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If we view statistics as a discipline in the service of science, and science as being an attempt to understand 
(i.e., model) the world around us, then the ability to reveal sensitivity of conclusions from fixed data to 
various model specifications, all of which are scientifically acceptable, is equivalent to the ability to reveal 
boundaries of scientific uncertainty. When sharp conclusions are not possible without obtaining more 
information, whether it be more data, new theory, or deeper understanding of existing data and theory, 
then it must be scientifically valuable and appropriate to expose this sensitivity and thereby direct efforts to 
seek the particular information needed to sharpen conclusions. 
 

Donald B. Rubin (1984) The Annals of Statistics 12: 1151-1172 
 
 
We must confine ourselves to those forms which we know how to handle, or for which any tables which may 
be necessary have been constructed. More or less elaborate form will be suitable according to the volume 
of the data. 
 

R. A. Fisher (1922) Philosophical Transactions of the Royal Society 222: 309-368 
 
 
‘...And then comes the grandest idea of all! We made a map of the country, on the scale of a mile to the 
mile!’ 
‘Have you used it much?’  I enquired.  
‘It has never been spread out yet,’ said Mein Herr, ‘The farmers objected: they said it would cover the 
whole country and shut out the sunlight! So we now use the country itself, as its own map, and I assure you 
it does nearly as well.’ 
 

Lewis Carroll (1893) Sylvie and Bruno Concluded 
 
 
I went on to test the program in every way I could devise. I strained it to expose its weaknesses. I ran it for 
high-mass stars and low-mass stars, for stars born exceedingly hot and those born relatively cold. I ran it 
assuming the superfluid currents beneath the crust to be absent -- not because I wanted to know the 
answer, but because I had developed an intuitive feel for the answer in this particular case. Finally I got a 
run in which the computer showed the pulsar’s temperature to be less than absolute zero. I had found an 
error. I chased down the error and fixed it. Now I had improved the program to the point where it would 
not run at all. 
 

George Greenstein (1984) Frozen Star: Of Pulsars, Black Holes and the Fate of Stars 
 
 
I love deadlines. I like the whooshing sound they make as they fly by. 
 

Douglas Adams
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Part I. Temporal Calibration of the Avian Tree of Life 
 

Chapter 1 
 

Extraction of phylochronological information from molecular sequence data: 

evolution of our understanding of the ‘evolution of the rate of evolution’1 

 

INTRODUCTION 

Evolutionary biologists are ultimately interested in biological diversity – how it is 

generated, how it is maintained, and how it is lost. Clearly our understanding of 

biodiversity would be incomplete without a temporal perspective. How long, for 

example, does it take for a clade to reach size x? When did novel adaptive innovation y 

evolve? What geophysical/environmental phenomena likely triggered speciation event z? 

It is here that the ‘molecular clock’ proves itself an extremely useful concept, as it allows 

elucidation of not only the timing of macroevolutionary events, but also the extent of 

their temporal clustering – what we might dub the ‘phylochronological’ signal. Extraction 

of this signal enables us to construct more informed hypotheses regarding the processes 

and mechanisms of diversification. Indeed, for taxa with poor or absent fossil records, a 

molecular clock may be the only means by which to infer phylochronological patterns. 

However, despite its utility, the ‘molecular clock’ concept has required considerable 

retooling to accommodate the heterogeneity ubiquitous to large molecular data sets 

(Bromham and Penny, 2003; Magallón, 2004; Rutschmann, 2006; Welch and Bromham, 

2005). On the whole we can perceive a trend to making molecular clock models more 

general by relaxing simplifying assumptions of previous implementations.

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
1	
  Published as Brown, J. W., and M. van Tuinen. 2010. Evolving Perceptions on the Antiquity of the 
Modern Avian Tree in The Evolutionary History of Modern Birds (G. J. Dyke, and G. Kaiser, eds.). UC 
Press. All material presented here written by JWB. 
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ORIGINS OF THE MOLECULAR CLOCK 

Molecular clock theory was borne of the pioneering work of Emile Zuckerkandl and 

Linus Pauling (Zuckerkandl and Pauling, 1962; 1965), and Emanuel Margoliash (1963). 

Working with mammalian protein sequences, these authors remarked that sister lineages 

contained very similar numbers of amino acid substitutions. From these empirical 

observations they posited that although molecular substitution is best regarded a 

stochastic process, over long periods of time it can be considered approximately constant 

at rate λ. This simple yet powerful hypothesis yields testable predictions, which, if 

passed, enables us to interpret a molecular phylogeny in terms of absolute time rather 

than a simple nesting of clades. Assuming a strict molecular clock, dating of nodes in a 

tree is a trivial task. The time to the most recent common ancestor, tMRCA, of two taxa 

separated by genetic distance d is calculated as: 

€ 

tMRCA =
d
2λ

 

(the coefficient 2 is required because both lineages undergo substitutional accumulation 

in time t). This equation assumes, of course, that the (constant) rate of molecular 

evolution λ is known. The value of λ usually comes from the calibration of genetic 

distances with the fossil record (see below), although occasionally dates of biogeographic 

events are used in place of fossil calibrations. Extending this to multiple taxa is 

straightforward, since all lineages within the tree are assumed to share the same value of 

λ, although there will generally be a need to correct for stochastic deviations from 

ultrametericity (i.e. that all terminal branches in the phylogram line up at the present). 

Unfortunately, most present day molecular data sets reject the economy of the strict 

molecular clock. Avian dating studies wishing to employ a global molecular clock 

therefore require data pruning, either via ‘gene-shopping’ (Hedges et al., 1996; Kumar 

and Hedges, 1998) or ‘taxon-shopping’ (van Tuinen and Dyke, 2004; van Tuinen and 

Hedges, 2001), to obtain a matrix that will not reject a molecular clock. This is a 

reasonable practice if one believes that the majority of genes and taxa conform to 

expectation. However, this is unreasonable if one wishes to retain all hard-earned data 

within an analysis, or if one believes that the processes of substitution are more 
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heterogeneous. Indeed, on the timescale of neornithine evolution one might predict that 

the signal of a strict molecular clock would decay due to stochastic variations alone. I 

will briefly summarize here the most popular approaches to estimating divergence times 

with non-clocklike data (Table 1.1). 

ACCOMMODATING NON-CLOCKLIKE MOLECULAR GENETIC DATA 

1. Overdispersed Clocks 

Rejection of a molecular clock is typically considered as evidence for rate variation 

across lineages. However, as Gillespie and Langley (1979) argue, the molecular clock 

hypothesis (as commonly employed) actually consists of two constituent assumptions: 1) 

that substitution rates are constant, and 2) that substitutions occur according to a Poisson 

process. An alternative interpretation of lineage-specific variability in the number of 

substitutions could thus be to question the second assumption; specifically, whether the 

variance afforded through a Poisson distribution (where the variance is equal to the 

mean) of substitutions through time adequately describes the variability we observe in 

empirical data sets. This interpretation is validated through use of alternative Gaussian 

(Cutler, 2000) and negative binomial (Bedford et al., 2008) distributions which 

adequately describe lineage-specific substitution counts where a Poisson distribution 

fails. An interesting corollary of this alternative constant-rate high-variance molecular 

clock hypothesis is the absence of any assumed correlation of rate with phylogeny (see 

below); in an overdispersed clock long branches need not be clustered on a tree, because 

‘rate of evolution’ is not assumed to be a heritable trait (a strict molecular clock, in 

contrast, carries with it the implicit assumption that substitution rate is entirely heritable). 

Indeed, application of Cutler’s (2000) method (as implemented in the program dating5) 

to avian mtDNA sequence data revealed distinct temporal diversification patterns not 

revealed through other methods (Brown et al., 2008). Whereas autocorrelated methods 

(see below) generally infer gradual patterns of diversification, the overdispersed 

reconstruction infers both short periods of extensive diversification and long periods of 

stasis. Despite the perceived promise and interpretive simplicity of an overdispersed 

clock, existing analytical programs are limited and thus are rarely used. 
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2. Local Clocks 

The more common approach to the rejection of a Poisson-distributed molecular clock is 

to assume among-lineage rate heterogeneity. The most straightforward way to extend the 

original molecular clock concept to accommodate rate variation across a tree is to employ 

‘local’ molecular clocks (Yoder and Yang, 2000). Here, regions of a tree are assumed to 

evolve according to a strict Poisson-distributed molecular clock, but different clades can 

have different rates λi. This is certainly a better description of empirical data, as different 

clades of birds display markedly different rates of molecular evolution as revealed 

through trends in branch length heterogeneity in reconstructed phylograms (e.g. Hackett 

et al., 2008). However, the number of individual local clocks and their discrete placement 

in the tree is inherently subjective. Although various local clock models can be compared 

statistically (in the program PAML; Yang, 2007), the local clock approach has largely 

been abandoned for approaches that let the data themselves indicate where changes in 

evolutionary rate likely occur within a tree. 

3. Rate Smoothing 

The local clock approach above assumes a few (potentially great) discrete changes in the 

Poisson rate of substitution λi across a tree. A more general approach is to allow an 

arbitrary number of such changes in λi, but to ‘smooth’ transitions in rate to minimize 

large changes. Two general approaches exist, these differing in the direction of 

smoothing; it is debatable which direction is optimal. On the one hand, sister lineages are 

by definition the exact same age, and because they share a recent common ancestor they 

are likely of similar size, life history traits, DNA repair efficiency, etc. – characteristics 

that are thought to influence substitution rates. It therefore seems sensible to focus on 

sister lineages when minimizing deviations from a molecular clock. This is the approach 

that PATHd8 (Britton et al., 2007) takes, and can be regarded as a smoothed local-clock 

approach. Here, path lengths are averaged successively from the tips of a tree back 

through internal nodes. The averaged sister path lengths are assumed to obey a strict 

Poisson molecular clock, although different sister-pairs can have different rates because 

of branch length differences or reference to simple fossil-imposed age constraints. The 

simplicity of the calculations involved allow for the dating of very large trees (hundreds 
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of taxa), very quickly (typically << 1 second of computation). However, when applied to 

avian data (Ericson et al., 2006), the approach infers divergence time estimates that are 

strikingly younger than those from alternative more rigorous approaches (Brown et al., 

2007; 2008), suggesting that the method may be overly simplistic. Indeed, the current 

implementation of PATHd8 has been demonstrated to be statistically biased, generating 

overly young and precise divergence time estimates for even relatively simple simulated 

sequences (Svennblad, 2008). More work is required to see if this method can be rescued, 

but at the moment it is best considered with caution. 

The alternate direction of smoothing, from ancestor to descendant branches, may 

therefore be more reasonable; indeed, the evolution of rate variation from ancestor to 

descendant branches is the very process we are trying to understand. If the trait ‘rate of 

molecular substitution’ is heritable to any degree (for instance, because of inheritance of 

DNA-repairing enzymes), then smoothing in this direction can be expected to extract 

more meaningful information. The program r8s (Sanderson, 2003) takes such an 

autocorrelated-rates approach, but penalizes rates that change too quickly across the tree 

in a fashion akin to smoothing in regression analysis. In non-parametric rate smoothing 

(NPRS; Sanderson, 1997) optimal rates and dates are inferred by simply minimizing the 

penalty function. However, NPRS is generally not recommended for most data sets as it 

tends towards overfitting, inferring large fluctuations in rate where short branch lengths 

are located. The alternative semi-parametric penalized likelihood (PL; Sanderson, 2002) 

approach is an extension to NPRS which involves a smoothing parameter which controls 

the relative contributions of rate smoothing and data-fitting; large values of the 

smoothing parameter favour minimizing rate changes over data-fitting (tending towards a 

molecular clock), while small values of the smoothing parameter tend towards NPRS. 

The optimal smoothing value is determined through a data-driven sequence-based cross-

validation procedure. Application of this method to avian data matrices has yielded 

reasonably consistent divergence time estimates that generally agree with more realistic, 

computationally intensive approaches (Baker et al., 2005; Brown et al., 2008; Haddrath 

and Baker, 2001; Harrison et al., 2004; Paton et al., 2002). Nevertheless, the method (as 

currently implemented) has the drawback that a single global smoothing parameter 

controls the extent of rate change across an entire tree. This assumption may be 
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unreasonable for trees that potentially span tens or hundreds of millions of years if 

constraints on substitution rate variability have changed appreciably over evolutionary 

time. Likewise, the autocorrelation assumption that forms the basis of r8s smoothing has 

recently come under question (Drummond et al., 2006), and for birds specifically (Brown 

et al., 2008), although the extent of the decay of autocorrelation of rates is likely 

dependent upon taxon sampling and tree age. 

4. Modelling ‘Relaxed’ Clocks 

A more rigorous approach to dating non-clocklike molecular genetic sequence data is to 

explicitly model rate heterogeneity itself. Although much more computationally time-

consuming than the methods above, these model-based approaches have two basic 

advantages: 1) they extract more biologically-interpretable information, and 2) the 

relative fit of alternative candidate relaxed-clock models to empirical sequence data can 

be computed statistically using existing tools. Modelling rate heterogeneity generally 

takes one of two forms: 1) modelling the process of rate change across a tree, or 2) 

modelling the product of such rate changes. The former methods require assumptions 

about how rate change proceeds over evolutionary time. The most highly utilized model 

of this type was developed through the work by Jeff Thorne and colleagues on modelling 

the “the rate of evolution of the rate of evolution” (Kishino et al., 2001; Thorne and 

Kishino, 2002; Thorne et al., 1998). Implemented in the popular MCMC program 

Multidivtime (Thorne, 2003), this model implicitly assumes an autocorrelated process of 

rate evolution from ancestor to descendent branches. Specifically, the model assumes that 

the substitution rate at the descendent branch conforms to a lognormal distribution, the 

mean of which is equal to the logarithm of the rate at its ancestral branch. The variance of 

this lognormal distribution is determined by both a sampled autocorrelation parameter ν 

and the inferred length of time separating the two nodes. An intuitively satisfying 

property of this approach is that sister branches, while being autocorrelated (to some 

degree) in rate to their common ancestral branch, can nevertheless potentially differ 

considerably from one another. This model has been applied extensively to avian data 

matrices (Baker et al., 2007; Brown et al., 2007; Brown et al., 2008; Pereira and Baker, 

2006a; Pereira and Baker, 2006b; Pereira and Baker, 2008; Pereira et al., 2007; Slack et 
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al., 2006), and is largely responsible for the statistically robust Cretaceous molecular 

timescale that has been emerging over the past decade (Figure 1.1). Nevertheless, 

Multidivtime is starting to show its age, being limited to a simple substitution model 

(F84+G) which is inappropriate for large taxon and/or character samples, and simple 

‘hard’ age calibrations (upper, minimum, or fixed; see below). 

Alternative approaches to modelling autocorrelated-rates across a tree are based upon 

the Ornstein-Uhlenbeck (OU) process. Also called a ‘mean-reverting process’, here rates 

can change across a tree in a near-Brownian fashion, although an equilibrium rate is 

enforced through use of a ‘spring’ restraint that ‘pulls’ a rate (either down or up) towards 

the equilibrium rate with a force proportional to how far it is removed from the mean; in 

effect, the model penalizes extreme rates. Unlike the autocorrelated lognormal model of 

Multidivtime, the OU model (and its variants; see below) possesses a stationary 

distribution (i.e. the mean and variance do not change over time or across the tree), and 

hence is a very different conceptual take on the process of rate evolution; whereas in 

Multidivtime a branch-specific rate is explicitly tied to its ancestral branch rate, in 

methods employing the OU process all rates are instead tied to the same underlying 

equilibrium rate. The idea of the reality of an ‘underlying equilibrium rate’ is a deep and 

provocative assumption about the process of rate evolution, and in a way the OU 

approach can be thought of as modelling the distribution of rates around an ‘absolute’ 

molecular clock. An early implementation of the OU process for phylochronological 

analysis (in the program PhyBayes; Aris-Brosou and Yang, 2002; Aris-Brosou and Yang, 

2003) was shown to be flawed through inappropriate priors overly influencing the results 

(Welch et al., 2005); in particular, the priors were biased to infer higher rates of 

substitution near the root of the tree. However, the recent implementation of the ‘CIR’ 

model (essentially a ‘squared-OU’ model, which preserves rate positivity and avoids the 

prior bias above) in the program PhyloBayes overcomes many of these problems, and is 

well supported by empirical data (Lepage et al., 2007). Despite the promise and success 

of this approach, its very recent development has meant that avian molecular genetic data 

has yet to be analyzed in this way. 
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While the models above represent autocorrelated rate evolution as a continuous 

process, it is also possible to build piecewise relaxed clock models. For example, the 

compound Poisson stochastic process approach of Huelsenbeck et al. (2000) assumes that 

substitutions generally occur according to the standard Poisson-distributed molecular 

clock, but that changes in rate λi occur along the tree according to an independent 

Poisson process. Using standard MCMC machinery, divergence times and their 

associated credible intervals can be estimated while accommodating uncertainty in all 

other model parameters, including the frequency and degree of discrete rate changes. This 

model can be thought of as a generalized local clock approach, but has an advantage over 

the subjective procedure above in that the number, degree and location of the inferred 

shifts in substitution rate are data-driven instead of investigator-proclaimed. 

Unfortunately, a lack of development beyond its introductory paper (Huelsenbeck et al., 

2000), together with a lack of available software (but see Himmelmann and Metzler, 

2009), has meant that this straightforward and biologically-interpretable approach has yet 

to realize its potential.  

In contrast to the models above, the second class of models, those that model the 

product of rate heterogeneity, do not make any explicit assumptions about how rate 

changes. Rather, these models make assumptions about the shape of the resulting 

distribution of rates, and assume that branch-specific rates are each drawn independently 

from this distribution. Using MCMC methodologies, proposed branch rates are accepted 

at a frequency that is proportional to their posterior probabilities. Unlike the other models 

above (but similar to the overdispersed clock), these models make no assumptions 

regarding an autocorrelation of substitution rates across a tree, and so are frequently 

referred to as ‘uncorrelated’ models. There is good reason to question the autocorrelation 

assumption; even if ‘rate of evolution’ is heritable, the accumulation of stochastic 

variation over millions of years may mean that autocorrelation decays to zero along the 

branches separating the nodes in a tree (Drummond et al., 2006). Regardless, relaxing the 

autocorrelation assumption means that autocorrelation itself can be tested; if rates are 

indeed autocorrelated (and sufficient signal is present in the data) then the sampled rates 

should reflect that pattern. Autocorrelation has only been evaluated once in a broad scale 

sample of Neornithes (Brown et al., 2008), and was rejected. However, because of the 
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time-dependency of autocorrelation decay, recovery of a genuine signal of 

autocorrelation will likely require a more dense taxon sampling than has been performed 

previously so that time intervals between nodes can be minimized. 

Among these uncorrelated models, the uncorrelated lognormal model has enjoyed the 

most use to date, and has been shown to be superior to an uncorrelated exponential model 

of rate variation for a number of data sets (Drummond et al., 2006), including birds 

(Brown et al., 2008). The flexibility of the lognormal distribution means that it is able to 

be fit to a broad range of rate distribution shapes, and explains why it is implemented in 

several Bayesian relaxed clock applications, including BEAST (Drummond et al., 2006; 

Drummond and Rambaut, 2007), MCMCtree (Rannala and Yang, 2007; Yang, 2007), 

and PhyloBayes (Lartillot and Philippe, 2004; Lepage et al., 2007). Each of these 

packages has its own advantages. MCMCtree, for example, explicitly allows for potential 

error in fossil calibration ages (for example, from stratum misidentification) by adding 

non-zero probability tails to otherwise ‘hard’ fossil constraints (Yang and Rannala, 

2006). The benefit of using PhyloBayes is that it implements seven different clock 

models, enabling a researcher to statistically compare alternative models using the same 

statistical machinery rather than relying on indirect comparisons across software 

packages/implementations (Lepage et al., 2007). Finally, in addition to flexible xml-

coding support which allows for the construction of arbitrarily complex models, BEAST 

is unique in that of all the relaxed clock methods available, it is the only one that does not 

require a fixed tree topology. This inclusion of topological uncertainty is especially 

appealing for avian studies, where higher level relationships are still unsettled.  

In summary, there are currently a number of approaches readily available to 

researchers for phylochronological reconstruction using non-clocklike molecular genetic 

sequences (Table 1), although none of them can be considered a panacea (see below). 

These approaches run the gamut from quick-and-dirty ‘corrections’ to an imperfect clock 

(e.g. PATHd8) to sophisticated descriptions of either the process of rate evolution itself 

(e.g. CIR model) or the product of such evolution (e.g. uncorrelated lognormal model). 

Given the breadth of choices available, the ideal course of action would be to test several 

distinct approaches to see if phylochronological signal is consistent across model/method 
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assumptions (Britton et al., 2007; Brown et al., 2008; Hipsley et al., 2009; Hug and 

Roger, 2007; Lepage et al., 2007; Linder et al., 2005): concordant results across methods 

would lend additional credence to resulting inferences, whereas dissonance could help 

identify potential model assumption violations. For example, a recent comparison of five 

dating methods on the Neornithes tree using mtDNA revealed broadly consistent origin 

estimates for the major clades (Brown et al., 2008), while also calling into question the 

appropriateness of one method (PATHd8) for the particular data set. 

LIMITATIONS OF CURRENT MOLECULAR PHYLOGENETIC DATING TECHNIQUES 

A model represents a conceptual understanding of how ‘nature’ influences physical 

entities to generate the distribution of empirical observations. Models can be constructed 

from empirical (inductive) or theoretical (deductive) expectations, with the ideal situation 

being a motivated iteration between the two sources of understanding (Box, 1976). 

However, a model should not endeavor to ‘fit an elephant’ (that is, try to describe reality 

in its entirety; Steel, 2005), but instead attempt to extract information from the salient 

components of the underlying process, formalized with estimable parameters. The idea of 

saliency should be recognized as a relative concept; with greater thought, and a broader 

collection of empirical observations, our idea of what constitutes a ‘salient’ component of 

a process continues to evolve, leading to a richer understanding of the sources of 

variation. Such is the condition of our understanding of the processes of molecular 

evolution. Larger molecular genetic data matrices (in terms of both taxon and especially 

character sampling) has afforded an increased power to identify more subtle (but 

increasingly important) sources of variation. Consequently, several simplifying 

assumptions in our standard modelling of the molecular genetic evolutionary process are 

currently being challenged, and may eventually translate to improvements in the 

extraction of phylochronological signal or potentially identify biases of past methods. 

1. Molecular Substitution Models 

Molecular evolution is typically modelled as a continuous-time Markovian substitution 

process. This conceptual framework, originally constrained for practical (i.e. computation 

tractability) reasons (Felsenstein, 1981), carries with it several explicit and implicit 
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assumptions: 1) stationarity (the probabilities of stochastic substitution do not change 

through time, or are in equilibrium); 2) homogeneity (the equilibrium character 

frequencies and substitution-rate matrix are identical across lineages); 3) time-

reversibility (the process of substitution looks the same both forwards and backwards in 

time); and 4) independence (all sites within an alignment are considered identical and 

independently distributed (i.i.d.) realizations of the same evolutionary process). Although 

held by all of the relaxed clock methods above, none of these assumptions is likely to 

strictly hold true (and indeed empirical data exist to contest each of them), however since 

all models are wrong we should concern ourselves with what is importantly wrong (Box, 

1976). 

Of these assumptions, independence is unique in that it focuses along a genetic 

sequence (rather than across a tree like the remaining assumptions). This assumption is 

actually a composite assumption: 1) sites evolve independently from one another, and 2) 

all sites evolve according to the same underlying process (in practice, the same 

substitution model). Strict violation of the first component is ensured through the 

physical linkages between nucleotides, although inclusion of molecular markers from 

disparate regions of the genome (say, different chromosomes) can represent ‘more 

independent’ information. Violation of the second component is readily apparent through 

inspection of the characteristics of various character classes (e.g. genes, coding/non-

coding regions, codon positions, etc.) which often differ considerably in terms of 

nucleotide composition and levels of polymorphism. Failure to accommodate for this will 

necessarily lead to a ‘compromised’ inference (where, for example, relative rate 

parameters and equilibrium character state frequencies are averages over potentially 

distinct genomic regions). Nevertheless, the independence assumption is also unique in 

that its violation is all but solved. For example, the introduction of among-site gamma-

distributed rate heterogeneity enormously increases the fit of models to empirical data 

(Yang, 1996). More generally, recently developed mixed (Lartillot and Philippe, 2004; 

Pagel and Meade, 2004) and partitioned (e.g. Nylander et al., 2004) models allow 

heterogeneity in the substitutional process across sites and loci. Partitioned models are 

available in a number of relaxed clock methods, although they are most flexible in 

BEAST. 
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The remaining model assumptions above reflect expectations of the uniformity of the 

molecular substitution process(es) over both time and lineages. The adoption of the time-

reversibility assumption is due almost entirely to numerical convenience: it both reduces 

the required number of substitution parameters to be estimated (as compared to the more 

general model; Rodríguez et al., 1990), and allows for efficient computation of the 

likelihood of an unrooted tree via Felsenstein’s ‘pulley principle’ (Felsenstein, 1981). 

However, reasons to settle for simpler reversible models are rapidly dematerializing: 1) 

Bayesian MCMC-sampling methods, together with increasingly powerful and available 

computational resources, can easily accommodate the relatively small increase in the 

number of estimable parameters, and 2) signal from large present day empirical data 

matrices are revealing support for irreversibility (Squartini and Arndt, 2008), overturning 

earlier conclusion from studies (Yang, 1994) that may simply have suffered from a lack 

of power. 

The final two assumptions, homogeneity and stationarity, are tightly related in that 

violation of one typically involves violation of the other. Of all the assumptions, these 

two are most likely to influence phylochronological inference through biasing both 

topology and branch length estimation. Moreover, the strict validity of these assumptions 

over evolutionary time spans, such as the diversification history of Neornithes, is 

dubious. Indeed, clear evidence for the violation of one or both of these assumptions is 

the observed empirical base compositional biases across lineages that can not be 

described by stochastic variation alone. While such compositional biases can potentially 

be masked through data filtering (e.g. translating to amino acids for coding sequences, or 

employing R-Y coding), a more satisfying approach that makes use of more evolutionary 

information is to model compositional changes themselves. Fortunately, several non-

homogeneous/non-stationary models exist which do just that (e.g. Galtier and Gouy, 

1998), for example by allowing base composition to change across a tree according to a 

compound piecewise-constant Poisson stochastic process (Blanquart and Lartillot, 2006), 

similar to the compound Poisson relaxed molecular clock model (Huelsenbeck et al., 

2000) above. A distinct violation of the stationarity assumption involves the concept of 

‘heterotachy’, where site-specific substitution rates change in different parts of the tree 

(Lopez et al., 2002). Thankfully, substitution models now exist that accommodate 
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heterotachous evolution (Kolaczkowski and Thornton, 2008; Pagel and Meade, 2008; 

Tuffley and Steel, 1998; Wu et al., 2008). In summary, it is not yet known whether 

biologically realistic violations of these substitution model assumptions will surface as 

significant biases to phylochronological signal. However, we have at our disposal 

solutions to each of these problems, all that remains is to graft constituent models 

together (e.g. Blanquart and Lartillot, 2008), identify the salient features, and apply the 

resulting models to the problem of phylochronological inference. 

2. Modelling of Rate Evolution 

Besides concerns regarding the suitability of the level of sophistication of existing 

molecular substitution models, we must also consider whether the correct components of 

evolutionary rate heterogeneity are indeed being modelled. It is unclear, for example, if 

substitution rate evolution is best considered autocorrelated in time (such that ‘rate’ is a 

heritable character), or if an ‘episodic’ clock (Gillespie, 1984) is a better description of 

empirical data. Correlated rate models, if valid, enable greater inferential precision 

because rate/date estimation at a given node can make use of not only local but also 

distant evolutionary information (Lepage et al., 2007). The uncorrelated models above 

are episodic clocks that offer no explanation of why rates vary. A distinct type of episodic 

clock involves punctuated (or speciational) molecular evolution, where substitution rates 

are elevated during speciation, with the result that the lengths of the branches (in terms of 

the expected number of substitutions per site) in a clade of a tree are positively correlated 

to the number of speciation events (Pagel et al., 2006). Such a scenario could explain 

stark branch length differences between the speciose Passeriformes and depauperate 

Pelecaniformes in reconstructed phylograms (Hackett et al., 2008). Indeed, punctuated 

morphological evolution has been inferred in birds (Paleognaths; Cubo, 2003). However, 

a signal of punctuated molecular substitution rates (which could potentially mislead 

phylogenetic dating) was not found in a recent study of Neornithes (Brown et al., 2008), 

although identification of this kind of signal would surely benefit greatly by increased 

taxon sampling. Another potential explanatory variable to consider is effective population 

size, which has been shown to be correlated (negatively) with substitution rate in a range 

of eukaryotic taxa (Bedford et al., 2008). Additionally, effective population size strongly 
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determines the rate of lineage sorting, and since lineage sorting postdates speciation it 

makes sense to estimate divergence times and effective population sizes simultaneously 

(Liu and Pearl, 2007; Rannala and Yang, 2003). Given that many avian species differ 

greatly in effective population size (think of rails versus gulls), this may be a worthwhile 

avenue of research to pursue. A final consideration involves the perceived time-

dependency of molecular substitution rates (Ho and Larson, 2006; Ho et al., 2005); here, 

extant population-level polymorphisms that would not persist over evolutionary 

timescales (i.e. mutations that do not become substitutions) bias reconstruction methods 

into inferring that substitution rates are higher in the present than they were in the past. 

The influence of this pervasive phenomenon on divergence time estimation has not yet 

been fully investigated, and not at all in birds. 

3. Age Constraints 

One of the most compelling developments in recent relaxed clock model implementations 

is the ability to construct age probability distributions for fossil-calibrated nodes. 

Previous molecular dating techniques (e.g. r8s, Multidivtime, and PATHd8) allowed only 

the enforcement of ‘hard’ age constraints: 1) absolute minimum (i.e. that the speciation 

event represented by the calibrated node must predate the fossil; the fossil, of course, 

being a product of the speciation event), 2) absolute maximum (information which, 

strictly speaking, can not come from the fossil record), or 3) fixed ages (i.e. the fossil 

perfectly represents the age of the node without error). The new probability distributions 

available in BEAST (Drummond and Rambaut, 2007) and MCMCtree (Yang and 

Rannala, 2006) offer two main advantages over these simple constraints: 1) additional 

information (e.g. from models of fossil preservation) can be incorporated into the 

calibration, effectively lending more credence to the fossil record, and 2) uncertainty in 

the age of the fossil itself can be accommodated. However, the same flexibility that 

makes these distributions so attractive unfortunately also makes them inherently 

subjective. Although rightly considered with enthusiasm (Ho, 2007; Ho and Phillips, 

2009), there is presently no rigorous protocol for determining the optimal shape (e.g. 

Gaussian, lognormal, uniform, exponential, etc.; Figure 1.2) and breadth of these 

distributions, which makes direct comparisons across studies difficult. A joint 
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collaboration of paleontologists and molecular phylogeneticists working on this problem 

would allow greater extraction of phylochronological signal from the fossil record, and 

subsequently generate better divergence time estimates. 

4. Study Design 

Finally, improvements in divergence time estimation will require systematic attention to 

sampling with respect to which loci, taxa, and fossil calibrations should be included in a 

given study. For example, over long evolutionary timescales mtDNA can be expected to 

exhibit substitutional saturation, which may bias relaxed clock studies through an 

underestimation of branch lengths deep in the tree (consequently underestimating the 

ages of deeper nodes). Under this scenario, it may be desirable to utilize slower evolving 

nuclear introns, or to mask saturation through translating nucleotide sequences to amino 

acids (if coding) or otherwise through RY-recoding (Woese et al., 1991). The extent of 

taxon sampling has been found to be influential in molecular dating (e.g. Linder et al., 

2005), presumably due to node-density effects (Venditti et al., 2006), where more 

substitutions are discovered (making branch lengths longer) in regions of the tree with 

higher taxon sampling. Lastly, while it is generally a good strategy to incorporate 

calibration information from as many fossils as possible (Bremer et al., 2004; Hug and 

Roger, 2007), it is imperative that these fossils are scrutinized closely, as one incorrectly-

dated or taxonomically misdiagnosed fossil can potentially invalidate an entire analysis. 

It thus seems prudent to test suites of calibrations for dating consistency (Near et al., 

2005; Near and Sanderson, 2004), although it should be kept in mind that exceptionally 

‘good’ fossils (i.e. those that are especially old, or more closely approximate the age of 

the node they are meant to date) are likely to appear ‘inconsistent’. 

