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CHAPTER I

Introduction

1.1 Background

Sustainable product development has challenged companies that pursue tradi-

tional cost-oriented development. Growing interests in ecology and environmental

regulations force companies to take environmental impact into consideration. How-

ever, traditional designers are inexperienced in environmental impact evaluation and

few specific tools exist that provide information related to sustainable product de-

velopment.

For sustainable development, designers and stakeholders need to factor in the

environmental impact with the traditional product development process over the

product life cycle; this encompasses numerous engineering decisions about product

concepts, process planning and engineering changes. Among the environmental im-

pacts, climate change by Green House Gas (GHG) has been a key issue for industry,

government, and international organizations. Product carbon footprint is the metric

of GHG, including direct emission from fossil fuel combustion and indirect emission

from energy consumption and material flow over the life cycle.

1
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Legislative regulations and international agreements have been prepared to en-

force the effort to reduce carbon footprint. These activities provide companies with

an opportunity to lead a new market with a cap and trade system or carbon tax. The

volume of the carbon market, estimated at US$126 billion in 2008 [3] continues to

grow. Therefore, a method to reduce carbon footprint is essential in product design

decision making.

In order to support carbon reduction, product carbon footprint data needs to

be identified in terms of problematic parts, material, or processes. The high contri-

bution parts should be improved by redesigning parts or processes. To achieve low

product carbon footprint, stakeholders must be informed about the significance of

carbon footprint on design decisions.

1.2 Methodologies for product carbon footprint calculation

Products spend natural resources and produce emissions over their life cycle. The

need for sustainable development leads to regulations of environmental impact. In

order to reduce product emissions, it is critical to identify carbon footprint over the

product lifecycle. Currently, several methods have been proposed to assess carbon

emission over the product lifecycle.

Life-Cycle Assessment (LCA) is an analytic method to assess environmental im-

pact of products over the life cycle. LCA is based on quantitative analysis of total

impact of raw material, manufacturing, use phase and disposal. LCA considers a

number of impacts beyond carbon footprint including ozone layer depletion, acid-
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ification, human toxicity, and photochemical smog. The 14040 series explains the

detailed method of LCA, which includes four steps: goal and scope definition, life-

cycle inventory analysis, lifecycle impact analysis, and interpretation. LCA takes a

holistic approach to the environmental impact of products or processes and provides

reliable carbon footprint assessment. The result of LCA is useful in providing a good

understanding of the cause and effects of environmental impact. However, there is no

single method to define system boundaries for product carbon footprint assessment.

Subjective boundary definition may result in different studies for the same product.

Publicly Available Specification (PAS) 2050 was published by the British Stan-

dard Institute (BSI) in 2008; it is an international standard to assess the lifecycle

greenhouse gas of products. PAS 2050, based on lifecycle assessment, is a simplified

LCA approach. However, PAS 2050 specifies the system boundary with respect to

product carbon footprint, and provides clear requirements for system boundary set-

ting. PAS clarified that the input flow rate is more than 1% of the lifecycle GHG

gas and total excluded gas is less than 5% of total lifecycle GHG. This approach

can provide an understanding of carbon footprint over the product lifecycle. Nev-

ertheless, because PAS 2050 cannot recognize specific issues related to individual

products, Product Category Rules (PCRs), which are reference rules for products in

a specifc categories, is attached to PAS 2050.

Different simplified methods have been proposed with streamlined LCA. Full

LCA analysis requires efforts to gather all related inventory information like mate-

rials, processes and energies. The cost and complexity of LCA has been a barrier to
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applying it to design processes. For this reason, a streamlined LCA method has been

an alternative to reduce time and cost. Some strategies for streamlined LCA are as

follows: removal of life cycle phase, specific inventory parameters, use of qualitative

method, use of surrogate LCI, and screening constituents. Recently, the develop-

ment of software systems to support carbon footprint estimation enables integrating

design tools with carbon footprint analysis. Some researchers have provided a tool to

estimate carbon footprint using a computer aided design (CAD) tool and evaluating

the carbon weight of manufacturing processes. This simplified method facilitates

easy analysis of carbon footprint to allow design modification for reducing carbon

impact.

Once detailed design is completed, carbon footprint calculating tools can be used

to analyze the GHG emission of products over their lifecycle. Currently there exist a

few tools that facilitate carbon footprint calculation in the embodiment design phase.

Thus, the recent research trends of carbon reduction efforts extend the applicable

domain to the early design phase in order to consider the carbon emission of various

design concepts or embodiments.

1.3 Carbon footprint estimation in early design decision

Carbon footprint calculation has been a potential design tool for the environmen-

tal needs of GHG emission reduction over the lifecycle. Until now, carbon footprint

calculating methods have been used to estimate total carbon emission of existing

products and processes. Estimated carbon footprint has been used to identify prod-
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ucts or processes generating high GHG emission and to compare the different GHG

emissions of similar products. As shown in Section 1.2, tools for carbon footprint

calculation can be sufficient in identifying carbon emission in cases where inventory

data and calculating resources are available for an existing product. However, due to

the demands for a supportive tool to develop low GHG emission products, there is a

need for a specific tool able to identify product carbon footprint for a virtual product

with incomplete information. Because 80% or 90% of product design and process

design are determined during the design phase, the effort to reduce GHG emission

can highly influence environmental design when it is performed in the early design

process. There are two applications of carbon footprint estimation to environmental

design process: new product design and engineering changes.

New product design: New product design is a process of requirement real-

ization with time and cost constraints. The typical development process consists of

four phases: needs identification, concept design, embodiment design, and detailed

design. Needs identification phase defines functional requirements and design con-

strains that characterize the scope of product specification. The other three phases

realize design parameters (e.g. dimension, form, material, process, etc.) at different

levels from virtual concept to specific products. During this process, designers are

expected to consider environmental needs in early design decisions. Recent tools

integrated with computer aided design (CAD) systems yield carbon footprint esti-

mates when embodiments and manufacturing information are provided. However, at
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the concept phase products, forms, and processes are not exactly defined. Current

tools of carbon footprint estimation cannot analyze design concepts with incomplete

information. Design information in the concept design phase varies with functional

requirements, material composition, and weight estimation. Such design information

cannot be applied to estimate the carbon footprint of products using current tools.

Engineering changes: Engineering Change (EC) refers to any changes to

shape, dimensions, material, etc. of a part or assembly after the initial design has

been released that are considered inevitable for product development. An EC en-

ables the change of existing products to improve their environmental quality. Ideally,

the carbon footprint of ECs should be estimated with the difference between initial

products and changed products. The changed product information is not completed

until the engineering change process is finished. Because the engineering change is

typically a time-consuming and costly process due to the lifecycle-wide impact esti-

mation, it cannot be repeated to find an environmentally friendly solution of ECs.

Recently, methods to estimate the impact of change have been proposed using statis-

tical methods or dependency modeling. However, these impact estimation methods

cannot be used with current tools for estimating the carbon footprint of ECs. To

reflect the need of carbon reduction in the process of ECs, the carbon emission of

any proposed EC, which is an initial request for change, should be estimated.
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1.4 Knowledge based approach to carbon footprint prediction

Integrating carbon reduction efforts with product development can be achieved

when engineering decisions incorporate carbon footprint considerations. In particu-

lar, company strategy involves decisions in the early design phase and decisions dur-

ing engineering changes. Company designers can achieve reduced carbon footprint

for a new product design by considering alternative decisions on material selection,

process substitution, and design layout. Product redesign can contribute to carbon

reduction with engineering change of environmentally problematic parts.

To estimate carbon emission in design decisions, well-informed product informa-

tion over the product life cycle is required. However, new product designs and engi-

neering changes only provide incomplete information that is not well refined about

virtual products and virtual changes, as shown in Section 1.3. In addition, carbon

estimation needs be performed with minimal delay and cost. However, the tradi-

tional tools for environmental impact assessment are inappropriate in performing

this analysis in the design phase and during engineering change evaluation.

This requirement can be resolved by using previous carbon footprint data. The

overall framework is based on Case-Based Reasoning (CBR) assumes the similarly

designed products have similar carbon footprints. Case-based reasoning is a problem

solving technique to reuse previous knowledge. The method requires the existence of

established knowledge system allowing retrieval of similar product information about

resource consumption over the product life cycle. In addition, an adaptation method

is required to predict the significance of carbon footprint in terms of similar products
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and similar ECs.

This knowledge-based prediction for new products and proposed ECs has three

issues. The first issue is the uncertainty of product realization on design parameters.

Another issue is the need to develop the method to enable fast prediction of car-

bon footprint. The third issue is compatibility in applying the method to a concept

design and to proposed engineering changes. For reuse of previous knowledge, we

retrieve knowledge of similar cases from a database and adjust concept designs and

proposed ECs into the knowledge-based prediction.

1.4.1 Need to define similar cases in new product design and engineering
change

To approximate carbon footprint in early design decisions, one possibility is to

use approximate measure using previous carbon footprint knowledge. In practice,

knowledge within similar products is usually adequate for providing feasible carbon

emission of design options. Hence, retrieving similar cases is the critical issue. Sim-

ilar cases with domain dependent values are identified through data representation

and semantics.

Functional representation for concept design

A design process has been achieved by developing product concepts that divide

and aggregate product function into specific components. Traditionally, geometry or

shape has been the focus of product data representation and exchange. New tools
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that support different phases throughout the product life cycle are being proposed

and developed. These consider not only the "what," but also the "how" and the

"why" of a design. Product information consists of several different components

that are created, used and shared in different phases of the product lifecycle. The

primary goal of product development is to create an artifact satisfying a certain

function. Multiple researchers have focused on defining the function of a product.

This paper uses the interpretation that function is a product’s intended purpose.

Defining or understanding a product in terms of its function is important in product

development and facilitates a wide variety of tasks that include design synthesis,

modeling, and lifecycle analysis to evaluate its sustainability. Thus, there is a need

to capture and describe product functions in such a way that the products’s meaning

is explicitly interpretable by software processes so that the different phases and tools

used within the product lifecycle can consider it for effective decision-making.

Product function is not only required to represent the product design, from con-

cept design to detailed design, but it can also provide a basis for the retrieval system

for product knowledge. Therefore, it should be implemented on the basis of system

architecture like PLM (product life-cycle management) that enables stakeholders to

access required knowledge over product life cycle.

Similarity measure for EC

Evaluation of engineering changes involves assessing the integrated effect of com-

ponents which are affected by the engineering change. It is challenging to detect



10

and evaluate due to product complexity, different information resources and distinct

effects on the life cycle. Some information systems now support prompt response

to engineering changes by providing interoperable communication between stake-

holders. However, evaluating engineering changes remains a bottleneck preventing

prompt response to engineering changes. This is also a challenging problem when

applying environmental analysis on ECs. For this reason, we propose a similarity

metric of ECs to determine whether ECs are environmentally and semantically

similar before proceeding with detailed analysis for knowledge-based carbon foot-

print estimation. The proposed method is to analyze representation of engineering

changes and to define similar changes that are likely to have similar impacts, partic-

ularly within the same manufacturing enterprise. For example, if a change is made

to a molded cover of one cell phone, it is likely to have impacts similar to those

of a change to the molded cover of another cell phone model. The method leads to

fast prediction of carbon footprint. The detailed explanation is shown in Section IV.

1.4.2 Carbon footprint estimation with incomplete information

Traditional carbon footprint calculation tools can be verified only if proper infor-

mation about product and process is available. In the early phase of product design

and EC process, predicting accurate environmental impact is not possible because

designers cannot provide all related product information due to the degree of freedom

in design decision-making. To estimate carbon footprint using incomplete activity

data, a knowledge-based approach is utilized. The knowledge-based prediction of
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new products and proposed ECs needs to deal with uncertainty of product realiza-

tion on design parameters. In addition, another issue involves developing the method

to enable fast prediction of carbon footprint. To adapt incomplete information with

similar cases, incomplete activity data should be estimated by the reuse of the similar

products and engineering changes. To develop carbon footprint classification using

previously evaluated carbon footprints, carbon calculation is estimated as a boosted

linear combination of key activity parameters which are the available information

stemming from new product design and ECs.

1.5 Research objective

The goal of this research is to identify the significance of carbon footprint in new

product and engineering change using previous carbon footprint data.

The research consists of three categories:

1. Develop consistent product functions to retrieval functionally similar

products

The task is to development formal representation for product function seman-

tics using web based ontology and rule language. The model facilitates func-

tional design of products in the early design phase and semantic retrieval of

the functional model.

2. Define the classification of ECs in order to determine important ef-

fects
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a) Similarity measure for engineering change: No formal proximity function be-

tween engineering changes has defined. This task is to propose an alignment-

matching similarity to engineering changes in terms of affected parts. The

evaluation between carbon footprint and similarity measure is performed to

evaluate the degree of correlation between them.

b) Clustering method for engineering change: Engineering change clustering

method is presented to retrieve effectively similar ECs from a large database.

3. Provide approximate environmental measure using previously eval-

uated LCA data

a) Estimating key environmental parameters: A framework is presented to

estimate key attributes that can be predicted using previous similar cases

and available product information in the early design phase.

b) Carbon footprint classification using boosted linear approximation: Knowledge-

based carbon footprint estimation to predict the significance of carbon foot-

print with incomplete product information.

