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KCl, 1.3 CaCl2, 0.9 MgCl2, 10 HEPES, 0.7 Na2HPO4, 2 Na-pyruvate, 5.8 glucose; 

pH 7.4; 305 mOsm), supplemented with amino acids and vitamins (1X MEM, 

Invitrogen).  About three-quarters of the apical cochlear coil was separated from 

the modiolus and spiral ligament.  All recordings were from OHC located 

approximately one-half turn from the cochlear apex.  Viable hair cells were 

identified by their appearance, including features of bi-refringent membrane, 

columnar shape and absence of observable Brownian motion in cell organelles.  

Whole-cell voltage-clamp recordings were made with a MultiClamp 700B and 

Digidata 1440A data acquisition system using the pClamp 10.0 software suite 

(Molecular Devices).  Data were sampled at 20 kHz and low-pass filtered at 4 

kHz.  For measurements of nonlinear capacitance, electronic compensation of 

membrane capacitance was necessarily omitted.  Data were obtained from all 

three rows of OHC.  Currents were recorded several minutes after break-in to the 

whole-cell configuration, in order to allow the cytoplasm and pipette solution to 

equilibrate.  Electrodes were pulled from borosilicate glass capillaries (World 

Precision Instruments, Inc.) to a resistance of 3 - 6 MΩ.  Drug perfusions, when 

necessary, were delivered locally through a multichannel micromanifold (ALA 

Scientific).  All recordings were made at room temperature (21-26°C).  

Membrane voltages have not been compensated for junction potentials or 

residual series resistance errors.  Unless otherwise noted, all measurements are 

reported as means ± one standard error of the mean. 

Voltage-dependent capacitance was estimated from current transients 

elicited by small, incremental steps in the command voltage.  This method, 
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described more fully elsewhere (Huang and Santos-Sacchi, 1993; Oliver and 

Fakler, 1999), relies on a simplified electrical model of the cell, under conditions 

where ionic currents have been blocked.  The voltage protocol consisted of a 

stair-step series of voltage commands from -125 to 70 mV, using brief 5 mV 

steps 10 ms in duration.  Extracellular and intracellular solutions were designed 

to block dominant potassium and calcium currents, resulting in a nearly linear 

steady-state current-voltage curve.  The extracellular solution consisted of the 

following (in mM): 100 NaCl, 20 CsCl, 20 TEA-Cl, 1.52 MgCl2, 2 CoCl2, 10 

HEPES, 5 glucose, with pH adjusted to 7.2 using NaOH and osmolarity set to 

~300 mOsm.  The intracellular solution contained the following (in mM): 140 

CsCl, 2 MgCl2, 10 HEPES, 10 EGTA, with pH adjusted to 7.2 using CsOH and 

osmolarity set to ~300 mOsm.   

Membrane capacitance was calculated from estimates of input resistance 

and monoexponential fits to capacitance transients.  These calculations were 

plotted against the voltage command eliciting the transient and fit to the 

derivative of the Boltzman equation describing charge movement through the 

membrane electric field: 

where Vm is membrane voltage, Clin is the linear, voltage-independent membrane 

capacitance, Qmax is the maximum charge moved through the membrane electric 

field, V1/2 is the voltage corresponding to half-maximum charge movement, and α 

is the Boltzman slope factor describing voltage-sensitivity.  The maximum 

voltage-dependent capacitance (Cnonlin) is equal to Cm(V1/2) – Clin. 
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For potassium current measurements, the bath solution was the 

perilymph-like saline used for dissection (see above), and the electrode solution 

contained (in mM): 135 NaCl, 0.1 CaCl2, 3.5 MgCl2, 5 HEPES, 5 EGTA, and 2.5 

Na2ATP, with pH adjusted to 7.2 with KOH and osmolarity set to 292 mOsm.  

Voltage commands were referenced to a holding potential of -80 mV in all cases.  

Tail currents were corrected off-line for a linear leak conductance and fit with a 

first-order Boltzman function: 

 

where Imax is the maximum tail current, Vm is the membrane voltage, V1/2 is the 

half-maximal activation voltage, and Vs is the Boltzman slope factor describing 

voltage sensitivity.  In many cases, the sum of two first-order Boltzman functions 

was required to describe the tail currents.  The F-statistic from curve fits in 

pClamp was used to determine whether a single or double Boltzman equation 

best fit the data.  In some cases, the M-current blocker linopirdine (200 µM) was 

locally applied to selectively block KCNQ4 currents (Marcotti and Kros, 1999).   

 

RESULTS 

Altered composition of the tectorial membrane in Pit1dw mutant mice  
 
 The morphological maturation of the cochlea is subject to developmental 

delay in many types of hypothyroid mice (Karolyi et al., 2007).  We compared 

mid-modiolar cochlear sections of Pit1dw mutants and wild-type littermates using 

light microscopy.  We observed a delay in the opening of the tunnel of Corti in 
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Pit1dw mutants at P12, but by P21 the opening was indistinguishable from wild 

type (Fig.3-1A).  These features are similar to those described in other 

hypothyroid mutants.  At P21 the tectorial membrane (TM) in Pit1dw mutants 

clearly contains an abnormal protrusion (Fig.3-1 A).  This abnormality appears to 

be a more prominent Hensen’s stripe, and it persists through P42 (data not 

shown).  This prominent stripe is evident in another model of secondary 

hypothyroidism, the Cga mutant that lacks pituitary TSH, but neither the 

underlying mechanism nor the significance has not been explored (Karolyi et al. 

2007).   

 The tectorial membrane is comprised of collagens (Col11a2, Col9a3, and 

Col9a1) and non-collagen proteins including α-tectorin (Tecta) and β-tectorin 

(Tectb) and otogelin (Otog), all of which are critical for normal hearing 

(Richardson et al., 2008).  We compared the concentration of TECTB in cochlear 

protein extracts from normal and Pit1dw mutant mice at P21 using western 

blotting (Fig. 3-1 B).  Two expected TECTB polypetides are detected in all mutant 

and wild type samples, consistent with previous reports (Knipper et al., 2001). 

Both isoforms of TECTB are consistently elevated in the Pit1dw mutant samples 

compared to wild type (WT) littermates.  Similar results were obtained at P35 

(data not shown).  The elevation of TECTB in Pit1dw mutants contrasts with the 

significant reduction of TECTB in drug-induced hypothyroid rats (Knipper et al., 

2001).  

 Structural changes in the TM have been reported in a variety of models with 

altered TH (Knipper et al., 2001; Rusch et al., 2001; Richardson et al., 2008). 
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Transmission electron microscopy (TEM) revealed abnormalities in the structure 

of the striated-sheet matrix in the TM in Pit1dw mutants relative to wild type (Fig.3-

1 C).  

 
OHC loss in Pit1dw mutant mice 

To examine maturation of cochlear sensory cells and supporting cells we 

prepared whole mounts of the organ of Corti from normal and mutant mice and 

stained them with FITC-phalloidin, which reveals actin-containing regions of the 

cytoskeleton and cell-cell contacts (Fig. 3-2 A-D).  At P14 and P25 the stereocilia 

of IHCs and OHCs and the junctions between pillar cells are clearly visible in wild 

type mice (Fig. 3-2 A and C).  In contrast, the pillar cells do not stain with 

phalloidin in P14 mutants (Fig. 3-2 B).  At P25 the mutant pillar cells stain with 

phalloidin, but the organization of the cytoskeleton is abnormal relative to normal 

mice, and these abnormalities persist through P42 (data not shown).  Disruptions 

are evident in the repeated pattern of OHCs and the orientation of the OHC hair 

bundles in both P14 and P25 Pit1dw mutants compared to wild type, suggesting 

the possibility of OHC death, followed by scar formation in the mutants (Fig. 3-2 

B and D).   

 We performed two additional types of analyses on P42 mutant and wild 

type mice to examine OHC death more closely.  Scanning electron microscopy 

(SEM) of the organ of Corti clearly confirmed the presence of scars in mutant 

mice in the cochlear mid turn, indicating the expansion of supporting cells into 

spaces created by missing OHCs (Fig.3-2 E-F).  Transmission electron 

microscopy (TEM) analyses revealed OHCs from the mid turn of P42 Pit1dw 
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mutant in an advanced stage of degeneration (Fig.3-2 G).  In order to determine 

the location and extent of OHC death along the cochlea, we analyzed whole 

mounts of P42 organ of Corti by staining OHCs with FITC-phalloidin (data not 

shown) and antibody to the motor protein prestin (Supplemental Figure S. 3-1 A-

B).  Four regions of the organ of Corti were examined and quantified for OHC 

loss (apex, lower apex, mid turn and upper base) in 5 different animals of both 

Pit1dw mutant and wild-type mice.  Two-sided Student’s t-tests for independent 

samples were conducted for differences in the mean between mutants and wild 

type mice.  Gaps and deviations from the normal pattern of three, well-organized 

rows of OHCs were observed throughout the mutant organ of Corti.  The most 

prominent hair cell loss was in the lower apical region of Pit1dw mutants with a 

mean percent loss of 15±2% (mean ± one standard error of the mean) compared 

to wild type mice at 3±2% (Fig. 3-2 H).  Mean percent OHC loss was significantly 

higher in the Pit1dw mutants compared to wild type in the lower apex (p<0.01), 

mid turn (p<0.01), and upper base (p<0.05), but not significantly higher in the 

apex.  A similar gradient of hair cell loss was described for Barhl1 mutants (Li et 

al., 2002).  OHC degeneration occurs in the Pax8-/- model of hypothyroidism, but 

Pax8 expression in the otocyst could be a confounding factor (Christ et al., 

2004).  Because most Pit1dw OHC survive and have a healthy appearance, the 

OHC death we observe in Pit1dw mutants is unlikely to account for their profound 

hearing impairment.  The remaining OHCs might be dysfunctional, however. 

 

Adult Pit1dw mice lack DPOAE and CM 
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 OHCs contribute to sound processing by serving as a nonlinear cochlear 

amplifier.  We used standard audiometric techniques to test OHC function by 

measuring DPOAEs and CMs because normal morphological appearance does 

not imply normal OHC function.  Wild type 6-week-old (P42) animals had 

DPOAEs at low and moderate sound levels (≤80 dB SPL) at all frequencies 

measured (12, 24, and 48 kHz) (shown for 24 kHz, Fig. 3-3 A).  Postmortem 

DPOAE measurements on wild type mice define the noise floor.  Live, age-

matched Pit1dw mutant littermates had DPOAEs that were indistinguishable from 

the noise floor in mutant or wild type mice.  We also recorded the magnitude and 

phase of the cochlear microphonic, a measure of the combined sound-driven 

receptor currents of both IHCs and OHCs.  The CM response is dominated by 

the more numerous OHCs, particularly those OHCs located at the base of the 

cochlea close to the recording electrode (Patuzzi et al., 1989).  CM amplitude 

was detected at all sound stimulation frequencies (4 through 30 kHz) in 6-week 

old (P42) wild type animals (Fig. 3-3 B).  In Pit1dw age-matched offspring CM 

amplitudes were indistinguishable from those recorded in postmortem normal 

animals, indicating compromised OHC function in the Pit1dw mutants.  The lack of 

a CM response was confirmed by the absence of a frequency-dependent phase 

shift in the mutants (Fig. 3-3 C).  These data suggest that the OHCs in the Pit1dw 

mutants are dysfunctional, despite their normal morphological appearance.  

Since both CM and DPOAE responses were absent in mutant mice, an OHC 

specific dysfunction could arise from deficits in the electrical motor response in 
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these cells as well as from aberrant mechanical performance, which could be 

associated with abnormal properties of the TM.  

 

Maturation of prestin expression and distribution in Pit1dw mice  

Prestin is a member of a distinct family of anion transporters, SLC26, and 

it is expressed in OHCs but not in the non-motile IHCs.  Prestin, officially known 

as SLC26A5, is presumably responsible for OHC electromotility and cochlear 

amplification (Zheng et al., 2000; Liberman et al., 2002).  Prestin mutants exhibit 

reduced DPOAE, CM and nonlinear capacitance compared to wild type 

(Liberman et al., 2002; Cheatham et al., 2004; Gao et al., 2007; Dallos et al., 

2008).  It is not clear, however, whether abnormalities in prestin protein levels, 

subcellular localization, or function contribute to reduced DPOAEs and CM in 

Pit1dw mice.  To explore these possibilities we carried out a developmental time 

course of immunohistochemical staining for prestin in tissues also stained with 

DAPI to reveal nuclei and synpatophysin, a presynaptic marker of the efferent 

synapse at the base of the OHCs.  In normal mice, prestin immunoreactivity is 

evenly distributed throughout the entire OHC membrane during the first few days 

after birth (shown for P8, Fig.3-4 A).  Between P8 and P13, the subcellular 

distribution of prestin protein becomes restricted to the lateral regions of the OHC 

and is depleted from the basal pole of the OHC membrane (shown for P13, Fig. 

3-4 A).  This redistribution in prestin localization begins in the basal turn and 

propagates toward the apical turn of the cochlea (data not shown).  
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 Pit1dw mutants exhibit a developmental delay in prestin expression and 

subcellular localization.  Prestin immunoreactivity is qualitatively reduced in 

Pit1dw mutants at P8 compared to normal littermates (Fig.3-4 A).  The level and 

localization of prestin expression in Pit1dw mutants are improved at P13, 

resembling that of wild type mice at P8.  Mutants show continued improvement at 

P21.  By P42 the pattern of prestin expression is indistinguishable from that of 2-

week-old wild type mice.  This indicates a developmental delay of 3 to 4 weeks 

for maturation of prestin expression and localization in Pit1dw mice.  

 

Maturation of prestin function in Pit1dw mice 

If the level and subcellular localization of prestin expression is sufficient for 

normal OHC motor function, then the nonlinear capacitance generated by mature 

mutant OHCs should be similar to that of hearing mice.  Membrane capacitance 

was estimated from current transients elicited by a stair-step voltage protocol.  

These data were fit to Eqn. 1 to determine the voltage-independent (linear, Clin) 

and voltage-dependent (nonlinear, Cnonlin) components.  Average capacitance 

curves are shown in Fig. 4B for wild type OHCs at 2 and 2.5 weeks of age (P13-

14 and P18-19, respectively) and for Pit1dw OHCs at 2, 4, and 6 weeks of age 

(P16-17, P30-32, and P43, respectively).  Peak total membrane capacitance 

increased with age for both wild type and mutant mice.  Measures of voltage-

dependence (V1/2 and a in Eqn. 1) were relatively unchanged over the age-

ranges studied and across genotype (data not shown; p > 0.01).   
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For wild type mice, the increase in membrane capacitance reflected 

continued improvement in the nonlinear component from 2 to 2.5 weeks of age.  

Linear capacitance was constant over this age range (Fig. 3-4 C), suggesting 

that the cells had reached a mature size even while the efficacy of prestin 

function or density of prestin molecules continued to increase.  A previous report 

has suggested that nonlinear capacitance reaches a plateau around 2 weeks of 

age in normal mice (Abe et al., 2007).  This subtle difference could represent 

differences in mouse strain background or husbandry.   

For mutant mice, the developmental increase in total membrane 

capacitance reflected gains in both linear and nonlinear components (Fig. 3-4 C).  

The gradual growth in linear capacitance from 2 to 6 weeks of age suggested a 

delay in the maturation of cell size in these animals compared with wild type.  To 

address this possibility, OHCs were mechanically isolated from apical cochlear 

turns of P15-17 mice, and cell size was measured from captured digital images.  

Cell length and width for wild type OHCs were 27.9 ± 0.8 and 6.8 ± 0.3 µm 

(N=13), respectively, whereas these measurements in Pit1dw OHCs were 21.3 ± 

1.7 and 7.5 ± 0.5 µm (N=5), respectively.  The 24% difference in cell length is 

statistically significant (p < 0.01).  Mean cell surface area was estimated from 

average length and width measurements, considering the OHC as a simple 

cylinder.  The mean surface area of the wild type OHCs was 1272 µm2, whereas 

that for Pit1dw OHCs was 1085 µm2, a reduction of approximately 15%.  This size 

difference is similar to the difference in linear capacitance between mutant and 

wild type cells at a similar age (18%; Fig.3-4 C).  Nonlinear capacitance also 
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increased with age in the mutant OHCs.  The developmental change in nonlinear 

capacitance outpaced increases in linear capacitance, suggesting that increases 

in the nonlinear component must be attributed, at least in part, to a greater 

density and/or efficacy of prestin in the OHC membrane.  These physiological 

tests reveal a delayed maturation of prestin function in adult Pit1dw mutants, 

consistent with the evidence that adult mutants eventually develop appropriate 

levels and subcellular localization of prestin protein.  Thus, the lack of DPOAEs 

and CM in Pit1dw mice are not explained by alterations in either nonlinear 

capacitance or prestin expression and localization.  It remains possible, however, 

that electromotility is compromised in Pit1dw mice through alterations in 

cytoskeletal structures essential to motor function or in the intrinsic electrical 

properties of the cell.   

 

Reduced KCNQ4 protein expression specifically in OHC of Pit1dw mutants 

The voltage-dependent K+ channel KCNQ4 is responsible for the 

dominant K+ conductance, IK,n, of mature OHCs (Marcotti and Kros, 1999).  

KCNQ4 sets the membrane resting potential in cochlear hair cells, and loss of 

KCNQ4 may cause chronic stress for the cells and lead to their degeneration 

(Kharkovets et al., 2006).  We examined expression of KCNQ4 in the cochlear 

and vestibular systems using immunohistochemical staining.  In normal mice the 

KCNQ4 immunoreactivity is distributed across the entire OHC membrane during 

the first few days after birth, eventually shifting from the basolateral surface to the 

basal pole of the cell by P12-P13 (data not shown).  The level of KCNQ4 



 89 

immunoreactivity in Pit1dw mutants was reduced relative to wild type from P12 

through P42 (Fig.3-5 A).  The low level of KCNQ4 immunoreactivity appeared in 

a normal pattern.  This contrasts with some rodent models of hypothyroidism that 

completely lack detectable KCNQ4 expression in OHCs at P12-P13 (Winter et 

al., 2006).  We observed a developmental delay in KCNQ4 expression that 

followed a basal-apical gradient with expression levels in apical OHCs lagging 

behind those from the base (data not shown). Further examination of KCNQ4 

expression within the Pit1dw mutant inner ear revealed an expression pattern 

similar to that of wild type mice in the spiral ganglion and vestibular organs at all 

ages tested (P13, P21, P42 and P60) (Supplemental Figure S.3-3 A).  This 

suggests that the permanent reduction in KCNQ4 expression is specific to the 

OHC in Pit1dw mutants. 