In conclusion, we are at a very exciting stage in molecular phylogenetic systematics; 

not only are we well aware of the potential unsuitability of assumptions made by early 

relaxed clock approaches, but (more importantly) we have a firm grasp on what further 

tribulations may be lurking in the future. The widespread adoption of Bayesian 

philosophies over the past decade in particular has ushered in a new paradigm for 

methodological implementation, complecto errorem (embrace uncertainty), where 

uncertainty in ‘nuisance’ parameters (model components that are essential for a salient 
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description of the evolutionary process, but are otherwise not of direct interest) can be 

integrated out, rendering conclusions that are compelling to a degree that have not been 

heretofore possible. Moreover, the rapidly-decreasing costs associated with molecular 

genetic sequencing means that it will soon be possible to interrogate enormous amounts 

of data for subtle signals of past molecular substitution rate evolution. With such 

information in hand we can expect more accurate, precise, and consistent 

phylochronological inferences, which in turn will better enable us to understand and 

appreciate the dynamics of neornithine diversification. 
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Table1.1 A comparison of available programs for the dating of non-clocklike molecular genetic sequences. 
Program Clock approach Statistical 

inference 
Input data Multiple 

partitions 
Age constraints Topology Notes 

PATHd8 rate smoothing (sister branches) N/A phylogram no minimum, maximum, 
and fixed1 

fixed extremely fast for even large 
trees; current implementation 
delivers overly young/precise 
estimates 

r8s rate smoothing (ancestor-
descendent) 

penalized 
likelihood 

phylogram no minimum, maximum, 
and fixed 

fixed optimal smoothing via 
sequence-based cross-
validation 

dating5 overdispersed clock maximum 
likelihood 

phylogram no minimum, maximum, 
and fixed 

fixed software has not seen recent 
development 

PAML local clocks maximum 
likelihood 

nucleotide or 
amino acid 
sequences 

yes minimum, maximum, 
and fixed 

fixed location of discrete clocks is 
user-defined 

HLS20002 compound Poisson process Bayesian 
MCMC 

DNA 
sequences 

no fixed1 fixed software has not seen recent 
development 

Multidivtime
3 

autocorrelated model Bayesian 
MCMC 

nucleotide or 
amino acid 
sequences 

yes minimum, maximum, 
and fixed 

fixed nucleotide substitution model 
limited to F84; too simplistic 
for most large/old trees 

PhyBayes OU process Bayesian 
MCMC 

nucleotide 
sequences 

yes N/A5 fixed software has not seen recent 
development 

MCMCtree4 uncorrelated lognormal Bayesian 
MCMC 

nucleotide or 
amino acid 
sequences 

yes probability 
distributions 

fixed explicitly accommodates 
potential error in calibration 
ages 

PhyloBayes various autocorrelated and 
uncorrelated models 

Bayesian 
MCMC 

nucleotide or 
amino acid 
sequences 

no N/A5 fixed 7 clock models can be 
compared within the same 
software package 

BEAST uncorrelated lognormal or 
exponential 

Bayesian 
MCMC 

nucleotide or 
amino acid 
sequences 

yes probability 
distributions 

estimated xml-coding allows for 
arbitrarily complex models of 
sequence evolution 

1 A fixed-age constraint is required. 
2 This program was not given a proper name, so the initials of the authors are used. Not much is known about this program as it is not distributed and has not enjoyed use beyond the original study. 
Although a number of possible extensions are discussed by the authors, these apparently have not been implemented. 
3 The initial steps of analysis require the PAML package. 
4 Part of the PAML package. 
5 Estimates relative ages. Absolute ages are generated through scaling relative ages to a fixed age constraint; if more than one constraint is available an average date across all constraints is estimated.  
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Figure 1.1 Molecular genetic evolutionary timescale of neornithine diversification inferred from 
the analysis of data from Hackett et al. (2008) utilizing a Bayesian uncorrelated lognormally-
distributed relaxed molecular clock in BEAST (Brown et al., unpublished data). The taxon matrix 
was pruned to include only the major neornithean lineages. The vertical dashed line identifies the 
Cretaceous-Paleogene (K-Pg) boundary. Node ages are mean values from the posterior 
distribution; credible intervals are omitted for clarity. 
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Figure 1.2 Alternative temporal calibration constraints for use in molecular divergence time estimation. (a) 
At the extreme, the age of a fossil may be used as a point estimate for the divergence of two taxa. Here, the 
age of the node is treated as known without error; hence, potential divergence times above or below the 
point estimate receive zero prior probability, and so are not considered in the estimation process. This is 
generally poor practice, as 1) potential errors in phylogenetic placement and geological dating of the fossil 
are ignored, and 2) diagnosable fossils are unlikely to temporally correspond precisely to cladogenesis. 
Alternatively, fossils can be considered as (b) maximum or (c) minimum ages. [Strictly speaking, fossil 
evidence can only provide minimum ages, not maximum ages, as the absence of (earlier) evidence cannot 
necessarily be interpreted as evidence of (earlier) absence]. Typically, such calibrations are implemented as 
‘hard’ constraints (bold lines), where prior divergence times on one side of the constraint are equiprobable 
(arrows) while all values on the other side of the constraint receive zero prior probability. However, such 
calibrations can also be implemented as ‘soft’ constraints (Yang and Rannala, 2006), where exponential 
distributions constituting some proportion of the overall prior density (say, 2.5%) extend beyond the ‘hard’ 
bounds (dashed curves). A soft prior gives small but non-zero probability to ages beyond that of the fossil 
and hence accommodate potential errors in geologic dating or phylogenetic placement, potentially leading 
to the identification of inappropriate/invalid constraints. Minimum and maximum constraints can be 
combined into a single calibration. (d) When considerable uncertainty is present this is typically modelled 
with a uniform (equiprobable) distribution (with either ‘hard’ or ‘soft’ bounds). (e) In situations where 
existing evidence suggests some time periods are more probable a priori than others (say, biogeographic 
events), a more appropriate modelling may take the form of a Gaussian (normal) distribution. (f) The form 
of the exponential distribution is such that the mode (highest probability) of the distribution is the age of 
the fossil itself; ages younger than the fossil receive zero prior probability (i.e. a ‘hard’ bound). Application 
of an exponential constraint is useful when 1) a fossil is thought to temporally correspond closely to the 
relevant cladogenetic event, or 2) where additional information (say, fossil preservation curves) can be used 
to inform prior construction. (g) Perhaps the most appropriate distribution to model uncertainty regarding a 
cladogenetic event is the flexible lognormal distribution. This distribution has a ‘hard’ minimum at the age 
of the fossil, a lag until the mode of the distribution (i.e. sampled diagnosable fossils are expected to post-
date the cladogenetic event), and has a long (‘soft’) tail that allows for the (small but non-zero) possibility 
that the divergence event occurred much earlier than what the fossil calibration would suggest. As with the 
Gaussian (standard deviation) and exponential (where mean = standard deviation) distributions, the breadth 
of the lognormal distribution is considerably malleable to the information at hand. Nevertheless, at the 
moment construction of lognormal (and other) constraints is more of an art than a science; scientists would 
do best to investigate the sensitivity of divergence time inferences to changes in temporal prior constraints. 
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Chapter 2 
 

Nuclear DNA does not reconcile ‘rocks’ and ‘clocks’ in  
Neoaves: a comment on Ericson et al. (2006)1 

 

The discrepancy between fossil- and molecular-based age estimates for the diversification 

of modern birds has persisted despite increasingly large datasets on both sides (Penny and 

Phillips, 2004). For the purpose of addressing this discrepancy, Ericson et al. (2006) 

recently generated a significant neoavian dataset that is well represented by taxa (87 

species comprising 75 traditional families), characters (five nuclear genes) and fossil 

calibrations (n = 23). The divergence times reported in this study are by far the youngest 

yet reported from genetic data. These authors conclude that there is no reliable molecular 

support for extensive diversification of Neoaves in the Cretaceous. While an increased 

agreement with the fossil record is encouraging (and, indeed, sought after), we find a 

number of problems with their study that calls this conclusion into question. 

Our first concern with this paper involves the particular fossils used to calibrate and 

constrain estimated divergence times. Fossils are of fundamental importance in 

estimating dates with molecular sequence data, and care should be taken that they are 

taxonomically and stratigraphically well identified. While the fossils used in Ericson et 

al. (2006) appear to fit these criteria, we nevertheless take issue with the particular fossils 

used. First, Ericson et al. (2006) use a stem group galliform fossil (53 million years (Ma); 

their calibration ‘F’; Mayr and Weidig, 2004) to date the divergence between Galliformes 

and Anseriformes, despite the fact that an older (66 Ma), and therefore more informative, 

fossil anseriform calibration exists (Clarke et al., 2005). Ericson et al.’s (2006) estimate 

of the age of the Galliformes–Anseriformes split is approximately 53 Ma, 13 Ma younger 

than the minimum age definitively known from the fossil record (Benton and Donoghue, 
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  Published as Brown, J. W., R. B. Payne, and D. P. Mindell. 2007. Nuclear DNA does not reconcile 
‘rocks’ and ‘clocks’ in Neoaves: a comment on Ericson et al. Biology Letters 3:257-259.	
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2006). Second, for the fixed-age calibration required for their choice of analysis (i.e. a 

node whose age if assumed known without error), they use a 47.5 Ma stem group 

representative of Trochilidae to mark the splitting of hummingbirds from other 

Apodiformes (their calibration ‘Q’). No rationale is given explaining why this particular 

fossil was adopted, and we note that an older (62 Ma), more derived and hence more 

appropriate fossil is established from the stem of Sphenisciformes (Slack et al., 2006). 

Regardless, owing to the importance of the single fixed constraint, alternatives should 

have been considered to investigate the influence of fossil choice. Third, the authors 

impose a maximum constraint of 95 Ma on the age of Neoaves, despite the fact that 

earlier dates have been published (e.g. van Tuinen and Hedges, 2001; Pereira and Baker, 

2006). Fourth, one of their fossil calibrations (stem Strigiformes; their calibration ‘F’) is 

uninformative for dating purposes, as it is superseded by an equally old (55 Ma) but more 

derived fossil (stem Coliiformes; their calibration ‘E’). Finally, an error in analysis is 

revealed in that Ericson et al. (2006) estimate the age of Pandionidae at approximately 29 

Ma, despite the fact that a 37 Ma crown Pandionidae fossil (Harrison and Walker, 1976) 

was purportedly used as a minimum age constraint for this node  in all dating analyses 

(the calibration ‘G’). 

Our second concern involves the reliance on the program PATHd8 (Britton et al., 

2007) for estimating lineage ages, a new method which can be understood as a smoothed 

local clock approach, where rates are smoothed between sister lineages. Ericson et al. 

(2006) also used the program r8s (Sanderson, 2003), but dismissed these results simply 

because these dates are older than those generated by PATHd8 (although the older r8s 

dates are consistent with previous molecular-generated dates). The inferred dates from 

r8s directly contradict their claim of an absence of neoavian diversification in the 

Cretaceous. Agreement with the fossil record, while satisfying in terms of congruence, is 

not a sufficient criterion to arbitrate between sets of dates generated by different methods. 

Rather, arbitration should rely upon the performance of methods on both empirical and 

simulated data, and PATHd8 has yet to be tested in this way. To compare their PATHd8 

results with those from a well-vetted program, we reanalyzed the data of Ericson et al. 

(2006) using a Bayesian modelling of rate evolution (Thorne and Kishino, 2002) and the 

revised calibrations outlined previously (see Methods, below). Contrary to their results, 
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we find evidence for substantial diversification of Neoaves in the Cretaceous (Figure 

2.1). 

Finally, and most importantly, nowhere do Ericson et al. (2006) mention any error 

intervals on their dating estimates. Given the proximity of many nodes to the K–T 

boundary, confidence intervals on age estimates would cross into the Cretaceous and 

render their conclusion untenable. Error estimates are easily generated using either non-

parametric bootstrapping or considering a posterior distribution of trees. As error is 

inherent in each step of molecular dating (sequences, alignment, fossils, trees, etc.), the 

lack of error calculation is disturbing and undermines their ultimate assertion. When 

incorporating error intervals in our reanalysis, 24 basal neoavian divergences are 

restricted to the Cretaceous (Figure 2.1, green bars). Of these, 15 lead directly to extant 

families. While the addition of further family representatives will undoubtedly break up 

some of these branches (forming crown clades), a Tertiary origin for much of Neoaves is 

clearly rejected. Given the results of our reanalysis of the data of Ericson et al. (2006), 

the noteworthy problems attendant in their study, and the plurality of genetic studies 

indicating a Cretaceous origin of modern birds, we respectfully disagree with their 

conclusion and find instead that there is no reliable molecular evidence against an 

extensive pre-Tertiary radiation of Neoaves. 
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MATERIALS AND METHODS1 

Sequence data 

We used the same alignment as was analyzed in Ericson et al. (2006), which was made 

freely available by those authors 

(http://www.nrm.se/inenglish/researchandcollections/zoology/vertebratezoology/birds.4.4

e32c81078a8d9249800014590.html). From the combined total alignment of 5299 base 

pairs (bp), 1536 were deemed ambiguously aligned and so were excluded, yielding a final 

combined data set of 3763 bp (Table 2.1). Although data matrices differ notably in size 

across our two studies, we find no influence of our relatively conservative site exclusion 

approach on inferred date estimates (see below). No attempt was made at phylogenetic 

reconstruction; rather, we used their inferred tree (their Figure ESM-9) for dating 

purposes to make the results directly comparable. 

Divergence time estimation 

Divergence times were estimated using the MULTIDISTRIBUTE package (Thorne, 

2003). This is a Bayesian approach to modelling rate heterogeneity across a tree in an 

ancestor-descendent fashion (Thorne and Kishino, 2002; Thorne et al., 1998). Estimates 

of the transition/transversion rate ratio κ and the gamma site class-specific rates under the 

F84+G model were calculated for each gene individually in the baseml program of the 

PAML 3.15 package (Yang, 1997). The output from baseml was used as the input for the 

MULTIDISTRIBUTE program estbranches, which produces maximum likelihood (ML) 

estimates of branch lengths and their approximate variance–covariance matrix for each 

gene. Finally, substitution rates and divergence times were estimated through MCMC 

approximation in Multidivtime. Here, the logarithm of the substitution rate at the end of a 

branch is modelled with a normal distribution, the mean of which has an expected value 

equal to the rate at the beginning of the branch. While rates are implicitly assumed to be 

autocorrelated from ancestor to descendent nodes, this autocorrelation may decay with 

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
1 Originally published as online supplementary information for Brown, J. W., R. B. Payne, and D. P. 
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increasing branch lengths. 

The MULTIDISTRIBUTE package prunes the outgroup for this final analysis, so the 

taxa involved in dating are all representatives of Neognathae. We defined a diffuse prior 

for the age of the root of this tree: mean (rttm) = 100, standard deviation (rttmsd) = 40. 

To investigate the influence of this prior we also ran analyses assuming a much younger 

divergence: rttm = 80, rttmsd = 50. Additional priors, determined from an average across 

genes, are given in Table 2.2. ‘Bigtime’, the maximum age allowed for the root, was set 

at 160 Ma, as this is well beyond molecular estimates of the age of the divergence 

between Galloanseres and Neoaves. The 22 internal fossil constraints used are given in 

Table 2.3. The program was run without the assumption of correlated changes in 

substitution rates across genes. Following a burnin of 105 samples, 104 samples were 

taken at a sampling interval of 102. Analyses were repeated with different initial 

conditions to check for convergence of the MCMC chain. Results from analyses 

assuming our alternative prior distributions (Table 2.2) were indistinguishable. 

Chronograms were constructed using FigTree v1.0 (Rambaut, 2006) and TS-Creator 

(http://www.stratigraphy.org). 

Influence of site exclusions, fossil constraints, and dating method 

Given the numerous concerns we identify with the study of Ericson et al. (2006), it is 

interesting to examine which aspects of our reanalysis contribute to the discordance in 

inferred dates between our two studies. To this end, we also reanalyze the data of Ericson 

et al. (2006) in PATHd8 (Britton et al., 2007) using our alignment (Table 2.1) and 

different fossil complements. To make results comparable, we use the same topology as 

above. As PATHd8 cannot accommodate multiple genes, we estimated maximum 

likelihood branch lengths on the concatenated data matrix using the optimal DNA 

substitution model (TIM+I+G) as inferred using AIC in Modeltest (Posada and Crandall, 

1998) and PAUP* (Swofford, 2003). We will refer to this tree hereafter as TML. 

To determine whether our relatively conservative site exclusion approach contributed 

to the older dates inferred here, we analyzed TML in PATHd8 using the same settings as 

in Ericson et al. (2006). Specifically, we placed an upper limit of 95 Ma on the age of 
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Neoaves and fixed the age of divergence between Trochilidae (hummingbirds) and 

Apodidae (swifts) at 47.5 Ma. All other fossil calibrations (Table 3.3) were treated as 

minimum age constraints. We exclude the fossil representing stem Strigiformes (owls; 

constraint ‘F’ in Ericson et al., 2006) from all analyses as it was found to be superseded 

by the fossil from stem Coliiformes (mousebirds; constraint ‘E’ in Ericson et al. 2006). 

The resulting chronogram (Figure 2.2, green dashed lines) is in very close agreement 

with the published chronogram of Ericson et al. (2006). In fact, regarding the K-T 

boundary, analysis of our alignment yielded slightly younger dates with only two 

neoavian divergence point estimates lying in the Cretaceous (versus five in Ericson et al., 

2006). We can therefore be confident that our conservative alignment is not responsible 

for the older dates presented in Figure 2.1. We note, however, that analysis of our 

alignment yielded reasonable age estimates for the divergence between Paleognathae and 

Neognathae and between paleognath families Rheidae and Apterygidae (Figure 2.2), 

contra to the results of Ericson et al. (2006). This may have come about because the less 

conservative data exclusion of Ericson et al. (2006) included ambiguously aligned sites 

involving these taxa. 

We next analyzed TML in PATHd8 using the calibration recommendations outlined in 

our manuscript. Specifically, we set a liberal upper limit on the age of Neoaves at 120 

Ma, and for the required fixed calibration used the fossil from stem Sphenisciformes 

(penguins) at 62 Ma (Slack et al., 2006). Additional fossils were again treated as 

minimum age constraints. Replaced fossil constraints are denoted by a prime (´) symbol 

in Table 3.3. The resulting chronogram (Figure 2.2, solid black lines) illustrates the 

strong systematic influence of our calibration changes on the inferred age estimates. In 

contrast to the estimates inferred using the original constraints of Ericson et al. (2006), 

substantial diversification is inferred to have occurred in the Cretaceous using our 

calibrations. For example, whereas we infer the initial divergence within Neoaves to be ~ 

70 Ma using the original Ericson et al. (2006) calibrations, the estimate increases to ~ 94 

Ma using our revised calibrations. Furthermore, ages for all neoavian divergences are on 

average 18.95 Ma older using our calibration scheme (range 0 – 41.5 Ma). Most striking, 

however, are the differences in age estimates for the required fixed nodes. While Ericson 

et al. (2006) fix the divergence between Trochilidae and Apodidae at 47.5 Ma, we 
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estimate this divergence at 86.5 Ma. Our older estimate of 86.5 Ma is similar to the 75.7 

± 7.8 Ma estimate reported by van Tuinen and Hedges (2001). In our PATHd8 analysis 

we fixed the origin of stem Sphenisciformes at 62 Ma, whereas Ericson et al. (2006) 

estimate this event at 55 Ma (their minimum age constraint for that node), which is 7 Ma 

younger than the minimum age known from the fossil record. Again, we find much 

younger dates for nodes associated with the paleognath outgroups than was found in 

Ericson et al. (2006). 

Finally, we can compare age estimates generated in Multidivtime (Figure 2.1) and 

PATHd8 (Figure 2.2) using the same revised fossil constraints. Two important 

differences can be seen between these two figures. First, the initial divergence within 

Neoaves is estimated as slightly older at ~ 100 Ma using the Bayesian method of 

Multidivtime (versus ~ 94 Ma in PATHd8). We note that this finding was precluded by 

the maximum age constraint of 95 Ma set by Ericson et al. (2006). Second, the results 

from Multidivtime indicate a more gradual diversification of Neoaves than those from 

PATHd8. This is likely due to the ability of Multidivtime to accommodate information 

from individual genes, as these genes are likely informative in different parts of the tree. 

While Multidivtime tends to produce older age estimates than PATHd8 for many nodes, 

the difference is much slighter and insignificant when the large posterior credible 

intervals are included.  
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Table 2.1 Aligned nuclear DNA fragment lengths. The alignment is taken directly from Ericson et al. (2006). ‘Original’ refers to aligned sequence 
lengths prior to excluding ambiguously aligned nucleotide sites. 

Gene Original This study Excluded sites 
β-fibrinogen 
(intron 7) 

1705 944 24-110 121-123 126 127 168-170 176 199 200 214 232 240 241 253 256 257-275 304-315 362 
363 366-375 377 378 395 401 402 420 429 432 440 451-453 468 493-514 532 541 561 596 609 
612 613 619 660-675 679-684 690 720 746-748 750 770 771 774 777 778-784 793 794 797 812 
813 826-829 843-1123 1144 1150 1151 1190-1192 1195-1203 1222 1224 1227 1228 1229 1231 
1247-1251 1265 1271-1278 1294 1296 1307 1335-1340 1346 1350-1353 1359 1360 1389 1394 
1396-1408 1455 1468-1472 1491-1509 1513-1529 1532-1540 1551-1572 1579-1656 1660 1663 
1673-1685 1692-1701 

c-myc (exon 3) 510 498 64-75 
myoglobin 
(intron 2) 

1061 720 24-30 34 42 54 77-88 91 109 110 118 133 134 137-140 160 172 182-339 347-349 362-364 373 
374 385 392 393 408-418 455 485 548 565-568 591 597-600 604 605 618-621 633-637 663 675 
697 701 721-723 735-751 759-801 832 839-846 874 875 983 1004-1023 1027 1036-1039 

ornithine 
decarboxylase 
(ODC; introns 
6,7; exon 7) 

1093 671 80-82 86-178 184 192 193 198 208 213 215-276 287 289 292 299 300 307 333 339 346 354-356 
364 373-386 391-399 404 411-427 438 448 450 451 545 546 558-563 588-648 658 670-683 690-
692 702-707 712-726 734 735 742 753 762-770 781 787 790 791 799 808 812-822 828 832 833 
839-860 866 869 877-879 892 913 918 926 927 943 948 952 953 956 974 975 984-988 994 999 
1005-1008 1013 1014 1031-1034 1036 1042 1056 

RAG-1 930 930 - 
Total 5299 3763 1536 
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Table 2.2 Priors used in the Multidivtime analyses. All priors were determined from an average 
across the five genes. Those listed under ‘Conventional Prior’ were used to generate the results 
presented in Figure 1; these are the priors advocated by the authors of the method. To examine 
the influence of prior probabilities on inferred age estimates Multidivtime was also ran with 
deliberately young age priors (listed under ‘Young Prior’). 

Parameter Conventional Prior Young Prior 
rttm (mean time separating root and present) 100 80 
rttmsd (standard deviation of rttm) 40 50 
rtrate (mean rate at root node) 0.0016 0.0013 
rtratesd (standard deviation of rtrate) 0.0016 0.0013 
brownmean (mean of Brownian motion constant) 0.01875 0.015 
brownmeansd (standard deviation of brownmean) 0.01875 0.015 
bigtime (oldest age allowed for root node) 160 160 
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Table 2.3 Fossil calibrations used in this study. For fossils used in Ericson et al. (2006), see that 
paper for the original fossil references. All fossils are treated as minimum age constraints, and are 
placed in the tree exactly as in Ericson et al. (2006). Replaced fossil calibrations used in our 
reanalysis are denoted by a prime (´) symbol. Fossil calibration ‘F’ (stem group Strigiformes) 
from Ericson et al. (2006) was not used as it was found to be redundant with the more derived 
fossil calibration E (stem group Coliiformes). 

Symbol Fossil calibration Age (Ma) Source 
A crown Pici 30 Ericson et al. (2006) 
B stem Upupidae + Phoeniculidae 47.5 Ericson et al. (2006)	
  
C stem Coraciidae + Brachypteraciidae 47.5 Ericson et al. (2006)	
  
D stem Trogoniformes 53 Ericson et al. (2006)	
  
E stem Coliiformes 55 Ericson et al. (2006)	
  
G crown Pandionidae 37 Ericson et al. (2006)	
  
H stem Cariamidae 47.5 Ericson et al. (2006)	
  
I stem Phalacrocoracidae 25 Ericson et al. (2006)	
  
J crown Sulidae 33 Ericson et al. (2006)	
  
K stem Fregatidae 53 Ericson et al. (2006)	
  
L stem Sphenisciformes 55 Ericson et al. (2006)	
  
L´ stem Sphenisciformes 62 Slack et al. (2006)	
  
M crown Balaenicipitidae 30 Ericson et al. (2006)	
  
N crown Heliornithidae 14 Ericson et al. (2006)	
  
O stem Jacanidae 30 Ericson et al. (2006)	
  
P stem Apodiformes 53 Ericson et al. (2006)	
  
Q stem Trochilidae 47.5 Ericson et al. (2006)	
  
Q´ stem Trochilidae 30 Mayr (2004)	
  
R crown Pteroclididae 30 Ericson et al. (2006)	
  
S stem Phoenicopteriformes 30 Ericson et al. (2006)	
  
T stem Phaethontidae 55 Ericson et al. (2006)	
  
U stem Galliformes 53 Ericson et al. (2006)	
  
U´ Stem Anatidae 66 Clarke et al. (2005)	
  
V stem Gruidae + Aramidae 30 Ericson et al. (2006)	
  
X Stem Gaviiformes 30 Ericson et al. (2006)	
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Figure 2.1 Chronogram for Neoaves estimated using a Bayesian modelling of rate evolution. The 
dashed vertical red line marks the K–T boundary. Error bars represent posterior probability (0.95) 
credible intervals (root node 104-154 Ma). An unambiguous ancient diversification of Neoaves is 
indicated by 24 credible intervals restricted to the Cretaceous (green bars). 
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Figure 2.2 Chronograms generated using PATHd8 on the concatenated data matrix 
implementing the fossil constraints of Ericson et al. (2006; green dashed chronogram) 
and those of our reanalysis (black solid chronogram). The dashed vertical red line marks 
the K-T boundary.  
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Chapter 3 

Strong mitochondrial DNA support for a Cretaceous origin of 

modern avian lineages1 

ABSTRACT 

Background: Determining an absolute timescale for avian evolutionary history has 

proven contentious. The two sources of information available, paleontological data and 

inference from extant molecular genetic sequences (colloquially, 'rocks' and 'clocks'), 

have appeared irreconcilable; the fossil record supports a Cenozoic origin for most 

modern lineages, whereas molecular genetic estimates suggest that these same lineages 

originated deep within the Cretaceous and survived the K-Pg (Cretaceous-Paleogene; 

formerly Cretaceous-Tertiary or K-T) mass-extinction event. These two sources of data 

therefore appear to support fundamentally different models of avian evolution. The 

paradox has been speculated to reflect deficiencies in the fossil record, unrecognized 

biases in the treatment of genetic data or both. Here we attempt to explore uncertainty 

and limit bias entering into molecular divergence time estimates through: (i) improved 

taxon (n = 135) and character (n = 4594 bp mtDNA) sampling; (ii) inclusion of multiple 

cladistically tested internal fossil calibration points (n = 18); (iii) correction for lineage-

specific rate heterogeneity using a variety of methods (n = 5); (iv) accommodation of 

uncertainty in tree topology; and (v) testing for possible effects of episodic evolution. 

Results: The various 'relaxed clock' methods all indicate that the major (basal) lineages of 

modern birds originated deep within the Cretaceous, although temporal intraordinal 

diversification patterns differ across methods. We find that topological uncertainty had a 

systematic but minor influence on date estimates for the origins of major clades, and 

Bayesian analyses assuming fixed topologies deliver similar results to analyses with

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
1 Published as Brown, J. W., J. S. Rest, J. García-Moreno, M. D. Sorenson, and D. P. Mindell. 2008. Strong 
mitochondrial DNA support for a Cretaceous origin of modern avian lineages. BMC Biology 6:6. 
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unconstrained topologies. We also find that, contrary to expectation, rates of substitution 

are not autocorrelated across the tree in an ancestor-descendent fashion. Finally, we find 

no signature of episodic molecular evolution related to either speciation events or the K-

Pg boundary that could systematically mislead inferences from genetic data. 

Conclusion: The 'rock-clock' gap has been interpreted by some to be a result of the 

vagaries of molecular genetic divergence time estimates. However, despite measures to 

explore different forms of uncertainty in several key parameters, we fail to reconcile 

molecular genetic divergence time estimates with dates taken from the fossil record; 

instead, we find strong support for an ancient origin of modern bird lineages, with many 

extant orders and families arising in the mid-Cretaceous, consistent with previous 

molecular estimates. Although there is ample room for improvement on both sides of the 

'rock-clock' divide (e.g. accounting for 'ghost' lineages in the fossil record and developing 

more realistic models of rate evolution for molecular genetic sequences), the consistent 

and conspicuous disagreement between these two sources of data more likely reflects a 

genuine difference between estimated ages of (i) stem-group origins and (ii) crown-group 

morphological diversifications, respectively. Further progress on this problem will 

benefit from greater communication between paleontologists and molecular 

phylogeneticists in accounting for error in avian lineage age estimates. 

BACKGROUND 

Many evolutionary models (Archibald and Deutschman, 2001; Cooper and Fortey, 1998; 

Penny and Phillips, 2004; van Tuinen et al., 2006) are tightly linked to absolute 

timescales. A reliable temporal framework is therefore required for understanding the 

tempo (and, through correlation with geophysical phenomena, mechanisms) of biological 

evolution. There are two complementary sources of information for dating ancient 

biological divergences: (1) physical historical remains (either paleontological or 

ichnological); and (2) molecular sequence differences among extant taxa, the analysis of 

which requires assumptions about the processes and rates of sequence evolution. 

Unfortunately, these two sources of information ('rocks' and 'clocks', respectively) often 

yield starkly disparate estimates of the timing of major biological divergences (Benton 

and Ayala, 2003). 
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Of course, some discrepancy is expected, as these two sources of data (molecular age, 

MA; fossil age, FA) concern different stages during the process of cladogenesis (δTrue MA-

FA; Figure 3.1). As fossils document products of evolution, they necessarily post-date 

speciation events. The underestimation of speciation times from fossil data (δFossil error) 

can be partitioned into two components: (i) the interval, following speciation, required for 

diagnostic characters to evolve (δDiagnostic character); and (ii) the time, following the 

evolution of diagnostic characters, realized for the deposition of a sampled fossil (δOldest 

fossil). Here, δDiagnostic character can be regarded as a fixed value (although different for every 

node), however δOldest fossil can be reduced with subsequently older fossil finds. In contrast 

to fossils, molecular data instead reflect genetic divergence, which must predate 

speciation events because genetic lineages present in two newly evolved sister lineages 

coalesce (on average) 2Ne generations prior to speciation (Edwards and Beerli, 2000). 

However, the errors associated with molecular age estimates (δCoalescence and δClock error) are 

more complex than analogous fossil errors. For example, if no polymorphism exists for a 

particular locus at speciation, then inferred genetic divergence times based on that locus 

will actually post-date speciation, as no information exists to trace the underlying 

genealogy. Furthermore, molecular data may overestimate or underestimate the true 

speciation time because of stochastic errors associated with divergence time estimation 

(δClock error), and this uncertainty will increase as one extrapolates backwards through 

time, even with an infinite amount of data (Rannala and Yang, 2007). Regardless, for a 

given node with a minimum age constraint derived from the fossil record, the realized 

discrepancy between the two estimates (δRealized MA-FA = MA - FA = δMolecular error + δFossil 

error) will always be positive, and is a parameter that both paleontologists and molecular 

biologists are working to minimize (Benton and Ayala, 2003). 

Strictly speaking, any molecular estimate that generates a positive value of δRealized MA-

FA is consistent with the fossil record. It is instead the magnitude of δRealized MA-FA that 

suggests conflict, and distressingly large values sometimes exist. Conflict between the 

two sources of information is especially evident with respect to the ages of extant avian 

lineages (Neornithes). Based on a strict interpretation of the fossil record (i.e. 

insignificant δFossil error), Feduccia (Feduccia, 1995; Feduccia, 2003) proposed an 

explosive Cenozoic origin for most modern avian lineages, presumably a result of open 
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niches left by newly extinct non-avian dinosaurs and other taxa. Although a recent fossil 

find (Clarke et al., 2005) forces a minimum of five of the earliest Neornithes divergences 

into the late Cretaceous, the fossil record generally supports the view that most modern 

lineages originated in the Cenozoic (Bleiweiss, 1998; Chiappe and Dyke, 2002; Feduccia, 

1995; Feduccia, 1999; Feduccia, 2003; Fountaine et al., 2005; Mayr, 2005). In contrast, 

molecular estimates all indicate that these same lineages are considerably older, 

sometimes as much as twice as old as analogous paleontological estimates (Baker et al., 

2007; Brown et al., 2007; Cooper and Penny, 1997; Hedges et al., 1996; Kumar and 

Hedges, 1998; Paton et al., 2002; Paton et al., 2003; Pereira and Baker, 2006; Rest et al., 

2003; van Tuinen and Hedges, 2001; van Tuinen et al., 2006). Between these two 

extremes lies the Cretaceous-Paleogene (K-Pg; formerly Cretaceous-Tertiary or K-T) 

boundary, a period when as many as 50% of land-dwelling species went extinct (Benton, 

1997). The conflicting age estimates thus have different implications regarding the 

influence of the K-Pg mass extinctions on the evolutionary radiation of modern birds. 

Although resolution of this conflict is clearly important for understanding avian 

diversification, it is hindered by compelling arguments from both sides. The supposition 

that the quality of the fossil record deteriorates backwards in time, for example, is 

contradicted by the observed congruence between stratigraphic and phylogenetic ordering 

of taxa (Benton et al., 2000). Sophisticated stratigraphic analyses indicate that fossils of 

the antiquity necessary to produce congruence with molecular studies are extremely 

improbable (Bleiweiss, 1998; Foote et al., 1999; Foote and Sepkoski Jr., 1999) (but see 

(Tavaré et al., 2002; Wills, 2007)). Furthermore, of the known Mesozoic avian fossils 

(Benton, 1999; Chiappe and Dyke, 2002; Fountaine et al., 2005; Padian and Chiappe, 

1998), the vast majority unambiguously lay outside Neornithes (Clarke and Chiappe, 

2001). Although a few Cretaceous fossils putatively represent modern lineages (e.g. 

parrot (Stidham, 1998), loon (Chatterjee, 2002) and others (Chiappe and Dyke, 2002; 

Fountaine et al., 2005)) these have largely been dismissed as fragmentary and 

inconclusive (Chiappe and Dyke, 2002; Dyke and Mayr, 1999; Dyke and van Tuinen, 

2004; Feduccia, 2003). One the molecular side, the recognition that rates of molecular 

evolution are often not clock-like (including birds (García-Moreno, 2004; Lovette, 2004; 

Mindell et al., 1996; Pereira and Baker, 2006)), and that lineage-specific heterogeneity is 
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common (Bromham and Penny, 2003), has spurred the development of numerous 

'relaxed' molecular clock methods (see reviews in (Magallón, 2004; Rutschmann, 2006; 

Welch and Bromham, 2005)). In support of molecular genetic data, these methods 

perform well in simulation (Drummond et al., 2006; Ho et al., 2005) and, when applied to 

empirical data, deliver Cretaceous ages for the origin of modern birds (Brown et al., 

2007; Pereira and Baker, 2006). 

Given these arguments, the paleontological and molecular phylogenetic communities 

are currently at an impasse regarding the application of an absolute temporal axis for 

early organismal evolution (Benton, 1999; Easteal, 1999), and a range of evolutionary 

models (Archibald and Deutschman, 2001; Cooper and Fortey, 1998; Penny and Phillips, 

2004; van Tuinen et al., 2006) remain viable for birds. Here we endeavour to determine 

whether a more rigorous treatment of molecular genetic data lessens the 'rock-clock' 

discrepancy (δRealized MA-FA). In particular, we incorporate large fossil and taxon data sets, 

two components of molecular dating that have been shown to have a strong impact on the 

resulting divergence time estimates (Hug and Roger, 2007; Linder et al., 2005). In 

addition, we accommodate and explore the impact of uncertainty in both tree topology 

and molecular dating strategy. Finally, we test for signals of episodic molecular evolution 

related to both speciation events and absolute geologic time, processes that could 

potentially mislead molecular-based age estimates by systematically inflating branch 

lengths within speciose clades (Pagel et al., 2006a). 