The next section presents the outline of the dissertation.

1.6 Outline of the dissertation

This chapter explains a method to enable fast prediction of knowledge-based car-

bon footprint for new product designs and engineering changes. Chapter II discusses

the definition of product functions. It mainly will be about formal representation
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of functions for interoperability and shared understanding. Chapter III explains the

similarity measure of engineering changes based on the study of engineering change

representation and clustering methodology. In chapter IV, we present the method

to enable fast prediction of knowledge-based carbon footprint to new product design

and engineering changes. Finally, chapter V summarizes research tasks and identifies

research contributions and future work.



CHAPTER II

Literature review

This chapter discusses related work in the field of semantic representation of

functions, similarity measure of engineering changes, and approximate environmental

impact prediction tools.The following sections will discuss specific literature for the

three research topics explained in the previous chapter.

2.1 Representation of function

Several researchers have focused on understanding the meaning of a function.

The focus of our work is on developing a web-compliant representation that cap-

tures appropriate semantics; it is not on providing new definitions in the area of

function modeling. The reader is encouraged to refer to works by Erden et al. [4]

and Chandrasekaran [5] that provide detailed treatises on several efforts in defining

functions.

Umeda et al. [6] define function as “a description of behavior recognized by a

human through abstraction in order to utilize it.” They represent function as a tuple

capturing both the purpose (function) and physical semantics (behavior). Pahl et

al. [7] have proposed one of the most widely used frameworks in which a function is

14
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composed of an input or output flow of material, energy, and signal. They model

the overall function and decompose it into sub-functions maintaining consistency of

flows throughout the system. However, their approach does not deal with formality

of functional representation for automated reasoning and knowledge sharing.

Two independent research efforts with different goals initiated the development

of a widely referred functional representation in the mechanical design space. Szyk-

man et al. [8] document the effort within the National Institute of Standards and

Technology (NIST) to generate a large taxonomy of functions and flows (over 130

functions and 100 flows) to provide a generic infrastructure and a schema to facili-

tate the capture and exchange of function information among researchers within a

larger design repository project. Stone and Wood [9] proposed the Functional Basis

with the overall aim of describing and comparing products functionally. After mul-

tiple research and industrial studies of several products, their studies characterizes

a mechanical product using the verb-object (function-flow) format. Hirtz et al. [10]

present a reconciliation of the two efforts to formulate the current version of the

Functional Basis that is intended to comprehensively describe the mechanical design

space.

Using the Functional Basis, Kitamura et al. [11, 12] have proposed an ontology

of functions to derive functional models from an assembly of parts. The functional

ontology contains formal functions and meta-function for semantic representation.

Kitamura et al. [13] discuss the development of reference ontology for functional

knowledge interoperability.
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2.2 Similarity measure for engineering changes

In this section, we present related work only in the context of determining simi-

larity of Engineering Changes. There are very few efforts in this direction. In [14],

every EC is composed of distinct product, component, problem types, solutions, and

process representations. Similarities are measured in each representation type and

the results are linearly combined to obtain the overall similarity between change in-

stances. In [15], past changes that are similar to a proposed change are retrieved

based on the similarity of a few specific attribute values. The similarity between

values of attribute affected parts is computed using a binary vector-based method.

The Issue Based Information System (IBIS) is utilized to determine the similarity

between values of reason for change, and a predefined look-up table is employed to

determine the similarity between all remaining attributes. These methods are de-

signed to work on a set of pre-identified attributes, are not in the context of predicting

the impact on carbon footprint, and implicitly assume that the data structure is not

hierarchical.

In the domain of similarity measurements, most methods involves some variations

of two main approaches: the geometric models (metric space) approach [16], and

the set theoretic approach [17]. The metric space approach represents similarity as

a geometric model consisting of objects as points, based on the attribute values, in

the multi-dimensional metric space; similarity between two objects is inversely pro-

portional to the distance between the objects. The set-theoretic approach represents

objects as a collection of features/attributes, and similarity is expressed in the form
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of a linear combination of the measure of common and distinctive features. However,

these approaches work on representations that are not hierarchically structured like

Engineering Change data.

Similarity, Interactive Action and Mapping (SIAM) [18] is an approach used in

psychology to address the problem of structural alignment. In this research, we shall

use this approach to compute the similarity between two ECs. More details on the

method are provided in the next section.

2.3 Carbon estimation in the early phase of design

Publicly available specification (PAS) 2050 has been developed as an international

standard for carbon footprint calculation by the British Standard Institute (BSI).

PAS 2050 provides the lifecycle-wide view of all materials, energy and waste flows

across all activities in a product’s lifecycle. Though the calculation itself is simply

calculated by multiplying the activity data by the appropriate emission factors, it

is costly and time-consuming due to the need for detailed product information and

expertise. This makes PAS 2050 a unsuitable method for the early design process.

In order to overcome PAS 2050’s limited application to design process, different

simplified methods have been proposed. Graedel et al. [19] proposed a qualitative

approach using a checklist and qualitative matrix respectively. These methods can

provide the basic information about tradeoffs and environmental awareness to de-

signers. However, these methods are limited when estimating the difference of car-

bon footprint for existing products in the early design process. Kalyanasundaram
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et al. [20] proposed a simplified tool to estimate environmental impact of products

quickly using CAD information. Their tools utilize physical information about parts

from CAD data, such as mass and material. This information is used to obtain

energy consumption and CO2 generation during manufacturing and transportation.

It can be assumed the information about geometry and materials can trigger fast

prediction of a product’s environmental impact. The learning technique introduced

by Sousa et al. [21] estimates lifecycle energy of a product, mostly based on material

production energy and use energy. This method utilized the previous LCA data

and inventory information related to environmental impact estimations for training.

The study demonstrated accuracy and precision in predicting relative differences,

and provided an ability to generalize relative difference. However, their study has a

problem developing a train model if the resources are distinct.

2.4 Summary

This chapter presented related work for each of three research tasks discussed in

this dissertation. First, it introduced the efforts to create function definitions and

representations in the area of function modeling. Second, it presented the similarity

measure concept in the EC domain and provided general methodologies used in

defining similarity measure. Last, this section showed several approaches to enable

awareness of product carbon footprint in the early design phase.



CHAPTER III

Function representation for understanding product
semantics

3.1 Motivation

As mentioned in Section I, environmental impact analysis in the design phase

aims to estimate quantitatively the environmental impact of alternative concepts as

well as of design decisions for sustainable product development. For the problem

of incomplete environmental information, environmental impacts are measured by

previously evaluated LCA of similar products. However, there exist few frameworks

and tools to express the identity of product functions, and shared understanding

of product system is also lacking. In this chapter we propose functional semantic

representation to understand the functional identity of product that will provide

product information about similar products. Section 2.4 describes functional seman-

tic representation and expressiveness of product functions with respect to functional

decomposition. Section 2.5 shows the validation of semantic queries to retrieve func-

tionally similar product.

19
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3.2 Objective

Designers need to recognize the overall evaluation for decision and selection of

alternatives, because most environmental impacts are decided in the design phase.

When redesigning a previous product, we can reuse product knowledge for an envi-

ronmental impact measure. This assumes that functionally similar products need to

be considered with respect to product design, manufacturing data, use profile and

recyclability. This approach requires the formal representation of product functions

to share functional knowledge. At this point, we can define the problem as follows:

For: New product function information and database of old products

Find: Functionally similar products

3.3 Modeling the Function Semantics Representation (FSR)

An ontology is an explicit specification of a conceptualization [22]. It usually in-

troduces concepts, properties of concepts, relationships between the concepts and

other additional constraints in a machine-readable format. In the Function Se-

mantics Representation (FSR), the core ontology is encoded using Web Ontology

Language (OWL). Rules encoded using the SWRL are used to explicitly capture

advanced semantics essential for a usable representation of product functions. The

following sections explain the core ontology, the need to use SWRL, and the corre-

sponding rule extensions.
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3.3.1 The core OWL ontology

The core concepts and taxonomies which are encoded using OWL in the FSR

are based on the Functional Basis, proposed by Hirtz et al. [10], which defines a

Function as a concept involving the transfer or transformation of an input Flow into

an output Flow. The intent of this paper is not to present a detailed taxonomy; only

representative descriptions are discussed.

Core concepts

The concept Flow has three distinct subconcepts-EnergyFlow, MaterialFlow and

SignalFlow -which represent the flows of energy, material and signal respectively.

Flows of these three elements are treated as basic flows, and they are classified

into subconcepts, such as ElectricCurrentFlow, LiquidFlow, and VisualSignal. These

definitions of Flow and the corresponding taxonomy are as described in [4]. Flows

are represented by a set of distinct concepts in the ontology by explicitly defining

that all Flow concepts are disjoint from one another. For example, in the RDF/XML

syntax for OWL, Figure 3.1 states that the EnergyFlow, which is a type of Flow, is

disjoint from SignalFlow and MaterialFlow.

Every flow or medium has some time-dependent property such as location, mass,

and composition. Therefore, all instances of flows are different. Thus, even if the

same molecule of water is transmitted through a pipe, the input water flow is different

from the output water flow, since the location of the water molecule changes at
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Figure 3.1: Representing disjoint Flows in RDF/XML. Bold terms are important
elements in the description

Figure 3.2: Every individual flow is different from every other flow.

the different time instants. This is captured through the owl:AllDifferent property

applied to all individuals as shown in Figure 3.2.

Following are some of the important properties associated with the concepts Func-

tion and Flow that enable us to capture the definition of a product function, as stated

earlier. More details are out of scope of this paper:

1. A Function may have an input flow. This relation is captured by the prop-

erty, hasInputFlow, which has an inverse property called isInputFlowOf. In

the Description Logic Syntax [23], this is represented as: hasInputFlow ≡

(isInputF lowOf)−.

2. Similarly, a Function may have an output flow, which is captured by the prop-

erty, hasOutputFlow.

3. A Function has exactly one name. This relationship is captured by the datatype

property, hasName, with string as its range. It is used as an identifier for the
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Figure 3.3: Partial RDF/XML code for definition of Function. Some terms are in
bold to highlight important elements in the description

individual instance of a Function.

Using these properties, a Function is defined as an OWL class that has exactly

one name and has an output flow or an input flow (or both). In RDF/XML syntax,

its partial expression is as shown in Figure 3.3.

In Description Logic syntax, this partial definition is expressed as follows:

Function ⊂ (∃hasInputF low.F low ∧ ∃hasOuputF low/F low)∧ = 1hasName

The concept Function has eight distinct subconcepts (Figure 3.4): Branch, Chan-

nel, Connect, Convert, ControlMagnitude, Provision, Support, and Signal. Each sub-

concept may have further subconcepts. For example, the function Channel has four

subfunctions: Export, Guide, Transfer and Import. The function Transfer has two

subfunctions: Transmit, and Transport. Each of the leaf concepts is expected to be a

unique function defined by certain interrelationships between the input and output

flows.

Thus, multiple properties, such as hasName, hasInputFlow and hasOutputFlow
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Figure 3.4: Partial taxonomy of the FSR. The small triangles indicate corresponding
subconcepts not shown in the figure

are defined using OWL in the FSR to capture the relationships between Function and

Flow. OWL provides facilities to impose cardinality, quantitative or value restrictions

on these properties. Using these basic concepts and properties, more usable concepts

are defined. For example, the function Branch is a function that has exactly one input

Flow and more than one output Flow. This is defined as:

Branch ⊂Function ∧ ∀hasInputF low.(MaterialF low ∧ EnergyF low)

∧ = 1hasInputF low∧ ≥ 2hasOuputF low

Important properties in the FSR

The previous section discussed the taxonomic relations between functions and

flows based on the Functional Basis. However, using only the number and types
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Table 3.1: Number of input and output flows may not be always used to differenti-
ate functions from one another. The meaning presented by the original
textual definitions from the Functional Basis [9] needs to be encapsulated

Function Number of flows Definition in Functional Basis
Import 0 input flow To bring in a flow (material, energy, signal)

1 output flow from outside the system boundary
Supply 0 input flow To provide a flow from storage

1 output flow
Export 1 input flow To send a flow(material, energy, signal)

0 output flow
Store 1 input flow To accumulate a flow

0 output flow

is not enough to logically differentiate functions from each other. For example, as

shown in Table 1, Import is a subfunction of the function Channel and has exactly

0 input and 1 output flows. Please note that while this might seem counterintuitive,

the idea is to capture the flows within the system boundary; the input flow to Import

is outside the system boundary. Another function, Supply, which is a subfunction of

Provision has the same configuration, i.e., 0 input flow and 1 output flow. Similar

ambiguities are presented due to similarities in the number of input and output flows

for Export and Store functions. The Functional Basis defines these functions using

textual descriptions as shown in Table 1. It is important to capture these explicitly.

In order to achieve meaningful semantics, two new physical state identifiers, has-

Magnitude and hasDOF, outside of the original schema of the Functional Basis [9],

are added to the ontology.

The property hasMagnitude with domain of both Function and Flow concepts is

introduced as shown in Figure 3.5. For simplicity of implementation, units of the

magnitude are not considered to be significant and the range is float. It captures
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Figure 3.5: Definition of hasMagnitude in OWL. Some terms are in bold to highlight
important elements in the definition

values of physical properties, such as temperature, pressure and force of the relevant

flow. When a Function is its domain, hasMagnitude represents the maximum amount

of allowable flow through the system. Thus, for Import, the value that hasMagnitude

takes is very large (theoretically infinite), while for Store it takes a finite predefined

value. These can be used to distinguish the functions logically.

