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Abstract

Skin-friction drag reduction by dilute polymer solutions is investigated using re-

sults from direct numerical simulations (DNS) of homogeneous polymer solutions in

turbulent channel flow. Simulations were preformed using a novel mixed Eulerian-

Lagrangian scheme in a turbulent channel flow at a base Reynolds number of Reτb ≈

230 with a FENE-P dumbbell model of the polymer, and covered the range of

Weissenberg numbers between 10 . Weτb . 150, polymer number densities be-

tween 1 × 10−10 . npkBT/(ρu
2
τb
) . 1 × 10−2 (corresponding to viscosity ratios of

0.7 . β . 1.0), and polymer extensibility parameters between 4, 500 ≤ b ≤ 450, 000,

to clarify the role of each polymer parameter in drag reduction. The full range of

drag reduction from onset to Maximum Drag Reduction (MDR) was reproduced in

DNS, with statistics in good quantitative agreement with the available experimen-

tal data. Onset of drag reduction was found to be a function of both the polymer

concentration and Weissenberg number, as originally suggested by de Gennes (1986).

However, the onset criteria suggested by de Gennes (1986) were found to be several

orders of magnitude higher than DNS data. A revised version of the theory of de

Gennes (1986) has been developed, which gives good agreement with DNS results.

The magnitude of drag reduction was found to be a universal function of β, increasing

monotonically with β for 1.0 > β > 0.98, and saturating at β ≈ 0.98. The magnitude

xxx



of drag reduction at saturation is a strong function of the Weissenberg number. A

Weτ ∼ O(Reτ/2) is needed to reach MDR. Investigation of the mechanism of drag

reduction shows that the main effect of the polymer is extraction of a small amount

(on the order of 5% on a volume-averaged basis) of turbulence kinetic energy from

turbulent scales which have a timescale shorter than the polymer relaxation time.

This extraction of energy leads to a decrease in the fluctuating strain-rate at these

scales, which in turn, reduces the magnitude of the pressure-strain correlation at these

and neighboring scales. This inhibits the turbulence kinetic energy transfer from the

streamwise component to the cross-stream directions at these scales. When this drop

in pressure-strain correlation extends to the largest turbulent scales, it results in a

highly anisotropic state in which the cross-stream turbulence intensities are sharply

reduced, leading to a drop in the Reynolds shear stress. This drop in the Reynolds

shear stress, in turn, causes a drop in the rate of turbulence production. In addition,

the energy trapped in the streamwise direction can no longer cascade to the small

scales, leading to further decay of the fluctuating strain-rate and turbulence kinetic

energy in the small scales. This decay further amplifies the features described above.

Thus the minute extraction of energy by the polymer at the affected turbulent scales

starts a self-amplifying sequence of events, which leads to cessation of turbulence

production and results in a drag reduction. For effective high drag reduction, the

initial minute extraction of energy by the polymer needs to extend to the largest

turbulent scales at wall-normal locations where the peak of turbulence production

occurs. The above understanding of the mechanism of polymer drag reduction opens

up new possibilities for skin-friction drag reduction in wall-bounded flows.
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Chapter I

Introduction

It has been known for nearly sixty years, since its original discovery by Toms

(1949), that the addition of a few weight parts per million (wppm) of an appropriate,

high molecular weight, linear chain polymer to the turbulent flow of a solvent can

lead to drag reductions of up to 80% in wall-bounded turbulent flows. Since then,

numerous experimental studies in pipe flows, channel flows, and boundary layer flows

have verified these findings and revealed various other features of wall-bounded tur-

bulence in the presence of drag reducing polymers. Nevertheless, many aspects of the

problem, including the scaling of drag reduction with polymer and flow parameters,

and the detailed mechanism of drag reduction remain poorly understand or contro-

versial. General reviews of the current state of knowledge are available in Lumley

(1969, 1973), Virk (1975), Hoyt (1990), Gyr & Bewersdorff (1995), Nieuwstadt & den

Toonder (2001), and White & Mungal (2008).

1.1 Early experimental studies

Early experimental studies on polymer drag reduction (Hershey & Zakin, 1967;

Lumley, 1969, 1973; Hoyt, 1966, 1971, 1972; Kenis & Hoyt, 1971; Hunston, 1974; Fred-

erick, 1975; Berman, 1977; Nadolink, 1987) were focused on measuring the pressure-

1
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drop and mean velocity profiles in dilute polymer solutions with different polymer

molecules, molecular weights, and concentrations to determine the scaling of drag

reduction with polymer parameters. Three characteristic features of polymer drag

reduction borne out from these early experimental studies include the phenomena of

onset of drag reduction, saturation of drag reduction, and maximum drag reduction

(MDR).

1.1.1 Onset of drag reduction

Onset of drag reduction refers to the criteria which must be met before a given

polymer of molecular weight Mw, radius of gyration in the coiled state RG, relaxation

time λ, and number density np (or concentration c) can display any drag reducing

effects in the turbulent flow of a solvent at a base Reynolds number of Reτb ≡ uτbδ/νs,

where uτb denotes the friction velocity of the base Newtonian flow, δ denotes the char-

acteristic length of the flow such as the boundary layer thickness, channel half height,

or pipe radius, and νs is the kinematic viscosity of the solvent. Establishing the onset

criteria has been the subject of a number of experimental studies (Hershey & Zakin,

1967; Patterson & Abernathy, 1970; Berman, 1977; Nadolink, 1987; Sreenivasan &

White, 2000). Some of these studies (e.g. Hershey & Zakin, 1967; Berman, 1977)

have found that the onset of drag reduction depends on the flow time-scale. The

onset of drag reduction have been found to occur when

Weτ ≡ λu2
τ

ν
∼ O(1) (1.1)
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(Hershey & Zakin, 1967; Lumley, 1969), where Weτ is the Weissenberg number,

and denotes the ratio of the polymer relaxation time, λ, to the shortest time-scale,

ν/u2
τ , in the viscoelastic turbulent flow, where uτ is the friction velocity, and ν is

the kinematic viscosity of the polymer solution, which is typically defined as either

µo/ρ or as µw/ρ, where µo is the zero shear viscosity of the solution, and µw is the

wall shear viscosity, and ρ is the density. While this onset criterion is found to be

a function of Weissenberg number only, and independent of polymer concentration,

others (Nadolink, 1987; Sreenivasan & White, 2000) observed an onset criterion as a

function of both the polymer concentration and Weissenberg number. An expression

for this onset criterion was proposed by Sreenivasan & White (2000) based on analysis

of experimental data (Patterson & Abernathy, 1970; Berman, 1977; Nadolink, 1987)

as

npkBT

ρu2
τ

|onset ∝ We
− 5

2
τ , (1.2)

where np is the polymer number density, kB is the Boltzmann’s constant, and T is

the absolute temperature.

1.1.2 Saturation of drag reduction

Saturation of drag reduction refers to the observation that for all polymers, the

amount of drag reduction levels off with increasing polymer concentration (Hoyt,

1966, 1971; Kenis & Hoyt, 1971), such that adding more polymer does not lead to any

additional drag reduction. As with the onset phenomenon, the saturation criterion is

also still the subject of debate. Some investigators (Lumley, 1969, 1973) believe that

saturation occurs when the wavenumber corresponding to the peak of the dissipation
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spectrum defined using the effective viscosity coincides with the wavenumber of the

largest turbulent eddies having a time-scale λ. In contrast, other investigators (de

Gennes, 1986) believe that saturation occurs when the unstretched polymer coils

begin to overlap.

1.1.3 Maximum drag reduction

Maximum drag reduction (MDR) refers to the observation (Virk, Mickley &

Smith, 1970; Virk, 1975) that regardless of polymer concentrations or type of polymer

employed, the maximum drag reduction in any given flow is bound by an empirical

asymptote. An expression for this MDR asymptote was proposed by Virk, Mickley

& Smith (1970) based on analysis of experimental data in pipe flow.

It was observed that the lowest mean skin friction coefficient which can be achieved

experimentally with polymer solutions in pipe flows is bound by,

C
−1/2
f = 19.0 log10(2RebulkC

1/2
f )− 32.4, (1.3)

where Cf is the mean skin friction coefficient in the pipe, and Rebulk ≡ UbulkR
νs

is

the Reynolds number based on the pipe radius, R, bulk velocity, Ubulk, and the

viscosity of the solution, ν. The accuracy of equation (1.3) was observed to be ∼

±15% for Reynolds number between 1, 000 < Rebulk < 2, 500, and ∼ ±10% for

2, 500 < Rebulk < 75, 000 (Virk, Mickley & Smith, 1970). While this mean skin friction

coefficient is substantially lower than the value, C
−1/2
f = 4.0 log10(2RebulkC

1/2
f ) −

0.4, in Newtonian turbulent pipe flow, it always exceeds the laminar value, Cf =

8/Rebulk, indicating that the polymer cannot fully relaminarize the flow. Subsequent
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experimental measurements were found to conform to this limiting asymptote.

Given the form of the friction coefficient given by (1.3), Virk, Mickley & Smith

(1970) argued that at maximum drag reduction (MDR), the mean velocity profile

should become asymptotic to

U+ = 11.7 ln z+ − 17.0, (1.4)

which they called the ultimate profile. As with the onset and saturation phenomena,

the criterion for MDR is also still the subject of debate. Some investigators (Lumley,

1969, 1973) believe that MDR is achieved when the edge of the viscous sublayer based

on the saturation value of the effective viscosity extends all the way to the core of

the pipe or channel or the outer edge of the boundary layer. Thus MDR occurs

when δuτ/(0.1λu
2
τ) ≈ 10, or δ ∼ O(λuτ) or Weτ ∼ O(Reτ ), where Reτ ≡ uτδ/ν. In

contrast, other investigators (de Gennes, 1986) believe that MDR is achieved when

the time criterion of Lumley (1969, 1973) is satisfied by the largest turbulent eddies.

This corresponds to δ ≈ (ε3λ)1/2. With ε ≈ u3
τ/z and z = δ, this gives the MDR

criterion in wall-bounded flows as δ ∼ O(λuτ) or Weτ ∼ O(Reτ ), which is the same

as that in Lumley’s theory (Lumley, 1969, 1973).

1.2 Recent experimental studies

With the advent of non-invasive optical measurement techniques such as laser

doppler velocimetry (LDV), more detailed measurements of the flow features such

as the turbulence intensities and the Reynolds shear stress have become available.

Studies have been performed both with homogeneous and heterogeneous polymer
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solutions in pipe flows (McComb & Rabie, 1979; Usui, Maeguchi & Sano, 1988; Pinho

& Whitelaw, 1990; den Toonder, et al., 1997; Hoyer & Gyr, 1996; Ptasinski, et al.,

2001), channel flows (Willmarth, Wei & Lee, 1987; Walker & Tiederman, 1990; Harder

& Tiederman, 1991; Wei & Willmarth, 1992; Warholic, Massah & Hanratty, 1999),

and boundary layer flows (Fontaine, Petrie & Brungart, 1992; Koskie & Tiederman,

1991; White, Somandepalli & Mungal, 2004; Hou, Somandepalli & Mungal, 2008).

1.2.1 Homogeneous polymer solutions

Detailed experimental measurements with homogeneous polymer solutions have

been reported in both pipe flows (Pinho & Whitelaw, 1990; den Toonder, et al., 1997;

Ptasinski, et al., 2001) and channel flows (Willmarth, Wei & Lee, 1987; Gampert &

Yong, 1990; Harder & Tiederman, 1991; Wei & Willmarth, 1992; Warholic, Massah

& Hanratty, 1999).

In the low drag reduction (LDR) regime defined as drag reductions below 35%

(Warholic, Massah & Hanratty, 1999), introducing the polymer into turbulent flow

resulted in a thickening of the buffer layer, and a contraction and upward shift of

the inertial sublayer in the mean velocity profile. In addition, measurements of the

turbulence intensities and the Reynolds shear stress showed that the peak of the

normalized streamwise turbulence intensity becomes larger than the Newtonian value,

whereas the peak of the normalized spanwise and wall normal turbulence intensities

and the Reynolds shear stress drop below the Newtonian values. These features

become increasingly more pronounced as drag reduction increases.

In the high drag reduction (HDR) regime defined as drag reduction above 35%



7

(Warholic, Massah & Hanratty, 1999), detailed measurements have been reported by

Gampert & Yong (1990) and Warholic, Massah & Hanratty (1999) in channel flow,

and by Ptasinski, et al. (2001) in pipe flow. Gampert & Yong (1990) performed

their experiments in a turbulent channel flow at MDR for 4800 < Rebulk < 16000.

MDR was observed at 49% − 71%DR, depending on the Reynolds number. All the

mean velocity profiles conformed to Virk’s ultimate profile (eqn.1.4). They observed

normalized streamwise turbulence intensities which were below Newtonian values,

cross-stream turbulence intensities which were significantly lower than Newtonian

values, and Reynolds shear stress significantly lower than Newtonian values, but

non-zero. Warholic, Massah & Hanratty (1999) performed their experiments in a

turbulent channel flow at Reτb ≈ 1000. At MDR (69%DR), they observed a mean

velocity profile which also conformed to Virk’s ultimate profile. They observed nor-

malized turbulence intensities which had peaks below those for Newtonian flow for the

streamwise component of velocity, while the wall-normal component of the velocity

were drastically reduced compared to Newtonian flow. However, in these experiments,

the Reynolds shear stress was observed to be near zero. These features led the investi-

gators to suggest that at MDR the turbulence is maintained by polymer fluctuations.

Ptasinski, et al. (2001) performed their experiments in a pipe flow at Reτb ≈ 300.

At maximum drag reduction (70%DR), they observed mean velocity profiles which

also confirmed the Virk’s ultimate profile. The normalized streamwise turbulence

intensities had a peak comparable to that for Newtonian flow, while the wall-normal

component of turbulence intensities and Reynolds shear stresses were significantly

lower than Newtonian, but non-zero. A major difference between the experiments of
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Ptasinski, et al. (2001) and Warholic, Massah & Hanratty (1999) is the manner in

which the polymer was introduced into the flow. Ptasinski, et al. (2001) used well

premixed polymer solutions, while Warholic, Massah & Hanratty (1999) injected their

polymer as a highly concentrated solution into the flow and relied on the turbulent

flow to mix it in the test section. Warholic, Massah & Hanratty (1999) mention

that with their method of injection, the polymer forms filament aggregates whose

size increases with the concentration of the master solution. These aggregates were

not dismembered in the channel flow and their presence was found to significantly

enhance the effectiveness of polymer drag reduction. In addition to this, Ptasinski,

et al. (2001) and Warholic, Massah & Hanratty (1999) show a noticeable difference

in the experimental setup. The test section in the experiment of Ptasinski, et al.

(2001) was located at 26m (Lx/R ≈ 1288, where Lx denotes the location of the test

section from the entrance or the injection of the polymer) from the entrance of the

pipe. In contrast, the test section in the experiment of Warholic, Massah & Hanratty

(1999) was located at 11m (Lx/h ≈ 433, where h denotes the channel half height)

from the injection slot of the polymer. The length of the channel in the experiments

of Warholic, Massah & Hanratty (1999) was much shorter than the length of the pipe

in the experiments of Ptasinski, et al. (2001).

1.2.2 Heterogeneous polymer solutions

Drag reduction in heterogeneous polymer solutions has been studied experimen-

tally by a number of investigators in pipe flows (McComb & Rabie, 1979; Usui,

Maeguchi & Sano, 1988; Hoyer & Gyr, 1996), channel flows (Walker & Tiederman,
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1990), and boundary layer flows (Fontaine, Petrie & Brungart, 1992; White, Soman-

depalli & Mungal, 2004; Hou, Somandepalli & Mungal, 2008). In pipe and channel

flow studies, the polymer was injected either at the centerline of the pipe (McComb

& Rabie, 1979; Usui, Maeguchi & Sano, 1988; Hoyer & Gyr, 1996) or at the wall of

the channel (Walker & Tiederman, 1990). In boundary layer flow studies, the poly-

mer was injected at the wall of the flat-plate (Fontaine, Petrie & Brungart, 1992;

White, Somandepalli & Mungal, 2004; Hou, Somandepalli & Mungal, 2008). It was

found that if the polymer is injected in the buffer layer then it affects the flow im-

mediately (Walker & Tiederman, 1990), but if it is injected in the viscous sublayer

(Fontaine, Petrie & Brungart, 1992) or in the core (McComb & Rabie, 1979), then it

needs time to reach the buffer layer before it can affect the flow. The mean velocity

profiles observed with heterogeneous polymer solutions were found to be different

from those in homogeneous solutions. Instead of the upward shift of the logarithmic

layer observed with homogeneous solutions in the low drag reduction (LDR) regime,

here the slope of the logarithmic layer increases from the Newtonian value (≈ 2.5) to

the Virk’s asymptotic value (≈ 11.7) as the drag reduction increases. Generally, it

had been believed that drag reduction cannot reach Virk’s MDR asymptotic values

in heterogeneous polymer solutions. However, Hou, Somandepalli & Mungal (2008)

have recently shown that the drag reduction can approach Virk’s MDR asymptote

with heterogeneous polymer solutions.
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1.3 Numerical studies

In the recent years, direct numerical simulations (DNS) have provided an al-

ternative avenue of inquiry, and a number of DNS studies of viscoelastic turbulent

flows have been reported in channel flows (Orlandi, 1995; Sureshkumar & Beris, 1995;

Sureshkumar, Beris & Handler, 1997; Baron & Sibilla, 1998; Dimitropoulos, Sureshku-

mar & Beris, 1998; Beris & Dimitropoulos, 1999; Dimitropoulos, et al., 2001; de An-

gelis, Casciola, & Piva, 2002; de Angelis, et al., 2003, 2004; Housiadas & Beris, 2003;

Min, et al., 2003; Min, Yoo & Choi, 2003; Ptasinski, et al., 2003; Dubief, et al., 2004,

2005; Benzi, et al., 2006; Li, Sureshkumar & Khomami, 2006), pipe flows (den Toon-

der, et al., 1997), boundary layer flows (Dimitropoulos, et al., 2005, 2006; Tamanoa,

et al., 2007), shear driven turbulence (Vaithianathan, et al., 2007), and homogeneous,

isotropic turbulence (de Angelis, et al., 2005). Earlier studies were performed using

generalized Newtonian models of the polymer (Orlandi, 1995). The more recent stud-

ies have employed Oldroyd-B (Hookean dumbbell) (Sureshkumar & Beris, 1995; den

Toonder, et al., 1997; Min, et al., 2003; Min, Yoo & Choi, 2003; Li, Sureshkumar &

Khomami, 2006; Tamanoa, et al., 2007), Giesekus (Dimitropoulos, Sureshkumar &

Beris, 1998; Beris & Dimitropoulos, 1999; Housiadas & Beris, 2003; Tamanoa, et al.,

2007) or FENE-P dumbbell (Sureshkumar, Beris & Handler, 1997; Baron & Sibilla,

1998; Dimitropoulos, Sureshkumar & Beris, 1998; Beris & Dimitropoulos, 1999; Dim-

itropoulos, et al., 2001; de Angelis, Casciola, & Piva, 2002; de Angelis, et al., 2003,

2004, 2005; Housiadas & Beris, 2003; Ptasinski, et al., 2003; Dubief, et al., 2004, 2005;

Dimitropoulos, et al., 2005, 2006; Benzi, et al., 2006; Li, Sureshkumar & Khomami,
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2006; Vaithianathan, et al., 2007) models of the polymer. A summary of these results

is given below.

Baron & Sibilla (1998) performed simulations at Reτb ≈ 169 in a minimal channel

size of 4h×1.25h×2h in streamwise, spanwise and wall-normal directions, respectively.

Their simulations were performed with a 2nd order finite difference scheme. The

FENE-P dumbbell model was used with a realistic extensibility parameter of b ≈

30, 000. They observed a maximum of 10% drag reduction in their simulations which

were performed for Weτb ≤ 35.5. Their DNS results showed qualitative agreement

with the experiments of Luchik & Tiederman (1988) and Wei & Willmarth (1992).

Their simulations showed that the spacing between the high and low speed streaks in

the near wall region becomes larger in drag reduced flow.

Sureshkumar & Beris (1995), Sureshkumar, Beris & Handler (1997), Dimitropou-

los, Sureshkumar & Beris (1998), Beris & Dimitropoulos (1999), Housiadas & Beris

(2003) and Li, Sureshkumar & Khomami (2006) performed simulations using pseudo-

spectral methods at Reτ ≡ uτh/ν ≈ 125, 180, 395 and 590. Direct numerical simu-

lations were performed in channels of size up to 10h× 5h× 2h at LDR, in channels

of size up to 20h × 5h × 2h at HDR, and in channels of size up to 40h × 5h × 2h

at MDR. The polymer was modeled using a FENE-P dumbbell with an extensibil-

ity parameter of 4 ≤ b ≤ 14, 400, or using a Giesekus model with b ∼ 2 and 100

(α = 1/b = 0.5 & 0.01), or using Oldroyd-B, which can infinitely extend (b ∼ ∞).

These polymer extensibility parameter do not correspond to any real polymers, as

real polymers have 104 < b < 106. The bulk of the simulations were performed for

viscosity ratio of β = 0.9, where β = µs/µo denotes the ratio of the solvent viscosity to
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the zero shear viscosity of the polymer solution, and the range of Weissenberg number

between 6.25 ≤ Weτ ≤ 200. Onset of drag reduction was observed at Weτ ≈ 6.25.

With Weτ ≈ 100, ∼ 74%DR was achieved at MDR at Reτ ≈ 125, and ∼ 71%DR

was achieved at MDR at Reτ ≈ 180. At Reτ ≈ 395, ∼ 75%DR was achieved at

MDR with Weτ ≈ 200. The mean velocity profiles at MDR showed good agreement

with Virk’s ultimate profile (Li, Sureshkumar & Khomami, 2006). The normalized

streamwise turbulence intensities showed a monotonic increase with increasing drag

reduction at HDR (Li, Sureshkumar & Khomami, 2006). However, this trend stands

at odd with the observations in experiments (Warholic, Massah & Hanratty, 1999;

Ptasinski, et al., 2001), which showed a decay in streamwise turbulence intensity

with increasing drag reduction at HDR. It was found that a large polymer extensibil-

ity parameter and high Weissenberg number are required to obtain significant drag

reduction (Li, Sureshkumar & Khomami, 2006). In contrast, drag reduction was ob-

served to decrease with increasing Reynolds number (Li, Sureshkumar & Khomami,

2006). The streaks near the wall were observed to be more spaced out, and the near

wall coherent structures were observed to become weaker in drag reduced flow (Dim-

itropoulos, Sureshkumar & Beris, 1998; Li, Sureshkumar & Khomami, 2006). The

polymer was observed to generate a body force which opposes the cross-stream com-

ponents of turbulence, but performs a positive work on streamwise component (Li,

Sureshkumar & Khomami, 2006). In addition, Dimitropoulos, et al. (2001) studied

budgets of Reynolds stress, kinetic energy and streamwise enstrophy based on these

simulations. Dimitropoulos, et al. (2001) observed a significantly lower magnitude

of the turbulence production and velocity-pressure gradient terms in the turbulent
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kinetic energy budget compared to Newtonian case. Furthermore, Kim, et al. (2007,

2008) found that the polymer suppresses near wall vortices by generating torques

which oppose the motions of the vortical structures. Kim, et al. (2007, 2008) claimed

that this reduction in vortex strength results in the suppression of the autogeneration

of new vortices, which attenuates turbulence in drag reduced flow.

de Angelis, Casciola, & Piva (2002), de Angelis, et al. (2003, 2004) and Benzi,

et al. (2006) performed simulations at Reτ ≈ 125 and 212, and Reτb ≈ 195 in a

channel of size 2πh × 1.2πh × 2h. The channel size was not large enough to ac-

commodate the large structures which develop in drag-reduced viscoelastic turbulent

flows. Simulations were preformed using pseudo-spectral methods with a FENE-P

dumbbell model of the polymer with β = 0.9. The extensibility parameter was fixed

at b ≈ 5, 000, which is again too small to be realistic. They observed ∼ 30% drag

reduction with Weτb ≈ 140 at Reτb ≈ 195 (de Angelis, Casciola, & Piva, 2002). The

turbulence kinetic energy production was observed to decrease (de Angelis, Casciola,

& Piva, 2002), and the energy in the energy containing eddies was observed to grow

in drag reduced flow rather than dissipated by the polymer (de Angelis, et al., 2003).

The spacing between the streaks in drag reduced flow was observed to become more

sparse compared to Newtonian in drag reduced flow, and the polymer was observed to

generate a body force which opposes the velocity fluctuations to suppress turbulence

(de Angelis, Casciola, & Piva, 2002). Based on this database, L’vov, et al. (2004),

de Angelis, et al. (2004) and Benzi, et al. (2004) suggested that the presence of the

polymer leads to an effective viscosity which increases linearly with the distance from

the the wall. It was suggested that this effective viscosity suppresses the Reynolds



14

stress in the elastic sublayer, resulting in a reduction of the momentum flux from bulk

flow to the wall. They claimed that this linear effective viscosity is originated from

the polymer extension in the wall-normal direction (Benzi, et al., 2006).

Min, et al. (2003) and Min, Yoo & Choi (2003) performed simulations in a turbu-

lent channel of size 7h× 3.5h× 2h at Reτb ≈ 150, and in a 2.4h× 0.9h× 2h minimal

channel at Reτb ≈ 590. These channels are again too small to accommodate the

large structures in drag reduced flow. Simulations were performed using a 4th-order

compact difference scheme for the polymer-stress derivatives in the hydrodynamic

equations, a modified compact upwind difference scheme for the polymer-stress con-

vection term in the polymer dynamic equations, and all other terms were discretized

using a 2nd-order center difference scheme. Simulation were performed for Weτb . 60

at Reτb ≈ 150 and for Weτb . 46 at Reτb ≈ 590 with the Hookean dumbbell model

of the polymer, which can infinitely extend. In all simulations the viscosity ratio was

fixed at β = 0.9. They observed drag reductions of up to 44% at the low Reynolds

number and up to 28% at the high Reynolds number. In addition, 60% drag re-

duction was observed in the transient period with Weτb ≈ 45 at Reτb ≈ 150, which

confirmed to Virk’s MDR asymptote. The DNS results in the LDR regime showed

qualitative agreement with the experiments of Luchik & Tiederman (1988) and Wei

& Willmarth (1992). Min, et al. (2003) observed that the polymer stores the elastic

energy from the flow very near the wall and then releases it there when the relaxation

time is short, showing no drag reduction. However, when the relaxation time is long

enough, the elastic energy stored in the very near-wall region is transported to and

released in the buffer and log layers, showing a significant amount of drag reduction.
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However, turbulence inside the channel was observed to survive in the MDR state

due to the enhanced energy transfer from the polymer elastic energy to the turbulent

kinetic energy (Min, Yoo & Choi, 2003).

Ptasinski, et al. (2003) performed simulations at Reτ = 180 in a 3h × 2h × 2h

minimal channel and compared their results with their own pipe flow experiments

(Ptasinski, et al., 2001). The size of the channel was again too small to accommodate

the large structures in drag reduced flow. Their simulations were performed using

Fourier methods in streamwise and spanwise directions and a finite difference method

in wall normal direction. Simulations were performed using the FENE-P dumbbell

model with b = 100 and 1, 000, Weτ ≤ 72 and 0.4 ≤ β ≤ 0.8. The values of ex-

tensibility parameter were too small to be realistic, and the range of viscosity ratio

was too low to correspond to “dilute” polymer solution. Drag reductions of up to

66%, corresponding to the MDR, were observed. In the LDR regime, their DNS re-

sults showed qualitative agreement with experiments. However, in the HDR regime,

the DNS results showed a monotonic increase in the peak of streamwise turbulence

intensity with increasing drag reduction, which again stands at odd with the trends

observed in experiments (Warholic, Massah & Hanratty, 1999; Ptasinski, et al., 2001).

Their DNS results showed a significantly lower magnitude of turbulence production

and pressure-strain correlation in drag reduced flow compared to Newtonian flow. A

substantial part of the energy production by the mean flow was transferred directly

into elastic energy of the polymers, and the turbulent velocity fluctuations also con-

tributed energy to the polymers. The elastic energy of the polymers was subsequently

dissipated by polymer relaxation. Ptasinski, et al. (2003) were explained their sim-
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ulation results by two mechanisms. First, as suggested by Lumley (1969, 1973) the

polymers damp the cross-stream velocity fluctuations and suppress the bursting in the

buffer layer. Secondly, the ‘shear sheltering’ mechanism which amplifies the stream-

wise fluctuations in the thickened buffer layer, while reducing and decoupling the

motions within and above this layer. The expression for the substantial reduction in

the wall drag derived by considering the long time scales of the nonlinear fluctuations

of this damped shear layer.