RESULTS 

Phylogenetic inference 

Our optimal phylogenetic reconstruction (TOptimal; AICc = 414160.2536) is a significantly 

better fit to the mtDNA matrix than a recent consensus topology derived from the 

literature (TConsensus; AICc = 421460.9166; see the methods section and Figure 3.2). 

Nevertheless, the two topologies agree in many instances. For example, several 

traditional orders identified as having little support for monophyly (e.g. Coraciiformes, 

Ciconiiformes, Caprimulgiformes and Falconiformes (Cracraft et al., 2004)) were also 

polyphyletic in our analyses. However, the two trees also differ in many respects, most 
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notably in the placement of Passeriformes. In TConsensus, the clade is relatively derived in 

the tree, whereas in TOptimal it forms the basal-most clade in Neoaves. Several traditionally 

hard-to-classify lineages (e.g. Pteroclidae, Opisthocomidae, Phaethontidae, Podargidae 

and Steatornithidae) are of suspect placement in TOptimal. These and other uncertainties 

tend to be localized and do not (as we report below) overly influence date estimates for 

the basal nodes in the avian tree. Some of the topological differences, however, are of 

operational importance, as they cause either redundancy or obsolescence of some fossil 

constraints used in estimating divergence times. Overall, of the 18 total internal fossil 

calibrations considered, 16 were used on TConsensus, and 17 on TOptimal (Figure 3.2). 

Divergence time estimation 

A substantial signal was present for both a departure from a molecular clock and a lack of 

ancestor-descendant autocorrelation of substitution rates. Using penalized likelihood in 

r8s, both topologies TConsensus and TOptimal were found to be unclock-like, with optimal 

smoothing values (log10λ) of 1.0 and 0.4, respectively. Analyses in Dating5 clearly 

rejected the constant-rate Poisson model (-ln L = 63214.8; χ2 = 8051.61, df = 271, p = 

0.000) but could not reject the stationary (high variance) rate model (-ln L = 2123.01; χ2 = 

268.352, df = 269, p = 0.482) which produced a large index of dispersion R = 469.782. 

Bayesian analyses in Multidivtime delivered positive but very small values for the degree 

of autocorrelation of substitution rates across both topologies (Table 3.1). Finally, 

analyses of TConsensus using BEAST indicated that non-autocorrelated models of rate 

variation fit the data significantly better than a molecular clock (Table 3.2). Of the non-

autocorrelated models, the lognormal distribution (UCLN) had a much better harmonic 

mean model likelihood than the exponential distribution (UCED), and relaxation (TFlexible) 

of a fixed topology further increased fit. Using each of these uncorrelated models, the 

covariance of substitution rates between ancestor and descendent branches across the tree 

was not significantly different from zero. 

Given the extensive phylogenetic uncertainty within Neornithes, we focus on 

divergence times of clades for which monophyly is not contentious (Table 3.3). Two key 

trends are recognized. First, for a given dating method, differences in topology tended to 

have a minor but systematic influence on inferred ages. In general, TOptimal delivered older 
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average date estimates than TConsensus using r8s (8.9 MY) and Multidivtime (3.6 MY), but 

the opposite trend was found with PATHd8 (-8.2 MY). When confidence/credible 

intervals are considered, however, topology did not significantly influence most 

individual date estimates. Overall, in terms of the degree of discrepancy between fossil 

and molecular dates on a whole-tree basis (average δRealized MA-FA), topology had a 

noticeable (> 5 MY) influence on divergence estimates for only the PATHd8 analyses 

(Table 3.3). 

Second, the choice of the relaxed clock method had a strong influence on inferred 

ages. R8s, Multidivtime and BEAST tended to deliver similar estimates for most clades 

of interest (Table 3.3). In contrast, PATHd8 generated considerably younger dates with 

much smaller confidence intervals, despite using the same bootstrapped phylograms and 

fossil constraints as r8s. Dating5 tended to produce the most extreme results, with 

inferred basal split estimates similar to those from Multidivtime, but some derived split 

estimates younger than those from PATHd8. Most significantly, PATHd8 and Dating5 

together identified five of these major clades as having crown diversification restricted to 

the Cenozoic (Ratites, Charadriiformes, Procellariiformes, Cuculiformes and 

Apodiformes), although the remaining methods generate estimates for these same nodes 

that are on average more than 50% older. In terms of comparing molecular and fossil age 

estimates (average δRealized MA-FA), r8s, Multidivtime and BEAST all show considerable 

discordance between the two sources of data, with the average molecular estimates for 

the major nodes (Table 3.3) being 36–45 MY older than corresponding fossil ages. 

PATHd8 and Dating5, in contrast, exhibit greater agreement between estimates from 

'rocks' and 'clocks', with an average discrepancy of 17–25 MY. 

Despite these differences, all methods agree that the basal splits within Neornithes 

occurred deep within the Cretaceous (Table 3.3, nodes A-E). The youngest estimate for 

the root of Neornithes (PATHd8, TOptimal) is of Early Cretaceous age, 37 MY older than 

the oldest undisputed neornithean fossil (Clarke et al., 2005). Conflict among methods 

instead involves the diversification of derived lineages (Figures 2.3 and 2.4). Two 

patterns can be discerned. First, PATHd8 and Dating5 support bursts of speciation (many 

lineages arising almost simultaneously), whereas the remaining methods generally 
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support more gradual diversification. Second, and more germane to the 'rock-clock' 

problem, PATHd8 alone supports an extensive post-K-Pg radiation of Neoaves. For 

example, from results of the non-autocorrelated rate models in BEAST allowing 

topological uncertainty (TFlexible; see Figure 3.4), not only are the basal splits inferred to 

have occurred in the Cretaceous, but 37 credible intervals (green bars) do not overlap the 

K-Pg boundary. Finally, no support is shown for episodic evolution, either correlated 

with speciation events ((Pagel et al., 2006a); no effect) or an increase in inferred 

substitution rate either during early diversification or following the K-Pg mass extinction 

(Figure 2.5). 

DISCUSSION 

Phylogenetic inference 

Whether using fossil or molecular data, a daunting impediment to divergence time 

estimation in birds is that resolution of many inter-ordinal phylogenetic relationships has 

proven obstinate, despite large data matrices with multiple character types (Cracraft et al., 

2004). Although our reconstruction TOptimal is overly optimistic in being fully resolved, it 

provides a useful alternative to the conservative TConsensus (Figure 3.2). 

TOptimal recovers several traditional orders as polyphyletic (Caprimulgiformes, 

Coraciiformes, Falconiformes, Ciconiiformes), consistent with expectations (Cracraft et 

al., 2004) (but see (Livezey and Zusi, 2007)). Although TOptimal has caprimulgiform 

(nightbirds) families much more distantly related to one another than previous 

morphological (Mayr, 2002) and molecular (Barrowclough et al., 2006) investigations, 

differences in taxon sampling confounds direct comparison across studies. While 

Coraciiformes (kingfishers and relatives) is not found to be monophyletic, the two 

recovered sub-groupings both fall within a larger clade containing owls (Strigiformes), 

parrots (Psittaciformes) and woodpeckers and relatives (Piciformes). The monophyletic 

status of the order Falconiformes has received mixed support in previous analyses 

(Ericson et al., 2006; Fain and Houde, 2004; Griffiths, 1994; Livezey and Zusi, 2007; 

Mayr and Clarke, 2003; Sibley and Ahlquist, 1990). Placement of Falconidae in TOptimal is 

suspect and likely stems from insufficient taxon sampling from this family (Gibb et al., 
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2007). Regardless, no support was found for hypotheses uniting falconiform taxa with 

owls (Strigiformes) (Livezey and Zusi, 2007) or New World vultures (Cathartidae) with 

storks (Ciconiiformes) (Sibley and Ahlquist, 1990). 

Several monotypic avian families have traditionally proved difficult to classify. The 

enigmatic hoatzin (Opisthocomidae) has variously been allied with at least four distantly 

related orders (Galliformes, Cuculiformes, Musophagiformes and Columbiformes; see 

(Sibley and Ahlquist, 1990; Sorenson et al., 2003)). We find here an alliance with doves 

(Columbiformes), similar to joint analyses of mitochondrial and nuclear DNA sequences 

(Sorenson et al., 2003). The taxonomically problematic sandgrouse (family Pteroclidae) 

has alternatively been considered a member of Charadriiformes (shorebirds and allies (de 

Juana, 1997; Sibley and Ahlquist, 1990)) or Columbiformes (Ericson et al., 2006; 

Livezey and Zusi, 2007; Mayr and Clarke, 2003). Our reconstruction has the sandgrouse 

distantly related to both orders, and instead allied with Falconiformes. This relationship is 

unsupported elsewhere and we have little confidence in this placement. The novel 

placement of the tropicbird (family Phaethontidae) as sister to Sphenisciformes is 

similarly suspect. 

Finally, we find no support in our mtDNA analyses for the neoavian clades 'Metaves' 

and 'Coronaves' identified from nuclear β-fibrinogen intron analyses (Fain and Houde, 

2004), although our constraint tree allowed for this possibility (TConstraint; see Figure 3.7). 

A major difference between these trees involves the phylogenetic position of the perching 

birds (Passeriformes); while nuclear DNA analyses recover Passeriformes as a relatively 

derived clade within 'Coronaves' (Ericson et al., 2006; Fain and Houde, 2004), in TOptimal 

they instead comprise the basal-most lineage of Neoaves. This may be indicative of 

different phylogenetic signals in nuclear versus mtDNA sequences, as other mtDNA 

studies have also inferred a basal phylogenetic position of Passeriformes in Neoaves 

(Slack et al., 2007). 

Uncertainty in tree topology and substitution rate evolution 

While TOptimal yields interesting hypotheses about avian relationships, the focus of this 

study is on estimating basal divergence times in Neornithes and we might regard 
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topology as a nuisance parameter (and explicitly so in the BEAST TFlexible analyses). 

Topological error is usually not considered in divergence time estimation, but potentially 

could systematically bias age estimates through: (i) incorrect placement of fossil 

calibrations; and (ii) improper estimation of branch lengths. Through our joint 

consideration of TConsensus and TOptimal, we find that topology does have a systematic 

influence on inferred divergence times for nodes of interest (Table 3.3), but that for the 

present data set this influence differed in direction across methods and was generally 

insignificant when confidence/credible intervals were considered. Removal of the 

restriction of a fixed topology in BEAST (TFlexible) yielded age estimates similar to those 

from Multidivtime analyses assuming TOptimal. Although yielding diffuse estimates, this 

'relaxed topology' approach better reflects uncertainty in the underlying data. 

An interesting result reported here is that rates of molecular evolution are found to be 

non-autocorrelated across the Neornithes tree (Tables 3.1 and 3.2), a result previously 

noted for virus and marsupial data sets (Drummond et al., 2006). An autocorrelation of 

rates would imply an inheritance of the trait 'rate of evolution'. This makes intuitive sense 

when considering that ancestor and descendant lineages are likely similar in body size, 

generation time, DNA repair efficiency, population size and other traits influencing rates 

of sequence evolution, and the most popular molecular dating methods available indeed 

implicitly assume that rates are autocorrelated across a tree (Sanderson, 2003; Thorne et 

al., 1998). However, even if 'rate of evolution' is heritable, nodes separated by long 

periods of time may accumulate sufficient rate variation that autocorrelation in this trait 

will break down. Alternatively, 'rate of evolution' may simply be more labile than we 

expect. Regardless, violation of an implicit autocorrelation assumption did not have 

significant effects on inferred dates for nodes of interest (Table 3.3). For example, r8s 

and Multidivtime, which each deal with rate variation in an ancestor-descendant fashion, 

deliver age estimates that match quite closely to those generated by BEAST, which does 

not make such an assumption. 

Antiquity of basal avian lineages 

All methods employed here agree that the basal divergences within Neornithes occurred 

in the Cretaceous (Table 3.3, nodes A-E), supporting the refutation of a Cenozoic origin 
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of modern lineages (Feduccia, 1995; Feduccia, 2003) mandated by the discovery of the 

66 MY duck Vegavis iaai (Clarke et al., 2005), which minimally forces five basal 

divergences into the Cretaceous. Moreover, our results are not dependent on this oldest 

fossil calibration, as analyses in r8s, PATHd8 and Multidivtime without using the 

Vegavis constraint returned nearly identical results to those reported here (data not 

shown); indeed, we must paradoxically conclude that this oldest undisputed neornithean 

fossil was essentially uninformative in our molecular dating analyses. Given the 

consensus across 'relaxed clock' methods employing very different assumptions about 

how molecular substitution rate evolves, we regard an Early Cretaceous origin of 

Neornithes as robustly supported. This inferred Cretaceous origin, and consequent 

survival of several avian lineages across the K-Pg boundary (Robertson et al., 2004), is 

consistent with previous molecular studies (Baker et al., 2007; Brown et al., 2007; 

Cooper and Penny, 1997; Hedges et al., 1996; Kumar and Hedges, 1998; Paton et al., 

2002; Paton et al., 2003; Pereira and Baker, 2006; Rest et al., 2003; van Tuinen and 

Hedges, 2001; van Tuinen et al., 2006) and is supported by historical biogeography 

reconstructions (Cracraft, 2001). 

An explanation occasionally offered for the antiquity of molecular dates is that rates 

of sequence change may speed up during radiations (Benton, 1999), consistent with a 

basic tenet of punctuated equilibrium theory where most character change is concomitant 

with speciation (Eldredge and Gould, 1972), possibly resulting from stochastic effects 

during founder effect speciation (Mayr, 1954; Pagel et al., 2006a). If true, an elevated 

number of molecular substitutions recorded during diversification could erroneously be 

interpreted as a longer time span at a slower background rate, resulting in a systematic 

overestimation of divergence times for all nodes predating the radiation. Some evidence 

exists for a correlation between speciation and character evolution (Barraclough and 

Savolainen, 2001; Cubo, 2003; Mindell et al., 1989; Pagel et al., 2006a), although a study 

of island radiations failed to detect such an effect (Bromham and Woolfit, 2004). While 

punctuated molecular evolution may be less frequent in animals (18% of cases versus 

44% and 60% in plants and fungi, respectively (Pagel et al., 2006a)), this effect is 

nevertheless a prime candidate to explain the strong and persistent discrepancy between 

molecular- and fossil-based divergence estimates. However, we find no signal for 
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punctuated (speciational) molecular evolution (Pagel et al., 2006a) in the present data set. 

In addition, we fail to detect an accelerated rate associated with either the K-Pg boundary 

or during the initial diversification of Neornithes (Figure 3.5). If rates of sequence change 

were strongly influenced by diversification, we would expect clear departures from the 

inferred mean standardized substitution rate (Aris-Brosou and Yang, 2003). Although 

Cenozoic rates tend to be more variable than Mesozoic (ancestral) rates, we find no 

evidence for an obvious acceleration in substitution rate associated with any of the major 

nodes for any genetic partition. Although these two approaches to identifying episodic 

evolution would ideally involve more comprehensive taxon sampling, if punctuated 

evolution were primarily responsible for inflating inferred molecular dates then we likely 

would have detected the effect with the present data matrix. 

Rather than narrowing the formidable 'rock-clock' gap through application of methods 

designed to minimize biases and accommodate uncertainty, we have instead considerably 

reinforced it. In part, the discordant age estimates can be explained through reference to 

the genuine time-lag (δTrue MA-FA; see Figure 2.1) between the divergence of genetic 

lineages (predating speciation) and the evolution of diagnostic morphological characters 

(postdating speciation). However, given the estimated magnitude of δRealized MA-FA (Table 

3.3), it is unlikely that δTrue MA-FA alone explains the dissonance. One the one hand, while 

the fossil record may be adequate for many evolutionary questions (Benton et al., 2000), 

there are clear instances where it is not. The 66 MY Vegavis iaai (Clarke et al., 2005), for 

example, requires the coexistence of Paleognathae representatives; however, Cretaceous 

paleognaths are unknown. This may be a result of a geographical bias in fossil sampling 

favouring the northern hemisphere (Cooper and Fortey, 1998; Cooper and Penny, 1997; 

Cracraft, 2001; Dyke, 2001; Hope, 2002; Smith and Peterson, 2002), as many taxa are 

hypothesized as having southern hemisphere (Gondwana) origins (Cracraft, 2001). 

Although fossil gap analysis implies that a Cretaceous origin of several avian orders is 

unlikely (Bleiweiss, 1998), this method improperly assumes that fossils are randomly 

distributed (uniformly recovered through time) since the origin of a taxon; alternative 

fossil recovery curves can support very different scenarios, including scenarios that are 

more consistent with molecular genetic timelines (Marshall, 1999), even when the fossil 

record is particularly sparse (Tavaré et al., 2002). Although rightly considered with 
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caution, the increasing number of fragmentary remains of putative neornithean lineages 

from the Cretaceous (Hope, 2002) lends credence to the ancient origin and diversification 

of Neornithes. On the other hand, there may yet be some unrecognized biases in the 

analysis of molecular genetic sequences, and our results suggest new directions for future 

avian divergence time studies (described below). 

Radiation of Neornithes 

Despite broad agreement on the antiquity of basal divergences in Neornithes, arbitration 

among macroevolutionary models (Archibald and Deutschman, 2001; Cooper and Fortey, 

1998; Penny and Phillips, 2004; van Tuinen et al., 2006) to best describe the history of 

more derived lineages is complicated by disparity amongst various 'relaxed clock' results. 

Two important points of distinction can be recognized (Figures 3.3 and 3.4). First, 

Dating5 (overdispersed clock) and PATHd8 (rate smoothing across sister lineages) both 

infer bursts of speciation across the avian tree, while r8s (smoothing in an ancestor-

descendant fashion), Multidivtime (Bayesian modelling of ancestor-descendant 

autocorrelated rate evolution) and BEAST (Bayesian modelling of rate evolution without 

an autocorrelation assumption or fixed topology) instead infer a more gradual 

diversification of Neornithes. Second, PATHd8 alone supports a prominent radiation of 

avian families in the Cenozoic, a scenario statistically rejected in many instances by the 

remaining four analyses. Although published PATHd8 divergence time estimates for 

Neoaves using nuclear DNA produced similarly young estimates (Ericson et al., 2006), a 

reanalysis of these same data using Multidivtime roundly refuted the findings (Brown et 

al., 2007), echoing the incongruence of PATHd8 reported here. While the better 

reconciliation between molecular and fossil age estimates that PATHd8 offers seems 

satisfying at first, the unique discrepancy of this method from the other much more 

rigorous and biologically realistic methods raises concern. 

Given the apparent lack of autocorrelation of substitution rates, together with the 

intrinsic topological uncertainty in the Neornithes tree, the analyses in BEAST best 

reflect our current understanding of early avian evolution (Figure 3.4). Without the 

restrictive assumptions inherent in other 'relaxed clock' methods, these analyses 

unambiguously support a Cretaceous origin and diversification of basal avian lineages. 
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Even when considering large inferred credible intervals, 37 early avian divergences are 

restricted to the Cretaceous, similar to that found through the analysis of nuclear DNA 

sequences (Brown et al., 2007). It should be noted, however, that these nodes mostly 

represent order- and superfamily-level divergences; the majority of families sampled here 

(80 of 100 in BEAST) have their origins either overlapping or restricted to the Paleogene, 

consistent with interpretations from the fossil record (Dyke, 2001). In this respect, our 

results are similar to those inferred from a comprehensive study of the tempo of early 

mammalian evolution (Bininda-Emonds et al., 2007). The results of both studies indicate 

that significant cladogenesis occurred in the Cretaceous, but that many crown groups 

diversified in the Cenozoic. 

Future progress 

While there is a growing consensus for the Cretaceous origin of many Neornithes orders 

and families, the rate and timing of their diversification (and the influence of the K-Pg 

mass extinctions upon that diversification) is not yet resolved. MtDNA may have further 

utility in making progress on the problem, as our analysis of posterior credible interval 

widths indicates that longer sequences would likely improve divergence time estimates 

(Figure 3.6). However, we recognize that mtDNA is limited in that all sites belong to a 

single 'super-locus', and so a significant reduction of uncertainty (e.g. the slope in Figure 

3.6) will ultimately require the supplement of multiple independent nuclear loci. In 

addition, while the present study was focused at the family level, increased taxon 

sampling will break up long branches (benefiting phylogenetic reconstruction) and 

improve branch length estimates. Nevertheless, our results suggest fertile ground for 

future molecular research into this problem. For example, we find that: (i) variation in the 

number of substitutions across branches can be accommodated by a high variance 

stationary-rate model (Cutler, 2000b); and (ii) rates are not autocorrelated across the 

avian tree in an ancestor-descendent fashion. This suggests potential for development of a 

hybrid model that accommodates both pieces of information and that future studies test 

assumptions of rate autocorrelation before invoking them, at least for the tree depth that 

we consider here. 

In regards to the 'rock-clock' debate (Benton, 1999; Easteal, 1999), we feel that much 
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of the perceived dissonance between fossil- and molecular-based age estimates stems 

from a comparison of different phylogenetic entities: molecular phylogeneticists 

generally deal with stem-group origins, while paleontologists generally concentrate on 

crown-group diversification (van Tuinen et al., 2006). Moreover, it is too rarely 

emphasized that when dating the same node a genuine discrepancy is expected, as 

coalescent times (Tgene; see Figure 3.1) will predate cladogenesis while morphological 

diversification (Tmorphology; see Figure 3.1) will postdate cladogenesis. The reality is that in 

normal practice neither group directly addresses the main parameter of interest, the 

timing of speciation (Tspecies; see Figure 3.1), the pattern of which is essential to the 

understanding of the origins of biodiversity. However, tools do exist to better estimate 

speciation times from both fossils (e.g. accounting for 'ghost' lineages (Tavaré et al., 

2002)) and genetic data (e.g. explicitly modelling ancestral effective population sizes to 

account for coalescent times (Rannala and Yang, 2003)). Further, molecular methods can 

be augmented with greater information from the fossil record, possibly by incorporating 

models of preservation bias into temporal constraints (Tavaré et al., 2002). Newly 

developed methods exist where probability distributions can be applied to calibrated 

nodes in a Bayesian framework (Drummond et al., 2006; Ho, 2007; Yang and Rannala, 

2006). Although we recognize that this approach is superior in that it can lend more 

credence to the fossil record than standard minimum-age constraints, we refrained from 

using such methods here as there is currently insufficient information with which to 

specify meaningful prior distributions for most avian diversification times. Realization of 

such distributions will require more communication between paleontologists and 

molecular phylogeneticists (Brochu et al., 2004; Donoghue and Benton, 2007). 

CONCLUSION 

One possible explanation for the discrepancy between molecular and fossil data in dating 

early divergences of avian lineages has been that the genetic data have been 

misinterpreted. In this vein, the ancient age estimates reported from previous molecular 

studies are seen as artefacts of oversimplified or improperly executed methods. Here we 

have examined this conjecture by accommodating uncertainty in genetic divergence time 

estimates. Through analyses of a large mtDNA matrix using multiple cladistically tested 
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calibrations, alterative tree topologies and several sophisticated relaxed clock methods we 

have found that the molecular estimates are robust to varying assumptions about the 

evolution of evolutionary rates and consistent with those from previous studies. Our 

findings thus strongly support pre-K-Pg genetic origins for multiple modern bird 

lineages, including various extant orders and families, in contrast to the model of post-K-

Pg diversification derived from a narrow interpretation of the fossil record. 

METHODS 

Molecular sequence data 

The molecular data set comprises 135 avian species and 100 traditionally recognized 

families, as well as five outgroup taxa (turtles, n = 3; crocodilians, n = 2; Table 3.6). The 

names for avian taxa shown in our figures and tables generally follow Gill and Wright 

(2006). Turtles were used solely to root phylogenies and were not used for dating 

purposes. For each taxon a total of 5248 base pairs (bp) of mitochondrial DNA (mtDNA) 

was either sequenced directly using primers reported by or modified from (Sorenson et 

al., 1999) or downloaded from GenBank. mtDNAs from taxa newly collected by us and 

first reported here (GenBank accession numbers EU166921-EU167086, EU372666-

EU372688, EU391159). Protein-coding genes were aligned at the amino acid level, while 

RNA genes were aligned as nucleotides using secondary structure models following 

(Mindell et al., 1997). From the original matrix, 654 alignment positions could not be 

aligned unambiguously and so were excluded from subsequent analyses, yielding a final 

matrix of 4594 bp (Table 3.4). 

Fossil calibration points 

We include as many fossil calibration points as possible in disparate parts of the avian 

tree to maximize information from the fossil record, and reduce dependency on any one 

calibration estimate. Given that serious bias can result if even a single fossil has been 

misdiagnosed in its taxonomic affinity, we limit our calibration points to those fossils that 

have been rigorously analyzed in a cladistic context (Table 3.5). Our fossil calibrations 

are nearly identical to those used by Brown et al. (2007), which is a modification of the 

fossil complement used by Ericson et al. (2006). These internal avian calibration points 
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are all implemented as minimum age constraints in the various dating analyses. We also 

use two bounded external calibrations derived from the fossil record that date the caiman-

alligator (71-66 MY) and crocodile-bird (251-243 MY) splits (Müller and Reisz, 2005). 

This last calibration has recently been independently supported by molecular data using 

soft calibration bounds (Sanders and Lee, 2007). 

Phylogenetic trees and branch length uncertainty 

Inferring dates on an incorrect tree topology will lead to estimates that are suspect, if not 

wholly incorrect. We seek to accommodate the existing uncertainty about avian 

phylogenetic relationships by dating nodes on two alternative trees. The first topology 

considered is taken from Figure 27.10 of Cracraft et al. (2004), which is a consensus tree 

based on previous molecular- and morphology-based phylogenetic reconstructions. This 

tree is conservative in that all represented branching events are well supported by 

independent lines of evidence; uncertain relationships among lineages are presented as 

hard polytomies. This topology is referred to as TConsensus. The second topology 

considered was derived from a partitioned-model maximum likelihood search using the 

program RAxML-VI-HPC 2.2.3 (Stamatakis et al., 2005). The data were divided into 

four partitions: first, second and third codon positions of mitochondrial cytochrome-b, 

ND1 and ND2 genes, and concatenated mitochondrial 12S rDNA and tRNA genes (L, I, 

Q, M, W, A, N, C, Y). A collapsed consensus tree derived from Cracraft et al (thick 

branches only of Figure 27.10 in Cracraft et al. (2004)) was used as a backbone constraint 

to make tree searches more efficient (TConstraint; see Figure 3.7). Several hundred heuristic 

searches were performed under the GTRMIX model assuming a range of values for both 

the initial rearrangement setting (i; range 5–20) and number of rate categories (c; range 

5–25). The topology of the maximum likelihood estimate (MLE) is referred to as TOptimal. 

For the non-Bayesian dating methods, we accommodate uncertainty in branch length 

estimation through a non-parametric bootstrapping procedure. For each original data 

partition, 100 pseudoreplicate datasets were generated using the program SEQBOOT of 

the PHYLIP 3.6 package (Felsenstein, 2004); these bootstrapped matrices were 

concatenated to produce 100 pseudomatrices with the same size and number of partition-

specific characters as the original matrix. For TOptimal, branch lengths and substitution 
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model parameters were estimated using a partitioned GTR+G model in RAxML. For 

TConsensus, branch lengths and all substitution model parameters were estimated from each 

bootstrap matrix on the fixed topology using the GTR+I+G substitution model in PAUP* 

(Swofford, 2003) because RAxML cannot evaluate a tree containing mutlifurcations. 

Using these procedures we generated 100 trees with branch lengths (phylograms) for 

each topology. 

Divergence time estimates using relaxed molecular clocks 

Owing to the concern that assumptions of particular analytical methods may 

systematically bias divergence time estimates, we compare several methods for 

accommodating among-lineage rate heterogeneity for the purpose of estimating the 

divergence times of modern avian lineages. To facilitate direct comparison, all methods 

utilize the same fossil calibrations and tree topologies outlined above. 

First, the program r8s 1.7 (Sanderson, 2003) was used to estimate rates and dates for 

internal nodes in the phylogeny via penalized likelihood (PL). This semiparametric 

procedure combines a parametric model that allows for different rates on each branch in 

the tree (Sanderson, 2002) with a non-parametric penalty function that penalizes rates 

that change too quickly along the tree from ancestor to descendent branches (Sanderson, 

1997); a smoothing parameter (λ) determines the relative contribution of the penalty 

function. The optimal smoothing value was determined individually for each topology 

through a sequence-based cross-validation procedure (Sanderson, 2002) using penalty = 

add and the normalized (χ2) errors. Confirmation of the optimal smoothing values was 

obtained via multiple optimizations with different initial conditions (by setting 

num_restarts = num_time_guesses = 3). Confidence intervals for node ages were 

determined using the distribution of estimated ages across bootstrapped trees assuming 

the optimal smoothing value from the original phylograms. Summary of the mean 

estimate and associated error for a given node was accomplished using the profile 

command in r8s. 

Second, the program PATHd8 (Britton et al., 2007; Britton et al., 2006) also 

smoothes rates across the tree, but does so by calculating an average path length from an 
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internal node to all its descending terminals; deviations from a molecular clock are 

corrected through reference to fossil calibrations. Important distinctions from r8s above 

are that PATHd8 smoothes rates between sister groups (rather than from ancestor to 

descendent nodes) and it does this locally rather than over the entire tree. The same 100 

phylograms as analyzed with r8s above were used to generate confidence intervals on 

divergence times, although summary statistics were calculated manually. 

As a third approach, the Bayesian MULTIDISTRIBUTE package (Thorne, 2003) 

represents an attempt to explicitly model rate change across a tree (Kishino et al., 2001; 

Thorne and Kishino, 2002; Thorne et al., 1998). Here, the logarithm of the rate at the end 

of a branch is modelled with a normal distribution, the mean of which has an expected 

value equal to the rate at the beginning of the branch; thus, rates are implicitly assumed to 

be autocorrelated from ancestor to descendent nodes, although this autocorrelation may 

decay with increasing branch lengths. The posterior probability distribution of divergence 

times is approximated by samples from a Markov chain Monte Carlo (MCMC) chain. 

The data were partitioned as noted above. For each partition, estimates of the 

transition/transversion rate ratio and the gamma site class-specific rates under the F84+G 

model (the most complex model supported by the MULTIDISTRIBUTE package) were 

calculated in the baseml program of the PAML 3.15 package (Yang, 1997). The output 

from baseml was used as the input for the MULTIDISTRIBUTE program estbranches, 

which produced MLEs of branch lengths and their approximate variance-covariance 

matrix. Although differing in branching order, TConsensus and TOptimal had similar overall 

tree lengths; as a result, the same priors were applied to both topologies in the program 

Multidivtime: rtrate = rtratesd = 0.012, and brownmean = brownmeansd = 0.01. As one 

of our external calibration points bounds the root node (crocodile-bird split at 251-243 

MY), date priors were less important and were defined narrowly (bigtime = 255 MY, rttm 

= 247 MY, rttmsd = 1.5 MY). The program was run without the assumption of correlated 

changes in rates across data partitions. Following a burnin of 106 samples, 104 samples 

were taken at a sampling interval of 102. All analyses were repeated with different inseed 

values to check for convergence of the MCMC chain. 

Fourth, the overdispersed clock method of Cutler (Cutler, 2000b) represents a strong 
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departure from other approaches to dating in the way it models branch length 

heterogeneity. Instead of treating a variable number of substitutions across lineages as 

indicative of changes in substitution rate across the tree, Cutler's method assumes that 

rate is stationary, but with high variance. Thus, rather than assuming that the number of 

substitutions along a lineage is Poisson distributed (where the variance is equal to the 

mean), the observed variation across branches is accommodated by the larger variance 

afforded through a Gaussian distribution. As a result, branches with either particularly 

high or low numbers of substitutions need not be clustered on the tree; in other words, 

heritability (phylogeny) plays no role in the observed numbers of substitutions. The 

program Dating5 (Cutler, 2000a) calculates χ2 statistics for both the constant-rate Poisson 

and stationary models and compares the overall fit of the models using a likelihood ratio 

test. In addition, the program calculates R, the index of dispersion (the ratio of the 

variance to the mean number of substitutions) under the stationary model. Dating was 

restricted to TOptimal as the current version of Dating5 does not allow for polytomies. In 

addition, we could not achieve likelihood convergence with the partitioned data, and so 

reported results are from concatenated sequences. From asymptotic likelihood theory, 

95% confidence intervals were calculated using a threshold of 2 log likelihood units 

around the MLE. 

Finally, the program BEAST 1.4.6 (Drummond and Rambaut, 2007) differs in two 

important ways from the dating methods listed above. First, it does not require a fixed 

topology; rather, branch lengths, topology, substitution model parameters and dates can 

be estimated simultaneously. This incorporation of uncertainty in topology may be 

particularly important for the present data set, where relationships amongst many clades 

are uncertain. Second, BEAST does not assume that substitution rates are necessarily 

autocorrelated across the tree. Although intuitively satisfying, autocorrelation of rates has 

not been demonstrated in the literature; in fact, Drummond et al. (2006) report that many 

empirical data sets do not exhibit significant autocorrelation of rates. 

BEAST 1.4.6 offers two statistical distributions for describing the change in rate 

across a branch (Drummond et al., 2006): rates can be drawn independently from either 

an exponential distribution (UCED) or a lognormal distribution (UCLN). To find which 
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distribution fit the present data best, we initially fixed the tree topology to TConsensus. The 

data were partitioned as above, with each partition assigned a GTR+I+G substitution 

model. BEAST MCMC runs of 25 × 106 generations following a burnin of 105 

generations were performed for UCED, UCLN and CLOCK models. To arbitrate 

between models, we calculated Bayes factors by comparing harmonic mean model 

likelihoods (Suchard et al., 2001). For both non-autocorrelated models, we also 

calculated the covariance among branch rates, which indicates the degree of ancestor-

descendant autocorrelation of rates across the tree. Using the optimal model, we then 

accommodated topological uncertainty by removing the restriction of a fixed tree. 

However, we did constrain certain clades (the backbone constraints described above) to 

be monophyletic to facilitate the placement of calibration points and increase the 

efficiency of the MCMC search. Three replicate runs of 25 × 106 generations were 

performed to check for convergence of the MCMC chain. Mean parameter estimates and 

95% highest posterior densities (HPDs) were determined through analyzing the combined 

BEAST tree files in TreeAnnotator 1.4.6 (Rambaut and Drummond, 2006). We refer to 

these results with the topology TFlexible. 

For each of the five dating methods above we calculated the average discrepancy 

between molecular (MA) and fossil (FA) estimated ages for those nodes that had fossil 

calibrations. The MA used in these calculations was the mean estimate from MCMC 

samples (Multidivtime, BEAST), or the optimal estimate from the empirical data matrix 

(r8s, PATHd8, Dating5). The value MA-FA is equivalent to δRealized MA-FA described 

above, and gives an indication of the degree of agreement between the molecular data 

and the fossil record. 