The property hasDOF is introduced to represent the Degree Of Freedom (DOF)

of the flows and is associated with the functions Position, Secure and Stabilize which

have implicit assumptions about the associated DOFs. It just defines the extent of

free motion with the number and does not capture geometric transformations.

3.3.2 SWRL rules in the FSR

After studying the literature and several examples, we identify the following abil-

ities that a representation must have to capture sufficient semantics about product

functions.

1. Counting the number of flows.
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2. Identifying the type of a flow.

3. Determining same types of flows, i.e., homogeneity of flows.

4. Determining different types of flows, i.e., heterogeneity across flows.

5. Comparing values of different properties.

We observe that OWL is not expressive enough to provide the above abilities

that are essential to encapsulate the semantics of product functions. SWRL, which

is a rule-layer on top of OWL, provides these facilities and is used in our work. The

reader is referred to a more detailed treatise on SWRL [24] to understand several

concepts, such as abox and tbox built-ins.

The difference between the abilities to determine the same type of flows (3 above)

and determine different types of flows (4 above) should be noted. These could have

been considered as complementary abilities. However, OWL supports open-world

assumption, i.e., absence of the truth of a statement does not necessarily imply that

it is false. In addition, SWRL does not support the representation of negation.

Therefore, there is a need to identify each of them separately. Using representative

examples, the following explains the utility of SWRL in the above operations.

Counting the number of flows

As discussed earlier, the function Import has no input flow and is a subclass of

the function Channel. The challenge is in defining that the function has no input

flow. One option is to use a hasProperty method that returns true when the indi-

vidual has that property. Thus, if an individual Function does not have a property
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Figure 3.6: Counting the number of properties using
abox:hasNumberOfPropertyValues for the function Import

hasInputFlow, then it is of the type Import. However, this requires using a negation

in the SWRL to express ”no input flow.” This is not possible in SWRL due to the

Open World Assumption.

In order to count the number of properties and therefore the number of flows as

shown in Figure 3.6, the built-in abox:hasNumberOfPropertyValues(?a, ?b, ?c) is used

to determine the number of times a that a certain property c is used in a certain

individual b. Thus, if an instance x of the function Channel has y = 0 number

of properties hasInputFlow, then x is of the type Import. The partial Resource

Description Framework (RDF)/ eXtensible Markup Language (XML) syntax for this

rule is shown in Figure 3.7. The remainder of this chapter uses the human readable

syntax as shown in Figure 3.6.

Identifying the type of a flow

SWRL can be used to identify the specific type of flow associated with an instance

of a function. As defined by [10] in the Functional Basis, Signal function “provides

information on a material, energy or signal flow as an output signal flow. The

information providing flow passes through the function unchanged.” This rule is

represented in Figure 3.8, which says that an instance x of any Function that has
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Figure 3.7: Partial RDF/XML syntax showing SWRL rule for the function Import.
Corresponding human readable syntax is shown in Figure 3.6

Figure 3.8: Using abox:hasClass to determine type of Flow in identification of the
function Signal

one input flow and has two output flows and has StatusSignal as one of the output

flows is of the type Signal. The built-in abox:hasClass(?a, ?b) is used to assert if

individual a is an instance of the class, b.

Determining same types of flows

The function Branch means “to cause a flow (material, energy, signal) to no longer

be joined or mixed” [9]. It has two sub-functions: Distribute and Separate. Distribute
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Figure 3.9: Using tbox:sameAs to detect the same types of flows in the function
Distribute

breaks up a single Flow so that the output flows and the undistributed input flow

are similar. Separate breaks a flow into distinct flows. However, the FSR includes

the restriction that all flows are different from one another (See Figure 3.2). In this

particular case, the function Branch implicitly assumes the same type of flows. To

implement this definition, SWRL built-in abox:hasClass is used to assert the class of

the individual under consideration. The built-in tbox:sameAs is used to determine

if the two flows are the same. This is implemented as shown in Figure 3.9 and

indicates that if an instance of the function Branch has y < 2 input flows and z >

1 output flows, and the types of the input (x1 ) and output flows (x2 ) are the same,

then it is an instance of Distribute.

Determining different types of flows

The function Convert is used to indicate the change from one form of a flow

(material, energy, signal) to another. Accurately defining this function requires de-

termining that the type of input flow is different from the type of output flow. This

is not possible using OWL. As shown in Figure 3.10, the built-in tbox:differentFrom

is used for this purpose. Thus, if an individual x has an input flow x1 and an output

flow x2, such that x1 is different from x2 and the number of input and output flows



31

Figure 3.10: Using tbox:differentFrom to detect the different types of flows in the
function Convert

Figure 3.11: Using SWRL built-ins to compare values of different properties and
detect the function Position

are both 1, then x is an instance of the function Convert.

Comparing values of different properties

The function Position can be defined as a type of the function Support, such that

the degree of freedom z2 of the output flow is less than the degree of freedom y2 of

the input flow, and that z2=0. It might seem that the restriction that z2 ≤ y2 is

redundant. However, such clear axioms are added to prevent the ontology and the

reasoner from instantiating and validating invalid concepts. Figure 3.11 shows the

use of built-ins swrlb:LessThan and swrlb:equal to compare the values of the property

hasDOF.

3.4 Case Studies

In this research, we have used the Protégé platform [25] to model the Function

Semantics Representation (FSR) including the SWRL rules and the example func-
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tional models. The Pellet reasoner [26] and Jess rule engine [27] are used to reason

with the ontology and the example functional models.

In this section, we discuss two examples:

1. To demonstrate the ability to check the consistency of a functional model, and

2. To demonstrate semantic retrieval of functionally similar products.

3.4.1 Consistency Checking

Using formal semantics of the functions, the logic-based FSR enables a frame-

work to ensure/validate the consistency of the functional model of a manufactured

product. A model is inconsistent or incorrect if any assertion derived from the model

violates any of the facts or constraints built into the FSR. Consider the ABS brake

system modeled in the Design Repository at Missouri University of Science and Tech-

nology [28]. In particular, we focus on the component Relay, shown in Figure 3.12,

which enables the function Actuate with input flow Control Signal, and output flow

Electrical Energy.

The Actuate function is defined in the functional basis as “to commence the flow

of energy, signal, or material in response to an imported control signal.” In the literal

sense, it seems correct that there should be one input signal flow and one output

energy flow as shown in Figure 3.12. However, the function Convert has been defined

as “to change from one form of a flow (material, energy, signal) to another.” Thus,

there is the chance that a logical reasoner will be unable to differentiate between

Actuate and Convert, since enough semantics are not captured.

We modeled this into the FSR and applied the Pellet DL reasoner and Jess rule
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Figure 3.12: Partial functional model of a Relay used as a part of an ABS Brake
System. Picture and data taken from [28]

engine to evaluate the consistency of this model. The Pellet DL reasoner enables

validations of assertions based on the OWL axioms. However, this first requires

classification of the different individuals (e.g., relay) used in the functional model

into appropriate classes (e.g., Convert or Actuate). Therefore, the Jess rule engine is

used to develop a classification based on the rules first and then the Pellet reasoner

is used to check its consistency. Figure 3.13 shows a screen grab of the result of

the consistency checking within the Protégé environment. The relay is classified into

Convert and the original Actuate. However, an instance cannot be classified into two

different functions, since the functions are defined as mutually exclusive. The Pellet

reasoner shows that there is an error in the consistency of the functional model and

identifies that the component Relay was forced to belong to the function “Convert”

and its complement at the same time.

The designer can use this knowledge of inconsistency to correct the original func-

tional model. In this case, realistically (and as captured in the FSR) the function

Actuate must have some input energy, since the act of “commencing” an energy flow
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requires some input energy flowing into the function. Furthermore, output energy

without any input will violate the law of conservation of energy. Therefore, assum-

ing that “Actuate” was indeed the correct function, the designer needs to indicate an

input energy flowing into the relay. This may require modification of other functions

captured in the representation of the ABS brake system.

3.4.2 Semantic retrieval

The support for logical reasoning and inference coupled with semantic definitions

of the functions enables semantic retrieval of functionally similar products. The FSR

captures the semantics of functions through the relations between individual func-

tions and flows.

We use a simple database to demonstrate semantic retrieval based on FSR. Our

data repository consists of 30 products that are modeled using the Design Repos-

itory at Missouri University of Science and Technology [28]. The product types

that were selected are as follows: coffee maker, power screw driver, jigsaw, hand

vacuum, toothbrush, drill, iron, sander, cordless water kettle, ABS Brake system,

dust buster, water pump, circular saw, and can opener. Multiple individuals of these

product types were created. Consider a hypothetical water kettle with a simple par-

tial functional model as shown in Figure 3.14. The product consists of the functions

Convert, Change, and Store. The two primary flows are EnergyFlow and Materi-

alFlow. The goal is to determine those products that are functionally similar to the

water kettle.

It should be noted that SWRL is not a query language and does not have the
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Figure 3.13: Result of consistency checking indicates that the function, Actuate of
the Relay in Figure 3.12 is invalid. The Jess rule-engine forces it to be
of the two types Convert and Actuate simultaneously, and the Pellet
reasoner indicates that the model is inconsistent

Figure 3.14: Partial functional model of a hypothetical water kettle used to demon-
strate semantic retrieval of functionally similar products
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Figure 3.15: SQWRL query to search a product containing Convert, Change, and
Store function (so that it is similar to our hypothetical water kettle)

Figure 3.16: Functionally similar instances retrieved into the SQWRL Query Tab
in Protégé

ability to support knowledge extraction, i.e., extracting information from the FSR

and the functional models, or the ability to reason with the information contained

in it. We employ a query language called SQWRL [29] which extends SWRL to

enable efficient querying. The corresponding partial SQWRL query for the example

is shown in Figure 3.15. It asks to retrieve that product which has a function

of type Convert, with an output flow of ThermalEnergy, such that this output of

ThermalEnergy is an input to a Change function that outputs a Liquid which in

turn is input to a function, Store. This query is consistent with the model shown in

Figure 3.14.

The results of the retrieval are shown in Figure 3.16. Products of the type

Cordless Water Kettle and Coffee Maker are found to have the similar functions.

Currently, the procedure uses only the information about functions to retrieve
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similar products. There is a need to use other information, such as product size,

shape, etc. to enable effective searches. At the same time, using the ability of

SWRL to compare the magnitudes of the flows can be useful, for example, to dis-

tinguish between a water kettle and a steam engine.

3.5 Summary

Defining or understanding a product in terms of its functions facilitates a wide

variety of tasks such as design synthesis, modeling, and analysis. However, the lack

of a formal representation for these elements of product model data creates a barrier

to their effective capture, exchange and reuse. Increasingly, information resources

in PLM are expected to be available through Web services in the Semantic Web.

Ontologies are a part of the set of Semantic Web technologies used to represent se-

mantics and promote integrated and consistent access to data and services.

This chapter presented the development of a Function Semantics Representation

(FSR) as a fundamental characterization of product functions for use in Product

Lifecycle Management (PLM). New properties and rules are defined using OWL

and SWRL to accurately capture the semantics beyond the existing schema-based

approaches. Application to consistency checking of a functional model and semantic

retrieval of functionally similar products are demonstrated.

The FSR can be used to automate several applications, such as defect detection
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in parts, automated rule-based development of the functional model, and searching

for parts that satisfy a functional requirement. Consistency checking could be used

to develop productivity interfaces that guide the designer in developing a correct

functional model, for example, by showing missing flows associated with a particular

function. In addition, it is expected that SWRL can communicate with traditional

relational databases. This feature is very attractive since most information in the

product development world is still stored in relational databases that may not be

easily replaceable in the near future.

In Section V, an approach using the FSR has been proposed to obtain function-

ally similar products to enable knowledge-based evaluation aboutthe sustainability of

a manufactured product, since lifecycle analysis and some other sustainability eval-

uation techniques start by considering the functional decomposition of the product.



CHAPTER IV

Clustering Engineering Changes

Evaluating the carbon footprint of engineering changes refers to assessing the

carbon emission by component changes involved in a proposed engineering change.

Evaluating carbon emission of component changes increases EC process time and

cost for considering additional change information related to carbon emission over

lifecycle. The objective of this research is to provide Engineering Change (EC) clus-

ters that enable fast response to engineering change evaluation with minimized cost.

EC clusters can provide the environmentally important feature of predicting carbon

footprint for a proposed EC that just contains virtual changes to related products or

processes. In this section, we propose a novel clustering method to classify ECs that

embed similar carbon emission through defining a similarity measure for engineering

changes and a scalable clustering methodology applicable for parallel computing.

4.1 Motivation

An Engineering Change (EC) refers to any change to shape, dimensions, ma-

terial, etc. of a part or assembly after the initial design has been released [15] and

39
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has been considered inevitable for successful product development [30]. EC needs

to make a decision based on negotiation between stakeholders’ needs [31]. There

has, however, been lack of research on the environmental impact of ECs. To in-

clude environmental analysis in the evaluation of ECs requires all data related to

environmental parameters. However, the impact of ECs is so interdependent that

it cannot be predicted by a single coordinator. It requires that related stakeholders

know the environmental parameters and provide them to environmental experts. It

can be possible to develop ECM that allows immediate communication to share EC

information in parallel. However, it is still a time consuming and costly process,

because evaluating environmental impact of ECs must be derived from the change

of environmental parameters after stakeholders determine the impact of ECs.

