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DYNAMIC RESPONSE OF A THIN-WALLED CYLINDRICAL
TUBE UNDER INTERNAL MOVING PRESSURE

Sing-chih Tang

ABSTRACT

The dynamic response of a thin=-walled cylindrical tube under
internal moving pressure is analysed. Two kinds of approximate equa-
tions of motion are used, corresponding to the elementary Euler-Bernoulli
theory and the more exact Timoshenko theory of beam vibration. The work
contains three major parts which are as follows:

1. Steady state wave motions in the tube wall., Frequency

spectra (frequency as a function of wave number) and
velocity spectra (phase velocity as a function of wave
number) are plotted based upon two kinds of approximate
equations of motion. The frequency spectra are useful
for studying the transient response of the problem;

and the velocity spectra are useful for the steady
state response, since in steady state response the
velocity of the moving pressure front is identical to
the phase velocity of the wave propagation in the tube
wall.

2. A study of the steady state response for a tube with

infinite length under moving pressure. This is analysed

by means of the Fourier transform. In the case of the
pressure front moving with velocity greater than criti-
cal, the solution is obtained by introducing a viscous
damping term in the equation of motion and setting it

equal to zero in the limit.



ABSTRACT

The dynamic response of a thin-walled cylindrical tube under
internal moving pressure is analysed. Two kinds of approximate equations
of motion are used, corresponding to the elementary Euler-Bernoulli
theory and the more exact Timoshenko theory of beam vibration. The work
contains three major parts which are as follows:

1. Steady state wave motions in the tube wall. Frequency

spectra (frequency as a function of wave number) and
velocity spectra (phase velocity as a function of wave
number) are plotted based upon two kinds of appfoximate
equations of motion. The frequency spectra are useful
for studyiné the transient response of the problem;

and the velocity spectra are useful for the steady”
state response, since in steady state response the
velocity éf the moving pressure front is identical to
the phase velocity of the wave propagation in the tube
wall.

2. A study of the steady state response for a tube with

infinite length under moving pressure. This is analysed

by means of the Fourier transform. In the case of the
pressure front moving with velocity greater than criti-
cal, the solution 1s obtained by introducing a viscous
damping term in the equation of motion and setting it

equal to zero in the limit.
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3. A study of the transient response. for a tube with

semi=infinite length under moving pressure. This is

analysed by means of the Fourier sine transform in
the case of the pressure front moving with velocity
less than critical. For over critical velocity,

the transient response based upon the equations of
motion from the more exact theory is ana;ysed numeri-
cally by means of the method of chafacteristics.
Numerical results for different velocities of the

moving pressure front are computed.
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INTRODUCTION

It is known that the dynamic effect on the stresses in the tube
wall is very large when a pressure front with high velocity moves down a
tube. Static analysis of the stresses in the tube wall i1s valid only
when the pressure front moves with low velocity. If the velocity is
supersonic, dynamic analysis of stresses has to be employed. For in-
stance, when a shock wave is transmitted in a tube, static analysis of
stresses in the tube wall will be inaccurate. Shock tubes (i.e., tubes
in which shock waves are generated) have been widely used in testing
models. A method for analysis of the dynamic streéses in the tube wall
will be presented. Exact solutions based upon actual properties of the
pressure front and complete three-dimensional theory of elasticity are
too complicated to admit analytical treatment. Idealized forcing func-
tion due to pressure front and approximate equations of motion must be
employed., These simplifications are adequate for the purpose of calcu-
lating the stresses in the tube wall.

The pressure front is assumed to be moving with constant velocity
parallel to the axis of the tube and the intensity of the pressure is as=-
sumed to be uniform. Approximate equations for axially symmetrical mo=-
tion of a thin-walled cylindrical tube due to Lin and Morgan,(l) and
Herrmann and Mirsky(g) are valid for a wide range of frequencies, parti-
culafly for higher frequencies. These equations involve térms due to
rotatory inertia and shear deformation that are significant for higher
frequencies. For low frequencies, neglect of these terms will not cause
any serious error. Equations omitting these terms are due to Love.(B)

-1-



The difference between equations containing these terms and equations
omitting these terms is analogous to the difference between equations
of transverse vibration of a beam by Timoshenko theory(h) and by
Euler=-Bernoulli theory. For higher frequencies, the eguation based on
the Timoshenko theory should be used.

In this work, the two approximate equations are employed to
analyse the stresses in the tube wall. Further simplifications are in-
troduced, so that additional assumptions have to be made, i.e.;, the
inertia force parallel to the axis of the tube is neglected and the re-
sultant longitudinal stress across the thickness of the wall on the plane
perpendicular to the axis of the tube vanishes. These simplifications
meke sense 1f the strain energy due to radial motion is large compared
with that due to axial motion. This work presents the case in which
radial motion predominates. After tﬁe simplifications mentioned above,
these two kinds of approximate equations become identical to fhe equa=
tions of Euler=-Bernoulli beam and Timoshenko beam both on an elastic
foondation°

Euler=-Bernoullie beams on an elastic foundation under a con=
centrated force moving with constant horizontal velocity have been in-
vestigated by many authors. In the investigation of dynamic stress‘in
rails under the wheel of a locomotive, Timoshenko(5’6) formulated this
problem. Using Fourier series to solve the probiem of a beam with fi=-
nite length, he found that the dynamic effects was insignificant because
the horizontal velocity of the wheel was small compared with so-called

critical velocity which depended on the flexure rigidity of the beam as



well as the foundation stiffness. Ludwig(7) solved a similar problem,
but the beam was infinite in length and the force moved with velocity
either less, equal, or greater than the critical. His interest was in
the steady state response, so he assumed that the moving force had al-
ready acted on the beam for a long time. Mathews(8) used the Fourier
transfofm to solve the rail problem for the steady state response, but
his moving force was such that the magnitude of the force varied sinu=-
soidally in time. D4rr(9) formulated problem == a semi=-infinite
Euler-Bernoulli beam on an elastic foundation with one end simply sup-
ported, under a concentrated force moving from that end with constant
horizontal velocity. He used the Laplace transform to solve this prob=-
lem. He calculated the inverse transform by the asymptotic method, so
the duration of the moving force on the semi-infinite beam had to be
infinite and this then was a steady state solution too. vThis steady
state solution with the velocity Of the moving force greater than the
critical is physically meaningful. He also derived a formula in terms
of Fourier integrals for a moving force with velocity less than the
critical suddenly applied at the middle of an infinite beam. For a mov=-
ing force with velocity greater than the critical, he used a poﬁer series
to solve the transient problem, but no numerical results were given.
The effect of viscous damping on this problem was first studied by
Kenney.(lo) In the case of velocity greater than the critical and with
no damping, he took as the physically meaningful solution that which was
approached in the limit by a system whose damping approached zero.

Crandall(ll) used this idea to solve a Timoshenko beam on an elastic
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foundation under a concentrated force moving with constant horizontal
velocity. 1In a paper -- Transmission of Shock Waves in Thin-Walled

(12) 4sing the equation idemtical to that

Cylindrical Tubes -=- Niordson,
of Euler=~Bernoulli beam on an elastic foundation, found the radial de-
flection of the wall for the steady state response under a moVing pres-
sure front,.

Supplementing Niordson's contribution, the present work gives
a solution based on equations taking into consideration the rotatory
inertia and shear deformatidn under the same forcing function as Niordson's.
The Fourier transform is used. Both the forcing function and the method
of solufion are different from those of Crandall. In this work the tran-
sienf response of a semi=-infinite tube under an internal pressure front:
moving with'éonstant velocity parallel to the axis of the tube is investi-
gated here for the first time. The result obtained is the main contribu-
tion of this thesis. The standard method of solution is to ﬁse the Laplace
transform, but the inverse integral involves too many branch points to be
dealt with. The Fourier sine transform is used to solve the transient
problem when the velocity of the pressure front is less than the critical.
A numerical method to solve finite differencé.equations is used when the
velocity is greater than the critical, since the Fourier sine transform
fails in that case.

For investigation of vibrations, first of all, the wave propa=
gation in the tube wall has to be understocod. The frequency spectrum:
wave number (complex, real, and imaginary) versus real ffequency of the

radial vibration of the wall, and the velocity spectrum: wave number
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versus real phase velocity of the wave propagation are plotted. A mini=-
mum phase velocity under wnich a wave with a real wave ﬁumber can be
propagated along the wall is found. This phase velocity is identically
the same as the critical vélocity defined by Timoshenko, Mathews, Ludwig,
Dorr and Kenney for Euler-Bernoulli beam and by Crandall for Timoshenko

beam.,



I. EQUATIONS OF MOTION OF A THIN-WALLED
CYLINDRICAL TUBE

A. Assumptions and Approximations

l'

2.

All assumptions in the linear theory of elasticity are employed.
Thickness h of the tube wall is small compared with the mean
radius R of the tube. h 1is also small compared with the

wave length of the disturbance,

Motion of the tube wall is axially symmetric so that no dis-
placement occurs along the circumference. Displacements, strains,
and stresses in the wall are independent of the angular coordi-
nate.

Radial lines remain straight after deformation.

Displacement of the tube wall in the radial direction is uniform
through the thickness of the wall.

12) and the re-

Inertia force in axial direction is neglected,(
sultant longitudinal stress across the thickness of the wall on
the plane perpendicular to the axis of the tube is set equal to
zero.(lB)

In the elementary theory, terms due to shear deformation and

rotatory inertia are neglected.

B. Basic Equations of Motion for Free

Vibration in Cylindrical Coordinates

Let (r, ©, x) be the cylindrical coordinates of a point within

the tube wall, wu,, ug, uy be the corresponding displacement components.

-6-



Let the stress tensor be

Z’o(ﬁ

b eﬁl" ZJQG Z’&X (l.l)

Z’xr Cxe Cex

where 7Tpg = Tgps Tpx = Txps ond Tgx = Txe
Equations of motion(lu) without body force in r, ©, and x directions

are

2C, :aae Qz’rx Z’fr o _ , *Ur
or + 7 T ox =f 2¢? (1.2)

B . I 2Cse 2C%« 2 »
or t 738 T3 t —F C’G—fat‘ (1.3)

x . _|_ s ac,( L U,
5 T v 5ot 32 + +Cx =f5¢z (1.4)

From the assumption, Trg = Tox = 0y x5~ =0, and uy =0,

J0
Equation (1.3) is automatically satisfied. Equations (1.2) and (1.4)

can be simplified to

26 ac Crr— & %u,
a'fl" _'__ rx + rr 58 =fﬂ?f (105)

Y.L 25 Z
5+ o+ Ok =f I (1.6)
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C. Approximate Equations of Motion for Free Vibration

1. More Exact Theory Corresponding to Timoshenko
Theory in”Beam Vibration (Shear and rotatory
inertia terms included)

Iet r =R+ 2 and Tpp = Tygs Trx = Tgxs Ur = Uy, then the

equations of motion become

9Cez , 20z . Gz~ Too 22Uz

22 T7ox ¥ ez — FY<3 (1.7)
2T , 28 Cax *U,

St VS vt 72z = F 5S¢z (1.8)

Following Herrmann and Mirsky;(2) we assume that

U (X, 2,E) = UXE) — Z Y (X.E) (1.9)

Uz (x, 8, ¢) = W (x,T) (1.10)

From Equations (1.9) and (1.10) strain components can be com-

puted as
24, 7 2
€xx = Se =§7—z3—'§‘;‘ (1.11)
: Y u T
Coo = 34 + - = 343 (1.12)
_ dUx dUr ==}y LN
Fex=57 + Tx =%t 5x (1.13)

and all other strain components are zero. With Lloyd,(15) let w Dbe

separated into two parts

N(?‘ﬂ-") = ”b (x,¢) + As(x,¢t) (1.14)
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where Wy, 1s due to bending and wg 1s due to shear.