Episodic evolution and information content 

If present, episodic (or punctuated) molecular evolution could seriously bias molecular 

genetic estimates of divergence time by systematically overestimating the ages of all 

nodes that preceded the punctuation. We therefore tested for the presence of episodic 

evolution in two ways. First, we used the method of Pagel et al (Pagel et al., 2006a; Pagel 

et al., 2006b) which quantifies the proportional contribution of punctuated (β) and 

gradual (g) evolution to path lengths in a phylogeny, based on extent of association 
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between sequence change and cladogenesis events. This method requires a fully 

bifurcating tree, and so analyses were limited to our optimal reconstruction TOptimal. To 

test for this signature we analyzed maximum likelihood trees from RAxML bootstrap 

analyses (n = 100). Second, to test whether substitution rate accelerated coincident with 

or following the K-Pg boundary we plotted standardized inferred substitution rate (per 

data partition) versus inferred divergence time from the Multidivtime analyses above. If 

the K-Pg boundary extinctions facilitated diversification of avian higher-level taxa, it 

could produce a spike in this plot (Aris-Brosou and Yang, 2003) detected as a departure 

from the mean standardized rate. These two tests are complementary in that the first 

focuses specifically on the effects of speciation, whereas the second focuses on absolute 

time effects, which may or may not be related to speciation. 

As in the case of episodic evolution, a simple lack of historical signal present in 

molecular sequences could generate erroneous divergence time estimates. We therefore 

assessed the 'information content' present in our mtDNA matrix by regressing posterior 

95% credible width against posterior mean divergence time. When the when the amount 

of data is saturated then this regression will produce a linear relationship (i.e. R2 → 1), the 

slope of which indicates the amount of uncertainty that cannot be reduced through adding 

longer sequences (Rannala and Yang, 2007; Yang and Rannala, 2006), but can be 

reduced through adding independent loci. 
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Table 3.1 Degree of autocorrelation in rates of molecular evolution by 
partition and tree topology as calculated in Multidivtime. 
Topology1 Genetic partition Autocorrelation (95% CI)2 
TConsensus First positions 0.00197 (0.00127, 0.00290) 
 Second positions 0.00437 (0.00258, 0.00685) 
 Third positions 0.00452 (0.00288, 0.00680) 
 RNA 0.00566 (0.00343, 0.00874) 
TOptimal First positions 0.00177 (0.00112, 0.00263) 
 Second positions 0.00344 (0.00197, 0.00548) 
 Third positions 0.00380 (0.00241, 0.00571) 
 RNA 0.00414 (0.00206, 0.00744) 

1 See Figure 3.2 for alternative topologies. 
2 CI = Bayesian credible interval. 
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Table 3.2 Model comparisons for analyses relaxing the assumption 
of autocorrelation of rates across the tree in BEAST. For these 
model comparisons, the topology was fixed as TConsensus (see Figure 
3.2). The strict clock model serves as a base comparison. The tree 
TFlexible refers to analyses where topology is not fixed. 95% Highest 
posterior densities (HPDs) are given in parentheses. 

Model Model likelihood1 Covariance2 
TConsensus   
   CLOCK -212231 N/A 
   UCED -210459 0.039 (-0.103, 0.175) 
   UCLN -207226 0.066 (-0.061, 0.193) 
TFlexible   
   UCLN -206812 0.042 (-0.071, 0.161) 

1 Harmonic mean model likelihoods were calculated from post-burnin 
MCMC samples. 
2 Indicates the degree of substitution rate autocorrelation between 
ancestor and descendent branches. 
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Table 3.3 Estimated divergence times for major avian clades compared across methods and topologies. Estimated time to most recent common 
ancestor (tMRCA) of clades of non-controversial monophyletic status. Standard deviations are given in parentheses (for Dating5 and BEAST, 
standard deviations were calculated from 95% confidence/credible intervals using a normal approximation). For r8s, PATHd8 and Multidivtime 
ages were estimated on each of the two fixed topologies (TConsensus and TOptimal; see Figure 3.2). For BEAST, divergence times were estimated 
simultaneously with phylogeny (TFlexible; Figure 3.4). For each method an estimate of the magnitude of disagreement between fossil and molecular 
estimates of divergence times (δRealized MA-FA) is calculated as an average of MA-FA (the molecular age minus the fossil age) for those 18 internal 
nodes with calibration points (Table 3.5). 

  r8s PATHd8 Multidivtime Dating5 BEAST 
Node tMRCA TConsensus TOptimal TConsensus TOptimal TConsensus TOptimal TOptimal TFlexible 
A Neognaths-Paleognaths 125.7 (12.4) 131.1 (10.7) 114.3 (6.9) 102.8 (6.1) 129.9 (11.0) 132.4 (10.7) 132.9 (11.6) 133.2 (8.1) 
B Paleognaths 98.1 (10.6) 104.8 (10.7) 72.8 (5.0) 66.3 (4.6) 107.6 (11.2) 110.1 (11.2) 80 (6.8) 105.9 (11.7) 
C Galloanserae 93.6 (10.7) 100.7 (10.1) 86.4 (5.5) 78.7 (4.7) 97.3 (9.9) 100.6 (9.5) 89.3 (3.2) 110.4 (7.8) 
D Galloanserae-Neoaves 114.6 (12.1) 121.9 (10.5) 103.1 (6.0) 93.1 (5.4) 116.1 (11.0) 120.8 (10.5) 126.8 (6.1) 126.0 (7.1) 
E Neoaves 104.5 (11.4) 116.6 (9.9) 90.4 (5.1) 86.1 (5.0) 101.3 (10.1) 113.4 (10.1) 123.9 (5.3) 118.5 (6.8) 
F Ratites 67.4 (9.6) 89.3 (12.1) 49.5 (3.5) 46.7 (3.2) 92.1 (10.3) 97.3 (10.4) 40.6 (12.3) 91.5 (12.0) 
G Galliformes 82.1 (9.7) 88.4 (9.4) 82.2 (6.0) 73.2 (5.4) 87.4 (9.5) 87.2 (9.2) 67.3 (11.3) 99.0 (8.4) 
H Anseriformes 82.7 (10.1) 89.1 (10.7) 70.6 (4.0) 67.1 (2.8) 88.5 (9.3) 91.5 (9.0) 85.4 (4.1) 100.5. (8.3) 
I Charadriiformes 81.8 (11.5) 94.0 (9.2) 55.4 (3.6) 49.9 (3.1) 80.2 (8.5) 80.6 (7.8) 41.9 (4.5) 81.7 (6.3) 
J Passeriformes 85.4 (9.1) 99.5 (8.2) 89.0 (5.5) 85.5 (5.2) 78.4 (8.5) 97.8 (9.3) 84.9 (12.5) 106.6 (7.2) 
K Piciformes 90.9 (10.1) 99.6 (9.0) 89.0 (5.5) 79.0 (4.8) 83.0 (9.2) 91.1 (9.1) 101.0 (8.8) 93.6 (6.8) 
L Procellariiformes 73.8 (10.8) 89.9 (9.1) 55.6 (2.2) 38.1 (2.8) 80.0 (8.7) 78.5 (7.8) 38.8 (12.4) 74.7 (7.3) 
M Cuculiformes 73.9 (8.3) 79.5 (7.4) 65.0 (4.4) 60.1 (4.1) 68.3 (8.0) 74.3 (8.0) 52.5 (6.7) 74.1 (8.6) 
N Strigiformes 88.2 (9.9) 94.7 (8.6) 89.0 (5.9) 79.0 (5.1) 82.5 (9.7) 88.5 (9.4) 93.2 (11.5) 84.2 (9.1) 
O Apodiformes 77.4 (9.3) 75.1 (7.4) 70.0 (5.6) 53.5 (1.9) 77.3 (9.0) 63.4 (7.2) 55.8 (9.1) 80.5 (9.9) 
 δRealized MA-FA 39.8 44.6 24.2 16.9 36.8 36.1 24.8 36.5 
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Table 3.4 Aligned fragment lengths of mtDNA sequences (total 4594 bp). Codon 
positions are combined across all protein-coding genes (ND1, ND2, cytochrome 
b), and RNA includes 12S and nine tRNA genes (L, I, Q, M, W, A, N, C, Y). 

Gene Aligned 
length (bp) 

Variable sites 
(%) 

Parsimony 
informative sites (%) 

1st codon positions 1043 699 (67%) 605 (58%) 
2nd codon positions 1043 512 (49%) 380 (36%) 
3rd codon positions 1043 1043 (100%) 1041 (100%) 
RNA 1465 910 (62%) 728 (50%) 
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Table 3.5 Fossil calibrations. All internal calibrations for Neornithes are treated as minimum 
ages. External calibrations are treated as bounded (lower, upper) constraints. See Ericson et al. 
(2006) for fossil citations and details. See Figure 3.2 for placement of calibrations in the 
alternative trees. 

Fossil ID Calibration Age (MY) Source 
1 Crown Pici 30 Ericson et al. (2006) 
2 Stem Upupidae + Phoeniculidae 47.5 Ericson et al. (2006) 
3 Stem Coraciidae + Brachypteraciidae 47.5 Ericson et al. (2006) 
4 Stem Trogoniformes 53 Ericson et al. (2006) 
5 Stem Coliiformes 55 Ericson et al. (2006) 
6 Stem Strigiformes 55 Ericson et al. (2006) 
7 Crown Pandionidae 37 Ericson et al. (2006) 
8 Stem Anatidae 66 Clarke et al. (2005) 
9 Crown Sulidae 33 Ericson et al. (2006) 

10 Stem Fregatidae 53 Ericson et al. (2006) 
11 Stem Sphenisciformes 62 Slack et al. (2006) 
12 Stem Jacanidae 30 Ericson et al. (2006) 
13 Stem Apodiformes 53 Ericson et al. (2006) 
14 Stem Trochilidae 30 Mayr (2004) 
15 Crown Pteroclididae 30 Ericson et al. (2006) 
16 Stem Phoenicopteriformes 30 Ericson et al. (2006) 
17 Stem Phaethontidae 55 Ericson et al. (2006) 
18 Stem Gruidae 30 Ericson et al. (2006) 
20 Alligator-caiman 66–71 Müller and Reisz (2005) 
21 Bird-crocodile 243–251 Müller and Reisz (2005) 
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Table 3.6 Sample information for taxa used in this study. 
Order Family Species Common Name 12S CYTB ND1 ND2 tRNAs 

Testudines         
 Cheloniidae Chelonia mydas Green sea-turtle AB012104 AB012104 AB012104 AB012104 AB012104 
 Emydidae Chrysemys picta Painted turtle NAF069423 NAF069423 NAF069423 NAF069423 NAF069423 

 Pelomedusidae Pelomedusa subrufa African helmeted turtle AF039066 AF039066 AF039066 AF039066 AF039066 
Crocodylia         
 Crocodylidae Alligator mississipiensis American alligator Y13113 Y13113 Y13113 Y13113 Y13113 
 Crocodylidae Caiman crocodilus Spectacled caiman AJ404872 AJ404872 AJ404872 AJ404872 AJ404872 

Paleognathae 
Struthioniformes Apterygidae Apteryx haastii Great spotted kiwi AF338708 AF338708 AF338708 AF338708 AF338708 

Struthioniformes Casuariidae Casuarius casuarius Southern cassowary AF338713 AF338713 AF338713 AF338713 AF338713 
Struthioniformes Dromaiidae Dromaius novaehollandiae Emu AF338711 AF338711 AF338711 AF338711 AF338711 
Struthioniformes Dinornithidae Dinornis giganteus Giant moa AY016013 AY016013 AY016013 AY016013 AY016013 
Struthioniformes Emeidae Anomalopteryx didiformis Little bush moa AF338714 AF338714 AF338714 AF338714 AF338714 
Struthioniformes Emeidae Emeus crassus Eastern moa AY016015 AY016015 AY016015 AY016015 AY016015 
Struthioniformes Rheidae Pterocnemia pennata Lesser rhea AF338709 AF338709 AF338709 AF338709 AF338709 

Struthioniformes Rheidae Rhea americana Greater rhea AF090339 AF090339 AF090339 AF090339 AF090339 

Struthioniformes Struthionidae Struthio camellus Ostrich AH007281 AH007281, 
Y12025 AH007281 AH007281 AF069429  

Tinamiformes Tinamidae Crypturellus undulatus Undulated tinamou AY139627 AY139629 AY139628 AY139628 AY139628 

Tinamiformes Tinamidae Eudromia elegans Elegant crested tinamou AY274002 AY274002 AY274002 AY274002 AY274049 
Tinamiformes Tinamidae Tinamus major Great tinamou AF338707 AF338707 AF338707 AF338707 AF338707 

Galloanserae 
Anseriformes Anatidae Anser albifrons Greater white-fronted goose AF363031 AF363031 AF363031 AF363031 AF363031 
Anseriformes Anatidae Aythya americana Redhead AF069422 AF069422 AF069422 AF069422 AF090337 
Anseriformes Anatidae Branta canadensis Canada goose DQ019124 DQ019124 DQ019124 DQ019124 DQ019124 

Anseriformes Anhimidae Chauna torquata Southern screamer AY274030 AY274006 AY274053 AY274053 AY274053 
Anseriformes Anseranatidae Anseranas semipalmata Magpie goose AF173772 U83730 AY274054 AY274054 AY274054 
Anseriformes Dendrocygnidae Dendrocygna arcuata Wandering whistling-duck AF536743 AF536740 AF536746 AF536746 U97735 
Galliformes Cracidae Crax rubra Great curassow AY274029 AY274003 AY274050 AY274050 AY274050 
Galliformes Megapodidae Megapodius eremita Melanesian megapode AF082065 AY274005 AY274052 AY274052 AY274052 
Galliformes Megapodidae Alectura lathami Brush turkey AF082058 AY274004 AY274051 AY274051 AY346091 
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Galliformes Numididae Acryllium vulturinum Vulturine guineafowl AF536742 AF536739 AF536745 AF536745 AF536745 
Galliformes Numididae Numida meleagris Helmeted guineafowl AP005595 AP005595 AP005595 AP005595 AP005595 
Galliformes Odontophoridae Colinus virginianus Northern bobwhite EU167061 EU372675 EU166949 EU166949 EU166949 
Galliformes Phasianidae Coturnix chinensis King quail AB073301 AB073301 AB073301 AB073301 AB073301 

Galliformes Phasianidae Coturnix japonica Japanese quail AP003195 AP003195 AP003195 AP003195 AP003195 
Galliformes Phasianidae Gallus gallus Red junglefowl X52392 X52392 X52392 X52392 X52392 

Neoaves 
Apodiformes Apodidae Aeronautes saxatalis White-throated swift EU167032 EU166978 EU166921 EU166921 EU166921 
Apodiformes Trochilidae Metallura eupogon Fire-throated metaltail EU167083 EU167027 EU166922 EU166922 EU166922 
Apodiformes Trochilidae Phaethornis syrmathophorus Tawny-bellied hermit EU167084 EU167028 EU166923 EU166923 EU166923 

Caprimulgiformes Caprimulgidae Chordeiles minor Common nighthawk EU167037 EU166983 EU166924 EU166924 EU166924 
Caprimulgiformes Eurystopodidae Eurostopodus macrotis Great eared-nightjar EU167043 EU166989 EU166925 EU166925 EU166925 
Caprimulgiformes Nyctibidae Nyctibius maculosus Andean potoo EU167060 EU167006 EU166926 EU166926 EU166926 
Caprimulgiformes Podargidae Podargus strigoides Tawny frogmouth EU167069 EU167014 EU166927 EU166927 EU166927 
Caprimulgiformes Steatornithidae Steatornis caripensis Oilbird EU167079 EU167023 EU166928 EU166928 EU166928 
Charadriiformes Alcidae Cepphus columba Pigeon guillemot EU372666 EU372673 EU372680 EU372680 EU372680 

Charadriiformes Burhinidae Burhinus senegalensis Senegal thick-knee AY274043 AY274007 AY274073 AY274073 AY274073 
Charadriiformes Charadriidae Charadrius semipalmatus Semipalmated plover EU167040 EU166986 EU166929 EU166929 EU166929 
Charadriiformes Glareolidae Glareola pratincola Collared pratincole EU372667 EU372674 EU372681 EU372681 EU372681 
Charadriiformes Haematopodidae Haematopus ater Blackish oystercatcher AY074886 AY074886 AY074886 AY074886 AY074886 
Charadriiformes Haematopodidae Haematopus ostralegus Eurasian oystercatcher EU167052 EU166998 EU166930 EU166930 EU166930 
Charadriiformes Jacanidae Jacana jacana Wattled jacana EU167053 EU166999 EU166935 EU166935 EU166935 

Charadriiformes Laridae Larus atricilla Laughing gull EU167055 EU167001 EU166931 EU166931 EU166931 
Charadriiformes Laridae Larus dominicanus Kelp gull AY293619 AY293619 AY293619 AY293619 AY293619 
Charadriiformes Recurvirostridae Himantopus mexicanus Black-necked stilt EU167077 EU167022 EU166932 EU166932 EU166932 
Charadriiformes Scolopacidae Arenaria interpres Ruddy turnstone AY074885 AY074885 AY074885 AY074885 AY074885 
Charadriiformes Scolopacidae Scolopax minor American woodcock AF082068 U83744 AY274072 AY274072 AY274072 
Charadriiformes Stercorariidae Stercorarius skua Pomarine skua EU167080 EU167024 EU166933 EU166933 EU166933 

Charadriiformes Thinocoridae Attagis gayi Rufous-bellied seedsnipe EU167081 EU167025 EU166934 EU166934 EU166934 
Ciconiiformes Ardeidae Nyctanassa violacea Yellow-crowned night heron EU167033 EU166979 EU166936 EU166936 EU166936 
Ciconiiformes Ardeidae Tigrisoma fasciatum Fasciated tiger heron EU167034 EU166980 EU166937 EU166937 EU166937 
Ciconiiformes Ciconiidae Ciconia boyciana Oriental wood stork AB026193 AB026193 AB026193 AB026193 AB026193 
Ciconiiformes Ciconiidae Ciconia ciconia European wood stork AB026818 AB026818 AB026818 AB026818 AB026818 
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Ciconiiformes Ciconiidae Mycteria americana Wood stork AF082066 U83712 AY274076 AY274076 AY274076 
Ciconiiformes Scopidae Scopus umbretta Hamerkop EU372669 U08936 EU372682 EU372682 EU372682 
Ciconiiformes Threskiornithidae Eudocimus albus White ibis EU167082 EU167026 EU166938 EU166938 EU166938 
Coliiformes Coliidae Colius striatus Spectacled mousebird AY274032 AY274011 AY274058 AY274058 AY274058 

Coliiformes Coliidae Urocolius macrourus Blue-naped mousebird AY274033 AY274012 AY274059 AY274059 AY274059 
Columbiformes Columbidae Columba leucocephala White-crowned pigeon AY274041 AY274023 AY274070 AY274070 AY274070 
Columbiformes Columbidae Treron sieboldii White-bellied green-pigeon AY274042 AY274024 AY274071 AY274071 AY274071 
Columbiformes Pteroclidae Pterocles coronatus Crowned sandgrouse EU167073 EU167018 EU166939 EU166939 EU166939 
Coraciiformes Alcedinidae Ispidina picta African kingfisher EU167031 EU166977 EU166940 EU166940 EU166940 
Coraciiformes Bucerotidae Tockus erythrorhynchus Red-billed hornbill AF082071 AY274008 AY274055 AY274055 AY274055 

Coraciiformes Cerylidae Megaceryle alcyon Belted kingfisher EU167039 EU166985 EU166945 EU166945 EU166945 
Coraciiformes Coraciidae Coracias spatulata Racquet-tailed roller AF082060 AY274010 AY274057 AY274057 AY274057 
Coraciiformes Meropidae Merops viridis Blue-throated bee-eater EU167057 EU167003 EU166941 EU166941 EU166941 
Coraciiformes Momotidae Momotus momota Blue-crowned motmot EU167058 EU167004 EU166942 EU166942 EU166942 
Coraciiformes Phoeniculidae Phoeniculus purpureus Green wood hoopoe EU167067 EU167012 EU166943 EU166943 EU166943 
Coraciiformes Upupidae Upupa epops Eurasian hoopoe EU167086 EU167030 EU166944 EU166944 EU166944 

Cuculiformes Coccyzidae Coccyzus erythropthalmus Black-billed cuckoo AF082048 AY274015 AY274062 AY274062 AY274062 
Cuculiformes Crotophagidae Crotophaga ani Smooth-billed ani AY274035 AY274016 AY274063 AY274063 AY274063 
Cuculiformes Cuculidae Cuculus canorus Common cuckoo AY274034 AY274013 AY274060 AY274060 AY274060 
Cuculiformes Neomorphidae Neomorphus geoffroyi Rufous-vented ground cuckoo AY274036 AY274017 AY274064 AY274064 AY274064 
Falconiformes Accipitridae Buteo jamaicensis Red-tailed hawk AY274044 U83720 AY274074 AY274074 AY274074 
Falconiformes Cathartidae Cathartes aura Turkey vulture EU167038 EU166984 EU166946 EU166946 EU166946 

Falconiformes Falconidae Falco peregrinus Peregrine falcon AF090338 AF090338 AF090338 AF090338 AF090338 
Falconiformes Pandionidae Pandion haliaetus Osprey EU167063 EU167008 EU166947 EU166947 EU166947 
Falconiformes Sagittaridae Sagittarius serpentarius Secretary bird EU167078 AJ604483 EU166948 EU166948 EU166948 
Gaviiformes Gaviidae Gavia adamsi Yellow-billed loon EU167048 EU166994 EU166951 EU166951 EU166951 
Gaviiformes Gaviidae Gavia arctica Arctic loon AY139633 AY139635 AY139634 AY139634 AY139634 
Gaviiformes Gaviidae Gavia immer Common loon EU167047 EU166993 EU166950 EU166950 EU166950 

Gaviiformes Gaviidae Gavia pacifica Pacific loon EU167049 EU166995 EU166952 EU166952 EU166952 
Gaviiformes Gaviidae Gavia stellata Red-throated loon EU167050 EU166996 EU166953 EU166953 EU166953 
Gruiformes Gruidae Grus canadensis Sandhill crane EU167051 EU166997 EU166954 EU166954 EU166954 
Gruiformes Otididae Eupodotis senegalensis White-bellied bustard EU167062 EU167007 EU166955 EU166955 EU166955 
Gruiformes Rallidae Fulica americana American coot EU167074 EU167019 EU166956 EU166956 EU166956 
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Musophagiformes Musophagidae Crinifer piscator Western grey plantain-eater AY274040 AY274021 AY274068 AY274068 AY274068 
Musophagiformes Musophagidae Musophaga violacea Violet turaco AY274039 AY274020 AY274067 AY274067 AY274067 
Opisthocomiformes Opisthocomidae Opisthocomus hoazin Hoatzin AY274027 AY274048 AF076363 AF076363 AF076363 
Passeriformes Acanthisittidae Acanthisitta chloris Rifleman AY325307 AY325307 AY325307 AY325307 AY325307 

Passeriformes Corvidae Corvus frugilegus Rook Y18522 Y18522 Y18522 Y18522 Y18522 
Passeriformes Dendrocolaptidae Lepidocolaptes wagleri Scaled woodcreeper EU167041 EU166987 EU166957 EU166957 EU166957 
Passeriformes Eurylaimidae Smithornis sharpei Grey-headed broadbill AF090340 AF090340 AF090340 AF090340 AF090340 
Passeriformes Formicariidae Grallaria squamigera Undulated antpitta AY139636 AY139638 AY139637 AY139637 AY139637 
Passeriformes Furnariidae Cranioleuca baroni Baron’s spinetail EU167045 EU166991 EU166958 EU166958 EU166958 
Passeriformes Laniidae Lanius collurio Red-backed shrike EU167054 EU167000 EU166959 EU166959 EU166959 

Passeriformes Motacillidae Motacilla alba White wagtail EU167059 EU167005 EU166960 EU166960 EU166960 
Passeriformes Paridae Parus major Great tit EU167064 EU167009 EU166961 EU166961 EU166961 
Passeriformes Picnonotidae Hypsipetes amaurotis Brown-eared bulbul EU167068 EU167013 EU166962 EU166962 EU166962 
Passeriformes Sylviidae Phylloscopus occipitalis Western crowned-warbler EU372671 EU372678 EU372683 EU372683 EU372683 
Passeriformes Thraupidae Hemispingus frontalis Oleaginous hemispingus AY139639 EU372679 AY139640 AY139640 AY139640 
Passeriformes Turdidae Catharus guttatus Hermit thrush EU372672 X74261 EU372684 EU372684 EU372684 

Passeriformes Tyrannidae Sayornis phoebe Eastern phoebe AF536744 AF536741 AF536747 AF536747 AF536747 
Passeriformes Viduidae Vidua chalybeata Village indigobird AF090341 AF090341 AF090341 AF090341 AF090341 
Passeriformes Zosteropidae Zosterops japonica Japanese white-eye AY136569 EU391159 EU372685 AY136599 EU372685 
Pelecaniformes Fregatidae Fregata aquila Ascension frigatebird EU167044 EU166990 EU166963 EU166963 EU166963 
Pelecaniformes Phaethontidae Phaethon rubricauda Red-tailed tropicbird EU167065 EU167010 EU166964 EU166964 EU166964 
Pelecaniformes Phalacrocoracidae Phalacrocorax pelagicus Pelagic cormorant EU167066 EU167011 EU166965 EU166965 EU166965 

Pelecaniformes Sulidae Sula dactylatra Masked booby EU372670 EU372677 EU372686 EU372686 EU372686 
Phoenicopteriformes Phoenicopteridae Phoenicopterus ruber Greater flamingo AY274045 U83714 AY274075 AY274075 AY274075 
Piciformes Bucconidae Malacoptila semicincta Semicollared puffbird EU167035 EU166981 EU166966 EU166966 EU166966 
Piciformes Capitonidae Trachyphonus usambiro Usambiro barbet EU167036 EU166982 EU166967 EU166967 EU166967 
Piciformes Galbulidae Galbula pastazae Coppery-chested jacamar EU167046 EU166992 EU166968 EU166968 EU166968 
Piciformes Lybiidae Pogoniulus pusilus Red-fronted tinkerbird EU167056 EU167002 EU166971 EU166971 EU166971 

Piciformes Picidae Colaptes auratus Northern flicker EU372668 EU372676 EU372687 EU372687 EU372687 
Piciformes Ramphastidae Andigena cuculata Hooded mountain-toucan EU167076 EU167021 EU166970 EU166970 EU166970 
Piciformes Ramphastidae Selenidera reinwardtii Golden-collared toucanet EU167075 EU167020 EU166969 EU166969 EU166969 
Podicipediformes Podicipedidae Podiceps caspicus Eared grebe EU167071 EU167016 EU166973 EU166973 EU166973 
Podicipediformes Podicipedidae Podilymbus podiceps Pied-billed grebe EU167070 EU167070 EU166972 EU166972 EU166972 
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Procellariiformes Diomedeidae Diomedea melanophrys Black-browed albatross AY158677 AY158677 AY158677 AY158677 AY158677 
Procellariiformes Diomedeidae Diomedea nigripes Black-footed albatross EU167042 EU166988 EU166974 EU166974 EU166974 
Procellariiformes Procellariidae Calonectris diomedea Cory’s shearwater AY139624 AY139626 AY139625 AY139625 AY139625 
Procellariiformes Procellariidae Pterodroma brevirostris Kerguelen petrel AY158678 AY158678 AY158678 AY158678 AY158678 

Procellariiformes Procellariidae Pterodroma hasitata Black-capped petrel EU167072 EU167017 EU166975 EU166975 EU166975 
Psittaciformes Psittacidae Nandayus nenday Nanday parakeet AY274038 AY274019 AY274066 AY274066 AY274066 
Psittaciformes Psittacidae Neophema elegans Elegant parrot AY274037 AY274018 AY274065 AY274065 AY274065 
Psittaciformes Psittacidae Strigops habroptilus Kakapo AY309456 AY309456 AY309456 AY309456 AY309456 
Sphenisciformes Spheniscidae Aptenodytes patagonicus King penguin AY139621 AY139623 AY139622 AY139622 AY139622 
Sphenisciformes Spheniscidae Eudyptes.chrysocome Rockhopper penguin AY139630 AY139632 AY139631 AY139631 AY139631 

Sphenisciformes Spheniscidae Eudyptula minor Little penguin AF362763 AF362763 AF362763 AF362763 AF362763 
Strigiformes Strigidae Asio otus Long-eared owl AY274022 AF08206 AY274069 AY274069 AY274069    
Strigiformes Strigidae Ninox novaeseelandiae Morepork AY309457 AY309457 AY309457 AY309457 AY309457 
Strigiformes Tytonidae Tyto alba Barn owl EU167085 EU167029 EU166976 EU166976 EU166976 
Trogoniformes Trogonidae Harpactes ardens Philippine trogon U94810 U94796 EU372688 EU372688 EU372688 
Trogoniformes Trogonidae Trogon curucui Blue-crowned trogon AY274031 AY274009 AY274056 AY274056 AY274056 
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Figure 3.1 Different ways that fossil and molecular data date lineages. Time intervals defined by 
the horizontal dashed lines and vertical arrows pertain to age estimates for the divergence 
between hypothetical lineages X and Y. Even with a complete fossil record and perfect molecular 
clock a discrepancy is expected between fossil (FA) and molecular (MA) age estimates. As 
diagnostic morphological characters generally evolve (TMorphology) after species divergence 
(TSpecies), the fossil record will always underestimate (by δDiagnostic character) the true speciation time. 
Genetic data, on the other hand, will overestimate speciation time (by δCoalescence), as 
polymorphisms present during species divergence will coalesce some time in the past (TGene; 
related to the ancestral species effective population size). The genuine difference between 
molecular and morphological divergence times will thus be δTrue MA-FA. With a less complete fossil 
record, the oldest known fossil is unlikely to temporally correspond precisely to the origination of 
a diagnostic character delimiting X and Y, further decreasing FA by δOldest fossil. Under the more 
realistic scenario of lineage-specific rate heterogeneity and limited taxon/character sampling, 
errors associated with molecular methods (δClock error) may result in overestimation or 
underestimation of the true speciation time, although underestimates are bounded by the fossil 
constraint (δFossil error). The observed discrepancy in age estimates, δRealized MA-FA, may be 
considerably larger than expectations (δTrue MA-FA). 
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Figure 3.2 Alternative tree topologies. TConsensus (left) represents a conservative consensus 
estimate of avian familial relationships (Cracraft et al., 2004) (AICc = 421460.9166). TOptimal 
(right) is our optimal topology derived from a partitioned model maximum likelihood search in 
RAxML (AICc = 414160.2536). Some topological constraints were implemented in this search 
(see Figure 3.7). Solid circles and numbers indicate the placement of calibration points (see Table 
3.5 for ages). Letters denote nodes whose age estimates are provided in Table 3.3. 
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Figure 3.3 Comparative timing of divergences for avian orders and families based on 
four different 'relaxed clock' methods. Chronograms based on the optimal mtDNA tree 
reconstruction (TOptimal) using r8s (top left), Dating5 (bottom left), PATHd8 (top right) 
and Multidivtime (bottom right); see methods for explanation of differences between 
analytical approaches. For legibility, error bars are removed and trees are pruned to the 
family level. Filled circles denote major clades: orange, Paleognathae; purple, 
Neognathae; blue, Galloanserae; green, Neoaves; red, Passeriformes. Time is given in 
millions of years before present. The vertical dashed lines indicate the K-Pg boundary. 
r8s, Dating5 and Multidivtime reconstructions support Cretaceous origin and 
diversification. PATHd8 alone supports Cretaceous origin but Tertiary diversification. 
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Figure 3.4 A timeline for early avian evolution. Maximum clade credible (MCC) chronogram 
inferred using the non-autocorrelated model of rate evolution in BEAST while allowing topology 
to vary (TFlexible). Time is given in millions of years before present. The vertical dashed line 
indicates the K-Pg boundary. Error bars (blue and green) represent 95% posterior credible 
intervals and are only given for nodes that were present on more than 50% of the posterior 
sampled trees. An unambiguous ancient diversification is indicated by 37 credible intervals 
restricted to the Cretaceous (green bars).
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Figure 3.5 Estimated rates of molecular evolution over time, in assessment of possible episodic 
evolution. Standardized inferred rate of sequence evolution (per data partition) is plotted against 
inferred age for internal nodes on the optimal mtDNA tree reconstruction (TOptimal) using 
Multidivtime. Time is given in millions of years before present. No support is shown for an 
accelerated rate accompanying initial avian diversification or following the K-Pg boundary 
(vertical dashed line). 
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Figure 3.6 Information content of mtDNA sequences. Posterior 95% credible interval width is 
plotted against posterior mean divergence time using the results from Multidivtime on TOptimal. 
Here R2 indicates the amount of information present in the data matrix and the regression 
coefficient is an estimate of the expected uncertainty that is independent of sequence length. 
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Figure 3.7 Backbone constraint topology for RAxML maximum likelihood tree searches. 
Derived from consensus tree of Cracraft et al. (2004; their Figure 27.10, thick branches only). 
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Part II. Statistical Arbitration of Competing Molecular Phylogenetic Models 

 

Chapter 4 

Treatment of branch length parameters in partitioned phylogenetic models: an 

empirical case study with New World Vultures (Aves: Cathartidae) 

ABSTRACT 

Partitioned substitution models for phylogenetic inference are now ubiquitous in studies 

utilizing multiple character classes (e.g. genomes, genes, coding/non-coding regions, 

codon positions, stems/loops, etc.). The appeal of this approach is that heterogeneity in 

the evolutionary process across sundry partitions can be more finely and accurately 

modelled than under a single compromised model of molecular substitution. Published 

studies using various model selection criteria statistically justify this practice by 

indicating that the additional substitution model parameters required in partitioned-

models leads to a significantly better fit to empirical data. However, the accommodation 

of branch length (BL) heterogeneity across partitions in such models has received little 

attention. The default method for many phylogenetic reconstruction programs supporting 

partition-specific rates is to treat BLs as proportional across partitions. This is a very 

economical way to accommodate heterogeneity across P partitions, as only P extra BL 

parameters are required (relative rate parameters), as opposed to an extra P×(2T – 3) 

parameters when estimating BLs uniquely for each partition (where T = number of taxa). 