Dubief, et al. (2004, 2005) performed simulations at Reτ = 300 in a channel of

size 4πh× 4h× 2h. Simulations were performed using a 4th-order compact difference

scheme for the polymer-stress derivatives in the hydrodynamic equations, a 3rd-order

modified compact upwind difference scheme for the polymer-stress convection term

in the polymer dynamic equations, and all other terms were discretized using a 2nd-

order center difference scheme. Simulations were preformed with a FENE-P dumbbell

model of the polymer at b ≈ 3, 600 or 10, 000, and a viscosity ratio of β = 0.9. Drag

reductions approached 60% with Weτb ≤ 120, corresponding to HDR regime. They

observed that the polymer absorbs energy from near-wall vortices and releases it in

the near-wall region. In this process, the polymer was observed to generate a force

field which opposes the velocity fluctuations in spanwise and wall-normal directions,

but provides a positive work in streamwise direction. They argued that the near wall

vortices are suppressed and the turbulence kinetic energy in the streamwise direction

is enhanced through this event, and the balance of these two opposite actions leads

to a self-sustained drag-reduction.
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Dimitropoulos, et al. (2005, 2006) performed simulations in a boundary layer flow

with Reθb ≡ uτbθin/νs = 670, where θin is the momentum thickness at the inlet.

The size of computational domain was 168.4θin × 32.2θin × 24.5θin. Simulations were

performed using a 4th-order compact difference scheme for the polymer-stress deriva-

tives in the hydrodynamic equations, a modified compact upwind difference scheme

for the polymer-stress convection term in the polymer dynamic equations, and all

other terms in the hydrodynamic and polymer dynamic equations were discretized

using a 2nd-order center difference scheme. In addition, the concentration equa-

tion was computed using the second-order QUICK scheme (Pierce & Moin, 2004).

Simulations were preformed at Weτb = 25 or 50, β = 0.9 and b = 10, 000 with a

FENE-P dumbbell model of the polymer in homogeneous and inhomogeneous poly-

mer solutions. In the inhomogeneous case, polymers were introduced at the inlet

with a polymer concentration corresponding to a constant Gaussian profile, which

varied only in the wall-normal direction. For both homogeneous and inhomogeneous

cases, friction drag was observed to increase just after the inlet due to the initial

stretching of the polymer, and then it reduced and approached an equilibrium state

as the flow proceeded downstream. In the homogeneous case, 40%DR was achieved

at Weτb = 25 in the equilibrium state, while 60%DR was achieved at Weτb = 50. In

the inhomogeneous case, the achieved drag reduction at different streamwise locations

was consistent with the polymer concentration near the wall, which was observed to

decrease as the flow proceeded downstream. Simulation at Weτb = 50 with inhomo-

geneous polymer solution achieved drag reduction of ∼ 50%DR in the equilibrium

state, which was smaller than that with homogeneous polymer solution.
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de Angelis, et al. (2005) performed simulations in homogeneous isotropic turbu-

lence at Ref ≡ (L3fo)
1/2/ν = 960 in a domain of size L × L × L using Fourier

spectral method, where fo is the external forcing applied in the largest turbulent

scale. Simulations were preformed at Wef ≡ λ(fo/L)
1/2 = 0.18 and β = 0.9 with the

FENE-P dumbbell model of the polymer. Polymer extensibility parameter was fixed

at b = 1, 000, which is again too small to be realistic. Their results showed that an

alteration of the cascade in turbulent flows with dilute polymer solution results in a

pure damping of the entire range of scales for small values of Weissenberg number,

or the depletion of the small scales accompanied by increased fluctuations at large

scales for larger values of Weissenberg number.

Vaithianathan, et al. (2007) performed simulations in shear-driven turbulence at

ReT ≡ q2/3
√

15/νε = 15.8 in a channel of size 4h × 2h × 2h using finite-difference

method, where q denotes the turbulence kinetic energy at Newtonian state. Once

again, the channel size was too small to accommodate the large structures in drag

reduced flow. In their study, the polymer was introduced as a thin slab concentrated

in the middle of the channel to investigate the polymer mixing (corresponding to

9.85 times of bulk average polymer concentration in the channel). Simulations were

performed for 1.41 ≤ WeS ≡ Sλ ≤ 3.54, β = 0.95 with a FENE-P dumbbell model

of the polymer, where S denotes the constant mean shear applied in DNS. Polymer

extensibility parameters of b = 10, 000 and b = 40, 000 were used. The simulations

showed that the polymer mixing, the Reynolds stress in mean shear direction, and

the turbulence production were suppressed with increasing Weissenberg number and

extensibility parameter. They argued that the origin of this suppression at higher
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Weissenberg number is not only due to the suppression of vertical velocity fluctuations

but also the reduced correlation between vertical velocity fluctuations and polymer

concentrations.

These direct numerical simulations all show results which are qualitatively similar

to experiments. However, they all suffer from the following limitations: (i) the poly-

mer extensibility parameter in many of these simulations is either too small for the

FENE-P (Sureshkumar, Beris & Handler, 1997; Dimitropoulos, Sureshkumar & Beris,

1998; Beris & Dimitropoulos, 1999; Dimitropoulos, et al., 2001; de Angelis, Casciola,

& Piva, 2002; de Angelis, et al., 2003, 2004, 2005; Housiadas & Beris, 2003; Ptasinski,

et al., 2003; Dubief, et al., 2004, 2005; Dimitropoulos, et al., 2005, 2006; Benzi, et al.,

2006) and Giesekus (Dimitropoulos, Sureshkumar & Beris, 1998; Beris & Dimitropou-

los, 1999; Housiadas & Beris, 2003) models, or is infinite (Hookean dumbbell model)

(Sureshkumar & Beris, 1995; Min, et al., 2003; Min, Yoo & Choi, 2003; Li, Sureshku-

mar & Khomami, 2006). Realistic polymer extensibility parameters should be in the

range 104 < b < 106. This makes it difficult to make any ‘quantitative’ comparisons

between experiments and these DNS results; (ii) the simulation domains in many of

these studies (Baron & Sibilla, 1998; de Angelis, Casciola, & Piva, 2002; de Angelis,

et al., 2003, 2004; Min, Yoo & Choi, 2003; Ptasinski, et al., 2003; Benzi, et al., 2006;

Vaithianathan, et al., 2007) are not large enough to accommodate the large structures

which develop in drag-reduced viscoelastic turbulent flows; (iii) some of the studies

(Sureshkumar & Beris, 1995; Sureshkumar, Beris & Handler, 1997; Dimitropoulos,

Sureshkumar & Beris, 1998; Beris & Dimitropoulos, 1999; Dimitropoulos, et al., 2001;

Housiadas & Beris, 2003) used coarse mesh resolutions, which cannot resolve the small



20

scale structure of turbulence even in drag-reduced flow; (iv) the polymer concentra-

tion in some of these studies was too high for the simulations to correspond to a dilute

polymer solution (Ptasinski, et al., 2003); (v) all simulations had to introduce an ‘ad

hoc’ artificial stress diffusivity to stabilize the numerical methods, which affects the

polymer and turbulence dynamics; (vi) even with the artificial diffusivity, simulations

could not be performed for high Weissenberg numbers representative of the true MDR

regime. Weτb should be of the same order of Reτb at MDR according to the classical

theories (Lumley, 1969, 1973; de Gennes, 1986), while in most of simulations to date is

Weτb < Reτb/2; (vii) some of the simulations (Ptasinski, et al., 2003; Li, Sureshkumar

& Khomami, 2006) could not fully capture the trends in the streamwise turbulence

intensity at HDR observed in experiments; (viii) the MDR results reported in some

of the studies (Min, Yoo & Choi, 2003) correspond to a transient state, not to true

MDR at steady-state.

1.4 Theoretical studies

Two principal theories have been proposed to explain the phenomenon of polymer

drag reduction. One is the so-called time-criteria or elongational viscosity theory

suggested by Lumley (1969, 1973); the other is the elastic theory suggested by de

Gennes (1986).

1.4.1 Elongational viscosity theory (Lumley, 1969, 1973)

In the elongational viscosity theory of Lumley (1969, 1973), drag reduction is

attributed to the additional dissipation introduced by the enhanced elongational vis-
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cosity of the polymer. This elongational viscosity is assumed to act only on turbulent

eddies whose time-scale is shorter than the polymer relaxation time, λ. Onset of drag

reduction is assumed to occur when there exists a turbulent scale whose character-

istic time-scale matches the polymer relaxation time, λ. In wall-bounded flows, this

translates to the onset criterion λ ∼ O(ν/u2
τ) or

Weτ |onset ≡
λu2

τ

ν
∼ O(1). (1.5)

The proposed onset criterion is, therefore, independent of polymer concentration.

Saturation is assumed to occur when the wavenumber corresponding to the peak of

the dissipation spectrum defined using the effective viscosity coincides with the largest

turbulent eddies having a time-scale λ. In wall-bounded flows, the largest turbulent

eddies having a time-scale λ would have kz ∼ 1 and (k2ε)−1/3 ∼ λ, where z denotes

the wall-normal coordinate and it has been assumed that the Reynolds number is

large so an inertial spectra can be assumed that the peak of the dissipation spectrum

occurs at k/kd,eff ≃ 0.2, where kd,eff = (ε/v3eff)
1/4, ε ≈ u3

τ/z is the dissipation rate,

and veff is the effective viscosity introduced by the polymer. Equating the above

three equations, gives the saturation value of the effective viscosity in wall-bounded

flows as

νeff,sat ∼ (0.2)4/3λu2
τ ∼ (0.1)λu2

τ . (1.6)

In his original derivation (Lumley, 1973) gave the condition as νeff,sat ∼ O(λu2
τ).

Maximum drag reduction is assumed to be achieved when the edge of the viscous

sublayer defined based on the saturation value of the effective viscosity, namely
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zuτ/νeff,sat ≈ 10, extends all the way to the core of the pipe or channel or the

outer edge of the boundary layer. Thus MDR occurs when δuτ/(0.1λu
2
τ) ≈ 10, or

δ ∼ O(λuτ) or Weτ ∼ O(Reτ ), where Reτ ≡ uτδ/ν.

1.4.2 Elastic theory (de Gennes, 1986)

In the elastic theory of de Gennes (1986), it is assumed that the turbulence dy-

namics is affected in a turbulent eddy when the eddy has a characteristic time shorter

than λ and it has redirected “all” its turbulence kinetic energy into the elastic energy

of the polymer. Onset of drag reduction in wall-bounded flows is assumed to occur

when the largest such affected scale equals the Kolmogorov scale just outside the

viscous sublayer. It was shown by Sreenivasan & White (2000) that this condition

corresponds to the onset criterion

npkBT

ρu2
τ

|onset = (z+)(
15n
8

− 1
2
)We

− 15n
4

τ for z+ ≈ 10, (1.7)

where kB is the Boltzmann’s constant, T is the absolute temperature, z+ ≈ 10 denotes

the wall-normal coordinate at the outer edge of the viscous sublayer, and 0 < n 6 2

denotes the dimensionality of the polymer stretching (de Gennes, 1986). The onset

criteria is thus found to be a function of both the Weissenberg number and polymer

number density (or concentration). Sreenivasan & White (2000) found n = 2/3 by

fitting the experimental data (Patterson & Abernathy, 1970; Berman, 1977; Nadolink,

1987), which gives agreement with equation (1.2). Saturation is assumed to occur

when the unstretched polymer coils begin to overlap, or when npR
3
G ∼ 1. Using the

relation between RG and the Zimm relaxation time of the polymer 1
λZ

≈ kBT
µsR3

G
(Flory,
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1971), de Gennes’s saturation criterion in wall-bounded flows can be expressed as

npkBT

ρu2
τ

|sat ≈ βWe−1
τ ≈ We−1

τ . (1.8)

de Gennes does not specifically comment on the conditions for achieving MDR, but

mentions in passing that when the time criterion of Lumley is satisfied by the largest

turbulent eddies, further addition of the polymer becomes less effective (de Gennes,

1986). This corresponds to δ ≈ (ε3λ)1/2. With ε ≈ u3
τ/z and z = δ, this gives the

MDR criterion in wall-bounded flows as δ ∼ O(λuτ) or Weτ ∼ O(Reτ), which is the

same as that in Lumley’s theory (Lumley, 1969, 1973).

1.4.3 Comparison of the two theories to experimental and DNS data

From the perspective of turbulence dynamics, both Lumley’s mechanism and de

Gennes’s mechanism represent a drain of turbulence kinetic energy at the affected

scales. The main difference between the two theories is the range of affective scales

and the fate of the energy which has been redirected into the polymer. Lumley’s the-

ory predicts a shift of the peak of dissipation spectrum due to the enhanced dissipation

introduced through the polymer, while de Gennes’s theory predicts a truncation of

the turbulent energy cascade for all turbulent eddies which have redirected all their

turbulence kinetic energy into the elastic energy of the polymer. The energy spec-

tra observed in viscoelastic flow in experiments (Wei & Willmarth, 1992; Warholic,

Massah & Hanratty, 1999) and DNS (de Angelis, et al., 2003, 2005; Housiadas &

Beris, 2003; Dubief, et al., 2005) show evidence of enhanced dissipation compared to

Newtonian due to the enhanced elongational viscosity as suggested in Lumley’s the-



24

ory, but none of these show the truncation of the cascade which has been proposed

by de Gennes. Furthermore, de Genne’s theory gives predictions for the criteria for

onset and saturation which are orders of magnitude off from observations in both

experiments and DNS. However, there are several features which are not explained

by either theory. Specifically, the amount of energy redirected from turbulence to

the polymer has been found to be minuscule in all numerical studies. Neither theory

provides an explanation of how these energetically insignificant exchange can result

in the dramatic skin-friction drag reductions which have been observed with poly-

mers. Furthermore, both experiments and DNS show a highly anisotropic state of

turbulence near the buffer layer (Walker & Tiederman, 1990; Gampert & Yong, 1990;

Gyr & Bewersdorff, 1990) and also in the viscous sublayer (Frohnapfel, et al., 2007)

in drag reduced flow. However, neither theory can explain how this anisotropic state

is established through either elongational viscosity or elastic energy of the polymer.

1.5 The structural view

An alternative approach to investigating the mechanism of polymer drag reduction

is a structural view. Investigation of the effect of the polymer on the near-wall

coherent structures have shown that these structures become weaker, more sparse

and larger in size compared to Newtonian flow (Oldaker & Tiederman, 1977; Baron

& Sibilla, 1998; de Angelis, Casciola, & Piva, 2002; White, Somandepalli & Mungal,

2004; Stone, et al., 2004; Kim, et al., 2007; Li & Graham, 2007). These changes have

been attributed to polymer generated body forces (de Angelis, Casciola, & Piva, 2002;

Stone, et al., 2004; Dubief, et al., 2005) or torques (Kim, et al., 2007) which oppose
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the motions of the vortical structures. Some investigators claim that this reduction

in vortex strength results in the suppression of the autogeneration of new vortices

(Kim, et al., 2008), while other investigators claim that it suppresses the pressure-

strain correlation in the turbulence kinetic energy budget (Stone, et al., 2004; Li &

Graham, 2007) due the attenuated pressure fluctuation in the middle of vortices.

Neither of these theories has resulted in a comprehensive picture of polymer drag

reduction.

1.6 Objectives of the present study

The objectives of the present study are to: (i) Develop the required numerical

methods for accurate and efficient Direct Numerical Simulation (DNS) of drag re-

duction by dilute polymer solutions in wall-bounded flows. (ii) Perform DNS of drag

reduction by homogeneous, dilute polymer solutions in turbulent channel flow, and

validate the DNS results through ‘quantitative’ comparisons with available experi-

mental data. (iii) Use the DNS results to investigate the scaling of drag reduction

with polymer and flow parameters, such that the ‘optimal’ polymer parameters for

drag reduction in a given turbulent flow can be determined a priori. (iv) Use the

DNS results to clarify the detailed mechanism of drag reduction by dilute polymer

solutions. The ultimate goal of the studies is to use the knowledge gained from the

mechanism of polymer drag reduction to devise strategies for skin-friction drag re-

duction in wall-bounded flows based on agents other than polymer additives. The

organization of the dissertation is as follows. In chapter II, the governing equations

and the numerical methods are reviewed. The results from DNS are presented in
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chapter III. The scaling of drag reduction with polymer and flow parameters is pre-

sented in chapter IV. The mechanism of drag reduction is discussed in chapter V.

Summary and conclusions are provided in chapter VI.



Chapter II

Governing Equations and Numerical Methods

2.1 Governing equations

The equations governing the conservation of mass and momentum for isother-

mal, incompressible flow of a dilute polymer solution, expressed in dimensionless and

rotation form, are given by

∂v

∂t
= v × ω −∇Π+

1

Re
∇2v +∇ · τp, (2.1)

∇ · v = 0, (2.2)

where v is the velocity, ω = ∇×v is the vorticity, Π = p+ 1
2
|v|2 is the pressure head,

τp is the polymer stress, Re = UoL/νs is the Reynolds number, and all quantities

have been non-dimensionalized with respect to a velocity scale Uo, a length scale L,

and the density ρ.

The presence of the polymer introduces an additional body force ∇· τp in the mo-

mentum equations. For the system of equations (2.1)-(2.2) to be closed, the polymer

stress τp needs to be computed. In the present study, the polymer dynamics is repre-

sented using the FENE-P dumbbell closure approximation (Bird, et al., 1987). In this

model, the dilute polymer solution is represented as a suspension of non-interacting

and free-draining dumbbells convected in a Newtonian solvent. Each dumbbell con-

27
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sists of two identical Brownian beads connected by a spring, and its configuration is

described by the length and orientation of the vector Q connecting the two beads. In

the FENE-P dumbbell model of the polymer, the evolution equation for the polymer

conformation tensor is given by (Bird, et al., 1987)

DA

Dt
= (∇v)T ·A+A · (∇v)− 1

We

(

A

1− Tr(A)/b
− I

)

. (2.3)

Here A = 〈QQ〉s denotes the conformation tensor non-dimensionalized with respect

to kBT/H , where H is the spring constant of the dumbbell, b = Q2
o/(kBT/H) is

the dumbbell extensibility parameter, Qo is the maximum extension of the spring,

We = λUo/L is the Weissenberg number, λ = ζ
4H

is the relaxation time of the

dumbbell, ζ is the drag coefficient on each bead, I is an identity matrix, and the

brackets 〈·〉s denote an average over the configuration space of the dumbbell. Once A

is known, the polymer stress can be found using Kramers’s expression (Bird, et al.,

1987) as

τp =
npkBT

ρU2
o

(

A

1− Tr(A)/b
− I

)

, (2.4)

where np is the polymer number density, and the polymer stress has been non-

dimensionalized with respect to ρU2
o to be consistent with the non-dimensionalization

used in equations (2.1)-(2.2). Also of interest is the polymer root-mean-square end-

to-end extension which when non-dimensionalized with respect to the maximum ex-

tension of the spring is given by

ξ =

√

Tr(A)

b
. (2.5)
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2.2 Numerical methods

Equations (2.1)-(2.4) are solved using a novel mixed Eulerian-Lagrangian scheme.

In this scheme the mass and momentum conservation equations (2.1)-(2.2) are solved

in an Eulerian representation using standard pseudo-spectral methods (Canuto, et al.,

1988), while the polymer dynamics equations (2.3)-(2.4) are solved in a Lagrangian

framework using the Backward-tracking Lagrangian Particle Method (BLPM) sug-

gested by Wapperom, Keunings & Legat (2000).

2.2.1 Hydrodynamics

We consider the solution of the system of equations (2.1)-(2.2) in a channel, as-

sumed to be homogeneous in the streamwise (x) and spanwise (y) directions. A

schematic of the channel and the coordinate system is shown in figure 2.1. To pro-

ceed with the solution, all flow variables are expanded in terms of discrete Fourier

series in the homogeneous directions and Chebyshev polynomials in the wall-normal

direction as,

v(x, t) =
N
∑

n=−N

M
∑

m=−M

P
∑

p=0

v̂nmp(t)e
iαnxeiβmyTp(z). (2.6)

Time advancement is performed using a two-step (Green’s function) splitting

method (Canuto, et al., 1988). In the first fractional step, the nonlinear terms are

advanced in time using a second-order Adams-Bashforth scheme and the polymer

body-force terms using a second-order Adams-Moulton (Crank-Nicolson) scheme as,

v∗(n+1) − v(n)

∆t
= [

3

2
(v × ω)(n) − 1

2
(v × ω)(n−1)] +

∇ · τ (n+1)
p +∇ · τ (n)p

2
. (2.7)
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In the second fractional step, the pressure and viscous terms are incorporated into

the solution using a second-order Adams-Moulton (Crank-Nicolson) scheme, subject

to the condition of incompressibility and the boundary conditions at the walls

v(n+1) − v∗(n+1)

∆t
= −∇Π(n+1) +

1

Re
∇2(

v(n+1) + v(n)

2
), (2.8)

∇ · v(n+1) = 0, (2.9)

v(n+1) = vw at the boundaries. (2.10)

Equations (2.8) and (2.9) are combined into a single fourth-order equation for the

wall-normal component of velocity (w), which is solved using the analytic Green’s

functions method suggested by Domaradzki (1990). Once w is known, the other

components of velocity are found from the remaining equations.

2.2.2 Polymer dynamics

Solution of (2.7) requires knowledge of the polymer stress, τp. The polymer dynam-

ics is computed using the Backward-tracking Lagrangian Particle Method (BLPM)

suggested by Wapperom, Keunings & Legat (2000). In this scheme, the polymer dy-

namics is obtained by time integration of the constitutive equations (2.3)-(2.4) along

Lagrangian trajectories of discrete particles that are convected by the flow. The loca-

tions of the particles at the conclusion of each time step are specified to be the fixed

Eulerian grid points, rG, as shown in figure 2.2. The trajectories leading to these

locations are calculated by tracking backwards in time using

r
(n)
P = rG −

∫ tn+1

tn

v(r, tn) dt, (2.11)
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Figure 2.2: The backward tracking of particles: ◦, particle positions, r(n)P , at tn; •, particle
positions, rG, at tn+1.
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where r
(n)
P denotes the starting location of the particle at time tn, and the integral is

evaluated using a second-order Runge-Kutta scheme.

Thus with BLPM, the solution of the FENE-P dumbbell equation (2.3) reduces

to time integration of the equation

dA

dt
= (∇v)T ·A+A · (∇v)− 1

We

(

A

1− Tr(A)/b
− I

)

(2.12)

along particle trajectories from (r
(n)
P , tn) to (rG, tn+1). Integration of (2.12) requires

initial conditions specifying the configuration tensor A(r
(n)
P , tn) and the velocity gra-

dient tensor ∇v(r
(n)
P , tn) at r

(n)
P at each time step. These are obtained by polynomial

interpolation from the corresponding values, A(rG, tn) and∇v(rG, tn), at the Eulerian

grid points at time tn.

As noted by Wapperom, Keunings & Legat (2000), the interpolation process for

obtaining A(r
(n)
P , tn) has to be handled with care. Given an Eulerian field which sat-

isfies Tr{A(rG, tn)} < b and Aii(rG, tn) > 0, where Aii denote the diagonal elements

of A, the interpolation process must ensure that

Aii(r
(n)
P , tn) > 0 (2.13)

and

Tr{A(r
(n)
P , tn)} < b. (2.14)

Two obvious choices are interpolation based on linear and quadratic schemes. Linear

interpolation preserves the constraints (2.13) and (2.14). However, it introduces an

artificial stress diffusivity of magnitude χi(ui, λ) in the ith direction. In the simula-

tions of turbulent channel flow reported in this study, χi is negligible in the spanwise
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and wall-normal directions where only fluctuating velocities are present. However,

in the streamwise direction, χ1 at the center of the channel with high Weissenberg

number reaches a value similar to that in the conventional Eulerian schemes, which

is typically implemented with an artificial stress diffusivity of χi/νs ∼ 2 or higher in

all three directions (Sureshkumar, Beris & Handler, 1997) across the channel. There-

fore, the linear interpolation scheme imposes a smaller artificial diffusivity throughout

most for the cross-section of the channel. But towards the center of the channel, its

artificial stress diffusivity becomes comparable to that in Eulerian schemes at higher

Weissenberg numbers. The quadratic interpolation scheme does not introduce any

artificial stress diffusivity, but it can violate the constraint (2.13). In practice, we find

if the quadratic interpolation is performed using the three points comprised of the two

nearest neighboring grid points and the choice of the third neighboring point which

gives the lower curvature in the polynomial interpolation, the constraint (2.13) is sat-

isfied at more than 99.8% of the grid points in the domain. At the remaining 0.2% of

the points, the quadratic interpolation is replaced with linear interpolation. We have

never observed a violation of the constraint (2.14) during the interpolation process

with either the linear or quadratic scheme. The velocity gradient tensor ∇v(r
(n)
P , tn)

is interpolated using the same interpolation scheme as that used for A.

Once A(r
(n)
P , tn) and ∇v(r

(n)
P , tn) are known, the polymer equations (2.12) are

integrated in time using a second-order Runge-Kutta scheme for one time-step, from

(r
(n)
P , tn) to (rG, tn+1) to obtain A(rG, tn+1). Once A(rG, tn+1) is known, the polymer

stress τ
(n+1)
p = τp(rG, tn+1) is evaluated using (2.4) and the result is supplied to the

hydrodynamics equations (2.7).
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2.2.3 Implementation on parallel computers

The numerical methods described above are amenable to efficient parallel im-

plementation on Multiple Instruction and Multiple Data (MIMD) architectures. In

parallelizing the code, one can take advantage of the fact that the solution of equa-

tions (2.7)-(2.12) involves one of only two classes of operations: (i) operations which

are point-wise in the Fourier space, and (ii) operations which are point-wise in the

physical space. The first category includes solution the Poisson operators which re-

sult from equations (2.8-2.9), as well as all the derivative operations in the Fourier (x

or y) directions needed to compute the vorticity ω, the velocity gradient tensor ∇v,

or the polymer body force term ∇ · τp. These operations can be performed locally

without communication if they are implemented in the Fourier space with the data

distributed among different processors such that each processor contains an assigned

number of x-planes or y-planes of data, as shown in figure 2.3. Load balance can be

achieved by assigning an equal number of planes of data to each processor. The sec-

ond class of operations includes computation of all the nonlinear terms in equations

(2.7) and (2.12), integration of the above equations in time (assuming ω, ∇v, ∇ · τp

and the initial conditions for eqn.2.12 are given), and evaluation of the polymer stress

using equation (2.4). These operations can be performed in the physical-space with

no communication as long as all the data pertaining to a given physical location is

local to each processor. As with the previous case, load balance can be achieved by

assigning an equal number of planes of data to each processor. Solving the governing

equations in this manner, however, requires that the data be transformed back and
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Figure 2.3: The parallelization scheme used in the simulations. The data is distributed
among processors in sets of planes along y-direction in the physical-space and
in sets of planes along the x-direction in the spectral-space.
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forth between the physical-space and the spectral-space. This can be achieved using

multi-dimensional FFTs. Using partial summation, these multi-dimensional FFTs

can be broken down into a series of one-dimensional FFTs. If the data is distributed

such that each processor contains an equal number of y-planes of data in the physical-

space, as shown in figure 2.3, the one-dimensional FFTs in the x and z directions can

be performed locally without communication. However, for the remaining (y) direc-

tion, the data is distributed among different processors. To evaluate the FFT in this

direction, one can either: (i) evaluate the FFT using a parallel FFT algorithm, or

(ii) rearrange the data among different processors, as shown in figure 2.3, such each

processor now contains an equal number of x-planes of data and the FFT in the y-

direction can be performed locally. Both approaches involve approximately the same

number of operations. However, method (ii) requires less communication and allows

the use of highly optimized assembly-coded one-dimensional FFT routines. For these

reasons, we have adopted the latter approach in our simulations. The rearrange-

ment of data is performed using the transpose algorithm described in Mangiavacchi

& Akhavan (1993).