Then Equation (1.13) becomes

I/t g
o = — Host) +IRREL 4 2450d)
put
= Yl x,¢) + ——g—%’i’-’f) =0
or

) — AWML
Y (xE) = —BX_)

Non-zero strain components can be written as

- au *ey
Cox = G - Foad
Wy + o

e — b s
66 R +Z
_ 9&s
lax = 5%

(1.15)

(1.16)

(1.17)

(1.18)

By Hooke's law, the non=zero stress components can be computed

as

Z7xx = T_-Ey.—,_[ Cxx -+ VCea‘j

_ E %y _Hbtds
= )= yZ [ax — 5% LR R+ Z ]

loo = T:E7? [ oo + 7 Cux ]
_ __E [ dhten 20
= =z Lgyz +V Y2 5x= ]

(1.19)

(1.20)
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7 PN
?FX =KGIlzx =}C6-§—>?§- (1.21)

where ;;x is the average shearing stress through the thickness of the
tube wall, k is the shear correction factor which depends upon Poisson's

ratiol?)

and is approximately equal to that of the rectaﬁgular beam.

Let Nyx be the resultant normal force per unit length of un-
deformed mean circumference in the x direction, Ngg be the resultant
normal force per unit length of the undeformed tube in the © direction,
Qx the resultant shearing force per unit length of undeformed mean cir=-
cumference in the radial direction, and Myy 1is the transverse bending
moment.per unit length of undeformed mean circumference. Moment and re-

sultant forces are shown in Figures 1.1 and 1.2. They can be expressed

in téerms of displacement components and their derivatives as follows

h
Nux = [ B (14 ) 2

A
z E h U W+ 0l

From the assumption Ny, =0, it follows that

U — Wyt s

Ix = 7 = (1.22)
fh N’HN‘ au

Nee = I'h Cop dZ = \_yz L = +vs (1.23)
-z
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S
Mxx
Nxx

1Qx R

Figure 1.1 Resultant Forces and Moment Acting on an
Element.

Z h
~
N69/< ~ ™Npgg

Figure 1.2 Cross Section of an Element.



Using Equation (1.22),

Noo
as follows:
Neo = E2- (o + ;)
3 z
ax —I_h Z’gx (‘ + -R—')dz
z

|
\w)
[\ B4
~
2

3
where D = ———EE———
12(1-v2)

Since for thin-walled tube 1 >> [%l , where

-12-

can be expressed in terms of Wy, and wg

(1.24)

(1.25)

(1.26)

ST
IA
N
N
s
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By Equations (1.24), (1.25) and (1.26), the approximate equations
of motion can be expressed in terms of wp, wg, and their derivatives.
Multiplying both sides of Equation (1.7) by (R + z) and integrating with
respect to 2z over the range =h/2 to h/2, gives the equation of trans-

lation in the radial direction:

20T, + -
3 - =@ .21)

Multiplying both sides of Equation (1.8) by z(z + R) and integrating
with respect to 2z over the range =h/2 to h/2, gives the equation

of rotation:

3 B
E O 29

In terms of wg and wp only, Equations (1.27) and (1.28) become

AT, +
h’ce'axz— )—fl‘i_-—a-.%i-é)
or
Z‘,J- 2
ke 55% — = ﬁ“—g%g—*i"—’) (1.29)
auﬁ, 300‘5 - 3 a.?w"
D3x3 —hka X 12 2xot
or
3 N0
b 4 hoGw; = LML (1.50)
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2. Elementary Theory Corresponding to
Euler=-Bernoulli Theory in Beam Vibration

If the rotatory inertia is neglected, Equation (1.28) becomes

;_H_yﬁ._ax =0

9 X
or
Qy = b= (1.31)
Combining Equations (1.27) and (1.31), and setting wg = O, then
L
M
or
EAAT E P
D&+ B +on T =0 (1.32a)
Putting wp =w, then
LT P
D5 TR W + ’oj"a-l:“‘ =0 (1.32b)

which is identical to Niordson's,(lg)

D. Approximate Equations of Motion
for Forced Vibration

Iet p(x,t) be the internal pressure per unit area, and p(x,t)

acts outward along the radius of the tube.

1. More Exact Theory
A forcing function p(x,t) must be added to the equation of

motion in the radial direction, while the equation due to rotation remains
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unchanged
2, 2
hk@%—iif - %(Mb-l‘&\rs)”—fh ﬁ-—“g‘y:&\r) = —OD(XI-b)
or
2,7 S
G gxzs - 152 (Wpteds) — f 3——1—%‘;’;‘"” = - ";l;* Pit) (1.33)

2. Elementary Theory

DL+ B o S = pet) (34

E. Approximate Equations of Motion
in Dimensionless Form

For convenience of numerical computation, the following dimen=

sionless variables are introduced for X, w, wp, Wg, t, and p respec-

tively
r _ iz X
X = h
W= %
-— )
<wb__ +le
W5= —ﬁ%—s— (1935)
T = VYli2 Vg
h
= 3k
where v, = B is the square of the dilatational wave velocity in
4 (1-v2)p

a plate.
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1. Elementary Theory

Replacing x, w, t, and p by X, W, T, and P respectively
in Equation (1.34), the equation of motion in dimensionless form is ob-

tained

4 - 2 -
W 1= p2 (_%_)%J_'_ W Vz)Ké.P

X 2 2Tz = E (1.36)
Let the following dimensionless parameters be defined
z _ E fb 2
= gre R
(1.37)

St =yHka _ V2
= = =

where vg is the square of the modified shear wave velocity in a plate,
2v2 |—-1P1
3°d° = (R ) (1.38)

Equation (1.36) becomes

2 N
Sxr e F W %Tz =J°P (1.39)

2. More Exact Theory

Replacing x; wy, Wg, t, and p by X, Wy, Wg, T, and P
respectively and introducing dimensionless parameters gg, 8° into

Equations (1.33) and (1.30), the following dimensionless equations are
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obtained

ztﬂr

T —gontw) - 4 FAMR o _p (1.402)
(1.40v)

2, 2 2 W



TII. STEADY STATE WAVE PROPAGATION IN A
THIN-WALLED CYLINDRICAL TUBE

A. Elementary Theory (corresponding to Euler-Bernoulli theory in beam
vibration)

1. Equation of Motion for Free Vibration

For steady state wave propagation in the wall of a tube with
infinite length under free vibration, the dimensionless equation of motion

from this theory is

4 2
o i+ 8

where dimensionless varisbles W, X, and T as well as dimensionless

parameters & and g are defined in Chapter I.

2. Frequency Spectrum---Wave Number (real, imaginary, or complex)

versus Real Frequency of Vibration

Assume the following solution for Equation (2.1)

= A etWNE—RT)

1 (2.2)
then N and Q must satisfy the following algebraic equation

N* + ;z?z__nz =0 (2.3)
or

N4 = 0% — g‘}z (2.4)

Since Q 1is always real, the spectrum has three arms, i.e., when Q2 > §2g2

N 1is either real or pure imaginary, and this corresponds to the real or

=18~
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imaginary arm; when Qg < g2629 N is complex and this corresponds to the
complex arm. Let N =n for the real wave number, N = im for the imagi-
nary, and N =n + im for the complex in the frequency spectrum.

The frequency spectrum is plotted only for the first quadrant
in Figure 2.1 through 2.3, since the spectrum is symmetrical with respect
to all coordinate axes. In those figures, v 1s taken to be 0.3, Kk %o
be 0.8%3 and h/R to be 0.1, 0.06, and 0.03.

3. Velocity Spectrum---Wave Number (real, imaginary, or complex)
versus Real Phase Velocity

Assume the solution of Equation (2.1) has the form

(NX=VT)
W= hAe (2.5)

where N 1s the wave number of the traveling wave, N may be real, imagi-
nary, or complex; V is the phase velocity of the traveling wave, V 1is
always real.  If Equation (2.5) is a solution of Equation (2.1), V and

N have the relation

N* - VENZ 4 5747 =0 (2.6a)
or

z z 2 ‘
N = 1 () -3 (2.6)

When VF - 422 <0, N is complex. Let V,, be Vesg which is the
minimum phase velocity (critical velocity) with which a sinusoidal wave
can be propagated. In this case V 1is less than V,5. When V)'L - Mﬁgggc?o,
or V>V,y, N is real and N has two real values for a given V. N
cannot be imaginary if V 1s real.

The velocity spectrum is plotted only for the first guadrant in

Figures 2.4 through 2.6, since the spectrum is symmetrical with respect
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to all coordinate axes. 1In those figures, v is taken to be 0.3, k to be
0.833 and h/R to be 0.1, 0,06, and 0.03.

B. More Exact Theory (Corresponding to Timoshenko Theory in Beam
Vibration)

1. Equations of Motion for Free Vibration

For steady state wave propagation in the wall of g tube with in-
finite length under free vibration, the dimensionless equations of motion

from this theory are

. 2+ T
a—agg_“;' — (W, + Ws) - alz 2 gb-r z@ =0 (2.7e)
2 PN,

%lfgg + SN — %ﬁ:f = ¢ (2.7b)

where dimensionless variables Wy, Ws, X, and T as well as dimensionless
parameters 8 and g are defined in Chapter I.

2. TFrequency Spectrum

Assume the following solution for Equation (2,7)

Wb — Al el‘.(Nx—ﬂT) (2.8a)

‘V\Ts AZ ei(NK -02T) (2.8b>

where @ 1s always real, thenA] and Ap must satisfy

(F-g) A+ (F-f N A =0 (2.5
(R*=- N3 A, + Az =0 (2.90)

For a non-trivial solution of A] and Ap, the determinant of the coeffi-

cients must be zero and this then is the frequency equation
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2., R a2
(*— N?) s*

or

M‘f—-[?-:u-r?)—ﬁz]Nz-r?(zz"‘%z)f"%) =0 (2.10)

N®

-ZL[ STU+8H) = 32]1—[( (HS) & __;z(gz__%)(’~§z}]!é (2.11)

If N is complex, then

;azz(|+5‘)-3,2 2 <22 S 2
( z ) =P -FI(-5E) <0

For Q to pbe a maximum, the above expression should be equal to zero, namely,

2 _A5E
(1-5) 57 -2 (1~ :'-] =t m}é"?)— 0

Let 0*be the root of the above equation, then

SZ ZSZ l
047 = 5 (- ) £ 7 (- pa— )]

Taking the negative sign

%
ﬁ“:—l%[(ﬂz‘j‘z_j—;)— '_Sz([_?(,_gz)) ]
since
Z—IZ}CG (5)* <1, gzz_(l—-vé‘)m <

251
32_ —sz SO

there is no real root.