 

Reduced KCNQ4 currents in Pit1dw mutants 

To confirm the permanent reduction of KCNQ4 expression in mutants 

relative to normal OHC, we measured KCNQ4 currents during development.  

Voltage activation curves were constructed from tail current analysis and fit with 

Boltzman functions (Eqn. 2).  Whole-cell currents in wild type OHCs were 

dominated by a low-voltage activated conductance attributed to KCNQ4 channels 

(Marcotti and Kros, 1999).  In the presence of linopirdine, a KCNQ4 blocker, total 

outward current was reduced due to the elimination of IK,n, revealing a residual 

high-voltage activated potassium current (Supplemental Figure S.3-2).  The 

shapes of activation curves from Pit1dw mutant mice were heterogeneous 



 90 

suggesting large variations in the amount of KCNQ4-related conductance.  While 

all cells from 2 week old wild type mice exhibited a dominant low-voltage 

activated KCNQ4 current, mutant OHCs, regardless of age, consisted of varying 

mixtures of low- and high-voltage activated conductances (Fig.3-5 B).  

Occasionally, Pit1dw mutant OHCs were best fit by a single Boltzman with a high 

V1/2 (above -20 mV), indicating the complete absence of measurable KCNQ4 

current in those cells (4/17 cells in P15-17, 0/10 in P28-32, 1/18 in P40-45).  To 

compare the amount of KCNQ4 between experimental groups, we determined 

the maximum tail current from Boltzman fits to the low-voltage activated 

components in Fig. 3-5B.  This is an approximate measure of KCNQ4 current 

density since the sizes of all cells in this study were comparable (Fig. 3-4 C).  

The data are plotted for each cell and as averages in Fig. 3-5 C.  Maximum 

KCNQ4 current was reduced in all mutant age groups compared with wild type (p 

< 0.05).  In contrast to results for nonlinear capacitance, the KCNQ4 current in 

mutants did not steadily increase toward mature wild type levels.  Instead, 

KCNQ4 current in the mutant animals peaked at 4 weeks of age (P28-35).  Since 

KCNQ4 channels are active at negative membrane potentials, loss of KCNQ4 

conductance would result in depolarization of the resting membrane potential.  

Current-clamp was used to measure resting potential in several OHCs from wild 

type and mutant mice.  The OHCs from mutant mice at 6 weeks of age were 

depolarized by 10 to 15 mV compared with OHCs from 2 week old wild type mice 

(data not shown).  
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Substantially reduced endocochlear potential in Pit1dw mice  

 The EP is the main driving force for the sensory transduction that leads to 

perception of sound.  The potential is generated across the basal cell barrier of 

the stria vascularis by the K+ channel KCNJ10, which is located in the 

intermediate cells (Marcus et al., 2002; Rozengurt et al., 2003; Wangemann et 

al., 2004).  We found that the EP in 6 wk old wild type mice ranged from 105 to 

113 mV (N=2), while the EP in Pit1dw mutant mice was reduced by 45%, ranging 

from 48 to 50 mV (N=3) (Fig. 3-6 A).  Similarly, the EP of 3 wk old mutants is 

50% of wild type (data not shown).  The abnormal EP contributes to the lack of 

DPOAE and CM and indicates that a cochlear defect of peripheral origin is 

involved in the deafness characteristic of the Pit1dw mutants.  

 

Reduced KCNJ10 protein expression in Pit1dw mutants is specific to the 

stria vascularis   

        The stria vascularis contains marginal cells, intermediate cells and basal 

cells.  Defects in any of these cells can result in hearing deficits (Jabba et al., 

2006; Jin et al., 2008; Knipper et al, 2006; Rozengurt et al., 2003; Wangemann et 

al., 1995).  To investigate the cause of the reduced EP in Pit1dw mutant mice, we 

examined the expression of the K+ channels KCNQ1 and KCNJ10 in marginal 

and intermediate cells, respectively, using immunohistochemical staining.  The 

Pit1dw mutant mice have reduced KCNJ10 immunoreactivity in both apical and 

basal cochlear turns compared to wild type mice at P21 (data not shown) and 

P42 (Fig. 3-6 B).  The stria of the mutants appears smaller in width relative to 
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wild type at both ages, and the smaller size seemed attributable to diminished 

contribution of intermediate cells.  KCNJ10 expression is normal in Pit1dw mutant 

spiral ganglion and vestibular system at P21 and P42, revealing that the KCNJ10 

deficiency is specific to the stria (Supplemental Figure S. 3-3 B).  KCNQ1 is 

important for marginal cell function and maintenance of stria (Rivas and Francis, 

2005).  No obvious differences in KCNQ1 expression are noted at P21 or P42 

(data not shown).  Thus, reduced KCNJ10 expression is likely to be a major 

contributor to the lowered EP observed in Pit1dw mutants, as observed in the 

KCNJ10 knockout (Marcus et al., 2002; Rozengurt et al., 2003; Wangemann et 

al., 2004). 

 

Stria vascularis pathology in adult Pit1dw mutants   

We examined the stria vascularis at various ages in wild type and mutant 

mice using light microscopy of hematoxylin and eosin stained paraffin sections 

(data not shown) and TEM (Fig. 3-7).  Ultrastructure analysis reveals evidence of 

abnormalities in the stria that are more obvious in mutants at P42 (N=3 per 

genotype and age, Fig. 3-7 A), than at P12 or P21 (data not shown).  The width 

of the stria is consistently smaller in the mutant than the wild type.  Marginal, 

intermediate, and basal cells all appear to be present, but there is less 

interdigitation of the intermediate cells with the basal aspect of the marginal cells 

and less infolding of the basolateral membrane.  The smaller size of the mutant 

stria appears to come from reduced contribution of intermediate cells, consistent 

with reduced KCNJ10 immunostaining (Fig. 3-6).  In addition, the TEM analysis 
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reveals prominent accumulation of dark deposits in the stria vascularis of P42 old 

Pit1dw mutants with little or no deposits in wild type littermates (Fig. 3-7 B).  The 

lipofuscin-like deposits (aging pigment) are found in all cell types of the stria, but 

are clearly most abundant in the central region of the stria, consistent with 

intermediate cells.  The presence of this pathology suggests that cells in the stria 

vascularis of Pit1dw mutants are undergoing deterioration. 

 

DISCUSSION 

Congenital hypothyroidism impairs multiple developmental processes 

within the inner ear, offering a mechanistic explanation for hypothyroidism-

induced deafness.  In this study we used a secondary hypothyroidism mouse 

model, the Pit1dw mutant.  These mice have profound congenital deafness, but 

normal balance.  We checked for evidence of Pit1 expression in the cochlea 

using RT-PCR, immunohistochemical staining, and an X-gal staining assay in the 

cochleae of Pit1-lacZ transgenic mice, and we found no evidence of Pit1 

expression in the cochlea by any of these methods (data not shown).  This 

suggests that the hearing impairment in Pit1 mutants is caused by the lack of 

Pit1 activity in the pituitary gland.  Consistent with this, the hearing impairment 

characteristic of Pit1 mutants can be avoided by oral thyroid hormone 

supplementation in late gestation and after birth (Karolyi et al., 2007).  Thus, the 

defects are due to thyroid hormone deficiency, rather than other problems 

caused by defective Pit1.   

Here we report the use of the Pit1 mutant to demonstrate that TH is 
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required for normal tectorial membrane (TM) composition and ultrastructure, ionic 

balance in the endolymph, outer hair cell (OHC) survival, and strial cell health.  

Abnormalities arising from TH deficiency contribute to the lack of distortion 

products (DPOAE), cochlear microphonics (CM), and the reduced endocochlear 

potential (EP) in Pit1dw mutants.  Deficits in these gross measures of cochlear 

physiology can be attributed, at least in part, to long-term defects in OHC KCNQ4 

expression and strial KCNJ10 expression.  The mutant OHCs eventually exhibit 

normal function and expression of prestin, but they exhibit permanent defects in 

KCNQ4 expression and function.  The intermediate cells of the stria exhibit 

persistently low levels of KCNJ10 expression, resulting in ionic balance defects 

that likely contribute to the reduced EP, OHC dysfunction, and sporadic OHC 

death.  The profound hearing impairment characteristic of Pit1dw mutants may 

result from compounding effects of several TH dependent processes. 

 

Pit1dw mutants have multiple defects in the tectorial membrane 

 We report an increase in the size of Hensen's stripe, elevation of TECTB 

composition in the TM, and abnormalities in the TM ultrastructure in Pit1dw 

mutants.  We observed an abnormally prominent Hensen's stripe in another 

model of secondary hypothyroidism, but it is not clear whether this feature is 

commonly found in other genetic or pharmacologic models of hypothyroidism 

(Karolyi et al., 2007).  The Tectb knockout mice lack Hensen’s stripe, suggesting 

that TECTB is required to develop this structure (Russell et al., 2007).  Thus, the 

increased TECTB in Pit1dw mutants could be a contributing factor to the 
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development of a more prominent Hensen’s stripe.  It is somewhat surprising that 

the Pit1 mouse model of hypothyroidism causes increased composition of 

TECTB in the TM while the pharmacological rat model has obviously decreased 

TECTB (Knipper et al. 2001).  The composition of the TM has not been assessed 

quantitatively in other models of hypothyroidism, but ultrastructural abnormalities 

of the TM are a consistent feature (Richardson et al., 2008) (Rusch et al., 2001). 

The significance of altered TM composition and ultrastructural features for OHC 

function is not entirely clear in Pit1 mutants or other animal models that are 

completely deaf and have multiple abnormalities of the organ of Corti.  There are 

clues, however, from humans and mice with mutations in individual TM 

components such as Tecta, Tectb, and Otog (Legan et al., 2000; Simmler et al., 

2000; Legan et al., 2005; Russell et al., 2007).  Loss of function in any of these 

individual components affects hearing, although none causes profound, 

congenital deafness characteristic of the Pit1 mutant.  Otog mutants have severe 

balance defects and variable hearing problems (Simmler et al., 2000). Tecta 

mutants have high frequency hearing deficits of 60 to 80 dB, and OHC 

dysfunction (Simmler et al., 2000).  Tectb mutants are less sensitive to low 

frequency tones, while the high frequency resolution is enhanced (Russell et al., 

2007).  These results reveal the importance of tectorial membrane composition 

for cochlear frequency resolution.  Thus, we expect that the TM alterations in Pit1 

mutants could contribute to the hearing deficits and OHC dysfunction we 

observe.   
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TH is not required for prestin expression or function  

Prestin is a motor protein that underlies OHC motility. TH regulates its 

transcription, and studies in other hypothyroid rodents showed that the level of 

expression and subcellular distribution of prestin is abnormal (Weber et al., 2002; 

Winter et al., 2006).  Here we show that these abnormalities in prestin expression 

and function in Pit1dw mutants are transient, representing a developmental delay 

that reaches maturity by about 6 weeks of age.  Although it is possible that OHC 

motility is compromised by defects in cytoskeletal specializations that support 

motor movement, it seems unlikely that deficits in OHC motor function could 

account completely for the absence of DPOAEs and CM in 6 week old mutants.  

Pharmacological models of hypothyroidism demonstrated that the 

absence of TH for more than 3 weeks causes abnormal subcellular distribution of 

prestin within the hair cell along the lateral membrane (Weber et al., 2002).  

Physiological studies suggest that prestin function is also abnormal in TR double 

mutants at P8 (Rusch et al., 2001).  While data on prestin protein distribution and 

function in older drug treated and TR mutant animals are not provided, we predict 

that prestin activity will mature functionally in pharmacologically treated animals 

as it does in Pit1 mutants. 

 

Altered potassium channel expression and function in Pit1dw mutants 

 Pit1dw mutants exhibit detectable expression of KCNQ4 in the OHC 

throughout adulthood, but the levels are consistently reduced, and the KCNQ4 

currents are persistently lower than in normal 2 week old mice.   In the mutants 
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maximum tail current for KCNQ4 peaked at 4 weeks of age, suggesting that the 

developmental profile for KCNQ4 function in the mutants is qualitatively similar to 

that described previously for normal mice (Beisel et al., 2005), despite the 

consistent deficiency relative to hearing animals. The persistently reduced 

KCNQ4 expression and function in Pit1dw mice contrast with the eventual 

maturation of prestin expression and function in these mutants.  

Abnormal KCNQ4 expression results in chronic depolarization of Pit1dw 

OHCs, which may lead to the untimely demise of OHCs that we observed in 6 

week old Pit1dw mice.  The level of depolarization we observed in Pit1dw OHCs 

was similar to that of mice with disrupted or dominant negative forms of KCNQ4 

(Kharkovets et al., 2006).  Mice with altered KCNQ4 conductance, through 

pharmacological block or genetic disruption, exhibit progressive OHC loss 

(Nouvian et al., 2003).  Taken together these data support the idea that sporadic 

OHC loss occurs concomitant with reduced KCNQ4 conductance and a 

depolarized resting potential.   

Normal EP is required for OHC function including the generation of 

DPOAE and CM.  Pit1dw have approximately half the EP of wild type animals.  A 

reduction in EP of the magnitude we observed in Pit1dw mutants would be 

expected to reduce, but not eliminate, DPOAE and ABR responses, based on the 

precedent set by the Claudin11 mutants (Gow et al., 2004).  Although it is 

possible that differing genetic backgrounds could be an important influence, it is 

likely that the absence of distortion products in Pit1dw mice arises from a 

combination of several deficits (Karolyi et al., 2007).  
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We report persistently reduced expression of KCNJ10 in the stria 

vascularis Pit1dw mutants, which probably contributes to the low EP in Pit1dw 

mutants.  This conclusion is supported by the observation that Kcnj10 mutant 

mice lack EP and have compromised hearing (Marcus et al., 2002), and Slc26a4 

deficient mice, a euthyroid model of Pendred syndrome, lack both EP and 

KCNJ10 (Rusch et al., 2001; Wangemann et al., 2004).  We predict that KCNJ10 

expression is reduced in the stria vascularis of other hypothyroid animals and the 

thyroid hormone receptor Thra, Thrb double mutants, which are unable to 

respond to TH (Rusch et al., 2001). 

Many genetic defects affect the development and function of both the 

vestibular apparatus and the cochlea.  It is intriguing that hypothyroidism does 

not appear to affect the vestibular system.  The basis for the cochlear specificity 

of TH action is not known.  It may be relevant that the alteration in KCNQ4 and 

KCNJ10 expression in Pit1dw mutants is confined to OHCs and stria, respectively.  

Normal expression of both genes was detected in Pit1dw mutant spiral ganglion 

and vestibular system at all ages tested.  This cell type specific dysregulation of 

Kcnq4 and Kcnj10 expression in response to hypothyroidism suggests that the 

same genes have different requirements for TH in different cell types within the 

same organ.  Differential sensitivity to TH deficiency could be achieved by many 

mechanisms, such as utilization of different cell type specific transcription factors; 

these could be co-regulators, and/or deiodinases.  Alternatively variation in the 

critical timing for TH exposure could underlie differences in TH sensitivity, where 

early differentiation of one cell type may benefit from the mother’s TH during 
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gestation, while cell types differentiating later would not have this benefit.  

 

TH is required for maintenance of healthy cells in the organ of Corti and 

stria vascularis  

Sporadic OHC death in Pit1dw mice occurs concomitant with reduced 

KCNQ4 conductance and a depolarized resting potential.  The progressive OHC 

loss is probably caused by the chronic depolarization.  This idea is supported by 

the observation that mice with altered KCNQ4 conductance through 

pharmacological block (Nouvian et al., 2003) or genetic disruption (Kharkovets et 

al., 2006) exhibit progressive OHC loss.  The percentage of OHC loss that we 

observe in Pit1dw mice, however, is unlikely to account for their profound 

deafness (Bohne et al., 1990).  Dysfunction of the stria vascularis is likely to be 

an important contributor to the hearing deficit.  We observed abnormally low 

expression of KCNJ10 in the stria and abnormalities in ultrastructure including 

accumulation of lipofuscin-like deposits.  Lipofuscin accumulation accelerates in 

aging cochleae of humans and other model organisms (Nadol, 1979; Bohne et 

al., 1990; Schuknecht and Gacek, 1993; Kazee and West, 1999; Scholtz et al., 

2001; Konig et al., 2007).  In addition, lipofuscin accumulates in the aging and 

diseased brains of Alzheimer’s and Parkinson’s patients (Eichhoff et al., 2008) 

and in  the eyes of patients with atrophic age-related macular degeneration (Holz 

et al., 1999; Schmitz-Valckenberg et al., 2004; Abeywickrama et al., 2007).  

Thus, the pathological appearance of cells in the stria vascularis suggests that 

the Pit1dw mutant stria are undergoing changes associated with physiological 
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stress or premature aging. 

The low level of KCNJ10 in Pit1dw mice is unlikely to account for the small 

size of the stria because neither Kcnj10 nor Slc26a4 mutant mice exhibit obvious 

cellular defects in the stria at the light microscopy level, despite the complete 

absence of KCNJ10 protein in both cases (Marcus et al., 2002; Wangemann et 

al., 2004).  Taken together, these data suggest that thyroid hormone has a 

critical role in development and maintenance of strial cells, in addition to its role 

in enhancing KCNJ10 expression.  

 

Why are Pit1dw mice profoundly deaf? 

 Thyroid hormone regulates many processes in the developing cochlea.  

TM, DPOAE, CM and EP defects, as well as mutations in prestin, Kcnq4 and 

Kcnj10, are consistent with progressive and/or moderate to severe hearing 

impairment of peripheral origin when present singly.  The profound hearing 

impairment observed in Pit1dw mutants could either be explained by a 

compounding effect of these genes that individually have moderate effects or it 

could mean that there are additional processes involved.  Given the broad effects 

of TH on gene expression, it seems likely that other processes, such as IHC 

function, neurotransmission, and innervation, may also be compromised (Brandt 

et al., 2007; Sendin et al., 2007). 