The only other operation which requires communication is the interpolation pro-

cedure needed to evaluate the velocity gradient tensor ∇v(r
(n)
P , tn), and the polymer

configuration tensor A(r
(n)
P , tn) at the particle locations at each time step. Since the

interpolation is performed in the physical-space, the data is distributed as shown in

figure 2.3. With this configuration, the data required for all the interpolations is

local to each processor in the x and z directions. However, in the y-direction, each

processor J needs access to information from the (J − 1)NY/P and (J ·NY/P + 1)
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or the (J − 1)NY/P − 1, (J − 1)NY/P , (J ·NY/P +1) and (J ·NY/P +2) y-planes

of data, which reside on its two or four neighboring sub-domains. To provide access

to this data, before performing the interpolation, each sub-domain passes the infor-

mation from its one or two highest and lowest y-planes to the respective neighboring

sub-domains. This data is stored as ghost points in the neighboring sub-domains,

and used to perform the interpolations.

The above parallelization scheme results in good overall parallel performance on

medium-grained, distributed-memory, parallel architectures. The only limitation of

the scheme is that the maximum number of processors which can be used in a problem

of size NX ×NY ×NZ is the smaller of NX/2 or NY (the factor 2 in NX/2 arises

from the real to complex FFTs which we use in our codes) (Canuto, et al., 1988) .

In practice, however, this is not a major limitation, as the best parallel performance

is generally obtained when the number of processors is smaller than the limit set by

NX/2 or NY .

This is shown in figure 2.4, where we plot the speedup realized in DNS of Newto-

nian flow with 128×128×129 and 256×256×257 mesh resolutions, and viscoelastic

flow with 128 × 128 × 129 and 512 × 256 × 129 mesh resolutions as the number of

processors is increased from 1 to 128 processors on the Big Red Cluster at Indiana

University. It can be seen that the performance remains close to the ideal (linear)

up to 64 processors, but significantly degrades at 128 processors. The degradation of

performance at 128 processors reflects the enhanced communication to computation

ratio as the number of processors is increased. In general, for DNS of viscoelastic

flows performed with constitutive closures, we use the largest number of processors
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Figure 2.4: (a) The time per iteration and (b) speedup in DNS of turbulent channel flow
performed on IBM e1350 (Big Red) with the number of processors increased
from 1 to 128 . △, Newtonian flow with 128×128×129 resolution; ◦, Newtonian
flow with 256× 256× 257 resolution; N, viscoelastic flow with 128× 128× 129
resolution; �, viscoelastic flow with 512 × 256 × 129 resolution; ——, ideal
linear speedup.
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for which linear speedup can be still achieved. This translates to 64 processors in our

simulations.

2.3 Simulation parameters

The choice of flow conditions and polymer parameters employed in the present

study were guided by one of the experimental data points of Virk (1975). The ex-

periments were performed in a pipe of diameter d = 4.57mm at a bulk Reynolds

number of Rebulk = UbulkR/νs = 3, 500, corresponding to a friction Reynolds number

of Reτb = uτbR/νs ≈ 230, where R denotes the pipe radius, and Ubulk denotes the bulk

velocity. The working polymer in the experiments was polyethylene oxide (PEO) of

average molecular weight 5.2 × 106, heterogeneity index (molecular weight distribu-

tion) of H = 3.5, and concentration of c = 30 wppm, corresponding to a polymer

number density of npkBT/(ρu
2
τb
) ≈ 1×10−3. A drag reduction of ∼ 60% was observed

by Virk (1975) in this flow, which corresponds to maximum drag reduction at this

Reynolds number.

Because the precise molecular weight distribution in the poly-disperse sample of

PEO in Virk’s experiments was unknown, in our DNS studies we consider a mono-

disperse sample of PEO of molecular weight 5.2 × 106. The dumbbell extensibility

parameter, b, for this mono-disperse PEO sample was estimated from the relation

b(N − 1) = 3Nk = 3
ñ2l2 sin2[tan−1(

√
2)]

6R2
G

, (2.15)

where N denotes the number of beads in the chain (N = 2 for a dumbbell), Nk is

the number of Kuhn steps, ñ is the number of backbone bonds comprising the chain,
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and l is the average backbone bond length (Larson, 1999). The radius of gyration

was estimated from the relation (Flory, 1971)

RG =

[ HMw[η]

31× 1023

]1/3

(cm), (2.16)

where Mw is the average molecular weight and [η] is the intrinsic viscosity. The

intrinsic viscosity [η], in turn, was estimated from the correlation

[η] = KMa
w, (2.17)

where K = 0.00875cm3/g and a = 0.79 for PEO (Virk, 1975). Based on these

results, the extensibility parameter for a mono-disperse sample (H = 1) of PEO of

Mw = 5.2× 106 was estimated to be b ≈ 43, 000.

The relaxation time of a FENE-P dumbbell corresponding to this mono-disperse

sample of PEO was estimated based on Rouse theory (Bird, et al., 1987) as

λH ≈ [η]Mwµs

NAkBT
, (2.18)

where NA is Avogadro’s number. Using (2.18) and (2.17), the relaxation time for a

mono-disperse sample of PEO of Mw = 5.2× 106 was estimated to be λH ≈ 3× 10−3,

which corresponds to a Weτb = λHu
2
τb
/νs ≈ 34 in Virk’s experiments.

Based on these data, the baseline polymer parameters for the simulations were

chosen as b = 45, 000, npkBT/(ρu
2
τb
) ≈ 1×10−3 andWeτb ≡ λu2

τb
/νs ≈ 35. With these

as the baseline parameters, we consider the effect of variation of individual polymer

parameters on drag reduction by (i) keeping the polymer extensibility parameter fixed

at b = 45, 000 and varying the polymer number density over the range 1 × 10−7 .
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Case Weτb b npkBT

ρu2
τb

β tavg
∆t̃avg
h/uτ

〈Cf×103〉 DR%

N 1.00 200-400 8.4 8.03
NN 1.00 200-300 4.2 8.01
C3-l 35 45,000 1× 10−3 0.96 400-600 6.9 5.41 32.6
C3-q 35 45,000 1× 10−3 0.96 400-600 6.9 5.42 32.5
C3-e 35 45,000 1× 10−3 0.96 400-600 7.1 5.60 30.3
CC3-q 35 45,000 1× 10−3 0.96 400-600 6.9 5.38 32.8
E3-l 100 45,000 1× 10−3 0.90 850-1,500 18.2 3.52 56.2
E3-q 100 45,000 1× 10−3 0.90 850-1,500 17.9 3.40 57.7
E3-e 100 45,000 1× 10−3 0.90 1250-2,000 21.4 3.66 54.4
EE3-q 100 45,000 1× 10−3 0.90 600-1,000 11.4 3.67 54.2
F3-q 150 45,000 1× 10−3 0.86 850-1,500 13.8 2.04 74.6
FF3-q 150 45,000 1× 10−3 0.86 850-1,100 7.1 3.59 55.2

Table 2.1: Overview of the simulations performed to establish the effect of numerical
scheme and domain size. Cases N, C3, E3 and F3 preformed in channels of
size 80π

27 h × 8π
5 h × 2h; cases NN, CC3, EE3 and FF3 preformed in channels of

size 320π
27 h× 16π

5 h×2h; l denotes simulations performed using the mixed Eulerian-
Lagrangian scheme with linear interpolation; q denotes simulations performed
using the mixed Eulerian-Lagrangian scheme with quadratic interpolation; e

denotes simulations performed using the Eulerian scheme.
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Case Weτb
npkBT
ρu2

τb

β tavg
∆t̃avg
h/uτ

〈Cf×103〉 DR%

N 1.00 200-400 8.4 8.03
NN 1.00 200-300 4.2 8.01
A7-l 10 1× 10−7 0.9999989 400-600 8.4 8.03 0.0
A6-l 10 1× 10−6 0.999989 400-600 8.4 8.00 0.4
A5-l 10 1× 10−5 0.99989 400-600 8.4 7.98 0.6
A4-l 10 1× 10−4 0.9989 400-600 8.4 7.96 0.9
A3-l 10 1× 10−3 0.989 400-600 8.4 7.88 1.9
A2-l 10 1× 10−2 0.9 400-600 8.4 7.87 2.0
C9-l 35 1× 10−9 0.99999996 400-600 8.4 8.03 0.0
C8-l 35 1× 10−8 0.9999996 400-600 8.4 8.015 0.2
C7-l 35 1× 10−7 0.999996 400-600 8.4 7.98 0.6
C6-l 35 1× 10−6 0.99996 400-600 8.3 7.77 3.2
C5-l 35 1× 10−5 0.9996 400-600 7.8 6.81 15.2
C4-l 35 1× 10−4 0.996 400-600 7.1 5.64 29.8
C4.1-l 35 6× 10−4 0.98 400-600 7.0 5.46 32.0
C3-l 35 1× 10−3 0.96 400-600 6.9 5.41 32.6
C3.1-l 35 3× 10−3 0.89 400-600 7.0 5.44 32.3
C3.2-l 35 7× 10−3 0.80 400-600 7.2 5.87 26.9
C2-l 35 1× 10−2 0.72 400-600 7.4 6.12 23.8
E10-q 100 1× 10−10 0.999999989 400-600 8.4 8.03 0.0
E9-q 100 1× 10−9 0.99999989 400-600 8.4 8.015 0.2
E8-q 100 1× 10−8 0.9999989 400-600 8.4 8.00 0.4
E7-q 100 1× 10−7 0.999989 400-600 8.3 7.84 2.4
E6-q 100 1× 10−6 0.99989 400-600 7.9 7.00 12.8
E5-q 100 1× 10−5 0.9989 600-1,000 13.1 4.85 39.6
EE4-q 100 2× 10−4 0.98 600-800 5.7 3.69 53.9
EE3-q 100 1× 10−3 0.90 600-1,000 11.4 3.67 54.2
F10-q 150 1× 10−10 0.99999998 400-600 8.4 8.03 0.0
F9-q 150 1× 10−9 0.9999998 400-600 8.4 8.015 0.2
F8-q 150 1× 10−8 0.999998 400-600 8.4 7.98 0.6
F7-q 150 1× 10−7 0.99998 400-600 8.3 7.76 3.4
F6-q 150 1× 10−6 0.9998 400-600 7.6 6.58 18.1
FF5-q 150 1× 10−5 0.998 450-700 7.9 4.55 43.2
FF4-q 150 1× 10−4 0.98 550-800 7.0 3.51 56.2
FF3-q 150 1× 10−3 0.86 850-1,100 7.1 3.59 55.2

Table 2.2: Overview of the simulations performed to establish the effect of polymer concen-
tration. Cases N, Ai, Ci, Ei and Fi preformed in channels of size 80π

27 h× 8π
5 h×2h;

cases NN, EEi and FFi preformed in channels of size 320π
27 h× 16π

5 h× 2h; l de-
notes simulations performed using the mixed Eulerian-Lagrangian scheme with
linear interpolation; q denotes simulations performed using the mixed Eulerian-
Lagrangian scheme with quadratic interpolation. The polymer extensibility
parameter was set to b = 45, 000 in all the viscoelastic simulations
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Case Weτb b npkBT

ρu2
τb

β tavg
∆t̃avg
h/uτ

〈Cf×103〉 DR%

N 1.00 200-400 8.4 8.03
NN 1.00 200-300 4.2 8.01
A3-l 10 45,000 1× 10−3 0.989 400-600 8.4 7.88 1.9
B3-l 20 45,000 1× 10−3 0.98 400-600 7.7 6.60 17.8
C3-l 35 45,000 1× 10−3 0.96 400-600 6.9 5.41 32.6
DD3-q 70 45,000 1× 10−3 0.93 600-800 6.0 4.08 49.2
EE3-q 100 45,000 1× 10−3 0.90 600-1,000 11.4 3.67 54.2
FF3-q 150 45,000 1× 10−3 0.86 850-1,100 7.1 3.59 55.2

C3.3-l 35 4,500 1× 10−3 0.96 400-600 7.1 5.68 29.3
C3-l 35 45,000 1× 10−3 0.96 400-600 6.9 5.41 32.6
C3.4-l 35 450,000 1× 10−3 0.96 400-600 6.9 5.39 32.9

Table 2.3: Overview of the simulations performed to establish the effect of Weissenberg
number and extensibility parameter. Cases N and Ai, Bi and Ci preformed in
channels of size 80π

27 h × 8π
5 h × 2h; cases NN, DDi, EEi and FFi preformed in

channels of size 320π
27 h × 16π

5 h × 2h; l denotes simulations performed using the
mixed Eulerian-Lagrangian scheme with linear interpolation; q denotes simu-
lations performed using the mixed Eulerian-Lagrangian scheme with quadratic
interpolation.
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npkBT/(ρu
2
τb
) . 1 × 10−2 at Weτb ≈ 10, over the range 1 × 10−9 . npkBT/(ρu

2
τb
) .

1 × 10−2 at Weτb ≈ 35, and over the range 1 × 10−10 . npkBT/(ρu
2
τb
) . 1× 10−3 at

Weτb ≈ 100 and Weτb ≈ 150, (ii) keeping the polymer extensibility parameter fixed

at b = 45, 000 and polymer number density fixed at npkBT/(ρu
2
τb
) ≈ 1 × 10−3 and

varying the Weissenberg number over the range 10 . Weτb . 150, and (iii) keeping

the Weissenberg number fixed at Weτb ≈ 35 and the polymer number density fixed

at npkBT/(ρu
2
τb
) ≈ 1 × 10−3 and varying the polymer extensibility parameter over

the range 4, 500 ≤ b ≤ 450, 000. In reality, the polymer extensibility parameter and

relaxation time (or Weissenberg number) are not independent parameters, as they are

both linked to the polymer molecular weight. In the numerical simulations, however,

we choose to vary each parameter independently to isolate the effect of each parameter

on drag reduction. A summary of all the simulations is given in tables 2.1, 2.2 and

2.3.

The simulations were performed in a 2D channel at a base Reynolds number of

Rebulk ≡ Ubulkh/νs = 3600, corresponding to Reτb ≡ uτbh/νs ≈ 230 based on Dean’s

correlation (Dean, 1978), where h denotes the channel half height, and Ubulk is the

bulk velocity which was kept constant during the course of all simulations. Two

different channel sizes were considered; a small channel of size 80π
27

h× 8π
5
h× 2h, and

a large channel of size 320π
27

h× 16π
5
h× 2h. The simulations in the small channel were

performed with a resolution of 128× 128× 129 in the streamwise, spanwise and wall-

normal directions, respectively, while those in the large channel were performed with

a resolution of 512×256×129. All simulations were de-aliased in the streamwise and

spanwise directions using the so-called 2/3 rule (Canuto, et al., 1988).
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All computations were performed at constant flow rate and were started at t = 0

from Newtonian laminar flow, on which a combination of two and three-dimensional

least-stable eigen-modes of the Orr-Sommerfeld equation were superimposed. This

flow goes through transition between 50 < t < 100 and equilibrates to a fully-

developed turbulent state by t ≈ 200, where t denotes the time non-dimensionalized

with respect to Uo and h, where Uo = 3/2Ubulk is the centerline velocity in the initial

Newtonian laminar channel flow. The polymer was introduced in the fully-developed

turbulent flow in its equilibrium state (A = b
b+3

I) at t = 200, and the simulations

were continued until the viscoelastic flow had reached a new fully-developed state.

All flow statistics were computed based on spatial averaging in the homogeneous di-

rections and time-averaging over 7 to 21 large-eddy turnover times (∆t̃avg
h/uτ

, where t̃

denotes the dimensional time) in the fully-developed state of the viscoelastic flow, as

summarized in tables 2.1, 2.2 and 2.3.

2.4 Verification of the numerical methods

2.4.1 Convergence studies

To investigate the convergence of the mixed Eulerian-Lagrangian scheme, we com-

pare the results obtained with quadratic interpolation scheme in turbulent channel

flow at three different mesh resolutions at Weτb ≈ 35, npkBT/(ρu
2
τb
) ≈ 1 × 10−3

and b = 45, 000. Simulations were performed with mesh resolutions of 64× 64 × 65,

128× 128× 129, and 256× 256× 257 in 80π
27

h× 8π
5
h× 2h channel.

Figure 2.5 shows the evolution of the skin friction coefficient, Cf = τw/(0.5ρU
2
bulk),

after the introduction of the polymer, along with turbulence and polymer statistics
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Figure 2.5: Effect of mesh size at Weτb ≈ 35, npkBT/(ρu
2
τb
) ≈ 1 × 10−3, b = 45, 000 on

(a) time evolution of the skin friction coefficient; (b) mean velocity profiles; (c)
r.m.s. of velocity fluctuations; (d) Reynolds (〈τR,xz〉+) and polymer (〈τp,xz〉+)
shear stresses. · · · · ·, Newtonian (case N); – · –, 64 × 64 × 65 resolution in
80π
27 h× 8π

5 h× 2h channel; – – –, 128× 128× 129 resolution in 80π
27 h× 8π

5 h× 2h
channel; ——, 256× 256 × 257 resolution in 80π

27 h× 8π
5 h× 2h channel.
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obtained at viscoelastic steady-state with various mesh resolutions. Here and through-

out this manuscript, the + superscript denotes normalization of the variables using the

wall-friction velocity, uτ , and the wall shear viscosity, νw = 〈 τw
ρ(dU/dz)w

〉, of the polymer

solution (Ptasinski, et al., 2003), and 〈·〉 denotes an ensemble-average over the homo-

geneous flow directions and time. The value of the wall shear viscosity, νw, was found

to be within 1.5% of the zero-shear viscosity, νo, in all the simulations performed in

this study. The average skin friction coefficients obtained with both 128× 128× 129

and 256× 256× 257 mesh resolutions are 〈Cf〉 = 5.42× 10−3 (32.5%DR), while that

obtained with the 64× 64× 65 mesh resolution was 〈Cf〉 = 5.77× 10−3 (28.1%DR).

The flow statistics, including the mean velocity profile (figure 2.5b), turbulence inten-

sities (figure 2.5c), and Reynolds and polymer shear stresses (figure 2.5d), are nearly

identical with both 128× 128× 129 and 256× 256× 257 mesh resolutions. However

the results with the 64× 64× 65 mesh resolution are somewhat off. All these results

confirm the convergence of the scheme with mesh refinement with 128 × 128 × 129

and 256×256×257 mesh resolutions. In contrast, the results indicate the inadequacy

of the 64× 64× 65 mesh resolutions for the present study.

We next compare the results obtained with two different time-step size of ∆t̃ =

0.1∆x/Uo and ∆t̃ = 0.05∆x/Uo to investigate the convergence with time-step size

refinement. Figure 2.6 shows a comparison of the results obtained with these two

time-step size in the 80π
27

h× 8π
5
h×2h channel with 128×128×129 mesh resolution. As

before, simulations were performed with quadratic interpolation scheme atWeτb ≈ 35,

npkBT/(ρu
2
τb
) ≈ 1×10−3 and b = 45, 000. The case with ∆t̃ = 0.1∆x/Uo corresponds

to the case with 128×128×129 mesh resolution in figure 2.5. An average skin friction
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Figure 2.6: Effect of time-step size at Weτb ≈ 35, npkBT/(ρu
2
τb
) ≈ 1×10−3, b = 45, 000 on

(a) time evolution of the skin friction coefficient; (b) mean velocity profiles; (c)
r.m.s. of velocity fluctuations; (d) Reynolds (〈τR,xz〉+) and polymer (〈τp,xz〉+)
shear stresses. · · · · ·, Newtonian (case N); – – –, ∆t∗ = 0.1∆x/Uo; ——, ∆t∗ =
0.05∆x/Uo.
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coefficient of 〈Cf〉 = 5.41×10−3 (32.6%DR) is obtained with ∆t̃ = 0.05∆x/Uo, which

is very close to the average skin friction coefficient of 〈Cf〉 = 5.42× 10−3 (32.5%DR)

with ∆t̃ = 0.1∆x/Uo. All turbulence statistics (figures 2.6b, 2.6c & 2.6d) show good

agreement in these two cases, confirming the convergence of the scheme with time-step

size refinement.

2.4.2 Effect of interpolation scheme and comparison to conventional Eu-
lerian schemes

To assess the effect of linear versus quadratic interpolation in the mixed Eulerian-

Lagrangian scheme, the predictions obtained with these schemes were compared to

each other and to those obtained with conventional Eulerian schemes (Sureshkumar,

Beris & Handler, 1997).

In conventional Eulerian scheme, the hydrodynamics is computed using the same

methods as those described in § 2.2.1, but the polymer dynamics is computed in an

Eulerian framework using

∂A

∂t
+(v ·∇)A = (∇v)T ·A+A · (∇v)− 1

We

(

A

1− Tr(A)/b
− I

)

+
χ

U0h
∇2A, (2.19)

where all variables have been non-dimensionalized as in equation (2.3) and χ denotes

an artificial stress diffusivity which needs to be introduced to keep the computa-

tions numerically stable (Sureshkumar, Beris & Handler, 1997). Equation (2.19) is

integrated in time using a fractional step method. In the first fractional step, the

non-linear terms are advanced using a second-order Adams-Bashforth scheme

A∗(n+1) −A(n)

∆t
= [

3

2
F (n) − 1

2
F (n−1)], (2.20)



51

where F = −(v · ∇)A + (∇v)T ·A+A · (∇v)− 1
We

(

A

1−Tr(A)/b
− I

)

. In the second

fractional step, the artificial stress diffusivity term is incorporated into the solution

using a second-order Adams-Moulton (Crank-Nicolson) scheme

A(n+1) −A∗(n+1)

∆t
=

χ

U0h
∇2(

A(n+1) +A(n)

2
). (2.21)

The magnitude of the artificial stress diffusivity was set to the lowest value for which

the computations remained stable, which by trial and error was found to be χ/νs = 2.

While this choice of χ ensures the stability of the simulations, the required positive-

definiteness of the polymer conformation tensor is violated in a small fraction (less

than 1.5%) of the points within the domain during the course of the simulation. The

simulations were allowed to proceed in spite of these unphysical points, because the

points occur randomly in space and time and self-correct at later times. One can,

of course, entirely eliminate these unphysical points by using a larger χ. However, a

larger χ diminishes the magnitude of drag reduction which can be predicted in the

simulation.

Comparisons of the different numerical schemes were performed at two Weis-

senberg numbers corresponding to Weτb of 35 and 100 or We = λUo/h of 3.64 and

10.40. The simulations were performed in a channel of size 80π
27

h× 8π
5
h×2h with a res-

olution of 128×128×129. The polymer extensibility parameter was set to b = 45, 000,

and the polymer number density to npkBT/(ρu
2
τb
) ≈ 1 × 10−3 in all the simulations.

A summary of the simulation parameters employed in these computations is provided

in table 2.1.

Figure 2.7 shows the predictions of different numerical schemes for the time evolu-
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Figure 2.7: Effect of numerical scheme on the predicted flow statistics at Weτb ≈ 35: (a)
time evolution of the skin friction coefficient; (b) mean velocity profiles; (c)
turbulence intensities; (d) Reynolds shear stresses and polymer stresses. · · · · ·,
Newtonian (case N); – – –, mixed Eulerian-Lagrangian scheme with linear inter-
polation (case C3-l); ——, mixed Eulerian-Lagrangian scheme with quadratic
interpolation (case C3-q); – ·· –, Eulerian scheme (case C3-e).
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tion of the skin friction coefficient, Cf , and the turbulence and polymer statistics in the

fully-developed state of the viscoelastic flow at Weτb ≈ 35. The average skin friction

coefficient predicted for the base Newtonian turbulent flow was 〈Cf〉 = 8.03 × 10−3,

which is within 1.5% of the value 7.92× 10−3 predicted by Dean’s correlation. In the

fully-developed viscoelastic turbulent flow, the mixed Eulerian-Lagrangian scheme

predicts average skin friction coefficients of 〈Cf〉 = 5.42 × 10−3 (32.5%DR) and

〈Cf〉 = 5.41× 10−3 (32.6%DR) with quadratic and linear interpolation, respectively.

The close correspondence between the 〈Cf〉 values predicted by these two schemes

indicates the negligible magnitude of the artificial stress diffusivity in the linear inter-

polation scheme at this Weissenberg number. In contrast, the Eulerian scheme pre-

dicts an average skin friction coefficient of 〈Cf〉 = 5.60× 10−3 (30.3%DR), reflecting

the higher artificial stress diffusivity in this scheme. The mixed Eulerian-Lagrangian

scheme predicts nearly identical flow statistics (figures 2.7b, 2.7c & 2.7d) with both

linear and quadratic interpolation at this Weissenberg number. In comparison, the

Eulerian scheme predicts a slightly lower mean velocity in the logarithmic layer (fig-

ure 2.7b), a slightly higher peak of the streamwise turbulence intensity (figure 2.7c),

and a slightly higher peak of Reynolds shear stress (figure 2.7d) compared to the

mixed Eulerian-Lagrangian scheme, which is consistent with the lower magnitude of

drag reduction in the Eulerian scheme. Furthermore, the Eulerian scheme predicts a

more flat distribution of τp,yy and τp,zz compared to the mixed Eulerian-Lagrangian

schemes due to its higher artificial stress diffusivity, as shown in figure 2.7(d).

Figure 2.8 shows the flow statistics predicted by the different numerical schemes

at Weτb ≈ 100. At this Weissenberg number, the mixed Eulerian-Lagrangian scheme
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Figure 2.8: Effect of numerical scheme on the predicted flow statistics at Weτb ≈ 100: (a)
time evolution of the skin friction coefficient; (b) mean velocity profiles; (c)
turbulence intensities; (d) Reynolds shear stresses and polymer stresses. · · · · ·,
Newtonian (case N); – – –, mixed Eulerian-Lagrangian scheme with linear inter-
polation (case E3-l); ——, mixed Eulerian-Lagrangian scheme with quadratic
interpolation (case E3-q); – ·· –, Eulerian scheme (case E3-e).
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predicts average skin friction coefficients of 〈Cf〉 = 3.40×10−3 (57.7%DR) and 〈Cf〉 =

3.52×10−3 (56.2%DR) with quadratic and linear interpolation, respectively, while the

Eulerian scheme predicts a 〈Cf〉 = 3.66×10−3 (54.4%DR). These results indicate that

with increasing Weissenberg number, the magnitude of the artificial stress diffusivity

introduced by the linear interpolation scheme becomes more pronounced. However,

it remains below that in simulations with traditional Eulerian schemes. The trends in

the predictions of the different numerical scheme for the mean velocity profile (figure

2.8b), the streamwise turbulence intensity (figure 2.8c) and the Reynolds shear stress

(figure 2.8d) are consistent with the magnitude of drag reduction by each numerical

scheme. For the polymer stresses (figure 2.8d), the Eulerian and linear interpolation

schemes predict a more flat distribution of the polymer stresses compared to quadratic

interpolation due to their higher artificial stress diffusivities.

Figure 2.9 shows the one-dimensional energy spectra obtained by different nu-

merical schemes at z+ = 30, where kd = 1/η = (ν3/ε)−1/4 denotes the Kolmogorov

wavenumber. The energy spectra obtained using Eulerian scheme at all Weissenberg

numbers are the highest, reflecting the lowest magnitude of drag reduction due to

its artificial stress diffusivity. The energy spectra obtained using mixed Eulerian-

Lagrangian scheme with quadratic and linear interpolation at Weτb ≈ 35 are nearly

identical. However, the energy spectra obtained using linear interpolation scheme

at Weτb ≈ 100 are slightly different in the large scales but significantly larger in

the small scales compared to those obtained using quadratic interpolation scheme,

reflecting the presence of small artificial stress diffusivity. These results show that

linear interpolation scheme can be used for Weτb . 35.
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Figure 2.9: Effect of numerical scheme on the predicted one-dimensional energy spectra at
(a-b) Weτb ≈ 35 and (c-d) Weτb ≈ 100: (a), (c) streamwise spectra at z+ ≈ 30;
(b), (d) spanwise spectra at z+ ≈ 30. (a-b) Line types same as in figure 2.7.
(c-d) Line types same as in figure 2.8.
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2.4.3 Effect of domain size

We next investigate the effect of domain size on the predicted flow statistics.