Taking the positive sign



-38-

,Q*z': ’___52. [(2 1_5; '__;I.('_ (l_JL))g] (2'12>

- 3 2 S2
= 2wl -+ - zgu-s9—--)]

= 5° [J'z—‘ (higher order terms > 0)]

so that 52 < 8282 and only one real positive root exists.

Taking the positive sign before the radical in Equation (2.11)
nd 2 2 -
2\ _ g2 3= (1+8%) =92 \2 2 02 £02\1%
N* ‘L'[gz (+8%) Z’l“"[( Z ) ""; (g;-37)("—gt)]
If 0< Q< O*, N is complex and this is the complex arm in the fre-
quency spectrum. If 0¥ < Q, N is real and this is a part of the first

real arm in the frequency spectrum.

Taking the negative sign before the radical in Equation (2.11)

2 L+5y — z
¢ = L) - (B s -t

If 0¥ >0 >0, N is complex, and N is conjugate to that in the pre-
vious part. If only first quadrant . is used, this region need not be
plotted due to symmetry of the diagram. If Q* < Q<dg, N ‘is real and
this is another part of the first real afm in the frequency spectrum. If
8¢ < 2 <8, N is imaginary and this is the imaginary arm in the fre-
quency spectrum. If Q > 8, N 1is real again and this is the second
real arm in the frequency spectrum.

The frequency spectrum is plotted only for the first quadrant
in Figure 2.1 through 2.3, since the spectrum is symmetrical with respect
to all coordinate axes. In these figures, v is taken to be 0.3, k to be

0.833 and h/R to be 0.1, 0.06, and 0.03.
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3. Velocity Spectrum

Assume the solution of Equation (2;7) has the form

W, = A, eN&E=T) (2.13a)

Ws = A; eth®=vm (2.13b)

where V is always real. Substitute into Equation (207>, relations of Al

and Ag are obtained

(N =g A + [K(E-1)—g2]A=0 (2.14)
N*(V*=1) A, + S*A, =0 (2.140)

For non-trivial solution of A; and Ap, the following determinant must

vanish

(FE -9 WZ-0-8]|=0

MZ(-VZ__ ‘) 82. (2015)
(VENE - DN = [VA+P) - FIN" + 529 = 0 (2.16)
2 | 2 - 2() 492) =92 .2
N = Wz_')(%_'ﬁv(zlﬂz) }2:!:[(2_(;}_)__2_}_51}1(1;2_,)(;_1)]5} (2.17)



If the positive sign is taken before the radical in Equation (2,17), N
becomes infinite at V=1or V=958 . V= V,=0 is the dimensionless
modified shear wave velocity in a plate and V = V. o=1 is the dimensionless
dilatational wave velocity in a plate.

From Equation (2.17), we see that N Dbecomes complex if the
argument under the radical is less than zero and N becomes either real
or pure imaginary if the argument is greater than zero. Thus we can de-

fine V = Voo to be that which makes the argument zero

0

[VAu+§) = 1= 4391 (F —1)

U= g vt + 221 +232-92) V=4 P-4 =0

_ _ — 4 2 2_‘ - 2%/ 2
V= g (- s =g £ U e ple ]
Since 48° > g2 and V is real, a positive sign is taken before the radi-

cal, then

V2 = g - sl plepepheplt] o

There are three critical velocities V Vo1, and Voo, which

co’
divide the spectrum into four regions. These regions are discussed sepa-
rately.

Based upon Equation (2.17), the velocity spectrum V versus

N can be plotted. There are four regions:



4] -

1. 0 <V < Vg

N is complex, and this is the complex arm in the velocity spectrum.

1l

1. V,q <V < Va1, where Vel o]
N is real for both positive and negative signs before the radical in
Equation (2.17). This is a part of the first real arm in the velocity
spectrum.
1ii. V4 <V < V.o, where Vep =1
N is real for the negative sign before the radical in Equation (2.17)
and this is another part of the first real arm in the veloclity spectrum.
N is imaginary for the positive sign, and this is the lmaginary arm.
iv, V> ch
N is real for both signs before the radical in Equation (2.17). These
are still another part of the first real arm and the entire second real
arm.

The velocity spectrum is plotted for the first quadrant in
Figure 2.4 through 2.6, since the spectrum is symmetrical with respect to
all coordinate axes., In these figuresy; v 1s taken to be 0.3, k to be

0.833 and h/R to be 0.1, 0.06, and 0,03.

C. Comparision of Results from Both Theories

1. Frequency Spectrum

When O < 0g, spectra from both theories are with complex wave
numbers, and they almost coincide. The reason is that the frequency is
very low. When Q > dg, the first real arm of the spectrum by the more
exact theory has the same shape as the real arm of the spectrum by the

elementary theory. For frequencies a little bit over 8g, they are
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close., The imaginary arms of the spectra from both theories are quite
different except these for low frequencies. There is no second real arm

for the elementary theory.

2. Velocity Spectrum

When V < V,,, the velocity spectra with complex wave numbers
for both theories almost coincide. When V > V.os ‘the velocity spec-
trum from elementary theory exists only with real wave numbers. These
with smaller real wave numbers lie almost on the corresponding part by

the more exact theory. The rest are far from the more exact theory.



ITI. STEADY STATE RESPONSE OF A THIN-WALLED
CYLINDRICAL TUBE WITH INFINITE LENGTH
UNDER INTERNAL MOVING PRESSURE

A. BSolution of the FEquation from Elementary Theory

Let p Dbe the intensity of the pressure whose front moves with
velocity v as shown in Figure 3.1. In the ideal case, both p and Vv
are constant. For the steady state response the pressure is assumed to
have acted for a long time. Introduce the dimensionless variables P

and V for p and v respectively

P= E%G—- (3518.)
V= g (3.1b)
d

From Equation (1.39), the equation of motion is
J

4 2
where
P when X i v
P (X,T) =
0 when X > VT

Since this is to find the steady state response, W(X,T) is required to be
bounded everywhere instead of assigning any boundary and initisl condi-
tions for W.

The partial differential equation given by Equation (3.2) can
be transformed into an ordinary one by means of the Fourier transform(l6),

then it can be solved. Take the Fourier transform with respect to T and

the transformed function is

W = J_: WX, T) e T dT (3.3)

43
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Because of the convergence of the transformed forcing function P, im-

aginary part of Q must be greater than zero. The inversion formula is

given by
1 w-\-c‘j —_ _‘nT
WxN=5— Wxe o (3.4)

where the constant y > 0.

To justify this transform, the integrals given by Equations
(3.3) and (3,4) have to be proved convergent. It is assumed this is the
case, and when W(X,T) is found one can verify that this W is a solution
simply by substituting into Equation (3.2),

After the Fourier transform, Equation (302) becomes

— e 2
$E + (- = AEE- X (3-5)

with |W(X,0) |< » for all positive* value of X.
Since we do not need the boundary conditions, the particular

solution of Equation (3.5) is enough. Assume it is

o
WN(X,R)=Ae'TX

To satisfy Equation (3.5), the coefficient must be

L3P

A =
124 2
2 (57 -R*+3%F)

* For negative values of X, the non-homogeneous term in Equation (3.5)
will be changed, but the fingl solution for W 1s the same. For
convenience, use positive values of X to find W.
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The particular solution is

P
— L S2P L X
N) = L e (3.6
Finally, inversion by Equation (3.4) yields
L2
. o0 +1Y VX -leT
3% e €
T) = o — 02 .
W (X, ) 2T L sa+iy ﬂ(%_ﬂz+5131‘> (3.7)
Put N-= %~ into Equation (3.7) and it becomes
s g2 iy eLNQX"VT)
W(X,T) = —% dN (3.8)

00 +i\}, N ( N*- V2N2+§12l)

where~yl = %i;and is greater than zero.
From Equation (3.8), it is obvious that W(X,T) depends on

(X-VT), the distance from the pressure front, because this is a steady

response. To compute the integral given by Equation (308), The residue

(17)

theorem is to be used. Before applying the residue theorem, the poles
of the integrand must be investigated. The poles are the roots of the

equation

N(N*— VENF +3%9%) = 0O

or

and
N4‘_VZNZ+§232=O
The latter is identical to Equation (2.6) which expresses the relation

between the phase velocity and the wave number. From Figure 2.k through
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2.6, N's are complex when V 1is less the critical velocity Vco (=
N28g ) and real when V is greater than V,,. These two cases are dis~
cussed separately.

1. Case for V< Vco

In this case, N's are complex and let them be

N =£n£im (3.9)

a. Deflection for Positions Before the Pressure Front Arriving,
i.e., (X-VT) >0

Take the contour as shown in Figure 3.2, then

\ WN (K- INX-UT
\\ H-m-n'i. ebN(X v dN __j 46““2(}(; 1dN]
P _axiy, N(N%-v2N2+5°92) ¢ N (N4 V2N3+3'3)
=residues at N; and Np
As "a" approaches infinity, by Jordan's lemma
~ X_-V'T
f euJ( L) o
¢ NN TN+ SF)
so that
\ \N X"-UT)
—'g‘ [oo+«.9, N e:_(z 32 1) JN = residues at Nl and No
ZT“' —°°+i‘j| N (N '-v N + 3
-v | - Yol sinn(X-vT)| (3.10)
— e'W'(X- T) [WCOSH(X-VT) 4mnml+m;.)zsm T.l 3

Since (n2 + m2)2 = 32g2, the deflection becomes

WAK,T) = 2132 e~ &E-VT),

Leos n(X-VT) - Z=22sin n(K-VT)) (3.11)
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Figure 3.2 Inversion Contour for (X - VT) >0
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Figure 3.3 Inversion Contour for (X -VT) <O .
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b. Deflection for Positions After Pressure Front Having Arrived,
i.e., (X-VT) <0

Take the contour as shown in Figure 3.3, then

(N(X-VT)

2T _a+l“gl N (N4— vZMl_'_B’ZZ) CZ N (N4_ 'vz NZ+3131)

= residues at O, N3, and Ny

As "a" approaches infinity, by Jordan's lemma

e INX=VT)
ch N (N*-V2N245742) IN ©
so that
| mty, eINE=VT)
“ )y N (N* VEN2+3* ) N = resiawesat 0, B, and M,
o mX-VT) 1 - oz g
= s € Loy C0S N(X=VT) + fmdssinn-vT)] (3.12)

The deflection becomes

WET) = L5 - -Z—g; eM K-V,

[cosn(X-VT) + —%;’V—‘f-sfn n(X-vT)j (3.13)

c. Conclusion
W(X,T) given by Equations (3.11) and (3.13) satisfies the
equation of motion given by Equation (3,2); it is bounded for all values
of X and T; and it depends only on the distance from the pressure

front. Hence it is a solution of Equation (302)°
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For simplicity, the radial deflection can be expressed in terms

of the distance from the pressure front

S =X - VT (3.1%)

Introduce a function of S

F(s) = e8! [cosng = L=ME5in nig)) (3.15)

amn

The deflection can be expressed in terms of F(s), i.e.,

w(s) = ‘%{‘-f%f F(s) for 8 <0 (3.16a)
W(s) = —b— F(§) for S >0 (3.160)

2?7'

2. Case for V>V
co

In this case, N's are real and let them be
N=0, +mny, and tn, (3.17)
All poles of the integrand in the integral given by Equation (3.8) are on
the real axis as shown in Figure 3.k,
By the residue theorem, the deflection can be found as follows
W(X,T) = 0 for (X-VT) >0 (3.18a)

since there is no pole above the real gxis.