 

Advantages of the Pit1dw model for studying the role of thyroid hormone in 

hearing  
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 The advantages of studying Pit1dw mutants are their viability, simple, 

autosomal recessive inheritance of hypothyroidism, responsiveness to TH 

supplementation, and availability of normal littermate controls.  The viability of 

this model makes it possible to distinguish the aspects of TH deficiency that lead 

to permanent hearing defects from those that cause a delay in maturation of 

hearing.  For example, this model allowed us to conclude that the developmental 

delay in prestin expression is not permanent, but the alterations in the TM and 

defective KCNJ10 and KCNQ4 expression and function are.  In addition, the 

Pit1dw mutants reveal the importance of TH for stria vascularis and OHC function 

and to avoid pathological changes and cell death.  The prominence of 

hypothyroidism and presbycusis in older individuals suggests that our studies 

may be important for understanding the mechanisms contributing to age related 

hearing impairment. 

 

Is hypothyroidism a risk factor for sensory and strial presbycusis? 

There are several lines of evidence that suggest hypothyroidism may be a 

risk factor for presbycusis.  Some of pathological features the Pit1dw hypothyroid 

mice are also found in cases of age-related and environmentally-induced hearing 

loss.  These include OHC loss and defects in the strial cell structure and function.  

In addition, the Pit1dw hypothyroid mice exhibit reduced expression of Kcnq4, a 

gene mutated in cases of autosomal dominant hearing loss that have recently 

been found to be associated with presbycusis (Van Eyken et al., 2006). 
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 Hypothyroidism is common in older individuals.  The disorder occurs in 

about 30% of people over 60 years of age (Fransen et al., 2003).  Since TH is 

apparently necessary for strial function and hair cell survival in young mice, it is 

possible that reduced thyroid function in adults is a risk factor for age related 

hearing loss, or that individuals born from mothers with hypothyroidism during 

pregnancy could be predisposed to age related hearing loss.  While this is 

speculative, the mouse could be an excellent tool to investigate genetic and 

environmental modifiers of age related hearing loss (Johnson and Zheng, 2002; 

Nemoto et al., 2004). 
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Figure 3-1. Tectorial membrane abnormalities in Pit1dw mice. A, Plastic 
sections of the organ of Corti taken from wild-type and Pit1dw mutant mice at P12 
and P21 were visualized by light microscopy. The arrow indicates the unopened 
tunnel of Corti (TC) in the P12 old mutant. OHCs, IHCs, and pillar cells (PC) are 
indicated. Scale bars: 10 µm. B, Analysis of TECTB content in the tectorial 
membrane of P21 animals using Western blotting. Two polypeptide bands of 
TECTB are present at 43 and 47 kDa. The blot was reprobed with a GAPDH 
antibody, and equivalent amounts of immunoreactive 36 kDa protein were 
detected, indicating equivalent amounts of proteins were loaded (data not 
shown). C, Transmission electron micrographs illustrate the ultrastructure of the 
tectorial membrane in P42 old animals. Regions shown are from the central core 
of the tectorial membrane overlying the organ of Corti. Fine diameter filaments 
(arrows) forming the striated sheet matrix are different in the wild-type mice and 
the mutants. Scale bars: 2 µm. 
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Figure 3-2. Pit1dw mutants undergo significant OHC loss compared with 
wild-type mice. A–D, Whole mounts of the organ of Corti of mice ages P14 and 
P25 were stained with FITC-phalloidin to reveal actin-rich structures and 
visualized by light microscopy. E–G, Scanning electron microscopy (E, F) and 
TEM (G) were used to examine the organ of Corti from P42 mice. The TEM 
reveals that the width of supporting cells (SC) that neighbor degenerating OHCs 
(arrow) are larger than SC neighboring healthy OHC. Pillar cells (PC). Arrows 
indicate OHC degeneration and scar formation. Scale bars: 10 µm. H, Outer hair 
cell loss was quantified by region (apex, lower apex, mid and upper base turns) 
in five different animals of both Pit1dw mutant and wild-type mice. The length of 
each region was 100 µm, encompassing 166–181 OHCs per region. Mean 
percentage outer hair cell loss was significantly higher in the Pit1dw mutants 
compared with the wild-type mice (*) in the lower apex (p < 0.01), mid turn (p < 
0.01), and upper base (p < 0.05). No OHC loss was observed in wild-type 
cochlea at the upper base (#). All statistical tests were conducted in SPSS 
15.0.1.1 [EC] . Error bars represent one SEM. 
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Figure 3-3. Pit1dw mutant mice lack DPOAE and CM responses. A, DPOAEs 
were measured in alive wild-type and mutant mice at P42 (black circles and black 
triangles, respectively) and compared with DPOAEs of postmortem animals 
(white circles and triangles). Data are shown for the 24 kHz frequency only. Error 
bars indicate ±1 SEM. B, C, CM potentials were tested at various sound 
stimulation frequencies (4 through 30 kHz) in P42 wild-type animals (green line), 
in Pit1dw mutant mice (red line) and in postmortem animals (green dashed line) of 
age-matched offspring (B). CM amplitudes were confirmed by the phase shift 
data (C). 
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Figure 3-4. Prestin protein expression and function mature in adult Pit1dw 
mutant mice. A, Prestin expression and localization was analyzed by staining 
paraffin-embedded sections from wild-type and Pit1dw mutants at P8, P14, P21, 
and P42 with prestin-specific antibodies (red). Sections were visualized with light 
microscopy. Synaptophysin (Syn) staining (green) identifies the basal poles of 
OHC. Nuclei were labeled using DAPI (blue). Asterisks (*) mark prestin labeling 
detected at the basal pole of the hair cell. Arrows identify rows of outer hair cells. 
Scale bars: 10 µm. B, Average capacitance-voltage curves were generated for 
OHCs from wild-type mice at 2 and 2.5 weeks and for mutants at 2, 4, and 6 
weeks of age (respectively, N = 5, 6, 5, 6, 4). Curves were fit to Eq. 1 to estimate 
linear and nonlinear capacitance components. Fit parameters: WT: 2 weeks, Clin 
= 7.7 pF, Qmax = 0.82 pC,  = 28.2 mV, V1/2 = –56.3 mV; 2.5 weeks, Clin = 7.2 pF, 
Qmax = 1.07 pC,  = 26.9 mV, V1/2 = –65.0 mV; Pit1dw: 2 weeks, Clin = 5.9 pF, Qmax 
= 0.36 pC,  = 28.6 mV, V1/2 = –70.2 mV; 4 weeks, Clin = 6.2 pF, Qmax = 0.61 pC,  
= 31.6 mV, V1/2 = –57.5 mV; 6 weeks, Clin = 6.7 pF, Qmax = 0.69 pC,  = 26.8 mV, 
V1/2 = –56.8 mV. C, Average values for linear and maximum nonlinear 
capacitance are shown for each experimental group. Error bars represent one 
SEM. *p < 0.01 with respect to data from 2.5-week-old wild-type OHCs. 
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Figure 3-5. KCNQ4 protein expression and function are permanently 
reduced in the cochlear OHC of Pit1dw mutant mice. A, KCNQ4 
immunoreactivity is reduced in OHCs (arrows) of mutant mice relative to wild 
type. Frozen sections obtained from P13, P21, and P42 wild-type and mutant 
mice were stained for KCNQ4 (green). Nuclei were stained with DAPI (blue). 
Outer hair cells from Pit1dw mice exhibit a nonmonotonic developmental increase 
in KCNQ4 currents. B, Normalized tail-currents are shown for 2-week wild-type 
mice and 2-, 4-, and 6-week-old mutants. Wild-type OHCs uniformly exhibited a 
dominant low-voltage activated potassium conductance attributed to KCNQ4 
function. Mutant OHCs were heterogeneous, regardless of age, in that some 
cells had KCNQ4 while others did not. C, Average maximum tail-current for low-
voltage activated components of the Boltzman fits is shown for wild-type and 
mutant OHCs. Average currents were lower in mutants than wild type (p < 0.05). 
Also, there was a statistically reliable effect of age on average KCNQ4 current 
using a one-way ANOVA (p < 0.01). 
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Figure 3-6. Endocochlear potential and KCNJ10 expression are lower in 
Pit1dw mutants than wild type. A, EP were measured in P42 wild-type and age-
matched mutant animals. Representative plots of endocochlear potential (in mV) 
for littermate control and Pit1dw mutant animals are shown. The time depicted 
includes electrode insertion into and withdrawal from the endolymph. B, Frozen 
sections of the organ of Corti of wild-type and mutant mice collected at P21 and 
P42 were stained for KCNJ10 (red) (data shown for P42 only). Nuclei (blue). 
KCNJ10 immunoreactivity is detected in the intermediate cells of the stria 
vascularis of these mice. 
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Figure 3-7. Stria vascularis pathology in adult Pit1 mutants. A, Stria 
vascularis prepared from P42 wild-type mice (a) and mutant mice (b, c) were 
analyzed by TEM. Double-headed arrow bars define the width of the stria 
vascularis. B, Lipofuscin granules are more abundant in the intermediate cells of 
Pit1dw mutant mice, suggesting that the mutant cells are exhibiting signs of aging. 
The ultrastructure of wild-type (a) stria vascularis animals was compared with 
Pit1dw mutants (b, c). Lipofuscin-like granules are more abundant in the mutants. 
Sections shown are from the basal turns of the cochlea, which were more 
prominently affected than the apex. Scale bars: 10 µm. 
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SUPPLEMENTAL FIGURES 

 

 

 

 

 

 

 

 

 

 

 
Figure S-1  
(A) Definition of cochlear regions.   
Whole mounts of P42 organ of Corti were stained with OHC motor protein 
prestin, then analyzed by confocal microscopy  (Zeiss laser scanning microscope 
LSM-510). The four different regions of the organ of Corti that are considered in 
our study are labeled in yellow as: apex, lower apex, mid turn and upper base.  
(B) Outer hair cell loss in Pit1dw mutants.   
Whole mounts of P42 organ of Corti were stained with prestin, then analyzed by 
confocal microscopy. Gaps and deviations from the normal pattern of three, well-
organized rows of outer hair cells were observed throughout the mutant organ of 
Corti. 
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Figure S-2  
KCNQ4 currents in mouse OHCs are blocked by 200 µM linopirdine.   
Whole-cell patch-clamp recordings were obtained from OHCs in apical regions of 
the cochlea.  (A) Membrane voltage was initially stepped to -120 mV from a 
holding potential of -80 mV.  This pre-pulse was followed by a series of voltage 
steps from -130 mV to 40 mV.  Tail currents were elicited by a final step to -  
40 mV.  Currents are shown with leak subtraction but without series resistance 
compensation.  Linopirdine blocked the majority of the outward current activated 
at negative membrane potentials.  (B) Tail currents in control saline and in the 
presence of linopirdine were fit with single first-order Boltzman functions.  Fit 
parameters: Control, Imax = 972 pA, V1/2 = -84.8 mV, Vs = 12.5 mV; linopirdine, 
Imax = 348 pA, V1/2 = -19.3 mV, Vs = 11.7 mV.  Data in (A) and (B) are from an 
OHC from a P17 wild-type mouse. (C) Average normalized tail-currents are 
shown for wild-type mice (left), 2 week old Pit1dw mice (middle), and 6 week old 
Pit1dw mice (right) in the presence of control saline or 200 µM linopirdine.  
Mutant mice displayed two outward potassium currents, easily separable by their 
negative or positive voltage dependence.  In these cases, double Boltzman 
functions were required to properly fit the data.  For all animals, linopirdine was 
effective in eliminating the negative conductance, presumably through block of 
KCNQ4 channels.  Fit parameters and number of cells per group (N): WT, P13-
P17, control, V1/2 = -85.5 mV, Vs = 14.9 mV, linopirdine, V1/2 = -25.9 mV, Vs = 
12.6 mV, N = 4; Pit1dw, P15-P17, control, V1/2(1) = -96.1 mV, Vs(1) = 7.5 mV, 
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V1/2(2) = -15.8 mV, Vs(2) = 14.0 mV, linopirdine, V1/2 = -13.5 mV, Vs = 9.8  mV, 
N = 7; Pit1dw, P40-P45, control, V1/2(1) = -95.1 mV, Vs(1) = 10.8 mV, V1/2(2) = 
-7.4 mV, Vs(2) = 9.6 mV, linopirdine, V1/2 = -12.5 mV,  
Vs = 7.1 mV, N = 7. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure S-3.  
Normal KCNQ4 and KCNJ10 expression in spiral ganglion cells and in 
vestibular hair cells of Pit1dw mutants.    
Frozen sections from the basal turn of the cochlea of wild-type and mutant mice 
were collected at P42 and stained for (A) KCNQ4 (green) and for (B) KCNJ10 
(red). Nuclei (blue). (A) KCNQ4 expression in vestibular hair cells and in spiral 
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ganglion cells (arrowheads) is evident in both wild-type and Pit1dw mutant mice. 
(B) KCNJ10 expression is readily detected in vestibular hair cells and in spiral 
ganglion cells (arrowheads).  Scale Bars: 10µm.  Similar results for KCNQ4 and 
KCNJ10 were obtained at P13, P21, and P60 (data not shown). 
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CHAPTER 4 

 

Genetic background of Prop1df mutants provides remarkable protection 
against hypothyroidism induced hearing impairment 

 

ABSTRACT 

        Hypothyroidism is a cause of genetic and environmentally induced 

deafness.  The sensitivity of cochlear development and function to thyroid 

hormone (TH) mandates understanding TH action in this sensory organ.  Prop1df 

and Pou1f1dw mutant mice carry mutations in different pituitary transcription 

factors, each resulting in the inability to produce pituitary thyrotropin.  Despite the 

same lack of detectable serum TH, these mutants have very different hearing 

abilities: Prop1df mutants are mildly affected, while Pou1f1dw mutants are 

completely deaf.  Genetic studies show that this difference is attributable to the 

genetic backgrounds.  Using embryo transfer we discovered that factors intrinsic 

to the fetus are the major contributor to this difference, not maternal effects.  We 

analyzed Prop1df mutants to identify processes in cochlear development that are 

disrupted in Pou1f1dw mutants but protected in Prop1df mutants by the genetic 

background.  Although outer hair cell (OHC) function develops slowly, Prestin 
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and KCNQ4 expression are normal in mature Prop1df mutants.  The 

endocochlear potential and KCNJ10 expression in the stria vascularis are also 

normal, and no differences in neurofilament or synaptophysin staining are 

evident in Prop1df mutants.  The synaptic vesicle protein otoferlin normally shifts 

expression from OHC to IHC as temporary afferent fibers beneath the OHC 

regress postnatally.  Prop1df mutants exhibit persistent, abnormal expression of 

otoferlin in apical OHC, suggesting incomplete regression of afferent fibers.  

Thus, the genetic background of Prop1df mutants is remarkably protective for 

most functions except otoferlin expression in the cochlear apex.  The Prop1df 

mutant is an attractive model for identifying the genes that protect against 

deafness. 

 

INTRODUCTION 

        Congenital hypothyroidism (CH) occurs in about 1/4000 live births.  Low TH 

levels can affect a child’s neural development and auditory function to cause 

severe cognitive dysfunction and deafness (Debruyne et al., 1983; Rovet et al., 

1996).  However, the extent of hearing impairment varies among patients with 

CH, and the cause of this variability is not clear.   

        The etiology of CH includes dysgenesis of thyroid gland (primary), failure of 

pituitary gland or hypothalamus (secondary), and maternal iodine deficiency.  

Animal models simulating different hypothyroid conditions have been utilized to 

discover defects in the cochlear development (Uziel et al., 1983; Uziel et al., 
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1985b; Uziel et al., 1985a; O'Malley et al., 1995; Li et al., 1999; Knipper et al., 

2001; Christ et al., 2004; Mustapha et al., 2009).  The Ames dwarf (Prop1df/df) 

and Snell dwarf (Pouf1dw/dw, also known as Pit1dw/dw) mice are models of 

recessive, secondary hypothyroidism (Karolyi et al., 2007).  These mice carry 

inactivating, missense mutations in the genes encoding paired-like homeodomain 

transcription factors Prophet of Pit-1 (Prop1), and Pou1f1, respectively.  These 

genes are expressed in the pituitary gland, with no detectable expression in the 

cochlea (Gage et al., 1996; Sornson et al., 1996).  Prop1df/df mutants fail to 

activate expression of Pou1f1, which results in the failure of initial determination 

of the lineage of cell types required for production of growth hormone (GH), 

prolactin (PRL), and thyroid-stimulating hormone (TSH) (Sornson et al., 1996).  

Thus, both Prop1 and Pou1f1 mutants lack TSH and TH due to failure of the 

pituitary TSH cells to develop. 

        Despite the fact that Prop1 and Pou1f1 encode pituitary transcription factors 

in the same developmental pathway and induce indistinguishable TH 

deficiencies, the degrees of hearing impairment in the two mutants are very 

different (Karolyi et al., 2007).  At six weeks of age, Prop1df/df mice exhibit hearing 

thresholds of about 40 dB SPL (sound pressure level), representing a deficit of 

13~17 dB SPL threshold shift relative to normal mice of the DF strain at 4, 10, 

and 20 kHz, while Pou1f1dw/dw mice have severe deafness with thresholds >100 

dB, representing a 38~81 dB shift relative to normal mice on the DW strain.  To 

determine the basis for this difference, Karolyi et al. (2007) performed an 

intercross between the two strains.  The mixed DF and DW genetic background 
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results in F2 Pou1f1 mutants with improved hearing and Prop1 mutants with 

worse hearing than observed on the original DW and DF backgrounds, 

respectively.  This indicates that genetic background, or genomic variation, 

accounts for the differences in hearing between Prop1df/df and Pou1f1dw/dw 

mutants (Karolyi et al., 2007).  

        Maternal thyroid function can also affect the hearing abilities of humans and 

other animals. In areas with endemic cretinism, deafness is equally prevalent in 

euthyroid and hypothyroid patients, suggesting the maternal hypothyroidism may 

cause a low TH level in utero which results in auditory dysfunction in the 

euthyroid children (Boyages and Halpern, 1993; Chan et al., 2009). A thyroid 

ablation study in sheep demonstrated that maternal and fetal hypothyroxinemia 

combine to cause neurological damage (McIntosh et al., 1983).  Goitrogen 

treatment of pregnant and lactating rodents between the onset of fetal thyroid 

gland function (E17~18) and the onset of hearing at postnatal day 12 (P12) can 

lead to permanent hearing defects in the offspring (Deol, 1973; Knipper et al., 

2000).  In addition, elevated maternal thyroid peroxidase autoantibodies during 

the third trimester are also associated with hearing deficits in children 

(Wasserman et al., 2008). Taken together, maternal effects including maternal 

TH level, gestation time, and maturity of the fetus at birth, could affect the 

sensitivity of genetically predisposed hypothyroid animals to hearing impairment.  