Companies have struggled to process engineering changes in shorter lead time.

Globalized business and environmental needs have represented challenges in product

development for most companies. A wide variety in customers’ needs and shifts

in the global market require prompt and flexible responses to product and process

change requirements. At this point, we propose a semantic clustering of engineering

changes to allow fast response to environmental evaluation.

The proposed method provides EC clusters in order to predict by analogy, com-

paring environmental parameters with previous evaluations [15]. The EC data for the

method is assumed to be sufficiently large to cover all cases of engineering changes as

well as organizational knowledge for a specific business. If retrieved ECs do not have

similar clusters, the evaluation process will require continuing collaboration with en-
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vironmental experts.

4.2 Objective

The objective of the research is to develop a clustering method that recognizes

a set of ECs embedding similar carbon emission. To develop the EC clustering

method, the proposed method should clarify EC representation, definition of EC

proximity, and EC clustering methodology.

1. EC representation: Identify the data structure of engineering changes with

respect to existing studies and standards. In particular, the information related

to carbon emission calculation is specified to define the semantics of proximity.

2. Definition of EC proximity: Determine similarity measure between Engineer-

ing Changes (ECs) with the goal of using it in assessing the carbon footprint

of engineering changes.

3. EC clustering methodology: Determine a clustering method applicable for the

characteristics of the proposed similarity measure and suitable to the dynamics

and complexity of engineering changes.

4.3 Engineering change data structure

EC data structure aims to capture the objects and their change types, such as

deviation of objects, reason for changes, and change process. The objects in EC

data structure refer to a placeholder for identifying product data, which includes
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parts, assemblies, tools and their use.

EC data structure has been developed by individual companies and researchers

to satisfy the needs of stakeholders. Pikosz and Malmqvist proposed EC information

systems that generally deal with the context of product documentation and product

structure [32]. Keller et al introduced the method called CPM (Change Prediction

Model), which utilizes component linkage to predict impact propagation [33]. In ad-

dition, there is a international standard to represent engineering changes. ISO10303-

239 known as Product Life Cycle Support (PLCS) became an international standard

in 2005. It defines an information model for managing product change in a product

life cycle. The common objective of these EC data structures is to represent related

objects and their changes.

In this section, we propose an EC information model that involves the objects

of engineering changes and the output objects, as shown in Figure 4.1. The basic

model is based on the SASIG representation of an Engineering Change [34], in which

every Engineering change has “input affected objects” and “output affected objects”.

“Input affected objects” refers to objects that are considered for the change and will

be omitted after the EC. “Output affected objects” refers to objects that are added

as a result of the EC. Typical affected objects in an EC include product assemblies,

components, machine tools, and so on [14]. In particular, we focused on product ori-

ented objects because the carbon footprint calculation excludes immaterial emission

sources and human inputs to processes.

In general, engineering change data is highly structured, i.e., objects are linked
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Engineering 
change

Input 
affected 
objects

Output 
affected 
objects

Assembly Part

Attributes:

Weight
Volume
Shape

Process
Material

...

Figure 4.1: Partial schematic of an Engineering Change. Every change has input and
output affected objects, each represented as Assembly. An Assembly is
made of a vector of parts. Parts have multiple attributes that take a
value.

to each other. Object is an entity that cannot take a data value (numeric, text, etc.);

its attributes can take data values. For example, an assembly has other parts in it.

Furthermore, one product might represent as assembly as a sequence (A, B, C) of

three components, while another might represent it as a sequence (B, C, A), and yet

another might represent it with just two components (D, A) with D representing a

replacement for B+C. Therefore, comparing Engineering Changes involves not just

matching attributes, but determining which entities in the data structure align with

one another. For example, we may want to find if a change to a sedan with a green

door is similar to the one for the green hood of a convertible. However, matching the

attribute “color” really does not add value. It is important to evaluate if the “door

of a sedan” is aligned to the “hood of a convertible” before we consider matching the

color. Therefore, before determining similarity, it is important to align the objects

so that they correspond to each other appropriately.

Engineering changes consist of distinct attributes to represent characteristics of

change over the life cycle. We have classified three types of attributes: numeric

attributes, characteristic attributes, and semantic attributes. The attributes of en-

gineering changes are not clearly defined and may have different impacts on carbon



44

Table 4.1: Product features over product lifecycle
Lifecycle phase Product attribute

Component name
Weight
Volume
Color name
Lifetime

Design Function
Material name
Material density
Material yield stress
Material tensile stress
Shape name
Thickness
Mfg process
Machine tool name
Tool cost
Equipment cost

Manufacturing Assembly type name
Fastener number
Kind of fastener
Time for assembly
Time for disassembly
Energy consumption

Product use Use cost
Maintenance cost
Freight

Distribution Transportation
Travel distance

Disposal Disposal strategy name

emission. In this study, the attributes used from the engineering changes are 28 at-

tributes associated with an assembly/parts as shown in Table 4.1. These are selected

based on a study of literature reviews and commercial tools over a product lifecycle.



45

4.4 Similarity measure for engineering changes

As discussed earlier, utilizing past change knowledge to evaluate the impact of

a proposed Engineering Changes (ECs) effect requires an approach for computing

similarity between ECs. The problem addressed in this paper is:

For: A proposed Engineering Change (EC)

Given: Knowledge-base containing past ECs

Determine: Similarity between the proposed change and each past EC

with the goal of ultimately using this knowledge

in assessing the carbon footprint of the proposed change.

Based on EC data structure defined in Section 4.3, we propose an alignment

matching similarity measure. The overall idea of calculating EC similarity is to de-

termine how products configured with similar components are similarly changed. We

now will explain the concept of EC similarity to compare input affected objects and

output affected objects between two ECs.

4.4.1 EC similarity measure using alignment matching

Let Oin,j represent the set of input affected objects and Oout,j represent the set of

output affected objects for a proposed Engineering change (Cj). Let k suffix repre-

sent another EC. Then, the overall similarity between the two engineering changes,

Cj and Ck, is calculated as the weighted linear combination of Simin(Oip,j, Oip,k),

the similarity between input affected objects Cj and Ck and Simout(Oout,j, Oout,k),
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Belt Pulley.chage_type = ‘revise`

Shaft.change_type = ‘revise’

Belt Pulley.chage_type = ‘revise`

Shaft.change_type = ‘revise’
‘delete’

 ‘delete’

 ‘new’

(a) Proposed Engineering Change (b) Past Engineering Change

Figure 4.2: Example of engineering changes used to explain the determination of
similarity

and the similarity between output affected objects of Cj and Ck, and is given as:

Sim(cj, ck) = w × Simin(Oip,j, Oip,k) + (1− w)× Simout(Oout,j, Oout,k) (4.1)

In this section, we discuss SIAM and its application to obtain the value of

Simin(Oip,j, Oip,k) and Simout(Oout,j, Oout,k). Similarity, Interactive Activation, and

Mapping (SIAM) is a quantitative model of similarity developed to capture relational

and structural similarity between compared things, in our case, ECs, at the concep-

tual level, or Oip,j and Oip,k as defined in Equation (4.1). It assumes an interactive

process of activations such that correspondences between objects of compared things

mutually influence each other. The fundamental aspect is that matching and differ-

ent attributes have a stronger influence on similarity if they belong to corresponding

objects.

Consider the two ECs represented in Figure 4.2. The proposed EC is the change

in the diameter of the shaft that is assembled along with a belt pulley. The EC

with which we want to find the similarity is about the change in the diameter of

a shaft assembled with a chain sprocket. We have selected an example with such
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Object-
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node

Attribute-

attribute
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Excitation

Inhibitation

Match 

value 

Excitation

Figure 4.3: Concept used in the calculating similarity ECs

close similarity only for simplicity of explanation. The proposed procedure applies

to assemblies with different number of components across the two ECs.

In the following, we explain the overall concepts and procedure used in determin-

ing similarity between the input affected objects of the two ECs shown in Figure 4.2.

Concepts used in the procedure

The concepts used in SIAM and applied to EC similarity are explained briefly

here. The idea is to obtain the similarity between input affected objects (assembly of

small diameter shaft + pulley) of proposed EC with input affected objects (assembly

of thread jointed shaft + pulley) of past EC, as shown in Figure 4.2.

The overall architecture is that of a network model consisting of nodes that

excite or inhibit each other. A node is defined as a set of two entities in correspon-
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dence (shown by circle on thick line in Figure 4.3). We have two different types of

nodes: object node and attribute node. Object-Object node represents the hypoth-

esis that two objects are aligned to each other, whereas Attribute-Attribute node

implies that two attributes are aligned to each other. For example, in Figure 4.3,

Pulley-Pulley form an object node, whereas Pulley.Weight-Pulley.Weight node is an

attribute node. As the activation of a node increases, the two entities (objects or at-

tributes) in that node are placed in stronger correspondence. The relative strengths

of the correspondences are decided based on structural consistency. Nodes that are

consistent with each other excite/support each other. For example, in Figure 4.3,

the Pulley.Weight-Pulley.Weight Attribute-Attribute node supports the similarity of

the Pulley-Pulley Object-Object node; i.e., they are consistent and therefore acti-

vate each other (represented by solid line with two sided arrows). On the other hand,

nodes that are inconsistent with each other inhibit each other. For example, in Fig-

ure 4.3, the Pulley.Weight-Shaft.Weight Attribute-Attribute node has no bearing

on the similarity of the Pulley.Weight-Pulley.Weight Attribute-Attribute node; i.e.,

they are inconsistent and therefore hinder each other (represented by dotted line

with two-sided arrows).

Process for calculation of similarity

Processing starts by describing a scene and runs for a certain number of iterations.

In the case of Figure 4.3, the scene is made of the two assemblies representing

overall input affected objects of two distinct ECs, which are composed of other

objects (parts, such as shaft and pulley) and their attributes, such as weight, volume,
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manufacturing process name, and so on. For the purpose of explanation, we shall

assume that the attributes do not need alignment and are attached to each object

directly. Any Aj < 0.5 implies that the node j does not have aligned entities, whereas

any Aj > 0.5 implies that the node has aligned entities. The value of Aj is one of

the two:

1. Mutually excitatory and inhibitory activations among the nodes. The subscript

i identifies the node, and t indicates the time/iteration at which the value is

calculated.

2. Match value as a result of finding similarity among the values taken by corre-

sponding attributes. It influences the attribute-to-attribute nodes.

At the start, all nodes are assigned an activation value of 0.5, i.e., maximum uncer-

tainty on the alignment between two entities.

Activation process for object matching: The activation value of a node i at a

iteration step t+ 1 is given as:

Ai,t+1 =

∑n
j=1RjiWjiSj∑n
j=1WjiSj

(4.2)

where, Rji in node j is the recommended activation value for node i, and Wji is

the weight of this recommendation, and n is the number of incoming nodes. Rji is

determined by the type of recommendations-excitatory and inhibitory-and is given

as follows: For excitatory connections,
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Object-Object node Attribute node Attribute i Attribute j Mach values

Pulley-Pulley node Component Name "pulley" "pulley" 1

Weight (lb) 5.45 1.57 0.06

Volume (cu in) 19.16 5.455 0.32

Function Transfer Transfer 1

…. …. …. ….

Material name "AISI 316 SS" "AISI 316 SS" 1

Mgf process Sand casting Sand casting 1

Disposal "Landfill" "Landfill" 1

Pulley-Shaft node Component Name "pulley" "Shaft" 0

Weight (lb) 5.45 1.9 0.07

Volume (cu in) 19.16 6.65 0.35

Function Transfer Transfer 1

…. …. …. ….

Material name "AISI 316 SS" "AISI 1020" 0

Mgf process Sand casting Milling 0.67

Disposal "Landfill" "Landfill" 1

Figure 4.4: Calculating attribute match value as a part of activation process. Pulley-
Pulley object node and Pulley-Shaft object node are excited by attribute
node, and then the attribute node is excited by match values.

Rji =

Ai + (1− Ai)(Aj − 0.5) , ifAj > 0.5

Ai − Ai(0.5− Aj) , ifAj < 0.5

(4.3)

For inhibitory connections,

Rji =

Ai + (1− Ai)(0.5− Aj) , ifAj < 0.5

Ai − Ai(Aj − 0.5) , ifAj > 0.5

(4.4)

As mentioned earlier, the values of A are initially assigned to be 0.5. However,

the values of the attribute-attribute nodes obtained by calculating the match values

will modify the value of A in the next iteration. The process will continue for the

desired number of iterations.

Matching function of distinct attributes: The match value for attribute-attribute

nodes is calculated based on the type of the attribute as shown in Figure 4.4.
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For categorical attributes (a1 and a2), such as comparing the joint types of as-

semblies,

matchV alue(a1, a2) =

1, if a1 = a2

0, otherwise

(4.5)

For numerical attributes, the match value is obtained by using the distance metric.

