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ABSTRACT 

 

In Taiwan, students have considerable experience with tasks requiring geometric 

calculations with number (GCN) prior to their study of geometric proof (GP). This 

dissertation examines closely the opportunities provided to Taiwanese students with GCN 

tasks and the performance they exhibit on GCN and GP tasks. Three sequential studies 

were conducted, corresponding roughly to key aspects of the Mathematical Tasks 

Framework (MTF); namely, GCN tasks as found in curriculum materials and other 

instructional resources, GCN tasks as enacted by students and their teacher, and student 

performance on GCN tasks and related GP tasks. 

Study One found that the GCN tasks used by one Taiwanese mathematics teacher 

were drawn from a wide variety of sources – not only the textbook series but also other 

sources (e.g., tests) – and the tasks varied with respect to cognitive complexity, with the 

tasks additionally included by the teacher being generally more demanding than those 

found in the textbook series. The high demand GCN tasks appeared to afford 

opportunities for Taiwanese students to master the types of knowledge, the reasoning and 

problem-solving skills that are essential not only for proficiency with GCN tasks but also 

for creating GP. Study Two examined how the Taiwanese mathematics teacher set up and 

enacted GCN tasks with her students. Of particular interest were the ways that the teacher 

sustained the cognitive demand levels by making the diagram configurations more 

complex and using gestural moves to scaffold students' visualization of the diagram 



 xviii

configurations so that they could sustain their work on the tasks. Through scaffolded 

experiences with GCN tasks containing complex diagrams, the teacher appeared to 

nurture students’ competence in constructing and reasoning about geometric relationships 

in ways that are likely to support their later work with GP. Study Three presents the 

results of an analysis of Taiwanese students’ performance on matched pairs of GCN and 

GP tasks, both of which use the same diagrams and require the same geometric properties 

to obtain solutions. The findings of this analysis strongly support the hypothesis that 

students’ prior experience of working on GCN tasks can support their developing 

competence in constructing GP. 

Taken together the three studies offer a glimpse at classroom instruction in 

Taiwan involving GCN tasks and sketch a plausible pathway through which Taiwanese 

students might gain competence with GP tasks through their experiences with GCN tasks. 

The three studies also suggest why it might be the case that Taiwanese students would 

both develop competence in constructing GP before formal instruction to do so in schools 

and develop high levels of proficiency with geometric proving and reasoning. In addition, 

the use of a sequence of three studies that examine different aspects of students’ 

experiences with mathematical tasks appears to have utility as a model for other research 

that seeks to understand cross-national differences in mathematics performance. 
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CHAPTER ONE 

INTRODUCTION 

 

Rationale 

For the last two decades, cross-national comparisons have been a common 

approach to understanding how mathematics is taught and learned in different countries. 

Of the many countries included in these comparisons, Taiwan has consistently scored 

better than others in mathematics. For example, on the TIMSS (Trends in International 

Mathematics and Science Study) Taiwanese 8th grade students ranked first in 2008 and 

fourth in 2003 (Mullis, Martin, & Foy, 2008; Mullis, Martin, Gonzalez, & Chrostowski, 

2004). Taiwanese students also performed well on problems requiring the construction of 

geometric proof (GP). In their study on geometric proving and reasoning, Heinze, Cheng, 

and Yang (2004) compared Germany and Taiwanese students and found that Taiwanese 

students performed significantly better than Germany students. 

Heinze et al. also noticed a special phenomenon about Taiwanese students who 

demonstrated the potential to do GP before having formally learned the GP content in 

schools. To explore this phenomenon, I propose that Taiwanese students’ considerable 

experience with solving geometric calculations (GC) is one of the key factors 

contributing to their outstanding ability to do GP. In particular, I focus on examining the 
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geometric calculations with number (GCN)1, a type of geometric calculations (GC) that is 

frequently used in Taiwanese classroom. Here a GCN is generally described as numerical 

calculation done in relation to mental or physical geometric diagrams on the basis of 

geometric principles or formulae (e.g., calculating an angle measure in a triangle given 

that measures of the other two angles are 30˚ and 100˚, respectively) (Aleven, Koedinger, 

Sinclair, & Snyder, 1998; Ayres & Sweller, 1990; Lulu Healy & Celia Hoyles, 1998; 

Küchemann & Hoyles, 2002; Lawson & Chinnapan, 2000). 