        Pleiotropic effects of hypothyroidism on cochlear development have been 

demonstrated in several different TH-deficient animal models (O'Malley et al., 

1995; Knipper et al., 1998; Li et al., 1999; Knipper et al., 2000; Knipper et al., 
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2001; Ng et al., 2001; Griffith et al., 2002; Brandt et al., 2007; Sendin et al., 2007; 

Mustapha et al., 2009; Wangemann et al., 2009; Winter et al., 2009).  The 

Pou1f1dw/dw mutants exhibit immature cochlear morphology, tectorial membrane 

abnormalities, reduced expression and function of potassium channels, hair cell 

loss, and strial cell deterioration (Mustapha et al., 2009). Several of these 

features have been reported in hypothyroid rodent models induced by thyro-toxic 

drugs or other genetic lesions, suggesting that there are common effects of TH 

deficiency. Because of the diversity of effects, TH likely regulates multiple, critical 

processes of inner ear development.  It still remains to be determined which 

processes are most sensitive to TH deficiency and to what degree the observed 

effects contribute to the hearing problems in the hypothyroid animals. 

        We explored the maternal contribution to the genetic background effects on 

Prop1 and Pou1f1 mutants by transferring fertilized Prop1df/df and Pou1f1dw/dw 

eggs to common surrogate mothers for gestation and nursing, and found no 

significant effects.  This suggests that factors intrinsic to the fetus play the major 

roles in the varying responses of Prop1df and Pou1f1dw mutant cochlea to 

hypothyroidism.  Most studies have focused on hypothyroid rodent models with 

severe hearing impairment.  We examined the mildly affected Prop1df mutants to 

determine which developmental processes are rescued by the genetic 

background, and which functions remain defective.  We determined that many 

aspects of cochlear development are initially delayed in Prop1 mutants, but they 

eventually mature to become indistinguishable from wild type. The only persistent 

abnormality we observed was immature otoferlin expression.  This suggests that 
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a mild exocytosis defect may account for the mild hearing problems in Prop1df/df 

mutants.  Overall, with its mild hearing deficit despite the severe hypothyroidism, 

Prop1df mice provide a valuable tool for us to explore the cause of variation in 

hearing impairment in hypothyroid mice and humans and to identify the potential 

modifiers that protect against hearing loss due to hypothyroidism. 

 

METHODS AND MATERIALS  

Mice 

        All experiments were approved by the University Committee on the Use and 

Care of Animals and conducted in accord with the principles and procedures 

outlined in the National Institutes of Health Guidelines.  

        DF/B-p/+, Prop1df mice were obtained from Dr. Andrzej Bartke in 1988 and 

maintained at the University of Michigan.  This stock is not inbred but has gone 

through population constriction.  DW/J-Mlphln/ln, Pou1f1dw mice were obtained 

from The Jackson Laboratory (Bar Harbor, ME).  The DW/J stock is inbred, but 

not defined.  B6/D2 mice are the F1 hybrids produced by breeding C57BL/6J and 

DBA/2J mouse strains.  These hybrids were purchased from The Jackson 

Laboratory. 

        Previously described procedures for animal care and genotyping were used, 

including feeding mice a higher fat chow designed for breeding (PMI5020), 

delaying weaning of mutants until 35 d, and housing mutants with normal 
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littermates to provide warmth (Karolyi et al., 2007).  Mice were in a specific 

pathogen free facility with automatic watering and ventilated cages.  In all 

experiments, at least 3 animals of each genotype were analyzed for each age 

group studied unless stated otherwise.  Embryonic days gestation are counted 

from the time of conception with e0.5 denoting the morning after mating.  

Postnatal day zero (P0) is designated as the day of birth. 

Embryo transfer experiments    

        Three to four week old Prop1df/+ or Pou1f1dw/+ females were superovulated 

by intraperitoneal injection of 5 U each of pregnant mare serum gonadotropin 

(PMSG) followed by human chorionic gonadotropin (HCG) 46 ~ 50 hours later.  

Females were placed with heterozygous males of the same genotype, i.e. 

Prop1df/+ or Pou1f1dw/+, for overnight mating.  E0.5 embryos (1-cell stage) were 

collected from fallopian tubes of the plugged females and cultured in M16 

medium (Sigma) with penicillin and streptomycin at 37oC incubator overnight.  

Eight 2-cell stage embryos were put into one oviduct of each pseudo-pregnant 

B6/D2 female, which were generated by mating with vasectomized B6/D2 

males.  Wild type 2-cell stage B6/D2 embryos were placed in the oviduct on the 

opposite side of the same pseudo-pregnant female.  Pups born and weaned from 

surrogate mothers were genotyped and evaluated for hearing.  Wild type mice 

with the same coat color as the mutants were used as controls.  For simplicity, 

“_S” is added to genotype symbols to represent mice born from surrogate mother 

in this article. 
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Auditory physiology  

        Auditory brainstem response (ABR), distortion product otoacoustic 

emissions (DPOAEs) and endocochlear potential (EP) were measured as 

previously described (Karolyi et al., 2007). 

Antibodies 

        The antibodies used to detect prestin (1:200), KCNJ10 (1:300), KCNJ4 

(1:300) synaptophysin (1:400), TRITC-labeled secondary antibodies (1:200) and 

Alexa Fluor 488 conjugated secondary antibodies (1:200) have been previously 

described (Mustapha et al., 2009).  The rabbit polyclonal anti-Neurofilament 200 

antibody (1:500, Sigma) is commercially available.  The rabbit polyclonal anti-

otoferlin antibody (1:500) was kindly provided by Dr. Christine Petit (Roux et al., 

2006). 

Immunohistofluorescence  

 Preparation of cochlear cryosections and the procedures for 

immunostaining those sections have been previously described (Mustapha et al., 

2009).  

Whole mount immunofluorescence  

 Mouse inner ears were rapidly dissected from the temporal bones in 

phosphate-buffered saline (PBS).  The temporal bones were immersed in 4% 

paraformaldehyde (PFA) for fixation.  Under stereoscopic magnification, the 

round and oval windows were opened, and the bone from the apical tip of the 
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cochleae was removed to allow fixative to flow throughout the tissue.  One hour 

later, the stria vascularis and tectorial membrane were removed and the organ of 

Corti was exposed.  After two washes in PBS, the tissue was incubated in 5% 

normal goat serum with 0.3% triton for 1 hour, and then with the primary antibody 

at 4°C overnight.  After three washes in PBS, samples were incubated with the 

secondary antibody for 2 hours at room temperature, washed again three times 

in PBS and mounted in ProLong Gold Antifade Reagent (Invitrogen). All 

fluorescent microscopy was performed on a Leica Leitz DMRB compound 

microscope with Leica Fiber Optic Illumination. Images were captured using a 

QImaging Retiga 2000R Fast 1394 camera and QCapture Pro 5.1.1.14 software. 

Images were processed using Adobe® Photoshop® CS2 9.0. 

Statistical Analysis 

        All statistical analyses were performed with SPSS 15.0. The p values 

reported for ABR were generated by independent samples t-tests or Tukey’s 

multiple comparisons following oneway ANOVA. Error bars represent standard 

deviation for means.  

 

RESULTS 

Prop1df/df mutants have a mild hearing deficit 

 ABR tests were used to determine the hearing proficiency of Prop1df/df 

mutants as well as wild type controls.  At 4 weeks old the ABR thresholds of 
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Prop1df/df mutants are elevated relative to controls by 21 dB SPL and 34 dB SPL 

at 4 kHz and 20 kHz, respectively  (Fig. 4-1, P<0.05).  When the mice are 6~7 

weeks old, mutant hearing has improved but is still worse than normal, with 

elevations of 11 and 14 dB SPL at 4 and 20 kHz, respectively (Fig. 4-1, 

P<0.001).  This indicates that the cochlear development of Prop1df/df mutants 

undergoes maturation between 4 and 7 weeks of age, but it does not achieve 

wild type function.  This is consistent with previous reports that measured 

different ages of conventionally housed mice at different frequencies (Karolyi et 

al., 2007). 

 

Gestational and neonatal environments do not account for variant 

responses to hypothyroidism in Prop1df/df and Pou1f1dw/dw mutants 

 To determine the degree to which maternal effects contribute to the 

different degrees of hearing impairment in Prop1df/df and Pou1f1dw/dw mutants, the 

fertilized eggs from all genotypes from both strains were transplanted into the 

uteri of B6/D2 surrogate mothers, which would provide common gestation and 

lactation environments for both mutants.  We chose the mothers of the B6/D2 

strain as surrogates because they have hybrid vigor and exhibit good mothering 

instincts.  The hearing ability of the progeny born to the surrogates was tested by 

ABR at four weeks of age, including Prop1df/df_S and Pou1f1dw/dw_S mutants as 

well as wild types from each strain.  The hearing deficits of Prop1df/df_S and 

Pou1f1dw/dw_S mutants are significantly different from their normal littermates and 
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from each other, but they are indistinguishable from the Prop1df/df and Pou1f1dw/dw 

mice born to mothers from their own backgrounds (Fig. 4-2, P<0.001 at both 4 

kHz and 20 kHz).  Thus, factors intrinsic to the fetus play the major roles in the 

different responses of Prop1df/df and Pou1f1dw/dw mutant cochlea to 

hypothyroidism, and maternal effects are minimal in this context. 

 

Mild outer hair cell (OHC) dysfunction with normal expression of KCNQ4 

and prestin in Prop1dfdf mutants  

 Cochlear OHCs are unique in their electromotility and work as a cochlear 

amplifier in sound processing (Ospeck et al., 2003).  DPOAE is used as a 

standard audiometric technique to measure OHC function of amplification.  At 

four weeks of age, Prop1df/df mutants have DPOAE responses at 12 or 24 kHz 

that are indistinguishable from the noise floor in postmortem mutant or wild type 

mice (Fig. 4-3 A).  By seven weeks old, Prop1df/df mutants and wild types have 

similar DPOAE levels at 12 kHz frequency, but the mutants have only 50% of 

normal cochlear sensitivity at 24 kHz (Fig. 4-3 A).  The maturation process of 

DPOAE in mice begins from lower frequencies at P11 and obtains the adult-like 

pattern at higher frequencies by P28 (Narui et al., 2009).  This demonstrates that 

Prop1df/df mutant cochlea have delayed development of OHC function.  ABR 

measurements also improve between four and seven weeks of age (Fig. 4-1), 

suggesting that the OHC dysfunction could be the major contributor to the mild 

hearing impairment in Prop1df/df mutants. 
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 KCNQ4 is an M-type K+ channel localized exclusively to the basal pole of 

the hair cells, and it is responsible for the dominant K+ conductance in mature 

OHCs (Marcotti and Kros, 1999; Kharkovets et al., 2000).  Mutations in KCNQ4 

cause progressive deafness in both human and mice (Kubisch et al., 1999; 

Kharkovets et al., 2006).  Pou1f1dw/dw mutant mice have permanently reduced 

expression and function of KCNQ4 in OHCs (Mustapha et al., 2009).  We 

examined KCNQ4 expression in Prop1df/df mutant cochlea at four weeks.  Normal 

levels and localization of KCNQ4 immunoreactivity are present in Prop1df/df 

mutants relative to wild types (Fig. 4-3 B and C).  The normal expression pattern 

exists in seven-week old mutants (data not shown), despite the permanent 

hearing deficit shown by ABR and DPOAE at this age.  The DF/B genetic 

background supports normal KCNQ4 expression despite the severe 

hypothyroidism. 

 Prestin (SLC26A5) is a member of the sulfate transporter family proteins 

(Lohi et al., 2000) and is expressed along the basolateral membrane of OHCs 

(Adler et al., 2003; Yu et al., 2006), conferring electromotility to the OHCs (Zheng 

et al., 2000).  Prestin is transcriptionally regulated by TH during final 

differentiation of outer hair cells (Weber et al., 2002; Winter et al., 2006).  Prestin 

is required for normal OHC length (Liberman et al., 2002).  We examined prestin 

expression in Prop1df/df mutants by immunohistochemistry.  There is no 

significant difference in prestin expression levels in OHCs of mutants and wild 

types at 4 weeks of age (Fig. 4-3 D and E).  Prestin localizes at the lateral wall of 

Prop1df/df mutant OHCs, which is the expected mature pattern (Fig. 4-3 D and E).  
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OHC length is not apparently affected in Prop1df/df mutants either.  Thus, the 

DF/B genetic background of the Prop1 mutants supports the development of 

prestin expression and localization. 

 

Developmentally delayed expression of KCNJ10 in the stria vascularis and 

normal EP in Prop1df/df mutants 

 Endocochlear potential (EP) is the driving force for the transduction of ions 

through the channels in hair cell stereocilia.  An EP level of +80mV is essential 

for normal hearing.  Since EP affects the amplitude of DPOAE, EP was also 

examined in the present study.  The EP of 7-week-old Prop1df/df mutants ranges 

from 81 to 93 mV (N=3), which is indistinguishable from the EP levels (88 to 92 

mV, N=2) in wild types (Fig. 4-4).  Thus, the poor DPOAE in Prop1df/df mutants 

likely results from defective OHCs, not abnormal EP. 

 KCNJ10 (Kir4.1) K+ channels in the intermediate cells of the stria 

vascularis are required for generation of a normal EP (Marcus et al., 2002).  

Permanent reduction of KCNJ10 expression was observed in Pou1f1dw/dw 

mutants, which accounts for the substantially reduced EP in those mice 

(Mustapha et al., 2009).  We examined the KCNJ10 expression in 4 and 6 week 

old Prop1df/df mutants by immunohistochemical staining.  At 4 weeks of age, the 

KCNJ10 fluorescence levels are lower in mutants than wild types (Fig. 4-4B).  By 

6 weeks of age, the KCNJ10 fluorescence levels in the mutant are 

indistinguishable from the wild types (Fig. 4-4B).  The subcellular localization of 
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KCNJ10 is normal in both the 4-week-old mutant and 6-week-old mutant.  This is 

consistent with the normal EP observed.  Thus, the DF/B-Prop1df genetic 

background protects against permanent reduction of KCNJ10 in the absence of 

TH.   

 

Gross neurite outgrowth and synaptogenesis of OHCs are unaffected in 

Prop1df/df mutant cochlea 

 The maturation of the nervous system in the rodent cochlea takes place 

during the first two postnatal weeks of life, which overlaps with the critical time 

window of TH function (Knipper et al., 2000).  TH deprivation causes 

abnormalities in cochlear innervation and synaptogenesis in multiple hypothyroid 

animal models (Uziel et al., 1983; Brandt et al., 2007; Sendin et al., 2007).  

Neuronal marker proteins are usually used for examination of the innervation 

patterns.  We used antibodies that recognize the neurofilament protein NF-200, 

which stains both afferent and efferent fibers, to detect the neurite outgrowth in 

Prop1df/df mutant cochlea at 4 and 7 weeks.  No significant differences were 

observed between mutants and wild types in terms of gross number and 

patterning of neuronal fibers at 4 weeks (Fig. 4-5 B) or 7 weeks (data not shown).  

Synaptophysin is a presynaptic marker of efferent fibers, which comprise 95% of 

the fibers innervating OHCs.  A strong and normally organized pattern of 

synaptophysin staining was observed in both Prop1df/df mutants (Fig. 4-5 A).  

Thus, neither the gross neurite outgrowth nor the efferent synaptogenesis of 

OHCs are affected by low TH levels in DF/B-Prop1df/df mice. 
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Prolonged presence of otoferlin in apical OHCs  of Prop1df/df mutants  

 Otoferlin is thought to be the major calcium sensor and essential for 

exocytosis at both inner hair cell (IHC) and immature OHC ribbon synapses 

(Roux et al., 2006; Beurg et al., 2008).  Expression of otoferlin begins prenatally 

in both IHCs and OHCs and vanishes from OHCs by P6 (Roux et al., 2006).  The 

absence of otoferlin in OHCs parallels the retraction of afferent fibers from OHCs, 

which is an important event for OHC maturation (Beurg et al., 2008).  Together 

with myosin VI, otoferlin is involved in the maintenance of the basolateral 

synaptic structure of IHCs (Heidrych et al., 2009).  We examined the expression 

of otoferlin by immunostaining whole-mount and cryosectioned tissues.  Similar 

expression levels of otoferlin were seen in IHCs of Prop1df/df mutant cochlea as 

the wild type.  Abnormally strong otoferlin staining persists in the OHCs in the 

apical coil of 6-week-old Prop1df mutant cochlea (Fig. 4-6 C and D).  Weak 

otoferlin immunostaining is expected in the OHCs in the apical region of mature 

cochlea in wild type animals (Roux et al., 2006), but none was observed in the 

Prop1 wild types (Fig. 4-6), which may be due to strain differences or sensitivity 

of detection.  Thus, the prolonged existence of otoferlin expression in apical 

OHCs of mutant cochlea may reflect the immaturity of the cells.   

 

DISCUSSION 

Maternal effects are minimal for variation of hearing deficits between 

Prop1df/df and Pou1f1dw/dw mutants 
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 Maternal effects are defined as the causal influence of the maternal 

genotype or phenotype on the phenotype of the offspring (Wolf and Wade, 2009).  

Based on this definition, maternal effects may include direct or indirect 

consequences of maternal traits, such as nesting behavior, gene transcription, 

hormone levels, antibodies, placental permeability, and the particular 

environments in which mothers lay eggs (Rhees et al., 1999; Wolf and Wade, 

2009).  In mammals, the role of maternal effects exist at two distinct maternal 

stages---prenatal uterine and postnatal nursing and nurturing.  By transferring 

embryos between two inbred mouse strains with large body size (C3H) and small 

body size (SWR), both uterine and postnatal maternal effects were proven to 

contribute to the prenatal and early postnatal development of offspring, and no 

obvious donor genotype effects were observed (Cowley et al., 1989; Pomp et al., 

1989; Rhees et al., 1999).  

 The hearing abilities of progeny are substantially affected by maternal TH 

levels in both human and rodents (Boyages and Halpern, 1993; Knipper et al., 

2001).  In our breeding scheme the mothers of Prop1df/df and Pou1f1dw/dw mutants 

are heterozygous for the recessive Prop1 and Pou1f1 mutations, respectively.  