For example, the match value between the weights (w1 and w2) of parts is given by

matchV alue(w1, w2) = e−α×distance(w1,w2) (4.6)

where distance(w1, w2) is the Euclidean distance between the values w1,and w2 and

the α is decided based on normalization with the maximum and minimum distance

for all possible pairs of attributes.

For semantic attributes using domain knowledge, the match value is formulated

by assessing ontology of attributes. There are several methods to calculate similarity

between two concepts using domain knowledge, e.g., edge-based approach [35, 36],

information based approach [37, 38] and contextual information based approach

[37]. With a well-developed database, a precise approach can be used to calculate

semantic matching value. In this research, a normalized edge-counting approach is

used, using the taxonomy of individual semantic attributes. The range of normalized

edge-counting is [0,∞], and it is formulated between the semantic attributes (s1 and

s2) as:

matchV alue(s1, s2) =
(2×MAX − len(s1, s2))

2×MAX
(4.7)

, where MAX refers to the maximum depth of taxonomy and len(s1, s2) is the

shortest length between the two concepts of s1 and s2.
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For example, Function attributes are defined with FSR taxonomy as shown in

Figure 3.4. With the knowledge of taxonomy, the match value of Branch and Channel

function is calculated as a value of 0.67 with the depth of 3 and the length of 2.

EC similarity measure: Once the node activations have been adjusted (identified

by a fixed set of iterations or incremental increase in activation value), the measure

works successfully in aligned matching between similar products. EC similarity is

derived based on MIP (Match In Place) and MOP (Match Out of Place), which are

automatically identified during the activation process based on one-to-one matching

and parallel connectivity. It enables aligned matching between different cardinality

of objects; the overall similarity is given by

Sim(A,B) =

∑
i∈MIP (matchV aluei × Ai) +

∑
j∈MIP−(matchV aluej × Aj)∑

i∈MIP∪MIP− Ai
(4.8)

, whereMIP is the pair of aligned parts and MIP− is the pair of parts where one of

two parts are misaligned, at least in the assignment. The maximum value of 1 is for

all product composition the same between two assemblies. The equation considers

the similarity of each matched part as well as the difference of connected parts by

the term MIP−. The quantity and quality of misaligned parts influence the overall

similarity value.

The similarity values obtained for the input affected objects and output affected

objects are then used in equation 4.1 to calculate the overall similarities.
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4.5 Parallel engineering change clustering

In this section, the Parallel Engineering Change Clustering (PECC) method has

been proposed to identify the distinct subgroup of ECs based on EC similarity ex-

plained in Section 4.4. As mentioned in Section 4.2, Parallel Engineering Change

Clustering (PECC) is specified for EC similarity measure and the characteristics of

Engineering Change (EC).

4.5.1 Clustering method for engineering changes

Clustering method is an analytic tool to group objects or data into the subset

called ‘a cluster’ [39]. It partitions unlabeled data with respect to the degree of simi-

larity between objects. The clustering methodologies are varied with respect to data

representation, the characteristics of similarity measure, and grouping techniques.

Data representation: There are two common forms of data representations

of vectorial representation and pairwise proximity representation [40]. The vectorial

representation utilizes multidimensional vector space. Pairwise proximity represen-

tation use a symmetric matrix of pairwise similarity measure. EC representation

mentioned in Section 4.3 is structured and complex data. The EC data is not avail-

able in representing feature vectors in multidimensional vector space. Therefore, the

pairwise proximity representation is suitable for the EC clustering method instead

of providing real data representation.
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Similarity measure: The EC similarity measure described in Section 4.4

is derived from alignment matching, which may not rely on triangular inequality.

It precludes the use of traditional clustering methods based on distance-based ap-

proach and centroid-based approach. For the alternative, there are some approaches

to handle nonmetric similarity measures like median distance approach and embed-

ding strategy [40, 41].

Grouping techniques: Grouping techniques corresponding to EC represen-

tation and EC similarity must be carried out with specific environmental condition

of EC. First, the number of clusters within EC data cannot be available due to the

complexity generated at different sources from design, process, designer, and their

relation. Second, EC data is dynamic and evolving over time. A clustering method

for ECs needs the capacity to update clusters avoiding high operating cost. Finally.

it must effectively work on a large database.

In the next section, Parallel Engineering Change Clustering (PECC) method is

proposed to encompass the above requirements for ECs.

4.5.2 Parallel engineering change clustering algorithm

This section provides the detailed description of the proposed clustering method

to handle engineering changes. The PECC method is designed based on the ant-

based clustering method. The generic ant algorithms were worked by some re-
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searchers [42, 43, 44]. Herein, we introduce some modifications to overcome EC

environmental requirements. The algorithm we are proposing has resulted in dif-

ferent behavior patterns and improved computing speed from previous ant-based

clustering methods.

Basics of ant based clustering

Ant-based clustering is inspired by the emergent property of ant colonies. Imitat-

ing the movement of ants, which involves moving food, corpse and larva, individual

ants pick up data and transport them to similar data dummy. The algorithm of ant-

based clustering were explained in [45, 46, 42]. First, artificial ants are randomly

spread out on 2-dimensional data space. Each artificial ant independently explores

data space where data are initially scattered at random. They pick up one datum

using pickup probability and drop out the datum at a similar data pile. This move-

ment constructs emerging clusters. Behaviors of ants are determined by local density

measures of similar objects. The density measure of similar object is represented by

probability conversion functions introduced by Deneubourg et al [45].

Ppickup(i) = (
k+

k+ + f(i)
)2 (4.9)

Pdrop(i) = (
f(i)

k− + f(i)
)2 (4.10)

, where f(i) refers to similarity density function, and k+ and k− are constant param-

eters for behavior decision. Lumer and Handl et al empirically suggested k+ = 0.1

and k− = 0.3. To demonstrate the robust performance, ant based clustering method
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was enhanced by adopting short memory, increasing radius of perception, and spatial

separation technique [42].

Neighbor counting

EC neighbors refers to EC data that are regarded to influence similar impacts.

It is defined if the similarity value of two EC data exceed a certain threshold value

ranged between 0 to 1. The threshold value is a user defined value that can be

calculated with the correlation analysis between similarity value and carbon footprint

as shown in Section 4.6.1. With a given threshold value of θ, two EC data of EC1

and EC2 are defined neighbors by the following:

sim(EC1, EC2) > θ

The performance of EC clustering aims to gather the neighborhood properly into

a cluster. Previous similarity measure of ant-based clustering is based on distance

based dissimilarity measure, which cannot capture the EC neighbors properly. In or-

der to pick up low-density neighbors, we propose a new similarity density measure to

be adapted to EC neighborhoods. It captures the number of neighbors corresponding

to individual EC data within an ant boundary as follow:

f(ECi) =
1

σ

∑n
j=1 1Θ(sim(ECi, ECj))

n
(4.11)

1Θ(x) =

1, if x ≥ Θ

0, otherwise

(4.12)

, where ECi is an EC held by an artificial ant and n refers to the total number of EC

neighbors; σ is the size of cells for EC neighbors. The modified measure estimates
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the homogeneity and density of mutual neighbors within an ant boundary.

Parallelization in EC clustering

Parallel programming divides a large computation with multi-processing nodes.

Multiple processors solve the problem faster than single computing processors by

dividing the sequential computing and by running multi operation in parallel.

Parallel Engineering Change Clustering (PECC) makes ant-based clustering paral-

lelized in order to improve computational efficiency on a large database. As shown

in Figure 4.5, task parallelization scheme in PECC enables concurrent operation of

ants between multi-processors. In this parallelization, each processor independently

performs a clustering algorithm with sub-set of ants. The access of shared data

enables independent work of individual ants with no communication.

The behavior of ants in PECC may have mutual intervention when two ants

concurrently access a set of data in their sequence. For example, in a case when

an ant calculates pick-up probability measure, another ant can interfere with the

behavior decision. To avoid the race-condition, we propose stygmergy to inform the

coordinates held by ants in 2D data space, which precludes data access by other

ants. This can be realized by adding an indicator to the coordinates. This process

is controlled by mutual exclusive barriers to prevent concurrent reading and writing

on the same data.
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Parallel initialization

Sub-set of Ants

Operation on

Processor node 0

Sub-set of Ants

Operation on

Processor node 1

Sub-set of Ants

Operation on

Processor node 1

Synchronization Barrier

EC data in Shared Memory

Clustering results in 2D space

End

…

Figure 4.5: Schematic of parallelization in EC clustering
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4.6 Evaluation

This section presents the evaluation of our similarity measures and the overall

approach for clustering Engineering Changes.

The evaluation was conducted using a database of 14 ECs as shown in Appendix

A. This results in a combination of 91 matching pairs of problems. The information

used from the Engineering Changes is denoted in Table 1. 28 attributes associated

with an assembly/part are used. These are spread out across different phases of the

product lifecycle, and are selected based on a study of literature and commercial

tools. For example, as discussed in [47] (briefly summarized in Figure 4.1), the crite-

ria for sustainability are connected to various impacts on sustainability. Therefore,

the criteria that affect sustainability must be defined and formally represented.

4.6.1 Evaluation of similarity computation

We applied the proposed similarity measure to evaluate quality of retrieval within

our data sets. For the sake of evaluation, we have assumed that values of all the

attributes are always available. The values of the non-geometric parameters are

generated from Cambridge Engineering Selector and Sustainability Xpress tool from

Solidworks to ensure engineering relevance.

The resulting similarity values are correlated with the incremental carbon foot-

print resulting from the change. The carbon footprint values for the input affected

objects and output affected objects is obtained using the Solidworks Xpress Sus-
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(a) Proposed engineering change

(b) Top two retrieved engineering change

Figure 4.6: A proposed EC and top 2 similar ECs retrieved from database
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tainability tool. The difference between the two values gives the incremental carbon

footprint resulting from the EC. The evaluation is conducted from two perspectives:

1. A single retrieval case, i.e., one EC matching with 13 others from the database

2. Evaluation of the 91 matching pairs generated from the 14 EC cases

3. Evaluation of the correlation analysis of similarity measure to carbon footprint

Case 1: Finding similarity for one proposed EC. For the proposed EC

shown in Figure 4.6 (a), the top two retrieved ECs are shown in Figure 4.6 (b)

Figure 4.7 shows the correlation between the similarity values and the incremental

carbon footprint. It was observed that the top two retrieved changes (shown in Fig-

ure 4.6(b)) have very small incremental carbon footprint, i.e., higher EC similarity

implies a higher chance of similar impact on the environment. Some ECs that are

dissimilar also have lower incremental carbon footprint, which is fine, since there

cannot be claims that dissimilar ECs have very different carbon footprints.

Case 2: Evaluating similarities across 91 pairs of ECs. 91 pairs of match-

ing problems are generated from the 14 EC cases in the database. Figure 4.8 shows

the correlation between the similarity value and incremental carbon footprint for

only those cases where the similarity was above 0.8. It can be seen the higher the

similarity value, the lower the difference in the incremental carbon footprint.

In addition, precision and recall, R-precision, and average precision have been

employed to show the overall performance [48]. They are measured for the similar

ECs by manual observation.
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Figure 4.7: Results from similarity obtained for query EC (Figure 4.6 (a)). The top
two data points (near the far right) represent the top two retrieved ECs
from Figure 4.6(b))
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Figure 4.8: Correlation of EC similarity with carbon footprint for the 91 pairs of
matching problems
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Table 4.2: Precision and recall (in percentage) for the 91 matching problems in the
database shown in the appendix. Threshold value is one above which the
changes were considered similar

Threshold = 0.95 Threshold = 0.90
Precision 100 85.7
Recall 85.7 85.7
R-precision 85.7
Average precision 87.6

Table 4.2 shows that we get high precision and recall values for the database.

In addition, the higher values of R-precision and average precision imply that most

similar ECs can be retrieved in the higher rank; it can be compared to the case that

the best results in a web search are obtained on the first page.

Case 3: Evaluation of the correlation analysis of similarity meaure to

carbon footprint. We have used Pearson product-moment correlation coefficient

to analyze the relation of EC similarity to the difference in carbon footprints between

ECs. It is defined as the covariance of the two variables divided by the product of

their standard deviations, and is one of the most commonly used metrics to evalu-

ate correlations. We get a value of -0.6, which implies that as the similarity value

increases, the difference in carbon footprints between ECs reduces. A value between

-0.5 and -1.0 is usually considered large in the social sciences. However, we do not

have any data in this domain to compare our results with. An additional reason that

has prevented a larger negative value of the coefficient is that the correlation is not

symmetric, i.e., higher similarity means closer values of carbon footprint, but closer

values of carbon footprint does not mean higher similarity between ECs.

The standard t-test was utilized to estimate the statistical significance, i.e., to
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Table 4.3: T-test between the difference of carbon footprint between ECs and pairs
of ECs that have an EC similarity value over 0.90

t0value 1.948
t1−α/2(n− 2) 1.725
|t0| ≥ t1−α/2(n− 2) Confidence of 90%

study that this correlation is not by chance. The test statistic is t0 =
r√

(1− r)2/(n− 2)
,

which measures t-distribution with n-2 degree of freedom under the null hypothesis.

Table 4.3 shows the result of correlation analysis. When we consider the relation

between EC similarity and CO2, EC similarity can be considered to be related to

carbon footprint with 90% confidence level.