I particularly argue that working with GCN task diagrams is critical to gaining 

geometric intuition and being able to solve GP tasks. This is because GCN task diagrams 

used in Taiwan are often diverse and complex, thus, providing students different 

opportunities to learn
2
, an affordance which is worthy of investigation. To explain how 

GCN task diagrams can be complex, the TIMSS video study provides the following 

example (Stigler & Hiebert, 1999). In their investigation, Stilger and Hiebert showed that 

GCN tasks implemented in mathematical lessons that may influence the differences in 

performance of students in the U.S., Germany, and Japan. Representing the highest 

performance among the three countries, Japanese students were required to solve the 

GCN tasks that were different from those given to the U.S. and German students. A 

group of GCN tasks with complex diagrams (see Figure 1.1) were given to the Japanese 

                                                 

1 GCN is one type of geometric calculation (GC). Other types include geometric calculation in algebra 
(GCA) and geometric calculations in coordinate system (Lang & Ruane, 1981). As GCN and GCA tasks 
are similar and are frequently used in Taiwanese classrooms, I detail the similarities and differences 
between the two types of GC tasks in Appendix 1.1. 
2 In this study, opportunity to learn refers to a factor that contributes to students’ learning outcomes 
(Tornroos, 2005). In particular, the study focuses on exploring the learning opportunities afforded by the 
mathematical tasks situated in the curricular or instructional materials that teacher and students may enact 
in classroom. The enactment of the tasks may expand or degrade the cognitive demand of the tasks (Stein, 
Grover, & Henningsen, 1996) and in turn influence students’ learning outcomes. 
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students to solve, whereas in Germany and the U.S., however, geometric tasks usually 

were assigned to students one by one. 

 

Figure 1.1 A group of GCN tasks assigned in Japanese classroom (Stigler & Hiebert, 
1999, p.39) 

 
 

Figure 1.1 shows the GCN tasks given in the Japanese lessons. As can be seen, 

these GCN diagrams are diverse and complex. Although each of the GCN task diagrams 

contains a pair of parallel lines, the differences in the number of segments and 

transversals as well as their orientations and positions in the GCN diagrams make them 

complex and different from each other. As the complexity of the GCN task diagrams 

increases, so does the cognitive demand of these tasks, because most of them cannot be 

solved by a single geometric property or a well-known procedure (Stein, Grover, & 

Henningsen, 1996). To solve GCN tasks accompanying by complex diagrams, students 

need to visualize the sub-constructs of the diagrams and decide which corresponding 

geometric properties can be used to generate a solution (Zykova, 1975a). In addition, 

such GCN tasks also require students to draw auxiliary lines to create new sub-constructs 

and geometric properties to obtain solutions, which in turn also increase the cognitive 

demand (Hsu, 2007). As a result, the GCN tasks provide opportunities to learn beyond 

practicing numerical calculations with the application of a single geometric property. The 
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latter characteristic of GCN tasks has been recognized in the literature (Schumann & 

Green, 2000). What learning opportunities beyond the practice of calculations and 

geometric properties that GCN tasks used in East Asian will be investigated in this 

dissertation. In particular, the dissertation focuses on exploring the ways that GCN tasks 

were set up and enacted by the classroom students and how the enactment of the GCN 

tasks can facilitate student competence in constructing GP tasks. 