.7 P3* _ rCOSN(X-VT) _ €O5NnaAX-VT)
W(X)T> - zz +n'z_nzz Y nlz nzl 1

for (X-VT) <0 (3.18p)

where n; and N gre positive and ny > no,
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N- PLANE
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Figure 3.4 Positions of Poles When V > V.o Without Damping
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It is obvious that the following term can satisfy the homogeneous

differential equation given by Equation (3.2):

W, (X,T) = Ps* . . Co (X-vT) (3.19)
1A=l =" nz - ni Nz S 1 A4 o

If this solution is super~imposed on the solution given by Equation (3018),

the resultant solution

W(x,m) = -yﬁl’:%_# cosn(X-VT) for (X-VE) > 0 (3.208)
w(X,T) = I W cosnz(X-vT) for (X-VT) <0 (3.20b)

¢ nenong

still satisfies Equation (302) and is bounded every-where, It is difficult
to distinguish which of the solutions given by Equations (3.18) and (3.20)
is the true one. By means of Kenney's concept of vanishingly small damp=~
ing, a physically sound solution cean be found and it is the true solu-
tion.

For taking into consideration the viscous damping, a viscous

damping force term is added to Equation (3,2), then 1t is

W IW W
Lh 3w sl +C ¥ = 5 (3.21)
P when X iV’I‘=r

where P (X,T) =

0 _ when X > VT
I W(X,T) l< © everywhere, and C is a dimensionless constant propor-
tional to the coefficient of the viscous damping in the tube wall.

By Equation (3.3), Equation (3.21) after transform becomes

-y

41/—\.7 2 z e :'m_géi ¢
da—-ir—f-(éa-ﬂ—tcﬂ)wm el ™

X
Z (3.22)
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The particular solution for the above equation is

— L SP {x
WX, )= . eV (3.23)
_Q(__g{ - - lcnt 8%
The inversion yields
13*p c0+ly eif,—z-*X g\ T
W(X)T) = 2T y % 2z . 2,2
—early R (FH -2 - 4+3 % )
- 3P jwwjl git T dN (3.24)
2T m+iy, N(N4-v2NE=iC VN+577‘)

where 1 > 0. The poles of the integrand in the integral given by Equa-

tion (3.24) are the roots of the equation

N(N* = VEN? - LCVN + 8%42) = 0

or
N=20
and
N* = VEN* = LcVN 4 3% = 0 (3.25)
Assume N=+n,+i{m, , £ Nz +im; (3.26)

where nq, No, my, and my are real, n]": > nzg,' values of my and my
are small compared with those of ny and Ny and they approach zero as C
becomes vanishingly small. Insert N-= n+ im into Equation (3.25); the

following equations are established
Nt = bn*m? + m* - VE(nt— m*) +CVm +3*32 = 0 (3.27a)

4m(nN*=m?)-2mVI-CV =0 (3.270)

Since m is small compared with n, the above equation can be reduced ap-
proximately to

Nt =VENE 4 S =0 (3.28)
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and

4mn®— 2mVE-CV =0

so that
¢V
Z2(z2n2~-vz) (3.29)
Solutions for Equation (3.28) are
- 292
nf = sz'+£v4 457% (3030a)
_|v¥-a5*%2
nf =X J;"' 427 (3.300)

Since V > VCo (VCO = JZEE), ni, ng are real and positive. The corre=

sponding m's are

cV

m = Zjv4~43132~ > 0 (3.31a)
CV

= a lb

Y2 T 7N 4842 <0 (3.31p)

The poles of the integrand in the integral given by Equation (3.24) are
shown in Figure 3.5.

a. Case for (X«VT) >0

By the residue theorem, as C approaches zero, the deflection is

WX, T) == by cos ni(X - VT)

or
51
W(S)r—-—'mcos MX-vT) (3.32a)
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Figure 3.5 Positions of Poles When V > V.o With Danping
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b. Case for (X-VT) <0

By the same procedure, the deflecetion is

. r __23° -
W(X,T) = 4 - ) Cosn, (X =-VT)
or
Ww(s) = 2. S P oSNy S (3.32p)

¥ hi(h7-n?)

B, ©Solution of the Equation from More Exact Theory

E

Introduce the same dimensionless variables P and V for op
and v respectively as in Equation (3.1), the equations of motion from

Equation (1.40) are

2 “(Wp, + WK

W) - F IR = P (3.338).

%z%-i-fws - aaiyr_zzh = 0 (3.33v)
P when X < VT

where P(X,T) =
0 when X >VT

Instead of assigning any boundary conditions, W, (X,T) and WS(X,T) re=-
quire bounded values everywhere.

Use Equation (333) to transform Equation (3.33) into ordinary

. P4
2 - = ] R3F
a0 (T - ) (W4 W) = = etV (3.34a)

&,

S + W, T Rfwy, =0 (3.34)

with le(X,Q)\< o and IWQ(X,Q) I <o for all positive* values of X,

* See note on Page 45
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The particular solution for Equation (3.34) is

- LSty
Wp(X,2) =A€7 (3.35a)

= VX
Ws (X, )= A€ (3.35b)

where
(P32
R{-0(F -0 FH - - g ] 5+ 872
A, = sl L PL‘QZ'"' —i
2T R N E D B 1 45 )

Ay =

The inversion from Equation (3.4) yields

o+l "ij 0T
o (1) = e [T 4 € TF €T
ﬂ eLN(X'VT)

—_ (.522 "Q-Hj .
I ww.i NYVD (G-I - T N2+ 8742

: v A T
Ws (X,1) = -z-;-r-g":**“c“j A et ¥ e g

LY, 2.
— - L'PJ“H'H N(VE=~1) (3.360)

2T Josatiy, {(vi(FE - 1N4=[VHI+9D) - ‘]M’+5‘3}

Q
where N = T and y; > O.
Poles of the integrand in the integrals given by Equation (3.36) are the

roots of the equation

W {vE-n(F -nDN-TVEI+ 9 = 2] NE + 5232 ]

i
(&

or

and

(Vl_n(_g_z;_,) N4-__ [vZ(l_'_Zz)_Z?] Nz. + 3231 _ O
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The latter is identical to Equation (2.16). From Figure 2.4 through 2.6,
N's are complex when v <V , real when V < V<V , two real and
co co - cl

two imaginary when Vcl <V < ch, and real when V > VC These four

20
cases are discussed separately.

1l. Case for V<V
co

- In this case, N's for the latter equation are complex,

N=+4n+4inm (3.37)

By the residue theorem, the deflections due to bending and shear are

— X - 2. v
W, X, T) = Ly e™™ T)[COSH(X."VT)—- MSFWH(X-VT)}

232 Zmn
2 - (X-VT)
Ws (X, T) = (vs,_?;z) =S 5in N (X-VT)

for ( X - VT) > 0;

W;,(X,T)=%——i%- e T [eosn (X- V1) + 22282 5in 1 (- T))

_ 3* eM(X"'V'T)
Ws (%7 _-CV*E;). 4wn

Sinn (X = V)

for ( X - VT) < 0.

Again introduce S = X ~ VI, and define a function of S

FS) = e-m"! Leosns — =28 orm 1y 181)

zZmn
then
W) = Lr = T B for 50 (5.582)
WL (8) = 2??,_ Fe) for §>0 (3.380)
e~ I8l

Ws(S) = Flssy o 5in 08 (3.39)
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for all values of S

2, Case for V > Vco

In this case, the solution for Equation (3,33) is not unique.
In order to find a physically sound solution, a viscous damping term

which vanishes in the limit is also introduced into Equétion (3,33)

TNV 2
I 4 (W + W) - L) L W) p(x,T)  (3.40m)
>w, _ W

P when X S‘VT
where P(X,T) =
0 when X > VT

By means of the same technique as used in the elementary theory, the fol-

lowing solutions are found in the limit as C vanishes:

a. VCO <V < Vcl

P 34p oS Ny $

Wp(8) = G T TEOVES nEne = n2) for 8§ <0 (3.41a)
Wps) = —(vf.;f,z_ =5 hf;‘;;;_‘sn;) for § > 0 (3.41p)
Ws$) = by Liad for § < 0 (3.42a)
Ws(§) = (v;zinz) 'ccrifffzz) for § > 0 (3.42p)

where S = X - VT, ny and. n2 are the positive real roots of Equation

(2.16) and ny >n, is assumed.

be Vo SV<V

ciey o P StP \ ms
W) = "+ T ) S+ 5m] s <o (3.43a)




=60 -

347 e ®
Wb(s) = vz NV ;z) ZmE(nts ) for S >0 (39431))
2 )
Ws(8) = -Lv{_sz) m, [cos $- ——] for 8 < 0 (3.4ka)
2 e-)’”&
Ws(S)=- (v{_"y) e for 8 > 0 (3.4

Where 4n are the real roots of Equation (2.16) and +mi are the imaginary

roots of Equation (2.16).

c. V >Vep
W _ > + 54P [cosms _ COSHZS] for S < 0 (3 )4-58‘)
o) = T T sy D hz = °
WY = 0 for § >0 (3.45b)
W) = ~{ sz) (n‘" n’-)[c‘os ns — Cos nzS] for § <0 (3.46a)
WeS)= 0 for 8§ >0 (3.46D)

where ng and n2 are the positive real roots of Equation (2016) and

n, > n, is assumed. The reason why W, and Wy are zero before the
pressure front arrives lies on the fact that there is no disturbance,

since the dilatational wave velocity ch is less than that of the pres~

sure front in this case.