Although the difference in the number of estimable parameters can vary substantially 

across BL treatments (depending on both P and T), the assumption of BL proportionality 

is rarely tested, and it is unclear how violation of this assumption might influence 

phylogenetic inference. We present here a molecular phylogenetic analysis of all extant 

species of the New World Vultures (Aves: Cathartidae) and show that while 

mitochondrial (mt)DNA fails to reject the proportionality assumption, support for the 

assumption from nuclear (nuc)DNA depends on the model selection criteria employed. 
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However, proportionality of BLs across the two genomes is rejected by most criteria. The 

optimal model for the combined alignment selected using Bayes factors is one in which 

BLs are constrained to be proportional for mtDNA partitions but unconstrained for 

nucDNA partitions. All models recover a basal split in Cathartidae between the large 

condor-like birds and the remaining taxa. However, relationships within these basal 

clades were sensitive to the model assumed. Compared to concatenated models, 

optimally-selected partitioned models indicate that yellow-headed vultures, once 

considered conspecific, are not each others closest relative; instead, the Greater Yellow-

headed Vulture (Cathartes melambrotus) is inferred to be sister to the Turkey Vulture (C. 

aura), with the Lesser Yellow-headed Vulture (C. burrovianus) being sister to this novel 

clade. Phylogenetic placement of the California Condor (Gymnogyps californianus) is 

less clear; while linked-BL models place it sister to the King Vulture (Sarcoramphus 

papa) with high posterior probability support (0.92-1.0), relaxing the BL-proportionality 

assumption decreases support for this relationship (0.56-1.0), although it remains the 

most probable. Alternative BL-priors, while greatly influencing overall tree length and 

model fit, had no noticeable influence on topological reconstruction or node support 

values. Model fit (as gauged through the harmonic model likelihood) was much more 

sensitive to BL-prior for mtDNA than nucDNA, suggesting that partition-specific BL-

priors may be a useful extension to constructing partitioned phylogenetic models. 

Inference of a time-calibrated phylogeny using partition-specific relaxed molecular 

clocks reveals why cathartid relationships are difficult to reconstruct: the crown clade is 

inferred to be ~14 million years (MY) old, and branch times for the taxa involved in the 

novel relationships above occurred within very short periods of time. The inferred time 

for the origin of the lineage is ~69 MY, consistent with the oldest putative fossil 

representative of the family. 

INTRODUCTION 

Model-based inference is ubiquitous to myriad fields of science, but perhaps has not 

elsewhere effected such a boon as when applied to the inherently noisy data involved in 

studies of ecology and evolutionary biology. An argument justifying this general 

approach to biological inference borders on the superfluous: i) because of the intrinsic 
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flexibility of modelling, finely-tuned hypotheses can be rigorously tested through a 

thoughtful consideration of parameterization; ii) noise/uncertainty can be explicitly 

accounted for and quantified; iii) model choice can be justified statistically through 

various model arbitration approaches; and, iv) although interpreted in different ways, 

these models can be applied in both maximum likelihood (ML) and Bayesian 

frameworks. Today, nearly all phylogenetic reconstructions are based upon explicit 

models of how character states change along an evolutionary trajectory, and this has 

heralded the unprecedented extraction of evolutionary information molecular genetic 

sequences. 

However, devising the appropriate level of substitution model sophistication/realism 

is a conflicting task. On the one hand, it is clear that one should not endeavour to ‘fit an 

elephant’ (Steel, 2005), that is, try to parameterize ‘reality’ (the historical process of 

molecular substitution) in its entirety. There are a number of reasons for this: i) although 

accuracy may increase with the number of model parameters, so too will the variance of 

resulting inferences, potentially thwarting the arbitration of competing hypotheses; ii) 

overparameterization risks nonidentifiability (Rannala, 2002), where different 

combinations of parameter values generate the same likelihood, making it impossible to 

determine their true values; and iii) thoughtless model inflation is a form of ‘data-

dredging’ (Burnham and Anderson, 2002), with the possible result that spurious 

stochastic signals (due, for example, to sampling artefacts) might be interpreted as 

genuine historical information. From this perspective, it thus seems reasonable to 

economize models as much as possible by focussing on a small number of salient 

components (parameters) of a given process. 

On the other hand, however, there is no doubt that the standard substitution models 

currently in use are overly simplistic, evinced by the fact that, using a variety of model 

selection criteria, most typical present-day data matrices (in terms of breadth of taxon 

sampling and tree depth) statistically substantiate use of the general time reversible 

(GTR) model (Lanave et al., 1984), the most highly-parameterized substitution model in 

regular use. Indeed, the situation is so pervasive that the popular phylogenetics program 

RAxML (Stamatakis, 2006) does not even implement simpler alternative models. If 
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typical empirical data matrices are ‘maxing-out’ at GTR, this suggests that there is an 

overabundance of historical signal available, and that more sophisticated (realistic) 

models could be supported by the same data. Moreover, as the costs of molecular genetic 

sequencing continue to plummet, enormous amounts of data will soon be available for 

interrogation of increasingly subtle, but potentially pertinent, signatures of the 

evolutionary process. An increase in model realism (parameterization) thus appears 

warranted, although such extensions should of course be tempered through rigorous 

statistical scrutiny. 

Although numerous extensions to the standard GTR are possible (e.g. time 

irreversible, nonhomogeneous, and nonstationary models), the most promising and direct 

avenue of development focuses on the heterogeneity in the substitution process across 

sites within an alignment. Most molecular substitution models assume that all sites are 

independent and identically-distributed (i.i.d.), that is, that all sites evolve according to 

the same evolutionary process and that observed character states are independent 

realizations of that process. However, it is readily apparent from even a cursory 

examination of different character classes (e.g. genomes, genes, coding/non-coding 

regions, codon positions, stems/loops, etc.) that this is not the case – for example, genes 

can differ greatly in GC content depending on function or genome of origin, and codon 

positions within a single gene often differ in the level of polymorphism by an order of 

magnitude. Fortunately, tools are available to accommodate such variability. For 

example, Yang’s (1993; 1994) introduction of the one parameter discretized gamma-

distributed rate heterogeneity across sites has proven indispensible to the accuracy of 

phylogenetic inference, and is a staple constituent of any phylogenetic analysis. 

Partitioned-models (e.g. Nylander et al., 2004) offer a more general solution to 

relaxing the i.i.d. assumption, as heterogeneity can be accommodated not only in overall 

rates of substitution, but also in the substitution model itself, including individual 

substitution model parameter values (as well as their inclusion/exclusion) and equilibrium 

character state frequencies. The benefits to such a tailored approach to phylogenetic 

reconstruction is unassailable: more evolutionary information can be extracted, and 

competing partitioned-models can be rigorously arbitrated using existing statistical tools 
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to guard against overparameterization. The alternative and more traditional single model 

approach (sometimes referred to as a ‘concatenated model’) is thus best considered a 

‘compromised’ model, where evolutionary signals are diluted through averaging across 

sundry character classes. For example, all else being equal, for two genes of equal length 

with respective GC-contents of 25% and 75%, a single model approach would infer a 

compromised GC-content of 50%; clearly an inferior parameterization for both genes. 

Similar compromises will involve every parameter in the model (character state 

frequencies, substitution model parameters, and rate heterogeneity parameters). [Strictly 

speaking all models are compromised because parameterization complexity will always 

fall short of reality; we thus more narrowly define ‘compromised’ models as those whose 

underparameterization relating to heterogeneity across sites can be statistically rejected 

by the data in hand in favour of more parameter-rich alternatives]. Empirical studies 

ubiquitously indicate that the relatively small number of additional substitution model 

parameters required in partitioned-models is statistically justified by a number of criteria 

such as AIC, Bayes factors, decision theory, BIC, etc. (e.g. McGuire et al., 2007). These 

results, together with the availability of numerous fast and flexible software packages, 

has resulted in the routine use of partitioned substitution models. However, despite the 

indisputable advantage to accommodating heterogeneity in the substitution process, the 

treatment of branch length (BL) parameters in such models has not received much 

attention (but see Marshall, 2010; Marshall et al., 2006; Pupko et al., 2002). In this paper 

we turn our attention to the suitability of conventional compromised BL models when 

analyzing partitioned molecular genetic data. 

Although (as generally practiced) the number of substitution model parameters 

increases roughly linearly with the addition of partitions, there are three general ways to 

handle the number of BL parameters (nBL) when analyzing data from P partitions for T 

taxa (Figure 4.1). First, at the one extreme, BLs can be assumed to be equal for each 

partition. Here, nBL is simply the number of branches in an unrooted tree, 2T-3. While 

this modelling has the advantage that no further BL parameters are required with added 

partitions (i.e. nBL is independent of P), the assumption is clearly inappropriate for 

standard molecular partitions (e.g. codon positions, containing both hyper-variable third 

positions and near-invariant second positions) and can not be expected to hold on a tree 
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of even modest taxon sampling; given it’s a priori unsuitability, we will not consider this 

modelling here. Second, BLs can be assumed to be proportional across partitions, which 

is the default approach taken by programs that accommodate partition-specific rates (e.g. 

RAxML, MrBayes). Here, a single BL vector is estimated/sampled, along with partition-

specific relative-rate parameters (linked not only to rate but also the length of the 

respective partitions, since BLs are expressed in terms of expected numbers of 

substitutions per site). We will refer to this modelling strategy hereafter as ‘linked-BL’ 

models. The appeal of this modelling is its statistical economy: BL heterogeneity is 

accommodated through the addition of just P extra parameters (i.e. a total of nBL = (2T-

3)+P). However, this modelling represents a very strong assumption (hereafter, the 

‘proportionality assumption’) regarding molecular evolution which entails a rather 

dubious biological mechanistic interpretation: that the pattern of proportional BL 

heterogeneity across a tree is identical for all partitions (Figure 4.1B). It is not presently 

clear whether such a proportionality assumption is generally supported by empirical data, 

especially for large trees (or large P), and routinely it remains untested. Finally, at the 

other extreme, BLs can be assumed to be independent (or ‘unlinked’) across partitions 

(despite being tied to the same topology) requiring a separate BL vector for each partition 

(hereafter, ‘unlinked BL’ models; Figure 4.1C). This modelling requires a total of nBL = 

P×(2T-3), which, with fixed taxon sampling, increases very quickly with P (Figure 4.2). 

While this is undoubtedly more close to the reality of molecular substitution, it is unclear 

whether i) sufficient signal is present in a given data set to reject the proportionality 

assumption in favour of a substantially more parameter-rich non-proportional BL model, 

and ii) whether the proportionality assumption is importantly wrong (Box, 1976), i.e. that 

acceptance of the false assumption biases resulting inferences. 

We applied the latter two BL modelling schemes to the phylogenetic reconstruction 

of the New World Vultures (Aves: Cathartidae), with the goal of identifying an optimal 

modelling of heterogeneity across not only genes but also genomes (nuclear and 

mitochondrial). Cathartidae is a small family of large-bodied carrion feeders that occur 

throughout North and South America. There are currently seven recognized extant 

cathartid species organized into five genera, although the family previously enjoyed 

greater diversity which included several Old World representatives in the mid- to late-
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Paleogene (Rich, 1983), rendering the common name of the family a misnomer. The 

monophyletic status of Cathartidae has never been seriously contested. Although several 

previous phylogenetic analyses of large genetic matrices have involved cathartid 

exemplars (e.g. Brown et al., 2008; Ericson et al., 2006; Hackett et al., 2008), these 

studies have invariably been concerned with the relationship of Cathartidae to other avian 

families, rather than relationships within the family itself. For example, it is a standing 

question in avian systematics whether Cathartidae truly belongs within its traditional 

order (the diurnal raptors, Falconiformes), although concerns over the monophyletic 

status of the order itself complicates things (see review in Brown and Mindell, 2009). 

Regardless, the family-level focus of these studies has meant that Cathartidae has been 

poorly sampled, with the result that the enigmatic cathartid relationships  have been 

largely overlooked, despite the fact that the most recent taxonomic revision of the family 

by Wetmore (1964) was more than a half century ago (but see Amadon, 1977; Rich, 

1983). 

METHODS 

Molecular sequence data 

Two mitochondrial (mtDNA) protein-coding genes (CYTB and ND2) and 5 nuclear 

(nucDNA) introns (EEF, GADPH, HMG, RHOD, and TGBf2) were sequenced for all (n 

= 7) recognized extant species of Cathartidae as well as 27 outgroup taxa from across 

Neognathae (Table 4.1). Protein-coding mtDNA was aligned at the amino acid level, 

while nuclear introns were aligned with ClustalW (Thompson et al., 1994) with standard 

gap penalties as implemented in BioEdit version 7.05 (Hall, 1999). From the original 

matrix, 440 alignment positions could not be aligned unambiguously (usually with 

respect to the Galloanserae outgroups) and so were excluded from subsequent analyses, 

yielding a final matrix of 5721 bp (Table 4.2). 

Phylogenetic inference, partitioned-models, and the treatment of BL parameters 

Phylogenetic inference was conducted using both Bayesian and ML approaches. Several 

partitioning strategies were considered for the complete matrix. To avoid ‘data-dredging’ 

(Burnham and Anderson, 2004), all candidate partition-models are based upon 
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empirically recognized natural genetic demarcations; these represent an a priori 

modelling of the possible congruence/dissonance in molecular substitution trajectory 

signatures across genomes, genes, and codon positions (the later only for mtDNA genes). 

We therefore did not consider, for example, 50 possible ways to partition the 5 nuclear 

genes, as there is no a priori knowledge to suggest doing this. [The number of possible 

ways to partition n elements is given by the associated Bell number; for 5 genes there are 

Bn = 52 possible partitions. We considered only two of these: all genes share the same 

model, or all genes have distinct models]. These constituent partitions we work with here 

show considerable heterogeneity in the number of variable sites present, empirical base 

frequencies, and (to a lesser extent) the best-fit substitution model (Table 4.2; see below). 

Separate analyses were performed on mtDNA-only and nucDNA-only submatrices to 

investigate whether the two genomes were better modelled differently. For each 

partitioning scheme we ran duplicate analyses: i) assuming the proportionality 

assumption, and ii) relaxing this assumption. 

Maximum likelihood phylogenetic inference was conducted using RAxML version 

7.2.0 (Stamatakis, 2006). All partitions were assigned individual GTR+I+G substitution 

models, which was a slight overparameterization for some the nucDNA partitions (as 

determined through AIC model-fitting in MrModeltest (Nylander, 2002) and PAUP* 

version 4 beta 10 (Swofford, 2003); Table 4.2). However, the number of ‘extra’ 

substitution model parameters involved for these partitions pales in comparison to the 

number of BL parameters added (see below). While conventional substitution model 

selection has been shown to be relatively insensitive to the particular topology employed 

(e.g. Abdo et al., 2005), this has not yet been demonstrated for partitioned model 

selection. This may be a concern if different partitioning schemes support substantially 

different optimal topologies. We therefore performed partitioned-model arbitration using 

a tree topology inferred from an unpartitioned (i.e. ‘concatenated’) analysis in RAxML to 

guard against potentially biasing partitioned-model selection towards more highly 

parameterized models (see below). 

Bayesian partitioned-model analyses were performed in MrBayes version 3.1.2 

(Ronquist and Huelsenbeck, 2003), with individual partitions assigned substitution 
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models determined through AIC analyses in MrModeltest (Nylander, 2002) and PAUP* 

version 4 beta 10 (Swofford, 2003; Table 3). All substitution model parameters were 

unlinked across partitions, and rates across partitions were allowed to vary. To ensure a 

thorough sampling of parameter values from the posterior distribution, each combination 

of partitioning strategy, BL treatment, and BL-prior was run for 3 independent replicate 

MCMC analyses of 5 x 107 generations, with burnin set very conservatively set to 1 x 107 

generations. Convergence of the Markov chains as well as effective sample sizes (ESS) 

of parameter estimates were monitored from combined MCMC log files using Tracer 

version 1.4 (Rambaut and Drummond, 2007). 

Upon near-completion of the present study, we became aware of problems concerning 

BL-priors in Bayesian phylogenetic inference (Brown et al., 2010; Marshall, 2010). 

Briefly, these authors have demonstrated that the default BL-prior in MrBayes can lead to 

the inference of excessively long trees (as compared to trees inferred under ML). By 

default, MrBayes employs exp(λ) priors for BLs, where λ is the exponential rate 

parameter. The mean of an exponential distribution is 1/λ, so larger values of λ place 

more prior weight on shorter BLs. Here we consider three alternative exponential BL-

priors to investigate a possible influence of prior on ultimate model selection: exp(10) 

(the default prior used in MrBayes), exp(20), and exp(100). 

Model selection based on the maximized joint likelihood 

To assess the relative fit of alternative candidate partitioned-models in a likelihood 

framework, we calculated AIC scores as:  

€ 

AICi = −2 log(Li )+ 2Ki , 

where Li is the maximized joint likelihood of model i with Ki estimable (free) parameters 

(Akaike, 1973). AIC is an estimate of the relative K-L discrepancy (i.e. the information 

lost) when using a simple model to approximate a more general model (Kullback and 

Leibler, 1951). Thus, the candidate model which minimizes AIC is taken as the best 

approximating model. Burnham and Anderson (2004) advocate the use of an alternative 

form of AIC which incorporates a small-sample bias-correction: 
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€ 

AICc = −2 log(Li )+ 2K
n

n −K −1
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ , 

where n represents the sample size (taken here as the length of the alignment, 5721 bp). 

To assess the relative fit of our M candidate models one can calculate normalized Akaike 

weights: 

€ 

wAICi =
e−

1
2ΔAICi

∑m=1
M e−

1
2ΔAICm

, 

where Δi is the AICc difference between model i and the best AICc model. Akaike 

weights give an indication of the degree of evidence in favour of model i being the best 

approximating model in the candidate set; these weights range from zero (no evidence) to 

one (complete evidence), although the values of individual weights depend entirely on 

the constituents of the candidate set of models (see below). Using these weights, it is 

possible to construct a 95% confidence set of models. Internal node support for 

alternative partitioning regimes was determined through 1000 replicates of a conserved-

partition nonparametric bootstrapping procedure using the inferred optimal partitioning 

scheme in RAxML.  

The maximized joint log-likelihood can also be used to guide Bayesian model 

selection. Schwarz (1978) developed the Bayesian information criterion (BIC): 

€ 

BICi = −2log(Li) +Ki logn  

where the variables have the same meaning as above. Despite being similar in form to 

AIC, BIC is not based upon K-L information theory. Rather, it is an asymptotic 

approximation of the log marginal likelihood of the model assuming a particular form of 

prior on model parameters (Posada and Buckley, 2004). BIC penalizes the addition of 

parameters more heavily than AIC, and this difference becomes proportionately stronger 

with larger n. As a result, BIC tends to select simpler models than AIC (Posada and 

Buckley, 2004). As with AIC scores above, BIC scores can be normalized to give: 

€ 

wBICi =
e−

1
2ΔBICi

∑m=1
M e−

1
2ΔBICm

. 
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However, because this calculation is based upon approximated marginal model 

likelihoods, the resultant value is not interpreted as a weight but rather an estimate of 

posterior model probability given equal model prior probabilities for all models in the 

candidate set. Analogous to the 95% confidence set of models with AIC, one can use BIC 

scores to construct a 95% credible set of models. 

An alternative to the penalized-likelihood criteria above is the performance-based 

method of Minin et al. (2003) and Abdo et al. (2005). This approach, grounded in 

decision-theory, focuses on the relative abilities of alternative candidate models to 

estimate BL parameters (which are common to all models). If we assume that one model 

in the candidate set is the true generating model, then through using model i as an 

approximating model we will incur some loss (error) in the estimation of the 2T-3 BL 

parameters, calculated as the squared Euclidean distance between BL vectors, 

€ 

Bi − B . 

Extending this to multiple candidate models, the risk Ri for model i is the sum over all j 

models of the loss function weighted by the posterior probability of model j: 

€ 

Ri = Bi − Bj
j=1

M

∑ e−
1
2 BIC j

∑ j=1
M e−

1
2 BIC j

, 

where the probability of model j is approximated using BIC (above). The DT-best model 

is thus that which minimizes Ri (the minimum expected loss). As with BIC, DT tends to 

select simpler models than AIC. In the current study it was necessary to use weighted-

average BLs for models the have BLs ‘unlinked’ across partitions, the weights being 

equal to the lengths of the respective partitions since BLs are expressed in units of 

expected substitution per site. 

Model selection based on the marginal model likelihood  

To contrast the fit of alternative partitioned-models in a fully-Bayesian framework, we 

calculated Bayes factors (BF) for each pairwise comparison of models 1 and 2: 

€ 

BF1,2 =
f (data |M1)
f (data |M2)

, 
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where f (data | Mi) represents the marginal likelihood for partitioned-model i. Following 

(Nylander et al., 2004), we approximate marginal model likelihoods using the harmonic 

mean likelihood from post-burnin MCMC samples. Unlike the three alternative model 

selection criteria above, BFs accommodate uncertainty in all parameter estimates, 

including topology. BFs are interpreted following Kass and Raftery (1995): 2ln(BF1,2) < 

6 indicates positive evidence against M2; 6 < 2ln(BF1,2) < 10 indicates strong evidence 

against M2; and 2ln(BF1,2) > 10 is decisive evidence against M2 in favour of M1. 

Divergence time estimation 

To add a temporal perspective to the study of cathartid relationships, a time-

calibrated phylogeny (hereafter ‘chronogram’) was estimated using the program BEAST 

version 1.4.8 (Drummond and Rambaut, 2007). The rate of molecular evolution was 

modelled assuming a lognormal distribution of uncorrelated branch-specific substitution 

rates (Drummond et al., 2006), with topology and divergence times being estimated 

simultaneously. We employed the optimal partitioned model identified above, and all 

data partitions were assigned unlinked AIC models (Table 4.2). [Investigation of the 

influence of ‘linked’ vs. ‘unlinked’ BL parameters in divergence time estimation is not 

possible, as these concepts are not applicable. BLs across partitions are neither 

independent nor ‘linked’ (i.e. proportional); rather they ‘communicate’ through the 

shared chronogram structure, with ultrametricity being enforced]. We allowed different 

loci to have a unique pattern of branch rate heterogeneity by jointly estimating separate 

lognormal distributions for each locus. However, because of the non-independence of 

mtDNA genes, all mtDNA partitions were assigned to a single lognormal distribution 

describing mtDNA branch rate heterogeneity, although sub-partitions (codon positions) 

were allowed to have unique relative rates. In order to avoid confounding intra- and 

super-specific rates of molecular evolution (Ho et al., 2005) we pruned our taxon matrix 

to the species level.  

To allow for the placement of temporal constraints and increase the efficiency of 

chronogram reconstruction, 3 nodes were constrained to be monophyletic. These 

constrained nodes are justified by the results below and published results from a much 

larger data set (Hackett et al., 2008). First, the clade Galloanserae (containing all 
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Galliformes and Anseriformes) was constrained to allow placement of the temporal 

constraint derived from the 66 MY fossil duck Vegavis iaai (Clarke et al., 2005). Second, 

the clade uniting Procellariiformes and Sphenisciformes was constrained to allow 

placement of the temporal constraint derived from the 62 MY fossil penguin Waimanu 

manneringi (Slack et al., 2006). Third, the clade uniting Pandionidae and Accipitridae 

was constrained to allow placement of the temporal constraint derived from the 37 MY 

fossil osprey Palaeocircus cuvieri (Harrison and Walker, 1976). Because of the limited 

amount of material from P. cuvieri, we conducted chronogram inferences with and 

without this constraint. Internal temporal constraints were constructed using lognormal 

distributions. Because insufficient data exist regarding the extent of ‘ghost lineages’ in 

most lineages of birds, we employed standard distributions to all constraints with mean = 

standard deviation = 0.3, with the offset positioned to the age of the respective fossil. 

These distributions lend more credence to the fossil record than do conventional hard 

minimum constraints, but are broad enough to accommodate divergence time estimates 

from previous molecular studies. 

Although several stemgroup fossil representatives exist for Cathartidae (Rich, 

1983), many of these are of limited material and/or controversial taxonomic affinities; we 

therefore refrained from including these as calibration constraints. The age of Neognathae 

(the root of our tree) is currently in debate (e.g. Brown et al., 2007; Brown et al., 2008; 

Ericson et al., 2006). We therefore employed a broad uniform prior on the root spanning 

130-70 MY; this prior allows for results concordant with either molecular- or fossil-

inferred timescales. Nodes not directly involved in temporal constraints were modelled 

using a birth-death prior. For both temporal calibration regimes (i.e. those with and 

without P. cuvieri), four replicate analyses were run for 108 generations, sampling every 

2.5 x 103 generations. Final analyses consisted of one run of 5 x 108 generations to 

confirm convergence/mixing. All post-burnin samples per temporal calibration regime 

were combined prior to parameter summary. 
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RESULTS AND DISCUSSION 

Identification of an optimal partitioning strategy 

Both ML and Bayesian approaches to partitioned-model arbitration identify significant 

phylogenetic structure within our alignment, and in general these approaches agreed upon 

partitioning strategies (Table 4.3, 4.4). It was not possible to construct 

confidence/credible sets of models, as for each combination of alignment/criterion a 

single model received essentially all of the weight (i.e. w ~ 1.0 and 2ln(BF1,2) > 10). 

Because all BFs were extremely large when comparing models to the optimal model, 

only harmonic mean model likelihoods are presented rather than all pairwise calculated 

BFs. When considering only linked-BL models (which is what is typically done) for the 

full matrix, all 5 model selection criteria (AIC, AICc, BIC, DT-Risk, and BF) identify the 

8-partition model (consisting of mtDNA codons and nucDNA genes) to fit the data 

significantly better than any alternative model. When the candidate set is extended to 

include both linked- and unlinked-BL models, AIC, AICc, and BF shift support for the 8-

partition unlinked-BL model, again with unanimous support (AIC ~1.0, BF > 10), despite 

the great increase in the number of estimated parameters. BIC and DT-Risk, with their 

correspondingly stronger penalty for overparameterization, stuck with support for the 

linked-BL 8-partition model. The agreement between BIC and DT-Risk in this instances 

and those below is not surprising. Given that one model receives wBIC ~ 1, BL estimation 

performance is only given non-zero weight relevant to this one optimal model; since that 

the optimal model estimates its own BLs with zero error, it is guaranteed to be the best 

DT-Risk model. However, it is interesting that BIC and BF do not agree on the 

optimally-selected model, as BIC was conceived as an approximation the marginal model 

likelihood (Schwarz, 1978). It thus appears that the priors assumed by BIC are dissimilar 

to those actually implemented in Bayesian phylogenetic inference. 

Model selection considering mtDNA alone was unambiguous: all criteria selected the 

3-partition model consisting of amalgamated 1st, 2nd, and 3rd codon positions across the 

two genes. The model receives almost complete support; the analogous unlinked 3-

parition model is a distant second best. Thus, it appears that the proportionality 

assumption cannot be rejected for the mtDNA data in hand. Modelling of nucDNA, on 
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the other hand, was less clear. BF and AIC select the unlinked-BL 5-partition model, 

however AICc selects the simpler linked-BL 5-partition model while BIC and DT-Risk 

support the concatenated model. Thus, the appropriateness of the proportionality for 

nucDNA is unclear. 

Nevertheless, consideration of the genome-specific results above suggest models not 

considered a priori: 1) an 8-partition model (partitioned as above) with mtDNA BLs 

linked to one another (to the exclusion of nucDNA BLs), and nucDNA BLs linked to one 

another (i.e. 2 BL vectors for nBL = 172); and 2) an 8-partition model with mtDNA BLs 

linked to one another, and nucDNA BLs unlinked (6 BL vectors for nBL = 489). Given 

the constituent genome-specific results, these ‘mixed-BL’ models are expected to provide 

a good fit to the data. Unfortunately, RAxML does not yet allow one to arbitrarily link 

BLs (i.e. they are either all linked or all unlinked), and thus we can not implement these 

models for phylogenetic reconstruction in a ML framework. However, we can 

approximate the fit of these models on a fixed tree topology: because in both of the 

mixed-BL models above all parameters (substitution model and BL parameters) are 

completely unlinked across genomes, when considering the same topology for all 

partitions one can simply sum the log-likelihoods of the two constituent sub-models as an 

approximation of the joint log-likelihood of the full model. Doing this, we see that AIC 

selects the more general mixed-BL model while AICc goes with the simpler mixed-BL 

model. BIC and DT-Risk, on the other hand, remain in support of the 8-partition linked-

BL model (the simpler of the two mixed-BL models is a distant second best). MrBayes 

allows for implementation of the full mixed-BL models. Adding these two new models to 

the candidate set, BF support for the most general mixed-BL model is decisive. These 

results thus suggest mixed support for the proportionality assumption: while mtDNA 

cannot reject proportionality of BLs across partitions, proportionality of BLs across the 

two genomes is rejected using most criteria. The non-proportionality of BLs across 

genomes is readily apparent from an examination of genome-specific BLs estimated on a 

single topology (Figure 4.4). 

Several authors have recently commented on the connection between inappropriate 

BL-priors and the inference of excessively long trees (Brown et al., 2010; Marshall, 
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2010), measured as the sum of all 2T-3 BLs in the tree (each expressed in units of 

expected number of substitutions per site), although these authors find no influence of 

BL-prior on either topological inference or node support. We were interested here in 

whether priors of different breadth might ultimately lead to the selection of alternative 

partitioned models, especially since we explicitly consider the treatment of BL 

parameters in partitioned model inference. As expected, narrower exponential priors (i.e. 

those with larger exponential rate parameters, λ) lead to the inference of shorter trees, 

although this tended to be much more pronounced for mtDNA than nucDNA (Table 4.4). 

For mtDNA, tree lengths often differed by a factor of two across the various priors. We 

also note an influence of BL-prior on the degree of model fit as gauged from the 

harmonic mean model likelihood. While analyses of nucDNA alone showed very little 

influence of BL-prior on model likelihoods, mtDNA-only analyses experienced 

considerable changes, especially with unlinked-BL models. 

This can be understood through the respective forms of the prior and the likelihood 

(Figure 4.3). If all parameter values of non-negligible likelihood are contained well 

within the boundaries of the prior (in the case of the exponential, close to zero), then 

constricting the breadth of the prior should lead to a superior marginal likelihood because 

regions of small likelihoods in the original prior need not be integrated over (in the case 

the case of the exponential, these extreme values are down-weighted, rather than 

excluded as would be the case in a uniform distribution). Because mtDNA marginal 

likelihoods decrease so much with narrower priors, this suggests that the highest 

likelihood BL parameter values for these sites lie within the tail of the narrower priors. 

Indeed, ML BL estimates for from RAxML (Figure 4.4) reveal that these values are 

extreme when considering the strongest BL-prior (λ = 100; mean = 0.01), in particular 

for mtDNA. Thus, decreases in marginal model likelihoods with changes in BL-priors for 

the full matrix appear to be due primarily to the poorer fit for mtDNA. These findings 

suggest another direction of research: investigating the relative fit of candidate models 

while attaching distinct BL-priors to individual partitions. Nevertheless, form of BL-prior 

had no influence on which partitioning scheme was ultimately selected as the optimal 

strategy (Table 4.4). 
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Phylogenetic reconstruction of Cathartidae – are our models ‘importantly wrong’? 

Given the vast superiority of the optimal models compared to the alternatives, the natural 

question to ask is: does it matter? Do models that better fit the data return unique 

solutions that alternative models are not able to (perhaps to under- or mis-

parameterization)? Empirical phylogeneticists are ultimately interested in two attributes: 

the optimal tree topology returned, and node bi-partition support (either nonparametric 

bootstrap proportions or posterior node probabilities).  

In general, all models considered here reveal a basal split within extant Cathartidae of 

two clades with unanimous support in both ML and Bayesian implementations: i) the 

genus Cathartes [Lesser- (burrovianus) and Greater (melambrotus) Yellow-headed 

Vultures, and Turkey Vulture (aura)] together with the Black Vulture (Coragyps 

atratus), and ii) the Andean (Vultur gryphus) and California (Gymnogyps californianus) 

Condors, and the King Vulture (Sarcoramphus papa). However, relationships within 

these two clades were not insensitive to model choice. 

Figure 4.5 contrasts trees inferred assuming simple versus optimal models. Both ML 

and Bayesian approaches employing a simple single-partition model recover a 

monophyletic yellow-headed (YH) vulture clade, sister to the Turkey Vulture. The YH 

clade is quite strongly supported in the Bayesian analysis with a posterior clade 

probability of 0.94, although ML nonparametric bootstrap support (61%) is more modest. 

However, when employing the 8-partition model deemed optimal by most model 

selection criteria considered here, C. melambrotus is instead inferred to be the sister 

taxon of C. aura, with C. burrovianus being sister to this clade, thus rendering ‘YH 

vultures’ paraphyletic. This is particularly interesting, as from their first description in 

1845 the two taxa were originally considered conspecific; only in 1964 were they raised 

to the species level (Wetmore, 1964). Our results suggest that the two species of YH 

vultures are even more distinct than Wetmore realized. 

The other point of model sensitivity involves the phylogenetic placement of the 

California Condor. In general, most models recover a sister relationship of this taxon with 

the King Vulture. However, support for this relationship varies substantially with the 
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model employed. Interestingly, the MLE tree for the 8-partition model and unlinked BLs 

does not recover this relationship, although the bootstrap consensus tree for this model 

does recover the clade. This suggests that there may be just a few sites supporting an 

alternative relationship, rare enough that they are being missed in the bootstrap 

resampling. This interpretation is consistent with the generally young crown age of this 

taxon (see below).  

Overall, these two relationships of interest show different patterns in terms of model-

sensitivity (Table 4.5). In general, support for paraphyletic YH vultures increased when 

removing the constraint of proportional BLs for ML analyses, but remained essentially 

constant for Bayesian analyses. Support for the sister relationship between the King 

Vulture and California Condor instead generally decreased when assuming unlinked BLs; 

this effect was more pronounced for Bayesian than ML analyses. Interestingly, the two 

most probable trees for each of the unlinked-BL analyses differed only in the placement 

of the California Condor, the second most probable placement being sister to the Andean 

Condor. The decrease in support precision for the placement of the California Condor in 

more complex models may indicate that, in regards to this specific phylogenetic 

hypothesis, the models are overparameterized (see below). Resolution of the placement 

of this taxon may require further data. 

Although our study was not designed to investigate the relationship of Cathartidae to 

other neoavian families, we can nonetheless reject a long-standing hypothesis is avian 

systematics. This pertains to a purported relationship between cathartid vultures with 

storks (Aves: Ciconiiformes). Although suggested from morphological data (Garrod, 

1874; Ligon, 1967), the influence of this hypothesis on taxonomy ultimately stems from 

two genetic studies. Sibley and Ahlquist (1990), using now largely discredited DNA-

DNA hybridization data, argued that cathartid vultures are a sub-family within 

Ciconiidae. The second study, using mtDNA cytochrome b sequences, suggested an 

alliance between some storks and some New World Vultures (Avise et al., 1994). 