Another work that will be carried out in this dissertation is to examine how the 

role of diagram influences the relationship between GCN and GP tasks. Researchers have 

provided the implications regarding why geometric diagram can be the key to transferring 

students’ experiences of solving GCN tasks to their competence in proving GP tasks. A 

diagram is the location where the problem solving happens (Larkin & Simon, 1987) and 

the schemes by which students remember the steps in solving a problem, the given 

statements, and the diagram labels (Lovett & Anderson, 1994). Diagrams can be parsed 

into chunks to cue the geometric knowledge for solutions, which mirrors how experts 

solve geometric tasks (Koedinger & Anderson, 1990). Moreover, diagrams can also 

function as artifacts in scaffolding students in learning proofs. Cheng and Lin (2006; 

2007) reported that junior high school students’ performance on constructing proofs were 

improved greatly by asking students themselves to read the given information and then 

color these properties on the diagrams. The colored parts of the diagram help students 

visualize the useful geometric properties to generate an acceptable proof. Furthermore, 

Fujita, Jones, and Yamamoto (2004) also indicated that creating and manipulating 

geometric diagrams mentally or physically can nurture students’ intuition in geometric 

problem solving. Thus, diagrams can bring GCN much closer to GP and can be the key to 
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influence students’ performance on those two types of tasks. Another relevant focus of 

the geometric diagram is the requirement of geometric properties. No matter if they are 

solving GCN or doing GP, students need to visualize the geometric diagrams and identify 

the needed geometric properties in order to set up calculating sentences or form logical 

proving statements, but the work has been recognized as one of the main difficulties in 

learning geometry (Duval, 1995; Fischbein & Nachlieli, 1998; Zykova, 1975a; 1975b). 

As a result, diagrams can be a crucial key to establishing the relationship between GCN 

and GP, and creating a closer relationship between the two types of tasks, which is 

worthy of further investigation. 

Actually, treating geometric diagrams as the crucial key to the relationship 

between GCN and GP has not been carefully investigated yet. Even though researchers 

have articulated the connection between calculations and proofs in general (Tall, 2002, 

2006a, 2006b, 2007), they do not particularly deal with the relations between GCN and 

GP, nor the role that a geometric diagram can play in influencing the relations. Nor does 

the famous theory proposed by van Hiele (Fuys, Geddes, & Tischler, 1988). Furthermore, 

the linkage between GCN and GP also cannot be articulated in empirical studies by 

surveying students’ performance on GCN and GP (Healy & Hoyles, 1998; Lin, Cheng, & 

et al., 2003), because diverse factors can confound the comparisons (e.g., the geometric 

properties required to obtain a solution, the number of inferring steps to solutions). 

Moreover, some other studies have directly treated GCN as low-level cognitive demand 

tasks only for the application of properties and rules and have used this perspective to 

compare students’ performance on the two types of tasks to assess the relations (Heinze, 

Cheng, Ufer, Lin, & Reiss, 2008; Heinze, Cheng, & Yang, 2004; Heinze, Ufer, Cheng, & 
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Lin, 2008). For example, using the two tasks in Table 1.1, Heinze, Ufer, Cheng, and Lin 

(2008) characterized the GCN tasks (in above part of the table) as the one requiring the 

application of basic knowledge, and the other (in below part of the table) as GP tasks.  

 
Table 1.1 GCN (above) and GP tasks (below) used to survey Germany students’ 
performance (Heinze, Ufer et al., 2008)  

Diagram Givens 

 

The triangle is isosceles with |AC| = 
|BC|. Calculate the missing angles. 

 

C and D are points on the line BE. 
We have |BD| = |EC|, γ = δ and β = ε. 
Prove that |AB| = |EF| 
Give reasons for all steps of your 
proof 

 
 

As shown in Table 1.1, the GCN task focuses on calculating unknown angle 

measures, whereas the GP task requires proving that two segments are congruent 

(AB=EF). These two tasks are different from each other in terms of the geometric 

properties necessary to obtain the solutions, demands on diagram visualization, and the 

number of proving or calculating steps. Solving the GCN task requires the triangle angle 

sum property and the properties related to an isosceles triangle to find the measures, 

whereas solving the GP task necessitates the use of the Angle-Side-Angle triangle 

congruence postulate to prove the conclusion. The visualization demands also differ 

between the two tasks. Proving the GP task requires one to recognize the sub-constructs 

(two overlapping triangles) in the given diagram, the work of which can be more 

demanding than that needed to identify the GCN task diagram as an isosceles triangle. In 

addition, the reasoning steps required to generate the solution in each of the two tasks are 
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also different. For the GCN task, each of the unknowns can be inferred by applying a 

geometric property (e.g., measure of ∠ABC can be obtained by using isosceles triangle 

property). For the GP task multiple reasoning steps are needed: (1) steps of finding the 

needed conditional statements to conclude that two overlapping triangles are congruent; 

and (2) step of applying the result of congruent triangles to infer that segment AB = EF. 