Figures 2.10, 2.11 and 2.12 show the flow statistics predicted by the mixed Eulerian-

Lagrangian scheme with quadratic interpolation in the large (320π
27

h× 16π
5
h× 2h with

a resolution of 512 × 256 × 129) and small (80π
27

h × 8π
5
h × 2h with a resolution of

128 × 128 × 129) channels at Weτb ≈ 35, 100 and 150, respectively. In Newtonian

flow (figure 2.10 & table 2.1), the large channel predicts a 〈Cf〉 = 8.01× 10−3, which

is within 0.3% of the value of 〈Cf〉 = 8.03 × 10−3 predicted in the small channel. In

viscoelastic flow at Weτb ≈ 35 (figure 2.10 & table 2.1), the large channel predicts a

〈Cf〉 = 5.38×10−3, which is within 0.7% of the value of 〈Cf〉 = 5.42×10−3 predicted

in the small channel. In viscoelastic flow at Weτb ≈ 100 (figure 2.11 & table 2.1), the

small channel predicts a 〈Cf〉 = 3.40×10−3, which is ∼ 7.5% larger than the value of

〈Cf〉 = 3.67×10−3 predicted in the large channel. At Weτb ≈ 150 (figure 2.12 & table

2.1), however, the simulations in the small channel give dramatically different results

compared to the large channel. The flow in the small channel relaminarizes, as shown

in figure 2.12, which predicts a drag reduction of 74.6%. Instead, the simulations

predict a drag reduction of 55.2%DR in the large channel, which is close to Virk’s

MDR value of 55.7%DR. The large and small channels predict nearly identical flow

statistics in Newtonian flow and at Weτb ≈ 35 (figures 2.10b, 2.10c & 2.10d), while

the flow statistics at Weτb ≈ 100 reflect the 3.5% difference in magnitude of drag

reduction between the two channels (figures 2.11b, 2.11c & 2.11d). At Weτb ≈ 150,

the mean velocity profile in the large channel begins to approach Virk’s MDR, U+ =



58

(a) (b)

t

C
f
×

10
3

200 300 400 500 600
0

5

10

15

Dean’s correl.

z+

U
+

10-1 100 101 1020

5

10

15

20

25

30

35

U+ = 2.5 ln z+ + 5

U+ = 11.7 ln z+ - 17

(c) (d)

z+

u+ i,r
m

s

10-1 100 101 1020

1

2

3

4

u+
rms

w+
rms

v+
rms

z

-<
τ R

,x
z>

+
<

τ p,
ij>

+

0 0.2 0.4 0.6 0.8 1
-1

-0.5

0

0.5

1

-<τR,xz>
+

-<τp,xz>
+

<τp,xx>
+/5

<τp,yy>
+

<τp,zz>
+

Figure 2.10: Effect of domain size on the predicted flow statistics at Weτb ≈ 35: (a)
time evolution of the skin friction coefficient; (b) mean velocity profiles; (c)
turbulence intensities; (d) Reynolds shear stresses and polymer stresses. ·····,
Newtonian in small domain (case N); ---, Newtonian in large domain (case
NN); ——, mixed Eulerian-Lagrangian scheme with quadratic interpolation
in small domain (case C3-q); —– ·—–, mixed Eulerian-Lagrangian scheme
with quadratic interpolation in large domain (case CC3-q).
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Figure 2.11: Effect of domain size on the predicted flow statistics at Weτb ≈ 100: (a)
time evolution of the skin friction coefficient; (b) mean velocity profiles; (c)
turbulence intensities; (d) Reynolds shear stresses and polymer stresses. ·····,
Newtonian in small domain (case N); ---, Newtonian in large domain (case
NN); ——, mixed Eulerian-Lagrangian scheme with quadratic interpolation
in small domain (case E3-q); —– ·—–, mixed Eulerian-Lagrangian scheme
with quadratic interpolation in large domain (case EE3-q).
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Figure 2.12: Effect of domain size on the predicted flow statistics at Weτb ≈ 150: (a)
time evolution of the skin friction coefficient; (b) mean velocity profiles; (c)
turbulence intensities; (d) Reynolds shear stresses and polymer stresses. ·····,
Newtonian in small domain (case N); ---, Newtonian in large domain (case
NN); ——, mixed Eulerian-Lagrangian scheme with quadratic interpolation
in small domain (case F3-q); —– ·—–, mixed Eulerian-Lagrangian scheme
with quadratic interpolation in large domain (case FF3-q).
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11.7 ln z+−17 (Virk et al.1970), and its second-order turbulence statistics show trends

consistent with those reported at MDR in experiments (Ptasinski, et al., 2001), as

shown in figures 2.12(b-d).

Figures 2.13 and 2.14 shows the one-dimensional energy spectra predicted using

the mixed Eulerian-Lagrangian scheme with quadratic interpolation in the large chan-

nel compared to those in the small channel at z+ = 30. The energy spectra obtained

in Newtonian flow and at Weτb ≈ 35 in both channels are nearly identical. However,

those obtained at Weτb ≈ 100 in the large scales are slightly higher in the large chan-

nel compared to those in the small channel, reflecting the smaller magnitude of drag

reduction in the large channel. The energy spectra obtained in the small channel at

Weτb ≈ 150 are significantly lower than those in the large channel, reflecting the re-

laminarization in the small channel. However, the energy spectra in the large channel

at Weτb ≈ 150 are similar to those observed at Weτb ≈ 100, reflecting the similar

amount of drag reduction at both Weissenberg numbers.

Figures 2.15 and 2.16 show the streamwise and spanwise two-point correlations of

the turbulent velocity fluctuations obtained using mixed Eulerian-Lagrangian scheme

with quadratic interpolation in the small and large channels at z+ = 30. In Newtonian

flow, the two-point correlations become uncorrelated at a separation of one-half the

domain size in both the streamwise and spanwise directions for both channel sizes,

indicating the adequacy of both domain sizes in Newtonian flow. In viscoelastic flow,

the large channel shows uncorrelated statistics in both directions at all Weissenberg

numbers, indicating the adequacy of this domain size at all Weissenberg numbers.

In the small channel, the streamwise velocity fluctuations remain correlated in the
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Figure 2.13: Effect of domain size on the predicted one-dimensional energy spectra in (a-b)
Newtonian flow and (c-d) viscoelastic flow at Weτb ≈ 35: (a), (c) streamwise
spectra at z+ ≈ 30; (b), (d) spanwise spectra at z+ ≈ 30. Line types same as
in figure 2.10.
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Figure 2.14: Effect of domain size on the predicted one-dimensional energy spectra in (a-b)
viscoelastic flow at Weτb ≈ 100 and (c-d) Weτb ≈ 150: (a), (c) streamwise
spectra at z+ ≈ 30; (b), (d) spanwise spectra at z+ ≈ 30. (a-b) Line types
same as in figure 2.11. (c-d) Line types same as in figure 2.12.
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Figure 2.16: Effect of domain size on the predicted two-point correlations in (a-b) vis-
coelastic flow at Weτb ≈ 100 and (c-d) Weτb ≈ 150: (a), (c) streamwise
correlations at z+ ≈ 30; (b), (d) spanwise correlations z+ ≈ 30. – – –, Ruu
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streamwise direction at all Weissenberg numbers. However, the other statistics show

good agreement with the large channel up to Weτb ≈ 35. At Weτb & 100, all two-

point correlations remain correlated in both the streamwise and spanwise directions.

These results show the inadequacy of the small domain size at drag reductions greater

than ∼ 35%.

2.5 Assessment of the mixed Eulerian-Lagrangian scheme

Overall, the results presented in this section demonstrate the accuracy and ef-

ficiency of mixed Eulerian-Lagrangian scheme. The main advantages of the mixed

Eulerian-Lagrangian scheme compared to traditional Eulerian schemes are (i) cost, (ii)

the ability to perform the computations with less artificial stress diffusivity, and (iii)

the ability to reach Weissenberg numbers and polymer extensibility parameters inac-

cessible to traditional Eulerian schemes. The mixed Eulerian-Lagrangian scheme with

linear and quadratic interpolation incurs a computational cost per time step which is

42% and 75% of the Eulerian scheme, respectively. In addition, computations can be

performed with twice as large a time-step size with the mixed Eulerian-Lagrangian

scheme compared to traditional Eulerian schemes. This makes the overall cost of

the computations with the mixed Eulerian-Lagrangian scheme with linear interpola-

tion 21% of that associated with Eulerian schemes, and the overall cost of the mixed

Eulerian-Lagrangian scheme with quadratic interpolation 38% of that associated with

Eulerian schemes.

In view of the results in the previous sections, simulations at Weτb & 35 were

performed using the mixed Eulerian-Lagrangian scheme with quadratic interpolation.
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However, given the close correspondence between the statistics predicted by the linear

and quadratic interpolation schemes at Weτb . 35, simulations at Weτb . 35 were

performed using the mixed Eulerian-Lagrangian scheme with linear interpolation to

take the advantage of less computational cost in the small channel. Simulations

with DR & 35% were performed in the large channel. Once again, simulations with

DR . 35% were performed in the small channel because the computational cost is

significantly less than those with the large channel, while the statistics predicted in

both channels are near identical.



Chapter III

Flow statistics

Increasing the polymer concentration and the polymer molecular weight, which

relates to the polymer relaxation time and extensibility parameter both, are the most

common method for enhancing drag reduction in experimental settings. In this chap-

ter, we present the isolated effect of concentration (or polymer number density), Weis-

senberg number (or polymer relaxation time), and polymer extensibility parameter

on the flow statistics.

3.1 Effect of polymer concentration on the flow statistics

To investigate the effect of polymer concentration on flow statistics, four sets

of direct numerical simulations were preformed: (i) at Weτb ≈ 10 for 1 × 10−7 .

npkBT/(ρu
2
τb
) . 1 × 10−2 (0.9 . β . 0.9999989), (ii) at Weτb ≈ 35 for 1 × 10−9 .

npkBT/(ρu
2
τb
) . 1×10−2 (0.72 . β . 0.99999996), (iii) at Weτb ≈ 100 for 1×10−10 .

npkBT/(ρu
2
τb
) . 1 × 10−3 (0.9 . β . 0.999999989), and (iv) at Weτb ≈ 150 for

1 × 10−10 . npkBT/(ρu
2
τb
) . 1 × 10−3 (0.86 . β . 0.99999998). The polymer

extensibility parameter was kept fixed at b = 45, 000 in all the simulations. The

full range of drag reduction from onset to saturation was reproduced at all four

Weissenberg numbers. A summary of the simulation parameters employed in these

68



69

studies is given in table 2.2.

Figures 3.1 and 3.2 show the effect of concentration on the flow and polymer

statistics at Weτb ≈ 10. Increasing the polymer number density by several orders

of magnitude from npkBT/(ρu
2
τb
) ≈ 1 × 10−7 to npkBT/(ρu

2
τb
) ≈ 1 × 10−2 results in

only a slight increase in the magnitude of drag reduction at this Weissenberg number.

The largest drag reduction of 2% is achieved at npkBT/(ρu
2
τb
) ≈ 1 × 10−2 (β ≈ 0.9),

as shown in figure 3.1(a) and table 2.2. These small changes in the drag reduction

result in minor variations in the first and second-order turbulence statistics, as shown

figures 3.1(b-d) and 3.2(a). In addition, the variations in polymer shear stresses and

polymer extensions are also observed to be insignificant as shown in figure 3.2(b).

Using the computed polymer shear stresses, an effective viscosity can be defined as

〈νeff〉 = νs +
〈τp,xz〉

ρ(dU/dz)
. (3.1)

Figures 3.2(c-d) show the predicted effective viscosity normalized by the kinematic

viscosity of the solvent, νs, and by λu2
τ , respectively. With either normalization,

the effective viscosity monotonically increases with increasing polymer concentration.

The peak of νeff occurs at z+ ≈ 30 and has a magnitude of ∼ 1.2νs or ∼ 0.13λu2
τ at

saturation. The latter value is consistent with the saturation value of νeff,sat ∼ 0.1λu2
τ

predicted by Lumley’s theory (egn.1.6).

Figures 3.3 and 3.4 show the effect of polymer concentration on flow and polymer

statistics at Weτb ≈ 35. With increasing polymer number density, the drag reduction

increases, reaching a peak magnitude of 32.6% at npkBT/(ρu
2
τb
) ≈ 1×10−3 (β ≈ 0.96).

Adding more polymer beyond this point only reduces the magnitude of drag reduction,
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Figure 3.1: Effect of polymer concentration on the predicted flow statistics at Weτb ≈ 10:
(a) time evolution of the skin friction coefficient; (b) mean velocity profiles;
(c) r.m.s. of streamwise and spanwise velocity fluctuations; (d) r.m.s. of wall-
normal velocity fluctuations. · · · · ·, Newtonian (case N); ---, β ≈ 0.999989
(case A6-l); – ·· –, β ≈ 0.99989 (case A5-l); – · –, β ≈ 0.9989 (case A4-l); – – –,
β ≈ 0.989 (case A3-l); ——, β ≈ 0.9 (case A2-l); •, experiments of Warholic,
et al.(1999) Newtonian.
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Figure 3.2: Effect of polymer concentration on the predicted flow statistics at Weτb ≈ 10:
(a) Reynolds shear stresses (〈τR,xz〉+), viscous shear stresses (〈τv〉+), and sum
of Reynolds, viscous and polymer shear stresses (〈τt〉+); (b) polymer shear
stresses (〈τp,xz〉+) and polymer extensions; (c) effective viscosities normalized
with respect to νs; (d) effective viscosities normalized with respect to λu2τ . Line
types same as in figure 3.1.
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Figure 3.3: Effect of polymer concentration on the predicted flow statistics at Weτb ≈ 35:
(a) time evolution of the skin friction coefficient; (b) mean velocity profiles;
(c) r.m.s. of streamwise and spanwise velocity fluctuations; (d) r.m.s. of wall-
normal velocity fluctuations. ·····, Newtonian (case N); ---, β ≈ 0.999996 (case
C7-l); – ·· –, β ≈ 0.9996 (case C5-l); – · –, β ≈ 0.996 (case C4-l); – – –, β ≈ 0.98
(case C4.1-l); ——, β ≈ 0.96 (case C3-l); —◦—, β ≈ 0.89 (case C3.1-l); —
△—, β ≈ 0.80 (case C3.2-l); —▽—, β ≈ 0.72 (case C2-l); •, experiments of
Warholic, et al.(1999) Newtonian; �, experiments of Warholic, et al.(1999) at
14%DR; �, experiments of Warholic, et al.(1999) at 33%DR.
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Figure 3.4: Effect of polymer concentration on the predicted flow statistics at Weτb ≈ 35:
(a) Reynolds shear stresses (〈τR,xz〉+), viscous shear stresses (〈τv〉+), and sum
of Reynolds, viscous and polymer shear stresses (〈τt〉+); (b) polymer shear
stresses (〈τp,xz〉+) and polymer extensions; (c) effective viscosities normalized
with respect to νs; (d) effective viscosities normalized with respect to λu2τ . Line
types same as in figure 3.3.
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as seen in figure 3.3(a) and table 2.2. The predicted mean velocity profiles show good

agreement with the experimental data of Warholic, Massah & Hanratty (1999) at

comparable drag reductions, as seen in figure 3.3(b). For 0.96 . β < 1, increasing the

polymer concentration results in a thickening of the buffer layer, and a contraction and

upward shift of the inertial sublayer. At higher concentrations (β < 0.96), the inertial

sublayer shifts back downwards, consistent with the lower magnitude of drag reduction

observed at these higher concentrations. The normalized turbulence intensities and

Reynolds and viscous shear stresses are shown in figures 3.3(c-d) and 3.4(a). With

increasing polymer concentration, the peaks of all three turbulence intensities and

the Reynolds shear stress shift towards the center of the channel. The peak of the

normalized streamwise turbulence intensity rapidly grows for 0.96 . β < 1, but

gradually decays at higher concentrations. The normalized spanwise and wall-normal

turbulence intensities and the Reynolds shear stress rapidly decay for 0.96 . β < 1

but show a more gradual decay at higher concentrations. In contrast, the normalized

viscous shear stress rapidly grows near the buffer layer for 0.96 . β < 1 but slowly

grows at higher concentrations. The trends observed in the turbulence intensities

and the Reynolds shear stress for 0.96 . β < 1 are consistent with the experimental

data of Warholic, Massah & Hanratty (1999), as seen in figures 3.3(c-d) and 3.4(a).

However, the magnitude of the stresses are different due to the different Reynolds

number of the experiments (Reτb ≈ 1000) compared to DNS (Reτb ≈ 230). The sum

of Reynolds, viscous and polymer shear stresses (figure 3.4a) collapses into a line at

all concentrations, indicating that all flows are at stationary steady state. Figure

3.4(b) shows the polymer shear stresses and polymer end-to-end extensions. The
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polymer shear stress monotonically grows with increasing polymer concentration for

0.96 . β < 1. At higher concentrations (β < 0.96), the main increase in the polymer

shear stress occurs within the viscous sublayer. This indicates that the solution is no

longer dilute at these higher concentrations and explains the drop in drag reduction at

these higher concentrations. The peak value of the polymer extension occurs near the

buffer layer and varies between ∼ 80% of the full extension at the lowest concentration

to ∼ 10% at the highest concentration, as shown in figure 3.4(b). The peak of νeff

occurs at z+ ≈ 50 and has a magnitude of ∼ 2νs or ∼ 0.08λu2
τ at saturation, as shown

in figures 3.4(c-d). Once again, this is consistent with Lumley’s theory as shown in

equation (eqn.1.6).

Figures 3.5-3.8 show the effect of polymer concentration at Weτb ≈ 100 and

Weτb ≈ 150, respectively, as the polymer number density is varied between 1×10−8 .

npkBT/(ρu
2
τb
) . 1×10−3 (0.86 . β . 0.999999989). The magnitude of drag reduction

rapidly increases for 0.98 . β < 1, and saturates to a plateau for 0.86 . β . 0.98,

as shown in figures 3.5(a), 3.7(a) and table 2.2. The magnitude of drag reduction

at saturation is ∼ 54%DR at Weτb ≈ 100 and ∼ 56%DR at Weτb ≈ 150. The

maximum drag reduction at Weτb ≈ 150 is comparable to the range of 57− 60%DR

predicted by Virk’s MDR asymptote at Reτb ≈ 230 for 0.9 . β . 0.98. At both Weis-

senberg numbers, the mean velocity profiles at saturation begin to approach Virk’s

asymptotic profile and the experimental data of Ptasinski, et al. (2001) at MDR, as

shown in figures 3.5(b) and 3.7(b). The normalized streamwise turbulence intensity

shows an increase in its peak magnitude up to 0.998 . β . 0.9989 (corresponding

to ∼ 40 − 43%DR), but decays at higher drag reductions, as shown in figures 3.5(c)
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Figure 3.5: Effect of polymer concentration on the predicted flow statistics at Weτb ≈ 100:
(a) time evolution of the skin friction coefficient; (b) mean velocity profiles;
(c) r.m.s. of streamwise and spanwise velocity fluctuations; (d) r.m.s. of wall-
normal velocity fluctuations. · · · · ·, Newtonian (case NN); ---, β ≈ 0.9999989
(case E8-q); – ·· –, β ≈ 0.99989 (case E6-q); – · –, β ≈ 0.9989 (case E5-q); —–
—–, β ≈ 0.98 (case EE4-q); ——, β ≈ 0.90 (case EE3-q); •, experiments of
Warholic et al.(1999) Newtonian; �, experiments of Warholic et al.(1999) at
14%DR; �, experiments of Warholic et al.(1999) at 33%DR; �, experiments of
Ptasinski et al.(2001) at 63%DR.
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Figure 3.6: Effect of polymer concentration on the predicted flow statistics at Weτb ≈ 100:
(a) Reynolds shear stresses (〈τR,xz〉+), viscous shear stresses (〈τv〉+), and sum
of Reynolds, viscous and polymer shear stresses (〈τt〉+); (b) polymer shear
stresses (〈τp,xz〉+) and polymer extensions; (c) effective viscosities normalized
with respect to νs; (d) effective viscosities normalized with respect to λu2τ . Line
types same as in figure 3.5.
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Figure 3.7: Effect of polymer concentration on the predicted flow statistics at Weτb ≈ 150:
(a) time evolution of the skin friction coefficient; (b) mean velocity profiles;
(c) r.m.s. of streamwise and spanwise velocity fluctuations; (d) r.m.s. of wall-
normal velocity fluctuations. · · · · ·, Newtonian (case NN); ---, β ≈ 0.999998
(case F8-q); – ·· –, β ≈ 0.9998 (case F6-q); —– ·—–, β ≈ 0.998 (case FF5-q);
—– —–, β ≈ 0.98 (case FF4-q); ——, β ≈ 0.86 (case FF3-q); •, experiments of
Warholic, et al.(1999) Newtonian; �, experiments of Warholic, et al.(1999) at
14%DR; �, experiments of Warholic, et al.(1999) at 38%DR; ▽, experiments
of Ptasinski, et al.(2001) at 65%DR; △, experiments of Ptasinski, et al.(2001)
at 70%DR.
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Figure 3.8: Effect of polymer concentration on the predicted flow statistics at Weτb ≈ 150:
(a) Reynolds shear stresses (〈τR,xz〉+), viscous shear stresses (〈τv〉+), and sum
of Reynolds, viscous and polymer shear stresses (〈τt〉+); (b) polymer shear
stresses (〈τp,xz〉+) and polymer extensions; (c) effective viscosities normalized
with respect to νs; (d) effective viscosities normalized with respect to λu2τ . Line
types same as in figure 3.7.
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and 3.7(c). At saturation, the peak of the normalized streamwise turbulence intensity

is found to be slightly higher than the Newtonian value at Weτb ≈ 100 and slightly

lower than the Newtonian value at Weτb ≈ 150. The spanwise and wall-normal tur-

bulence intensities and the Reynolds shear stress strongly decay for 0.98 . β < 1,

but change little for 0.86 . β . 0.98 when saturation conditions are reached, as seen

in figures 3.5(c-d), 3.6(a), 3.7(c-d) and 3.8(a). At both Weissenberg numbers, the

Reynolds shear stress is found to have a small but non-zero magnitude at saturation.

Overall, the second-order statistics observed at saturation at Weτb ≈ 100 show agree-

ment with the experimental data of Ptasinski, et al. (2001) 63%DR, while those for

Weτb ≈ 150 show agreement with the experimental data of Ptasinski, et al. (2001)

at 65 − 70%DR, which correspond to MDR conditions in their experiments. The

polymer shear stress rapidly grows from near-zero values at the lowest concentrations

to values comparable to or surpassing the Reynolds shear stress at saturation, while

the polymer extension decays from near full extension at the lowest concentrations to

25 − 35% of full extension at saturation, as shown in figures 3.6(b) and 3.8(b). The

effective viscosity, νeff , reaches peak magnitude of ∼ 3νs and ∼ (0.04 − 0.06)λu2
τ at

saturation, as shown in figures 3.6(c-d) and 3.8(c-d). The profile of νeff grows almost

linearly from 0 < z+ . 50− 100 and remains nearly flat at its peak value for higher

z+. This behavior has been used in recent studies to suggest a modeling approach

to polymer drag reduction based on a linear viscosity profile (L’vov, et al., 2004; de

Angelis, et al., 2004).

Figures 3.9, 3.10 and 3.11 show the effect of concentration on the one-dimensional

energy spectra at z+ ≈ 30 at Weτb ≈ 35, 100 and 150, respectively. At all three
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Weτb ≈ 35, z+ ≈ 30
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Figure 3.9: Effect of polymer concentration on the one-dimensional energy spectra at
Weτb ≈ 35: (a-c) streamwise spectra at z+ ≈ 30; (d-f) spanwise spectra at
z+ ≈ 30. Line types same as in figure 3.3.
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Weτb ≈ 100, z+ ≈ 30
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Figure 3.10: Effect of polymer concentration on the one-dimensional energy spectra at
Weτb ≈ 100: (a-c) streamwise spectra at z+ ≈ 30; (d-f) spanwise spectra at
z+ ≈ 30. Line types same as in figure 3.5.
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Weτb ≈ 150, z+ ≈ 30
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Figure 3.11: Effect of polymer concentration on the one-dimensional energy spectra at
Weτb ≈ 150: (a-c) streamwise spectra at z+ ≈ 30; (d-f) spanwise spectra at
z+ ≈ 30. Line types same as in figure 3.7.
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Weissenberg numbers, the presence of the polymer results in a drop in the streamwise

turbulence kinetic energy (Euu) at the small scales and an increase in the streamwise

turbulence kinetic energy at the large scales, along with by a drop in the spanwise

(Evv) and wall-normal (Eww) turbulence kinetic energies at all scales. These trends are

similar to what has been observed in experiments (Wei & Willmarth, 1992; Warholic,

Massah & Hanratty, 1999). The range of scales damped by the polymer and the

magnitude of the drop in the turbulence kinetic energy are determined by the polymer

concentration and Weissenberg number. At a fixed Weissenberg number, increasing

the polymer concentration up to the saturation concentration extends the range of

damped scales to lower wavenumbers (larger scales) and enhances the magnitude

of the drop in the turbulence kinetic energy. Beyond the saturation concentration,

the range of affected scales and the magnitude of the drop remain nearly the same.

Increasing the Weissenberg number extends the range of scales damped in the Euu

spectra to lower wavenumbers (larger scales).

Figures 3.12, 3.13 and 3.14 show the corresponding one-dimensional energy spectra

at z+ ≈ 100, respectively. At Weτb ≈ 35, the energy spectra at z+ ≈ 100 are little

changed from Newtonian flow. However, the minor variations follow the same trends

as those observed at z+ ≈ 30. In contrast, at Weτb ≈ 100 and Weτb ≈ 150 the

same trends as those observed at z+ ≈ 30 can also be observed at z+ ≈ 100. The

main difference is that the range of damped scales at z+ ≈ 100 and the magnitude

of damping is diminished compared to z+ ≈ 30, resulting in a weaker modification of

the turbulence kinetic energy away from the wall. These trends are consistent with

the behavior of turbulence intensities (figures 3.3, 3.5 & 3.7), and with experimental
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Weτb ≈ 35, z+ ≈ 100
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Figure 3.12: Effect of polymer concentration on the one-dimensional energy spectra at
Weτb ≈ 35: (a-c) streamwise spectra at z+ ≈ 100; (d-f) spanwise spectra at
z+ ≈ 100. Line types same as in figure 3.3.
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Weτb ≈ 100, z+ ≈ 100
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Figure 3.13: Effect of polymer concentration on the one-dimensional energy spectra at
Weτb ≈ 100: (a-c) streamwise spectra at z+ ≈ 100; (d-f) spanwise spectra at
z+ ≈ 100. Line types same as in figure 3.5.
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Weτb ≈ 150, z+ ≈ 100
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Figure 3.14: Effect of polymer concentration on the one-dimensional energy spectra at
Weτb ≈ 150: (a-c) streamwise spectra at z+ ≈ 100; (d-f) spanwise spectra at
z+ ≈ 100. Line types same as in figure 3.7.
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data (Wei & Willmarth, 1992; Warholic, Massah & Hanratty, 1999).

These trends in the energy spectra are consistent with the behavior of turbulence

intensities observed in figures 3.3(c-d), 3.5(c-d) and 3.7(c-d) which show pileup in

streamwise, but drop in spanwise and wall-normal components. However, they stand

at odds with the predictions of Lumley’s (1969, 1973) and de Gennes’s (1986) theories,

which describe the effect of the polymer to be an isotropic attenuation of the energy

spectra at the small scales (Lumley, 1969, 1973) or a termination of the cascade (de

Gennes, 1986). In contrast to the predictions of these theories, the spectra shown

in figures 3.9-3.14 show different behaviors for the streamwise, spanwise and wall-

normal components. Specially, the pileup of energy in the largest scales of Euu is not

explained by either theory.

3.2 Effect of Weissenberg number on the flow statistics

We next investigate the effect of polymer relaxation time on the flow statistics.

To this end, direct numerical simulations were performed for 10 . Weτb . 150 with

the polymer extensibility parameter and polymer number density fixed at b = 45, 000

and npkBT/(ρu
2
τb
) ≈ 1 × 10−3 (0.86 . β . 0.989), which correspond to saturation

conditions at each Weissenberg number. A summary of the simulation parameters

employed in these computations is provided in table 2.3.