Thus, maternal TH levels are in the normal range.  We expected that strain 

differences in normal basal TH levels transferred to the fetus or neonate through 

the placenta or milk, respectively, could contribute to the different levels of 

hearing impairment characteristic of Prop1df/df and Pou1f1dw/dw mutant mice.  In 

addition, it is possible that strain differences in gestation time or maturity at birth 

that are controlled by the mother could influence the effects of fetal 
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hypothyroidism on hearing deficit.  For example, longer gestation time might 

allow a hypothyroid fetus to benefit from maternal TH long enough to protect it 

during the critical period for TH dependent cochlear development.     

 Our embryo transfer experiments demonstrated that a consistent 

mothering environment does not significantly change the hearing deficits in 

Prop1df/df and Pou1f1dw/dw mutants from the ones they exhibit when born from 

mothers on the original backgrounds.  From this striking result we conclude that 

the strain differences intrinsic to the fetus play the major role in inducing different 

hearing deficits between Prop1df/df and Pou1f1dw/dw mutants. Other strain 

combinations might reveal strong maternal effects, however, because there are 

compelling data to support the importance of maternal thyroid hormone for 

development (Deol, 1973; Knipper et al., 2000).  Future genetic studies with 

DF/B-Prop1 and DW/J-Pou1f1 mutants may identify loci that enhance or 

suppress the ability of hypothyroid mice to develop normal hearing, and the 

results of the embryo transfer studies direct the focus to factors intrinsic to the 

fetus and/or neonate. 

         The effects of genetic background on hearing ability in mice are noted in 

many inbred strains.  The most familiar example is that C57BL/6J mice carry a 

mutation in cadherin 23 (Cdh23) known as Age-related hearing locus (Ahl) and 

develop progressive deafness after 10 months.  QTL analysis has identified 

several modifiers of hearing impairments (Ikeda et al., 1999; Ikeda et al., 2002; 

Drayton and Noben-Trauth, 2006; Mashimo et al., 2006; Noguchi et al., 2006; 

Van Eyken et al., 2006; Ohlemiller et al., 2010).  We expect that QTL analysis of 
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DF/B and/or DW/J strains could identify the protective and susceptibility genes 

for hypothyroidism induced hearing impairment.  These modifiers could also be 

genes involved in Mendelian hearing defects, as mutations in Cdh23 also 

account for nonsyndromic autosomal recessive deafness DFNB12.   

 

Delayed maturation of innervation may account for the mild hearing 

impairment in Prop1df/df mutants 

 The only permanent abnormality we observed in Prop1df/df mutant cochlea 

is prolonged existence of otoferlin in OHCs and reduced expression in IHC at the 

apical turn of the sensory epithelium.  This indicates that maturation of cochlear 

innervation is not completely protected by Prop1df genetic background.  During 

normal neurodevelopment in the cochlea, otoferlin initially is expressed in IHCs 

and immature OHCs.  By P6, the disappearance of otoferlin from OHCs parallels 

the retraction of afferent dendrites and formation of efferent synapses (Roux et 

al., 2006).  Thus, abnormal persistence of otoferlin in Prop1df/df mutant OHCs 

implies an immature innervation pattern at the level of OHCs.  The effects of 

hypothyroidism on the cochlear nervous system are expected to be mostly 

associated with OHC wiring (Uziel et al., 1983) because maturation of 

synaptogenesis at the IHC is achieved at birth while the pattern of synapses at 

OHC exhibit drastic changes within the first two postnatal weeks.  The perinatal 

period is the critical time window of TH functioning for normal hearing, and it 

could influence both IHC and OHC synapse remodeling. In Prop1df/df mutant 
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cochlear the prolonged persistence of otoferlin staining in OHCs was only 

observed at apical turn.  The order of cochlear maturation is from the basal turn 

to the apical turn.  The delayed maturation of innervation pattern in the apical 

OHCs is consistent with the mild degree of hearing impairment in Prop1df/df 

mutants. 

  Usually IHC dysfunction corresponds to severe hearing loss because 

IHCs are the master sound sensors within the cochlea.  The maturation of ribbon 

synapses in IHCs are affected by hypothyroidism in rodents mice (Brandt et al., 

2007; Sendin et al., 2007).  In those studies, the expression of otoferlin in IHCs 

was completely absent or substantially reduced in drug-treated rats and Pax8 

knockout mice, respectively.  We observed reduced otoferlin expression in the 

IHCs of Pou1f1dw/dw mutants also (data not shown). This is quite different from the 

Prop1df/df mutants, which preserved almost normal otoferlin expression level in 

IHCs.  The regulator(s) of otoferlin expression in IHCs would be candidates for 

the modifier(s) in the Prop1df genetic background that protect hearing against 

hypothyroidism. 

 

Gene regulation by TH is complicated during cochlear development and 

could be substantially affected by genetic background  

        We examined expression of several cochlear genes that are affected in 

other hypothyroid animal models.  In Pou1f1dw/dw mutants, prestin expression and 

localization are developmentally delayed, but they become indistinguishable from 
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normal littermates by 6 weeks (Mustapha et al., 2009).  The capacitance levels in 

mutants this age are compatible with levels in young hearing mice, consistent 

with normal prestin function.  In Prop1df/df mutants, however, both expression and 

localization of prestin are not affected by the absence of TH, suggesting prestin 

function is not strictly TH-dependent.  TH response elements (TREs) exist within 

prestin gene and are transactivated by TH receptor (TR), retinoid X receptor 

(RXR) heterodimers (Weber et al., 2002).  The Prop1df genetic background may 

support either RXR or an as yet uncharacterized heterodimer partner of TRs 

interacting with TREs to compensate the absence of TH to activate prestin gene.  

Alternatively, completely independent transcriptional controls elements or factors 

may compensate.   

 KCNQ4 expression is permanently reduced in Pou1f1dw/dw mutants 

(Mustapha et al., 2009), but Prop1df/df mutants have normal KCNQ4 expression.  

TRalpha1 receptors regulate KCNQ4 expression during final differentiation of 

OHCs (Winter et al., 2006).  TRalpha1 knockout mice, however, do not exhibit 

hearing impairment, which implies that the activation of KCNQ4 gene cannot 

solely depend on TH/TR pathway (Rusch et al., 1998).  A novel TH-signaling 

pathway can bypass TRs to mediate TH regulation (Shibusawa et al., 2003).  It 

will be interesting to determine which TR and TH independent pathway activates 

KCNQ4 on the Prop1df mutant background.   

 Permanently reduced KCNJ10 expression in the stria vascularis 

contributes to the reduction of EP level in Pou1f1dw/dw mutants (Mustapha et al., 

2009).  In the Prop1df/df mutants, EP level is normal and expression of KCNJ10 is 
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developmentally delayed but reaches normal level by 6 weeks old.  It is not 

known whether TH directly regulates Kcnj10 transcription in susceptible strains or 

whether it influences the stability of the protein.  Differences in scaffolding protein 

expression can have profound, pleiotropic effects on protein stability 

(Heydemann and McNally, 2007).  

 The roles of the TH, TR complex in gene regulation have been widely 

documented in many physiological fields including development, homeostasis, 

cell proliferation and differentiation, etc.  The downstream effects of TH/TRs on 

gene expression can be either activation or repression.  A comparison of the 

cochlea gene expression profiles from Pou1f1dw/dw mutants and wild types 

revealed that half of the genes are up-regulated and half are down-regulated in 

Pou1f1dw/dw mutants (Tzy-wen Gong, unpublished data).  This proves the 

complexity of gene regulation by TH.  It is intriguing that the genetic background 

of Prop1 mice can rescue expression of so many genes in the absence of TH.  

We favor a model involving genetic variation in a TH responsive transcription 

factor in the cochlea or alteration that boosts the effective level of thyroid 

hormone in the cochlea (van der Deure et al., 2010). This could account for 

improvement in many TH dependent processes in the presence of the DF/B 

background.  Alternatively, there could be a complex set of genes that contribute 

to the protective effects.  Sorting out this difference could be very important for us 

to identify the genes and pathways that are the most sensitive to TH regulation in 

inner ear development. 
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         In conclusion, the Prop1df/df mutant mice lack TH, yet they exhibit only a 

mild hearing deficit.  This mild hearing impairment may due to the immature 

innervation pattern of apical OHCs in the cochlea.  The genetic background of 

Prop1 mice can compensate for many cochlear developmental processes that 

are apparently dependent on TH in other strains.  Identification of the protective 

factor(s) for hypothyroidism-induced hearing loss would help us understand the 

mechanism of gene regulation by TH in the inner ear and potentially identify 

novel genes involved in the normal auditory function. 
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Figure 4-1. Prop1df mutants have a mild hearing deficit.  

ABR tests were performed on sets of normal mice (white bars) and mutant mice 

(black bars) at ages of 4 weeks and 6-7 weeks.  N=3 per genotype at 4 wk,  n=9 

for 6-7 wk old wild type, and n=8 for 6-7 wk old mutant. 
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Figure 4-2. Gestational and neonatal environments do not account for 

different hearing abilities of Prop1df   and Pou1f1dw mutants.  

Pups born from surrogate mothers (designated as “Genotype_S”) were tested by 

ABR.  The hearing deficits of Prop1df/df_S and Pou1f1dw/dw_S are significantly 

different (P<0.001).  For each group, four mice were tested (n=4). 
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Figure 4-3. Prop1df mutants exhibit mild OHC dysfunction with normal 

expression of KCNQ4 and prestin.  

A. DPOAEs were measured in live 4 wk and 7 wk old wild type and Prop1df 

mutant mice (black circles and white squares, respectively), and compared with 

DPOAEs of postmortem animals (dotted and dashed line).  Data are shown for 

the 12 and 24 kHz frequencies.  N=3 for each genotype group of 4 wk old mice 

and n=6 for 7 wk.  (B,C). KCNQ4 immunoreactivity is normal in OHCs (arrows) of 

mutant mice relative to wild type.  Frozen sections obtained from P28 wild type 

and mutant mice were stained for KCNQ4 (red).  Nuclei were stained with DAPI 

(blue).  (D,E). Prestin expression and localization was analyzed by staining 

frozen sections from wild type and Prop1df mutants at P28 with prestin-specific 

antibodies (red).  Nuclei were labeled using DAPI (blue).  Arrows identify rows of 

outer hair cells.  Scale bars: 10 µm. 
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Figure 4-4.  Endocochlear potential (EP) is normal and KCNJ10 expression 

is developmentally delayed in Prop1df mutants.   

A. EP was measured in P42 wild type and age-matched mutant animals.  Levels 

of EP (in mV) for littermate control and Prop1df mutants are shown.  B. Frozen 

sections of the organ of Corti of wild type and mutant mice collected at P28 and 

P42 were stained for KCNJ10 (red).  Nuclei are marked by DAPI (blue).  KCNJ10 

expression is detected in the intermediate cells of the stria vascularis.
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Figure 4-5.  Neurite growth and synaptogenesis of OHCs are grossly 

unaffected in Prop1df mutants.   

A.  Synaptophysin, a presynaptic marker of efferent fibers, is stained on whole 

mount preparations of cochlear epithelia with an anti-synaptophysin antibody 

(green).  B. Neurofilament protein (NF-200) immunostaining was used to detect 

the neurite outgrowth in cochlea whole-mounts of P28 mutants as well as wild 

type controls.  Prestin immunostaining was used to indicate the position of OHCs 

(red). 
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Figure 4-6. Prolonged presence of otoferlin at apical OHCs in Prop1df 

mutants.  

(A,C).  Otoferlin immunostaining (red) was done on whole mount preparations of 

sensory epithelia from the apical turn of Prop1df mutants and wild type. (B,D).  

Frozen sections of organ of Corti were collected and stained by anti-otoferlin 

antibody (red).  Arrowheads indicate the rows of OHCs.  Arrows point to the 

IHCs.  Nuclei are blue in all stainings. 
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lab, arranged the ABR tests for all the F2 dw/dw mutants and genotyped the polymorphic alleles 
of Mtap1a gene on all the individual mice. I participated in writing the manuscript.  
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CHAPTER 5 

 

A locus on Chromosome 2 modifies the severity of hearing impairment in 

hypothyroid Pou1f1dw dwarf mice 

 

ABSTRACT 

        Thyroid hormone (TH) has pleiotropic effects on cochlear development, and 

genomic variation influences the severity of associated hearing deficits.  Prop1df 

and Pou1f1dw mutant mice lack pituitary thyrotropin, which causes severe TH 

deficiency and variable hearing impairment, depending on the genetic 

background (Karolyi et al., 2007).  DW-Pou1f1dw mutants are profoundly deaf and 

exhibit delayed development of the organ of Corti, permanently reduced 

potassium channel gene expression and function, and other abnormalities 

(Mustapha et al., 2009).  In contrast, DF-Prop1df mutants have very mild hearing 

impairment.  To assess the genetic complexity of protective effects, an F1 

intercross was generated between DW-Pou1f1dw carriers and an inbred strain 

with excellent hearing, CAST/EiJ, derived from a wild population of Mus 

castaneus.  Approximately 16% of the dw/dw F2 progeny had normal hearing.  A 

genome scan of these individuals revealed a locus on Chromosome 2, named 
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modifier of dw hearing, Mdwh, that rescues hearing despite persistent 

hypothyroidism.  This chromosomal region contains the modifier of tubby hearing 

1 (Moth1) locus that encodes a protective allele of the microtubule-associated 

protein Mtap1a (Ikeda et al., 2002).  We crossed DW-Pou1f1dw carriers with the 

AKR strain, which carries a protective allele of Mtap1a, and found that AKR is not 

protective for hearing in the DW-Pou1f1dw/dw F2 progeny.  Thus, protective alleles 

of Mtap1a are not sufficient to rescue DW-Pou1f1dw/dw hearing.  Microarray 

analysis identified cochlear gene expression changes associated with 

hypothyroidism in Pou1f1dw mice.  Some of these are positional candidates for 

the modifier gene.  We expect that identification of protective modifiers will 

enhance our understanding of the mechanisms of hypothyroidism-induced 

hearing impairment. 

 

INTRODUCTION 

        Thyroid hormone (TH) is an important regulator of many processes in 

mammalian development including body growth (Cabello and Wrutniak, 1989) 

and central nervous system maturation (Bernal, 2005).  Auditory function is 

particularly sensitive to the effects of TH, which is required for the complex 

development and physiology of the cochlea (Deol, 1973; Uziel, 1986; Sohmer 

and Freeman, 1996).  Mutations in several different genes can prevent or 

interfere with the TH signaling pathway that is required for normal auditory 

development and function.  In addition to gene mutations that cause 

hypothyroidism, mutations of genes encoding thyroid hormone receptors (THRs) 
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(Forrest et al., 1996; Rusch et al., 2001) and iodothyronine deiodinases (Ng et 

al., 2004; Ng et al., 2008) can diminish the developing cochlea’s response to TH 

and exhibit similar auditory phenotypes.  Cases of congenital hypothyroidism are 

classified as primary if caused by thyroid gland dysfunction and secondary if 

caused by pituitary gland abnormalities.  Mouse models of primary 

hypothyroidism include the hypothyroid  mutation (hyt) of the Tshr gene, which 

has residual activity and mild to negligible hearing deficit (O'Malley et al., 1995; 

Sprenkle et al., 2001; Karolyi et al., 2007), and the thyroid dyshormonogenesis 

mutation (thyd) of the Duox2 gene, which causes severe to profound deafness in 

mice (Johnson et al., 2007).  Pax8 knockout mice are athyroid, exhibit ear 

abnormalities, and lack an auditory brainstem response (ABR) to sound.  The 

utility of this model is limited because the mice survive only to postnatal day 21 

(P21), and the expression of Pax8 in the otic placode makes it difficult to 

distinguish the influence of thyroid and direct cochlear effects (Christ et al., 

2004).   

        Hearing impairment has been examined in three mouse models of 

secondary hypothyroidism: the Snell dwarf (dw) mutation of the Pou1f1 gene 

(formerly Pit1), the Ames dwarf (df) mutation of the Prop1 gene, and a targeted 

knockout mutation of the Cga gene, which encodes an essential subunit of 

thyrotropin (Karolyi et al., 2007).  Pou1f1 and Prop1 both encode transcription 

factors in the same pathway of pituitary gland development.  Mice with null 

mutations in Prop1, Pou1f1, or Cga lack pituitary thyrotropin and have no 

measurable TH in the serum.  In spite of these similarities, the hearing defects in 
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Pou1f1dw and Cga mutant mice are profound, whereas Prop1df mutants have only 

a mild hearing impairment.  The Pou1f1dw and Prop1df mutations are on different 

strain backgrounds, and analysis of a small cross between Pou1f1dw and Prop1df 

mice showed that genetic background is likely responsible for the different 

hearing phenotypes (Karolyi et al., 2007).   

        Advances in understanding how TH signaling affects the development and 

function of the cochlea will help to illuminate the molecular mechanisms that 

underlie development of normal auditory functions.  We chose the Pou1f1dw 

mutant mice because of the severity of their hearing impairment, their 

responsiveness to TH replacement, and their well-characterized cochlear 

pathologies (Mustapha et al., 2009).  Detailed morphological, physiological, and 

gene expression analyses of Pou1f1dw mutants during the course of cochlear 

development revealed tectorial membrane abnormalities, loss of outer hair cells 

(OHCs) preceded by their compromised function (as evidenced by an absence of 

distortion product otoacoustic emissions, DPOAE, and cochlear microphonics, 

CM), reduced endocochlear potential, and reduced expression of potassium 

channel proteins (KCNJ10 in the stria vascularis and KCNQ4 in OHCs), all of 

which are likely contributors to the severe hearing impairment of these mutant 

mice (Mustapha et al., 2009).  Similar features, including lack of DPOAE, 

reduced endocochlear potential, and tectorial membrane abnormalities, are 

characteristic of the Cga knockout mice (Karolyi et al., 2007).   

         Although insights have been gained from studies of existing hypothyroid 

mouse models, our understanding of the molecular mechanisms underlying the 
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hearing impairment associated with hypothyroidism is still incomplete.  The 

observed influence of genetic background on the severity of hearing impairment 

in hypothyroid mice offers an opportunity to identify modifier genes and pathways 

that could enhance our understanding of these mechanisms.  Here we describe 

results from a large linkage cross that was designed to map loci that modify the 

hearing of hypothyroid Pou1f1 dwarf mice.  Heterozygous Pou1f1dw mice were 

intercrossed with wild derived, inbred strain CAST/EiJ, which have good hearing.  