However, it was discovered almost immediately that this second study contained 

erroneous sequences (Hackett et al., 1995; Helbig and Seibold, 1996), rendering the 

conclusions untenable. Despite having been long since retracted (Avise and Nelson, 
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1995), many papers continue to cite this study as if it were true (e.g. Tagliarini et al., 

2009). No recent study with broad taxon sampling has been able to reconstruct a 

cathartid-stork relationship (e.g. Brown et al., 2008; Ericson et al., 2006; Hackett et al., 

2008; Livezey and Zusi, 2007). We include in the present study two stork species, the 

Maguari Stork (Ciconia maguari) and the Saddle-billed Stork (Ephippiorhynchus 

senegalensis). In no combination of model/prior are storks and cathartid vultures even 

remotely related; instead, the storks cluster with the other Ciconiiformes taxa, the herons, 

Shoebill, and Hammerkop. 

A temporal perspective on the diversification of Cathartidae 

Chronogram reconstruction reveals why phylogenetic inference within Cathartidae is so 

difficult (Figure 4.6). Results for the ingroup taxa were insensitive to the 

inclusion/exclusion of the controversial 37 MY fossil osprey (P. cuvieri) constraint 

(Harrison and Walker, 1976), while deeper nodes changed < 3MY; only results with the 

constraint are presented. Analyses employing sophisticated relaxed molecular genetic 

clocks (with rate variation across lineages fitted to distinct lognormal distributions 

associated with the optimal partitioned model above; Table 4.6) indicates that crown 

Cathartidae diversified ~14 million years ago (MYA) (17.5-11.2 credible interval). The 

stem lineage is inferred to have originated ~69 MYA (75.8-64.3 credible interval). This is 

somewhat younger than previously estimated from nuclear (Brown et al., 2007) and 

mitochondrial (Brown et al., 2008) DNA; we attribute this to increased taxon sampling 

and a more nuanced relaxed molecular clock approach. The oldest putative stem-cathartid 

fossil material is Paracathartes howardae (Harrison and Walker, 1977) from Wyoming 

approximately 55 MYA (early Eocene). This is somewhat contentious, as the material is 

represented by a single tibiotarsus and affinities are controversial. However, our results 

indicate that this fossil at least fits within our temporal reconstruction of the family.  

Diversification of the two unanticipated phylogenetic results above appears to have 

been rapid, with multiple lineages arising in a period of less than one million years (see 

overlapping credibility intervals on divergence time estimates; Figure 4.6). Given this 

rapid radiation, morphological congruence amongst unrelated taxa is understandable. We 

note that posterior clade probabilities for these phylogenetic relationships differs 
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somewhat from the analyses above. Given the sensitivity of these focal relationships to 

model choice this is not surprising, as BEAST does neither constrain BLs to be 

proportional nor allow them to be freely unconstrained. Rather, BLs must jointly satisfy 

the ultrametricity of the time-calibrated phylogeny, meaning that some BLs may be 

proportional across partitions while others are not. Regarding the sister relationship 

between King Vulture and California Condor, we see that support increases to a posterior 

probability of 0.94, on par with results from unlinked-BL models. As mentioned above, 

this may indicate that, with respect to this specific clade, unlinking BLs across partitions 

may constitute overparameterization. On the other hand, we see that support for the 

paraphyly of YH vultures decreased to 0.6, a value much lower than those generated from 

MrBayes (0.82-1.0; Table 4.5). This decrease in support understandable given the near-

coeval inferred divergence times: C. burrovianus estimated to have originated 2.71 MYA 

(3.74-1.76 credible interval), followed by the split of C. melambrotus and C. aura just 

500,000 years later (mean 2.21 MY, 3.09-1.38 credible interval).  

Inferred characteristics of the partition-specific relaxed molecular clocks employed 

here lend credence to our optimal selection of partitioning strategy (Table 4.6). Each 

partition is described by a unique combination of mean rate, coefficient of variation (an 

indication of clock-likeness), covariance (the degree of autocorrelation in rates across 

ancestor-descendant branches), and standard deviation of rates estimates. MtDNA, for 

example, evolves at more than an order of magnitude faster than any of the nuclear genes, 

but is not correspondingly more unclock-like. Interestingly, nucDNA gene RHOD fails to 

reject an autocorrelation of rates (that is, include zero in the credible interval). In virtually 

every study/system that has used the UCLN model in BEAST autocorrelation is rejected: 

birds (Brown et al., 2008), fish (Alfaro et al., 2007), mammals (Kitazoe et al., 2007), 

viruses (Drummond et al., 2006), photosynthetic algae (Brown and Sorhannus, in 

revision), and plants (Renner et al., 2008; Zhong et al., 2009). Thus, RHOD, in failing to 

reject autocorrelation, appears to be idiosyncratic. This is important, because most 

relaxed molecular clock methods available explicitly assumed that rates are 

autocorrelated across a tree (Brown and van Tuinen, 2010; Rutschmann, 2006).  
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CONCLUSIONS 

Our results indicate that assumed model complexity does indeed matter (Box, 1976) i.e. 

models of different sizes can lead to disparate inferences. We show here that alternative 

treatment of BL parameters in partitioned phylogenetic models can produce drastically 

different degrees of fit to the data. How general this is remains to be seen; however, given 

the potential boon to empirical phylogenetic inference, it seems prudent to consider these 

classes of models in our candidate sets. Finally, although influencing inferred tree length 

and degree of model fit (and considerably so for mtDNA), we find no influence of BL-

priors on topological reconstruction of posterior clade probabilities. However, individual 

partitions were differently influenced by BL-prior, suggesting that future partitioned 

models may do well to consider partition-specific BL-priors. 
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Table 4.1 Taxa included in the present study. 
Ingroup (Cathartidae) Common Name 
Cathartes aura (n = 3) Turkey Vulture 
Cathartes burrovianus Lesser Yellow-headed Vulture 
Cathartes melambrotus Greater Yellow-headed Vulture 
Coragyps atratus (n = 2) Black Vulture 
Vultur gryphus (n = 2) Andean Condor 
Sarcoramphus papa (n = 4) King Vulture 
Gymnogyps californianus (n = 2) California Condor 
  
Non-cathartid Falconiformes Family 
Falco femoralis Falconidae 
Falco peregrinus Falconidae 
Falco rusticolus Falconidae 
Polyborus plancus Falconidae 
Gyps bengalensis Accipitridae 
Pandion haliaetus Pandionidae 
Sagittarius serpentarius Sagittariidae 
  
Non-falconiform Neoaves Family 
Asio otus Strigidae 
Apterodytes patagonicus Spheniscidae 
Pygoscelis antarcticus Spheniscidae 
Fulmarus glacialis Procellariidae 
Larus marinus Laridae 
Lunda cirrhata Alcidae 
Charadrius alexandrinus Charadriidae 
Gavia immer Gaviidae 
Ciconia maguari Ciconiidae 
Ephippiorhynchus senegalensis Ciconiidae 
Nyctanassa violacea Ardeidae 
Ardea herodias Ardeidae 
Scopus umbretta Scopidae 
Balaeniceps rex Balaenicipitidae 
  
Galloanserae (outgroup) Family 
Anas clypeata Anatidae 
Anas platyrhunchos Anatidae 
Bucephala albeola Anatidae 
Gallus domesticus Phasianidae 
Gallus gallus Phasianidae 
Bonasa umbellus Phasianidae 
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Table 4.2 Fragment properties after excluding ambiguously-aligned sites. 
     Empirical base frequencies 

Gene (genome) 
Aligned 
length (bp) 

Variable 
sites (%) 

Parsimony informative 
sites (%) 

AIC model  
(# parameters) A C G T 

CYTB (mtDNA) 1029 498 (48.4) 439 (42.7) GTR+I+G (10) 0.270 0.349 0.134 0.247 
ND2 (mtDNA) 1037 632 (60.9) 564 (54.4) GTR+I+G (10) 0.315 0.346 0.102 0.237 
   mtDNA 1st 688 308 (44.8) 261 (37.9) GTR+I+G (10) 0.302 0.298 0.192 0.208 
   mtDNA 2nd 689 147 (21.3) 97 (14.1) GTR+I+G (10) 0.182 0.314 0.110 0.394 
   mtDNA 3rd 689 675 (98.0) 645 (93.6) GTR+I+G (10) 0.394 0.432 0.050 0.124 
All (mtDNA) 2066 1130 (54.7) 1003 (48.5) GTR+I+G (10) 0.293 0.348 0.118 0.242 
EEF (nucDNA) 924 533 (57.7) 391 (42.3) GTR+G (9) 0.275 0.273 0.205 0.247 
GADPH (nucDNA) 416 272 (65.4) 230 (55.3) HKY+I+G (6) 0.211 0.210 0.319 0.260 
HMG (nucDNA) 673 502 (74.6) 417 (62.0) GTR+G (9) 0.288 0.148 0.231 0.333 
RHOD (nucDNA) 979 639 (65.3) 487 (49.7) GTR+G (9) 0.208 0.240 0.283 0.269 
TGFb2 (nucDNA) 663 368 (55.5) 250 (37.7) HKY+G (5) 0.251 0.221 0.231 0.297 
All (nucDNA) 3655 2331 (63.8) 1775 (48.6) GTR+G (9) 0.248 0.224 0.248 0.280 
All (mtDNA+nucDNA) 5721 3461 (60.5) 2778 (48.6) GTR+I+G (10) 0.264 0.270 0.200 0.266 
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Table 4.3 Identifying the optimal partitioning strategy based on the maximized joint log-likelihood. The number of constituent partitions and the treatment of BL 
parameters (link/unlink) for each model is given in square brackets. For the full matrix three sets of weights (w) are presented for both AIC criteria: the topmost 
value uses only linked-BL models as the candidate set; the middle value considers both linked- and unlinked BL models; the lowermost value considers all 
candidate models. Bold values indicate optimal models per matrix/criterion. 

Full Matrix Models -ln(L) Parameters (nBL) AIC w AICc wc BIC wBIC DT-Risk 
[1] All 56672.17 91 (81) 113526 0 113529 0 114132 0 0.97661 
[2-link] mtDNA, nucDNA 55205.55 103 (83) 110617 0 110621 0 111302 0 0.64045 
[6-link] mtDNA, nuc-genes 55089.33 147 (87) 110473 0 110480 0 111450 0 0.62650 
[7-link] mt-genes, nuc-genes 55051.09 158 (88) 110418 0 110427 0 111469 0 0.60828 
[8-link] mt-codons, nuc-genes 53395.23 169 (89) 107128 ~1link 107139 ~1link 108253 ~1 0 
[2-unlink] mtDNA, nucDNA 54731.28 182 (162) 109827 0 109839 0 111037 0 0.87700 
[6-unlink] mtDNA, nuc-genes 54252.44 546 (486) 109597 0 109712 0 113229 0 0.87504 
[7-unlink] mtDNA genes, nuc-genes 54159.79 637 (567) 109594 0 109753 0 113831 0 0.93295 
[8-unlink] mtDNA codons, nuc-genes 52623.19 728 (648) 106702 ~1link/unlink 106915 ~1link/unlink 111544 0 0.51448 
[8] link-mt-codons, link-nuc-genes 53131.06 250 (172) 106762 0 106785 ~1all 108425 0 0.50404 
[8] link-mt-codons, unlink-nuc-genes 52770.03 568 (489) 106678 ~1all 106804 0 110463 0 0.53474 
mtDNA-only Models          
[1] concat. mtDNA 25902.19 91 (81) 51986 0 51995 0 52592 0 1.13579 
[2-link] mt-genes 25870.41 103 (83) 51947 0 51958 0 52632 0 1.33842 
[3-link] mt-codons 24419.78 114 (84) 49068 ~1 49081 ~1 49826 ~1 0 
[2-unlink] mt-genes 25809.54 182 (162) 51983 0 52018  53194 0 1.33752 
[3-unlink] mt-codons 24272.94 273 (243) 49092 0 49175 0 50908 0 1.05996 
nucDNA-only Models          
[1] concat. nucDNA 28829.09 91 (81) 57840 0 57845 0 58445 ~1 0 
[5-link] nuc-genes 28711.28 136 (86) 57695 0 57705 ~1 58599 0 0.01944 
[5-unlink] nuc-genes 28350.25 455 (405) 57610 ~1 57740 0 60637 0 0.23412 
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Table 4.4 Identifying optimal partitioned-models using marginal model likelihoods. The number of constituent partitions and the 
treatment of BL parameters (link/unlink) for each model is given in square brackets. BL-priors are denoted as BL-X, where X is the 
exponential rate parameter. TL is the weighted-average posterior mean tree length for the particular combination of model/BL-prior. 
Values in bold represent the optimal partitioned-model for a given alignment/BL-prior.  

  Harmonic mean model –ln(L) 
Full Matrix Models Parameters (nBL) BL-10 (TL) BL-20 (TL) BL-100 (TL) 
[1] All 91 (81) 56743 (2.808) 56738 (2.769) 56749 (2.527) 
[2-link] mtDNA, nucDNA 103 (83) 54793 (5.626) 54785 (5.100) 54854 (3.542) 
[6-link] mtDNA, nuc-genes 135 (87) 54657 (5.602) 54663 (5.083) 54793 (3.543) 
[7-link] mtDNA genes, nuc-genes 146 (88) 54629 (5.713) 54633 (5.148) 54710 (3.548) 
[8-link] mtDNA codons, nuc-genes 157 (89) 53444 (6.888)1 53448 (5.949)1 53538 (3.921)1,2 
[2-unlink] mtDNA, nucDNA 182 (162) 54583 (4.337) 54591 (3.803) 54726 (2.497) 
[6-unlink] mtDNA, nuc-genes 534 (486) 54360 (4.493) 54366 (3.908) 54518 (2.385) 
[7-unlink] mt-genes, nuc-genes 625 (567) 54349 (4.330) 54637 (3.908) 54607 (2.054) 
[8-unlink] mt-codons, nuc-genes 716 (648) 53279 (4.533)2 53254 (3.497)2 53649 (2.054) 
[8] link-mt-codons, link-nuc-genes 240 (172) 53258 (4.967) 53274 (4.177) 53431 (2.816) 
[8] link-mt-codons, unlink-nuc-genes 557 (489) 53169 (5.086) 53176 (4.251) 53332 (2.729) 
mtDNA-only Models     
[1] mtDNA 91 (81) 25651 (9.017) 25661 (7.495) 25803 (4.059) 
[2-link] mt-genes 103 (83) 25631 (9.093) 25642 (7.541) 25776 (4.064) 
[3-link] mt-codons 114 (84) 24457 (10.428) 24470 (8.395) 24614 (4.925) 
[2-unlink] mt-genes 182 (162) 25643 (8.651) 25667 (6.553) 25906 (3.148) 
[3-unlink] mt-codons 273 (243) 24552 (8.632) 24544 (6.407) 24944 (3.147) 
nucDNA-only Models     
[1] nucDNA 91 (81) 28910 (1.668) 28900 (1.656) 28901 (1.569) 
[5-link] nuc-genes 124 (86) 28782 (1.665) 28785 (1.654) 28782 (1.568) 
[5-unlink] nuc-genes 443 (405) 28696 (1.866) 28691 (1.781) 28713 (1.417) 

1 Optimal model if only linked-BL models are considered; 2 Optimal model if only linked- and unlinked-BL models are considered.
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Table 4.5 ML (non-parametric bootstrap) and Bayesian (posterior clade probability) support for nodes of interest across models and branch length 
priors. BL-X refers to the exponential prior placed on branch length parameters, where X is the exponential rate parameter. ‘A’ refers to support for a 
paraphyletic yellow-headed vultures. ‘B’ refers to the node uniting the King Vulture and California Condor. It is not currently possible to implement 
the mixed-BL models in RAxML. 

 ML Bootstrap BL-10 BL-20 BL-100 
Full Matrix Models A B A B A B A B 
[1] All 39 56 0.06 0.98 0.06 0.99 0.04 0.99 
[2-link] mtDNA, nucDNA 47 59 0.99 0.97 0.98 097 1.0 1.0 
[6-link] mtDNA, nuc-genes 47 62 0.98 0.98 0.98 0.98 0.93 0.98 
[7-link] mtDNA genes, nuc-genes 63 62 0.97 0.96 0.97 0.96 0.92 0.96 
[8-link] mtDNA codons, nuc-genes 68 60 0.99 0.96 0.99 0.96 0.94 0.96 
[2-unlink] mtDNA, nucDNA 63 54 0.99 0.88 0.99 0.9 0.96 0.89 
[6-unlink] mtDNA, nuc-genes 72 49 1.0 0.65 1.0 0.66 1.0 1.0 
[7-unlink] mt-genes, nuc-genes 73 47 0.95 0.79 0.95 0.75 0.83 0.89 
[8-unlink] mt-codons, nuc-genes 73 65 0.97 0.57 0.93 0.58 0.82 0.56 
[8] link-mt-codons, link-nuc-genes NA NA 0.99 0.89 0.99 0.88 0.95 0.89 
[8] link-mt-codons, unlink-nuc-genes NA NA 1.0 0.58 1.0 0.58 0.98 0.68 
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Table 4.6 Quantification of inferred rate variation amongst locus-specific relaxed molecular clocks. Results 
from BEAST analyses employing separate but jointly-sampled lognormal distributions to describe 
uncorrelated among-branch rate variation for each locus. Values represent mean and 95% highest posterior 
density (HPD) intervals (lower, upper). The coefficient of variation is an indication of the clock-likeness of 
the data (smaller values being more clock-like), while covariance is a measure of the autocorrelation of 
rates from ancestor to descendent branches (higher values representing more highly-autocorrelated rates). 
UCLN = uncorrelated lognormal. 

Locus 
Coefficient of 

variation Covariance UCLN mean 
UCLN standard 

deviation 

mtDNA 0.442 
(0.339,0.554) 

0.189 
(-0.050,0.421) 

1.06×10-2 
(8.39×10-3,1.29×10-2) 

0.478 
(0.346,0.623) 

EEF 0.362 
(0.243,0.487) 

0.085 
(-0.154,0.320) 

9.99×10-4 
(8.56×10-4,1.15×10-3) 

0.367 
(0.245,0.497) 

GADPH 0.573 
(0.396,0.774) 

0.074 
(-0.170,0.328) 

1.43×10-3 
(1.13×10-3,1.77×10-3) 

0.570 
(0.391,0.767) 

HMG 0.882 
(0.585,1.248) 

-0.059 
(-0.232,0.132) 

1.53×10-3 
(1.06×10-3,2.10×10-3) 

0.859 
(0.593,1.134) 

RHOD 0.827 
(0.653,1.008) 

0.259 
(0.040,0.501) 

9.91×10-4 
(7.52×10-4,1.27×10-3) 

0.821 
(0.638,1.035) 

TGFb2 0.449 
(0.295,0.610) 

0.063 
(-0.173,0.302) 

6.92×10-4 
(5.66×10-4,8.21×10-4) 

0.469 
(0.302,0.647) 

 

 

 



	
   119	
  

 

 

 

 

 

 

 

 

Figure 4.1 The potential treatment of branch length (BL) parameters with P partitions and T taxa. 
Three hypothetical genes are analyzed for 4 taxa; Gene2 is a ‘slow’ gene, Gene3 is a ‘fast’ gene, 
and Gene1 is intermediate. (A) Branches are assumed to be equal for every gene; 2T – 3 = 5 total 
BL parameters. Although no extra BL parameters are required under this scenario, the resulting 
compromised BL vector is clearly inappropriate (see B-C). (B) Branches are assumed to be 
perfectly proportional across genes; (2T – 3) + P = 8 total BL parameters. Here, only 3 extra BL 
parameters are needed to accommodate branch length heterogeneity across genes. However, this 
approach requires that gene-specific phylograms differ exclusively by scale, and this assumption 
may not be supported by the data in hand. (C) Branch lengths (but not topology) are independent 
across genes. Unlike the previous two options, this model allows for heterogeneity in the pattern 
of BLs across genes; e.g. a relatively ‘slow’ lineage for Gene2 can be a ‘fast’ lineage for a Gene3. 
Despite the increased realism of this model, it requires a total of P×(2T – 3) = 15 BL parameters 
which may not be supported with a limited data set. 
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Figure 4.2 The number of branch length parameters (nBL) in partitioned-models for 50 taxa and P 
partitions. nBL is invariant to P if BLs are assumed equal for every partition. Assuming 
proportionality of BLs across partitions requires P extra relative-rate parameters, but only a single 
BL vector. An assumption of independence of BLs across partitions requires P separate BL 
vectors, which increases very quickly with P.  



	
   121	
  

 

 

 

 

 

 

Figure 4.3 Influence of BL-priors on marginal likelihoods. The blue, red, and green curves 
represent exponential priors that successively place a larger volume of the prior on shorter branch 
lengths (i.e. larger exponential rate parameters, λ), while the black and grey curves represent 
hypothetical likelihood surfaces for parameter values (where values outside the curves have small 
but non-zero likelihoods). The marginal likelihood of parameter values is the product of the 
likelihood and prior, integrated over the breadth of the prior. In the case where the highest 
likelihood values for the parameter lie close to zero (grey curve), using a more narrow prior will 
generate a higher marginal likelihood, as extreme values of the parameter will contribute little to 
the integral since both the prior and likelihood are small. In the case where the highest likelihood 
values for the parameter lie instead far from zero (black curve), using a narrower exponential 
prior will instead tend to decrease the marginal likelihood, as small values for the parameter 
receive the bulk of the volume of the prior. The ultimate fate of the marginal likelihood will 
depend on the relative strength of the prior and the likelihood (i.e. the amount of data). 
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Figure 4.4 A comparison of ML branch length heterogeneity within and between genomes. (A) 
Phylogram estimated from mtDNA partitioning by codon position (n = 3 partitions) while 
enforcing BLs to be proportional across partitions. (B) Phylogram estimated from nucDNA 
partitioned by gene (n = 5 partitions) while not requiring BLs to be proportional across partitions; 
BLs shown are weighted-averages across the 5 partitions. BLs were estimated using the same tree 
topology for both genomes. Note differences in scale bars. mtDNA BLs tend to be much longer 
than analogous nucDNA BLs, and can be considered ‘extreme’ values when assuming an 
exp(100) BL-prior in Bayesian inference.
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Figure 4.5 The influence of model complexity on phylogenetic inference. Phylograms (A) and (B) were inferred using a single ‘concatenated’ substitution model, while phylograms (C) and (D) were 
inferred using the inferred optimal 8-partition model for ML (A and C) and Bayesian (B and D) implementations. Partitioned ML analyses (C) implemented the model where BLs are unlinked across all 
partitions (the most general possibility using RAxML); node support values are from 500 nonparametric bootstrap replicates, and are mapped onto the MLE tree. Partitioned Bayesian analyses (D) 
implemented the 8-partition ‘mixed-BL’ model, where mtDNA BLs are enforced to be proportional but nucDNA BLs are unconstrained; node values are posterior clade probabilities mapped onto the 
majority-rule consensus tree. Both single partition models recover a monophyletic yellow-headed vulture clade (C. melambrotus and C. burrovianus) while 8-partition models reconstruct C. burrovianus 
as basal to a clade of C. melambrotus and the Turkey Vulture (C. aura). The California Condor (Gymnogyps californianus) tends to group with the King Vulture (Sarcoramphus papa), albeit with 
mediocre support. This support decreases with model complexity in Bayesian analyses. The MLE tree for the 8-partition model (C) does not recover this grouping, although the majority-rule consensus 
tree does (not shown), with support of 60%. 
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Figure 4.6 Maximum clade credibility chronogram estimated using a Bayesian modelling of rate 
evolution assuming a lognormal distribution of uncorrelated branch-specific substitution rates. 
Rate heterogeneity for each locus was described by separate but jointly-sampled lognormal 
distributions. The dashed vertical red line marks the K-Pg boundary, and error bars represent 
posterior probability (0.95) credibility intervals on inferred ages. Although Cathartidae has its 
origin in the Late Cretaceous, crown group cathartid taxa are quite young, diverging much later in 
the Miocene. Posterior node probabilities are shown only for ingroup nodes of probability < 1.0. 
Galloanserae outgroups not shown. 
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Chapter 5 

All models are wrong but some are useful: identifying useful partitioned models for 

phylogenetic inference via posterior predictive approaches 

ABSTRACT 

Recent technological and methodological advances have allowed the implementation of 

arbitrarily complex models of molecular evolution into methods of phylogenetic 

reconstruction. These models have greatly increased the amount of information that can 

be extracted from heterogeneous data. That said, the legitimacy of all inferences made 

using maximum likelihood or Bayesian methodologies ultimately rely on the suitability 

of the underlying model assumed. While standard nucleotide substitution models are 

regularly tested for fit to the data at hand (e.g. using the Akaike information criterion), 

various partitioning schemes, which themselves represent different modellings of the 

molecular evolutionary process, routinely are not. Here I evaluate the fit of models of 

varying complexity (number of partitions) to multi-gene mitochondrial DNA alignments, 

with a particular interest in the treatment of edge length parameters across partitions (that 

is, whether they are assumed to be proportional across partitions or are left 

unconstrained). To arbitrate amongst models within an a priori candidate set of 

partitioned models, I extend a model selection strategy based upon a Bayesian posterior 

predictive approach, where trained models are ranked based upon their respective 

abilities to predict the composition of the empirical matrix. Ultimate model selection 

using this method is contrasted against established methods employing information 

theoretic, decision theoretic, and Bayesian approaches on empirical alignments. In 

general, the posterior predictive model selection approach has lower discriminating 

power for small matrices (in terms of the number of taxa sampled). A strong influence of 

branch length prior is also seen on ultimate model selection, where more stringent priors 

generally lead to a much poorer fit of the data, although the same is not seen using Bayes 
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factors. For both empirical alignments, most models that unlink branch lengths across 

partitions are disfavoured, although not all can be statistically rejected. Nevertheless, all 

methods agree that partitioning by gene is a generally very poor practice to fit molecular 

sequences. This should be of interest to practicing phylogeneticists, as a gene-centric 

view is often assumed. The method as now implemented appears to be useful for 

identifying poor models, but not necessarily in arbitrating amongst non-rejected models. 

These preliminary results suggest fertile ground for future research, in particular in 

constructing more sufficient summary statistics and more fully incorporating predictive 

ability. 

INTRODUCTION 

DNA technology has advanced to the point where it is relatively easy and inexpensive to 

generate large amounts of sequence data from multiple genomic regions. Not 

surprisingly, it is now becoming standard practice in phylogenetic inference to utilize 

data from multiple genes simultaneously. From these data it is abundantly clear that there 

is considerable heterogeneity in compositional makeup and evolutionary rates both within 

(e.g. Griffiths, 1997; Naylor and Brown, 1997; Naylor et al., 1995) and between (e.g. 

Cummings et al., 1995; Russo et al., 1996; Wolfe et al., 1989; Zardoya and Meyer, 1996) 

genes. The DNA technology revolution is thus a mixed blessing: while it has increased 

our understanding of biological diversity and permitted much larger sample sizes, it also 

brings with it the burden of developing new ways to handle these mixed data (Pupko et 

al., 2002). 

Statistical modeling allows one to accommodate heterogeneity in the evolutionary 

process, and numerous models have been proposed to do this. No attempt will be made to 

review all of the currently available models, as several comprehensive summaries exist 

(Bos and Posada, 2005; Huelsenbeck et al., 2004; Liò and Goldman, 1998; Posada and 

Buckley, 2004; Posada and Crandall, 2001a; Swofford et al., 1996). Rather, this paper 

will focus on selecting from amongst these possibilities the model(s) that best captures 

the information in a given data set. 

Model-based approaches to phylogenetic inference are today ubiquitous. This is due 

to myriad advantages of using statistical models, the primary one being the ability to 
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identify and test general principles of the underlying data (Sullivan and Joyce, 2005). 

Perhaps the best example of this in phylogenetic inference is the identification and 

modeling of among-site rate variation (Yang, 1993; Yang, 1994). An assumption of rate 

constancy over sites can lead to underestimated branch lengths, inaccurate molecular 

dating, and even incorrect trees (Sullivan and Swofford, 2001; Yang, 1996a). Clearly, 

statistical parameters can greatly further our understanding of evolutionary history by 

capturing more information in the data. 

However, despite the vast advantages of using statistical models, it must be 

recognized that the validity of conclusions in this framework is entirely dependent on the 

validity of the assumed model itself. Model-based methods, such as maximum likelihood, 

have been shown to be fairly robust to violation of model assumptions (Sullivan and 

Swofford, 2001). However, this only goes so far, as maximum likelihood can be 

inconsistent if the assumed model is grossly insufficient (Gaut and Lewis, 1995). 

Furthermore, different models can have significant effects on data exploration via 

saturation plots (Sullivan and Joyce, 2005), branch length estimation (Buckley et al., 

2001), nodal support (Buckley and Cunningham, 2002; Buckley et al., 2001; Erixon et 

al., 2003), tree inference (Kelsey et al., 1999; Sullivan and Swofford, 1997), and the 

evaluation of competing topologies (Buckley, 2002). Model selection, therefore, is a 

crucial component of any phylogenetic study, and should not be taken lightly. 

Natural phenomena can be thought of as being governed by a very large number of 

(unknown) parameters whose interrelationships are very complex (Buckland et al., 1997; 

Sanderson and Kim, 2000). A model, by definition, is a simplification of these events. 

Why, then, should we not use the most complex (and, therefore, most realistic) model in 

our arsenal to analyze our data? While it is true that (appropriately) increasing model 

complexity will better approximate reality, adding parameters also carries with it two 

significant drawbacks. First of all, overparameterization can lead to identifiability issues 

(Rannala, 2002). Here, different combinations of parameter values lead to the same 

overall likelihood, making it impossible to determine the true values of these parameters 

even if the data set contains significant amounts of information. Analyses with an over-

parameterized model will thus yield inaccurate and imprecise results. Rannala (2002) 
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shows that in a Bayesian framework such identifiability problems will increase the 

importance of the prior probabilities, regardless of the amount of data involved. The 

second, related, problem deals with whether sufficient information exists within a data set 

to estimate specific parameters (Buckland et al., 1997; Holder and Lewis, 2003). For 

example, if the ratio of data points to parameters is low, parameter estimates can be quite 

unreliable because of sampling errors. This is a particularly grave problem for maximum 

likelihood inference, where all parameters (including nuisance parameters) are jointly 

estimated. For Bayesian inference the problem is a little less severe as marginal 

likelihoods are involved, taking into account uncertainty in all parameters. That said, a 

low ratio of data points to parameters is never a good thing, and can never be completed 

accounted for through marginalization (Holder and Lewis, 2003). 

It seems clear, then, that model construction should not be trying to “fit an elephant” 

(Steel, 2005), that is, trying to fit reality perfectly. The goal of modeling should not be to 

find the “true” model that generated the data, but instead to construct a model with 

adequate parameters to describe important features a given data set (Johnson and 

Omland, 2004). Furthermore, selection from a candidate set of models should be viewed 

as identifying the best approximating model (Buckland et al., 1997). If, for example, data 

are sparse in information content, they can only ever support a simple model with a small 

number of parameters. Interestingly, model underfitting (i.e. using too few parameters) 

can be a much worst problem than overfitting (Buckley and Cunningham, 2002; Erixon et 

al., 2003; Sullivan and Swofford, 1997), so this needs to be considered as well.  

Dimensions of phylogenetic model space 

Standard phylogenetic models currently in use consider molecular substitution as a 

homogeneous continuous-time stochastic Markov process, all sites being identical and 

independently distributed (i.i.d.). Such models belong to the general-time reversible 

(GTR) family of models (Lanave et al., 1984; Rodríguez et al., 1990; Tavaré, 1986), the 

most general of which takes the instantaneous rate matrix form of: 
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where a → f are substitution rate parameters (n = 6; often more concisely written as 

‘abcdef’, listing in order the upper matrix) and πi is the equilibrium frequency of 

character state i (n = 4). Although this ostensibly totals 10 substitution model parameters, 

the model can be simplified slightly. First, in order to prevent substitution rate parameters 

from becoming unidentifiable (Rannala, 2002), each is typically expressed relative to a 

particular parameter (often ‘f’) which is fixed to rate 1.0, rendering the matrix a relative-

rate matrix. Second, since nucleotide frequencies must sum to 1.0, only three frequencies 

need be estimated. This decreases the number of GTR estimable parameters to 8. 

All other GTR-family models are nested within of this most general form. 

Huelsenbeck et al. (2004) tally a total of 203 possible GTR-family models that one may 

implement. However, this enumeration considers only the permutation of how 

substitution rate parameters are set to be equal/distinct. For example, if in the above 

matrix the constraints a = c = d = f and b = e are implemented (i.e. model ‘abaaba’) the 

model collapses to the well-known transition-transversion model of Hasegawa et al. 

(1985): 
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Additionally, differences in the number of equilibrium state frequency parameters can be 

considered: zero [i.e. nucleotides are fixed to some value, possibly equal], one [four 

possibilities: πA/(πC + πG + πT), πC/(πA + πG + πT), πG/(πA + πC + πT), or πT/(πA + πC + 

πG)], two [3 possibilities: (πA + πC)/(πG + πT), (πA + πG)/(πC + πT), or (πA + πT)/(πC + πG)], 

or three parameters [1 possibility since the fourth frequency is obtained by subtraction]; 

for a total of 9 ways to parameterize equilibrium states. Finally, differences in 
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substitution rates across sites can be accommodated through either modelling gamma-

distributed relative-rate heterogeneity across sites (zero or one parameters) and/or 

through considering the proportion of invariable sites along the alignment (Gu et al., 

1995; zero or one parameters). Considering all of these parameters, the number of 

possible GTR-family models increases to 7308. 

There are two final components of a phylogenetic model to consider. First is the tree 

topology, which is typically the parameter of interest (the others being so-called 

‘nuisance parameters’). For T taxa, there are:  

€ 

(2T − 3)!
2T−2 (T − 2)!

 

fully-bifurcating labelled rooted tree topologies. However, due to the computational 

convenience of Felsenstein’s ‘pulley principle’ (Felsenstein, 1981) when using time-

reversible models, most software packages instead estimate unrooted trees. Felsenstein 

(2004) shows that each unrooted tree with n taxa can be mapped onto one rooted tree 

with T – 1 taxa. Thus, substituting T – 1 for T above, we see the number of possible 

unrooted trees for T taxa is: 

€ 

(2T − 5)!
2T−3(T − 3)!

. 