Figures 3.15 and 3.16 show the turbulence and polymer statistics predicted in these

simulations. With increasing Weissenberg number, the magnitude of drag reduction

increases from 1.9%DR at Weτb ≈ 10 to ∼ 55%DR at Weτb ≈ 150 which is com-

parable to ∼ 56%DR predicted by Virk’s MDR at β = 0.86. For 10 . Weτb . 70,
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Figure 3.15: Effect of Weissenberg number on the predicted flow statistics at 10 . Weτb .
150 and npkBT/(ρu

2
τb
) ≈ 1 × 10−3: (a) time evolution of the skin friction

coefficient; (b) mean velocity profiles; (c) r.m.s. of streamwise and spanwise
velocity fluctuations; (d) r.m.s. of wall-normal velocity fluctuations. · · · · ·,
Newtonian (case NN); – ·· –, Weτb ≈ 10 (case A3-l); – · –, Weτb ≈ 20 (case
B3-l); – – –, Weτb ≈ 35 (case C3-l); ——, Weτb ≈ 70 (case DD3-q); —–
·—–, Weτb ≈ 100 (case EE3-q); —– ··—–, Weτb ≈ 150 (case FF3-q); •,
experiments of Warholic, et al.(1999) Newtonian; �, experiments of Warholic,
et al.(1999) at 14%DR; �, experiments of Warholic, et al.(1999) at 33%DR);
�, experiments of Ptasinski, et al.(2001) at 63%DR; ▽, experiments of Ptasin-
ski, et al.(2001) at 65%DR.
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Figure 3.16: Effect of Weissenberg number on the predicted flow statistics at 10 . Weτb .
150 and npkBT/(ρu

2
τb
) ≈ 1 × 10−3: (a) Reynolds shear stresses (〈τR,xz〉+),

viscous shear stresses (〈τv〉+), and sum of Reynolds, viscous and polymer shear
stresses (〈τt〉+); (b) polymer shear stresses (〈τp,xz〉+) and polymer extensions;
(c) effective viscosities normalized with respect to νs; (d) effective viscosities
normalized with respect to λu2τ . Line types same as in figure 3.15.
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where the drag reduction is less than 50%, increasing the Weissenberg number re-

sults in a thickening of the buffer layer and an upward shift of the inertial sublayer,

as shown in figure 3.15(b). These changes are accompanied by an increase in the

streamwise turbulence intensity, and a decay of the spanwise and wall-normal tur-

bulence intensities and the Reynolds shear stress, as shown in figures 3.15(c-d) and

3.16(a). At higher Weissenberg numbers, corresponding to drag reductions of greater

than 50%, the mean velocity profiles approach Virk’s MDR asymptote, while the

peak of the streamwise turbulence intensity decays to values comparable to the New-

tonian, and the spanwise and wall-normal turbulence intensities and the Reynolds

shear stress continue to decay, as shown in figures 3.15(b-d) and 3.16(a). The poly-

mer extension and the polymer shear stress monotonically increase with increasing

Weissenberg number, as shown in figure 3.16(b). The first and second-order turbu-

lence statistics, and polymer shear stresses predicted in DNS show agreement with

the experimental data of Warholic, Massah & Hanratty (1999) and Ptasinski, et al.

(2001) at comparable magnitudes of drag reduction. The magnitude of the effective

viscosity normalized by νs increases from near Newtonian values at Weτb ≈ 10 to a

peak magnitude of ∼ 3νs at Weτb & 100, as shown in figure 3.16(c). In contrast,

the magnitude of νeff normalized by λu2
τ decreases from ∼ 0.1(λu2

τ) at Weτb ≈ 10 to

∼ 0.04(λu2
τ) at Weτb ≈ 150, as shown in figure 3.16(d). These range of νeff values

are comparable to νeff,sat ∼ 0.1λu2
τ predicted by Lumley’s theory (eqn.1.6).

Figures 3.17 and 3.18 show the one-dimensional energy spectra predicted in these

simulations at z+ ≈ 30 and 100, respectively. In the spectra of the streamwise velocity

fluctuations, Euu, the presence of the polymer leads to a drop of the turbulence
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10 . Weτb . 150, z+ ≈ 30
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Figure 3.17: Effect of Weissenberg number on the one-dimensional energy spectra at 10 .

Weτb . 150 and npkBT/(ρu
2
τb
) ≈ 1 × 10−3: (a-c) streamwise spectra at

z+ ≈ 30; (d-f) spanwise spectra at z+ ≈ 30. Line types same as in figure
3.15.
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10 . Weτb . 150, z+ ≈ 100
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Figure 3.18: Effect of Weissenberg number on the one-dimensional energy spectra at 10 .

Weτb . 150 and npkBT/(ρu
2
τb
) ≈ 1 × 10−3: (a-c) streamwise spectra at

z+ ≈ 100; (d-f) spanwise spectra at z+ ≈ 100. Line types same as in figure
3.15.
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kinetic energy in the small scales and an enhancement of the turbulence kinetic energy

in the largest scales, while in the spectra of the spanwise and wall-normal velocity

fluctuations, Evv and Eww, all scales are damped. The degree of attenuation and the

range of affected scales is a strong function of z+ and the Weissenberg number. At

Weτb ≈ 10, the spectra are nearly identical to Newtonian flow at both z+ locations.

At Weτb ≈ 35, the spectra are affected at z+ ≈ 30, but not so much at z+ ≈ 100.

At higher Weissenberg numbers, the spectra are affected throughout the cross-section

of the channel, although the degree of attenuation and the range of affected scales

diminish as z+ becomes larger.

3.3 Effect of polymer extensibility parameter on the flow

statistics

Lastly, we investigate the effect of the polymer extensibility parameter on flow

statistics. To this end, simulations were performed at Weτb ≈ 35 and npkBT/(ρu
2
τb
) ≈

1 × 10−3 with different values of the polymer extensibility parameter of b = 4, 500,

45, 000 and 450, 000. A summary of the simulation parameters employed in these

computations is provided in table 2.3.

The results are shown in figures 3.19 and 3.20. Increasing the extensibility pa-

rameter by two order of magnitude from b = 4, 500 to 450, 000 results in only a slight

increase in the magnitude of drag reduction from ∼ 29% to ∼ 33%, as shown in figure

3.19(a) and table 2.3. These small changes in the drag reduction are also reflected as

minor variations in the first and second-order turbulence statistics, as shown figures

3.19(b-d) and 3.20(a-b). The biggest change occurs in the magnitude of the polymer
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Figure 3.19: Effect of extensibility parameter on the predicted flow statistics at Weτb ≈
35 and npkBT/(ρu

2
τb
) ≈ 1 × 10−3: (a) time evolution of the skin friction

coefficient; (b) mean velocity profiles; (c) r.m.s. of streamwise and spanwise
velocity fluctuations; (d) r.m.s. of wall-normal velocity fluctuations. · · · · ·,
Newtonian (case N); – – –, b = 4, 500 (case C3.3-l); ——, b = 45, 000 (case
C3-l); – · –, b = 450, 000 (case C3.4-l).
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Figure 3.20: Effect of extensibility parameter on the predicted flow statistics at Weτb ≈
35 and npkBT/(ρu

2
τb
) ≈ 1 × 10−3: (a) Reynolds shear stresses (〈τR,xz〉+),

viscous shear stresses (〈τv〉+), and sum of Reynolds, viscous and polymer shear
stresses (〈τt〉+); (b) polymer shear stresses (〈τp,xz〉+) and polymer extensions;
(c) effective viscosities normalized with respect to νs; (d) effective viscosities
normalized with respect to λu2τ . Line types same as in figure 3.19.
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extension, which decays from a peak value of ∼ 40% of full extension at b = 4, 500 to

a peak value of ∼ 5% of full extension at b = 450, 000, as shown in figure 3.20(b). The

effective viscosity normalized by νs or λu2
τ increases with b for 4, 500 ≤ b ≤ 45, 000,

but slightly decreases between 45, 000 ≤ b ≤ 450, 000, as shown in figures 3.20(c-d).

Overall, the effect of extensibility parameter on the flow statistics (and drag reduc-

tion) was found to be negligible in comparison to the effect of Weissenberg number

or concentration. In real life, both the polymer extensibility parameter and relax-

ation time are determined by the polymer molecular weight. The results shown in

this and the previous section demonstrate that the beneficial effects of raising the

polymer molecular weight arise from the increase in the polymer relaxation time (or

Weissenberg number) and not the extensibility parameter.

3.4 Effect of averaging time on the flow statistics at MDR

In their experimental studies, Warholic, Massah & Hanratty (1999) describe differ-

ent flow statistics than those observed by Ptasinski, et al. (2001) and our DNS studies

of figures 3.7 and 3.8 at MDR. In the MDR condition observed by Warholic, Massah

& Hanratty (1999), the mean velocity profile conformed to Virk’s ultimate profile

(eqn.1.4), but the peak of the normalized streamwise and cross-stream turbulence in-

tensities were significantly lower than Newtonian values, and the Reynolds shear stress

was near-zero. These experimental data were obtained in short channel of length 433h,

where h is the channel half height. Figure 3.21 shows that the same conditions can

be obtained from DNS at Weτb ≈ 150 and npkBT/(ρu
2
τb
) ≈ 1 × 10−3 (β ≈ 0.86) if

the statistics are obtained from 450 ≤ t ≤ 650. This averaging time corresponds to
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Figure 3.21: Effect of averaging time on the predicted flow statistics at Weτb ≈ 150 and
npkBT/(ρu

2
τb
) ≈ 1×10−3: (a) time evolution of the skin friction coefficient; (b)

mean velocity profiles; (c) r.m.s. of streamwise velocity fluctuations; (d) r.m.s.
of wall-normal velocity fluctuations; (e) Reynolds shear stresses (〈τR,xz〉+),
viscous shear stresses (〈τv〉+), and sum of Reynolds, viscous and polymer
shear stresses (〈τt〉+); (f) polymer shear stresses (〈τp,xz〉+) and polymer ex-
tensions. · · · · ·, Newtonian (case NN); —– ··—–, Weτb ≈ 150 (case FF3-q
with statistics averaged over 450 ≤ t ≤ 650); •, experiments of Warholic,
et al.(1999) Newtonian; H, experiments of Warholic, et al.(1999) at 64%DR;
N, experiments of Warholic, et al.(1999) at 69%DR.
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the travel distance of the flow in the channel between 300h ≤ t̃Ubulk ≤ 433h, which

is consistent with the position of the test section in Warholic, Massah & Hanratty

(1999) experiments (315h − 433h). Drag reduction of ∼ 70% was predicted, which

is comparable to the 69% drag reduction observed in the experiments of Warholic,

Massah & Hanratty (1999). The mean velocity profile shows reasonable agreement

with Virk’s MDR asymptote and the experimental data of Warholic, Massah & Han-

ratty (1999) as shown in figure 3.21(b). The normalized turbulence intensities show

good agreement with the experimental data of Warholic, Massah & Hanratty (1999)

(figures 3.21c & 3.21d). The magnitudes of Reynolds shear stresses in both DNS

and experiments are near-zero (figure 3.21e). However, the magnitude of polymer

shear stress in DNS is lower than that in the experimental data (figure 3.21f). This

is because the polymer shear stresses in Warholic, Massah & Hanratty (1999) exper-

iments were computed using assumption of stationary steady-state viscoelastic flow,

in which the sum of Reynolds, viscous and polymer shear stresses linearly decreases

from the wall to the center of the channel. However, the total shear stress is not lin-

ear in transient state (figure 3.21e), indicating that the magnitudes of polymer shear

stresses are overestimated in Warholic, Massah & Hanratty (1999) experiments. All

these results indicate that the length of the channel in Warholic, Massah & Hanratty

(1999) experiments is not long enough to reach the fully-developed state, and a length

of & 600h is needed to get accurate statistics at MDR in experimental settings.



Chapter IV

Scaling of Drag Reduction with Polymer and Flow

Parameters

Using the databases discussed in the previous section, we investigate the scaling of

polymer drag reduction with polymer and flow parameters, and compare our results

to the predictions of the theories of Lumley (1969, 1973) and de Gennes (1986).

4.1 Onset of drag reduction

Figure 4.1(a) shows the drag reductions obtained for the runs summarized in table

2.2 as a function of the viscosity ratio, β. For a free-draining FENE-P dumbbell, β

is related to the polymer number density, np, polymer extensibility parameter, b, and

polymer relaxation time, λ, through the relation (Bird, Dotson & Johnson, 1980)

1

β
− 1 =

npkBT

µs

λ
b

b+ 3
. (4.1)

A value of β = 1 corresponds to pure solvent, and β decreases monotonically between

0 < β < 1 for increasing polymer number density. To determine the onset condition

from the data shown in figure 4.1(a), the onset criteria is set at 0.5%DR. This value

is chosen because the %DR cannot be determined to an accuracy greater than about

0.1% in the simulations. The onset parameters corresponding to 0.5%DR in figure

100
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Figure 4.1: (a) Drag reduction as a function of the viscosity ratio, β, from DNS: —�—,
DNS at Weτb ≈ 10; —�—, DNS at Weτb ≈ 35; —H—, DNS at Weτb ≈ 100; —
N—, DNS at Weτb ≈ 150. (b) Onset conditions observed in DNS compared to
predictions of the elastic theory of de Gennes (1986): •, onset data from DNS;

---,
npkBT
ρu2

τ
|onset = (z+)(

15n
8

− 1
2
)We

− 15n
4

τ (eqn. 4.2) with n = 2/3 and z+ = 10.
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4.1(a) are summarized in table 4.1.

Figure 4.1(b) shows npkBT/(ρu
2
τ) vs. Weτ corresponding to the onset data of table

4.1. Onset of drag reduction is observed to be a function of both the Weissenberg

number and polymer concentration (or number density), as originally suggested by

de Gennes (1986). The onset criteria of de Gennes (1986) was reinterpreted for wall-

bounded flows by Sreenivasan & White (2000), who showed that in wall-bounded

flows, the onset criteria of de Gennes corresponds to

npkBT

ρu2
τ

|onset = (z+)(
15n
8

− 1
2
)We

− 15n
4

τ for z+ ≈ 10, (4.2)

where 0 < n 6 2 is the dimensionality of the polymer stretching. A value of n = 2/3

was suggested by Sreenivasan & White (2000) based on analysis of a large body of

experimental data, which suggest a scaling of npkBT/(ρu
2
τ ) ∼ We−2.5

τ .

Figure 4.1(b) shows equation (4.2) with n = 2/3 compared to DNS data. It can

be seen that while the slope of this line is comparable to the DNS data, the line

intercept is several orders of magnitude too high.

Lumely’s theory (1969, 1973) is of no help in resolving the discrepancy, as it pre-

dicts an onset criteria of Weτ ∼ O(1), independent of concentration, in disagreement

with the DNS data.
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Weτb Weτ b 1− β npkBT
ρu2

τ

10 9.95 45,000 4.5× 10−5 4.5× 10−6

35 34.82 45,000 2.8× 10−6 8.0× 10−8

100 99.50 45,000 1.4× 10−6 1.4× 10−8

150 149.25 45,000 1.3× 10−6 8.7× 10−9

Table 4.1: The onset conditions read from figure 4.1(a) at 0.5% drag reduction.
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4.2 de Gennes’s theory of polymer drag reduction revisited

To resolve the discrepancy between the DNS results and the predictions of the

theory of de Gennes (1986), in this section we revisit this theory and develop a

revised version of de Gennes’s theory.

In the original theory of de Gennes (1986), turbulence dynamics is assumed to be

affected by the polymer in turbulent eddies which (i) have a time-scale shorter than

the polymer relaxation time λ, and (ii) have redirected “all” their turbulence kinetic

energy into the elastic energy of the polymer. Let us denote by r∗ the size of an eddy

with characteristic time equal to λ, and by r∗∗ the largest turbulent eddy of size less

then r∗ which has redirected all its turbulence kinetic energy to the elastic energy of

the polymer.

4.2.1 Estimation of r∗

An expression for r∗ can be found using the relation (de Gennes, 1986),

r∗ = U(r∗)λ, (4.3)

where U(r∗) is the characteristic velocity at scale r∗ and λ is the polymer relaxation

time. The characteristic velocity U(r∗) can be defined in terms of the wavenum-

ber k∗ = 1/r∗ and the spectral energy density E(k)∗ at scale k∗ or r∗ as U(r∗) =

[k∗E(k∗)]1/2. In the original theory of de Gennes (1986), a Kolmogorov spectrum was

assumed for E(k). In this study, we use the form of the spectrum suggested by Pao
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(1965). In Pao’s spectrum E(k) is given by

E(k) = Akε
2/3k−5/3F (k/kd), (4.4)

where Ak = 1.5 is the Kolmogorov constant and F (k/kd) = exp
[

−3
2
AK(k/kd)

4/3
]

.

This gives

U(r∗) = A
1/2
k (r∗ε)1/3 {F (k∗/kd)}1/2 . (4.5)

Combining equations (4.3) and (4.5) gives

r∗ = A
1/2
k (r∗ε)1/3λ {F (k∗/kd)}1/2 . (4.6)

In wall-bounded flows, ε can be approximated as ε ≈ u3
τ/(κz), where κ is the von

Karman constant. Thus, for wall-bounded flows, r∗ is given by

r∗+ ≡ r∗uτ

νw
=

We
3
2
τ

(κz+)
1
2

A
3
4
K {F (k∗/kd)}

3
4 , (4.7)

where kd = (ν3
w/ε)

−1/4, and k∗/kd = κ1/4z+1/4/r∗+.

4.2.2 Estimation of r∗∗

In the original theory of de Gennes, the expression for r∗∗ was found by requiring

that the polymer elastic energy per unit volume due to stretching by turbulent scale

r∗∗ is equal to the turbulence kinetic energy per unit volume at scale r∗∗, or

npkBT [Ξ(r
∗∗)]5/2 = ρU2(r∗∗), (4.8)

where Ξ(r∗∗) is the polymer stretching by turbulent scale r∗∗, and U(r∗∗) is the

characteristic velocity at scale r∗∗. de Gennes (1986) assumed an expression for
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Ξ(r∗∗) given by

Ξ(r∗∗) = (r∗/r∗∗)n, (4.9)

where 0 < n 6 2 is the dimensionality of the polymer stretching, n = 2 for three-

dimensional flow and n = 1 for two-dimensional flow.

Here, we revise some of the assumptions in the original de Gennes’s theory (1986)

in view of the results observed in DNS:

1. Instead of assuming that the dynamics of turbulence is affected when “all” of

the turbulence kinetic energy at a given scale is redirected into the elastic energy

of the polymer, as assumed in the original de Gennes’s theory (1986), here we

assume that the dynamics of turbulence is affected when a minimum fraction,

AE , of the turbulence kinetic energy at a given scale has been redirected into

the polymer elastic energy.

2. In addition, in the expression for polymer stretch we include polymer stretching

due to the mean flow and turbulent scales other than r∗∗, which were ignored

in the original de Gennes’s theory (1986).

3. Furthermore, we assume a form of the energy spectrum appropriate for finite

Reynolds number instead of the Kolmogorov spectrum appropriate for infinitely

long inertial range as assumed by de Gennes (1986).

Under these new assumptions, the elastic energy in the polymer per unit volume due

to stretching by turbulent scale r∗∗ is no longer equal to npkBT [Ξ(r
∗∗)]5/2, because the

polymer is stretched by other scales and by the mean flow as well. The contribution of
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scale r∗∗ to the total elastic energy is given by Ξ(r∗∗)
〈Ξ〉

npkBT 〈Ξ〉5/2, where 〈Ξ〉 denotes

the ensemble-averaged total polymer stretch by all turbulent scales and by the mean

flow at location z+. In addition, the amount turbulence kinetic energy which has been

redirected into the polymer elastic energy is no longer ρU2(r∗∗) but AEρU
2(r∗∗). With

these assumptions, equation (4.8) is replaced with

npkBT
Ξ(r∗∗)

〈Ξ〉 〈Ξ〉5/2 = AEρU
2(r∗∗) (4.10)

or

npkBT 〈Ξ〉3/2[Ξ(r∗∗)] = AEρU
2(r∗∗). (4.11)

As with the original derivation of de Gennes (1986), we estimate Ξ(r∗∗) = (r∗/r∗∗)n,

where n is the dimensionality of the polymer stretching. Thus equation (4.11) reduces

to

npkBT 〈Ξ〉3/2
(

r∗

r∗∗

)n

= AEρU
2(r∗∗). (4.12)

The characteristic velocity U(r∗∗) is defined using Pao’s spectrum (Pao, 1965) as

U(r∗∗) = A
1/2
k (r∗∗ε)1/3 {F (k∗∗/kd)}1/2 , (4.13)

where F (k∗∗/kd) = exp
[

−3
2
AK(k

∗∗/kd)
4/3

]

, and k∗∗ = 1/r∗∗ denotes the wavenumber

corresponding to scale r∗∗. Taking the ratio of U(r∗∗) (eqn.4.13) to U(r∗) (eqn.4.5),

gives U(r∗∗) in terms of U(r∗), r∗ and r∗∗ as

U(r∗∗) = U(r∗)

(

r∗∗

r∗

)1/3{
F (k∗∗/kd)

F (k∗/kd)

}1/2

. (4.14)
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Therefore, (4.12) can be rewritten as

npkBT

ρU2(r∗)
= AE

(

r∗∗

r∗

)n+2/3
1

〈Ξ〉3/2
{

F (k∗∗/kd)

F (k∗/kd)

}

. (4.15)

Substituting U(r∗) (eqn.4.5) into equation (4.15), approximating ε ≈ u3
τ/(κz) in wall-

bounded flow, and requiring that r∗∗ ≤ r∗, gives r∗∗ in wall-bounded flow as

r∗∗+(z+) = min

{

We
( 3
2−

1
n+2/3)

τ

(κz+)
( 1
2−

1
n+2/3)

[

〈Ξ〉
3
2

AE
A

3n−4
4

K
npkBT
ρu2

τ

{F (k∗/kd)}
3n
4

F (k∗∗/kd)

]
1

n+2/3

and r∗+

}

,

(4.16)

where r∗∗+(z+) ≡ r∗∗uτ

νw
, kd = (ν3

w/ε)
−1/4 = (ν3

wκz/u
3
τ )

−1/4 = (uτ/νw)
3/4(κz)−1/4, and

k∗∗/kd = κ1/4z+1/4/r∗∗+.

4.2.3 Onset criteria based on the revised de Gennes’s theory

Onset of drag reduction occurs when r∗∗ equals the Kolmogorov scale at the

outer edge of the viscous sublayer (z+ ≈ 10) or when r∗∗(z+) = (ν3
w/ε)

1/4|z+≈10.

Substituting for r∗∗+(z+) from equation (4.16) gives the onset criteria as

〈Ξ〉3/2npkBT

ρu2
τ

|onset = AE (κz+)(
3n
4
− 1

2
)We

− 3n
2

τ A
4−3n

4
k

F (k∗∗/kd)

{F (k∗/kd)}
3n
4

at z+ ≈ 10.

(4.17)

Gives that at onset, 〈Ξ〉 is only due to the mean flow and scale r∗∗, and approximating

the polymer stretch due to the mean flow with the Hookean dumbbell assumption,

Weτ
dU+

dz+
, gives the total polymer stretch at onset as 〈Ξ〉 ∼ Weτ

dU+

dz+
+(r∗/r∗∗)n. With
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this assumption, the onset criteria can be rewritten as

npkBT

ρu2
τ

|onset =
AE (κz+)(

3n
4
− 1

2
)We

− 3n
2

τ A
4−3n

4
k

(

Weτ
dU+

dz+
+ We

3n
2

τ

(κz+)
3n
4
A

3n
4
K {F (k∗/kd)}

3n
4

)3/2

F (k∗∗/kd)

{F (k∗/kd)}
3n
4

at z+ ≈ 10. (4.18)

4.2.4 Comparison to DNS data

Figure 4.2(a) shows 〈Ξ〉3/2 npkBT

ρu2
τ

plotted as a function of Weτ for onset data of

table 4.1, where 〈Ξ〉 has been input from the DNS data. A least squares fit to the data,

shown as the solid line in figure 4.2(a), indicates that the data fits equation (4.17) with

AE ≈ 0.03 and n = 2/3. The value of AE ≈ 0.03 observed with this data indicates

that the amount of energy which needs to be redirected to the polymer to affect

the turbulence dynamics is miniscule, and nowhere near the AE = 1 assumed in the

original theory of de Gennes (1986). The dimensionality of the polymer stretching,

n = 2/3, in the DNS data is consistent with the value of n = 2/3 proposed by

Sreenivasan & White (2000) based on analysis of experimental data. Furthermore,

this value of n = 2/3 makes the onset criterion of equation (4.17) independent of the

wall-normal location.

Figure 4.2(b) shows the same onset criteria, plotted as npkBT
ρu2

τ
vs. Weτ , in com-

parison to equation (4.18) with n = 2/3 and AE ≈ 0.03. With n = 2/3, equation

(4.18) gives the onset criteria as npkBT
ρu2

τ
∝ We

− 5
2

τ . This −5/2 slope is also consistent

with the value suggested by Sreenivasan & White (2000). However, comparison of

figures 4.2(a) and 4.2(b) shows that equation (4.17) (plotted in figure 4.2a) shows

better agreement with the DNS data than equation (4.18) (plotted in figure 4.2b).
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Figure 4.2: (a) Onset of drag reduction observed in DNS compared to revised the-

ory of de Gennes: •, onset data from DNS; ——, 〈Ξ〉3/2 npkBT
ρu2

τ
|onset =

AE (κz+)(
3n
4
− 1

2
)We

− 3n
2

τ A
4−3n

4
k

F (k∗∗/kd)

{F (k∗/kd)}
3n
4

(eqn. 4.17) with AE = 0.03 and

n = 2/3. (b) Onset of drag reduction observed in DNS compared to re-

vised theory of de Gennes: •, onset data from DNS; – – –,
npkBT
ρu2

τ
|onset =

AE (κz+)(
3n
4 −

1
2 )We

−
3n
2

τ A
4−3n

4
k

(

Weτ
dU+

dz+
+

We
3n
2

τ

(κz+)
3n
4

A
3n
4

K {F (k∗/kd)}
3n
4

)3/2

F (k∗∗/kd)

{F (k∗/kd)}
3n
4

(eqn. 4.18) with AE = 0.03

and n = 2/3.
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This is because in equation (4.17) and figure 4.2(a) the exact value of 〈Ξ〉 is used,

while in equation (4.18) and figure 4.2(b) 〈Ξ〉 is estimated based on a Hookean dumb-

bell, which is not that accurate for a FENE-P dumbbell when the polymer is near

full-stretch as is the case in onset data of figures 3.3(f), 3.5(f) and 3.7(f) at onset.

4.3 Saturation of drag reduction

Figures 4.1(a) and 4.3(a) both also show the saturation of drag reduction in DNS.

At all Weissenberg numbers, saturation is observed at 1− β ≈ 2× 10−2 or β ≈ 0.98.

However, the magnitude of drag reduction at saturation is a strong function of the

Weissenberg number. At Weτb ≈ 10 and Weτb ≈ 35, only ∼ 2% DR and ∼ 32% DR,

respectively, are observed at saturation, while at Weτb ≈ 100 and Weτb ≈ 150, drag

reductions of ∼ 54% and ∼ 56% are observed, respectively.

Using the definition of β (eqn.4.1) and for b ≫ 1, the saturation condition β ≈ 0.98

observed in DNS can be expressed as

npkBT

ρu2
τ

|sat ≈ (1− β)We−1
τ ≈ 0.02We−1

τ . (4.19)

This criterion has the same scaling as

npkBT/(ρu
2
τ )|sat ≈ βWe−1

τ (4.20)

suggested by de Gennes (1986) (eqn.1.8), but is lower in magnitude by several orders.

Figure 4.3(c) shows the saturation data from DNS compared to equations (4.19) and

(4.20). While the saturation criterion (4.19) shows good agreement with the DNS

data, the saturation criterion of de Gennes (1986) is higher than DNS by several
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Figure 4.3: Saturation of drag reduction with increasing polymer concentration: (a) drag
reduction as a function of the viscosity ratio, β, from DNS; (b) drag reduction
as a function of the viscosity ratio, β, from experiments of Hoyt (1966) at
Reτb ≈ 420. —�—, DNS at Weτb ≈ 10; —�—, DNS at Weτb ≈ 35; —H—, DNS
at Weτb ≈ 100; —N—, DNS at Weτb ≈ 150; —�—, PEO of Mw ≈ 3.4 × 106

(Weτb ≈ 1360); —▽—, PEO of Mw ≈ 5.8× 106 (Weτb ≈ 3520); —△—, PEO of
Mw ≈ 7.0×106 (Weτb ≈ 4930); —♦—, PEO of Mw ≈ 8.0×106 (Weτb ≈ 6260);
—◦—, PAM of Mw ≈ 1.6×106 (Weτb ≈ 230); (c) Saturation of drag reduction
observed in DNS compared to elastic theory of de Gennes (1986) and revised

theory of de Gennes: ◦, saturation data from DNS; – ·· –, npkBT
ρu2

τ
|sat = We−1

τ

(eqn. 4.20); —– ·—–,
npkBT
ρu2

τ
|sat = (1− β)We−1

τ (eqn. 4.19) with β = 0.98.
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orders of magnitude.