F2 mutant progeny (dw/dw) from this intercross ranged from normal hearing to 

completely deaf, despite the fact that they were all profoundly hypothyroid and 

equally growth impaired.  By analysis of this cross, we identified a locus on 

Chromosome (Chr) 2 that had a highly significant linkage association (LOD=10) 

with the ABR threshold variation exhibited by the mutant intercross mice.  This 

quantitative trait locus (QTL) was given the symbol Mdwh (modifier of dw 

hearing).  The Mdwh interval contains Moth1, the modifier of tubby hearing, 

which varies among strains by the length of an alanine-proline amino acid repeat 

in Mtap1a, microtubule associated protein 1a (Ikeda et al., 2002).  DW/J has a 

susceptible allele of Mtap1a, while CAST/EiJ and AKR have protective alleles. 

dw/dw mutants born from an intercross of F1 (AKR x Pou1f1dw) mice are all deaf, 

suggesting that Mdwh is not Moth1, but represents a novel locus that protects 

against hearing impairment in hypothyroid Pou1f1dw mutants. 

 

MATERIALS & METHODS 

Mice   
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        Mice of the C3H/HeJ-Pou1f1dw-J/J, DW/J- Pou1f1dw and CAST/EiJ inbred 

strains and their derivative F1 and F2 hybrids were housed in the Research 

Animal Facility of The Jackson Laboratory.  AKR mice were obtained from The 

Jackson Laboratory. A stock of DW/J-Pou1f1dw and CAST/EiJ F2 hybrids were 

also generated at University of Michigan.  All procedures were approved by the 

Institutional Animal Care and Use Committees of each institution. The Jackson 

Laboratory and the University of Michigan are both accredited by the American 

Association for the Accreditation of Laboratory Animal Care (AAALAC) and are 

registered with the United States Department of Agriculture as research facilities. 

Genotyping processes for dw and dw-J alleles were previously described (Eicher 

and Beamer, 1980; Karolyi et al., 2007). 

 

Assessment of hearing by ABR threshold analysis   

        The inbred strain, F1 hybrid, and F2 intercross mice were assessed for 

hearing by auditory-evoked brainstem response (ABR) thresholds at the Jackson 

Laboratory as previously described (Zheng et al., 1999).  Briefly, mice are 

anesthetized and body temperature is maintained at 37-38°C by placing them on 

an isothermal pad in a sound-attenuating chamber.  Sub-dermal needles are 

used as electrodes, inserted at the vertex, and ventro-laterally to each ear.  

Stimulus presentation, ABR acquisition, equipment control and data 

management were coordinated using the computerized Intelligent Hearing 

Hearing Systems (IHS; Miami, Florida).  A pair of high frequency transducers is 

coupled with the IHS system to generate specific acoustic stimuli.  Broadband 
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clicks, and 8, 16, and 32 kHz tone-bursts are respectively channeled into the 

animal's ear canals.  The amplified brainstem responses are averaged by a 

computer and displayed on the computer screen.  Auditory thresholds are 

obtained for each stimulus by reducing the sound pressure level (SPL) at 10 dB 

steps and finally at 5 dB steps up and down to identify the lowest level at which 

an ABR pattern can be recognized.  Samples of CBA/CaJ mice are tested 

periodically as references for normal hearing, and for monitoring the reliability of 

the equipment and testing procedures. ABR tests at the University of Michigan 

were done as previously described (Karolyi et al., 2007). 

 

Linkage intercross mapping   

        Individual DNA samples from linkage intercross mice were genotyped by 

PCR amplification with primer pairs designed to amplify specific microsatellite 

markers purchased from Integrated DNA Technologies (Coralville, IA, USA).  

PCR reactions and PCR product visualization methods were as previously 

described (Gagnon et al., 2006).  ABR thresholds for click, 8 kHz, 16 kHz, and 32 

kHz stimuli were evaluated as quantitative traits and QTL linkage analysis was 

performed using the computer program Map Manager QTX (version b20), which 

uses a fast regression method to detect and localize quantitative trait loci within 

intervals defined by genetic markers and can perform pair-wise locus analysis to 

search for QTL interactive effects. It reports the resulting regression coefficients 

and a likelihood ratio statistic that is based on natural logarithms, but can be 

converted to conventional LOD scores by dividing by 4.61. 
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Candidate gene analysis   

        PCR for comparative DNA sequence analysis was performed according to 

the same conditions as described above for linkage mapping. DNA sequences of 

the PCR primers used to amplify the polymorphic repeat sequence GCTCCA of 

Mtap1a were 5’-TCTGGGACCTCACTCCTCTG (forward) and 5’-

GTTTCTCCTGGGCCATTAGC (reverse). PCR products from genomic DNA 

were purified with the QIAquick PCR Purification Kit (Qiagen Inc., Valencia, CA).  

DNA sequencing was performed using the same primers as for DNA 

amplification, then run on an Applied Biosystems 3700 DNA Sequencer with an 

optimized Big Dye Terminator Cycle Sequencing method. 

 

RESULTS 

        We reported strain background effects on hearing in hypothyroid mice that 

were produced from an intercross of Prop1df and Pou1f1dw strains (Karolyi et al., 

2007).  There were insufficient F2 progeny, however, to assess the heterogeneity 

of effects among them (≤ 6 for each genotype group).  The unique nature of each 

stock (DW/J and DF/B), and the fact that DF/B are not inbred, compelled us to 

extend this analysis of modifier effects by comparing thresholds of mice with 

different Pou1f1 mutant genotypes on multiple genetic backgrounds (Fig. 5-1).  

As previously reported, dw/dw mice on the DW/J strain background are nearly 

deaf at 4 weeks of age, whereas +/dw heterozygotes have normal hearing 

thresholds.  On a C3H/HeJ strain background, mice homozygous for a different 
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null mutation of Pou1f1, the dwJ allele, show a hearing impairment greater than 

that of the parental C3H/HeJ strain mice but not nearly as severe as that of dw 

mutants on the DW/J strain background.  Both the dw and dwJ alleles are 

recessive, complete loss of function alleles that result from a missense mutation 

in the homeodomain that abolishes DNA binding and an intra-genic 

rearrangement, respectively (Camper et al., 1990; Li et al., 1990). Compound 

heterozygotes (DW/J x C3H/HeJ) F1 hybrids (dw/dwJ) exhibit a hearing 

impairment that is intermediate between that of DW/J-dw/dw and C3H/HeJ-

dwJ/dwJ mutants.  Mutant dw/dw mice of the B6.DW-Pou1f1dw/J congenic strain 

exhibit severe hearing impairment like that of dw/dw mutants on the DW/J strain 

background.  The congenic strain was constructed by transferring the dw 

mutation from the DW/J strain onto an otherwise C57BL/6J strain background by 

multiple rounds of backcrossing and selection.  All of these results support the 

idea that the genetic background affects the degree of hearing loss of 

hypothyroid Pou1f1 mutants. 

        To investigate the genetic complexity of the strain-related hearing loss 

variation of Pou1f1dw mutant mice and to map the putative modifier genes, we 

produced a linkage intercross between (DW/J-Pou1f1dw x CAST/EiJ) F1 hybrids.  

We chose the CAST/EiJ strain because mice of this strain retain good hearing at 

old ages and because of the increased likelihood of genetic marker 

polymorphisms with the DW/J strain (Zheng et al., 1999). Pou1f1 mutant (dw/dw) 

F2 progeny from this intercross represented about 25% of the total, as expected, 

and these mutants were tested for hearing and analyzed for genetic linkage.  
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ABR thresholds for click, 8 kHz, 16 kHz, and 32 kHz stimuli were measured at 1-

2 months of age (average 40 days) for each of 196 F2 mutant mice.  The dw/dw 

F2 mice exhibited a wide range of ABR thresholds that were distributed in a 

skewed bimodal fashion, suggesting a major influence of one or a few genes 

(Fig. 5-2).  A bell-shaped distribution with a single mode would have suggested 

that many genes with small effects contribute to the hearing differences among 

the mutant mice.  A substantial portion, 16% (N=31), of the mutant F2 mice 

exhibited normal hearing thresholds (< 35 dB SPL).  The body weights of the 

mutant dw/dw F2 mice were about three-fold smaller than normal mice, 

consistent with profound hypothyroidism and growth deficiency.  There was no 

significant correlation between body weight and ABR thresholds (Table 5-1).  

This suggests that the rescue of hearing does not occur concomitantly with a 

growth rescue. 

        As a first approach for mapping modifier loci for hearing, we performed a 

genome-wide scan for linkage by limiting our analysis to F2 mice with the most 

extreme ABR thresholds, 30 with the lowest (15-30 dB SPL) and 11 with the 

highest (95-100 dB SPL) thresholds.  Selecting mice with extreme phenotypes 

maximizes information for more efficient linkage scanning without sacrificing 

detection capability (Darvasi, 1997).  We typed 90 microsatellite markers spaced 

at 15 cM intervals on all 20 mouse chromosomes, which covered >90% of the 

genome.  We used the Map Manager QTX computer program (Manly et al., 

2001) to analyze quantitative trait loci (QTLs) associated with ABR threshold 

variation.  We evaluated intercross linkage using a free model (2 degrees of 
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freedom), without prior assumptions of dominant, recessive, or additive effects.  

The LOD scores for associations of 16 kHz thresholds with the 90 markers are 

shown in Fig. 5-3.  With this model, a LOD score of 4.3 is considered a significant 

intercross linkage value, corresponding to a genome-wide type I error of 0.05 

(Lander and Kruglyak, 1995).  The highest and only statistically significant 

linkage associations were found with markers on Chr 2, and additional Chr 2 

markers were then analyzed (Fig. 5-4 A).  The maximum LOD score was 7.9 for 

the linkage associations of D2Mit134 and D2Mit304 with 16 kHz ABR thresholds 

(LOD scores were 7.0, 6.7, and 7.4 for click, 8 kHz, and 32 kHz thresholds, 

respectively).  Given that a LOD score of 4.3 is considered significant, the Chr 2 

linkage with a LOD score of 7.9 validated designation of this new QTL as 

“modifier of dw hearing”, with the symbol Mdwh.  

        In order to confirm the significance of this linkage and to clarify the additive 

and dominance components of the phenotypic variance, we extended the linkage 

studies by genotyping the remaining 155 dw/dw F2 mice from the intercross for 

Chr 2 markers surrounding the Mdwh locus. The most likely map position for the 

Mdwh QTL is the same when determined from all 196 Pit1dw/dw F2 mice as from 

the 41 dw/dw mice with the most extreme hearing phenotypes (Fig. 5-4 B).  Both 

analyses gave peak associations with D2Mit304 (which was non-recombinant 

with D2Mit134 in the 41 extreme mice).  The 1.5-LOD support interval, which 

provides 95% confidence of coverage (Dupuis and Siegmund, 1999), for both 

analyses is the 118-138 Mb region of Chr 2 (NCBI Build m37).  Because of the 

increased sample size, the LOD scores for linkage associations were higher 
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when all 196 mice were analyzed, with a peak score of 10.1 for marker D2Mit304 

(Fig. 5-4 B). 

        The effects of Mdwh on the hearing thresholds of dwarf intercross mice are 

highly significant and vary little in response to the different auditory stimuli (LOD 

9.0-10.1; Table 5-2).  The LOD scores shown in Fig. 5-4 and Table 5-2 are for an 

additive inheritance model.  These values were essentially the same as those 

calculated for a free model (no inheritance assumptions) and larger than those of 

recessive and dominant models, indicating that the effects of Mdwh are primarily 

additive. The fact that ABR thresholds of mice heterozygous for D2Mit304 marker 

(DC) are intermediate between those of homozygotes (DD or CC) also supports 

an additive model of inheritance (Table 5-2).  

        The genetic interval containing Mdwh was estimated to span about 20 Mb, 

between the 118 and 138 Mb positions of Chr 2 (Fig. 5-4).  An interesting 

candidate gene within this interval is Mtap1a, the gene encoding microtubule-

associated protein 1 A.  Mtap1a, located at 121.1 Mb on Chr 2, is particularly 

intriguing because it has been reported to modify the hearing of mice with the 

tubby (tub) mutation in a strain-specific manner (Ikeda et al., 2002).  The wild 

type Mtap1a alleles from strains AKR/J, CAST/Ei and 129P2/OlaHsd protect 

tubby mice from hearing deficits, whereas a sequence variant in the C57BL/6J 

strain conferred susceptibility to hearing impairment.  We examined the Mtap1 

gene in the DW/J strain and found that it is the same allelic form as that of the 

C57BL/6J strain (Fig. 5-5), consistent with the possibility that this allele confers 

hearing loss susceptibility to Pou1f1dw/dw mutants as it does for tub/tub mutant 
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mice. Both DW/J-Pou1f1dw/J and C57BL/6J strains contain five repeats of a 6 bp 

sequence in the large exon 5 of Mtap1a, whereas all other strains we examined 

(AKR/J, CAST/EiJ, 129P2/OlaHsd, C3H/HeJ, BALB/cByJ and DF/B-Prop1df/J) 

contain 15 repeats of this sequence. 

        To assess the likelihood that the Moth1 allele of Mtap1a is identical to 

Mdwh, we created F1 intercrosses between DW/J-Pou1f1dw/+ and each of the two 

strains CAST/EiJ and AKR/J and assessed the segregation of non-DW/J Mtap1a 

alleles with the ability of F2 Pou1f1dw/dw mutants to hear.  Among 68 Pou1f1dw/dw 

(DW/J-Pou1f1+/dw x CAST/EiJ) F2 mice, 23.5% of them had ABR thresholds less 

than 35 dB SPL, which we designated as normal hearing.  There is an 

enrichment of CAST/EiJ Mtap1a alleles among the hearing F2 mutants, but 

homozygosity for CAST/EiJ alleles is not sufficient for normal hearing ability 

(indicated by open arrow in Fig. 5-6 A).  An F2 Pou1f1dw/dw mouse homozygous 

for DW/J Mtap1a alleles exhibits good hearing (37 dB SPL) (indicated by black 

arrow in Fig. 5-6 A), suggesting that CAST/EiJ Mtap1a alleles are not necessary 

for hearing either. Average ABR thresholds of each Mtap1a genotype group were 

calculated and shown in Fig. 5-6 B. The mice carrying heterozygous Mtap1a 

alleles from DW/J and CAST/EiJ backgrounds showed ABR threshold levels 

intermediate between those of the mice carrying homozygous alleles from DW/J 

or CAST/EiJ, respectively. This result is consistent with our hypothesis that the 

Mdwh locus shows an additive effect on the protection of hearing in dw/dw 

mutants. Sixty-two F2 Pou1f1dw/dw mice were collected from an intercross 

between (DW/J-Pou1f1dw/+ x AKR/J) F1 mice, and none of the progeny had good 
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hearing (Fig. 5-7). Thus, the AKR/J genetic background cannot protect against 

hypothyroidism-induced hearing loss in Pou1f1dw/dw mutants even though AKR/J 

mice have the same Mtap1a allele as CAST/EiJ.  

 

DISCUSSION 

        TH deficiency can have major effects on neuronal development, body 

growth and cochlear development resulting in cretinism, dwarfism and deafness 

if not treated promptly.  It is intriguing that the consequences of severe thyroid 

hormone deficiency can be highly variable in mouse and man.  Mutations in the 

pituitary transcription factor Pou1f1 result in severe hypothyroidism, dwarfism 

and profound deafness on the DW/J genetic background, but the hearing deficit 

is milder when crossed to a good hearing, but genetically undefined, strain, DF/B. 

Because the critical period for TH replacement is late gestation and early 

neonatal life, we assessed the contribution of the maternal environment to the 

differential hearing impairments between DW/J and DF/B strains (data shown in 

Chapter 4). Our results prove that this particular genetic background effect is 

intrinsic to the fetus, rather than an influence of maternal TH during gestation or 

lactation. 

        In this study, we examined the effects of the CAST/EiJ genetic background 

on the hearing of Pou1f1 mutants and show that strain-specific alleles of the 

Mdwh locus on Chr 2 have a major influence on the hearing of hypothyroid 

Pou1f1 dwarf mice (dw/dw).  This locus showed a highly significant association 

(LOD score of 10) with hearing ability and could explain about 20% of the ABR 
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threshold variation of dwarf F2 mice from a DW/J-Pou1f1dw x CAST/EiJ 

intercross. Given the pleiotropic effects of TH on the inner ear development, it is 

very surprising that the Mdwh appears simple and genetically tractable. 

        The Mdwh modifier locus does not appear to affect the basal level of TH in 

Pou1f1 mutant mice, which lack thyroid stimulating hormone (TSH).  If the 

modifier had a general effect on thyroid hormone levels, then the dwarf mice with 

good hearing would be expected to be larger than the deaf dwarfs.  We have 

detected such generalized effects in other models with partial restoration of TSH 

production (Cushman et al., 2001).  Because the weights of hearing and deaf 

dwarfs are indistinguishable and only ABR thresholds are variable (Table 5-1), it 

is likely that Mdwh is modifying processes that affect cochlear development or 

function even in the absence of systemic thyroid hormone stimulation. We cannot 

rule out a local effect on cochlear TH production or transport, however. 

        The Mdwh gene may modify the degree of hearing impairment due to 

hypothyroidism by altering the basal expression levels of critical gene(s) without 

enhancing TH production.  This model is drawn from a similar case of genetic 

background effects in which the viability of Prop1 mutant newborn mice 

correlated with higher basal levels of surfactant B gene expression in the lung at 

birth than mutants that exhibited lethality (Nasonkin et al., 2004).  The 

transcription factor Nkx2.1 is necessary for surfactant B expression in the lung, 

and Nkx2.1 transcription is up regulated by thyroid hormone.  The mutant mice 

that were cyanotic and died had lower basal levels of Nkx2.1 expression than 

those that were viable, suggesting that genetic background affected the basal 
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level of Nkx2.1 expression in the absence of TH.  In the case of Mdwh, the DW/J 

hearing loss susceptibility allele may have a less active basal state (in the 

absence of TH) than the CAST/Ei protective allele.  If cochlear development and 

function were sensitive either directly or indirectly to slight variations in the level 

of Mdwh gene activity, then the lower basal levels in hypothyroid F2 mice with 

the DW/J allele could explain their more severe hearing impairment, whereas the 

higher basal level of Mdwh gene activity associated with the CAST/EiJ allele 

would protect from severe hearing loss and could explain the additive nature of 

Mdwh allele effects on ABR thresholds. 