Specifically, considering GCN as tasks of lower-level cognitive-demand ignores 

the complexity and particularity a task can be (Stein, Smith, Henningsen, & Silver, 2000), 

and may underestimate the link between both types of tasks. For instance, using the tasks 

in Table 1.1 as examples again, we see that solving a one-step GCN may be much easier 

than constructing a multiple-step GP not because of their differences in task format, but 

because of the cognitive demand as determined by the number of reasoning steps needed 

to generate a solution. Thus, using only simple applications of basic knowledge to 

characterize GCN tasks as low demanding tasks, we may fail to see the relationship 

between GCN and GP. As a result, this study presents an argument that the link between 

GCN and GP can be stronger than the simple application of geometric properties. 

Because of the abstract nature of geometric diagrams, especially when both types of tasks 

share the same diagram configurations and the geometric properties necessary to obtain 

solutions, both types of tasks may possess the same cognitive demand level. In this regard, 

students’ experiences with GCN tasks are very likely to contribute to students’ learning 

of creating GP tasks later on. 

To investigate the ways and the extent to which GCN tasks used in Taiwanese 

classrooms that can contribute to students’ competence in constructing GP tasks as well 

as to conceptualize the relationship between GCN and GP, I conduct three sequential and 
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independent studies roughly corresponding to the key aspects of the Mathematical Tasks 

Framework (MTF) (see Figure 1.2); namely, tasks as they appear in 

curricula/instructional materials, tasks as set up by teachers, tasks as enacted by 

classroom teacher and students, and the consequence of task enactment through the three 

stages on students’ learning outcomes (Silver & Stein, 1996; Stein et al., 1996; Stein & 

Smith, 1998; Stein et al., 2000). 

 
 

 

 

 

 
Figure 1.2 The Mathematical Tasks Framework (Stein, Smith, Henningsen, & Silver, 2000, p. 4; 

Silver, 2009, p. 829) 
 
 

In line with the framework, Study One of the dissertation centers on the first stage, 

tasks as found in curricular/instructional materials, exploring what learning opportunities 

that GCN tasks situated in the curricular/instructional materials used by a Taiwanese 

mathematics teacher, Nancy3 , can provide for students to enact. Study Two, which 

focuses on the second and the third stages of the framework as tasks set up by teacher and 

tasks enacted by the teacher and students, further traces how the Taiwanese mathematics 

teacher sets up GCN tasks and enacts these tasks with students. In particular, as 

sustaining the level of cognitive demand of tasks can facilitate learning occurring 

(Hiebert & Wearne, 1993; Stein & Lane, 1996; Stigler & Hiebert, 2004; Tarr et al., 2008), 

                                                 

3 Nancy is pseudonym. 

Student 
Learning 

TASKS 
as they appear 
in curricular/ 
instructional 
materials 

TASKS 
as set up by 
classroom 
teachers 

TASKS 
as enacted by 
teacher and 
students 
during 
instruction 
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the investigation is of interest in how Nancy sustains or increases the level of cognitive 

demand and facilitates student learning. Study Three emphasizes on the learning 

outcomes as the consequence of the enactment of GCN tasks through the three stages, 

examining the extent to which students’ experiences with solving GCN tasks can 

contribute to their competence in constructing GP. 

To this end, an overarching research question with three corresponding research 

questions (RQs) is proposed as follows. 

Overarching Research Question 

What are GCN tasks used and enacted in a Taiwanese mathematics teacher and to which 

extent can Taiwanese students’ experiences with GCN tasks contribute to their 

competence in constructing GP? 