The trends in saturation of drag reduction observed in DNS (figure 4.3a) can also

be observed in the experimental date (Hoyt, 1966), as shown in figure 4.3(b). Here

the experimental data of Hoyt (1966), which were originally plotted as drag reduction

vs. polymer molecular weight Mw, have been replotted as %DR vs. β. The value of

β ≈ 0.98 for which saturation is observed in DNS is also observed in experimental

data.

In the Lumley’s theory (Lumley, 1969, 1973), the saturation value of the effective

viscosity, νw, in wall-bounded flows is given by (see eqn.1.6)

νeff,sat ∼ (0.2)4/3λu2
τ ∼ (0.1)λu2

τ . (4.21)

This alternative saturation criterion is also consistent with the DNS data, as shown

in chapter III.

4.4 Criteria for maximum drag reduction (MDR)

Based on the data tabulated in table 2.2 and shown in figures 4.1(a) and 4.3(a), in

the DNS simulations, which were performed at a base Reynolds number of Reτb ≈ 230,

MDR is achieved at saturation concentration (β ≈ 0.98) at Weτb ≈ 150. The drag

reduction of DR ≈ 56%, observed at MDR in DNS is comparable to the range of

57 − 60%DR predicted by Virk’s MDR asymptote (Virk, Mickley & Smith, 1970;

Virk, 1975), as shown in figures 4.1(a) and 4.3(a).

The corresponding Reτ and Weτ values at MDR, based on the values of uτ and

νw in viscoelastic flow, as opposed to the base flow, are Reτ ≈ 149 at Weτ ≈ 65.



114

These suggest the MDR criterion as

Weτ ∼ O(Reτ/2). (4.22)

This criterion is consistent with the MDR criterion of Weτ ∼ O(Reτ ), suggested by

Lumley (1969, 1973) and de Gennes (1986).

4.5 Range of affected scales

Another important question in polymer drag reduction concerns the range of

turbulent scales which have been affected by the polymer. In wall-bounded flows,

Lumely’s theory and the revised version of de Gennes’s theory identify the size of the

largest eddies affected by the polymer as r∗ (eqn.4.7) and r∗∗ (eqn.4.16), respectively.

In DNS, an estimation of the size of the largest eddies attenuated by the polymer

can be obtained from the largest damped scale in the spectra of Euu at different wall-

normal locations (figures 3.9-3.14). For reasons which will be explained in § 5.4, the

Evv and Eww spectra show a decay at all scales and cannot be used for this purpose.

Figure 4.4 shows rx = 2π/kx,c and ry = 2π/ky,c, where kx,c and ky,c are the

wavenumbers of the largest damped scale compared to Newtonian flow in the spectra

of Euu(kx) and Euu(ky) (figures 3.9-3.14), respectively, compared to r∗ of Lumely’s

theory (eqn.4.7) and r∗∗ of the revised de Gennes’s theory (eqn.4.16) for all the runs

at Weτb ≈ 35, 100, 150 tabulated in table 2.2. Comparison of rx and ry to r∗ of

Lumely’s theory at Weτb ≈ 35, 100, 150 and different concentration (figures 4.4a-

4.4c) shows that at saturation concentrations, the ry/r
∗ approaches values ∼ O(1)

at all Weissenberg numbers, while the magnitudes of rx/r
∗ is about an order of
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Weτb ≈ 35
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Figure 4.4: The largest streamwise and spanwise scales, rx and ry, damped by the polymer
in the Euu spectra (a,d) with varying the concentration at Weτb ≈ 35, (b,e)
with varying the concentration at Weτb ≈ 100, and (c,f) with varying the
concentration at Weτb ≈ 150, compared to predictions of Lumley’s theory
(Lumley, 1969, 1973) (eqn.4.7) and the revised theory of de Gennes (eqn.4.16):
(a-c) ri compared to r∗ (eqn.4.7); (d-f) ri compared to r∗∗ (eqn.4.16) with
n = 2/3 and AE = 0.03. Line types in (a,d) same as in figure 3.3; line types in
(b,e) same as in figure 3.5; line types in (c,f) same as in figure 3.7; thin lines,
rx; thick lines, ry.
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magnitude higher than the predictions of Lumley’s theory. At concentration below

the saturation concentration, ri/r
∗ become lower than O(1) and the data does not

collapse at different concentrations.

Figures 4.4(d-f) show the comparison of ri to r∗∗ of the revised de Gennes’s the-

ory (eqn.4.16) (with Aturb = 0.03, n = 2/3 and the actual 〈Ξ〉 from DNS). A better

collapse of the data is observed in this scaling at all Weissenberg numbers and con-

centrations. With the exception of the lowest concentration, the magnitudes of ry/r
∗∗

approach values ∼ O(1) for all Weissenberg numbers and concentrations. The de-

viation at the lowest concentration is believed to be due to the polymer being close

to full stretch, which makes some of the assumptions in de Gennes’s theory (such as

eqn.4.9) invalid. The magnitude of rx/r
∗∗ is about an order of magnitude higher than

ry/r
∗∗, reflecting the inhomogeneity of the turbulence structure in wall-bounded flow.

Figure 4.5 shows the comparison of ri to r∗ and r∗∗ for 10 . Weτb . 150 at

saturation concentration (npkBT/(ρu
2
τb
) ≈ 1 × 10−3, corresponding to 0.86 . β .

0.989). At saturation concentration, ri/r
∗∗ and ri/r

∗ become nearly identical. The

magnitudes of both ry/r
∗ and ry/r

∗∗ approach values ∼ O(1) for all Weissenberg

numbers, and rx/r
∗ and rx/r

∗∗ are about an order of magnitude higher than ry/r
∗

and ry/r
∗∗, respectively.

Overall, these results indicate that Lumley’s theory (Lumley, 1969, 1973) accu-

rately predicts the range of affected scales at saturation concentration, while the

revised theory of de Gennes proposed in this study can predict the range of affected

scales at all but the most dilute concentrations. Neither theory accounts for inho-

mogeneity of the flow, which is a prominent feature in wall-bounded turbulence. As
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Figure 4.5: Effect of Weissenberg number on the largest streamwise and spanwise scales,
rx and ry, damped by the polymer in the Euu spectra at 10 . Weτb . 150 and
saturation concentration of npkBT/(ρu

2
τb
) ≈ 1 × 10−3: (a) ri compared to r∗

(eqn.4.7); (b) ri compared to r∗∗ (eqn.4.16) with n = 2/3 and Aturb = 0.03.
Line types same as in figure 3.15; thin lines, rx; thick lines, ry.
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such, the predictions of both theories are more directly applicable to the spanwise

and, presumably, wall-normal directions, than the streamwise direction. Lumley’s

theory (Lumley, 1969, 1973) does not attempt to account for the effect of polymer

concentration, but correctly accounts for the effect of Weissenberg number at satu-

ration concentrations. The revised theory of de Gennes (eqn.4.16) is more complete

and accounts for the effect of both the Weissenberg number and the polymer concen-

tration.

Figures 4.6(a-c) show the rx and ry obtained from DNS normalized with respect

to the channel half height, h, at Weτb ≈ 35, 100 and 150, respectively. At each

Weissenberg number, the magnitudes of rx and ry shift to larger values as the polymer

number density increases. At MDR, ry ∼ h. Figures 4.6(d-f) show the ri in inner

scaling. In the near wall region, the largest damped eddies have a spanwise size, r+y ,

of ∼ (100− 500) wall units and a streamwise size, r+x , of ∼ (1000− 6000) wall units,

while in the core, the largest damped eddies have a spanwise size, r+y , of ∼ (30−100)

wall units and a streamwise size, r+x , of ∼ (100− 1000) wall units, depending on the

polymer concentration and Weissenberg number.

Figures 4.7(a-c) show the ri normalized with respect to uτ and the effective vis-

cosity, νeff , introduced in equation (3.1) and shown in figures 3.4(c-d), 3.6(c-d) and

3.8(c-d). Normalizing ri using νeff does a somewhat better job of collapsing the data

for different concentrations and Weissenberg numbers than νw used in the definition

of r+ = ruτ/νw, but is does not fully collapse the data. Figures 4.7(d-f) show ri nor-

malized with respect to the polymer relaxation time, λ, and the wall friction velocity,

uτ . At the saturation concentration, ry ∼ 2λuτ at all Weissenberg numbers.
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Figure 4.6: Effect of polymer concentration on the largest streamwise and spanwise scales,
rx and ry, damped by the polymer in the Euu spectra at (a,d) Weτb ≈ 35,
(b,e) Weτb ≈ 100, (c,f) Weτb ≈ 150: (a-c) ri in outer scaling; (d-f) ri in inner
scaling. Line types in (a,d) same as in figure 3.3; line types in (b,e) same as in
figure 3.5; line types in (c,f) same as in figure 3.7; thin lines, rx; thick lines, ry.
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Weτb ≈ 35
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Figure 4.7: Effect of polymer concentration on the largest streamwise and spanwise scales,
rx and ry, damped by the polymer in the Euu spectra at (a,d) Weτb ≈ 35, (b,e)
Weτb ≈ 100, (c,f) Weτb ≈ 150: (a-c) ri normalized using νeff and uτ ; (d-f) ri
normalized using λ and uτ . Line types in (a,d) same as in figure 3.3; line types
in (b,e) same as in figure 3.5; line types in (c,f) same as in figure 3.7; thin lines,
rx; thick lines, ry.
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Figure 4.8: Effect of Weissenberg number on the largest streamwise and spanwise scales,
rx and ry, damped by the polymer in the Euu spectra at 10 . Weτb . 150 and
saturation concentration of npkBT/(ρu

2
τb
) ≈ 1 × 10−3: (a) ri in outer scaling;

(b) ri in inner scaling; (c) ri normalized using νeff and uτ ; (d) ri normalized
using λ and uτ . Line types same as in figure 3.15; thin lines, rx; thick lines, ry.
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Figure 4.8 shows ri/h, r+i , riuτ/νeff and ri/(λuτ) at saturation concentration

(npkBT/(ρu
2
τb
) ≈ 1 × 10−3, corresponding to 0.86 . β . 0.989) for all Weissenberg

numbers (10 . Weτb . 150). Both ri/h and r+i increase with increasing Weissenberg

number, with rx approximately an order of magnitude larger than ry in all cases

(figures 4.8a-4.8b). At MDR, ry ∼ h and ry ∼ 2λuτ , as shown in figures 4.8(a,d). This

gives the MDR criterion as ry ∼ h ∼ 2λuτ or λuτ ∼ O(h/2) or Weτ ∼ O(Reτ/2),

which is consistent with the equation (4.22). In the near wall region, the largest

damped eddies have a spanwise size, r+y , of ∼ (100−600) wall units and a streamwise

size, r+x , of ∼ (2000− 5000) wall units, while in the core, the largest damped eddies

have a spanwise size, r+y , of ∼ (30 − 70) wall units and a streamwise size, r+x , of

∼ (100− 1000) wall units, depending on the Weissenberg number, as shown in figure

4.8(b). Normalizing ri using veff results in a reasonable collapse of the data, as shown

in figure 4.8(c). However, the best collapse of the data is obtained when rx and ry

are normalized by λuτ .



Chapter V

Mechanism of Drag Reduction

Using the databases discussed in chapter III and the revised de Gennes’s theory

introduced in chapter IV, we investigate the detailed mechanism of polymer drag

reduction. Our objective is to presenta quantitative theory of polymer drag reduction

which can explain all the features observed in the data of chapter III and IV.

5.1 Data analysis

A variety of turbulence measures were employed to clarify the mechanism of poly-

mer drag reduction. These include the polymer and turbulence energetics, anisotropy-

invariant maps, and comparisons of DNS results to predictions of classical theories of

polymer drag reduction. A brief description of each measure is given below.

5.1.1 Polymer and turbulence energetics

To understand the energy exchanges between the polymer and turbulence, various

terms in the turbulence kinetic energy budget and polymer elastic energy budget were

examined.

In viscoelastic flow, the energy dynamics in the α-direction is governed by (Ptasin-

123
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ski, et al., 2003)

D〈Eαα〉
Dt

= 〈Pαα〉 − 〈εαα〉+ 〈Παα〉 − 〈Tαα〉

+〈t(v)αα〉+ 〈t(R)
αα 〉+ 〈t(press)αα 〉+ 〈t(p)αα〉 , (5.1)

where no summation is implied over the index α, 〈·〉 denotes an ensemble-averaged

quantity obtained by averaging the quantity in the homogeneous flow directions and

in time, 〈Eαα〉 = 1
2
〈u′

αu
′
α〉 is the ensemble-averaged turbulence kinetic energy in

the α-direction, 〈Pαα〉 = −〈u′
αu

′
γ〉∂Uα

∂xγ
, 〈εαα〉 = νs〈

(

∂u′

α

∂xγ

)2

〉, 〈Παα〉 = 〈p′ ∂u′

α

∂xα
〉, and

〈Tαα〉 = 〈τ ′p,αγ ∂u′

α

∂xγ
〉 are the ensemble-averaged rates of turbulence production, vis-

cous dissipation, pressure-strain correlation, and energy transfer from turbulence to

the polymer in the α-direction, respectively, 〈t(v)αα〉 = ∂
∂xγ

(

νs
2

∂
∂xγ

(〈u′
αu

′
α〉)

)

, 〈t(R)
αα 〉 =

∂
∂xγ

(

−1
2
〈u′

αu
′
αu

′
γ〉
)

, 〈t(press)αα 〉 = − ∂
∂xα

(〈u′
αp

′〉), and 〈t(p)αα〉 = ∂
∂xγ

(

〈u′
ατ

′
p,αγ〉

)

are the

ensemble-averaged rates of transport by the fluctuating viscous stress, the fluctuat-

ing Reynolds stress, the fluctuating pressure, and the fluctuating polymer stress in

the α-direction, respectively, u′
α and Uα are the fluctuating and mean velocities in

the α-direction, respectively, p′ is the fluctuating pressure, and τ ′p is the fluctuating

polymer stress.

Summation of equation (5.1) over all α-direction gives the governing equation for

the total turbulence kinetic energy as

D〈Eii〉
Dt

= 〈Pii〉 − 〈εii〉 − 〈Tii〉

+〈t(v)ii 〉+ 〈t(R)
ii 〉+ 〈t(press)ii 〉 +〈t(p)ii 〉, (5.2)

where the pressure-stain correlation term is eliminated because
∑

αΠαα = 0.
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The energetics of the polymer is governed by (Ptasinski, et al., 2003)

D〈Ep〉
Dt

= 〈TU〉+ 〈Tii〉 − 〈εp〉+ 〈tp〉, (5.3)

where 〈Ep〉 is the ensemble-averaged elastic energy stored in the polymer due to

transfer from the mean flow and turbulence, 〈TU〉 = 〈τp,ij〉∂Ui

∂xj
and 〈Tii〉 = 〈τ ′p,ij

∂u′

i

∂xj
〉

are the ensemble-averaged rates of energy transfer from the mean flow to the polymer

and from turbulence to the polymer, respectively, 〈εp〉 is the ensemble-averaged rate

of polymer dissipation, 〈tp〉 = ∂
∂xj

(

〈−u′
jE

′
p〉
)

is the ensemble-averaged rate of energy

transport by the polymer, τp is the polymer stress, and Ep is the total polymer

elastic energy and E ′
p = Ep − 〈Ep〉 is the fluctuating polymer elastic energy. For

a FENE-P dumbbell model of the polymer, 〈Ep〉 = 1
2
〈npkBTb ln(

1
1−Tr(A)/b

)〉, and

〈εp〉 = 1
2λ
〈 τp,ii
1−Tr(A)/b

〉 (Ptasinski, et al., 2003).

In addition to the above ensemble-averaged quantities, in the present study, we

also track the time evolution of a number of instantaneous volume-averaged tur-

bulence and polymer quantities, including the volume-averaged turbulence kinetic

energy, 〈Eii(t)〉V , polymer elastic energy, 〈Ep(t)〉V , rate of turbulence production,

〈Pii(t)〉V , rate of viscous dissipation, 〈εii(t)〉V , and rate of energy transfer from tur-

bulence to the polymer, 〈Tii(t)〉V . In all these quantities, 〈·〉V denotes volume average

at time t, defined as

〈φ(t)〉V =
1

LxLyLz

∫

Lz

∫

Ly

∫

Lx

φ(t) dxdydz. (5.4)

Furthermore, to separate the elastic energy stored in the polymer resulting from

exchanges with the mean flow, 〈Ep,U(t)〉V , from the elastic energy stored in the poly-
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mer resulting from exchanges with turbulence, 〈Ep,tur(t)〉V , we compute 〈Ep,U(t)〉V

and 〈Ep,tur(t)〉V by time integration of the respective energy transfer rates minus the

respective dissipation rates, as

〈Ep,U(t)〉V =
1

LxLyLz

∫ t

to

∫

Lz

∫

Ly

∫

Lx

[

TU(t)−
TU (t)

TU(t) + Tii(t)
εp(t)

]

dxdydzdt,

(5.5)

〈Ep,tur(t)〉V =
1

LxLyLz

∫ t

to

∫

Lz

∫

Ly

∫

Lx

[

Tii(t)−
Tii(t)

TU(t) + Tii(t)
εp(t)

]

dxdydzdt,

(5.6)

where to is the time at the start of viscoelastic simulations, TU = τp,ij
∂Ui

∂xj
is the rate of

energy transfer from the mean flow to the polymer, Tii = τp,ij
∂u′

i

∂xj
is the rate of energy

transfer from turbulence to the polymer, and εp =
1
2λ

τp,ii
1−Tr(A)/b

is the rate of polymer

dissipation.

5.1.2 Anisotropy-invariant maps

As will be shown in § 5.2.2, anisotropy plays a major role in the mechanism of

polymer drag reduction. To quantify the degree of anisotropy in the flow, we examine

the anisotropy-invariant maps based on the scalar invariants of the anisotropy tensor,

as defined by Lumley & Newman (1977),

II = bijbji, (5.7)

III = bijbjkbki, (5.8)

where bij = 〈u′
iu

′
j〉/〈u′

ku
′
k〉 − δij/3 is the anisotropy tensor.

All physically realizable turbulence is bound by the three lines given by II =
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Figure 5.1: Anisotropy-invariant maps showing (a) limiting states of turbulence and (b)
data from Newtonian turbulent channel flow at Reτb ≈ 230 (case NN).
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2
9
+ 2III and the two branches of II = 3

2

(

4
3
|III|

)2/3
, as shown in figure 5.1(a). The

line II = 2
9
+ 2III represents two-dimensional turbulence, while the two branches

of II = 3
2

(

4
3
|III|

)2/3
represent turbulence strained by axisymmetric expansion and

axisymmetric contraction, respectively. The intersection of these lines denotes the

limiting states of turbulence, corresponding to three-dimensional isotropic turbulence

at (0,0), two-dimensional isotropic turbulence at (− 1
36
,1
6
), and one-dimensional tur-

bulence at (2
9
,2
3
), respectively.

In Newtonian turbulent channel flow, the data points corresponding to the viscous

sublayer lie along the two-dimensional turbulence line, the data points corresponding

to the buffer layer lie close to the axisymmetric expansion line, while at the center of

the channel, the data points move towards the three-dimensional isotropic turbulence

limit, as shown in figure 5.1(b).

5.1.3 Comparison to predictions of classical theories

A critical unanswered question in polymer drag reduction concerns the range of

turbulent scales which are affected by the polymer and the manner in which these

scales are affected.

The two principal theories of polymer drag reduction, suggested by Lumley (1969,

1973) and de Gennes (1986), respectively, identify the range of turbulent eddies which

are affected by the polymer based on the eddy characteristic times. In the theory

of Lumley, it is suggested that the largest eddies affected by the polymer have a
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characteristic time, T ∗, equal to the polymer relaxation time, λ, or

T ∗+ = Weτ , (5.9)

where T ∗+ ≡ T ∗u2
τ

ν
, Weτ ≡ λu2

τ

ν
, and uτ and ν are the wall-friction velocity and

kinematic viscosity in the viscoelastic flow, respectively, where ν is commonly defined

as either the zero shear viscosity, νo, or the wall-shear viscosity, νw = τw
ρ(dU/dz)w

, of the

viscoelastic flow.

In the theory of de Gennes, it is suggested that the turbulence dynamics is affected

in a turbulent eddy when the eddy has a characteristic time shorter than λ and it has

redirected “all” its turbulence kinetic energy into the elastic energy of the polymer.

In practice, the conditions suggested by de Gennes’s original theory have never been

observed in either experiments or DNS, the theory gives predictions which are orders

of magnitude off from observations in both experiments (Sreenivasan & White, 2000)

and DNS, as shown in chapter IV.

A revised version of the theory of de Gennes was proposed in § 4.2, in which it is

assumed that the turbulence dynamics is affected in a turbulent eddy when the eddy

has a characteristic time shorter than λ and it has redirected a minimum fraction,

AE , of its turbulence kinetic energy into the elastic energy of the polymer. With

these assumptions, it can be shown that the largest eddies affected by the polymer

have a characteristic time, T ∗∗, given by

T ∗∗+(z+) = min

{

We
(1− 2/3

n+2/3)
τ

[

〈Ξ〉
3
2

AE

npkBT
ρu2

τ

κz+

A
3
2
K

{F (k∗/kd)}
3n
4

{F (k∗∗/kd)}
3n
4 +3

2

]

2/3
n+2/3

and Weτ

}

,

(5.10)
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where AK is the Kolmogorov constant, F (k/kd) = exp
[

−3
2
AK(k/kd)

4/3
]

is the dissi-

pation range correction to the Kolmogorov inertial range spectrum suggested by Pao

(1965), kd = (ν3/ε)−1/4 is the Kolmogorov wavenumber, k∗ and k∗∗ are the wavenum-

bers of a turbulent eddy with characteristic time equal to T ∗ and T ∗∗, respectively,

κ is the von Karman constant, Ξ is the total polymer stretch, AE is the fraction of

turbulence kinetic energy at wavenumber k∗∗ redirected into the elastic energy of the

polymer, and 0 < n 6 2 denotes the dimensionality of the polymer stretching. Com-

parison of the predictions of this theory with DNS results in viscoelastic turbulent

channel flow suggested values of AE ≈ 0.03 and n = 2/3, as shown in chapter IV.

To compare these predictions with DNS results in viscoelastic turbulent channel

flow, the characteristic time, τ+(k+
i , z

+), of an eddy with wavenumber k+
i in the ith

direction at wall-normal location z+ is defined as the inverse of the eddy characteristic

strain-rate, τ+(k+
i , z

+) ≡ [s+(k+
i , z

+)]−1, where

s+(k+
i , z

+) ≡
√

D+(k+
i , z

+)

2
k+
i , (5.11)

and D+(k+
i , z

+) is the one-dimensional dissipation spectrum at wavenumber k+
i and

wall-normal location z+.

5.2 Some key features of polymer drag reduction

To illustrate several key features of polymer drag reduction, in this section, we

review some of the DNS studies results from two representative cases of viscoelastic

turbulent channel flow described in chapter III; one at low drag reduction (LDR), and

the other at high drag reduction (HDR) and approaching maximum drag reduction
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(MDR). The LDR case (CC3-q) corresponds to 33%DR and was obtained with the

simulation parametersWeτb ≈ 35, npkBT/ρu
2
τb
≈ 1×10−3 (β ≈ 0.96), and b = 45, 000.

The HDR case (FF4-q) corresponds to 56%DR and was obtained with the simulation

parameters Weτb ≈ 150, npkBT/ρu
2
τb

≈ 1 × 10−4 (β ≈ 0.98), b = 45, 000. Both

simulations were preformed in channels of size 320π
27

h × 16π
5
h × 2h, were driven at

constant flow rate, and were initialized by introducing the polymer in its coiled state

into a fully-developed base Newtonian turbulent flow.

5.2.1 Minimal exchange of energy between turbulence and polymer

Figures 5.2(a) and 5.2(b) show the time histories of the volume-averaged tur-

bulence kinetic energy, 〈Eii(t)〉V /(U2
bulk/2), and polymer elastic energy originating

from turbulence, 〈Ep,tur(t)〉V /(U2
bulk/2), in the LDR and HDR cases, respectively.

Immediately following the introduction of the polymer into the base Newtonian tur-

bulent flow at t = 200 (time O), the polymer begins to uncoil, resulting in growth

of 〈Ep,tur(t)〉V between the times of O and P for a time period corresponding to

∆t̃Ubulk

h
∼ 11 (200 < t < 217) in the LDR case and ∆t̃Ubulk

h
∼ 16 (200 < t < 224) in

the HDR case, where t̃ denotes the dimensional time. This growth in 〈Ep,tur(t)〉V is

accompanied by a simultaneous drop in the turbulence kinetic energy, 〈Eii(t)〉V , be-

tween the times of O and k for a time period corresponding to ∼ 9λ (200 < t < 231)

in the LDR case and ∼ 6λ (200 < t < 293) in the HDR case. With the turbulence

suppressed, the strain-rates within the flow can no longer sustain a stretched polymer

and the polymer relaxes, leading to decay of 〈Ep,tur(t)〉V , between the times of P

and p for a time period corresponding to ∼ 10λ (217 < t < 252) in the LDR case
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(a) Weτb ≈ 35 (33%DR) (b) Weτb ≈ 150 (56%DR)
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Figure 5.2: (a-b) Time histories of the volume-averaged turbulence kinetic energy,
〈Eii(t)〉V , and polymer elastic energy originating from turbulence, 〈Ep,tur(t)〉V ,
normalized by U2

bulk/2; (c-d) time histories of the volume-averaged rates of tur-
bulence production, 〈Pii(t)〉V , viscous dissipation, 〈εii(t)〉V , and energy transfer
from turbulence to the polymer, 〈Tii(t)〉V , normalized by U3

bulk/h; (e-f) time
histories of the skin friction coefficient, in (a,c,e) LDR regime (case CC3-q,
33%DR) and (b,d,f) HDR regime (case FF4-q, 56%DR). The times O, k, K,
p, P denote start of viscoelastic simulations, minima and maxima of 〈Eii(t)〉V ,
and minima and maxima of 〈Ep,tur(t)〉V during the first cycle of turbulence sup-
pression and regeneration, respectively. ——, viscoelastic flow; ·····, Newtonian
flow.
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and ∼ 8λ (224 < t < 350) in the HDR case. With the polymer relaxed, turbulence

is regenerated, resulting in growth of 〈Eii(t)〉V between the times of k and K for a

time period corresponding to ∼ 11λ (231 < t < 272) in the LDR case and ∼ 12λ

(293 < t < 478) in the HDR case. The first cycle of turbulence suppression and re-

generation is thus completed and a new cycle resumes. This cyclic behavior continues

for a few cycles, getting weaker with the passage of time until the viscoelastic flow

has settled into a stationary turbulent state. In the stationary viscoelastic turbu-

lent flow, the magnitude of the turbulence kinetic energy has dropped to ∼ 82% and

∼ 47% of the Newtonian value in the LDR and HDR cases, respectively, indicating

that turbulence has been suppressed. What is noteworthy is that these significant

drops in the turbulence kinetic energy are accompanied by only a minimal storage of

elastic energy in the polymer due to energy exchanges between the turbulence and the

polymer. In the stationary viscoelastic turbulent state, the elastic energy stored in

the polymer due to interactions with turbulence amounts to only ∼ 4% and ∼ 3% of

the turbulence kinetic energy in the base Newtonian flow, and to ∼ 5% and ∼ 6% of

the turbulence kinetic energy in the stationary viscoelastic turbulent flow in the LDR

and HDR cases, respectively. These results indicate that suppression of turbulence

is not simply due to a redirection of turbulence kinetic energy into the elastic energy

of the polymer, as has been suggested by some classical theories (de Gennes, 1986).

Rather, a more subtle mechanism is at work.