        We considered the Mtap1a gene as a particularly intriguing candidate gene 

for Mdwh.  It maps within the 20 Mb candidate interval on Chr 2 and is the gene 

responsible for the strain-specific modification of hearing in tubby (tub) mutant 

mice (Ikeda et al., 2002).  The underlying mechanism proposed for this 

modification is an altered protein-protein interaction between MTAP1A (a 

microtubule-associated protein) and a protein localized to the post-synaptic 

density in hair cells, PSD95, a protein critical for the cyto-architecture at the 

synapse.  Another hearing-related QTL on Chr 2, which could be equivalent to 

Mtap1a or Mdwh, modifies the degree of hearing loss in Beethoven mutant mice, 

which carry a mutation in Tmc1 (Noguchi et al., 2006).  Intriguingly, the 

phenotype of these mice is outer hair cell loss and reduced DPOAE, the same as 

that observed in Pou1f1dw mutants (Mustapha et al., 2009).  

        Evidence implicating Mtap1a as the gene underlying the modifier effects of 

the Mdwh locus include the following.  First, the DW/J strain has the same 
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Mtap1a allele as C57BL/6J (Fig. 5-5), which was shown to confer susceptibility to 

hearing loss in tub mutant mice (Ikeda et al., 2002).  The DW/J and C57BL/6J 

strain backgrounds both confer an increased susceptibility to hearing impairment 

in Pou1f1dw mutant mice (Fig. 5-1), and both have the same Mtap1a allele.  

Second, the expression of Mtap1a is altered by TH in the cerebellum of 

hypothyroid rats (Benjamin et al., 1988) and in the sensory motor cortex of 

hypothyroid (hyt) mutant mice (Biesiada et al., 1996).  Third, MTAP1A interacts 

directly with the calcium-activated potassium channel BKCa (Park et al., 2004), 

and defects in Kcnma1, which encodes one of the BKCa subunits, cause 

progressive hearing loss and loss of KCNQ4 (Ruttiger et al., 2004).  Fourth, 

KCNQ4 is regulated by thyroid hormone receptors THRalpha1 and THRbeta in 

outer hair cells (Winter et al., 2006), and its expression is reduced in Pou1f1dw 

mutant outer hair cells (Ikeda et al., 2002).  Finally, recent studies demonstrate 

that TH is essential for morphological and functional maturation of inner hair cell 

(IHC) ribbon synapses (Brandt et al., 2007; Sendin et al., 2007).  These studies 

suggest that presynaptic dysfunction of IHCs, which could be proven by 

demonstrating reduced exocytosis efficiency, is a mechanism in congenital 

hypothyroid deafness, and MTAP1A has been proposed to be involved in 

synaptic function (Ikeda et al., 2002).  Although these lines of evidence seem 

compelling when taken together, our study on segregation of CAST/EiJ and 

AKR/J Mtap1a alleles in F2 Pou1f1dw mutants showed CAST/EiJ and AKR/J 

Mtap1a alleles are neither sufficient nor necessary for good hearing in those 

mice.  We observed the same result in F2 mutants from an intercross between 
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the DW/J strain and the 129P2/OlaHsd strain (129P2), which contains the same 

Mtap1a allele as CAST/EiJ and AKR/J (data not shown).  We conclude that 

either Mdwh is not Mtap1a, that Mtap1a is not the sole component of Mdwh, or 

that additional modifiers obscure the effects of Mtap1 on hearing.   

        Given the pleiotropic effects that thyroid hormone has on cochlear 

development (Mustapha et al., 2009), Mdwh could consist of multiple genes, 

possibly including Mtap1a, whose combined actions protect against 

hypothyroidism-induced hearing impairment in Pou1f1dw mutants. Future 

directions to identify the protective genes could include refining the critical 

interval by generating more animals and genotyping more markers on Chr 2, and 

creating a congenic mouse line with CAST/EiJ alleles of Mdwh and DW/J alleles 

at other loci to determine if the CAST/EiJ Mdwh is sufficient to protect against 

hearing loss.  Another strategy would be to directly sequence the candidate 

genes within the Mdwh locus from the DW/J strain and compare them with the 

C3H/HeJ, CAST/EiJ, and other inbred strain sequences generated by the Mouse 

Genomes Project (http://www.sanger.ac.uk/resources/mouse/genomes/). There 

are more than 1,000 genes within the Mdwh locus. Among this set there are 10 

genes that are differentially expressed in the cochlea of Pou1f1dw/dw mutant and 

wild type mice (Tzywen Gong, unpublished data), and 4 hearing-associated 

genes. These genes are the highest priority for exon sequencing. A successful 

application of the candidate gene sequencing approach was the identification of 

a stop codon in sodium channel modifier 1 (SCNM1) on the genetic background 
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of the C57BL/6J strain that intensifies the severity of inherited movement disease 

caused by a mutation in the sodium channel gene Scn8a (Buchner et al., 2003).  

         

        In conclusion, Identifying the gene(s) that modify the expression of mutant 

auditory phenotypes related to congenital hypothyroidism will be important for 

determining the molecular mechanisms that underlie thyroid hormone’s influence 

on cochlear development and function.  In addition, it is likely that a mechanistic 

understanding of modifier gene action will provide a conceptual framework for 

understanding the multifactorial basis for hearing loss.   
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Figure 5-1. Genetic background modifies severity of hearing impairment in 
Pou1f1dw/dw mice.  
Average 16 kHz ABR thresholds (with standard error bars) are shown for mice 
with different Pou1f1 genotypes on different strain backgrounds. Note that dwarf 
mutant mice on the DW/J and C57BL/6J strain backgrounds have a much more 
severe hearing impairment than mutant mice on the C3H/HeJ background. 
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Figure 5-2. Degree of hearing impairment varies among F2 dw/dw progeny 
of the (DW-Pou1f1dw/+ x CAST) intercross.  
A frequency distribution is shown for 196 dw/dw F2 mice sorted according to their 
16 kHz ABR thresholds. All mice were tested at 4-8 weeks of age. Note the 
bimodal shape of the distribution with peaks at 15-20 and 75-80 dB SPL. 
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Figure 5-3. Genome-wide linkage analysis of (DW-Pou1f1dw/+ x CAST) F2 
mice identifies a hearing modifier locus on Chr 2.  
The 41 dw/dw F2 mice with the most extreme ABR thresholds were analyzed, 
and LOD scores are shown for the linkage associations of these threshold values 
with each of 90 chromosomal markers. Only markers on Chr 2 showed 
statistically significant linkage. The Pou1f1 gene is located on Chr 16.  
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Figure 5-4. Additional mice and markers refined the map position of Mdwh 
on Chr 2.  
A. Map position as determined from the 41 dw/dw F2 mice with the most extreme 
thresholds. The peak LOD scores (7.9) were for D2Mit134 at the 121 Mb position 
and D2Mit304 at the 128 Mb position. B. Map position as determined from all 196 
dw/dw F2 mice. The peak LOD score (10.1) was for D2Mit304 at the 128 Mb 
position. The 1.5-LOD support intervals for both analyses show that Mdwh is 
most likely located within the 116-136 Mb region of Chr 2. 
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Figure 5-5. Mtap1a is a candidate gene for Mdwh.  
A. Genetic structure of Mtap1a showing the position of a polymorphic repeat 
sequence (yellow bar) in the large exon 5. B. Primers (highlighted in blue) were 
designed to amplify the GCTCCA repeat sequence (highlighted in yellow, from 
C57BL/6J DNA), which encodes an alanine-proline repeat. C. Sequencing of the 
268 bp PCR amplification products from CAST/Ei (lane 1) and C3H/HeJ (lane 2) 
showed that these strains have 15 repeats of the 6 bp sequence, whereas the 
208 bp PCR product from the DW strain (lane 3) showed only 5 repeats. 
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Figure 5-6. The Mtap1a allele correlates with, but is neither necessary nor 
sufficient for protection of hearing in Pou1f1dw mice.   
68 dw/dw F2 (DW/J-Pou1f1dw/+ x CAST/EiJ) mice were tested for their hearing 
sensitivity and genotyped for sequence variants of GCTCCA repeats in the 
Mtap1a gene. A. Mice were grouped by their Mtap1a genotypes, and the number 
of mice with ABR thresholds in each 20 kHz interval were plotted. The open 
arrow indicates a mouse homozygous for CAST/EiJ Mtap1a alleles that exhibited 
a highly elevated ABR threshold. The black arrow indicates a mouse 
homozygous for DW/J Mtap1a alleles that exhibited a low threshold. B. Average 
ABR thresholds at 20 kHz for different Mtap1a genotype groups among the 
dw/dw F2 (DW/J-Pou1f1dw/+ x CAST/EiJ) mice. 
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Figure 5-7. AKR genetic background is not protective against 
hypothyroidism for the hearing in DW/J-Pou1f1dw/dw mice.  
62 dw/dw F2 (DW/J-Pou1f1dw/+ x AKR) mice were tested for their hearing 
sensitivity and genotyped for sequence variants of GCTCCA repeats in the 
Mtap1a gene.  None of the mice showed ABR thresholds under 35 dB SPL. 
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Table 5-1. The body size of dwarf intercross mice is not affected by strain 
background. ANOVA confirms that the similar body weights of dw/dw F2 mice 
from the (DW-Pou1f1dw x CAST/Ei) intercross do not correspond with their highly 
variable ABR thresholds.  
  

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 

SUMMARY     ANOVA      
ABR 

threshold 
(dB SPL) 

Count 
Average 
weight 
(gm) 

Variance Source of 
Variation SS df MS F P-

value 

15 -25 23 7.8 0.6 Between  3.20 6 0.53 0.8 0.54 
30-50 27 8.0 1.0 Within  119 189 0.63   
55-60 17 7.8 0.6       
65-70 36 7.8 0.8 Total 122.2 195    
75-80 47 7.6 0.4       
85-90 35 7.7 0.6       
95-100 11 7.5 0.3       
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Table 5-2. The Mdwh locus has a large effect on ABR thresholds of 
intercross mice.  
Average ABR thresholds (standard deviations) of dw/dw F2 mice from the (DW-
Pou1f1dw x CAST/Ei) intercross are shown sorted by their D2Mit304 (Mdwh) 
genotypes. LOD scores of linkage associations are shown for an additive 
inheritance model with one degree of freedom, and estimates are given for the 
percentage of total ABR variation that can be explained by the Mdwh locus. 
Genotype designations: DD, homozygous for DW allele; DC, heterozyous for DW 
and CAST alleles; CC, homozygous for CAST allele. Mice were tested at 4-8 
weeks of age. 
 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 ABR thresholds 
Genotype click 8 kHz 16 kHz 32 kHz 
DD, N=50 97.9 (8.1) 95.9 (8.2) 82.1 (12.6) 97.9 (7.5) 
DC, N=96 84.8 (16.7) 81.6 (16.9) 64.3 (20.8) 87.1 (15.6) 
CC, N=44 72.8 (23.7) 72.4 (21.5) 51.6 (27.1) 75.2 (22.4) 
LOD score 10.1 9.5 9.9 9.0 

percent variation 22 20 21 20 



 181 

REFERENCES 

 
Benjamin S, Cambray-Deakin MA, Burgoyne RD (1988) Effect of hypothyroidism 

on the expression of three microtubule-associated proteins (1A, 1B and 2) 
in developing rat cerebellum. Neuroscience 27:931-939. 

Bernal J (2005) Thyroid hormones and brain development. Vitam Horm 71:95-
122. 

Biesiada E, Adams PM, Shanklin DR, Bloom GS, Stein SA (1996) Biology of the 
congenitally hypothyroid hyt/hyt mouse. Adv Neuroimmunol 6:309-346. 

Brandt N, Kuhn S, Munkner S, Braig C, Winter H, Blin N, Vonthein R, Knipper M, 
Engel J (2007) Thyroid hormone deficiency affects postnatal spiking 
activity and expression of Ca2+ and K+ channels in rodent inner hair cells. 
J Neurosci 27:3174-3186. 

Buchner DA, Trudeau M, Meisler MH (2003) SCNM1, a putative RNA splicing 
factor that modifies disease severity in mice. Science 301:967-969. 

Cabello G, Wrutniak C (1989) Thyroid hormone and growth: relationships with 
growth hormone effects and regulation. Reprod Nutr Dev 29:387-402. 

Camper SA, Saunders TL, Katz RW, Reeves RH (1990) The Pit-1 transcription 
factor gene is a candidate for the murine Snell dwarf mutation. Genomics 
8:586-590. 

Christ S, Biebel UW, Hoidis S, Friedrichsen S, Bauer K, Smolders JW (2004) 
Hearing loss in athyroid pax8 knockout mice and effects of thyroxine 
substitution. Audiol Neurootol 9:88-106. 

Cushman LJ, Watkins-Chow DE, Brinkmeier ML, Raetzman LT, Radak AL, Lloyd 
RV, Camper SA (2001) Persistent Prop1 expression delays gonadotrope 
differentiation and enhances pituitary tumor susceptibility. Hum Mol Genet 
10:1141-1153. 

Darvasi A (1997) The effect of selective genotyping on QTL mapping accuracy. 
Mamm Genome 8:67-68. 

Deol MS (1973) Congenital deafness and hypothyroidism. Lancet 2:105-106. 
Dupuis J, Siegmund D (1999) Statistical methods for mapping quantitative trait 

loci from a dense set of markers. Genetics 151:373-386. 
Eicher EM, Beamer WG (1980) New mouse dw allele: genetic location and 

effects on lifespan and growth hormone levels. J Hered 71:187-190. 
Forrest D, Erway LC, Ng L, Altschuler R, Curran T (1996) Thyroid hormone 

receptor beta is essential for development of auditory function. Nat Genet 
13:354-357. 

Gagnon LH, Longo-Guess CM, Berryman M, Shin JB, Saylor KW, Yu H, Gillespie 
PG, Johnson KR (2006) The chloride intracellular channel protein CLIC5 
is expressed at high levels in hair cell stereocilia and is essential for 
normal inner ear function. J Neurosci 26:10188-10198. 

Ikeda A, Zheng QY, Zuberi AR, Johnson KR, Naggert JK, Nishina PM (2002) 
Microtubule-associated protein 1A is a modifier of tubby hearing (moth1). 
Nat Genet 30:401-405. 



 182 

Johnson KR, Marden CC, Ward-Bailey P, Gagnon LH, Bronson RT, Donahue LR 
(2007) Congenital hypothyroidism, dwarfism, and hearing impairment 
caused by a missense mutation in the mouse dual oxidase 2 gene, duox2. 
Mol Endocrinol 21:1593-1602. 

Karolyi IJ, Dootz GA, Halsey K, Beyer L, Probst FJ, Johnson KR, Parlow AF, 
Raphael Y, Dolan DF, Camper SA (2007) Dietary thyroid hormone 
replacement ameliorates hearing deficits in hypothyroid mice. Mamm 
Genome 18:596-608. 

Lander E, Kruglyak L (1995) Genetic dissection of complex traits: guidelines for 
interpreting and reporting linkage results. Nat Genet 11:241-247. 

Li S, Crenshaw EB, 3rd, Rawson EJ, Simmons DM, Swanson LW, Rosenfeld MG 
(1990) Dwarf locus mutants lacking three pituitary cell types result from 
mutations in the POU-domain gene pit-1. Nature 347:528-533. 

Manly KF, Cudmore RH, Jr., Meer JM (2001) Map Manager QTX, cross-platform 
software for genetic mapping. Mamm Genome 12:930-932. 

Mustapha M, Fang Q, Gong TW, Dolan DF, Raphael Y, Camper SA, Duncan RK 
(2009) Deafness and permanently reduced potassium channel gene 
expression and function in hypothyroid Pit1dw mutants. J Neurosci 
29:1212-1223. 

Nasonkin IO, Ward RD, Raetzman LT, Seasholtz AF, Saunders TL, Gillespie PJ, 
Camper SA (2004) Pituitary hypoplasia and respiratory distress syndrome 
in Prop1 knockout mice. Hum Mol Genet 13:2727-2735. 

Ng L, Hernandez A, He W, Ren T, Srinivas M, Ma M, Galton VA, St Germain DL, 
Forrest D (2008) A protective role for type 3 deiodinase, a thyroid 
hormone-inactivating enzyme, in cochlear development and auditory 
function. Endocrinology. 

Ng L, Goodyear RJ, Woods CA, Schneider MJ, Diamond E, Richardson GP, 
Kelley MW, Germain DL, Galton VA, Forrest D (2004) Hearing loss and 
retarded cochlear development in mice lacking type 2 iodothyronine 
deiodinase. Proc Natl Acad Sci U S A 101:3474-3479. 

Noguchi Y, Kurima K, Makishima T, de Angelis MH, Fuchs H, Frolenkov G, 
Kitamura K, Griffith AJ (2006) Multiple quantitative trait loci modify 
cochlear hair cell degeneration in the Beethoven (Tmc1Bth) mouse model 
of progressive hearing loss DFNA36. Genetics 173:2111-2119. 

O'Malley BW, Jr., Li D, Turner DS (1995) Hearing loss and cochlear 
abnormalities in the congenital hypothyroid (hyt/hyt) mouse. Hear Res 
88:181-189. 

Park SM, Liu G, Kubal A, Fury M, Cao L, Marx SO (2004) Direct interaction 
between BKCa potassium channel and microtubule-associated protein 1A. 
FEBS Lett 570:143-148. 

Rusch A, Ng L, Goodyear R, Oliver D, Lisoukov I, Vennstrom B, Richardson G, 
Kelley MW, Forrest D (2001) Retardation of cochlear maturation and 
impaired hair cell function caused by deletion of all known thyroid 
hormone receptors. J Neurosci 21:9792-9800. 

Ruttiger L, Sausbier M, Zimmermann U, Winter H, Braig C, Engel J, Knirsch M, 
Arntz C, Langer P, Hirt B, Muller M, Kopschall I, Pfister M, Munkner S, 



 183 

Rohbock K, Pfaff I, Rusch A, Ruth P, Knipper M (2004) Deletion of the 
Ca2+-activated potassium (BK) alpha-subunit but not the BKbeta1-subunit 
leads to progressive hearing loss. Proc Natl Acad Sci U S A 101:12922-
12927. 

Sendin G, Bulankina AV, Riedel D, Moser T (2007) Maturation of ribbon 
synapses in hair cells is driven by thyroid hormone. J Neurosci 27:3163-
3173. 

Sohmer H, Freeman S (1996) The importance of thyroid hormone for auditory 
development in the fetus and neonate. Audiol Neurootol 1:137-147. 