4.6.2 Evaluation of overall clustering approach

There are no methods for EC clustering method in the related research which

could used to evaluate out approach effectively. Therefore, in this section, Parallel

Engineering Change Clustering (PECC) has been evaluated in terms of clustering

performance by comparative study and parallel performance through speedup and

parallel efficiency. Parameter setting of PECC in this case study follows the recom-

mendation by Handl [42].

To better perform comparative study, clustering methods are considered using

the pair wise similarity measure to generate clusters like K-mediods and spectral

clustering [49, 50]. Each clustering method employs similarity matrix calculated

by EC similarity measure, which data is composed of 42 ECs. K-medoid clustering

method is similar to k-means clustering method, but it compute the center of clutters

with an observation of data that maximizes similarity measure in a cluster. Spectral
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clustering utilize standard linear algebra methods and is based on graph Laplacian

of similarity graphs, where ε-neighborhood graph has been used.

The comparative study is evaluated with F-measure that uses the precision and

recall from information retrieval. It will be performed in terms of n number of

EC data that is marked by manual observation of each class i. Each cluster j is

represented ECj; ECij refers to EC data marked class i placed in cluster j. The

overall F-measure for all clusters is represented as,

F =
∑
i

ni
n

max
j

(F (i, j)) (4.13)

The F-measure for a cluster is defined as follows:

F (i, j) =
2× p(i, j)× r(i, j)
p(i, j) + r(i, j)

(4.14)

, where precision and recall is calculated as p(i, j) =
nij

nj
and r(i, j) =

nij

ni
.

In order to analyze the efficiency of parallel computation, the speedup of parallel

computing in terms of 1,2,4 multi-core computing has been evaluated as shown in

Figure 4.9. It is calculated by the ratio of running time on one processor and running

time on p processors; the speedup is given by

Speedup =
t1
tp

(4.15)

With speedup, the parallel efficiency is evaluated, meaning the parallelization is

implemented considering load balance in computation. It is calculated by

Parallel efficiency =
Speedup

p
(4.16)

Table 4.4 shows the result of F-measure on each clustering method. The number

of clusters are given in terms of the analysis of manual observation.
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Table 4.4: The results of comparative study using F-measure for a cluster
K-mediod clustering Spectral clustering Parallel EC clustering

F-measure 0.79 0.86 0.97

0

0.5

1

1.5

1 2 3 4

Number of multi-cores

Performance of  EC parallel clustering

SpeedUp

Efficiency

Figure 4.9: Efficiency of core-usage and speed of parallelized EC clustering. Better
speeds are obtained with more cores, but the core-usage efficiency de-
creases; one reason is that the dataset that we used is not large enough

In addition, Figure 4.9 shows that the speedup of PECC is scalable to the num-

ber of processors; the load balance is reassigned with an increasing number of ants.

The drop in efficiency is severe, because the number of datapoints used in our ex-

periments is not large enough. Future study is needed for searching the parameter

for proper parallel nodes.

4.7 Summary

Systematic sustainability assessment of a proposed Engineering Change (EC) is,

typically, a time-consuming process due to the complexity of typical products and
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the lifecycle-wide impact of a change. In this section, we have proposed a clustering

method to enable faster evaluation by providing similar past ECs. From analyzing

the representation of engineering changes, EC similarity measure has been defined

based on affected object matching. EC similarity utilized an alignment matching

approach derived from research in psychology that evaluates the structured data

through components and their attribute match values on product information. In

addition, EC clustering methodology was introduced to gather ECs that embed simi-

lar carbon emission, employing ant based clustering method and parallel computing.

Parallelization of clustering methods in the proposed approach offered possibilities

for enhanced scalability and throughput on a large database. For example, we ap-

plied the measure to a case of 14 Engineering Changes (91 matching problems) and

compared the matches for relevance to evaluation of carbon footprint. The preci-

sion and recall are evaluated by comparing against carbon footprints obtained using

commercial LCA tool. The results justify the initial assumption that similar ECs

will have similar impact on the carbon footprint. For parallel efficiency, parallel EC

clustering method shows good scalability and load balance.



CHAPTER V

Predicting carbon footprint of proposed new
products and engineering changes

5.1 Motivation

Growing concern about global warming and movement for regulation have forced

industry to mitigate carbon footprint emission of their products. While companies in

previous product development considered optimizing cost and quality with develop-

ing time, today’s companies need to understand the environmental issues and balance

improving carbon impact without aggravating other constraints. The first step to-

ward environmental responsibility is measuring the carbon emission of products and

comparing it to the established target.

From the conventional study of environmentally conscious design we can find

several approaches to evaluating environmental impacts during the lifecycle. It is

known that full LCA study is a successful tool for environmental consideration dur-

ing product development. In addition, publicly available specification (PAS) 2050 by

the British Standard Institute (BSI) provides a quantifying procedure for product

carbon emissions. In particular, different simplified methods have been proposed to

68
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integrate with design process. Though these methods provide a quantifying measure

of carbon footprint for products, the application to design process is limited to esti-

mating existing products and excludes virtual products in the design process.

5.2 Environmental strategy for developmental process

A company strategy to reduce carbon footprint can be reflected in a new product

design and product redesign. For a new product design, designers in the company

can achieve the reduced carbon footprint by considering alternative decision decisions

like material selection, process substitution, and design layout. Product redesign can

contribute to the carbon reduction of environmentally problematic parts through

the engineering change process. New products and engineering changes need to be

evaluated with incomplete information about virtual products and virtual changes.

Ideally, this problem should be solved without delaying design process. To minimize

the impacts on developing delay and costs, the environmental estimation should be

connected to the process of product development and incorporate the significance

of carbon impact as early as possible. However, the LCA method is not linked to

design process, and other existing tools are not appropriate in supporting designers’

decisions in the design process.
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5.3 Carbon footprint estimation for environmentally friendly
products

Carbon emission has been the issue of global warming that is being faced as a

major challenge. Carbon emission can be easily targeted for mitigation of green-

house gas emission (GHG) from product lifecycle. In addition, carbon emission is

considered to be connected to energy consumption. Therefore, there has been an

effort to reduce GHG gas by regulating carbon emission. The footprint refers to

the total environmental impacts from product life cycle that involves the scope of

raw material extraction, manufacturing process, product use, and disposal. That is,

carbon footprint of components in mobile operation provides the carbon emission of

components in mobile operation in a comprehensive system boundary of product life

cycle.

5.4 Fast prediction of carbon footprint for a new product de-
sign and a proposed engineering change

The purpose of this research is to estimate the carbon footprint of a new product

and of proposed engineering changes. In the early phase of product design and EC

process, predicting accurate environmental impact is not possible because design-

ers cannot provide all related product information due to the degree of freedom in

design decision-making; some check lists and guidelines can only be provided. Re-

cent studies, which are integrated with CAD tools, show the possibility of predicting

approximate carbon footprint of prototype design after embodiment design process.
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However, there are still few methods to support design decision making in the con-

cept design processes and proposed EC analysis. Therefore, our research will focus

on the approval of carbon significance in the concept design process and proposed

EC analysis process. The decision on carbon significance significantly affects cost

and time investments in the later design process. Hence, designers can promote the

development process by considering environmentally problematic parts in the early

process phase. For fast prediction of carbon footprint for new products and proposed

ECs, there are some challenges to be resolved as follows:

1. Incomplete product data in a concept design and a proposed engineering change:

Due to the degree of freedom in design decision-making, it is hard to define

the exact impacts of a given concept design and proposed EC. Therefore, we

propose the use of knowledge from previous product information and ECs.

2. Lack of emission factor data to represent the relationship between product

parameters and environmental impacts: Emission factors refer to the quantity

of carbon footprint relative to a unit of activity. For accuracy, the primary data,

which is measured by all stakeholders, is required. In addition, secondary data

based on generic measurement of similar material or process can be substituted

in the absence of primary data. However, a single company cannot afford and

maintain all emission factors and apply them into product development due to

processing cost and time.

3. No exact same product developments and ECs: No identical product develop-
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ments and ECs are processed during the product life time. If the case occurs,

information retrieval works well enough to estimate carbon footprint.

5.5 Knowledge-based carbon footprint prediction

To estimate carbon footprint using incomplete activity data, we propose a knowledge-

based approach. Knowledge-based approach can facilitate fast carbon footprint pre-

diction without building detailed process maps and using emission factors for unit-

processes. The knowledge-based prediction of a new products and proposed ECs has

three issues. The first issue is uncertainty of product realization on design param-

eters. The second issue is developing a method to enable fast prediction of carbon

footprint. The third issue is the compatibility in the application of the method to a

concept design and to proposed engineering changes.

For the reuse of previous knowledge, we retrieve knowledge of similar cases from

a database and adjust concept design and proposed ECs into them. The method

is based on case-based reasoning, a problem solving technique to reuse previous

knowledge, as shown in Figure 5.1 [51].

The overall framework consists of retrieval and adaptation. As the general pro-

cess of case-based reasoning, we will retrieve similar products and similar ECs using

semantic query and EC clusters with material query. Next, incomplete activity data

due to undecided design parameters in the concept design process are estimated by

the reuse of similar products and engineering changes. Finally, the carbon footprint

of a new product and proposed EC are estimated by adapting the previous carbon

information. This research provides the procedure of knowledge based carbon foot-
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Knowledge base New concept

Case Retrieval

Trend identification

Adaptation

Figure 5.1: The process of case-based reasoning

print for components in mobile operation in the following sections.

5.6 Overall approach

Carbon footprint estimation encompasses from raw material extraction to prod-

uct disposal. The model estimates key activity parameters as input data with similar

cases and decides the significance of carbon footprint as an output. The schematic of

knowledge based carbon footprint classification is shown in Figure 5.2. The frame-

work consists of three steps as follows:

1. To identify key activity parameters: Activity parameters are used to

calculate carbon footprint with emission factors, which represent each phase

of the lifecycle. For example, activity parameters are associated with material

flow in raw material extraction, energy intensity in manufacturing process,

energy consumption in use phase and recycling ratio in the disposal phase. All

activity parameters are not readily known in concept design parameters and
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Figure 5.2: Flow chart of knowledge-based carbon footprint classification

proposed engineering changes. In addition, a single company is unable to look

into related emission factors due to additional cost and development delay.

Therefore, key activity parameters need be proposed to represent the scope of

the product life cycle.

2. To define estimator for activity data using case based reasoning: Es-

timators predict the value of key activity using previous product information

or engineering changes. Based on case-based reasoning, estimators retrieve

similar cases in terms of material and related parts, which is known activity

information from concept design and proposed engineering change. Next, key

activity parameters are estimated by using the retrieved cases.

3. To develop carbon footprint classification using previously evaluated

carbon footprint and key parameters in a basis of case-based rea-

soning: PAS 2050 has explained the process of carbon calculation as a linear

combination of activity parameters and emission factors. Though all emission
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response is not strictly linear, LCA method and EIO-LCA are also based on

linear relations. For simplicity, emission factors for key activity parameters

can, therefore, be calculated by using linear regression. Because key activity

parameters are abstract and concise, simplified emission factors may lead to

the wrong decision. However, boosted simplified emission factors can make

better decisions on carbon classification.

5.7 Detailed procedure of knowledge-based carbon footprint
classification

The objective of the research is to decide the significance of carbon emission based

on known information about concept design and proposed engineering changes. To

compare carbon level there must be common functional units and system boundary

between carbon footprint data. The system boundary encompasses the lifecycle of

vehicle as a complete assembly; this dominates system boundaries of components,

subassemblies, processes, materials, and activities involved in the vehicle.

5.7.1 Information from concept design and engineering changes

Concept design and proposed engineering change cannot provide all activity data.

For the available information in concept design, general design methodologies have

defined the scope of product information as shown in Table 5.1. The concept design

phase can provide the functional requirements, simple components with basic layout,

and their arbitrary material selection with material mass. The required information

for fast prediction on environmental impact, such as geometry, material, manufac-
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Table 5.1: Available information in the design process adopted from [1, 2]
Design process Information available
Needs identification Functions, Range of specification
Concept design Functional requirements, Performance, Basic Layout

Components and material
Embodiment design Manufacturing process, Use profile, End of life strategy

refinement of design
Detailed design Decision of all specifications

turing process, and transportation information, is, however, relatively unavailable.

In addition, the proposed ECs involve information about the process knowledge

of ECs, problems of changes, affected parts, and change description as shown in

Figure 4.1. Among this information, the information of affected parts can inform

activity data. However, the proposed ECs do not have all information. The carbon

footprint of engineering changes is calculated by the different carbon footprint of

input affected parts and output affected parts. The proposed engineering changes

don’t include product information relating to output affected part information. The

information of affected parts in proposed EC provides before-change parts, but after-

change parts are unimplemented in the proposed EC. Nevertheless, the proposed

ECs have preliminary mass change information about changed parts, detail design

of added parts, and change description provided from the EC developer. The change

of product feature needs to be considered.
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5.7.2 Key activity parameters

Activity data refers to all material and energy flows used to calculate a carbon

emission, which can be representative for activities during each lifecycle phase. How-

ever, concept design and proposed engineering changes cannot provide all required

activity data to calculate a carbon footprint. In this research, we therefore propose

the concept of key activity parameters that facilitate estimating the carbon emissions

of lifecycle phases over the concept design and proposed engineering change. They

can be a material flow, energy consumption, and related physical parameters to each

phase of the product lifecycle. For the purpose of representative features, key activ-

ity parameters should not only be derived from design attributes of previous product

information and engineering changes, but they can also allocate carbon footprint of

each lifecycle phase based on physical causality.