C. Discussion

1. Soundness of the Sinusoidal Wave Solution for the Case V > Vco

Since the deflection curve of the intersection of the middle
surface and the radial plane is a sinusoidal wave extended to infinite
length, the energy in this system becomes infinite. It is doubtful
whether this result might violate energy principle. Actually it does not

as was pointed out by DEBI'I'(9> and Kenney(lo)o
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2. Comparison of Results from Both Theories

a. V<YV
co

The formula given by Equation (3.16) for W has the identical
form as that given by Equation (3.38) for Wy. From the velocity spectra
in Figure 2.4 through 2.6, it is obvious that they are almost identical,
i.e., n's or m's are nearly the same for both theories. The real part
of the wave number is small, so that the frequency of vibration is low,

In this case, the total deflection in the elementary theory is nearly
equal to that due to the bending in the more exact theory. In calcu-
lating the bending stress, the deflection formula given by Equation (3,16)
may be used without any serious error.

b, V> Vco

From the velocity spectra in Figure 2.4 through 2.6, they are
quite differént for both theories except the part for small wave numbers,
In this case, the high frequency of vibration is caused, so the de-
flection formula_given by Equation (3.16) from the elementary theory may
not be used. Instead, the formula given by Equation (3.38) from the more

exact theory should be used in calculating the bending stress.



IV. TRANSIENT RESPONSE OF A THIN-WALLED CYLINDRICAL
TUBE WITH SEMI-INFINITE LENGTH UNDER INTERNAL
MOVING PRESSURE

In this chepter, a cylindrical tube with a semi-infinite
length is dealt with. The boundary condition at one end of the tube
is that the periphery is simply supported in the radial direction.
The pressure front starts to move at this end. The assumptions as
to the intensity and velocity of the pressure front are the same as

those in Chapter III.

A, Solution of the Equation from Elementary Theory

In this section, only the case for the velocity of the
pressure front less than the critical, i.e., V < VCo is investigated.

When V >'V the elementary theory will involve serious error.

co’

1. Formulation of the Problem

From Equation (1.39), the equation of motion which is valid

in the quarter plane defined by X and T is

";}T’(‘;+§"} W"'a'rz 5*P(X, M X>0, T>0 (k1)

{P when X < vT
0 when X > VT

where P(X,T) =
At the near end, the radial deflection and its second partial derivative
with respect to X are assumed to vanish, since the periphery 1s simply
supported in the radial direction. At the far end, no disturbance is
assumed, so that the radial deflection as well as all its partial deriva-

tives with respect to X vanish. The boundary conditions are

-62=
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FW(O,T)

W(O;T) = 0, 2 X?

=0 (k.2a)

LimW(X,T)=0, Llim 317\_;(X:T)= 0

(L.2b)

- PWET) _ LW _
Lim S =0, lim S5 = 0

No initial displacement and velocity are assumed radially, so the

initial conditions are

W(X,0) = 0, -Q—T%{C& =0 (4.3)

2. Method of Solution

The partial differential equation given by Equation (L4.1) can

be transformed into an ordinary one by means of the Fouriler sine trans-

(18)

form. Take the Fourier sine transform with respect to X, then the

transformed function is

od

Ww(N,T) = fo W(X,T) SinNX dx (b, k)

where N is real. The inversion formula is given by

W(x,T) =< J: W(N,T) SinNX dN (4.5)

To justify this transform, the integrals in Equations (k4.4)
and (4.5) have to be proved convergent. It is assumed this is the case,
and when W(X,T) is found one can verify that this W is a solution simply
by substituting into Equation (L4.1).

Due to the boundary conditions given by Equation (4.2), Equa-

tion (4.1) after transform becomes
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o5
=

+ ( N4:+-g‘3=)'§ﬁ - §1£L— (1L - Cos VIN) (4,6)

The initial conditions after transform are

W(y,0) = o, 5'%%.@-)= 0 (&.7)

By the convolution theorem, the solution for Equation (4.6) with initial

conditions given by Equation (4.7) is

— 2 T .
W =22k (- s VTN) Sine (T- T)de
z —
= %C;ng'z—z(l—-CoS.QT)-i- C"Sf?‘QI_C:;:’NTzN (4.8)
where
Qz — N4-+ 5132 (14_09)

is identical to the frequency Equation (2.3). The inversion yields

o

W(x,T) =] WW,T) simy aw

z inXN ;
= 5°p2-{[S0EN_dn - [; s TINSinX gy

[l - o] 20BN s Tan]  (%.10)

The first two integrals on the right hand side of Equation (4.10) can

be evaluasted in closed form by the residue theorem, and they are
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— s2p_2 §r7 SinXN —(Pcos VTN STinX N
I, =23"P {Ja —m_z——c“\, L N(R2=~2N2) dN }

— s2p_2 §(® SinX N R i CoSVTNSINXN _
=38 P m {ON(m_f_é"gZ) N ° N(N4_-v7.NZ_'_ 5132) dN}

—:;T —%—zé’”(x T cosn (X -VT) + L2 G gy (X - vT))

+ E%i e EVT o5 n (X +7T) — 2= 25 Sin n(X+VT]
— —% e eos A X for (X - VT) <0 (k.11a)

2

- ‘ 2 -
I, =L e TV sn - vT) = R —sin N (%= V)]

231
+%71 e T Leosn (X +vT) — L=rd o (x4 v )]
- .},_ e s A X for (X - VI) > 0 (4.110)

where N =n + im 1is the root of Equation (2.6), i.e.,
N4-_ —\]-ZNZ ‘_1_ 5122 -_—

n,.m are both real and positive and

A= [3 (4.12)
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Let the last integral on the right hand side of Equation (L4.10) be

» ! SinNX
L=, | &= - o) TN o8 2T N

or

2P % | |

IZ:“Trlfo [(M" +5‘r) T(N* —V‘N2+5‘3‘)

] SIONK o5 W57 TdN (4.13)

It 1s very difficult to evaluate I, Dby means of the residue theorem,
since the integrand involves branch points. Numerical integration will

be used to compute 12 . The final result 1is

WX, T) = I, T) + I,(X,T) (h.1k)

3. Interpretation of the Solution

a, Contribution Due to I

The term involving (X-VT) in Equation (4.11) is identical to
Equation (3.16) which is the steady state solution with the pressure front
moving to the right aé shown in Figure 4.la; thé term involving (X+VT)
is the steady state solution with the pressure front moying’to the left
as shown in Figure 4.1b; and the term involving 2X is the static solu-
tion due to the pressure as shown in Figure 4.lc. The solﬁtion super-
imposed by these three parts canisatisfy Equation (4.1) and boundary con-
ditions in Equation (4.2), but the initial conditions in Equation (4,3)

cannot be satisfied. In order to satisfy the initial conditions, I2

must be super-imposed.,
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b. Contribution Due to Ip

The solution due to Ip is to correct the initial conditions
given by the solution due to I . This can be interpreted as the tran-
sient term and it will disappear as T approaches infinity. This is true

from the Riemann-lLebesgue lemma.

B. Solution of the Equation from More Exact Theory

From Equation (1.40), the equation of motion which is valid in

the quarter plane defined by X and T 1is

ry2 z

STE - (W, + W)~ L 2 ‘Tg"TJ;T"T’Z =—PXT) (k.152)
1

\2 2
L =

X >0, T>o0
P when X < VT
where P(X, T) =
’ O when X > VT
The boundary condition at the near end is simply suported along the
periphery of the tube and no disturbance is assumed to exist at the far

end; they are

Wb(O)T) +W5(O;T) = 0

z (4.16a)
2 Wy(0,T) =0
2 X*
. _ . QWWKT)
iuerVL()CIT) =0 , %L:lo 3% =0
(k.16b)

limWs X, T)=0 > lim _MBESL_—D____O
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For convenience in later use, the boundary conditions given by Equation

(4.162) are changed into the form

W, (0, T) =0 , Ws(0,T)=0 (4.17)

These two forms of boundary conditions at the near end are consistant,
3P .
since 2b will vanish in the limit of X =0 if WS(O,T) =0 and
oX
Wy (0,T) =0 are inserted into Equation (4.15b). The initial displacement

and velocity due to both bending and shear are assumed zero, therefore the

initial conditions are

W, (X,0) =0, 2WX0) _
b 2T (4.18)

Wy(Ko)=o, KO g

1. Case_for VvV < VQQ

The Fourier sine transform is also used to reduce Equation (4.15)
to ordinary ones. By Equation (4.4), Equation (4.15) with boundary condi-

tions given by Eqﬁation (4.17) becomes

(= NPT - §2 (W, + W) - <% ﬂ?‘%"ﬁ— - U~Cos NVT)  (h.1ga)
¢
N2, +5° s - 900 = o 4

b 3 O,Tz = ( °l9b)

From Equation (4.l9b), ﬁsu can be expressed in terms of Wb and its
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second derivative

— z d*W
R =

N

4%
dre
ordinary differential equation is obtained

in Equations (4.19a) and (L4.20), & fourth order

Eliminating Ws and

4w

g7e T (NP4 NZ+37) S

de + (52K (g4 N2) +S4 321 T,

54? (1= ¢os NVT) (4.21)

The transformed initial conditions are

™ p— EI__!Z_.L._)—-
Wb‘N/O)'—O ? dT O

iES(N;O) =0 ) Eﬁgﬁyiﬁp =0

(4.22)

Solutions for Equations (4.21) and (4.20) with initial conditions given by

Equation (4.22) are

W, (N T) = B,eos 2T + Bazcos2uT + é&?—[-]i:- - ﬁéﬂ%ﬂﬂ] (k.23)
W (NT) = (45 - F5) Bicos T + (25 — )5, cos 2T
<
+PN[ 3 ——F-}-)Cosr\lvﬂ (4.23b)

where

F, = N+ + ?z N? 4+ 57-32 (4.2ka)
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Fz = (V2=1)(V*=33) N*— [57'1/'1(!‘!’3‘)-571] N1_+54-2,z (4.240)

. _ |
o= uzu+§‘)-§§?(l+zz) - /1 Nz(l+§");5z(l+2?-)]z_ ) *54?2”4 (4.258)

. !
Q, = {N’(HS’Q +UFE) 4 [ [ AR "‘252“th‘l]z—[s‘N‘(N‘+3‘~)+§43’} 7{’(4.251;)

P i?ﬂi _ 54'(52:: Nzr2 )}

Bl w = (4.26a)
—_— B . EZ @2 _ 84(52’2_ vaz)
B2 N(2*-22) { Fi T2 A? (4.26b)

In Equation (4.23%), the last term on the right hand side is for the
particular solution and the first two terms are solutions for the homoge~
neous equation. Since the particular solution cannot satisfy the initial
condition in Equation (4.22), two additional solutions for the hombgeneous
equation are super-imposed in order to match the homogeheous initial con-
ditions. Equation (4.25) is identical to the frequency Equation (2.10),
so that Ql is the frequency in the first real arm and i the frequency
in the second real arm in the frequency spectrum. All are with real wave

number N . By the inversion formula given by Equation (L4.5), Wy(X,T)
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and Wy (X,T) can be found

2 [P 1 %CosN -
VUL(}CfT) = '%;'S 1>Io Tﬁ—( F -2 Fz‘rT.) S XN dN
+ -%-Laog,cos £,TSinXN dN
)
+ 2 [ B s, TSinXNdN