 

RQ1. What opportunities are provided by the GCN tasks used by a Taiwanese 

mathematics teacher, Nancy, for her students to learn to handle complex 

geometric diagrams and solve these complex GCN tasks? 

RQ2. In what ways does Nancy sustain the levels of cognitive demand and facilitate 

students’ learning by setting up and enacting the GCN tasks with classroom 

students? 

RQ3. To what extent is Taiwanese students’ performance on GCN similar to that on GP 

when controlling the diagram configurations and requirements of geometric 

properties necessary for a solution? 
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Significance of the Dissertation 

In this dissertation I conduct three sequential studies to investigate how GCN 

tasks are used and enacted by a Taiwanese mathematics teacher and her students, and 

how students’ experiences with GCN tasks can contribute to their competence in 

constructing GP. Taken together the three studies that comprise the dissertation can 

provide insights into why it might be the case that Taiwanese students can develop 

potential competence in creating GP before formal instruction to do so in schools and can 

outperform students in other countries on geometric proving and reasoning, as has been 

shown in the specific case of Germany (Heinze, Cheng, & Yang, 2004). The findings 

taken together from the three studies can also provide implications for other research that 

might seek to understand cross-national differences in mathematics performance. In 

addition, the investigation of the key aspects in the MTF framework can also provide 

insight into why the framework might be the core frame for an investigation of factors 

accounting for the differences in students’ performance in cross-national comparisons. 

Overview of the Dissertation 

In this chapter I provide a rationale and for the need of conducting the three 

sequential studies in this dissertation, as well as the research questions and significance of 

this study. In Chapter Two I present Study One which involves the analysis of GCN tasks 

situated in curricular/instructional materials, not only the official textbooks but also 

auxiliary materials that the mathematics teacher, Nancy, includes in a Taiwanese 

classroom. I discuss the diverse opportunities that the GCN tasks used by Nancy can 

provide for students to enact. In Chapter Three I further demonstrate Study Two as how 

the GCN tasks are set up and enacted by Nancy and her students. In particular, the 
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analysis focuses on exploring the ways Nancy sustains the cognitive demand of the GCN 

tasks and how she uses different instructional strategies to facilitate students’ learning. In 

Chapter Four I detail Study Three which investigates the extent to which students’ 

experiences of solving GCN tasks can contribute to their performance on constructing GP 

when both the diagram configurations and the geometric properties needed to obtain 

solutions are controlled. In the last chapter I provide general discussions regarding how 

the dissertation contributes to the understanding of the role of GCN tasks to the learning 

of GP, how the dissertation together with the three studies can provide alternative 

perspectives with respect to cross-national comparisons, and an example to support the 

MTF framework in exploring the factors accounting for differences in students’ 

performance in cross-national comparisons.  
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Appendix 1.1 

Clarification of Geometric Calculation with Number (GCN) and Geometric 

Calculation with Algebra (GCA) 

 

As discussed in the literature, a GC can be generally described as calculations 

done within mental or physical geometric diagrams on the basis of geometric principles 

or formulae. In line with this general definition, the most frequently used types of GC 

tasks in geometric lessons are geometric calculation with number (GCN) and geometric 

calculation with algebra (GCA). Such a distinction is revealed because the special 

characteristics of each type of GC can influence its relation to GP. Specifically, even 

though both types of GC tasks all involve a variety of geometric diagram shapes and 

require geometric properties needed to generate solutions, the extra algebra work 

necessary in solving GCA tasks can increase the cognitive demand of the tasks and 

confound the conceptualization of the relations between GC and GP, especially when 

algebra work is a difficult learning topic for students (Kieran, 1981; Schliemann, 

Carraher, & Brizuela, 2007; Sfard & Linchevski, 1994). 