Raw material processing: The lifecycle phase refers to the acquisition of natural

resources and the process required for material production. Emission factors for the

material production are collected based on material information, and are varied de-

pending on material types and production methods, technologies, infrastructure, and

geological differences. Primary activity data for material production is the mass of

material, which includes information about intermediate material and waste mate-

rial. Within emission factors in the raw material processing phase, the activity data

typically consists of material input, product output, co-product, and waste material.

Among the activity data, available information in the product design system is ma-
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terial mass flow of products. In addition, the activity data can be allocated based

on output material flow. Therefore, we focus on material mass flow of products as

the key activity parameter for raw material extraction.

Manufacturing phase: Manufacturing phase consists of the production and as-

sembling process of sub-parts and components. Carbon footprint during manufac-

turing phase is calculated with the total emission of a set of manufacturing unit

processes; this is mostly based on material flow, manufacturing energy consumption,

and manufacturing process. The typical emission sources are generated from station-

ary combustion, mobile combustion, process energy consumption, coolant flow and

indirect emission from electricity consumption. Manufacturing energy consumption

has a physical causality of part material flow, manufacturing process, and operating

parameters; all are used in allocating the carbon basis. Here we are using manufac-

turing energy for a key parameter. There are also some research to support using

manufacturing energy as an allocation basis of carbon footprint in the manufacturing

phase [52, 53, 54]. In addition, manufacturing energy can be estimated from product

data using process information and CAM software. Therefore, manufacturing energy

is used to represent one key activity in the manufacturing phase of this research.

Use phase: Use phase involves energy and waste flow during vehicle lifecycle.

The main contribution of use phase in mobile operation is fuel consumption. The

fuel efficiency of vehicle is based on fuel efficiency of a vehicle, part mass, and use
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time. For the product consuming electricity, use profile through life time is critical

in estimating carbon footprint. However, because there is no standard for energy

consumption, this research does not consider use energy consumption. We just focus

on fuel consumption during the use phase of a vehicle.

End of life phase: The different recycling strategies are applied for different mate-

rials and parts. End-of-life strategy includes landfill, incineration, recycle, and reuse.

The emission source of this phase contains the energy consumption of dismantling,

shredding, separation, and transportation. However, detailed information about dis-

posal strategy is unknown in the product design system. In this research, the end of

life information is provided by binary data about recycle or landfill.

5.7.3 Estimator for key activity data of proposed engineering changes
and concept design

Estimator for key activity data of proposed engineering changes and concept

design is stated as:
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For: Products clusters of functionally similar products

or engineering change clusters

Given: Concept design information of a new product design

and proposed engineering change

Estimate: A set of key parameters for concept design and proposed engineering change

The domains of the overall problem incorporate the two different disciplines of con-

cept design and engineering changes. However, they have a common basis in that

their embodiment is not implemented. In addition, they have to be analyzed to de-

lineate the product realization when considering sustainable product development.

In this research, we provide a method to support the two problems with the same

procedure.

Preprocessing to select a cluster for similar products with the same

functions or similar engineering changes. Preprocess gathers similar informa-

tion to estimate the input information as a retrieval stage in case-based reasoning.

The reason why we use similar cases to estimate information is lack of information

in concept design engineering changes. Similar cases involve domain specific knowl-

edge used before. In addition, designers mostly refer to them to initialize product

development.

For engineering changes, we have already defined EC similarity measure and EC
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Figure 5.3: Functional model for brake system

clusters with the parallel ant-based clustering method. The EC information in EC

clusters are used to adapt this key parameter of proposed engineering changes. For

concept design, we have designed functional semantic retrieval to find functionally

similar products. However, functionally similar products do not always have sim-

ilar product embodiments because there may be different realization of functional

requirements. For example, the brake system of a vehicle can be initialized from

functional modeling as described in Figure 5.3:

With a functional model, similar products can be retrieved by semantic retrieval

in FSR (functional semantic representation). In order to classify similar products

among functionally similar products by concept design, the amount of flow value

using hasMagnitude property has been used. Functionally similar products with

similar amount of flow may have different material composition. For this, a material

matrix has been used. The heterogeneity of material composition is summarized in

the material matrix in which 1 is placed if the product has the material and 0 is

placed otherwise. Note that a material matrix is created with concept design C,

functionally similar product pn, and material information Matm as shown in Figure

5.4:
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 𝑀𝑎𝑡1 𝑀𝑎𝑡2 … 𝑀𝑎𝑡𝑚  

𝐶 1 1 … 0 

𝑃1 1 1 … 0 

𝑃2 0 0 … 1 

… … … …. … 

𝑃𝑛  1 1 … 1 

 

Figure 5.4: Material matrix

From the material matrix, products are selected to achieve a cluster by calculating

Euclidean distance between concept material and product material. The optimistic

query is defined with the distance of 0 because the homogeneity of product infor-

mation leads to more similar product cluster. However, there are tradeoffs between

distance value and the amount of product information. In this research, zero distance

is selected to maintain homogeneity of material composition with concept design.

5.7.4 Estimating key parameters of concept design and proposed engi-
neering changes

The retrieval uses functional information about concept design. However, es-

timating carbon footprint requires embodiment of product, which needs mass and

material at a minimum. We have to consider the context of product information for

embodiment information in retrieval. For the adaptation of the retrieved products,

there are some methods like majority vote, 1-NN, weighted sum with KNN, and par-

allel adaptation with linear regression. The methods are based on the comparison

between given information and similar information from a database. The comparison
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is not applicable in concept design, because product information in concept design

is undefined yet. From the common information between a given concept design and

proposed EC, we will show how to consider part by part and phase by phase to de-

rive key parameters. For the estimation of carbon footprint to components in mobile

operation, the scope of product lifecycle, product key parameters, assumptions, and

data sources are provided as follows:

Material mass: Mass information about concept design and proposed ECs are

obtained by the component level. Concept design and proposed ECs are commonly

composed of a set of components. However, the material used in components has

different energy and material flows in raw material production. Considering the mass

impact of material in carbon estimation, the components from a database are classi-

fied and used with the same material as components of concept design and proposed

engineering changes, as shown in Figure 5.5.

Manufacturing energy: Manufacturing energy is also collected by component

level. It refers to the sum of manufacturing process energy to produce a component.

Manufacturing energy consumption is required to build a process map with activity

data to calculate the carbon footprint. However, there is no process information

in concept design and engineering changes. The information available consists of

mass information about related components. To predict the manufacturing process

of change impacts, we will adapt the manufacturing energy with respect to mass
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Figure 5.5: Product and engineering changes that have the same material composi-
tion

information of concept design and similar ECs. For example, a cluster of brake rotor

from our database is analyzed with respect to manufacturing energy change in Figure

5.6.

To predict the manufacturing energy consumption, manufacturing energy con-

sumption is linearly approximated with respect to mass information. Next, the

adaptation for manufacturing energy consumption employs parallel adjustment to

correspond to linear regression between material vector and manufacturing energy

consumption. It adjusts manufacturing energy of concept design by the average of a

parallel line from k-neighbors.

Fuel consumption: Fuel consumption is calculated based on mass information

and fuel consumption of the target vehicle. Fuel consumption in the use phase

is dependent on the performance of products, but it is not just allocated to part
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Figure 5.6: Manufacutring energy adaptation for a brake rotor

design or changes. Because the contribution of functional improvement in part design

and changes may influence complex results, the impact is hardly predictable. We

just consider the impacts of concept design and proposed ECs to affect product

performance with respect to their mass information. This process is calculated based

on vehicle performance.

During the lifetime, we can estimate fuel saving from the above regression model

that is based on 37 gasoline cars. The regression function for fuel consumption (FC)

is represented with respect to car curb weight (CW) as shown in (5.1).

FC = −10−7CW 2 + 0.0026CW − 1.788 (5.1)

The regression model is obtained with 37 reference vehicle models in order to

estimate the fuel use of the redesigned car in terms of car weight. We will consider

the fuel saving (FS) from the mass change using the regression model:

FS =
dFC

dCW
∆mass (5.2)
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With the performance data of a reference car, the fuel consumption from concept

design and proposed engineering change can be obtained.

Recyclability: End of life strategy is a binary variable to select options like re-

cycle and landfill. We will just use the majority vote to decide the disposal strategy

of components related to concept design and a proposed EC. The impact of disposal

strategy is different with respect to material and parts, which is not directly defined

from product information and EC information. Therefore, we will define qualitative

information to derive classification.

5.7.5 Carbon footprint classification using previously evaluated carbon
footprint and key parameters

The section aims to formulate a classification method to predict the significance

of product carbon footprint to recognize the measure for decisional and selective

purposes. The decision about carbon footprint is made based on the analysis of

previous carbon footprint data of functionally similar products and similar ECs. It

integrates material composition, product mass, manufacturing energy consumption,

fuel consumption and recycling strategy into the significance of carbon footprint.

Though the emission generated from each lifecycle phase cannot be estimated ex-

plicitly with key parameters, it is useful in integrating environmental impact with

design development without building a complex process map in the early phase of

design.
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Overall algorithm

The overall problem of carbon footprint classification is stated as follow:

For: Key parameter of given concept design and proposed ECs

Given: Similar cases with their carbon footprint and target carbon emission

Determine: Significance of carbon footprint of concept design and proposed ECs

Carbon footprint is calculated using the equation that is the sum of carbon emis-

sion generated from all materials, energy and waste for activities over the product

lifecycle. The calculation is a simple sum of multiplying activity data by emission

factors. From analogy to carbon footprint calculations, the linear classification model

is simply applied from learning with previous carbon data. There have been several

approaches using a linear estimation concept in simplified LCA studies. However,

the studies cannot provide the prediction of carbon footprint with high level infor-

mation derived from concept design and proposed engineering changes. In addition,

though the carbon footprint calculation is a kind of linear model, it is not a deter-

ministic function because there is mandatory decision making by the stakeholder,

by geometrical and temporal differences, and by data sources. A linear regression

model for predicting carbon emission is, therefore, a weak estimator. To reduce the

uncertainty of the prediction, the combined decision making from different models

learned with previous data has been considered in this section.

Adaboosting algorithm with random linear classifiers: AdaBoost was
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proposed by Freund and Schapire [55]; it aims to make a strong classification method

by using majority vote principle of weak classifiers. The Adaboost algorithm takes an

input as an instance of domain data with the label. In case of binary classification, the

label is decided as one of the two values: -1,1. With the training data, Adaboosting

algorithm decides the distribution of weak base classifiers. The weights of weak

classifiers are adapted in order to minimize the risk of a combined decision. Initially,

the weight of weak classifiers are equally set. Adaboosting algorithm increases the

weight to correct classifiers or decreases the weight to incorrect classifiers. It can

specify the weighted majority vote of weak classifiers using previous data.

Linear classifiers as base classifiers provide a decision about the significance of

carbon footprint. Random numbers selected from training data are used to estimate

linear classification by using least square method. A linear combination of key ac-

tivities can provide abundant decision boundaries. A linear classification function

using key activity parameters is defined by

sign(f(x)− CO2target)), wheref(x) = a1xmass + a2xmfg + a3xuse + a4xrecycle (5.3)

The parameters of a1,a2, a3, and a4 are generated from least square method using

randomly selected training data.

Impact classification: The carbon footprint of an automotive component has

to be targeted by environmental experts or designers. The target value should be

established by minimizing the carbon footprint emitted during the product life cycle.

With the target carbon footprint value, we can decide the significance of environ-
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mental impact on given activities. The simple stump will be defined in terms of all

EI attributes, which will be boosted to define ∆CO2 classifiers as follows:

y = CO2 − CO2threshold

high impact, if y ≥ 0

low impact, if y < 0

(5.4)

We can consider the variation of k to estimate ∆CO2 of proposed EC. In addi-

tion, it can provide the feasible EI range of other design decision-making by experts’

knowledge.

The output of estimating lifecycle impact of ECs: Boosting algorithm de-

termines the amount of all metrics to classify carbon footprint with the given thresh-

old. We will define the upper bound of carbon footprint to predict the significance

of carbon change. Boosting algorithm is a kind of ensemble classification method,

which uses a set of basic classifiers to identify data information. Basic classifiers

represent simple classification of data using partial information. In our method, four

types of basic classifiers are employed as follows: material classifier, manufacturing

energy classifier, use energy consumption classifier, and recycle classifiers. Classifiers

will be varied based on their threshold value.

5.8 Evaluation

Performance of boosting method: 0.632 bootstrap estimation with respect

to various threshold values: This test focuses on the classification of the carbon

footprint of EC into significant impact or insignificant impact. The threshold value
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of the classification will be given by the domain experts to manage carbon footprint

of ECs. To classify carbon footprint of ECs, weak classifiers on material mass,

manufacturing energy, fuel saving, and disposal option are provided. 0.632 bootstrap

is proposed by Efron and Tibshirani [56] in order to reduce the bias of the leave-one-

out bootstrap. The estimate has the form of

Êrr
.632

= 0.368× err + 0.632× Êrr
(1)

(5.5)

The results downward bias when there are no class differences. W = 0.632 is pro-

posed by Efron. 0.632 estimator works well with a small number of training data.