“—— Ib ‘f' IH + Ibz (4,27&)

Wo(X,T)= = PJ, N[+ - B cosuv T sinxN N

+ =5 BN = 2P Cos T Sin X NdN

2
+ [ B2 N 21) L3 2T SINXN AN
=Is+ I + Isz (4.270)

In the above expressions, I, and Is are due to forced vibration;

Ibl and Isl are due fo free vibration corresponding to the first real
arm; Ib2 and Is2 are due to free vibration corresponding to.the second.
real arm; It will be shown later that in the case V < V., , the contribu-
tion due to the second real arm of free vibration is small, so that it can

be neglected.
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The improper integrals in I, and Iy can be computed without
any difficulty be means of the residue theorem, but these integrands in
Ibl s dpo s ISl and Iso 1involve too many-branch points to be computed
by analytic methods. Numerical integration will be used to compute them.,

By the residue theorem, Ib and Is are computed as follows:

Ib‘X)T)'—‘-—%-é’Pf:o L ( WI:. - 52‘°§§“2VT ) SInXNdN
=2 P e VD osn x-vT) + =120 n(X-vT))

¥

+ P emm&tVD [cosn(X+VT) — z,’,;',']'zsa‘n NX+ V)

28

— P X (Cosno X — e-mi o NeX)

?2 ZmpNe

for (X - VT) <0 (4.28a)

- —m
I,(0T) = =hr ™" F VT [cosnx-vT) - L5 (X -VT)

‘23;2

& T
+-5%7 e ETTI osn (X +VT) = B2 sinn(X+ V)

__?;L e™™F (cosn, X = Lo=lMe_sinno X))

for (X - VT) >0 (4.280)

where N =n + im is the root of the Equation (2.16), i.e.,

(V=) (VEEH) N4 = [SVH(1+42) = ST N+ 3%2 =0



=Tl

and n , m are both real and positive; N, = ngy + img is the root of
the equation
and n, , m, are both real and positive.
_ e~ MX
LT = -P————meo SinNeX
SZ? C‘MK—VT' - _
+ (-v-z_gL) 4W‘n S'n f\ (X vT)
-mX1VvT)
sp e : T
+ Sy o sin n (X ) (4.29)

The solutions due to Ip and Ig have the similar form as that due to I3
in the elementary theory, so they have the same physica; interpretation.
The solutions due to Ip] and Ipp or Ig] and Igp are employed to
match the homogeneous initial conditions. Iy or Igq corresponds to Io
in the elementary theory, but there is an additional term, TIj,» or Ig, ,

in the more exact theory, since there is a second real arm in the frequency

spectrum,

2, Case for V > Vaq

In this case, the Fourier sine transfrom cannot be used, since
the transform formula given by Equation (4.4) diverges. The standard
method of solution is to use the Laplace transform with respect to time
variable T , to reduce the partial differential equation into an ordinary
one, then the transformed function is to be determinedby solving the

ordinary differential equation. The difficulty lies in the fact that the
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integrand of the inversion integral involves too many branch points to be
dealt with. The method used in this work consists of two parts. First,
the particular solution which satisfies the non-homogeneous Equation (M,lS)
only is found as that in Chapter III; then a solution of the homogeneous
equation (set P(X,T) =0 in Equation (4.15)) is super-imposed to the
first one in order to match the boundary conditions given by Equation
(4.16) and the initial conditions given by Equation (4.18). The solution
of the homogeneous equation with specified boundary conditions as well
as initial conditions is to be determined numerically by the method of
characteristics. Since the forcing function P in Equation (4.15) is
a stepped one which has a discontinuity at X = VI , the method of
characteristics is difficult to apply directly in Equation (4.15). This
is the reason why the solution has to be calculated in two parts.

The homogeneous equation is obtained by putting P =0 1in

Equation (4.15), then

( 2z 2,
L0 % (W, + W) - 4 TEBLTRL (t.30)
5 WL = th:200)

X>o0, T>o0

The boundary conditions are specified at X =0 as

W, (0, T) + W0, T) = FT) (k.31a)
9
| az—g"%%@ = £M (4.31b)
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The initial conditions are specified at T =0 as

W, (X,0)=Hx) , )= £x) (k.328)
|
W (o =K, L =L (1.320)

Iet k be the slope of the characteristic lines of the system in Equation

(4.30), k is to be determind by the following Equation(l9)

(K- 5) — 5

0 (k*-1

or

(R*—32)(k=1) =10

There are four real k's , i.e.,
—_— 1
k= % = T

s0 that there are four sets of real characteristic lines for Equation
(4.30) and the system can be reduced to a fourth order hyperbolic

differential equation. The characteristic lines are

2l =k =4, x| (4.33)

Since © 1is the dimensionless modified shear wave velocity in a plate

and "1" 1s the dimensionless dilatational wave velocity in a plate,
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shear waves are propagated along the characteristic lines with slope
+ 1 , and dilatational waves along the characteristic lines with slope
+ 1 . There are only two kinds of waves in this elastic system(l5)°
Each can be propagated with positive or negative velocity, so there are
four sets of characteristic lines along which they are propagated from
the source as shown in Figure 4.2,

For convenience in writing out the finite difference equations,
defined along characteristic lines, four first order simultaneous equa-
tions(eo) are used instead of two secbnd order simultaneous equations

given by Equation (4.30). Five new dimensionless variables are intro-

duced, They are dimensionless total deflection in the radial direction:
W =W, + W (4,3La)
dimensionless velocity along the radial direction:

T = J|—2\r:.q (4.34p)

where
\’r‘ — Q(W +II\Y
V= 2t

dimensionless angular velocity due to bending:

= _ b

W= 12 U-d M) (L"aBLI'C)
where

W = 24

ot ox



CHARACTERISTIC LINE ALONG WHICH THE
DILATATIONAL WAVE IS PROPAGATED

———— CHARACTERISTIC LINE ALONG WHICH
THE MODIFIED SHEAR WAVE IS
PROPAGATED

SOURCE

Figure 4.2  Four Characteristic Lines from the Source.



-79-

dimensionless resultant shearing Toice:

o
Q= —>—
zhic@

and. dimensionless bending moment:

| — W2
M= —rr— Mx

The four simultaneous equations are

28 _ .z YY)
22 —t W = 5T

92X oT

oM 2®

2T — X
Since

W = Wy, + f;} v dT

(4.34a)

(b.3ke)

(4.358)

(4.35Db)

(4.35¢)

(4.354)

where WTO is the radial displacement at T = T,, there are only four

unknowns, M, ® , Q , and ¥, to be determined by the above four

equations with boundary conditions specified at X = 0 and initial con-

ditions specified at T = O . Along the characteristic lines, these equa-

tions are simplified as follows:
along ar - 1
a&X

dM —3*QdT +dw =0

(k.36a)
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dM +320dT - dwd =0 (4.36b)

along a .
ax ~ 5’

dQ—-J%"WdT-;’-J\T‘-&-&)AT:O (4.36¢)
along — = - % :
dQ +5¢WdT +3-d7 + &dT = 0 (.364)

All derivations in this section are shown in detail in the Appendix.

For solving for M, @ , Q and ¥ , Equation (4.36) is expressed
by four finite difference equations for corner points of an element DAPB
bounded by two sets of characteristic lines of the dilatational wave
family as shown in Figure L4.3a. Equations (4;560) and (L4.364) are defined
on characteristic lines of the shear wave family, so that their finite
difference equations are in terms of values at P, A' , and B' . If
all values are assumed varied linearly between A and D or B and D

21
( ), then values at A' and B' can be expressed by

Yo =Y+ Z (Y = o) (4.372)

YB/ = YD -+

25
s5+7 (Ya— 1) (4.37)

where Y=M, Q,® , Vv, or W,
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Figure 4.3a Typical Element.

AT

- X

Figure 4.3b Element at Boundary.
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A" can also be expressed in terms of AT

The following difference equations are established
along PA :

(MP—MA)‘E;Q:(QP-!-QA) +(Wp—wp)=0

along PB :

2, -— —

along PA' :

2 - -— ), - -—
(@p- 64) =22 (1554 79) = & (T = Ty) + L +23p) = 0

along PB' :

2 ) - - - -,
(Q,— Q) =+ ét;_'ﬂ (Wp +WB') -+ ;_(‘UP— Jpr) ‘f'e}’(b\)p ‘f'w[;)) =0

(b.28)

(4.39a)

(4.39Dp)

(4.39¢)

(4.393)

(L.4o)

If M, ®, Q,and V are knownat A, D, and B , they can be found

at P by solving Equation (4.39), Equation (4.39) is written explicitly

in the following table:
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TABLE 4,1
M? QP &P GP Glven Values
2 2
1,-9?@ 1 0 My + @y ¢ o AT + &y
2
SEAT 2 .
1| —=|-1 0 Mg - Qg - & AT - d&y
2 2
DL ATAT' -  SgCAT!
AT 522 1 QAI+“-§---———VD+‘g (WD
0 1 == |- 28 Apar-2 . 3
2 2 o |l YA LA G
5 2
q - BEEATAT = | 5gBAT (3
\ 2 B~ 35— "D 5 D
0 1 aT! 88" araTi4 L -
2 2 o) + VR é@; -
5 T B

can be reduced to two, since any two of the four unknown values are speci-
fied there, If M and ¥ are specified, the other values can be found

if all the values at B and D are known, The two equations are shown in

For finding those values at boundary points, the four equations

the following table:

TABLE 4,2

QP &P Given Values

2 2
o ~AT 0~AT -
SR - (p - 1) - P ay -

2 2

.| A AT 1= - AT -

2 Br - =g (p +¥g)) - = (Vp - V1) - 5 @,

where the triangle PBD 1s shown in Figure 4.%b ,
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If M, ®, Q and ¥ are specified on the line =T and
M and V are specified on X =0 as shown in Figure 4.4, & and Q
at Ay can be found by expression in Table 42. Now M , ® , @ and ¥
are known at A,; , Ay, and Ay, , those values can be found at Aip
by the expression in Table 4.1. By successive use of the expression in
Table 4,1, they can be determined at the points through Ay, - By repeat-
ing the previous procedures, values within the triangular reéion OAonAnn
can be found.

The expressions for boundary conditions on X =0 and X =T

are different for the three velocity regions, so that the three cases are

discussed separately.

a, Velocity V of the Pressure Front Such that Veo <V < Vep1

From Equations (3.41) and (3.42), the particular solution for

kiquation (4.15) is

_ P _ 347 cosNUX-VT) )
Wp(X,T) = T NS nAnA- ) for (X-VT) <0

Wo(X,T) = S47P Cos NUX-VT)

T NS nEnE—n for (X-VT) >0

5P cosha(X-VT)

Ws(X)T) = Wi-32) (NZ— nj*) for (X-VT) <0
WX, = (5,:1;9 c<° ;; fc ;:zr;r) for (X-VI) >0

where 0y and n, are real positive roots of the equation
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Figure 4.k Triangular Region Used in Computation
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(V=T =D NIV ) -2l N2 5% =0
and

Y‘|>n2

Since n; 1is the root of the above algebraic equation, the expression

P _ cosnX-VT)
WL, = TNE=39) "2EnZ)

for all values of (X - VT)

_ S sniXvT)
WS kXI-T) —_— (v;:- 87,) (h'z__ m’.)