In addition to tree topology, we must also consider branch lengths (BLs), which are also 

estimated from the data. For an unrooted tree with T taxa, there are T terminal branches 

and T-3 internal branches, for a total of 2T-3 BL parameters. However, in standard 

practice these tree-specific dimensions are typically not considered when evaluating the 

relative fit of competing models because these parameters are common to all models, and 

thus do not contribute to differences in the number/types of parameters that may 

distinguish models. 

Partitioned models 

Certainly all models entail simplifying assumptions that facilitate computation and 

interpretation. However, it is worthwhile to consider whether these assumptions hold, and 
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if they do not, what influence they may have on resulting inferences. One assumption 

entailed by GTR-family models that is demonstrably false is that all sites are i.i.d. (i.e. 

that each alignment column is statistically independent, and that each column is an 

identically-distributed realization of the same underlying evolutionary process). While 

the inclusion of gamma-distributed rate heterogeneity across sites greatly ameliorates the 

problem (Yang, 1996a), this involves only differences in the relative rate of substitution, 

and is of limited use if the pattern of substitution differs across sites. If such 

heterogeneity is present but not accounted for, then inference will necessarily be based 

upon compromised parameter estimates (i.e. parameter values will be ‘averaged’ across 

distinct processes). 

A more general approach to accommodating among-site substitution heterogeneity is 

through the use of partitioned phylogenetic models (e.g. Nylander et al., 2004). Here, 

sites within a predefined subset genetic region (‘partition’) are assigned a substitution 

model that is independent of models for sites outside that partition, although all models 

contribute to the inference of a shared topology and (usually) shared BL parameters (but 

see below). The reasoning behind this approach is that, while the i.i.d. assumption may be 

unjustified for an alignment as whole, sites properly organized according to some 

criterion may roughly satisfy the i.i.d. assumption within that partition. The pertinent 

question then becomes what is the optimal way to partition molecular sequence data, or, 

alternatively, how do we assess the relative fit of alternative partitioning strategies? 

Importantly, we would like to be able to recognize when we might have over-partitioned 

our data (a form of overparameterization). 

The urge to construct partitioned models by dividing data up into progressively finer 

categories is strong, as subsets of apparent increasingly similar characters can always be 

perceived. From set theory we know that the number of possible non-empty partitions of 

n elements is given by the appropriate Bell number, 

€ 

Bn =
1
e

kn

k!k= 0

∞

∑ . 
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Bell numbers increase very rapidly. For example, with five elements there are 52 possible 

partitioning strategies, and with ten elements the number of partitioning strategies 

increases to 115,975. While it may be possible to examine all possible partitioning 

strategies with small values of n, an investigator should guard against such ‘data 

dredging’, as this can lead to the identification of spurious effects (Burnham and 

Anderson, 2002). This would seem especially important when considering the 

dimensions of partitioned model space. Instead, the construction of models should be 

guided by theoretical expectations and empirical precedence.  

In the present paper I strive to identify optimal partitioning strategies for 

mitochondrial DNA (mtDNA). The mtDNA genome has the property of not generally not 

undergoing recombination (Berlin and Ellegren, 2001), meaning that all sites within the 

genome have the exact same genealogical history. Differences amongst regions within 

the genome in patterns of polymorphism can thus be explained by differences in 

nucleotide frequencies and/or substitution rates rather than by, say, gene tree 

incongruence (Maddison, 1997). The partitioned models I consider here are motivated by 

ubiquitous empirical patterns of substitution heterogeneity across codon positions (e.g. 

Shapiro et al., 2006). A primary goal of this study is to determine whether these patterns 

are similar across genes or if they are better described on the finer scale of individual 

genes. I thus consider gene-specific codon positions as the fundamental units with which 

to construct partitioning regimes. 

Each partitioned model considered here is distinguished by both the number of 

assumed partitions and the way in which codon positions are grouped across genes. I will 

use a specific notation, MP
1,2,3, over the course of this paper for the identification of 

distinct partitioned models. Here, the superscript P represents the number of partitions 

within the model and the subscript identifies the three codon positions. An underlined 

subscript indicates that a particular codon position is linked across all genes, whereas a 

non-underlined subscript indicates that the relevant codon position is treated separately 

across genes. For example, MP
1,2,3 represents the model where 3rd codon positions are 

shared across P genes but 1st and 2nd positions are each treated individually within genes, 
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and MP
(1+2),3 represents the model where once again 3rd codon positions are shared across 

P genes but 1st and 2nd positions are grouped within individual genes.  

Previous studies have considered amalgamating codon positions across all genes (e.g. 

Caterino et al., 2001; DeBry, 1999; Yang, 1996b) (my M3
1,2,3) or applying separate 

models for each codon position within each gene (e.g. DeBry, 1999; Reed and Sperling, 

1999) (my MP
1,2,3). The present study considers a more general modelling of codon 

positions across individual genes. For example, because of the degeneracy of the genetic 

code at 3rd positions, it might be reasonable to expect all 3rd positions to evolve in the 

same trajectory, irrespective of the gene of origin (my MP
(1+2),3 and MP

1,2,3). An 

alternative strategy might be to recognize the distinction of 3rd positions but group the 

two remaining positions, whether within genes (my MP
1+2,3) or across genes (my 

M2
(1+2),3); the latter model was investigated by Shapiro et al. (2006). Similar arguments 

can be made for the distinctiveness of highly-conserved 2nd positions within and across 

genes (my M2
(1+3),2, MP

(1+3),2, MP
(1+3),2, and MP

1,2,3). Thus we might ask ‘is my alignment 

better described by treating 3rd positions as excessively fast, or 2nd positions as being 

excessively slow?’ Several potential partitioned models appear unreasonable to consider. 

These include any models that group conserved 2nd positions with hypervariable 3rd 

positions (i.e. of the form MP
1,(2+3)). Additionally, given the present state of knowledge I 

find no justification for combining codon positions of some genes to the exclusion of 

other genes (e.g. 1st position of COX1 and ND2 vs. 1st position of CYTB, ND4, and 

ND5) or combining a codon position of one gene with a different codon position of 

another gene (e.g. 1st position of COX1 with 2nd position of ND2).  

The treatment of branch length parameters in partitioned models 

In the present paper all parameters across partitions are treated as independent except for 

topology, which is a linked parameter across all partitions (i.e. all partitions update the 

same topology parameter). This is an explicit assumption that all characters share the 

same evolutionary history (genealogy), which is a reasonable assumption for mtDNA. An 

interesting question that has received far too little attention is how to treat BL parameters 

in the context of partitioned model arbitration. For P partitions and T taxa there are three 

general possibilities: 1) assume BLs are equal across partitions (2T-3 parameters), 2) 
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assume BLs are proportional across partitions (2T – 3 + P parameters), or 3) estimate 

separate BLs for each partition (P x (2T-3) parameters). Each of these models entail 

strong assumptions about patterns of molecular substitution. Option 1, that BLs are 

identical across partitions, is inappropriate for the present study (for example when 

comparing 2nd and 3rd codon positions), and so will not be considered here. Option 2 is an 

economical approach to accommodating amongst-partition heterogeneity in BL 

parameters, as only P extra relative-rate parameters are required. However, the 

assumption of strict proportionality across large T and/or large P is dubious, as no known 

mechanism(s) exist to predict such a result. Thus, while option 3 likely represents a more 

realistic model of molecular substitution, the cost of adding a large number of estimable 

parameters may be prohibitively high for alignments of finite length. In the present study 

I consider the latter two BL model options for all candidate partitioned models. 

Objective of the present study 

Here, I am interested in determining the optimal level of partitioning protein-coding 

mtDNA sequence data for phylogenetic inference. To this end I extend a criterion for use 

in partitioned model selection, based upon the approach of Bayesian posterior prediction. 

The relative efficacy of this new method is compared to existing model selection methods 

based upon information theory, decision theory, and Bayesian approaches through 

identifying optimal partitioning strategies for multi-gene protein-coding DNA alignments 

from paleognathous birds and primates, with specific regard to the treatment of BL 

parameters across partitions and how inclusion of this dimension of model space 

ultimately influences model selection. 

STATISTICAL APPROACHES TO MODEL ARBITRATION  

Given the hazards of assuming an inappropriate model, it is clear that models should not 

be chosen blindly (Posada and Crandall, 1998; Posada and Crandall, 2001a; Posada and 

Crandall, 2001b). Moreover, given the breadth of phylogenetic model space described 

above, it is clear that one should adopt a robust, consistent statistical approach when 

attempting to identify optimal model(s) for inference into a particular problem. 

Fortunately, a number of objective model selection criteria are currently available. As an 



	
   140	
  

preamble to the novel method extended here, I briefly summarize approaches that have 

previously been used for phylogenetic model arbitration, commenting on their relative 

strengths and weaknesses (summarized in Table 5.1). All of these methods address, in 

different ways, the trade-off between bias (distance between estimate and truth) and 

variance (spread of estimates around truth; Posada and Buckley (2004)). 

Likelihood ratio tests (LRT) 

The likelihood ratio test (LRT) has long served as the workhorse of model arbitration in 

molecular phylogenetics. This is a null hypothesis approach that compares models of 

varying complexity in a pairwise fashion by considering both the fit of the data to the 

model (i.e. the likelihood) and the difference in the number of free parameters involved. 

Likelihood ratio tests in phylogenetic model selection are performed as follows. First, an 

initial starting topology is constructed, typically using a neighbour-joining algorithm 

(Saitou and Nei, 1987). This constitutes the topology on which all models are evaluated. 

Although restricting model comparisons to a single tree was seen initially as a potentially 

important drawback, recent studies have shown that model selection is fairly robust to 

differences in topology (Abdo et al., 2005; Posada and Crandall, 2001a). Second, 

candidate models are individually fit to the data and joint maximum likelihoods are 

calculated. Finally, given the respective likelihoods of two nested models, the likelihood 

ratio test statistic (δ) is calculated as 

€ 

δ = 2(log(Lcomplex )− log(Lsimple )) , 

where 

€ 

log(Li )  represents the maximized log-likelihood score for model i. The test 

statistic is then compared to a χ2 distribution with the degrees of freedom equal to the 

difference between the two models in the number of free parameters estimated. 

Hierarchical likelihood ratio tests (hLRTs) iterate this procedure at different levels of 

complexity until a significant difference between models is not found. 

Although significantly removing the arbitrariness of model choice in phylogenetics, 

likelihood ratio tests have a number of disadvantages when compared to other criteria. 

First, LRTs require that the models being compared are nested (i.e. that one model is a 
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special case of the other). This means that many candidate models simply cannot be 

compared to one another, greatly limiting the types of questions a researcher might ask. 

Second, the order of model comparisons has been found to be crucial to ultimate model 

choice. For example, one may start with the simplest model and add parameters (the 

bottom-up approach) or with the most general model and remove parameters (the top-

down approach) until likelihood scores do not change significantly. Pol (2004) performed 

the most comprehensive analysis of this attribute of hLRTs, comparing the models 

selected from 32 different comparison pathways. More often than not, different pathways 

lead to different selected models. Third, the asymptotic χ2 approximation used to 

compare models has been found to unreliable when the simpler model is equivalent to 

fixing a model parameter at the boundary of the parameter space of the more complex 

model (Posada and Buckley, 2004). Although this difficulty can potentially be overcome 

through either parametric bootstrapping or using a mixed a χ2 distribution as the 

reference distribution, this typically is simply ignored. Fourth, LRTs compare joint 

maximum likelihood estimates (i.e. compare point estimates), so no error in parameter 

estimation is considered. Fifth, LRTs suffer from multiple testing, the probability of 

falsely rejecting the null hypothesis at least once in t tests being 

€ 

1− (1−α)t , 

where α is the significance level. Finally, the all-or-nothing null-alternative approach of 

the LRT gives no indication as to how much better (or worst) any model is relative to any 

another, only if one particular model can be outright rejected when compared to one other 

specific model, given an arbitrary α. Model selection, it can be argued, is not an exercise 

in hypothesis testing, but is instead a form of data exploration. Ideally a model selection 

method would allow simultaneous comparison of all candidate models, quantifying the 

relative fit of each. 

Swofford and Sullivan (2003) describe an alternative interactive approach to 

likelihood ratio testing (iLRT). Rather than traversing pre-set model comparison 

trajectories, one starts with the most general model (GTR+I+Γ) and subtracts parameters 

that are most close to their fixed values in a simpler model. Comparison of the general to 
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the less complex model is then executed in the same fashion as the hard-coded hLRTs 

above. The authors show that this method often selects models that are not even 

examined in the standard pre-set path approaches. Despite this obvious advantage, the 

iLRT needlessly adds a dimension of subjectivity to model selection, as some parameters 

are interrelated and the choice of parameter to drop is up to the investigator. Moreover, 

the interactive approach does not ameliorate any of the other problems listed above. 

Given these drawbacks, let alone the fact that partitioned models are generally not nested, 

I will not consider the LRT in the present study. 

Akaike information criterion (AIC) 

A more appropriate approach to model selection in general is grounded in information 

theory. Given model i with Ki estimable parameters, Akaike (1973) developed a criterion 

(AIC) whereby model fit and simplicity are expressed in a common currency: 

€ 

AICi = −2 log(Li )+ 2Ki . 

As with many model selection criteria, AIC is composed of two elements: a goodness of 

fit term (quantified through the maximized joint log-likelihood), and a term that penalizes 

overparameterization. AIC is an estimate of the expected Kullback-Leibler (K-L) 

information lost when using fitted model i to approximate the true generating model 

(Kullback and Leibler, 1951). Thus, the best K-L approximating model within a 

candidate set is that which minimizes AIC (AICmin). The K-L information lost is 

commonly referred to as the K-L ‘distance’, although strictly speaking it is instead a 

discrepancy (i.e. a directed distance). In the expression above, the leftmost term 2K is a 

non-arbitrary bias-correction factor for the estimation of the expected K-L distance (2K is 

often incorrectly considered an unsophisticated penalty function for adding estimable 

parameters to a model; (Burnham and Anderson, 2004)). Of course, we generally do not 

know the true generating model (and indeed, cannot, if one subscribes to the idea that 

‘reality’ is infinitely dimensional); however, because we are considering K-L 

discrepancies, we can instead speak of relative directed distances, and thus the best AIC 

model emerges as an estimate of the best K-L model. When sample sizes are not large 

(say, sample size n), a small-sample bias-correction can be used: 
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€ 

AICc = −2log(Li) + 2Ki
n

n −Ki −1
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ , 

that is, the weight of the penalty term increases when sample sizes are small. In 

phylogenetics, the concept of sample size is somewhat unclear (Sullivan and Joyce, 

2005). Typically n is set to the length of the alignment (since sites are assumed to be 

i.i.d.). A rule-of-thumb is that AICc be used over AIC whenever n/K < 40. However, 

given the ease of calculation, Burnham and Anderson (2002) recommend always using 

AICc, for if n is large, AICc converges to AIC. Given the progressively smaller 

(partitioned) samples sizes dealt with here, I use AICc throughout. Unlike the LRT above, 

all candidate models are compared simultaneously, and no arbitrary significance level 

need be invoked. Instead, one can directly estimate model selection uncertainty through 

the calculation of Akaike weights (wi). Given M candidate models and AICmin, the AIC 

difference between model i and the estimated K-L best model is 

ΔAICi = AICi - AICmin 

and the normalized Akaike weight of model i is 

€ 

wi =
e−

1
2ΔAICi

∑m=1
M e−

1
2ΔAICm

. 

With Akaike weights in hand, one can construct a confidence set of models, and 

potentially generate model-averaged parameter estimates (Posada, 2008). Of course, 

individual Akaike weights are entirely conditional upon the constituents of the candidate 

pool of models, and as such must be recalculated whenever this pool changes. 

Bayesian information criterion (BIC) 

An popular alternative approach of penalized model selection is the Bayesian information 

criterion (BIC), introduced by Schwarz (1978; often referred to as the Schwarz 

information criterion, SIC). Unlike AIC, BIC is not based on K-L information theory. 

Instead, the BIC is an asymptotic approximation of the logarithm of the marginal 

likelihood of the model (Posada and Buckley, 2004). With n data points, BIC for model i 

is calculated as 



	
   144	
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BICi = −2log(Li) +Ki logn . 

Because BIC approximates the marginal log likelihood of a model, a BIC comparison of 

two candidate models is a rough approximation of the analogous Bayes factor (Kass and 

Raftery, 1995; see below). If all models are given equal prior (model) probabilities, then 

selecting the model with the smallest BIC is directly equivalent to choosing the model 

with the highest posterior probability (Posada and Buckley, 2004). However, a strict 

assumption of equal model priors is not necessary, as these priors can subsequently be 

incorporated into calculations of posterior model probabilities (sometimes referred to as 

BIC weights): 

€ 

Pr(Mi) =
e−

1
2ΔBICi pi

∑m=1
M e−

1
2ΔBICm pm

, 

where pi is the model prior probability for model i. [In phylogenetics, where BIC is a 

relative newcomer to model selection, unequal model priors have yet to be investigated; 

that is, pi is implicitly assumed to be 1/M]. Regardless, as with the AIC weights above, 

posterior model probabilities gives one the potential to generate model-averaged 

inference, thereby accommodating model selection uncertainty. 

Unlike all of the other model selection methods that will be discussed here, BIC is the 

only one that takes into explicit account the size of the data (i.e. n above); indeed, the 

magnitude of the penalty term is intimately tied to n, and BIC will tend to select simpler 

models than AIC as n increases. Furthermore, if the true generating model is within the 

candidate set (an implicit assumption made by the method), then BIC, unlike AIC, is a 

consistent model selector (i.e. it converges on the correct model as n → ∞). However, the 

argument for consistency requires belief that 1) a ‘true’, non-infinitely-dimensional 

model exists, and 2) that the model is small enough to have found itself within the 

candidate set of models. If these beliefs are not met, then the argument for consistency is 

irrelevant (Kuha, 2004). [AIC, for example, subscribes to no such assumptions]. 

Regardless, all other things being equal, the relatively stronger penalty function 

implemented in BIC (most often leading to the selection of simpler models) tends to 

appeal to empirical phylogeneticists, as the allure of parsimoniousness is well ingrained. 
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However, a concern regarding BIC is that, despite being an approximation to a fully 

Bayesian method, prior probabilities on model parameters are not evident. This is 

problematic because the marginal likelihood of a model, the quantity which BIC attempts 

to approximate, is itself strongly dependent upon parameter prior probabilities. In fact, 

implicit priors are at play, just priors of a particular form. Specifically, BIC assumes the 

unit information prior, which is a multivariate normal prior centered on the joint 

maximized likelihood point estimate with variance equivalent to the expected information 

contained in a single observation (Posada and Buckley, 2004). This is a very restrictive 

(and idealized) assumption regarding how parameter values are expected to be 

distributed. In general, it is not guaranteed whether the priors an investigator might 

routinely attach to parameters for a particular problem would correspond at all with the 

priors presupposed by BIC (Weakliem, 1999). Indeed, priors typically used in Bayesian 

phylogenetics today are quite dissimilar from the unit information prior form. It is 

therefore interesting to examine the influence of parameter prior choice on ultimate 

model selection through comparing model choice from BIC and Bayes factors (see 

below); the expectation is, given the diffuse priors implicit in BIC, that BIC will tend to 

select simpler models than Bayes factors derived from priors implemented by an 

investigator. 

Decision theoretic criterion (DT) 

Minin et al. (2003) propose a method rooted in decision theory (DT) that considers 

performance when selecting from amongst a candidate set of models. The motivation of 

this approach is that, because searching for the ‘true’ model is a hopeless pursuit, we 

should instead focus on how alternative candidate models estimate some salient focal 

parameter(s) common to all models; that is, how well a particular model performs in 

estimating the parameter(s) relative to all other candidate models. Performance can 

essentially be evaluated with any set of parameters common to all models within the 

candidate set; for phylogenetic models, the natural choice is BL parameters as an index of 

how well models capture information in the data. Let Bi be the vector of estimated BLs 

for model i. The loss function for using model i in place of ‘true’ j is given by: 
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€ 

Bi − B j = (
b=1

2T −3

∑ Bib − B jb )
2  

that is, the squared Euclidean distance between the BL vectors estimated from the two 

models. This indicates the performance of a model (i.e. how well the BL estimates of 

model i agree with estimates from other models). Assuming equal prior probabilities for 

M models, model comparison in this framework is executed though the calculation of a 

posterior risk function: 

€ 

Ri = Bi − B j
j=1

M

∑ e−
1
2BIC j

∑ j=1
M e−

1
2BIC j

, 

The right term in the risk function, using the BIC, is a weighting term that takes into 

account model fit and the number of parameters involved. Thus, BL estimation error for 

using model i compared to BLs estimated under model j is weighted by the posterior 

probability of model j. The optimal model from a candidate set is the one that minimizes 

the posterior risk. Similar to the AIC and BIC above, this approach allows for 

simultaneous model comparisons. As might be predicted, Minin et al. (2003) show that 

the DT-Risk method selects on average models that are simpler than those chosen by 

LRTs. An early concern regarding this method was the reliance on a starting topology 

and BLs (usually calculated heuristically from a neighbour-joining algorithm). While this 

does not seem to affect the other methods described above (Posada, 2001; Posada and 

Crandall, 2001), it appeared to be crucial in the performance-based approach. However, 

Abdo et al. (2005) recently demonstrated that varying the topology has very little effect 

on the inferred optimal model. 

In the present study, I consider the treatment of BL parameters over partitions; when 

BLs are ‘unlinked’ across partitions these parameters are no longer common to all 

candidate models. Therefore, in order to apply the performance-based approach to model 

selection, it was necessary to first calculate weighted-average BLs across the P partitions 

(where weights are equal to the lengths L of the respective partitions, since BLs are 

expressed in units of expected numbers of substitutions per site): 
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€ 

BLi =
∑p=1

P Lp × BLp

L
. 

Bayes factors 

A fully Bayesian approach to model selection involves the calculation of Bayes factors 

(Kass and Raftery, 1995), a technique that has recently become quite popular in 

molecular phylogenetics (Brandley et al., 2005; Huelsenbeck et al., 2004; Nylander et al., 

2004; Suchard et al., 2001). Let θ represent the suite of parameters in model M when 

considering data D. From Bayes’ theorem we can write the posterior probability of fitted 

model i given D as: 

€ 

Pr(θi | D,Mi ) =
f (D |θi ,Mi )× f (θi |Mi )

Pr(D |Mi )
, 

where 

€ 

f (D |θ i,Mi)  represents the likelihood, 

€ 

f (θ i |Mi)  is the prior probability density 

on the model parameters, and 

€ 

Pr(D |Mi ) is the probability of the data given the model, 

common referred to as the marginal model likelihood. 

€ 

Pr(D |Mi ) can be rewritten as: 

€ 

f (D |Mi ) = f (D |θi ,Mi )× f (θi |Mi )dθiθi
∫ , 

that is, it is the weighted average likelihood over all possible model parameter values, 

where the weighting is provided by the prior density. In the context of a single model, the 

marginal likelihood serves only as a normalizing factor to ensure that the posterior 

probability of some value of θi lies in the interval (0,1). It is generally not possible to 

calculate 

€ 

Pr(D |Mi ) for phylogenetic problems with a non-trivial number of taxa (T), as 

this requires integrating over not only all possible substitution model parameter values, 

but also over all possible values for all 2T-3 BL parameters on each of (2T-5)!/2T-3(T-3)! 

possible topologies (see above). Fortunately, using MCMC approximations one need 

never calculate this value when simply inferring a tree, as it drops out of ratios during the 

search. However, when comparing the relative fit of two candidate models, this is the key 

value of interest, as it quantifies the average likelihood of a model. Typically, the 

marginal model likelihood is approximated by the harmonic mean of likelihood values 

sampled from the stationary phase of an MCMC analysis, the approximation becoming 
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better with larger samples. Let M0 and M1 be competing models for some D. The Bayes 

factor is defined as: 

€ 

BF1,0 =
f (D |M1)
f (D |M 0 )

. 

The Bayes factor can thus be considered a Bayesian analogue to the LRT, except that 

while the latter compare maximized joint likelihoods, Bayes factors compare marginal 

likelihoods. Although Bayes factors compare models in a pairwise fashion similar to 

LRT, models need not be nested, and the order of model comparisons is arbitrary. An 

attractive property of the Bayes factor is that, unlike any of the model arbitration methods 

discussed above, uncertainty is accommodated in all model parameters, including 

topology. Bayes factors can be interpreted as the odds in favour of M1 against M0 that are 

given by the data, or as a comparison of the ability of the models to update the priors 

(Kass and Raftery, 1995). Like AIC and BIC above, Bayes factors are not evaluated 

according to any strict significance level. Rather, they form a continuum from low to high 

support. Nevertheless, a recommended scale for interpreting Bayes factors has been 

proposed Kass and Raftery (1995): 2ln(BF1,0) < 6 indicates positive evidence against M0; 

6 < 2ln(BF1,0) < 10 indicates strong evidence against M0; and 2ln(BF1,0) > 10 is decisive 

evidence against M0 in favour of M1. 

Reversible-jump MCMC methods 

A drawback of the Bayes factor method described above is that if M models are to be 

compared, M separate rigorous MCMC searches must first be performed to approximate 

the marginal likelihoods of all candidate models. However, Suchard et al. (2001) and 

Huelsenbeck et al. (2004) describe reversible-jump MCMC algorithms that 

simultaneously examine competing models of different dimensions while exploring 

parameter space. Analogous to conventional parameters, the amount of time an MCMC 

chain spends sampling a particular model is a valid approximation of the posterior 

probability of that model. This approach then has all of the advantages of the previous 

methods, including simultaneous comparisons and accounting for error in both 
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parameters and models. This will likely be the future of model selection for phylogenetic 

inference, however at this writing no software is available. 

Model adequacy 

Bollback (2002) argues that a selected model should not merely be the best amongst a 

candidate set, but that, trained on the empirical data, it should also be able to accurately 

predict features of the data. In a sense, model adequacy (or ‘posterior predictive check’) 

approaches are in the same spirit as the DT method above in insisting that model 

selection should be tied to performance rather than simply penalizing a likelihood; 

however, while the DT method is tied to estimation performance, model adequacy 

approaches instead focus on observables. I extend this method to partitioned model 

selection. The protocol proceeds as follows. Start by performing an MCMC phylogenetic 

analysis of a data set assuming a candidate partitioned model of molecular substitution. 

Next, take random samples from the posterior distribution of parameter combinations, 

including topology, branch lengths, and substitution model parameters; these values will 

comprise partition-specific parameter vectors. Taking these parameter vectors, simulate 

new data sets, the combined size of which will equal that of the empirical alignment. 

Finally, concatenating the sub-partitions, summarize the composition of each simulated 

data set using some summary statistic. Performing this for many thousand times produces 

a predictive distribution of the statistic. If a model is ‘adequate’, then the simulated and 

original data sets should be similar; in other words, the predictive distribution should be 

centered on the realized test statistic from the empirical alignment. Bollback (2002) uses 

the multinomial test statistic originally proposed by Goldman (1993) as a criterion for 

model predictiveness, and I use it here. Given an alignment of length N with p distinct 

site patterns (columns in the alignment matrix) of frequency np, the multinomial test 

statistic T(X) summarizes the number and relative frequencies of site patterns (the 

‘alignment column frequency spectrum’; Figure 5.1): 

€ 

T(X) = ni ln(ni)
i

p

∑
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ − N ln(N) . 

This predictive approach can be thought of as a Bayesian analogue of the parametric 
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bootstrap. However, the Bayesian implementation has an enormous advantage of taking 

into account uncertainty in topology, branch lengths, and model parameters when 

comparing models, whereas the parametric bootstrap focuses solely on the maximized 

joint likelihood estimate (where potentially some parameters are poorly estimated 

because of sampling artefacts). A model can be rejected in two ways. First, the realized 

test statistic can lie entirely outside the predictive distribution, meaning that it has poor 

predictive ability. Failing that, posterior predictive p-values can be calculated: 

€ 

p =
1
N

I(T (Xi ) ≥T (Xrealized ))
i=1

N

∑ . 

Strictly speaking, we should consider two-tailed p-values, as the predictive distribution 

may lie above or below the realized test statistic. Here I will consider a threshold value of 

0.05. Perhaps the greatest boon to this approach to model selection is that it is the only 

one where it is possible to statistically reject all models in the candidate set (rather than 

settling with the best of what is available). 

While the posterior predictive p-value takes care of poor models, we still require a 

way to rank models that are not rejected. A few approaches are possible. One can 

potentially select the model which generates the posterior predictive p-value closest to 

0.5, however this seems less than ideal given the amount of information ignored (Figure 

5.2). Alternatively, one may select the most parsimonious model (i.e. that with the fewest 

number of parameters) from the set of models which can not be rejected. However, this 

too is also problematic when comparing models of the same dimensionality without 

appealing to some alternative criterion. A fruitful approach may be to accommodate 

predictive variance into how we rank models, that is, all else being equal, models are 

penalized by the variance (breadth) of the posterior predictive distribution of T(X). Such 

an approach is described by Laud and Ibrahim (1995), where the criterion of interest is 

the variance-penalized ‘distance’ between the realized test statistic and the mean 

predictive value: 

€ 

DLI
2 = (E[T (X)]−T (Xrealized ))+ var[T (X)]. 
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Here I will present the square root of this value, DLI, as this is more readily interpreted as 

a distance along the T(X) axis. 

Ultimate success of the posterior predictive approach requires a test statistic (or series 

of test statistics) that is sufficient to discriminate the predictive abilities of alternative 

candidate models. Consideration of the multinomial test statistic reveals that its 

discriminating power may be low: treating alignment columns as unlabelled strings 

means that alignments of potentially disparate column compositions can nevertheless 

give rise to similar test statistics; indeed, it is possible for several alignments that do not 

share a single column to generate the exact same test statistic (Figure 5.2). In this 

particular case, we would not consider the approach as identifying models that can 

predict the empirical alignment, but instead models that generate a similar level of 

heterogeneity in relative pattern counts. The objective of this paper is to evaluate the 

performance of this criterion, especially in respect to more established model selection 

criteria. 

Empirical mtDNA data 

To explore the influence of data partitioning on empirical phylogenetic inference, I study 

two exemplar mtDNA matrices. The first is a 3 gene alignment of 4 primate taxa (Homo, 

Pan, Gorilla, and Pongo). This matrix is compelling for two reasons. First, it has proven 

historically to be a challenging problem to solve, however we can regard the tree now as 

known. Second, the small size of the matrix allows for particularly thorough analysis. 

The second empirical example is a 5 gene alignment paleognathous birds, a clade which 

is composed of the flightless Ratites (ostrich, rhea, emu, cassowary, kiwi, and the extinct 

moa and elephant birds) and the volant tinamous (47 extant species). The present study 

includes representatives from all 6 major extant lineages, 2 extinct moas, and two 

neognathous outgroup taxa. Ratites, being large and flightless, are a group that has 

traditionally been used as an example of how plate tectonics can explain evolutionary and 

(Gondwanan) biogeographic patterns. However, exact relationship amongst ratite taxa 

had proven controversial even with the mtDNA analyzed here (Cooper et al., 2001; 

Haddrath and Baker, 2001). Recently the monophyletic status of ratites has been 
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contested by both nuclear (Harshman et al., 2008) and mtDNA (Phillips et al., 2010) data, 

further obfuscating the role of plate tectonics in the biogeography of this clade.  

All sequences were obtained from complete mtDNA genome sequences GenBank 

(Table 5.2). Analyses are limited to the largest protein coding genes (COX1, CYTB, 

ND2, ND4, and ND5) in the mtDNA genome. This is done for three reasons. First, it is 

clear that increasing the number of partitions necessarily decreases the number of data 

points per partition. As sampling error increases inversely with sample size, only the 

largest genes available are used so that parameter estimates would be reasonably precise. 

Second, the number of possible partitioning strategies increases rapidly with the number 

partitions (see above). To keep the number of permutations manageable I limited the 

study to five genes. Finally, partitioning the entire mitochondrial genome (e.g. most 

generally by gene and codon position) would require an exorbitant number of parameters 

to be estimated (e.g. if each partition is best fit by a GTR+I+Γ model of substitution, this 

would require 13 x 3 x 10 = 390 substitution model parameters and 13 x 23 = 897 BL 

parameters, for a total of 1287 free parameters). 

Each gene was separately aligned using CLUSTALW v1.4 (Thompson et al., 1994) 

as implemented in BIOEDIT v7.05 (Hall, 1999) after first translating the nucleotide 

sequences into amino acids. Unalignable regions (rare, and usually at the 5’ end of genes) 

were identified by eye and excluded from all subsequent analyses. Following alignment, 

genes were reverse-translated back into nucleotide sequences for use in phylogenetic 

reconstructions. The complete alignment amounted to 4491 bp (Table 5.3) for the primate 

data set and 6936 bp for the paleognaths (Table 5.4). For each separate potential process 

partition, likelihood scores for various substitution models were calculated in PAUP* 

version 4.0 (Swofford, 2003). Optimal models were selecting using AIC as calculated in 

MrModelTest 2.2 (Nylander, 2004). 

Phylogenetic reconstruction 

Multi-partition Bayesian phylogenetic analyses were carried out in MRBAYES v3.1.2 

(Ronquist and Huelsenbeck, 2003). Partition-specific substitution models were identified 

using AIC. For each analysis, 4 Markov chains (3 hot, one cold) were run for 2.5 x 107 
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generations, as this delivered consistent results in preliminary analyses. To accommodate 

possible autocorrelation of parameters, chains were thinned so that sampling occurred at 

every 103 generations (yielding 2.5 x 104 samples from the posterior distribution). Each 

analysis was run four times from random positions in parameter space to check for 

convergence of the Markov chains. Convergence and effective sample sizes (ESS) were 

inspected through viewing generation plots in the program TRACER v1.5 (Rambaut and 

Drummond, 2003). Burnin was very conservatively defined as the first 5 x 106 

generations (i.e. most analyses converged well before this point). Parameter estimates 

were gleaned from the combined post-burnin samples from all replicate runs. The most 

parameter-rich model for the paleognath matrix (M15
1,2,3) was also run four times for 5 x 

107 generations to investigate convergence and mixing. Maximum likelihood 

phylogenetic reconstruction was performed in RAxML v7.2.7 (Stamatakis, 2006). All 

partitions were assigned GTR+G substitution models, as RAxML does not support 

simpler models.  