A similar behavior can also be observed in the time histories of the volume-

averaged rates of turbulence production, 〈Pii(t)〉V /(U3
bulk/h), viscous dissipation,

〈εii(t)〉V /(U3
bulk/h), and energy transfer from turbulence to the polymer,
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〈Tii(t)〉V /(U3
bulk/h), as shown in figures 5.2(c) and 5.2(d). In the stationary viscoelas-

tic turbulent flow, the volume-averaged rate of energy transfer from turbulence to

the polymer is only ∼ 19% and ∼ 17% of the corresponding volume-averaged rate

of turbulence production, and only ∼ 9% and ∼ 2% of the volume-averaged rate of

turbulence production in the base Newtonian flow in the LDR and HDR cases, re-

spectively. At the same time, the volume-averaged rate of turbulence production has

dropped to ∼ 46% and ∼ 14% of the Newtonian value in the LDR and HDR cases,

respectively. These results suggest that suppression of turbulence is also not due to

an enhanced dissipation of the turbulence kinetic energy by the elongational viscosity

introduced by the polymer (Lumley, 1969, 1973). Rather a more complex mechanism

is at work.

The combined effects of the trends in 〈Eii(t)〉V /(U2
bulk/2) and 〈Ep,tur(t)〉V /(U2

bulk/2)

is also reflected in the time histories of the skin friction coefficient, as shown in figures

5.2(e) and 5.2(f). Immediately following the introduction of the polymer, when the

polymer is being uncoiled but the turbulence has not yet been suppressed, the skin

friction coefficient rapidly grows between the times of O and M for a time period

corresponding to ∆t̃Ubulk

h
∼ 7 (200 < t < 211) in the LDR case and ∆t̃Ubulk

h
∼ 9

(200 < t < 213) in the HDR case. This is followed by a decay in the skin friction

coefficient between the times of M and m for a time period corresponding to ∼ 11λ

in both the LDR (211 < t < 251) and HDR (213 < t < 377) cases, while the

turbulence is being suppressed. This decay in Cf is, in turn, followed by an increase

in the skin friction coefficient between the times of m and O′ for a time period

corresponding to ∼ 9λ (251 < t < 285) in the LDR case and ∼ 7λ (377 < t < 491)
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(a) Weτb ≈ 35 (33%DR) (b) Weτb ≈ 150 (56%DR)
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Figure 5.3: (a-b) Time histories of the volume-averaged turbulence kinetic energy,
〈Eii(t)〉V , and polymer elastic energy originating from turbulence, 〈Ep,tur(t)〉V ,
normalized by u2τ (t)/2; (c-d) time histories of the volume-averaged rates of tur-
bulence production, 〈Pii(t)〉V , viscous dissipation, 〈εii(t)〉V , and energy trans-
fer from turbulence to the polymer, 〈Tii(t)〉V , normalized by u4τ (t)/νw(t) in
(a,c) LDR regime (case CC3-q, 33%DR) and (b,d) HDR regime (case FF4-q,
56%DR). ——, viscoelastic flow; · · · · ·, Newtonian flow.
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in the HDR case, while the turbulence is being regenerated. These periodic trends

in the skin friction coefficient also persist for a few cycles until the viscoelastic flow

has settled into a stationary turbulent state. In the stationary viscoelastic turbulent

flow, the magnitude of the skin friction coefficient has dropped to 67% and 44% of

the Newtonian values, corresponding to 33%DR and 56%DR in the LDR and HDR

cases, respectively.

Similar trends can also be observed in the time histories of 〈Eii(t)〉V , 〈Ep,tur(t)〉V ,

and 〈Pii(t)〉V , 〈εii(t)〉V , 〈Tii(t)〉V when these quantities are normalized by the instan-

taneous wall-friction velocity, uτ (t), and wall-shear viscosity, νw(t), as shown in figure

5.3. What is noteworthy here are the relative magnitudes of the normalized turbu-

lence kinetic energy and rates of turbulence production in the viscoelastic stationary

state compared to Newtonian flow. In the LDR and HDR cases, the normalized rates

of turbulence production are ∼ 106% and ∼ 72% of the Newtonian values, respec-

tively, while the respective magnitudes of turbulence kinetic energy are ∼ 121% and

∼ 108% of the Newtonian values. These results suggest a pileup of turbulence kinetic

energy in the drag-reduced flow.

5.2.2 Highly anisotropic structure of turbulence in drag-reduced flow

To further explore the nature and origin of this pileup of turbulence kinetic energy

in drag-reduced flow, in figure 5.4 we compare the one-point flow statistics in the LDR

and HDR regimes to Newtonian flow. The mean velocity profiles in viscoelastic flow

display the expected thickening of the buffer layer and approach to Virk’s MDR profile

(Virk, Mickley & Smith, 1970) as shown in figure 5.4(a), while the Reynolds shear



137

(a) (d)

z+

U
+

10-1 100 101 1020

10

20

30

40

U+ = 2.5 ln z+ + 5

U+ = 11.7 ln z+ - 17

z+

u+ rm
s

10-1 100 101 1020

1

2

3

4

(b) (e)

z+

<
τ R

,x
z>

+
<

τ v>
+

10-1 100 101 1020

0.2

0.4

0.6

0.8

1

<τv> <τR,xz>

z+

v+ rm
s

10-1 100 101 1020

1

2

3

4

(c) (f)

z+

<
τ p,

xz
>

+

10-1 100 101 1020

0.2

0.4

0.6

0.8

1

z+

w
+ rm

s

10-1 100 101 1020

1

2

3

4

Figure 5.4: One-point flow statistics in stationary viscoelastic flow in LDR and HDR
regimes compared to Newtonian flow: (a) mean velocity profiles; (b) Reynolds,
〈τR,xz〉+, and viscous, 〈τv〉+, shear stresses; (c) polymer shear stresses; (d)
streamwise turbulence intensities; (e) spanwise turbulence intensities; (f) wall-
normal turbulence intensities. ·····, Newtonian flow (case NN); – – –, viscoelastic
flow at low drag reduction (case CC3-q, 33%DR); ——, viscoelastic flow at high
drag reduction (case FF4-q, 56%DR).



138

stresses show the expected enhanced decay with increasing drag reduction, as shown

in figures 5.4(b). The most remarkable feature in these statistics is in the behavior of

the turbulence intensities (figures 5.4d, 5.4e & 5.4f). While the normalized spanwise

and wall-normal turbulence intensities (figures 5.4e & 5.4f) show the anticipated

decay with increasing drag reduction, the normalized streamwise turbulence intensity

(figure 5.4d) shows a pileup of turbulence kinetic energy in this component. The

peak magnitude of the normalized streamwise turbulence intensity is ∼ 122% of the

Newtonian value in the LDR case and ∼ 101% of the Newtonian value in the HDR

case. These results suggest that in drag-reduced flow, turbulence kinetic energy is

somehow piled up and trapped in the streamwise component of the velocity. This

pileup of turbulence kinetic energy in the streamwise component along with strong

decay of turbulence kinetic energy in the spanwise and wall-normal components leads

to a highly anisotropic turbulence structure in drag-reduced flow.

To investigate this anisotropy in further detail, in figure 5.5 we show the anisotropy-

invariant maps in the LDR and HDR cases compared to Newtonian flow. Two features

can be observed in these anisotropy-invariant maps. One is the expected thickening of

the viscous sublayer from∼ 7 wall units in Newtonian flow to∼ 11 wall units and∼ 19

wall units in the LDR and HDR cases, respectively. The second, and more important,

feature is a shift of the outer layer away from the three-dimensional isotropic limit

(point 0,0) towards the one-dimensional turbulence limit with increasing drag reduc-

tion. In the LDR case (figure 5.5b), this shift is observed for 11 < z+ . 100, while in

the HDR case (figure 5.5c), it is observed throughout the outer layer, 19 < z+ . 149.

A more in depth view of this anisotropy can be gained by examining the spectra
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Figure 5.5: Anisotropy-invariant maps for (a) Newtonian flow (case NN), (b) viscoelastic
flow in the LDR regime (case CC3-q, 33%DR) and (c) viscoelastic flow in the
HDR regime (case FF4-q, 56%DR).
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Figure 5.6: The one-dimensional energy spectra in LDR (case CC3-q, 33%DR) and HDR
(case FF4-q, 56%DR) regimes compared to Newtonian flow (case NN) at z+ ≈
30. ·····, Newtonian flow (case NN); – – –, viscoelastic flow at low drag reduction
(case CC3-q, 33%DR); ——, viscoelastic flow at high drag reduction (case
FF4-q, 56%DR).
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Figure 5.7: The one-dimensional energy spectra in LDR (case CC3-q, 33%DR) and HDR
(case FF4-q, 56%DR) regimes compared to Newtonian flow (case NN) at z+ ≈
50. ·····, Newtonian flow (case NN); – – –, viscoelastic flow at low drag reduction
(case CC3-q, 33%DR); ——, viscoelastic flow at high drag reduction (case
FF4-q, 56%DR).
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Figure 5.8: The one-dimensional energy spectra in LDR (case CC3-q, 33%DR) and HDR
(case FF4-q, 56%DR) regimes compared to Newtonian flow (case NN) at z+ ≈
100. · · · · ·, Newtonian flow (case NN); – – –, viscoelastic flow at low drag
reduction (case CC3-q, 33%DR); ——, viscoelastic flow at high drag reduction
(case FF4-q, 56%DR).
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of velocity components, Eαα(ki), as shown in figures 5.6-5.8. At wall-normal locations

where the turbulence shifts towards the one-dimensional turbulence limit, a decay of

turbulence kinetic energy can be observed in the spectra of spanwise and wall-normal

velocity components at the small scales in the LDR case and at all scales in the HDR

case, while the streamwise kinetic energy shows a pileup of energy at the large scales

accompanied by a decay at the small scales. In the LDR case, these features are most

prominent for z+ . 50, while in the HDR case, they are noticeable throughout the

cross-section of the channel.

These results suggest that anisotropy of turbulence in drag-reduced flow is due to

a pileup of turbulence kinetic energy at the large scales of the streamwise component

of velocity along with decay of turbulence at all scales in the cross-stream components

at the wall-normal locations affected by the polymer.

5.3 Comparison to classical theories of polymer drag reduc-
tion

To gain an understanding of the underlying mechanisms responsible for the fea-

tures discussed in the previous section, we begin by comparing these features to the

predictions of classical theories of polymer drag reduction.

Figures 5.9 and 5.10 show the characteristic strain-rate, s+(k+
i , z

+), at the start of

viscoelastic simulations (base Newtonian flow) and in the viscoelastic stationary state

in the LDR and HDR regimes compared to T ∗+ of Lumley’s theory (Lumley, 1969,

1973), and T ∗∗+(z+) of the revised version of de Gennes’s theory proposed in this

present study, where T ∗+, T ∗∗+(z+), and s+(k+
i , z

+) are defined by (5.9), (5.10) and
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Figure 5.9: The characteristic strain-rate, s+(k+i , z
+), in Newtonian flow (case NN) at (a-

b) low drag reduction (case CC3-q, 33%DR) and (c-d) high drag reduction
(case FF4-q, 56%DR) compared to 1/T ∗+ of Lumley’s theory (Lumley, 1969,
1973). – ·· –, 1/T ∗+ from Lumley’s theory.
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viscoelastic stationary state

Weτb ≈ 35 (33%DR) Weτb ≈ 150 (56%DR)
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Figure 5.10: The characteristic strain-rate, s+(k+i , z
+), in viscoelastic flow at (a-b) low

drag reduction (case CC3-q, 33%DR) and (c-d) high drag reduction (case
FF4-q, 56%DR) compared to 1/T ∗+ of Lumley’s theory (Lumley, 1969, 1973)
and 1/T ∗∗+(z+) of the revised version of de Gennes’s theory. – ·· –, 1/T ∗+

from Lumley’s theory; – · –, lowest 1/T ∗∗+(z+) from the revised version of de
Gennes’s theory; ---, scales with s+(k+i , z

+) > 1/T ∗∗+(z+); ——, scales with
s+(k+i , z

+) < 1/T ∗∗+(z+).
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(5.11), respectively. In Lumley’s theory, it is assumed that all turbulent scales with

a characteristic strain-rate, s+(k+
i , z

+) > 1/T ∗+ are affected by the polymer through

the enhanced elongational viscosity introduced by the polymer at these scales. In

the revised theory of de Gennes, it is assumed that all turbulent scales with a char-

acteristic strain-rate, s+(k+
i , z

+) > 1/T ∗∗+(z+) are affected by the polymer through

redirection of a fraction (greater than or equal to AE) of their turbulence kinetic

energy into the elastic energy of the polymer. From the perspective of turbulence dy-

namics, both mechanisms represent an additional drain of turbulence kinetic energy

at the affected scales. Because T ∗∗+(z+) is a function of z+, the affected scales based

on the revised theory of de Gennes are shown as dashed lines at each wall-normal

location in figures 5.10(a-d). These figures also show 1/T ∗∗+
max(z

+), corresponding to

the maximum value of T ∗∗+(z+) over all wall-normal locations, compared to 1/T ∗+ of

Lumley’s theory. Since both the LDR and HDR cases shown in figures 5.9 and 5.10

are near saturation concentration (with β ∼ 0.96 and β ∼ 0.98, respectively), and at

saturation concentration T ∗∗+(z+) = T ∗+, little difference is observed between T ∗+

of Lumley’s theory and T ∗∗+
max(z

+) of the revised theory of de Gennes in these figures.

The differences between the two theories become more pronounced at concentrations

below saturation, as will be shown in § 5.5. At the start of the viscoelastic simulation

(figure 5.9), T ∗∗+(z+) cannot be defined, because the polymer is still in a coiled state

at this time and its elastic energy is still zero. Consequently, only 1/T ∗+ is shown in

figures 5.9(a-d)

Comparison of s+(k+
i , z

+) and 1/T ∗+ in figures 5.9(a-d) shows that according to

Lumley’s theory, when the polymer is first introduced into the base Newtonian flow
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in the LDR case (figures 5.9a-5.9b), all turbulent scales at z+ ≤ 10, all but the very

largest of the turbulent scales at 10 < z+ ≤ 30, and all the mid-range to small

scales at 30 < z+ ≤ 220 are affected by the polymer, while in the HDR case (figures

5.9c-5.9d), all turbulent scales at all z+ locations are affected.

In the stationary viscoelastic flow in the LDR case (figures 5.10a-5.10b), both

Lumley’s theory and the revised theory of de Gennes predict that the polymer affects

nearly all wavenumbers at z+ ≤ 30, the mid-range to high wavenumbers at 30 <

z+ ≤ 115, and has no effect at z+ > 115. In the HDR case (figures 5.10c-5.10d), both

theories predict that all turbulent scales are affected at z+ ≤ 100, while for 100 <

z+ ≤ 145 the effect of the polymer is limited to the mid-range to high wavenumbers.

These predictions of the classical theories for wall-normal ranges where the poly-

mer has any effect on dynamics of turbulence are consistent with observations in the

anisotropy-invariant maps of figure 5.5 and the energy spectra of figures 5.6-5.8, which

both show deviations from Newtonian dynamics at z+ . 100 in the LDR case, and

throughout the cross-section of the channel in the HDR case. The main effect of the

polymer, according to classical theories, is a drain of energy at the affected scales.

This drain of energy can indeed be observed in the DNS results shown in figures 5.6-

5.8, 5.11 and 5.12. Over the affected range of scales, both the energy spectra and the

characteristic stain-rates show a sharp decay compared to Newtonian flow, with both

the magnitude of decay and the range of affected scales increasing with enhanced drag

reduction. This enhanced decay, which can also be viewed as an enhanced dissipa-

tion, leads to a shift of the dissipation peak towards larger wavenumbers, as originally

suggested by Lumley (1969) and shown in figures 5.11 and 5.12. However, both the
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Figure 5.11: The characteristic strain-rates in LDR (case CC3-q, 33%DR) and HDR (case
FF4-q, 56%DR) regimes compared to Newtonian flow (case NN) at (a-b)
z+ ≈ 10 and (c-d) z+ ≈ 30. ·····, Newtonian flow (case NN); – – –, viscoelastic
flow at low drag reduction (case CC3-q, 33%DR); ——, viscoelastic flow at
high drag reduction (case FF4-q, 56%DR).
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Figure 5.12: The characteristic strain-rates in LDR (case CC3-q, 33%DR) and HDR (case
FF4-q, 56%DR) regimes compared to Newtonian flow (case NN) at (a-b)
z+ ≈ 50 and (c-d) z+ ≈ 100. ·····, Newtonian flow (case NN); – – –, viscoelastic
flow at low drag reduction (case CC3-q, 33%DR); ——, viscoelastic flow at
high drag reduction (case FF4-q, 56%DR).
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energy spectra of figures 5.6-5.8 and the characteristic strain-rate of figures 5.11 and

5.12 show a feature which is not predicted by classical theories, namely, a pileup of

the streamwise kinetic energy and an enhanced characteristic strain-rate at the large

scales in drag reduced flow.

This pileup of streamwise turbulence kinetic energy in the large scales is observed

both when these scales are supposed to experience a decay according to classical

theories (as with z+ < 30 in the LDR case or z+ < 100 in the HDR case) or when the

scales are supposed to be unaffected by the polymer according to the classical theories

(as with z+ = 50 in the LDR case). These features indicate that a more subtle

mechanism is at work in polymer drag reduction than that suggested by classical

theories.

5.4 Role of pressure-strain in establishing anisotropy

The key to mechanism of polymer drag reduction lies in a secondary feature of the

drain of energy from the turbulent scales which are affected by the polymer according

to classical theories. In these affected scales, the drain of energy results in a drop in

all components of the strain-rate tensor, including the diagonal components, as shown

in figures 5.13-5.15. This drop in the strain-rate results in a proportionate drop in

the pressure-strain correlation at these and neighboring scales, which inhibits the

transfer of turbulence kinetic energy from the streamwise component to the cross-

stream components at these scales. When this drop in pressure-strain correlation

extends to the largest energy containing eddies, the turbulence kinetic energy which is

transferred from the mean flow to turbulence is trapped in the streamwise component
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Figure 5.13: The normalized one-dimensional spectral density of the diagonal components
of strain-rate in LDR (case CC3-q, 33%DR) and HDR (case FF4-q, 56%DR)
regimes compared to Newtonian flow (case NN) at z+ ≈ 30. ·····, Newtonian
flow (case NN); – – –, viscoelastic flow at low drag reduction (case CC3-q,
33%DR); ——, viscoelastic flow at high drag reduction (case FF4-q, 56%DR).
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Figure 5.14: The normalized one-dimensional spectral density of the diagonal components
of strain-rate in LDR (case CC3-q, 33%DR) and HDR (case FF4-q, 56%DR)
regimes compared to Newtonian flow (case NN) at z+ ≈ 50. ·····, Newtonian
flow (case NN); – – –, viscoelastic flow at low drag reduction (case CC3-q,
33%DR); ——, viscoelastic flow at high drag reduction (case FF4-q, 56%DR).
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Figure 5.15: The normalized one-dimensional spectral density of the diagonal components
of strain-rate in LDR (case CC3-q, 33%DR) and HDR (case FF4-q, 56%DR)
regimes compared to Newtonian flow (case NN) at z+ ≈ 100. ·····, Newtonian
flow (case NN); – – –, viscoelastic flow at low drag reduction (case CC3-q,
33%DR); ——, viscoelastic flow at high drag reduction (case FF4-q, 56%DR).
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of these large scale eddies and cannot be redistributed to the cross-stream directions.

This results in a sharp drop in the wall normal turbulence intensity and the Reynolds

shear stress, as seen in figures 5.4 and 5.6-5.8. This drop in the Reynolds shear

stress, in turn, results in a drop in the rate of turbulence production and leads to

drag reduction. Furthermore, the energy trapped in the streamwise component can

no longer cascade to the small scales, leading to further decay of Eαα(ki) (figures 5.6-

5.8) and s+(k+
i , z

+) (figures 5.10, 5.11 & 5.12) in the small scales. This decay further

amplifies the features described above. Thus the miniscule extraction of energy by the

polymer at the affected turbulent scales starts a self-amplifying sequence of events,

which leads to cessation of turbulence production and results in drag reduction. For

effective drag reduction, the initial minute extraction of energy by the polymer needs

to extend to the largest turbulent scales at wall-normal locations where the peak of

production occurs, as seen in the Weτb ≈ 150 data in figures 5.6-5.8 and 5.10.

Examination of the various terms in the turbulence kinetic energy budget (eqn.5.1

& 5.2) gives a picture consistent with the above, as shown in figures 5.16, 5.17 and

5.18. The pressure-strain correlation, 〈Παα〉+, in drag reduced flow shows a significant

drop compared to Newtonian flow, as shown in figures 5.16(a-c). In the LDR case, this

attenuation is most prominently observed for z+ < 70, where the characteristic strain-

rate (figures 5.9, 5.10, 5.11 & 5.12) shows a noticeable decay compared to Newtonian

flow. In the HDR case, 〈Παα〉+ is reduced throughout the cross-section of the channel,

which is again consistent with the range of affected scales at Weτb ≈ 150 in figures

5.10, 5.11 and 5.12. These observations are consistent with the assumption that the

drop in the strain-rate is the source of the drop in the pressure-strain correlation.
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Figure 5.16: Components of turbulence kinetic energy budgets in LDR (case CC3-q,
33%DR) and HDR (case FF4-q, 56%DR) regimes compared to Newtonian
flow (case NN): (a-c) pressure-strain correlation, 〈Παα〉+; (d-f) turbulence
production, 〈Pαα〉+, and viscous dissipation, 〈εαα〉+. (a,d) streamwise direc-
tion; (b,e) spanwise direction; (c,f) wall-normal direction. ·····, Newtonian flow
(case NN); – – –, viscoelastic flow at low drag reduction (case CC3-q, 33%DR);
——, viscoelastic flow at high drag reduction (case FF4-q, 56%DR).
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Figure 5.17: Components of turbulence kinetic energy budgets in LDR (case CC3-q,
33%DR) and HDR (case FF4-q, 56%DR) regimes compared to Newtonian

flow (case NN): (a-c) sum of transport terms, 〈t(Σ)
αα 〉+ = 〈t(v)αα+ t

(press)
αα + t

(R)
αα +

t
(p)
αα〉+; (d-f) energy transfer from turbulence to the polymer, 〈Tαα〉+. (a,d)
streamwise direction; (b,e) spanwise direction; (c,f) wall-normal direction. ·····,
Newtonian flow (case NN); – – –, viscoelastic flow at low drag reduction (case
CC3-q, 33%DR); ——, viscoelastic flow at high drag reduction (case FF4-q,
56%DR).
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Figure 5.18: Turbulence kinetic energy and polymer elastic energy budgets in LDR (case
CC3-q, 33%DR) and HDR (case FF4-q, 56%DR) regimes compared to New-
tonian flow (case NN): (a) turbulence production, 〈Pii〉+, and viscous dissi-
pation, 〈εii〉+; (b) energy transfer from turbulence to the polymer, 〈Tii〉+; (c)
sum of transport terms, 〈t(Σ)

ii 〉+ = 〈t(v)ii + t
(press)
ii + t

(R)
ii + t

(p)
ii 〉+; (d) energy

transfer from the mean flow to the polymer, 〈TU 〉+, and polymer dissipation,
〈εp〉+; (e) energy transfer from turbulence to the polymer, 〈Tii〉+; (f) polymer
energy transport, 〈tp〉+. · · · · ·, Newtonian flow (case NN); – – –, viscoelastic
flow at low drag reduction (case CC3-q, 33%DR); ——, viscoelastic flow at
high drag reduction (case FF4-q, 56%DR).
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The drop in the pressure-strain correlation leads to a drop in the rate of turbulence

production, 〈P11〉+, as shown in figures 5.16(d) and 5.18(a). In the LDR case, this

drop in the rate of turbulence production is observed for z+ < 20, while in the HDR

case it is observed for z+ < 70. These z+ ranges are consistent with the z+ ranges for

which the largest turbulent eddies are affected by the polymer in figures 5.10(a-d).

The drop in the turbulence production results in a proportionate drop in the rate of

viscous dissipation, 〈εαα〉+, as shown in figures 5.16(d-f) and 5.18(a), as well as in

transport terms, 〈t(Σ)
αα 〉+, as shown in figures 5.17(a-c) and 5.18(c). Figures 5.17(d-f)

and 5.18(b) show the rates of energy transfer from turbulence to the polymer, 〈Tαα〉+.

The most noticeable feature of 〈Tαα〉+ (figures 5.17d-5.17f) and its sum, 〈Tii〉+ (figure

5.18b), is their insignificant magnitude compared to the rates of turbulence production

or dissipation. In the outer region (z+ > 20 in the LDR case and z+ > 30 in the

HDR case), −〈Tαα〉+ is negative in all components, indicating a transfer of energy

from turbulence to the polymer on average. However, in the near-wall region, energy

is observed to transfer from the polymer to turbulence in the streamwise component

on average. This is simply a reflection of the biaxial flow which is set up by the

streamwise vortices in the near-wall region, and is not believed to be dynamically

significant. This biaxial flow stretches the polymer in the cross-stream directions,

while forcing the polymer to recoil in streamwise direction. Through the stretching

process, the polymer absorbs energy from the cross-stream components of turbulence,

while through recoiling process it releases its energy into the streamwise component

of turbulence.

Figures 5.18(a-c) and 5.18(d-f) show the total turbulence kinetic energy and poly-
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mer elastic energy budgets in the LDR and HDR cases compared to Newtonian flow.

The total kinetic energy is dominated by the streamwise component, and thus its

behavior is similar to that discussed for the streamwise kinetic energy in figures 5.16

and 5.17. In addition to the small transfer of energy 〈Tii〉+ from turbulence to the

polymer, the polymer energy budget also shows a transfer of energy 〈TU〉+ from the

mean flow to the polymer. The magnitude of the energy transfer 〈TU〉+ from the mean

flow to the polymer is much larger than the energy transfer 〈Tii〉+ from turbulence

to the polymer. But the effect on drag reduction of this transfer from the mean flow

is not believed to be dynamically significant. The polymer dissipation, 〈εp〉+, mostly

reflects the transfer of energy from the mean flow 〈TU〉+, while the polymer transport

〈tp〉+ is insignificant in magnitude.

The drop in pressure-strain correlation, which we have identified as the key to

polymer drag reduction has been mentioned as a possible source of polymer drag

reduction going back to Tiederman (1990). Several recent computational studies

(Ptasinski, et al., 2003; Stone, et al., 2004; Li & Graham, 2007) have also attributed

polymer drag reduction to a drop in pressure-strain correlation. However, in these

studies the drop in pressure-strain correlation has been attributed to a drop in the

fluctuating pressure, not the fluctuating strain-rate as argued in the present study.

To investigate this issue, in figures 5.19(a) and figures 5.19(d-f) we show the

normalized r.m.s. pressure fluctuation, p+rms, and the normalized r.m.s. strain-rate

fluctuation, s+ii,rms, in the LDR and HDR regimes compared to Newtonian flow. It can

be seen that while in the LDR case p+rms is lower than Newtonian, in the HDR case

it is actually higher. In contrast, all diagonal components of s+ii,rms are observed to
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Figure 5.19: (a) total r.m.s. pressure fluctuations, (b) slow part of r.m.s. pressure fluc-
tuations, (c) rapid and polymer parts of r.m.s. pressure fluctuations, (d-f)
The diagonal components of normalized r.m.s. strain-rate fluctuation in LDR
(case CC3-q, 33%DR) and HDR (case FF4-q, 56%DR) regimes compared to
Newtonian flow (case NN). ·····, Newtonian flow (case NN); – – –, viscoelastic
flow at low drag reduction (case CC3-q, 33%DR); ——, viscoelastic flow at
high drag reduction (case FF4-q, 56%DR).
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drop with the magnitude of the drop increasing with increasing drag reduction with

magnitude similar to the drops observed in 〈Παα〉+ in figures 5.16(a-c). To investigate

the behavior of p+rms in more detail, in figures 5.19(b-c), we plot the slow, rapid and

polymer contributions to p+rms as defined by Kim (1989) and Ptasinski, et al. (2003)

as

∂2p′r
∂x2

i

=
∂2

∂xi∂xj
(−u′

iUj − Uiu
′
j) B.C. ‖∂p

′
r

∂z
= 0, (5.12)

∂2p′s
∂x2

i

=
∂2

∂xi∂xj
(−u′

iu
′
j + 〈u′

iu
′
j〉) B.C. ‖∂p

′
s

∂z
= νs

∂2w′

∂z2
, (5.13)

∂2p′p
∂x2

i

=
∂2

∂xi∂xj

(τ ′p,ij) B.C. ‖
∂p′p
∂z

=
∂τ ′p,zj
∂xj

. (5.14)

With increasing drag reduction, the slow part of r.m.s. pressure fluctuation, p+s,rms

(figure 5.19b), is observed to monotonically drop, while the polymer part of r.m.s.

pressure fluctuation, p+p,rms (figure 5.19c), is observed to monotonically grow. In

contrast, the rapid part of r.m.s. pressure fluctuation, p+r,rms (figure 5.19c), drops in

the LDR case, but becomes higher than Newtonian in the HDR case. These results

suggest that the growth of p+rms is due to the growth of p+p,rms and p+r,rms. All these

results indicate that the drop in the rate of pressure-strain correlation is due to the

reduced strain-rate rather than the change in pressure fluctuations.