1s the solution of the Equation (L4.30) which is the homogeneous form
of Equation (L4.15). If these two are added together, a second particular

solution of Equation (4.15) is obtained

- P S*P Csn (X=VT) _ €o5n(X-VT)
W X,T) 1 _i_(v’-l)(V’-S")(m’-"'%)3 n# o ng } for (X - VT) <O
Wp(X,T) =0 for (X - VT) >0 (4.41a)

Wy (X,T)=—(—v§7_;:x—7'z-_-ﬁ}j§cos N(X=VT) =Cosn &=V} for (X - VI) <.0

WX, T) = 0 for (X - VT) >0 4. bip)
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The particular solution given by Equation (4.41) does not satisfy

the boundary condition at X = 0 , if the following calculation 1s performed

WO, T) = Wp(0,T) + Ws(0,T)

2 3 S*
- ?F()l + s e~ e VT — L= (Jeosm v T}
= H(T) =0 (k.kea)
\—J-(O)T) ___3__%7.__(‘?_!_-'-)

2 s2 ) . )
= _(Vf_;)};z_n})ﬁ lrgm —11 SN VT~ =11 nsin v T

=HM=xo0 (k. h2p)

2
T
M©o,T) =-— éav;l'cgo) )

_ _Ps%* l
T (VENVESD  (NF-N

55 §Cosn VT - Loy VT

The particular solution given by Equation (L.41) does satisfy the homoge-
neous initial conditions, since W, and Wy are identically zero for
X>VD (where '0<X<w and V<1). For this reason, the values of
M, &, Q, 7 are zero on the line X =T in Figure L.k,

If v =- H(T) (W = - Hy(T)) and M = - Hy(T) are specified

on X = 0 and no disturbance is assumed for X > T , a solution can be
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found numerically by the previously stated method of characteristics. A

final solution which satisfies both the homogeneous boundary and initial

conditions is gotten by adding the said solution to the solution given by

Equation (L4.41).

From Equations (3.43) and (3.44), the particular solution for

Equation (4.15) in this case is

5* -y, eME VD
Wb(XIT) - 81 + (v |>(z)‘ gz) (h"—f-Mz) [ww ) -+ 2m2 ]
for
—m(X=VT)
54P e~
W, (XT) = TENESD) T T Zmi(nttmey
for
eMQC“'V'T)
W5 (K T) == S, by lersn(x- v = S5 ]
for
z- ) - (X-VT)
Ws(XT) = - (-ézféz) T 2Em2) ¢
for

where n and mi are the roots of the equation

(V-1 (%r;z" 1) N4 = ['V"(,-q-z,Z) _3,:'] NZ + 522,2.

and n , m are real and positive.

=0

VT) <.0

VT) >0

VT) <.0

vT) > 0

(L. L43a)

(4. 43b)
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This solution satisfies neither the homogeneous boundary condi-

tions nor the homogeneous initial conditions, if the following check is

made

S* | 5% 2 — T
W(o,T) = “%‘{‘ -+ (‘vf—é’-) '(nz.f.w,z.) {[h(‘v’—l) —-f]cosn'v-‘r+ %[W%‘}ZT)-H]G " }

= H3(T)=0 (k.Lha)

To,T) = ———3%‘7_(r°’T>

—- P z ; 2 T
=T =) '(n‘+mz)§[hz(§f‘—l) ~nsinn v T+ %LLW%I—)—F e }

= Hs(M) =0 (1. o)

M) = — 24D

o X*2
_ ‘P54 e YT
T (VDTS () (convT = = )
= Ha(T) =0 (4. bhec)
___atp _e™m¥
WlX,0) =~ G ywis s = O
JWuX0) _ _ 3PV _em*
T T (VAVEID miri4m?)

< >2 e-mX
W; (X,0) = “(w_gz) e X0

IWs(X,0) _ _ _S*P mve‘""x_i
2T (V3= 3%) 24 m) 0
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Specifying the boundary conditions at X =0 and the initial
conditions at T =0 , a solution can be obtained numerically. A true
solution is gotten by subtracting the said solution from the solution
given by Equations (4.43).

To save one half of the computing time, M, @ , @ and ¥V may
be specified at the line X =T in Figure 4.5 instead of the initial
conditions at T =0 . It is well known that there is no disturbance
before the dilatational wave arrives for this velocity range V < Voo
M, ®, @ and Vv should be zero on the line X =T . From the partic-
ular solution, M, ® , @ and ¥V can be computed along the line X =T

and they are

-m(-)T
= 2 = ps4¢ e _
M= Kt 1x=1 ToNTD) 26 Twe) Hs M (4.145)
b —m U= )T
D = W, _ _Pvw3% e = _
“= 3Tex lg=T (VEOOVEID 2(nF+m?) T He (T (k.45D)
— OWs __ PS* ] ,me—mcl-'V‘)T_
Q= EK‘X:T VE-3%) 2t i) H4(T) (4.45c)
2 S* S* —mU="T
V=-qey v B Uy t1le =H;T)  (h.bsa)

— p3% . 1 . 52
W= T3 (nvd) ‘i" [mzlvz_li +1

'J e "W\(.I—'V‘)T= HX(T) (4J+5e)



-91-

T4 .
LINE ALONG WHICH
~—— -—— THE PRESSURE FRONT
MOVES
/X=8T
// X=VT
X=T
NO DISTURBANCE
> X

Figure 4.5 Pressure Front in X - T Plane When Vcl <V < Vc2



A solution can be obtained numerically by the method of characteristics,

- 1
if v = - H5(T) (W == H5(T)) and M = - H)(T) are specified on X =0
and M = - Hy(T), @ =- Hg(T), Q =- Ho(T), ¥ =- Hg(T) (W = - Hg(T))
specified on X =T ., The final solution which satisfies both the homoge-

neous boundary and initial conditions is gotten by adding this solution

to the solution given by Equation (L4.43).

C. V > Vc2
From Equations (3.45) and (3.46), the particular solution for

Equation (4.15) in this case is

¢
W) = J= + AN

] [wsn.(x-v-r) Cos nzgzt:-yj)]
(V) (i) (n.‘ n n#

for (X - VT) <0
WX, T)=0

for (X - VT) >0

WX T) =— jx Z;) (hz ) [cos N(X=VT) — Cos Nz (X-VT)]

for (X - VT) <0
Ws(X,T) =0

for (X - VT) >0

These equations are identical to Equation (L4.41). The same method as

was used for the velocity range Voo <V <V, , can be applied here,
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In this case, there is a disturbance before the dilatational wave arrives,
because the velocity of the pressure front exceeds the velocity of the
dilatational wave. Preceeding the arrival of the dilatational wave, the

disturbance is caused by the pressure directly., Figure 4.6 shows clearly.

C. Numerical Examples

The constants used in the numerical examples are

E = 30 x 10° 1b/sq.in
¢ = 12 x 10% 1b/sq.in
v = 0.3

k = 0.8333

and h/R = 1/10 1is used in all examples.

1. PFourier Integral Solution for the Velocity Range V < Vgqo

a. Elementary Theory

The radial deflections at sections X = 20 and ‘X = 40 with
T =0 through T = 460 are computed based upon Equation (4.14). The
velocity of the pressure front V = 0.1811 is used. In computing
I5(X,T) in Equation (4.14), numerical integrations by means of Simpson's
rule are employed. Due to the fact that there is N° in the denominator,
the improper integrals converge rather rapidly. W/WO at X = 20 and
X =4 versus T is plotted in Figures4.7 and 4.8 respectively, where
Wo = l/g2 is the maximum radial static deflection of a tube with infinite
length under uniformly distributed internal pressure P = 1. The results

are plotted in Figures 4.7 and 4.8,
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PRESSURE FRONT MOVES
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Figure 4.6 Pressure Front in X - T Plane When V >V ,
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b. More Exact Theory

The radial deflections both for bending and shear at sections
X =20 and X =40 with T =0 through T = 363 are computed based
upon Equation (4.27). The velocity of the pressure front V = 0.1811
is used. In computing Ipy, Ipp, Igy, and Igp in Equation (4,27),
numerical integrations by means of Simpson's rule are employed,
Integrals Iy,1 » Iyp converge rapidly due to N5 in the denominators,
but integrals I , Igp converge slowly. Total deflection ratio W/WO
versus T is plotted in Figures 4.9 and 4.10 respectively. Shear deflec-
tion ratio Wy/W, versus T is plotted in Figure 4,11 and Figure 4.12

respectively.

2, Numerical Solution for the Velocity Range V > V.4

Three different velocities are used, l.e., V.o <V <V, ,
Vo SV <Vy , and V<V, . They are V =0.3561, 0.7754, and 1.600
in the examples. The radial deflections consist of two parts, one is due
to the particular solution, another due to the correction of the boundary
conditions., The former is based upoﬁ Equation (4.41) and (4.43) as well
as Equations (3.45) and (3.46). The latter is based upon the difference
equations in Tables 4.1 and L4.,2 with AT = 0.5, The radial deflections
at X =20 and LO with T =0 through 400 are plotted in Figure k4.13
through Figure 4.18. Each figure consists of thrée curves, namely, one
due to the particular solution, another due to correction of boundary con-
ditions, and still another being the resultant of the preceeding two. The
deflection is expressed in terms of the ratio to Wo % l/g2 which is the
maximum radial static deflection of a tube with infinite length under

uniformly distributed internal pressure P = 1

°
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D. Discussion of the Numerical Results

1. Case for V < Vgq

In both elementary and more exact theories, the velocity
V = 0,1811 of the moving pressure front is taken for numerical computa-
tion., Figures 4.8 and 4.10 or Figures 4.9 and 4,11 show that responses
at X =20 or X =40 for both theories are almost the same. Before
reasoning why, the formulas have tc be investigated first. Equation
(4.14) expresses the deflec£ion based upon the elementary theory;.Equation
(k.27a) expresses the deflection due to bending and‘EquatiOn (L.270)
expresses the deflection due to shear based upon the more exact theory.
From the numerical results shown in Figures 4,11 and 4.12, the deflection
due to the contribution of shear in the more exact theory is very small,
so that it has no significant effect on the total deflection and only
the comparison between the total deflection W 1n the elementary theory
and the bending deflection W, in the more exact theory is given, In
this velocity range, namely V < V.q , the velocity spectra shown in
Figure 2.4 through 2.6 are nearly alike for both theories, For a given
velocity V , the corresponding complex wave numbers N =n + im are
approximately equal for both theories. ‘Formulas for Iy and I have
the identical form. That is why I; & I, . Iy in Equation (k.14) is
due to the contribution of the real arm of the frequency spectrum in the
elementary theory. Ip; in Equation (4.27a) is due to the contribution
of the first real arm of the frequency sﬁectrum in the more exact theory.
Thoge two real arms are very close for small wave numbers. The integrands

both in I, and 1I;,; have an order of N=2 , where N 1s the real wave
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number, so that there are no significant contributions due to large

wave numbers N or high frequencies. For this reason Ipo R Ipy

There is an additional term in Equation (4.27a), namely I,, which is
due to the second real arm of the frequency spectrum. From the numerical
results, it has a magnitude of lO'5 of the maximum total deflection. In
conclusion, the reason why the total deflections are approximately equal
lies in the facf that the high frequency modes have no significant con-

tributions in this velocity range.