Êrr
(1)

is the error of leave one out bootstrap over n number of training data. The

err is the average of training error during bootstrap. For the sampling data, at least

one observation is sampled from each class.

Performance of boosted least square classification using random sam-

ples: The threshold of classification will be decided by a domain expert. Therefore,

we will show the bootstrap errors with respect to the value of threshold and the types

of classification.

We have considered 0.632 bootstrap of Adaboost with linear classifiers, where

the bootstrap sample B = 200 with training iteration T = 500. For the bootstrap

evaluation, 51 samples are used and labeled with threshold value. Figure 5.7 shows

the 0.632 bootstrap error rate with our boosting method and other typical classifi-

cation methods. The boosting method overall outperforms the other classifiers with
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Figure 5.7: 0.632 Bootstrap error rate with B = 200 for EC carbon data

respect to the threshold value. In addition, the boosting method showed minimum

error rate during the test.

5.8.1 Case Study

In this section, we demonstrates a case study to show the application of knowledge-

based carbon footprint estimation for concept design and proposed engineering changes.

It consists of two examples for concept design and proposed engineering changes using

an automotive brake system as an example for concept design and proposed engi-

neering changes. Data has been created with arbitrary implementation of mechanical

elements and their changes. The carbon data has been calculated with Solidwork-

SustainXpress for material, manufacturing, transportation, and disposal phase and

CES2010 ecoaudit for use phase. SolidworkSustainXpress is integrated with CAD

system to the calculate carbon footprint with material information and geometry

information. For the use phase, we have assumed that the machine elements are
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used in mobile products and that the technical improvement and functional change

are not dealt with. Because the technical improvement and functional change can

be considered to be brought with detailed information to estimate the impact, they

are separately considered.

Product system

The brake system of a family car is analyzed to decide the significance of carbon

footprint. The functional unit of a vehicle is defined with 10 years of life time

and 10,000 miles per year. The system boundary encompasses subcomponents of the

brake system over the entire life cycle. In particular, concept design for brake system

just considers a subcomponent of the brake system: the caliper part. Engineering

change is the change of brake rotor in shape and materials. In this research, a

reference lifecycle of vehicle has been defined with a family car, whose functional life

span corresponds to 100,000 miles during 10 years.

Preprocessing

To retrieve similar product information for concept design and proposed engineer-

ing change, the system utilizes the functional information for concept design as well

as input-affected product information for proposed engineering change. Functional

modeling of brake caliper using FSR, which can represent the semantics of regu-

lating braking power from hydraulic pressure, enable semantic retrieval to provide

functionally similar products as described in Figure 5.8, which functional informa-

tion was adopted from the Design Repository at Missouri University of Science and

Technology [28].
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Regulate

(Caliper)
LiquidLiquid

  Regulate(?x)  ∧ hasInputFlow(?x, ?y1)  ∧ Liquid(?y1)  ∧ hasMagnitude(?y1, ?force)  ∧
  Swrlb:greaterThan(?force, 800)  ∧ swrlb:lessThan(?force, 1000)  ∧ hasOutputFlow(?x, ?y2)  ∧
  Liquid(?y2)   → sqwrl:select(?x)

Figure 5.8: Functional model of brake caliper assembly and semantic retrieval using
FSR

 

 

 
 

Brake caliper concept assembly 

 

𝑚 ≈ 0.35 kg 

 

 

 

 

𝑚 = 0.378 kg 

 

 

𝑚 = 0.389 kg 

 

 

𝑚 = 0.161 kg 

 

Figure 5.9: Retrieved examples of caliper from semantic retrieval and meterial matrix

In order to find similar calipers, we have utilized the force of liquid as the amount

of Liquid flow with hasMagnitude property. It enables designers to consider func-

tional similarity as well as similar performance of products. Retrieved products may

have different material composition. By using the material matrix, we can select

the functionally similar calipers with the same material composition. Calipers are

selected from concept design as shown in Figure 5.9.
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Key parameter estimating

In this approach, key parameters of concept design and proposed engineering

changes are estimated from given product and engineering change clusters. Key

parameters consist of material mass, manufacturing energy consumption, fuel con-

sumption in mobile use, and end of life strategy. Different estimators are used to

estimate each key parameter as follows:

Mass information: Retrieved similar brake systems similar to the brake concept

design and proposed EC of brake rotor provide the material flow information on each

component. The information of material mass is summarized with a vector format.

Each attribute of the vector is filled with mass of the material given by concept

design or proposed EC, if concept design provides the material information.

Manufacturing energy consumption: The estimator for manufacturing en-

ergy consumption employs parallel adjustment to correspond to linear regression

between material vector and manufacturing energy consumption. For example, ro-

tor and caliper of concept design provide material flow. The material information

determines manufacturing energy consumption of each component that is adjusted

parallel to linear regression from the nearest neighbor. The proposed engineering

changes are also processed by parallel adjustment. The result is shown in Figure

5.10.

Fuel consumption in use phase: with the functional unit of the vehicle, the

fuel consumption from concept design and proposed engineering change are calcu-

lated using the equation 5.1. The regression model is obtained with 37 reference
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Figure 5.10: Adapting process of manufactring energy consumption

vehicle models in order to estimate the fuel use of the redesigned car in terms of

car weight. We will consider the fuel saving (FS) from the mass change using the

regression model with the equation 5.2.

End of life strategy: The end of life strategy is different with respect to material

and parts, which are decided by end of life strategy of similar calipers. The decision

making is defined from the majority vote from EOL strategy of similar products.

The retrieved caliper assemblies are considered to be recycled in the end of use.

EOL = 1

Boosted learning surrogate LCA method

The carbon should be targeted to each component and provided to train the

boosting algorithm. The carbon target encompasses carbon emission over the prod-

uct lifecycle. In this case study, the targets were established with the average carbon

footprint of previous similar products. The significance of carbon footprint during
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Table 5.2: The prediction of carbon significance on new products and proposed ECs
Rotor design Caliper design EC of base part

Mass (kg) 6.4 0.35 -0.1
Manufacturing energy(MJ) 119.51 8.73 8.308
Fuel consumption(lb) 296.3 16.2 -4.629
EOL 1 1 1
Target CO2eq(kg) 38 5.5 -2.5
Significance Insignificance Insignificance Insignificance

lifecycle is calculated with material mass flow, manufacturing energy consumption,

fuel consumption, and EOL strategy as shown in Table 5.2.

The carbon footprint of components in concept design is considered a sum of car-

bon emissions along the sub-parts over the life cycle. Each carbon classification with

boosting margin provides the carbon significance with the confidence of correctness,

which enables designers to identify problematic parts and benign parts. The result

provides the carbon footprint of product realization from concept design.

5.9 Summary

As the issue of carbon footprint has been a challenge to modern companies, the

contribution of designers has been critical in developing low carbon products. This

trend promotes the need of environmental tools for designers and engineers. To date,

some methodologies have been developed to support environmental consideration in

product development. However, the existing tools are too complex or too qualitative

to meet the environmental needs of designers. In particular, there is lack of analytic

approach for the early design process, where 70% of product design is determined.
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This research proposes a framework to predict carbon footprint of products in

the early design process. As a challenge of this approach, lack of knowledge avail-

able in the early design process was identified, and the needs of knowledge-based

approach was shown. This proposed method introduced a way to reuse carbon foot-

print information deriving from similar existing products and engineering changes.

This was implemented by using case-based reasoning and boosted learning surrogate

LCA. As an input, key parameters were determined to represent lifecycle attributes.

This enables designers to estimate the feasibility of target emission to virtual design.

The result of our approach has been shown to perform well with carbon footprint

data. It is believed that the key parameters can be correlated with carbon footprint

emission. However, the key parameter was determined from literature review and in-

tuition. Future work is needed for selecting suitable key parameters and verification

method with testing.



CHAPTER VI

Conclusion

This chapter summarizes key contributions of this research and discusses direc-

tions for future research.

6.1 Research contributions

Current approaches to assess sustainability (carbon footprint in this thesis) rely

on detailed computations possible only after complete knowledge about the product

or engineering change is generated, and are, therefore, time-consuming, off-line and

reactive (post-design or post-engineering change). As a result, they are not integrated

into the product creation process prior to finalizing details and committing resources

for downstream activities. This dissertation presents research focusing on the de-

velopment of knowledge-based techniques to transform the current approach into an

integrated proactive approach that relies on using fast estimates of sustainability

generated from past computations on similar products. The developed methods ad-

dress multiple challenges by leveraging the latest advancements in open standards

and software capabilities from machine learning and data mining to support integra-

tion and early decision-making using generic knowledge of the product development

98
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field.

We can determine the environmental impact of a new product using function-

ally similar products, because Life Cycle Assessment (LCA)-based carbon footprint

calculation typically starts by analyzing the product functions. However, the lack

of a semantically correct formal representation of product functions is a barrier to

their effective capture and reuse. Existing representations are unsuitable for auto-

mated reasoning tasks, since they capture only a restrictive, practically unusable

set of semantics determined by the limited expressive power of the Web Ontology

Language (OWL). The Function Semantics Representation (FSR) proposed in this

research is developed by first identifying the advanced semantics that must be cap-

tured to ensure appropriate usability. These are then represented using Semantic

Web Rule Language (SWRL), a proposed Semantic Web standard. As demonstrated

through multiple cases, this ensures support for an effective reasoning mechanism to

develop and validate the product function (or functional model). Furthermore, it en-

ables finding similar products to predict/estimate the carbon footprint of a proposed

product design.

Several products are developed as engineering changes of previous products but

enough data to predict the carbon footprint is unavailable before their implementa-

tion. Using past EC knowledge to predict the carbon footprint of a proposed EC

requires an approach to compute similarity between ECs. We proposed an approach

to compute similarity between ECs that overcame the challenge of the hierarchical

nature of product knowledge by integrating an approach inspired from research in
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psychology with semantics specific to product development. We embedded this into

a parallelized Ant-Colony based clustering algorithm for faster retrieval of a group

of similar ECs. We applied the approach to 14 Engineering Changes (91 matching

problems) and compared the results from the perspective of carbon footprint evalu-

ation. We show that there is a statistically significant improvement in precision in

retrieving similar ECs using our approach as compared to those using state-of-the-art

approaches.

We are not aware of approaches to predict the carbon footprint of an EC or a

proposed design right after the proposal. In order to reuse carbon footprint infor-

mation from past designs and engineering changes, key parameters were determined

to represent lifecycle attributes. The carbon footprint is predicted through a sur-

rogate LCA technique developed using case-based reasoning and boosted-learning.

We evaluated against state-of-the-art approaches to observe that there is a signifi-

cant improvement in success rate in predicting carbon footprint obtained using our

approach as compared to that obtained using the state-of-the-art approaches.

6.2 Future research directions

Following are some of the interesting directions that this research can be extended

to:

• Integrate the three dimensions of sustainability: We considered tech-

niques to integrate carbon footprint evaluation into the early phases of prod-

uct creation. Sustainable manufacturing aims to achieve a balance along three,

sometimes conflicting, dimensions: environmental, economic, and societal. This
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research needs to be extended to develop appropriate knowledge representa-

tions, metrics, and integration techniques to ensure that the three views are

presented to the designer in a real-time, seamless manner to enable monitoring

and assessments for sustainable manufacturing.

• Determining an optimal number of datasets for prediction: The

prediction of carbon footprint, as discussed in this research, relies on past

knowledge. Whereas creating large number of datasets is a prohibitive task,

using a small number of datasets could reduce the reliability of the prediction.

Therefore, research is required to determine an optimal number of datasets

required for reliable prediction.

• Presenting similarity in a human-understandable form: In the prod-

uct development domain, the mathematical values and the geometric defini-

tions of similarity are not intuitive, because formal mathematical models have

not been developed for capturing human perceptions. Domain experts cannot

easily assign a real value to their perception of similarity. Research is therefore

necessary to determine a format for presenting the results such that the domain

experts find them more usable and acceptable. Candidate approaches include

presenting a ranked order of the results and classifying into categories, such as

“very similar”, “similar”, “dissimilar”, “very dissimilar” and so on.

• Managing scalability: Methods proposed in this thesis are designed to use

parallel computing power presented by modern computers. Further research

is required to analyze and modify the proposed methods to handle scalability,
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particularly at the scale of automotive product knowledge that is very large

and complex (millions of attributes per dataset and millions of datasets).

• Development of a repository: We have used our expert knowledge to

determine the correctness of the results for the demonstrative cases that we

have developed. Standard data sets should be generated from complex, real-

world products and should incorporate multiple views of representation and the

contribution of manufacturing processes, materials, and other parameters af-

fecting carbon footprint. Such rigorously developed datasets can form a cyber-

repository that can be used to benchmark/validate different methods and tools

developed by researchers in this field.

• Enabling decision-making at a finer level of granularity: In this re-

search, environmental impact was assessed using the standard, single-valued

carbon footprint. It is desirable to develop methods to integrate predictions

at a finer level of granularity for effective decision-making. For example, the

designer might be interested in those phases of the product lifecycle that would

bear the most negative/positive impact. Similarly, the designer might want to

identify those components, e.g., material, manufacturing processes, etc., that

contribute the most to the overall impact.
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