5.5 Effect of polymer concentration

To verify that the mechanism of drag reduction described in the previous sections

for saturation concentrations also applies to concentrations below saturation in this

section. We investigate the effect of polymer concentration on the features described

in § 5.2 through § 5.4 for Weτb ≈ 35 and Weτb ≈ 150. At both Weissenberg numbers,
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Weτb ≈ 35
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Figure 5.20: Effect of polymer concentration on the predicted second-order turbulence
statistics atWeτb ≈ 35: (a) mean velocity profiles; (b) Reynolds shear stresses
and polymer shear stresses; (c) streamwise and spanwise turbulence intensi-
ties; (d) wall-normal turbulence intensities. · · · · ·, Newtonian (case N); ---,
β ≈ 0.999996 (case C7-l); – ·· –, β ≈ 0.9996 (case C5-l); – · –, β ≈ 0.996
(case C4-l); – – –, β ≈ 0.98 (case C4.1-l); ——, β ≈ 0.96 (case C3-l); —◦—,
β ≈ 0.89 (case C3.1-l); —△—, β ≈ 0.80 (case C3.2-l); —▽—, β ≈ 0.72 (case
C2-l).
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Weτb ≈ 150
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Figure 5.21: Effect of polymer concentration on the predicted second-order turbulence
statistics at Weτb ≈ 150: (a) mean velocity profiles; (b) Reynolds shear
stresses and polymer shear stresses; (c) streamwise and spanwise turbulence
intensities; (d) wall-normal turbulence intensities. · · · · ·, Newtonian (case
NN); ---, β ≈ 0.999998 (case F8-q); – ·· –, β ≈ 0.9998 (case F6-q); —– ·—–,
β ≈ 0.998 (case FF5-q); —– —–, β ≈ 0.98 (case FF4-q); ——, β ≈ 0.86 (case
FF3-q).
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drag reduction monotonically increases for 0.98 . β < 1, plateaus for 0.9 . β . 0.98,

and slowly decays for β . 0.9. A summary of the simulation parameters for these

simulations is given in table 2.2.

Figures 5.20 and 5.21 show the one-point flow statistics in stationary viscoelastic

turbulent flow at various concentrations for Weτb ≈ 35 and Weτb ≈ 150, respectively.

At Weτb ≈ 35, increasing the concentration up to the saturation concentration leads

to a thickening of the buffer layer and an upward shift of the mean velocity profile

from Newtonian values as shown in figure 5.20(a). These changes are accompanied

by a drop in the Reynolds shear stress, as shown in figure 5.20(b). The streamwise

turbulence intensity shows a monotonic increase in the magnitude of its peak and a

shift of the peak away from the wall with increasing concentration up to the satura-

tion concentration, while the cross-stream turbulence intensities decay, as shown in

figures 5.20(c-d). Increasing the concentration beyond the saturation concentration

leads to a slight drop in the magnitude of drag reduction which is reflected in all

the flow statistics, as shown in table 2.2 and figure 5.20. At Weτb ≈ 150, the mean

velocity profile adjusts from the Newtonian profile to the ultimate profile with increas-

ing polymer concentration, while the Reynolds shear stress monotonically decays, as

shown in figures 5.21(a-b). The streamwise turbulence intensity shows an increase in

its peak magnitude with increasing polymer concentration for 0.998 . β < 1, but the

magnitude of the peak in the streamwise turbulence intensity drops back to values

comparable to the Newtonian value at higher concentrations (β & 0.98). Further-

more, the peak of the streamwise turbulence intensity shifts towards the center of

the channel with increasing concentration, while the cross-stream turbulence inten-
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sities monotonically decay (figures 5.21c & 5.21d). Overall, the features observed in

the turbulence intensities at both Weissenberg numbers indicate that the turbulence

structure at both Weissenberg numbers becomes more anisotropic with increasing

polymer concentration up to the saturation concentration.

To investigate the effect of concentration on the anisotropy state of turbulence,

figures 5.22 and 5.23 show the anisotropy-invariant maps at Weτb ≈ 35 for 0.72 .

β . 0.9996 and at Weτb ≈ 150 for 0.86 . β . 0.9998, respectively. At Weτb ≈ 35,

the degree of anisotropy rapidly increases with increasing polymer concentration up

to the saturation concentration (β ≈ 0.96), but remains nearly unchanged at higher

concentrations, as shown in figure 5.22. The shift towards the one-dimensional tur-

bulence limit is confined to 9 . z+ . 50 at the lowest concentration (β ≈ 0.9996),

but extends to 11 . z+ . 100 at the saturation concentration (β ≈ 0.96). Increas-

ing the concentration beyond the saturation concentration only slightly modifies the

anisotropy state of turbulence in the channel. Similar trends are also observed at

Weτb ≈ 150 as shown in figure 5.23, although the features are more enhanced than

those at Weτb ≈ 35. The degree of anisotropy of turbulence rapidly increases with

increasing concentration. The shift towards the one-dimensional turbulence limit is

observed for 9 . z+ . 100 at the lowest concentration (β ≈ 0.9998) and it extends

to 12 . z+ . 132 (center of the channel) at the highest concentration (β ≈ 0.86).

We next examine the effect of polymer concentration on the characteristic strain-

rate and compare the DNS results with the predictions of classical theories. Figures

5.24 and 5.25 show the characteristic strain-rate at Weτb ≈ 35 with varying polymer

concentration for 0.72 . β . 0.9996 compared to 1/T ∗+ of Lumley’s theory (eqn.5.9)
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Figure 5.22: Effect of polymer concentration on anisotropy-invariant maps at Weτb ≈ 35:
(a) β ≈ 0.9996 (case C5-l); (b) β ≈ 0.996 (case C4-l); (c) β ≈ 0.96 (case
C3-l); (d) β ≈ 0.89 (case C3.1-l); (e) β ≈ 0.80 (case C3.2-l); (f) β ≈ 0.72
(case C2-l).
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Figure 5.23: Effect of polymer concentration on anisotropy-invariant maps at Weτb ≈ 150:
(a) Newtonian (case NN); (b) β ≈ 0.9998 (case F6-q); (c) β ≈ 0.998 (case
FF5-q); (d) β ≈ 0.98 (case FF4-q); (e) β ≈ 0.86 (case FF3-q).
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Figure 5.24: Effect of polymer concentration on the characteristic strain-rate atWeτb ≈ 35:
(a-b) β ≈ 0.9996 (case C5-l); (c-d) β ≈ 0.996 (case C4-l); (e-f) β ≈ 0.96
(case C3-l). (a,c,e) streamwise spectra; (b,d,f) spanwise spectra. – ·· –, 1/T ∗+

from Lumley’s theory; – · –, lowest 1/T ∗∗+(z+) from the revised version of de
Gennes’s theory; ---, scales with s+(k+i , z

+) > 1/T ∗∗+(z+); ——, scales with
s+(k+i , z

+) < 1/T ∗∗+(z+).
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Figure 5.25: Effect of polymer concentration on the characteristic strain-rate atWeτb ≈ 35:
(a-b) β ≈ 0.89 (case C3.1-l); (c-d) β ≈ 0.80 (case C3.2-l); (e-f) β ≈ 0.72
(case C2-l). (a,c,e) streamwise spectra; (b,d,f) spanwise spectra. – ·· –, 1/T ∗+

from Lumley’s theory; – · –, lowest 1/T ∗∗+(z+) from the revised version of de
Gennes’s theory; ---, scales with s+(k+i , z

+) > 1/T ∗∗+(z+); ——, scales with
s+(k+i , z

+) < 1/T ∗∗+(z+).
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Figure 5.26: Effect of polymer concentration on the characteristic strain-rate at Weτb ≈
150: (a-b) β ≈ 0.9998 (case F6-l); (c-d) β ≈ 0.998 (case FF5-q). (a,c) stream-
wise spectra; (b,d) spanwise spectra. – ·· –, 1/T ∗+ from Lumley’s theory; – · –,
lowest 1/T ∗∗+(z+) from the revised version of de Gennes’s theory; ---, scales
with s+(k+i , z

+) > 1/T ∗∗+(z+); ——, scales with s+(k+i , z
+) < 1/T ∗∗+(z+).
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Figure 5.27: Effect of polymer concentration on the characteristic strain-rate at Weτb ≈
150: (a-b) β ≈ 0.98 (case FF4-q); (c-d) β ≈ 0.86 (case FF3-q). (a,c) stream-
wise spectra; (b,d) spanwise spectra. – ·· –, 1/T ∗+ from Lumley’s theory; – · –,
lowest 1/T ∗∗+(z+) from the revised version of de Gennes’s theory; ---, scales
with s+(k+i , z

+) > 1/T ∗∗+(z+); ——, scales with s+(k+i , z
+) < 1/T ∗∗+(z+).
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and 1/T ∗∗+(z+) of the revised de Gennes’s theory (eqn.5.10). At concentrations below

saturation, Lumley’s theory and the revised de Gennes’s theory give very different

predictions for the range of affected scales. At the lowest concentration (β ≈ 0.9996),

the revised de Gennes’s theory predicts an effect of polymer on turbulence only for

the mid-range and small scales at z+ . 70, while Lumley’s theory predicts an effect

at all scales for z+ . 50 and at mid-range to small scales for 50 . z+ < 205. The

difference between the two theories becomes less pronounced at saturation concentra-

tions (β ≈ 0.96) and beyond. At all concentrations, the predictions of de Gennes’s

revised theory for the range of affected scales are consistent with the ranges of z+

in the anisotropy-invariant maps (figure 5.22) where the turbulence shifts towards

the one-dimensional turbulence limit, while the prediction of Lumley’s theory agree

with the data from anisotropy-invariant maps only at concentration near saturation.

Furthermore, the characteristic strain-rate for only the z+ ranges at which the revised

de Gennes’s theory predicts an effect of the polymer on turbulence shows enhanced

dissipation. Similar trends are also observed at Weτb ≈ 150 with varying the polymer

concentration for 0.86 . β . 0.9998 as shown in figures 5.26 and 5.27. At the lowest

concentration (β ≈ 0.9998), the Lumley’s theory predicts an effect of the polymer at

all scales throughout the channel. In contrast, the revised de Gennes’s theory pre-

dicts the effect of the polymer to be limited to mid-range and small scales for z+ . 85

at the lowest concentration (β ≈ 0.9998). The difference between the two theories

becomes smaller with increasing concentration and becomes identical at the highest

concentration (β ≈ 0.86). Once again, only the z+ ranges predicted by the revised

theory of de Gennes are consistent with observations in anisotropy-invariant maps
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(figure 5.23) at lower concentrations. Similarly, only the characteristic strain-rate at

z+ ranges for which the revised theory of de Gennes predicts an effect of the polymer

on turbulence shows enhanced dissipation.

Lastly, we examine the effect of polymer concentration on the turbulence and

polymer energetics. Figures 5.28 and 5.29 show the effect of polymer concentration

on the pressure-strain correlation, the total turbulence kinetic energy budget and

the polymer elastic energy budget at Weτb ≈ 35, respectively. All the components

of the pressure-strain correlation drop with increasing concentration up to the sat-

uration concentration, as shown in figures 5.28(a-c). At the lowest concentration

(β ≈ 0.999996), no noticeable change is observed in the pressure-strain correlation

compared to Newtonian flow. At β ≈ 0.9996, the pressure-strain correlation drops

relative to Newtonian for z+ < 50. At higher concentrations (β & 0.996), a drop of

pressure-strain correlation compared to Newtonian is observed for z+ < 70. These

z+ ranges are consistent with the ranges where the polymer affects the turbulence

according to the revised de Gennes’s theory in the characteristic strain-rate plots

of figures 5.24 and 5.25. The rate of turbulence production also rapidly drop for

0.96 . β ≤ 1, and shows little change at higher concentrations, as shown in figure

5.28(d). Once again, no noticeable change is observed in the turbulence production

at the lowest concentration (β ≈ 0.999996), while a drop of turbulence production

compared to Newtonian is observed for z+ < 15 at β ≈ 0.9996, and for z+ < 20

at higher concentrations (β & 0.996). The trends in these z+ ranges are consistent

with the trends in z+ ranges for which the largest turbulent scales are affected by the

polymer according to the revised de Gennes’s theory shown in figures 5.24 and 5.25.
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Figure 5.28: Effect of polymer concentration on the predicted turbulence kinetic energy
budgets at Weτb ≈ 35: (a-c) pressure-strain correlation, 〈Παα〉+; (d) turbu-
lence production, 〈Pii〉+, and viscous dissipation, 〈εii〉+; (e) energy transfer

from turbulence to the polymer, 〈Tii〉+; (f) sum of transport terms, 〈t(Σ)
ii 〉+.

· · · · ·, Newtonian (case N); ---, β ≈ 0.999996 (case C7-l); – ·· –, β ≈ 0.9996
(case C5-l); – · –, β ≈ 0.996 (case C4-l); – – –, β ≈ 0.98 (case C4.1-l); ——,
β ≈ 0.96 (case C3-l); —◦—-, β ≈ 0.89 (case C3.1-l); —N—, β ≈ 0.80 (case
C3.2-l); —H—, β ≈ 0.72 (case C2-l).
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Figure 5.29: Effect of polymer concentration on the predicted polymer elastic energy bud-
gets at Weτb ≈ 35: (a) energy transfer from the mean flow to the polymer,
〈TU 〉+, and polymer dissipation, 〈εp〉+; (b) energy transfer from turbulence
to the polymer, 〈Tii〉+; (c) polymer energy transport, 〈tp〉+. ·····, Newtonian
(case N); ---, β ≈ 0.999996 (case C7-l); – ·· –, β ≈ 0.9996 (case C5-l); – · –,
β ≈ 0.996 (case C4-l); – – –, β ≈ 0.98 (case C4.1-l); ——, β ≈ 0.96 (case
C3-l); —◦—-, β ≈ 0.89 (case C3.1-l); —N—, β ≈ 0.80 (case C3.2-l); —H—,
β ≈ 0.72 (case C2-l).
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Figure 5.30: Effect of polymer concentration on the predicted turbulence kinetic energy
budgets at Weτb ≈ 150: (a-c) pressure-strain correlation, 〈Παα〉+; (d) turbu-
lence production, 〈Pii〉+, and viscous dissipation, 〈εii〉+; (e) energy transfer

from turbulence to the polymer, 〈Tii〉+; (f) sum of transport terms, 〈t(Σ)
ii 〉+.

· · · · ·, Newtonian (case NN); ---, β ≈ 0.999998 (case F8-q); – ·· –, β ≈ 0.9998
(case F6-q); —– ·—–, β ≈ 0.998 (case FF5-q); —– —–, β ≈ 0.98 (case FF4-
q); ——, β ≈ 0.86 (case FF3-q).
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Figure 5.31: Effect of polymer concentration on the predicted polymer elastic energy bud-
gets at Weτb ≈ 150: (a) energy transfer from the mean flow to the polymer,
〈TU 〉+, and polymer dissipation, 〈εp〉+; (b) energy transfer from turbulence
to the polymer, 〈Tii〉+; (c) polymer energy transport, 〈tp〉+. ·····, Newtonian
(case NN); ---, β ≈ 0.999998 (case F8-q); – ·· –, β ≈ 0.9998 (case F6-q); —–
·—–, β ≈ 0.998 (case FF5-q); —– —–, β ≈ 0.98 (case FF4-q); ——, β ≈ 0.86
(case FF3-q).
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The drop in turbulence production is also reflected in the rate of viscous dissipation,

〈εii〉+ (figure 5.28d) and the sum of transport terms, 〈t(Σ)
ii 〉+ (figure 5.28f). In the

polymer elastic energy budget shown in figure 5.29, the magnitudes of all the terms in

the polymer elastic energy budget including the energy transfer from the mean flow

to the polymer, 〈TU〉+ (figure 5.29a), polymer dissipation, 〈εp〉+ (figure 5.29a), energy

transfer from turbulence to the polymer, 〈Tii〉+ (figure 5.29b), and polymer energy

transport, 〈tp〉+ (figure 5.29c) monotonically increase with increasing concentration.

The energy transfer from the mean flow to the polymer is an order of magnitude

larger than the energy transfer from turbulence to the polymer and dominates poly-

mer dissipation at all concentrations. However, this transfer from the mean flow to

the polymer is not believed to be significant, because even though it keeps rising at

concentrations above the saturation concentration it does not lead to any additional

drag reduction.

Figures 5.30 and 5.31 show the effect of the polymer concentration on the pressure-

strain correlation, the total turbulence kinetic energy budget and the polymer elastic

energy budget at Weτb ≈ 150, respectively. The pressure-strain correlation mono-

tonically drops with increasing polymer concentration, as shown in figures 5.30(a-c).

No noticeable drop in pressure-strain correlation occurs at the lowest concentration

(β ≈ 0.999998). At higher concentrations, the pressure-strain correlation shows a

drop relative to Newtonian for z+ < 40 at β ≈ 0.9998, for z+ < 80 at β ≈ 0.998,

and throughout the channel at β ≈ 0.98 and 0.86. These z+ ranges are consistent

with the z+ ranges in which de Gennes’s revised theory predicts an effect by the

polymer on the flow in characteristic strain-rate of figures 5.26 and 5.27. The rate
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of turbulence production (figures 5.30d) also monotonically drops with increasing

concentration. No noticeable drop in turbulence production occurs at the lowest con-

centration (β ≈ 0.999998). The turbulence production shows a drop in magnitude

compared to Newtonian for z+ < 15 at β ≈ 0.9998, for z+ < 30 at β ≈ 0.998, and

throughout the channel at higher concentrations. Once again, the trends in these z+

ranges are consistent with the trends in z+ ranges for which the largest turbulent

scales are affected by the polymer according to the revised de Gennes’s theory in

figures 5.26 and 5.27. As a result of the reduced turbulence production, the rate of

viscous dissipation, 〈εii〉+ (figure 5.30d) and the sum of transport terms, 〈t(Σ)
ii 〉+ (fig-

ure 5.30f) monotonically drop with increasing concentration. The magnitudes of the

energy transfer from the mean flow to the polymer, 〈TU〉+ (figure 5.31a), polymer dis-

sipation, 〈εp〉+ (figure 5.31a), energy transfer from turbulence to the polymer, 〈Tii〉+

(figure 5.31b), and polymer energy transport, 〈tp〉+ (figure 5.31c) are also observed

to increase monotonically with increasing polymer concentration.

These results suggest that the revised theory of de Gennes can correctly predict

the range of affected scales by the polymer at all concentrations, while the prediction

of Lumley’s theory are valid only at or near saturation concentrations.

5.6 Summary of the mechanism of drag reduction

The results of § 5.2 through § 5.5 show that the main effect of the polymer is ex-

traction of a small amount, of no more than ∼ 5% on a volume averaged basis, of

turbulence kinetic energy from turbulent scales which have a timescale shorter than

the polymer relaxation time. This extraction of energy leads to a decrease in the
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fluctuating strain-rate at scales which have redirected a minimum fraction (∼ 3%) of

their turbulence kinetic energy to the elastic energy of the polymer. The reduction

of the fluctuating strain-rate at these scales, in turn, reduces the magnitude of the

pressure-strain correlation at these and neighboring scales, thus inhibiting the ability

of turbulence to transfer energy from the streamwise to the cross-stream directions at

these scales. When this drop in the pressure-strain correlation extends to the largest

energy-containing turbulent scales, the turbulence kinetic energy which has trans-

ferred from the mean flow to turbulence is trapped in the streamwise component and

cannot be redistributed to the cross-stream directions. This results in a sharp drop in

the wall-normal turbulence intensity and the Reynolds shear stress. This drop in the

Reynolds shear stress, in turn, results in a drop in the rate of turbulence production

and leads to drag reduction. Furthermore, the energy trapped in the streamwise di-

rection can no longer cascade to the small scales due to the anisotropy of these scales,

leading to further decay of the fluctuating strain-rate and turbulence kinetic energy in

the small scales. This decay further amplifies the features described above. Thus the

miniscule extraction of energy by the polymer at the affected turbulent scales starts a

self-amplifying sequence of events, which leads to cessation of turbulence production

and results in drag reduction. For effective high drag reduction, the initial minute

extraction of energy by the polymer needs to extend to the largest turbulent scales

at wall-normal locations where the peak of turbulence production occurs.



Chapter VI

Summary and Conclusions

The present study was initiated with the following objectives in mind: (i) Develop

the required numerical methods for accurate and efficient Direct Numerical Simula-

tion (DNS) of drag reduction by dilute polymer solutions in wall-bounded flows; (ii)

Perform DNS of drag reduction by homogeneous, dilute polymer solutions in turbu-

lent channel flow, and validate the DNS results through ‘quantitative’ comparisons

with the available experimental data; (iii) Use the DNS results to investigate the

scaling of drag reduction with polymer and flow parameters, such that the ‘optimal’

polymer parameters for drag reduction in a given turbulent flow can be determined a

priori; (iv) Using the DNS results, clarify the detailed mechanism of drag reduction

by dilute polymer solutions.

To this end, a novel mixed Eulerian-Lagrangian scheme has been developed. In

this scheme, the hydrodynamics equations are solved in an Eulerian representation

using standard pseudo-spectral methods (Canuto, et al., 1988), while the polymer dy-

namics equations are solved in a Lagrangian framework using the Backward-tracking

Lagrangian Particle Method (BLPM) suggested by Wapperom, Keunings & Legat

(2000). The scheme can handle realistic polymer parameters and incurs a polymeric
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artificial stress diffusivity smaller than those needed to stabilize the calculations in

conventional Eulerian schemes. The main advantage of the scheme over conventional

Eulerian scheme is cost. The computational cost of the mixed Eulerian-Lagrangian

scheme is one-fifth of that associated with conventional Eulerian scheme when a tri-

linear interpolation scheme is used for backward-tracking the position of polymer

particle, and one-third of that associated with conventional Eulerian scheme when

a quadratic interpolation scheme is used. This has allowed us to preform detailed

parametric studies over a range of polymer parameters, which would be prohibitive

with conventional Eulerian schemes.

Using the numerical methods described above, we have performed a series of para-

metric studies to clarify the role of the three polymer parameters, namely, the polymer

relaxation time or Weissenberg number, Weτb ≡ λu2
τb
/νs, the polymer number density,

npkBT/ρu
2
τb

(or concentration), and the polymer extensibility parameter, b, on drag

reduction, where λ denotes the polymer relaxation time, uτb is the friction velocity in

the base Newtonian flow, νs is the solvent viscosity, ρ is the density, np is the polymer

number density, kB is the Boltzmann constant, and T is the absolute temperature. All

DNS studies were performed in turbulent channel flows at a base Reynolds number of

Reτb ≡ uτbh/νs ≈ 230. The DNS studies covered the range of Weissenberg numbers

corresponding to 10 ≤ Weτb ≤ 150, polymer extensibility parameters corresponding

to 4500 ≤ b ≤ 450, 000 (corresponding to PEO of 3× 105 < Mw < 108), and polymer

number densities corresponding to 1 × 10−8 ≤ npkBT/ρu
2
τb

≤ 1 × 10−2 (or viscosity

ratios of 0.72 ≤ β ≤ 0.99999999), where β = µs/µo denotes the ratio of the solvent

viscosity to the zero-shear viscosity of the polymer solution). In the Low Drag Re-
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duction (LDR) regime, computations were performed in channels of size 10h×5h×2h

with a resolution of 128× 128× 129 in the streamwise, spanwise and wall-normal di-

rections, respectively. In the High Drag Reduction (HDR) regime, computations were

performed in channels of size 40h×10h×2h with a resolution of 512×256×129. All

computations were performed with a FENE-P dumbbell model of the polymer, were

driven at constant flow rate, and were initialized by introducing the polymer in its

coiled state into the fully-developed base Newtonian turbulent flow. The results show

that the full range of drag reduction from onset of drag reduction to Maximum Drag

Reduction (MDR) can be reproduced in DNS using realistic polymer parameters and

dilute concentrations (0.9 < β < 1.0), with statistics in quantitative agreement with

the available experimental data.

Using the above DNS results, we have investigated the scaling of drag reduction

with polymer and flow parameters. Onset of drag reduction was found to be a function

of both the polymer concentration and Weissenberg number, as originally suggested

by de Gennes (1986). However, the onset criteria suggested by de Gennes (1986) was

found to be several orders of magnitude off from the DNS onset data. To remedy

this problem, a revised version of de Gennes’s theory was developed. In this revised

theory, (i) it is assumed that the dynamics of turbulence at a given scale is affected

by the polymer when a minimal fraction, of ∼ 3%, of the turbulence kinetic energy at

that scale is redirected into the elastic energy of the polymer, as opposed to the 100%

assumed in the original de Gennes’s theory (1986); (ii) the polymer stretching due to

the mean flow and other turbulent scales, which were ignored in the original theory of

de Gennes (1986), are included in the expression for the polymer stretch; (iii) a form
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of the energy spectrum appropriate for finite Reynolds numbers is assumed instead

of the Kolmogorov spectrum used by de Gennes (1986). This revised theory gives

good agreement with the onset data observed in DNS, accurately predicts the range

of turbulent scales affected by the polymer at all values of drag reduction ranging

from onset to MDR, and gives a dimensionality of polymer stretching in agreement

with experiments.

Investigation of the dependence of drag reduction on the flow and polymer pa-

rameters shows that the %DR can be expressed as a set of universal functions of β.

At all Weτb , the magnitude of drag reduction increases monotonically with increasing

polymer concentration for 1.0 > β > 0.98, and saturates at β ≈ 0.98. The magnitude

of drag reduction at saturation is a strong function of the Weissenberg number. A

Weτ ∼ O(Reτ/2) is needed to achieve MDR. These results indicate that the Weis-

senberg number is the most critical parameter in determining the magnitude of drag

reduction, with the polymer concentration playing only a secondary role at concen-

trations below saturation. The results also suggest that in poly-disperse polymer

solutions, drag reduction is primarily due to trace amounts of the highest molecular

weight polymers which give rise to the highest Weissenberg numbers.

Using the above databases, we have identified the detailed mechanism of drag

reduction by dilute polymer solutions in wall-bounded flow. It is found that the main

effect of the polymer is extraction of a small amount, of no more than ∼ 5% on

a volume averaged basis, of turbulence kinetic energy from turbulent scales which

have a timescale shorter than the polymer relaxation time. This extraction of energy

leads to a decrease in the fluctuating strain-rate at scales which have redirected a
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minimum fraction (∼ 3%) of their turbulence kinetic energy to the elastic energy of

the polymer. The reduction of the fluctuating strain-rate at these scales, in turn,

reduces the magnitude of the pressure-strain correlation at these and neighboring

scales, thus inhibiting the ability of turbulence to transfer energy from the streamwise

to the cross-stream directions at these scales. When this drop in the pressure-strain

correlation extends to the largest energy-containing turbulent scales, the turbulence

kinetic energy which has transferred from the mean flow to turbulence is trapped in

the streamwise component and cannot be redistributed to the cross-stream directions.

This results in a sharp drop in the wall-normal turbulence intensity and the Reynolds

shear stress. This drop in the Reynolds shear stress, in turn, results in a drop in the

rate of turbulence production and leads to drag reduction. Furthermore, the energy

trapped in the streamwise direction can no longer cascade to the small scales due to

the anisotropy of these scales, leading to further decay of the fluctuating strain-rate

and turbulence kinetic energy in the small scales. This decay further amplifies the

features described above. Thus the miniscule extraction of energy by the polymer at

the affected turbulent scales starts a self-amplifying sequence of events, which leads

to cessation of turbulence production and results in drag reduction. For effective high

drag reduction, the initial minute extraction of energy by the polymer needs to extend

to the largest turbulent scales at wall-normal locations where the peak of turbulence

production occurs.

The above understanding of mechanism of polymer drag reduction opens up ex-

citing new possibilities for deriving novel turbulence control strategies with high drag

reduction.
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