In order to further illustrate the special characteristics of GCN and GCA as well 

as the influence of extra algebra work with respect to conceptualizing the relationship 

between GC and GP, two comparable examples representing each type of tasks are 

analyzed. These two examples are similar because they use the same geometric diagram, 

the same written information about diagram details, and the same unknown that students 

have to figure out. The only difference is that the GCN task describes the length measures 

with numerical information, whereas the GCA task indicates givens and unknown using 
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algebraic expressions. The comparison of the two tasks focuses on the problem-solving 

process which is demonstrated using the concept of plan tree developed based on the 

ACT-R theory (Anderson, Greeno, Kline, & Neves, 1981). 

Anderson et al. (1981) define a plan tree as “an outline for actions” (p. 193) that 

is generated based on the logically separate stages. Using geometry proofs as subject 

content to exemplify the thinking mechanisms, Anderson et al. state that stages in the 

plans are a set of geometric rules, allowing students to get from the givens of the task 

through intermediate levels of statements then to the to-be-proved statements. The plan 

tree for proof is a knowledge structure in the head generated by unpacking various links 

of relevant knowledge and re-organizing the links and knowledge into a logic sequence. 

Hence, reasoning solution paths is usually a mixed forward and backward process. In this 

process, on the one hand, students must search forward from the givens to find sets of 

solution paths that can yield the to-be-proven statements. On the other hand, students also 

have to infer backward steps from the to-be-proven statements that may be related to the 

givens. The process of reasoning forward and backward gradually maps out a solution 

path containing relevant geometric knowledge that can link with both the givens and the 

conclusion statements. 

Geometric Calculation with Number (GCN) 

GCN is a geometric task in which numerical information and diagrammatic 

information are provided in the givens. A diagram shape usually accompanies a GCN 

task. The goal of such task is to use geometric properties embedded in the diagrams or in 

the givens to infer the unknowns by setting up relationships among the relevant measures. 

The inferring process commonly involves numerical calculations. 
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Table 1.2 The compared GCN task 
The given diagram The written givens 

 

 
 

A

B C  

As shown on the left side, ∠ABC is a right 
angle. Given AC=13 and AB=5, find the 
length of BC4. 

 

Table 1.2 gives an example of GCN task. The diagram and the givens of the task 

specify the measures of segments in the triangle and the theoretical properties (∠ACB is 

a right angle) that can be used to set up the calculating step among the relevant measures. 

The required geometric property for this task is the Pythagorean Theorem which can be 

inferred based on the givens indicating that ∠ABC is a right angle. 

       
 

Figure 1.3 The plan tree for the GCN task in Table 1.2 

                                                 

4 Actually, from a mathematical perspective, the unknown BC in the task can be interpreted as an algebraic 
expression representing the length of a segment. In this sense, GCN in a way also involves algebraic work 
and may cause confusion in distinguishing between GCN and GCA. As the goal of classifying the two 
types of GC tasks is due to the reason that algebraic work will impose extra cognitive demand on students 
and become a confounding variable for conceptualizing the relationship between GC and GP, the 
categorization of GCN and GCA is proposed from a problem-solving perspective. That means, if a GC task 
can be solved without using any algebraic skills to calculate measures, the GC is classified as a GCN no 
matter algebraic expressions are used in the givens or not. On the other hand, if the algebraic skills are 
needed to calculate the unknowns, the GC task is categorized as a GCA. Further clarification of the two 
types of tasks is illustrated in Appendix 2.4 in Chapter Two. 

Numerical calculations 
22 513 −=BC 12=  

AC=13 AB=5 

Final goal 

Given information 

Pythagorean Theorem 

∠ABC=90˚ 
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The plan tree in Figure 1.3 illustrates the stages of solving this task, in which the 

arrows indicate the connections of the stages. To solve this GCN task, students need to 

use two measures (e.g., AC=13) and the theoretical property ∠ABC=90˚ from the givens 

to set up a calculating sentence on the basis of the Pythagorean Theorem. The remaining 

work involves the numerical calculations in order to find the answer to this task. 

Geometric Calculation with Algebra (GCA) 

The definition of GCA is similar to that of GCN, in that it involves calculating 

some unknowns by establishing relationships among relevant measures based on 

geometric properties and the givens of the task. The major difference between the two 

types of tasks is the algebraic skills that are necessary to obtain solutions to a GCA task. 