A computer program 

To accomplish the posterior predictive calculations above a computer program was 

written in C++ which currently runs on a Unix platform. The program takes as input the 

MrBayes Nexus input file and all log (parameter and tree) files from an MCMC analysis 

(or multiple analyses). The files are automatically parsed to determine which models and 

partitioning scheme were implemented by the user. The user can determine the burnin 

(the number of samples to disregard from the beginning of the log files), thinning (taking 

every n samples), whether all remaining samples are used or if random samples are 

desired, and how many replicate simulated alignments are to be generated per posterior 

parameter vector (i.e. since these are based on stochastic models, one predictive 

alignment is not necessarily representative of the relevant parameter vector; simulating 

multiple predictive alignments per parameter vector accommodates this uncertainty as 

well). Sequence generation is accomplished using C code from seq-gen (Rambaut and 

Grassly, 1997). This software will eventually be made open source and released to the 

community. Because of the computational demands of an alternative model selection 

procedure based upon minimizing posterior predictive risk (Gelfand and Ghosh, 1998; to 
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be presented elsewhere), matrix size factors greatly into the time required for analysis, 

and thus the number of replicate simulated matrices that can be tractably generated. 

Therefore, because the primate matrix is small, I took 25000 random samples from the 

posterior distribution, and for each simulated 10 posterior predictive alignments. Because 

the paleognath data set contains more taxa, only 1 simulated predictive alignment for 

each of 25000 random samples were generated. I note that running model adequacy 

analyses alone run quite quickly, even for large number of taxa. This option has just been 

added to the program. 

RESULTS AND DISCUSSION 

Empirical model selection: a comparison to other criteria 

Unlike with Bayes factors, we see a strong influence of branch length prior on the 

ultimately selected partitioned model using the posterior predictive approach, although 

this differs across alignments. Posterior predictive model adequacy for the primate data 

set using default MrBayes BL-priors (λ = 10) gives distressing results (Figure 5.3): not 

one model can be rejected as inadequate, despite the fact that the other criteria 

discriminate strongly across models (Table 5.5, 5.6). However, as BL-prior gets 

narrower, more and more models begin to get rejected (Figure 5.4,5.5). Although 

marginal model likelihoods decrease with increasing λ (Table 5.6), these are not of a 

magnitude to generate decisive Bayes factors (Kass and Raftery, 1995). 

The optimally-selected model according to DLI differs across BL-priors. For the λ=10 

analyses, a six partition model is selected (M6
1+2,3; where gene-specific 1st+2nd codon 

positions are partitioned to the exclusion of gene-specific 3rd codon positions) with linked 

BL parameters across partitions. For the λ=20 analyses, the optimal model (M3
1,2,3; 

partitioned by grouped codon positions) was one in which BLs were unlinked, although 

the analogous linked-BL model fared nearly as well. Finally, for the most stringent BL-

prior (λ=100) the optimal model was again M3
1,2,3, but with BLs linked across partitions. 

Taking the minimized DLI across all models and BL-priors, we see that the best model is 

M3
1,2,3 with BLs unlinked across partitions with the exp(20) BL-prior (with DLI = 
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145.08), although the M6
1+2,3 with exp(10) BL-priors was a close second (with DLI = 

146.37). 

The established model selection methods show some consensus on optimally 

identified partitioning strategy, and all selected models with zero uncertainty (i.e. w ~1.0, 

and very large Bayes factors; only marginal log likelihoods are presented). AIC, AICc 

(Table 5.5), and Bayes factors (Table 5.6) choose the most general partitioning scheme 

(M9
1,2,3; partitioned by gene and codon position) with linked BL parameters across 

partitions. BIC and DT methods, however, prefer a much simpler three partition model 

(M3
1,2,3; partitioned by codon only), also with linked BLs; this is the same model as 

preferred for the model adequacy approach under exp(100) BL-priors. This speaks to the 

stronger penalty for overparameterization in the BIC (the BIC also being a component of 

the DT method implemented here). It is interesting that BIC and BF disagree so strongly 

on the optimal model, as the former was devised as an approximation to the latter. 

Regardless, all conventional approaches to model selection strongly disfavour the 

unlinked-BL models.  

In general, the model adequacy approach displayed greater discriminating power for 

the paleognath data set (i.e. rejecting more model according to posterior predictive p-

values at the 0.05 threshold), perhaps due to the deeper tree and/or larger taxon sampling 

(Table 5.7; Figures 5.6-5.8). As with the primate example above, this criterion selected a 

novel partitioned model for relaxed BL-priors (M11
1,2,3; only 2nd codon positions grouped 

across genes), an unlinked-BL model for exp(20) BL-priors (again M11
1,2,3), and still a 

third model for the most stringent BL-priors (M15
1,2,3) with BLs linked across partitions. 

For this latter prior, all but two unlinked-BL models are rejected.  

The models selected by the conventional criteria for the primate alignment were 

identical to those selected for the paleognath alignment (Tables 5.7, 5.8). This is 

interesting, as Holder et al. (2008) recently argued that partitioned models are more used 

for longer (older) trees, while shorter trees are better described by unpartitioned models. 

The results presented here, based on two very different trees (both in terms of taxa and 

age) nevertheless converge on the same partitioned models within a given criterion, 

suggesting that a general (partitioned) model of mtDNA sequences may be of use. The 
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harmonic mean log model likelihood is much more influenced by BL-prior for the 

paleognath data set (Table 5.8), likely being a function of the size of the data.  

Four points emerge from the results generated here. First, mtDNA sequences do not 

appear to be best explained by unlinked-BL models, regardless of the model selection 

criterion subscribed to. This is surprising, as there is no known mechanism to invoke to 

explain the phenomenon. Rather, it may just be a matter of power, and that departures 

from proportional branch lengths across partitions will be observed with larger (more 

taxon) matrices. However, these same results were recently found for a 42 taxon mtDNA 

study of cathartid vultures and outgroups (Brown et al., to be submitted-a; Chapter 4) (but 

interestingly not when considering mtDNA vs. nuclear DNA). Generality of the result, if 

such a generality exists, may be limited to birds and/or mtDNA, as the assumption of 

proportional BLs is rejected elsewhere (Brown et al., to be submitted-b). The results 

presented here are specific to mitochondrial DNA where every nucleotide is physically 

linked, such that all sites shared the exact same tree topology, and thus potential 

heterogeneity in BL parameters is constrained. However, these findings will not likely be 

relevant to nuclear loci that experience recombination between (or within) genes so that 

different loci can potentially have different histories (Maddison, 1997). 

Second, mtDNA also appears to be poorly described using models which partition by 

gene (my MP
gene models), regardless of the model selection criterion employed. This is 

particularly seen using the posterior predictive DLI distance, where gene-specific 

partitioned models are judged as worst than unpartitioned models (M1) for the paleognath 

alignment (and nearly so for the primate alignment). This poor fitting should be of 

interest to empirical phylogeneticists, as genes are typically treated as independent. Third, 

the posterior predictive approach appears to be much more sensitive to BL-prior than 

conventional Bayesian model selection based upon marginal model likelihoods. This 

sensitivity may be viewed as beneficial, as the approach may then be used to guide our 

construction of priors, and not just BL-priors but potentially priors on several different 

parameters in our phylogenetic models.  

Finally, while the posterior predictive method appears to work to identify poor 

models, identifying optimal models from those that are not rejected is less 
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straightforward. The suitability of the DLI distance is in question, as it equally weights 

mean predictive error with predictive variance. In practice, we may be more interested in 

one quantity than the other, and hence might like to weight the terms differently. 

However, a more severe evaluation of the approach as implemented here is that a great 

deal of information is lost when boiling down an alignment to a single summary statistic, 

and in particular with the multinomial test statistic which ultimately deals with unlabelled 

alignment columns (Figure 5.2). While the construction of additional alternative test 

statistics may facilitate the exclusion of further models, the predictive ability of a model 

tied to the observed empirical alignment (and not just a summary statistic) appears to 

provide a superior way to proceed (see below). 

CONCLUSIONS AND FUTURE WORK 

Posterior predictive approaches have numerous attractive properties. Philosophically, 

model ‘ability’ is tied to predicting observables, rather than penalizing likelihood (with 

assumptions of how error is distributed) or estimation error. That said, implementing the 

approach is problematic. Model adequacy approaches using solely the multinomial 

statistic ignore a lot of information, such that the discriminating power of the method is 

poor. A fruitful next step would seem to be to focus predictive ability only on those sites 

actually observed in the empirical alignment; such an approach is available (Gelfand and 

Ghosh, 1998) and is in development. Finally, ideally many simulated matrices under 

known conditions should be constructed to explore the sensitivity of this and other model 

selection criteria to such parameters as tree depth, taxon sampling, and tree balance. 
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Table 5.1 Available statistical approaches to phylogenetic model selection. 
 hLRT iLRT Parametric 

bootstrap 
AIC BIC Averaging1 DT-Risk Posterior 

prediction 
Reversible-

jump MCMC 
Bayes 
factors 

Model(s) selected Best Best Best Best Best Best set Performance Adequate Best set Best 
Must models be 

nested Yes Yes No No No No No No No No 

Single topology 
considered Yes Yes Yes Yes Yes Yes Yes2 No No No 

Incorporate sample 
size No No No No Yes No Yes No No No 

Simultaneous 
comparisons No No No Yes Yes Yes Yes Yes Yes Yes3 

Account for 
parameter error No No No No No Yes4 No Yes Yes Yes 

Account for model 
error No No Yes Yes Yes Yes Yes Yes Yes Yes 

Explicitly penalize 
parameters Yes Yes Yes Yes Yes Yes Yes No No No 

Computational 
expense Low Moderate High Low Low Low Low Very high High Very high 

Automated software Yes No No Yes Yes Yes Yes Yes5 Yes No 
Simultaneous model 

selection and 
inference 

No No No No No No No No Yes No 

1 Can be used with AIC or BIC using model weights 
2 Software currently available requires a single topology. However, Abdo et al. (2005) recently extended the method to accommodate tree uncertainty. 
3 Comparisons are pairwise, but no sequence of comparisons is involved. 
4 Only in the sense that the different models being combined are each allowed to have their own parameter values.  Within a model, parameter error is not accommodated. 
5 While software exists to generate predictive data sets and calculate summary statistics, the original MCMC analyses for all candidate models must be performed manually. 
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Table 5.2 Taxa involved in this study.  

Scientific name Common name GenBank accession number 
Gorilla gorilla Gorilla D38114 
Homo sapiens Human J01415 
Pan troglodytes Chimpanzee D38113 
Pongo pygmaeus Orangutan D38115 
Tinamus major Great Tinamou NC_002781 
Eudromia elegans Elegant Crested Tinamou NC_002772 
Dinornis giganteus Giant Moa NC_002672 
Emeus crassus Eastern Moa NC_002673 
Anomalopteryx didiformis Little Bush Moa NC_002779 
Apteryx haastii Great Spotted Kiwi NC_002782 
Dromaius novaehollandiae Emu NC_002784 
Casuarius casuarius Southern Cassowary NC_002778 
Rhea americana Greater Rhea NC_000846 
Pterocnemia pennata Lesser Rhea NC_002783 
Struthio camelus Ostrich NC_002785 
Anseranas semipalmata Magpie Goose NC_005933 
Gallus gallus Chicken NC_001323 
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Table 5.3 Characteristics of genes involved in the primate study. For all partitions unalignable 
nucleotides have been excluded.  

Gene Partition Characters Polymorphic Parsimony AIC model 
COX1 All 1539 338 (22.0%) 71 (4.6%) GTR+Γ 
 1st+2nd 1026 52 (5.1%) 12 (1.2%) HKY+I 
 1st+3rd 1026 328 (32.0%) 70 (6.8%) GTR+Γ 
 1st 513 42 (8.2%) 11 (2.1%) SYM+I 
 2nd 513 10 (1.9%) 1 (0.0%) HKY 
 3rd 513 286 (55.7%) 59 (11.5%) GTR+I 
CYTB All 1140 266 (23.3%) 61 (5.4%) HKY+Γ 
 1st+2nd 760 85 (11.2%) 23 (3.0%) GTR+I 
 1st+3rd 760 241 (31.7%) 56 (7.4%) GTR+Γ 
 1st 380 60 (15.8%) 18 (4.7%) GTR+I 
 2nd 380 25 (66.%) 5 (1.3%) HKY+I 
 3rd 380 181 (47.6%) 38 (10%) HKY+I+G 
ND5 All 1812 490 (27.0%) 102 (5.6%) HKY+I 
 1st+2nd 1208 185 (15.3%) 31 (2.6%) GTR+I 
 1st+3rd 1208 425 (35.2%) 90 (7.4%) GTR+Γ 
 1st 604 120 (20.0%) 19 (3.1%) GTR+I 
 2nd 604 65 (10.8%) 12 (2.0%) HKY+I 
 3rd 604 305 (50.5%) 71 (11.7%) GTR+I 
All All 4491 1097 (24.4%) 234 (5.2%) GTR+Γ 
 1st+2nd 2994 322 (10.7%) 66 (2.2%) GTR+I 
 1st+3rd 2994 994 (33.2%) 216 (7.2%) GTR+I 
 1st 1497 222 (14.8%) 48 (3.2%) GTR+Γ 
 2nd 1497 100 (6.7%) 18 (1.2%) HKY+I 
 3rd 1497 772 (51.6%) 168 (11.2%) GTR+I 
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Table 5.4 Characteristics of genes involved in the paleognath study. For all partitions unalignable 
nucleotides have been excluded. Outgroup taxa are included in these calculations 

Gene Partition Characters Polymorphic Parsimony AIC model 
COX1 All 1554 563 (36.2%) 431 (27.7%) GTR+I+Γ 
 1st+2nd 1036 90 (8.69%) 41 (3.9%) GTR+I+Γ 
 1st+3rd 1036 549 (53.0%) 425 (41.0%) GTR+I+Γ 
 1st 518 76 (14.7%) 35 (6.7%) GTR+I+Γ 
 2nd 518 14 (2.7%) 6 (1.2%) HKY+I 
 3rd 518 473 (91.3%) 390 (75.3%) GTR+I+Γ 
CYTB All 1146 467 (40.8%) 330 (28.8%) GTR+I+Γ 
 1st+2nd 764 132 (17.3%) 70 (9.2%) GTR+I+Γ 
 1st+3rd 764 444 (58.1%) 310 (40.6%) HKY+I+Γ 
 1st 382 99 (25.9%) 50 (13.1%) SYM+I+Γ 
 2nd 382 33 (8.6%) 20 (5.2%) HKY+I 
 3rd 382 335 (87.7%) 260 (68.1%) GTR+I+Γ 
ND2 All 1041 558 (53.6%) 414 (39.8%) GTR+I+Γ 
 1st+2nd 694 237 (34.1%) (62.9%) GTR+I+Γ 
 1st+3rd 694 490 (70.6%) 375 (54.0%) GTR+I+Γ 
 1st 347 169 (48.7%) 110 (31.7%) GTR+I+Γ 
 2nd 347 68 (19.6%) 39 (11.2%) GTR+I+Γ 
 3rd 347 321 (92.5%) 265 (76.4%) GTR+I+Γ 
ND4 All 1383 688 (49.7%) 511 (36.9%) GTR+I+Γ 
 1st+2nd 922 266 (28.9%) 167 (18.1%) GTR+I+Γ 
 1st+3rd 922 605 (65.6%) 466 (50.5%) GTR+I+Γ 
 1st 461 183 (39.7%) 122 (26.5%) GTR+I+Γ 
 2nd 461 83 (18.0%) 45 (9.8%) GTR+I+Γ 
 3rd 461 422 (91.5%) 344 (81.5%) GTR+I+Γ 
ND5 All 1812 957 (52.8%) 705 (38.9%) GTR+I+Γ 
 1st+2nd 1208 381 (31.5%) 235 (19.4%) GTR+I+Γ 
 1st+3rd 1208 820 (67.9%) 621 (51.4%) GTR+I+Γ 
 1st 604 250 (41.3%) 154 (25.5%) GTR+I+Γ 
 2nd 604 134 (22.1%) 83 (13.7%) GTR+I+Γ 
 3rd 604 573 (94.6%) 468 (77.5%) GTR+Γ 
All All 6936 3233 (46.6%) 2391 (34.5%) GTR+I+Γ 
 1st+2nd 4624 1109 (24.0%) 664 (14.3%) GTR+I+Γ 
 1st+3rd 4624 2898 (62.7%) 2197 (47.5%) GTR+I+Γ 
 1st 2312 777 (33.6%) 471 (20.4%) GTR+I+Γ 
 2nd 2312 332 (14.4%) 193 (8.3%) GTR+I+Γ 
 3rd 2312 2124 (91.9%) 1727 (74.7%) GTR+I+Γ 
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Table 5.5 Identifying the optimal partitioning strategy for the primate data alignment based on the maximized joint log-likelihood. Bold values indicate optimal 
models per criterion. L = linked-BL; UL = unlinked-BL. 

Partitioned Models (L/UL) -ln(L) Parameters (nBL) AIC w AICc wc BIC wBIC DT-Risk 
M1  11171.98 14 (5) 22372 0 22372 0 22462 0 0.10135 
M2

1+2,3 (L) 10337.32 23 (5) 20721 0 20721 0 20868 0 0.05389 
M2

1+3,2 (L) 10735.35 23 (5) 21517 0 21517 0 21664 0 1.24782 
M3

1,2,3 (L) 10219.52 32 (5) 20503 0 20504 0 20708 1 0 
M3

gene (L) 11133.58 32 (5) 22331 0 22332 0 22536 0 1.89197 
M4

1+2,3 (L) 10704.86 41 (5) 21492 0 21492 0 21755 0 2.15146 
M4

1+3,2 (L) 10276.51 41 (5) 20635 0 20636 0 20898 0 0.02782 
M6

1+2,3 (L) 10255.31 59 (5) 20629 0 20630 0 21007 0 0.10803 
M6

1+3,2 (L) 10673.25 59 (5) 21464 0 21466 0 21843 0 2.36053 
M7

1,2,3 (L) 10166.86 68 (5) 20470 0 20472 0 20906 0 0.17688 
M7

1,2,3 (L) 10155.43 68 (5) 20447 0 20449 0 20883 0 0.16003 
M7

1,2,3 (L) 10145.04 68 (5) 20426 0 20428 0 20862 0 0.03086 
M9

1,2,3 (L) 10123.89 86 (5) 20420 1 20423 1 20971 0 0.19078 
M2

1+2,3 (UL) 10331.87 28 (10) 20720 0 20720 0 20899 0 0.30425 
M2

1+3,2 (UL) 10731.75 28 (10) 21520 0 21520 0 21699 0 2.38310 
M3

1,2,3 (UL) 10214.49 42 (15) 20513 0 20514 0 20782 0 0.31601 
M3

gene (UL) 11130.00 42 (15) 22344 0 22345 0 22613 0 5.54784 
M4

1+2,3 (UL) 10698.97 56 (20) 21510 0 21511 0 21869 0 5.09490 
M4

1+3,2 (UL) 10262.97 56 (20) 20638 0 20639 0 20997 0 0.30605 
M6

1+2,3 (UL) 10238.86 84 (30) 20646 0 20649 0 21184 0 0.91594 
M6

1+3,2 (UL) 10663.55 84 (30) 21495 0 21498 0 22034 0 5.09617 
M7

1,2,3 (UL) 10155.03 98 (35) 20506 0 20510 0 21134 0 0.90127 
M7

1,2,3 (UL) 10138.32 98 (35) 20473 0 20477 0 21101 0 0.92596 
M7

1,2,3 (UL) 10127.03 98 (35) 20450 0 20454 0 21078 0 0.31408 
M9

1,2,3 (UL) 10103.02 126 (45) 20458 0 20465 0 21266 0 0.88477 
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Table 5.6 Identifying optimal partitioned-models for the primate alignment using marginal model likelihoods. BL priors are denoted as BL-X, where X is the 
exponential rate parameter. H.M. –ln(L) is the estimated harmonic mean model log likelihood. Pr(T(X)) is the posterior predictive p-value of the realized 
empirical multinomial test statistic. DLI is the variance penalized distance between the realized empirical test statistic and the mean of the predictive distribution 
of the statistic. Values in bold represent the optimal partitioned-model for a given alignment/BL-prior determined from Bayes factors and DLI. * indicates that the 
model is rejected at the α = 0.05 level (two-sided). L = linked-BL; UL = unlinked-BL. 
 

 BL-10 BL-20 BL-100 
Model 

Parameters 
(nBL) H.M. –ln(L) Pr(T(X)) DLI H.M. –ln(L) Pr(T(X)) DLI H.M. –ln(L) Pr(T(X)) DLI 

M1  14 (5) 11179.57 0.323 179.50 11179.27 0.373 173.40 11189.65 0.614 165.63 
M2

1+2,3 (L) 23 (5) 10348.66 0.366 154.02 10350.66 0.405 150.88 10360.32 0.671 159.33 
M2

1+3,2 (L) 19 (5) 10767.46 0.343 167.69 10767.35 0.380 160.98 10774.36 0.635 162.57 
M3

1,2,3 (L) 28 (5) 10238.31 0.392 150.41 10241.23 0.431 146.75 10249.06 0.655 155.02 
M3

gene (L) 24 (5) 11149.76 0.886 236.01 11152.76 0.912 254.27 11172.62 0.980* 347.37 
M4

1+2,3 (L) 37 (5) 10743.69 0.331 158.19 10745.58 0.368 153.83 10773.16 0.646 155.11 
M4

1+3,2 (L) 38 (5) 10300.93 0.347 167.21 10300.08 0.394 161.52 10312.31 0.829 211.61 
M6

1+2,3 (L) 52 (5) 10291.98 0.563 146.37 10296.36 0.606 149.40 10304.28 0.842 203.72 
M6

1+3,2 (L) 46 (5) 10743.77 0.591 158.20 10729.53 0.374 163.32 10753.22 0.814 205.22 
M7

1,2,3 (L) 52 (5) 10220.28 0.612 149.22 10217.21 0.658 154.60 10224.64 0.870 216.33 
M7

1,2,3 (L) 58 (5) 10208.32 0.596 147.74 10207.96 0.643 153.94 10216.18 0.863 213.36 
M7

1,2,3 (L) 52 (5) 10194.59 0.352 155.05 10194.24 0.388 151.70 10209.15 0.661 157.12 
M9

1,2,3 (L) 67 (5) 10181.70 0.582 146.68 10184.20 0.626 151.88 10197.27 0.854 209.17 
M2

1+2,3 (UL) 28 (10) 10356.67 0.380 153.04 10356.03 0.473 146.90 10385.89 0.924 255.03 
M2

1+3,2 (UL) 24 (10) 10770.41 0.325 169.28 10769.57 0.384 161.19 10781.09 0.755 185.42 
M3

1,2,3 (UL) 38 (15) 10243.29 0.386 150.55 10249.22 0.495 145.08 10281.81 0.950 277.71 
M3

gene (UL) 34 (15) 11155.16 0.910 251.87 11161.33 0.948 288.93 11194.78 0.999* 499.87 
M4

1+2,3 (UL) 52 (20) 10757.08 0.297 165.97 10764.39 0.417 148.98 10818.76 0.963 295.57 
M4

1+3,2 (UL) 53 (20) 10299.99 0.391 161.71 10302.96 0.528 155.42 10338.43 0.996* 438.67 
M6

1+2,3 (UL) 77 (30) 10301.93 0.631 152.79 10311.62 0.829 200.18 10388.92 1.000* 672.98 
M6

1+3,2 (UL) 71 (30) 10736.64 0.328 171.65 10745.54 0.466 155.44 10798.94 0.998* 447.09 
M7

1,2,3 (UL) 82 (35) 10228.27 0.651 154.55 10235.43 0.845 205.29 10324.40 1.000* 688.48 
M7

1,2,3 (UL) 88 (35) 10216.17 0.645 153.99 10224.84 0.858 210.99 10310.15 1.000* 740.13 
M7

1,2,3 (UL) 82 (35) 10196.44 0.249 176.08 10201.98 0.399 150.37 10237.31 0.988* 352.02 
M9

1,2,3 (UL) 107 (45) 10193.78 0.573 146.92 10206.42 0.823 196.65 10289.17 1.000* 752.00 
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Table 5.7 Identifying the optimal partitioning strategy for the paleognath data alignment based on the maximized joint log-likelihood. Bold values indicate 
optimal models per criterion. L = linked-BL; UL = unlinked-BL. 

Partitioned Models (L/UL) -ln(L) Parameters (nBL) AIC w AICc wc BIC wBIC DT-Risk 
M1  43094.04 32 (23) 86252 0 86252 0 86471 0 1.04109 
M2

1+2,3 (L) 40141.04 41 (23) 80364 0 80365 0 80645 0 0.05792 
M2

1+3,2 (L) 41693.28 41 (23) 83469 0 83469 0 83749 0 0.73047 
M3

1,2,3 (L) 39835.26 50 (23) 79771 0 79771 0 80113 1 0 
M5

gene (L) 42947.97 68 (23) 86031 0 86033 0 86497 0 1.01059 
M6

1+2,3 (L) 41545.74 77 (23) 83245 0 83247 0 83773 0 0.67179 
M6

1+3,2 (L) 39942.33 77 (23) 80039 0 80040 0 80566 0 0.03720 
M10

1+2,3 (L) 39870.53 113 (23) 79967 0 79971 0 80740 0 0.06247 
M10

1+3,2 (L) 41445.56 113 (23) 83117 0 83121 0 83891 0 0.66555 
M11

1,2,3 (L) 39662.90 122 (23) 79570 0 79574 0 80405 0 0.06614 
M11

1,2,3 (L) 39598.59 122 (23) 79441 0 79446 0 80276 0 0.12056 
M11

1,2,3 (L) 39569.18 122 (23) 79382 0 79387 0 80217 0 0.08300 
M15

1,2,3 (L) 39497.13 158 (23) 79310 1 79318 1 80392 0 0.13652 
M2

1+2,3 (UL) 40067.02 64 (46) 80262 0 80263 0 80700 0 0.59139 
M2

1+3,2 (UL) 41644.11 64 (46) 83416 0 83417 0 83854 0 0.75580 
M3

1,2,3 (UL) 39737.41 96 (69) 79667 0 79670 0 80324 0 0.59523 
M5

gene (UL) 42866.18 142 (115) 86052 0 86060 0 87147 0 1.00447 
M6

1+2,3 (UL) 41419.74 192 (138) 83223 0 83234 0 84538 0 0.63647 
M6

1+3,2 (UL) 39782.87 192 (138) 79950 0 79961 0 81264 0 0.59516 
M10

1+2,3 (UL) 39655.76 320 (230) 79952 0 79983 0 82142 0 0.96482 
M10

1+3,2 (UL) 41275.54 320 (230) 83191 0 83222 0 85381 0 0.63611 
M11

1,2,3 (UL) 39466.00 352 (253) 79636 0 79674 0 82045 0 0.96659 
M11

1,2,3 (UL) 39366.16 352 (253) 79436 0 79474 0 81846 0 0.97320 
M11

1,2,3 (UL) 39349.36 352 (253) 79403 0 79440 0 81812 0 0.60394 
M15

1,2,3 (UL) 39222.19 480 (345) 79404 0 79476 0 82690 0 0.97470 
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Table 5.8 Identifying optimal partitioned-models for the paleognath alignment using marginal model likelihoods. BL priors are denoted as BL-X, where X is the 
exponential rate parameter. H.M. –ln(L) is the estimated harmonic mean model log likelihood. Pr(T(X)) is the posterior predictive p-value of the realized 
empirical multinomial test statistic. DLI is the variance penalized distance between the realized empirical test statistic and the mean of the predictive distribution 
of the statistic. Values in bold represent the optimal partitioned-model for a given alignment/BL-prior determined from Bayes factors and DLI. * indicates that the 
model is rejected at the α = 0.05 level (two-sided). L = linked-BL; UL = unlinked-BL. 

 BL-10 BL-20 BL-100 
Model 

Parameters 
(nBL) H.M. –ln(L) Pr(T(X)) DLI H.M. –ln(L) Pr(T(X)) DLI H.M. –ln(L) Pr(T(X)) DLI 

M1  33 (23) 42796.72 0.944 808.22 42805.07 0.960 865.20 42865.64 0.998* 1336.49 
M2

1+2,3 (L) 43 (23) 40044.67 0.196 402.42 40057.22 0.237 377.55 40147.16 0.569 311.14 
M2

1+3,2 (L) 43 (23) 41373.45 0.920 654.46 41386.63 0.946 721.17 41459.45 0.998* 1162.90 
M3

1,2,3 (L) 53 (23) 39709.52 0.218 382.05 39713.08 0.251 364.01 39814.57 0.586 309.53 
M5

gene (L) 73 (23) 42665.90 0.930 766.29 42672.44 0.951 824.85 42727.11 0.999* 1337.01 
M6

1+2,3 (L) 83 (23) 41268.02 0.976* 830.96 41276.72 0.985* 892.44 41377.74 1.000* 1323.44 
M6

1+3,2 (L) 79 (23) 39858.96 0.188 402.94 39882.14 0.216 383.05 39960.75 0.545 303.60 
M10

1+2,3 (L) 122 (23) 39812.95 0.211 389.32 39826.66 0.257 363.61 39916.37 0.569 309.06 
M10

1+3,2 (L) 114 (23) 41231.40 0.665 415.44 41240.17 0.741 453.33 41317.54 0.975 838.62 
M11

1,2,3 (L) 122 (23) 39602.34 0.199 399.18 39613.58 0.241 373.39 39707.81 0.561 305.08 
M11

1,2,3 (L) 129 (23) 39507.85 0.236 362.27 39526.23 0.272 347.63 39619.84 0.608 309.82 
M11

1,2,3 (L) 120 (23) 39511.80 0.198 384.82 39508.44 0.204 384.29 39602.81 0.495 298.12 
M15

1,2,3 (L) 159 (23) 39453.51 0.171 421.67 39472.57 0.215 379.66 39563.82 0.561 296.34 
M2

1+2,3 (UL) 66 (46) 40031.64 0.145 442.72 40073.31 0.213 394.00 40286.13 0.845 448.07 
M2

1+3,2 (UL) 66 (46) 41382.42 0.876 580.02 41396.03 0.928 681.20 41502.51 1.000* 1344.55 
M3

1,2,3 (UL) 99 (69) 39697.24 0.091 508.93 39740.99 0.163 425.57 39958.20 0.939 561.12 
M5

gene (UL) 165 (115) 42651.87 0.933 766.50 42683.78 0.991* 1091.76 42919.92 1.000* 3251.71 
M6

1+2,3 (UL) 198 (138) 41293.73 0.977* 839.95 41354.33 0.998* 1190.01 41722.17 1.000* 3666.02 
M6

1+3,2 (UL) 194 (138) 39840.07 0.101 772.70 39875.88 0.059 557.50 40087.70 0.995* 865.01 
M10

1+2,3 (UL) 329 (230) 39908.63 0.035 658.71 40033.22 0.135 466.24 40648.88 1.000* 2815.89 
M10

1+3,2 (UL) 321 (230) 41312.97 0.277 448.37 41335.51 0.731 453.29 41694.19 1.000* 3250.18 
M11

1,2,3 (UL) 352 (253) 39797.54 0.005* 891.72 39865.70 0.063 581.08 40472.55 1.000* 2524.02 
M11

1,2,3 (UL) 359 (253) 39613.60 0.042 621.49 39734.86 0.292 343.40 40401.78 1.000* 3054.02 
M11

1,2,3 (UL) 350 (253) 39536.46 0.000* 1186.85 39572.17 0.004* 853.14 39799.24 1.000* 1154.32 
M15

1,2,3 (UL) 481 (345) 39596.92 0.000* 1119.59 39692.28 0.025 675.04 40328.22 1.000* 2961.03 
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Figure 5.1 Calculation of the multinomial test statistic summarizing the shape of the alignment 
column frequency spectrum. (A) A posterior predictive nucleotide alignment (the same length of 
the empirical) is simulated from posterior parameter sample values. What is of interest are the 
alignment columns (the first of which is boxed), which represent taxon states for homologous 
characters. (B) Summary of the composition of the alignment column frequency spectrum begins 
with enumerating the distinct column patterns. (C) The multinomial test statistic summarizes the 
number and relative frequencies of distinct alignment columns. (D) Simulating many predictive 
alignments generates a distribution of the test statistic which is compared to the realized test 
statistic from the empirical alignment (arrow).
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Figure 5.2 Hypothetical alignment column frequency spectra. Each column represents a distinct 
alignment column pattern, and the ordering of patterns across plots is consistent (i.e. patterns are 
labelled). Plots (A) and (C) have no patterns in common; similar with plots (B) and (D). Although 
plots (A) and (B) share roughly 50% of site patterns, the relative frequencies of the labelled 
patterns differs dramatically; similar with plots (C) and (D). Nevertheless, all four spectra 
generate the same multinomial test statistic (T(X) = -2787.316839) because the unlabelled spectra 
are identical (i.e. the number and relative frequencies of unlabelled column patterns is constant). 
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Figure 5.3 Model adequacy results for the primate alignment assuming an exp(10) prior on 
branch length parameters. Red arrows indicate the value of the realized test statistic from the 
empirical matrix. ‘Link’ indicates that branches were constrained to be proportional in the 
analysis model, while ‘UL’ indicates that the analyzing model made no assumptions regarding 
branch length proportionality across partitions. 
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Figure 5.4 Model adequacy results for the primate alignment assuming an exp(20) prior on 
branch length parameters. Red arrows indicate the value of the realized test statistic from the 
empirical matrix. ‘Link’ indicates that branches were constrained to be proportional in the 
analysis model, while ‘UL’ indicates that the analyzing model made no assumptions regarding 
branch length proportionality across partitions. 
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Figure 5.5 Model adequacy results for the primate alignment assuming an exp(100) prior on 
branch length parameters. Red arrows indicate the value of the realized test statistic from the 
empirical matrix. ‘Link’ indicates that branches were constrained to be proportional in the 
analysis model, while ‘UL’ indicates that the analyzing model made no assumptions regarding 
branch length proportionality across partitions. 
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Figure 5.6 Model adequacy results for the paleognath alignment assuming an exp(10) prior on 
branch length parameters. Red arrows indicate the value of the realized test statistic from the 
empirical matrix. ‘Link’ indicates that branches were constrained to be proportional in the 
analysis model, while ‘UL’ indicates that the analyzing model made no assumptions regarding 
branch length proportionality across partitions. 
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Figure 5.7 Model adequacy results for the paleognath alignment assuming an exp(20) prior on 
branch length parameters. Red arrows indicate the value of the realized test statistic from the 
empirical matrix. ‘Link’ indicates that branches were constrained to be proportional in the 
analysis model, while ‘UL’ indicates that the analyzing model made no assumptions regarding 
branch length proportionality across partitions. 



	
   174	
  

 
 
 
 

 
 
Figure 5.8 Model adequacy results for the paleognath alignment assuming an exp(100) prior on 
branch length parameters. Red arrows indicate the value of the realized test statistic from the 
empirical matrix. ‘Link’ indicates that branches were constrained to be proportional in the 
analysis model, while ‘UL’ indicates that the analyzing model made no assumptions regarding 
branch length proportionality across partitions. 
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