Sprenkle PM, McGee J, Bertoni JM, Walsh EJ (2001) Consequences of 
hypothyroidism on auditory system function in Tshr mutant (hyt) mice. J 
Assoc Res Otolaryngol 2:312-329. 

Uziel A (1986) Periods of sensitivity to thyroid hormone during the development 
of the organ of Corti. Acta Otolaryngol Suppl 429:23-27. 

Winter H, Braig C, Zimmermann U, Geisler HS, Franzer JT, Weber T, Ley M, 
Engel J, Knirsch M, Bauer K, Christ S, Walsh EJ, McGee J, Kopschall I, 
Rohbock K, Knipper M (2006) Thyroid hormone receptors TRalpha1 and 
TRbeta differentially regulate gene expression of Kcnq4 and prestin during 
final differentiation of outer hair cells. J Cell Sci 119:2975-2984. 

Zheng QY, Johnson KR, Erway LC (1999) Assessment of hearing in 80 inbred 
strains of mice by ABR threshold analyses. Hear Res 130:94-107. 

 
 



  184 

 

 

 

CHAPTER 6 

 

Conclusions & Future Directions 

 

The role of N-terminal proline-rich domain of MYO15 in the inner ear 

        We have generated a mouse model that recapitulates a human mutation in 

the proline-rich domain of MYO15 protein using knock-in technology.  These 

knock-in mutants retain the ability to produce the MYO15 isoform that contains 

the motor and tail domains.  They have profound deafness, but they lack circling 

behavior and obvious balance disorder.  Subtle vestibular abnormalities were 

detected by vestibular evoked potentials (VsEPs) tests.  Cochlear stereocilia 

initially appear normally elongated with whirlin localized at the tips, but the short 

rows of stereocilia are not maintained, implicating the role of  MYO15 proline-rich 

region in preserving the hair bundle.  Classical genetic analysis of compound 

heterozygous mice containing different combinations of Myo15 mutant alleles 

revealed no evidence of allelic complementation for hearing or hair bundle 

maintenance, consistent with the functional importance of full length MYO15 

isoforms containing the proline-rich domain for normal mammalian hearing.  To 

fully uncover the roles of this proline-rich domain in the inner ear, we will focus on 

answering the questions posed in the following paragraphs.  
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What mechanisms are involved in hair bundle maintenance by the MYO15 

proline-rich domain? 

        I will address three possible mechanisms that include roles in mechano-

electrical-transduction (MET), stereocilia cohesion via tip links, and actin 

remodeling.  These mechanisms are not mutually exclusive.  It is possible that 

MYO15 has a role in multiple processes, each of which contribute to the hair 

bundle phenotype in the isoform specific knockout that we generated.  

        The MYO15 proline-rich domain may interact with the mechano-electrical-

transduction (MET) complex in the stereocilia.  We showed MYO15 isoforms 

containing the proline-rich domain are specifically localized at the tips of shorter 

rows of stereocilia.  The MET channels also reside at these localizations 

according to the recently revised model of the MET complex (Beurg et al., 2009).  

Our hypothesis is that the proline-rich domain of MYO15 at the tips of short row 

stereocilia interacts with auxiliary elements of MET machinery to play a role in 

regulating the maintenance or function of ion channels.  The inner hair cells of 

Myo15sh2/sh2 mice have disrupted fast adaptation, and the transduction current is 

insensitive to extracellular Ca2+, although the MET response has a normal 

amplitude and speed of activation (Stepanyan and Frolenkov, 2009).  In contrast, 

the outer hair cells of Myo15sh2/sh2 mice have normal MET and maintain a very 

slight staircase structure.  Stepanyan and Frolenkov hypothesize that the 

abnormalities in Myo15sh2/sh2 IHC function are attributable to the absence of the 

staircase pattern.  If this theory were correct, then the IHC of Myo15 ∆N/∆N mutants 
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would be expected to have normal MET because the staircase is initially intact.  

Their preliminary results suggest this is the case.  These studies, however, are 

limited because they have only been performed at young ages for technical 

reasons.  It is possible that the components of the MET complex change as the 

mice mature. So far, the molecular composition and structure of MET channels 

and its anchoring at the tip of the stereocilium, however, have not been to 

resolved yet. 

 MYO15 proline-rich domain may play a role in the cohesion of stereocilia 

by interacting with scaffold and tip link proteins.  Pulling forces applied to actin 

filaments are predicted to control actin polymerization (Hill and Kirschner, 1982). 

The tension forces on the shorter rows of stereocilia are exerted by the tip links.  

USH1 proteins, including Harmonin, Cadherin 23 (CDH23), Protocadherin 15 

(PCDH15) and SANS, are involved in the cohesion of developing stereocilia and 

the maintenance of tip links.  Ush1 mouse mutants have defective elongation of 

the shorter rows of stereocilia, and the stereocilia regress and disappear within 

the fist couple of weeks after birth (Lefevre et al., 2008).  This degeneration 

phenotype is similar to that of Myo15ΔN/ΔN mice, even though the ones in Ush1 

mutants are more accelerated and severe. Thus, it will be interesting to check the 

expression and localization of those USH1 proteins in the cochlea of Myo15ΔN/ΔN 

mice. We predict MYO15 proline-rich domain is necessary for maintaining the 

proper localization of USH1 proteins, either directly or indirectly through 

trafficking of proteins of the tip link complex or the anchoring complex, rather 

than affecting the expression level of USH1 proteins. This is because the 
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phenotype of shorter stereocilia degeneration in Myo15ΔN/ΔN mice is milder and 

starts later than Ush1 mutants. If the degeneration of the short stereocilia in 

Myo15ΔN/ΔN mutants is caused by the breakdown of tip links, then SEM 

examination should detect a reduced number of tip links prior to the absorption of 

short stereocilia in two week old in Myo15ΔN/ΔN mice. 

        The MYO15 proline-rich domain may regulate actin dynamics in stereocilia. 

Proline-rich proteins are known to participate in delivering actin monomers to 

specific cellular locations where actin-rich membrane protrusions are formed 

(Holt and Koffer, 2001).  The stereocilia are actin-based structures.  It will be very 

interesting to determine whether the proline-rich domain of MYO15 is involved in 

regulation of actin polymerization at the plus ends of the shorter rows of 

stereocilia.  Our hypothesis is that the degeneration of the shorter rows of  

stereocilia in Myo15ΔN/ΔN mice is due to the dysregulation of actin assembly at the 

tips of stereocilia.  To test this idea, the actin dynamics of stereocilia will be 

observed in the cochlear explants from Myo15ΔN/ΔN mice and wild type as 

previously described (Schneider et al., 2002). Briefly, gene-gun system was used 

to transfect the cochlear explants with GFP-conjugated actin and actin filament 

polymerization was observed as accumulation of fluorescence signals under a 

confocal microscope. If the MYO15 proline-rich domain does regulate actin 

polymerization, the addition of actin monomers will be absent or significantly 

reduced at the tips of stereocilia in Myo15ΔN/ΔN cochlear explants.  An in vitro 

actin assembly assay can test the roles of different MYO15 isoforms in actin 

polymerization directly.  If a defect in actin dynamics or assembly is detected, the 
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mechanism will be explored by examining the expression of proteins that are 

known to interact with proline-rich domains and actin, such as profilin.  Loss of 

MYO15 isoforms with proline-rich domain in Myo15ΔN/ΔN mice may affect the 

trafficking and localization of profilin to cause stereocilia degeneration. 

 

Is the MYO15 proline-rich domain involved in the formation and function of  

synapses ? 

        MYO15 is associated with secretory granules in the pituitary (Lloyd et al., 

2001), suggesting it may have a role in secretion or movement of secretory 

vesicles.  MYO6 is an example of unconventional myosin present at both 

stereocilia and the synaptic region of cochlear hair cells.  MYO6 and otoferlin 

interact at the IHC ribbon synapse and are involved in the recycling of synaptic 

vesicles (Roux et al., 2009).  WHIRLIN, the only known interacting protein with 

MYO15, is expressed at the synaptic region of OHCs (van Wijk et al., 2006).  

This supports the idea that MYO15 could have a role in vesicle transport and/or 

neurotranmitter release at the hair cell synapses.   

 

What proteins interact with proline-rich domain of MYO15? 

        To understand the biological function of MYO15 proline-rich domain, it is 

important to identify interacting proteins and determine how they fit into the 

context of known molecular networks.  Yeast two hybrid is an effective way to 

identify novel proteins that interact.  We will use three highly conserved portions 

of the proline-rich domain of MYO15 as bait to discover potentially interacting 
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proteins in a well-characterized library made from the sensory epithelia of 

newborn mouse cochlea.  Confirmation of the bona fide interacting proteins will 

be performed by co-immunoprecipitation (Co-IP) tests, GST pull down assay, 

and co-transfection of polarized epithelia cells to validate the interaction.  

Alternatively, candidate proteins that are predicted to interact with the MYO15 

proline-rich domain can be tested directly by Co-IP and co-localization within the 

transfected epithelial cells. 

 

Does the proline-rich domain of MYO15 play a role in the vestibular function?  

        Unlike sh2 or sh2J mice, the Myo15ΔN/ΔN mutants do not circle.  Subtle 

vestibular abnormalities were detected by VsEPs tests.  Linear VsEPs measures 

the action potential from the vestibular nerves in response to linear acceleration 

transients, which is strictly dependent on the saccule and utricle (also known as 

otolithic organ or gravity receptors) of the inner ear (Jones et al., 1999; Jones 

and Jones, 1999).  Another routine diagnostic tool to assess otolith functions is 

the vestibulocollic reflex (VCR).  VCR measures an animal’s ability to stabilize 

their head at a position in space while their body is moving. VCR is used as an 

alternative to the vestibulo-ocular reflex (VOR), but does not require surgical 

preparation (Takemura and King, 2005). Abnormalities detected by VCR tests 

will help confirm the dysfunction of saccule and utricle in Myo15ΔN/ΔN mutants. 

Moreover, similar as VOR, VCR would reflect the function of the pathways 

between peripheral vestibular sensory neurons and the cervical motoneurons 

innervating the neck muscles (Takemura and King, 2005). Dr. Micheal King’s lab 
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in Kresge Hearing Research Institute at the University of Michigan will do the 

VCR measurements on Myo15ΔN/ΔN mice for us. 

        Preliminary data show that MYO15 containing proline-rich domain isoforms 

are localized at the striola area within the utricle (personal communication with 

Dr. Jonathan Bird).  The striola is an anatomically differentiated strip of the 

sensory epithelium within saccule and utricle.  On each side of the striola, the 

stereocilia on vestibular hair cells are oriented 180o in reverse to each other.  The 

presence of MYO15 isoforms with proline-rich domain in the striola suggests that 

the proline-rich domain may be involved in establishing hair bundle polarity and 

orientation in the vestibular system.  To test this hypothesis, measurements of 

the planar orientation of vestibular hair cells need to be done in our isoform 

specific knockout mouse as previously described (Holley et al., 2010). 

        Preliminary light microscopy and SEM do not reveal any differences in the 

stereocilia of vestibular hair cells in Myo15ΔN/ΔN and wild type, although more 

careful examination of vestibular stereocilia is necessary to draw conclusions 

about the effects of MYO15 proline-rich domain in the morphology of vestibular 

structures.  These examinations include focusing on the striola to examine the 

position of kinocilia, measurements of stereocilia lengths, and the presence of 

stereocilia links.  We also plan to examine the vestibular system of older mice in 

case there is a role for the isoforms of MYO15 with the proline rich domain in 

stereociliar maintenance, but with a longer time to degeneration than observed in 

the cochlear stereocilia. 
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Molecular and genetic studies of hypothyroidism-induced deafness 

        We showed that thyroid hormone (TH) has pleiotropic effects on cochlear 

development in Pou1f1dw mutant mice.  In contrast, Prop1df mutants have very 

mild hearing impairment, and most of the processes that are permanently 

affected in Pou1f1 mutants are normal in Prop1 mutants.  These differences in 

hearing are not attributable to the degree of TH deficiency, as neither mutant has 

detectable serum TH.  Intercross experiments demonstrated that the difference is 

due to the protective genetic background of the stock used to carry the Prop1df 

mice (DF/B) and the susceptible genetic background of the Pou1f1dw mutants 

(DW/J).  An intercross between F1 mice produced from a cross of DW/J-

Pou1f1dw/+ and wild type mice of the good hearing strain CAST/EiJ generated 

both hearing and deaf mutants in approximately a 1:3 ratio.  A genome scan of 

these mutants, conducted by Dr. Ken Johnson of the Jackson Laboratory, 

identified a locus on chromosome 2, named modifier of dw hearing, Mdwh, that 

rescues the hearing impairment of Pou1f1dw mutants despite persistent 

hypothyroidism. This chromosomal region contains a modifier of Tubby hearing 

(Moth1) that encodes a protective allele of the microtubule-associated protein 

Mtap1a (Ikeda et al., 2002). I present evidence that suggests Mdwh is not 

Mtap1a, a microtubule-associated protein that modifies the hearing of Tubby 

mice.  More work is still needed, however, to make it absolutely clear that 

whether Mtap1a is not involved in the modification of hearing in hypothyroid 

mice. 
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 Our future research will be focused on identifying the protective modifier 

gene(s) of hypothyroidism-induced deafness.  Our strategies include sequencing 

candidate genes in the Mdwh critical region from the DW/J susceptible strain, 

generating congenic mice containing Mdwh locus from CAST/EiJ strain on DW/J-

Pou1f1 background, and whole genome scanning on F2 dw/dw mutants 

produced from an F1 intercross between 129P2/OlaHsd and DW/J-Pou1f1 

strains.  I will discuss each of these experiments below.  

 

Sequencing the candidate genes within Mdwh locus. 

        There are more than 1,000 genes located in the Mdwh locus. The way to 

select the most attracting genes to sequence has taken advantage of a 

successful microarray analysis of cochlear gene expression changes in DW-

Pou1f1dw mutants and wild types (Tzy-wen Gong, unpublished). To prepare the 

cochlear transcripts for the microarray, cochlear tissues were dissected from 6 

wk old mutants and wild types.  4 pools of each genotype were collected.  

Analysis with Affy GeneChip mouse 430 version 2.0 gave 552 different probe 

sets with significantly altered expression between the two genotypes.  10 out of 

the 552 differentially expressed cochlear genes are located within Mdwh locus on 

Chromosome 2. Four genes that are known to affect hearing also map in the 

Mdwh locus.  Taken together, we consider these 14 genes as the candidate 

genes for Mdwh and plan to sequence them from the DW/J strain.  

        We hypothesize that an obvious mutation such as a frame shift, splice site 

mutation, or stop codon in the candidate gene(s) could account for susceptibility 
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to the hypothyroidism-induced hearing loss on DW/J-Pou1f1 strain.   There is a 

precedent for this.  A stop codon in sodium channel modifier 1 (SCNM1) on the 

genetic background of C57BL/6J strain intensifies the severity of inherited 

movement disease caused by mutant sodium channel gene Scn8a (Buchner et 

al., 2003).  Interestingly, SCNM1 also locates in the Mdwh locus.  

        Candidate genes will be prioritized for the sequencing analysis based on 

knowledge of the affected process and genetic map location within the critical 

locus. Once a candidate gene is identified with a genetic variation that suggests it 

is responsible for Mdwh, we will check its sufficiency by introducing a transgene 

containing a protective allele into the genome of DW-Pou1f1dw mutants and 

examine whether the hearing of DW-Pou1f1dw mutants is rescued. 

 

Generating congenic mice containing the Mdwh locus from Cast/EiJ strain on 

DW-Pou1f1 background.  

        To determine whether the Mdwh locus from the CAST/EiJ background is 

sufficient for protection of hearing against hypothyroidism in DW-Pou1f1dw/dw 

mutants, we are going to generate congenic mice by mating CAST/EiJ and DW-

Pou1f1dw/+ and repeatedly backcrossing the descendants with DW-Pou1f1 

(recipient strain).  For each generation, genetic markers covering the whole 

mouse genome will be used to select the best breeders that carry the Mdwh 

locus from Cast/EiJ strain while the rest of genome comes mostly from DW-

Pou1f1 strain.  Also, the possibility of hearing rescue could be checked at each 

generation. When congenic mice are finally generated, their hearing abilities will 
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be tested by ABR.  If they can hear, it indicates that Mdwh is sufficient to protect 

the hearing against hypothyroidism in DW-Pou1f1 mutants. We will further 

narrow down the critical region by more breeding.  If the congenic mice can not 

hear, it suggests that genetic loci on other chromosomes are required for 

protection of hypothyroidism-induced deafness.  which is also implied by the 

distribution of hearing abilities of F2 dw/dw mutants from crossing between 

129P2/OlaHsd and DW-Pou1f1 strains (see below).   

 

Whole genome scanning on F2 dw/dw mutants produced from an F1 intercross 

between 129P2/OlaHsd and DW-Pou1f1 strains.   

        Our unpublished data demonstrate that the genetic background of 

129P2/OlaHsd mice can rescue the hearing loss in DW-Pou1f1dw/dw mutants.  

The distribution of ABR thresholds among those F2 mutants is broad, in contrast 

to the obvious bi-modal distribution observed in the F2 mice from the CAST/EiJ 

and DW-Pou1f1 F1 intercross (Fig. 6-1). This suggests that the 129P2/OlaHsd 

background may provide protection against hypothyroidism-induced deafness by 

the interaction of multiple genes.  If this is true, a genome scan on F2 dw/dw 

(129P2/OlaHsd X DW- Pou1f1) will identify multiple loci across the genome with 

significant LOD scores.  This result won’t be too surprising since TH/THR 

pathway regulate a broad range of gene expressions. The significant loci other 

than Mdwh will be helpful for genotying the congenic pups if the breeding of the 

congenic mice  described above show that Chr 2 is not enough for protection of 

hearing in Pou1f1 mutants. If the congenic mice show Mdwh on Chr 2 is 
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sufficient, it suggests that the 129P2/OlaHsd background is more complex in 

terms of the ability to rescue the hearing loss caused by hypothyroidism. 
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Figure 6-1. The genetic background of 129P2/OlaHsd mouse strain can 
rescue the hearing loss in DW-Pou1f1dw/dw mice. 
A frequency distribution is shown for 77 dw/dw F2 mice sorted according to their 
20 kHz ABR thresholds. All mice were tested at 30~60 days old. 
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