 
Table 1.3 The compared GCA task 

The given diagram The written givens 
 

 
 

A

B C 
 

As shown on the left side, ∠ACB is a 
right angle. Given AB=5, BC=X+5, and 
AC=2X-1, find the length of BC. 

 

Table 1.3 displays the compared GCA task. The diagram and the givens are the 

same as described in the GCN task shown in Table 1.2. The only difference is the use of 

algebraic representations describing the measures of the segments in ∆ABC. Again, the 

Pythagorean Theorem is the geometric property needed to set up the relationship among 

the measures. 
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Figure 1.4 The plan tree for the GCA shown in Table 1.3 

 

The plan tree in Figure 1.4 shows that the first step is to use three measures and 

the theoretical property ∠ABC=90˚ from the givens to set up the algebraic equation on 

the basis of the Pythagorean Theorem. The next step is to solve the equation using 

algebraic skills, which in turn create the intermediate stage in the plan tree because 

students have to find the value of X before calculating length of the segment BC. In 

addition, the plan tree in Figure 1.4 also illustrates that the algebraic calculations are 

demanding as students have to factorize the polynomials in the equation. 

Despite similarities of the GCN and the GCA tasks in terms of the given diagrams, 

the written givens, and the geometric property needed to obtain the solutions, the plan 
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Hence, X=7 or X= −
7

3
. However, only X=7 can be the 

answer because the lengths of a triangle must be positive. 

Intermediate stage 

Given information 

BC=X+5=12 
Because X=7 

Pythagorean Theorem 

AB=5 BC= X+5 AC=2X-1 ∠ABC=90˚ 
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trees shown in Figure 1.3 and Figure 1.4 highlight differences in the problem-solving 

processes for the two types of tasks. The first difference centers on the algebraic work. 

The GCA task requires extra work of students since they not only need to make 

inferences using the geometric property to set up the relation for the calculations, but also 

need to master algebraic skills to find the value of X, the intermediate stage shown in 

Figure 1.4. Thus, as suggested by comparing the problem-solving processes for the two 

tasks, the cognitive demand of the GCA task should be higher than for the paired GCN 

task5. 

The second difference between the GCN task and the GCA task is the uncertainty 

regarding the use of algebraic expressions to represent the segment measures on the 

diagram, which may impede students’ ability to infer solutions (Koedinger & Anderson, 

1990). In this regard, Koedinger and Anderson indicated that inferring from the diagram 

is simple a step involving recognition of the diagram configuration, but this may require 

several steps if algebra variables are involved. Algebraic variables impose a demand on 

students because they not only need to make inferences from the diagrams but also to 

consider how the algebra variables may regulate the inferences. Taking the GCA task in 

Figure 1.4 as an example, students need to evaluate the values of X (X=7 and X=
3

7
− ) 

because they will influence in reasoning the measure of segment BC. 

The third difference has to do with the use of given information in setting up the 

calculating sentences. Setting up the calculating sentence in the GCN task requires two 

measures from the givens, whereas that in the GCA task requires three variables. The 

                                                 

5 The comparison on the two GCN and GCA tasks rests on the assumption that middle school students can 
manage the numerical calculations so that such work does not impose extra cognitive demand on students. 
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reason for using three measures in the GCA task instead of two measures is that the 

algebraic expression itself is a variable, thus decreasing a degree of freedom for setting 

up an equation relation similar to that of the GCN task. 

To sum up, GCN and GCA can be quite different in terms of the need to apply 

algebraic skills to obtain solutions, the complexity of making inferences considering both 

the diagram and the algebraic expressions, and the number of measures from the givens 

needed to set up calculating sentences. While the assumption of this dissertation is that 

both diagram and geometric properties required to obtain the solutions are keys to 

students’ performance on GC and GP, the algebraic work may impose the extra cognitive 

demands, thus, becoming a confounding variables in examining the proposed assumption. 