2. Case for V > Vaq

For the numerical solution part, M, @ , @ and v (W) can
be found at the same time in the process of calculation, but only the
total radial deflection W is plotted in Figure 4.13 through 4,18, In
comparison with the particular solution, the deflection due to the
particular solution part is relatively important both at X = 20 and
X = 40 . Boundary effects are not significant for a section even with

moderate distance from the end.



V. EXTENSIONS OF THE NUMERICAL SOLUTION

A. Forcing Function Due to Non=Uniform Pressure or
Pressure Front Moving with Non=Uniform Velocity

If P 1is an arbitrary function of X and T, the numerical
solution is still valid, so long as the particular solution for the
equation of forced vibration can be found. In this particular solution
it is not necessary to satisfy boundary conditions or initial conditions,
so it can be éasily determined by the integral transform method used in
the case of uniform pressure. Once the particular solution has been
determined, solutions to the homogeneous equation can be super-imposed
on the particular solution to satisfy the prescribed boundary conditions
at X =0 and X = T. A homogeneous equation with specified boundary

conditions can be solved numerically by the method of characteristics.

B. Arbitrary Boundary Conditions at X =0

There 1s no difficulty in the application of numerical solu=~
tions to the boundary conditions at X =0 other than simply supported.
For fixed boundary at X =0, v =0 (W = 0) andl ® = 0, the other two
values, M and @ can be found by two simultaneous difference equa=
tions defined along the characteristic lines PB and PB' shown in

Figure 4.3b, if all values at B and P are known.

C. Tube with Finite Length¥*

The particular solution for the tube with infinite length is

still valid, but one additional boundary condition must be corrected

¥ Fourler series can be applied in the solution of tubes with finite
lengths. This solution is based on orthogonal mode super=position.
The frequency spectrum in Fourier series is discrete instead of
continuous as in PFourier transform for the infinite length tube.

=110~
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at X =L, where L is the dimensionless length of the tube. In this
case the characteristic lines are reflected back and forth between two
boundaries as shown in Figure 5.1, and this is equivalent to the dilata=-
tional waves as well as the shear waves in the tube wall being reflected

back and forth along the characteristic lines.,

D. Consideration of the Inertia Force in Axial Direction

If the inertia force in axial direction is included, the numeri-
cal method can still be applied. There are two more first order equa=-
tions due to the longitudinalltranslation in addition to four previously
established, to determine six unknowns. One additional boundary condi-
tion, say, longitudinal force or displacement must be specified. There
are still four sets of characteristic lines with the same slopes, i.e.,
+1 and + % . The only work left is to find the particular solution due
to the moving pressure. Once the particular solution is found, the part
for the numerical solution will be the same except two more difference
equations established along the characteristic lines with slopes +1.

For_any boundary or initial value problem with homogeneous equa-
tions of motion, the numerical method can be applied directly, because
there is no forcing function in the equations. Problems in which longi-
tudinal translation predominates such as the problem in which longitudi=-
nal displacement is specified at one end or the problem with longitudi=-

nal impact, are the examples,
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Figure 5.1 Reflection of Characteristic Lines
Between Two Boundaries



CONCLUSION

The velocity spectra show that the elementary theory is quite
different from the more exact theory for high phase velocities of wave
propagation. When the velocity of the moving pressure front is greater
than the first critical velocity, the more exact theory must be used in
any case.

In the elementary theory for the steady state response, the
solution is not unique for the case when the velocity of the moving
pressure front is greater than the critical. In the more exact theory,
the solution is not unique when the velocity is between the first and
second critical velocities or greater than the third critical velocity.
The reason for the non-uniqueness of the solution is that no specific
boundary conditions are assumed and the only condition is that the radial
deflection is bounded everywhere. If the boundary condition is speci=-
fied at infinity, there will be no solution for the over critical case
unless the damping effect is included., Fortunately damping must exist
in every physical system. The zero damping response can be obtained by
assuming that the damping coefficient approaches zero in the limit.

For the transient response in the semi-infinite tube, the
Fourier sine transform is used in the solution of the under critical
case, Only the formula for the radial deflection W is derived. If
the longitudinal fiber stress in the tube wall is wanted, the bending
moment has to be known. It can be obtained by differentiating W twice
with respect to X in the elementary theory and Wy in the more exact

theory. Both W and W, contain improper integrals which converge

-113-
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uniformly with respect to X, so it is valid to differentiate twice
with respect to X. For simplicity, if the velocity of the moving
pressure front is under critical, the simple formula from the ele=-
mentary theorj is allowed. In this velocity range, the response due
to modes with large wave numbers or high frequencies is small,

The advantage of the numerical method is that M, 53 Qs
and ;(W) can be found at the same time. It can be applied to any
boundary conditions at the near end of a semi=infinite tube. If the
period of the input forcing function is very long, the longer duration.

has to be adopted in the calculation. If T

max is the duration to

be taken in calculation and AT is the interval, N(N + 1)/2 (where
N = TmaX/AT) stations have to be calculated. It will take a long time
even for the IBM 7090 computer.

If the velocity of the moving pressure front approaches the
first critical, the particular solution is unstable and the amplitude
is increasing as time increases. The inpﬁt forcing function in the
second part which corrects the boundary conditions due to the particu=-
lar solution is also unstable and is increasing as time increases. When
the velocity approaches the second or third critical, one of the wave
number approaches infinity. In this critical range, the validity of the
approximate equations of motion as used herein is doubtful. 1In the
neighborhood of.the second or third critical velocity, the frequency of
the vibration is extremely high. In these regions, the exact equations

of motion from three dimensional theory of elasticity should be used.
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APPENDIX

DERIVATION OF FOUR SIMULTANEOUS FIRST ORDER EQUATIONS
USED IN THE METHOD OF CHARACTERISTICS

A. Basic Equations

From Equation (1.27), the equation of translation along the

radial direction is

29 Eh ol MW+ uTs)
5% ~ R Wtely) =gh S

ow

If w=wp +wg and v] = St are introduced, the equation becomes

2Q Eh AV
Sx- ~ —re W =FhiT (A.1a)

From Equation (1.25), a relation between resultant shearing

force per unit length and the deflection due to shear is obtained

th=='h KG Eegéi

or

0= e (35 - 425

If ws= 3 ;b is introduced, the equation after being differentiated
xot

with respect to t Dbecomes

%%&=hke.';("§—>%" - ) (A.1b)

From Equation (1.28), the equation of rotation is

jﬂ!ﬁ!._ Q, = - fl? ngJL
X

IX 12 2xot2

or

d Pl 2

S%'OX: T Tz ot (.1¢)
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From Equation (1.26), the relation between moment and the de-

flection due to bending is

Differentiating both sides with respect to t, it becomes

o)

__MAE-.:_DQ!_‘)_
22X

2 (A.14)

B. Basic Equation in Dimensionless Form

As mentioned previously, the following dimensionless variables
are introduced

X =

F’ ok ,lz .

<1
n

T v;
~ _ _h
“T g @

Q: —-&-_
Nz hicG
| - &

Eh® MXX

Dimensionless parameters are
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Equation (A.l) becomes

r 28 - | 2V

ﬁ— _— ?zy\f:--;—i- -5:'.—— (A,Ea)
3

2Q 2V =
5T = % e (A.2Db)
29;2 —3Q=— %:rbg_ (A.2¢)
<
oM _ _ e
S = 5% (A.2d)

C. Determination of Characteristic Lines and
Differential Equations along the Characteristic Lines

The total differential of M along a certain line on X=T

plane can be expressed in terms of dX and 4T as following:

— M
aM = M dx + -}@r—AT

Similar relation is hold for w,

= = 99 X 2
Four simultaneous equations for four unknown partial derivatives, i.e.,
g%, g%, g%, g%, can be obtained by combination of the above two equa=

tions with Equations (A.2c) and (A.2d)

oM 2 M
s+ 55-dT =dM (a.32)
2R 2 -
XK+ ST-dT=da (A.3D)
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oM 2 e 2
oX +{3T =3°Q (A.3c)
M, 3B _ |
2T T ax =0 (8.34)
Let the determinant of the coefficients of QM QM- éé: and
oX’ oT’ X
%% be zero

dX dT 0 o
o] o] dX dT7
= (0 (A.l#)
l o 0 l
0 l I 0
A relation between 4T and dX can be gotten as follows:
al_ _ | (A.5)
ax = *|

These are the differential equations of the characteristic lines along

which dilatational waves are propagated. If gﬁ, %M’ gg, and S_ are

definite along the characteristic line — = 1, the following determinant

QI
b

must vanish

dM dT o0 o0

dow o dX dT
-3 B o |
0 | | o]

(A.6)

I
o
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Since %% = 1 along the characteristic line, a differential equation is

established from Equation (A.6) as follows:

dH-;szT‘de\B =0

which is Equation (4.36a).
By the same procedure, the differential equation can be estab-

lished along the characteristic line %% = =1 as follows:

dM 4+ 32QdT -do =0

which is Equation (4.36b).
Other four simultaneous equations for four unknown partial
derivatives, i.e., %%, %%, %%, and g% can be obtained by combination

of the total differentials of Q and v along a certain line with

Equations (A.2a) and (A.2b)

28 4% +§—9r-aT =dQ (A.7a)
é—%—dx + g-d‘r =dV (A.7D)

%‘é— —3‘;%}?— =$w (A.7c)
?Jfr-—g—v = - (A.74)

Let the determinant of the coefficients of %%, g%, g% and

OV be zero
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(4.9)

These are the characteristic lines along which the modified shear waves

are propagated.

If

characteristic line

0Q 0Q or nd o7

X ST’ 5% 3T are definite along the
%%»: % the following determinant must vanish

o] 0
SdT dT
L = 0 (A.10)
O —5;
-1 0

From Equation (A.10), the following differential equation is established

aT 1

along the characteristic line — = =~

ax &

de —5§EWdT — +-d¥ + @dT =0

which is Equation (k4.36c).
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By the same procedure, the differential equation can be
d 1
established along the characteristic line a% =-5 @as follows:

d@ +SPWdT +3dT + QdT =0

which is Equation (4.36d).