In other words, it is possible that students could not successfully solve a GCA task not 

because they can not visualize the diagram and retrieve geometric properties needed to 

obtain solutions but because they have difficulties in calculating the algebraic equations. 

Students’ difficulties in algebra will influence the comparisons of their performance on 

GC and GP tasks, and cause limitations in interpreting the results from the comparisons. 

Hence, while exploring the relationship between GC and GP aligned with the proposed 

assumption, this dissertation narrows the investigation only on GCN tasks. 

 

   



 23 

  

 

 

CHAPTER TWO  

LEARNING OPPORTUNITIES AFFORDED BY GEOMETRIC 

CALCULATIONS WITH NUMBER (GCN) USED BY A TAIWANESE 

MATHEMATICS TEACHER 

 

Introduction 

For the last two decades, cross-national comparisons have been a common 

approach to understanding how mathematics is taught and learned in different countries. 

Of the many countries included in these comparisons, Taiwan has consistently scored 

better than others in mathematics. For example, on the TIMSS (Trends in International 

Mathematics and Science Study) Taiwanese 8th grade students ranked first in 2008 and 

fourth in 2003 (Mullis, Martin, & Foy, 2008; Mullis, Martin, Gonzalez, & Chrostowski, 

2004). Taiwanese students also performed well on problems requiring the construction of 

GP. In their study on geometric proving and reasoning, Heinze, Cheng, and Yang (2004) 

compared Germany and Taiwanese students and found that Taiwanese students 

performed significantly better than Germany students. 

 Heinze et al. also noticed a special phenomenon about Taiwanese students who 

demonstrated the potential to do GP before having formally learned the GP content in 

schools. To explore this phenomenon, I propose that Taiwanese students’ considerable 

experience in solving geometric calculations (GC) is one of the key factors contributing 
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to their outstanding ability to do GP. In particular, I focus on examining the geometric 

calculations with number (GCN) 6 , a type of geometric calculations (GC) that is 

frequently used in Taiwanese classroom. Here a GCN is generally described as numerical 

calculation done in relation to mental or physical geometric diagrams on the basis of 

geometric principles or formulae (e.g., calculating an angle measure in a triangle given 

that measures of the other two angles are 30˚ and 100˚, respectively) (Aleven, Koedinger, 

Sinclair, & Synder, 1998; Ayres & Sweller, 1990; Chinnapan, 2000; Healy & Hoyles, 

1998; Küchemann & Hoyles, 2002). 

I specifically argue that working with GCN task diagrams7 is critical to gaining 

geometric intuition and being able to solve GP tasks. This is because GCN task diagrams 

used in Taiwan are often diverse and complex, thus, providing students different 

opportunities to learn
8
, an affordance which is worthy of investigation. To explain how 

GCN task diagrams can be complex, the TIMSS video study provides the following 

example (Stigler & Hiebert, 1999). In their investigation, Stigler and Hiebert showed that 

GCN tasks implemented in mathematical lessons that may influence the differences in 

performance of students in the U.S., Germany, and Japan. Representing the highest 

performance among the three countries, Japanese students were required to solve the 

                                                 

6 GCN is one kind of geometric calculation (GC). Other kinds include geometric calculation in algebra 
(GCA) and geometric calculations in coordinate system (Lang & Ruane, 1981). GCA is similar GCN but 
the major difference between the two types of tasks is that GCA necessities the application of algebraic 
skills to obtain the solution whereas GCN excludes the use of algebraic skills. 
7 Not all GCN tasks provide a diagram. For these GCN tasks in which a diagram is not given, the tasks 
either specify the geometric shapes or describe diagram construction so that students can create diagram 
mentally or physically to generate a solution. 
8 In this study, opportunity to learn refers to a factor that contributes to students’ learning outcomes 
(Tornroos, 2005). In particular, the study focuses on exploring the learning opportunities afforded by the 
mathematical tasks situated in the curricular or instructional materials that teacher and students may enact 
in classroom. The enactment of the tasks may expand or degrade the cognitive demand of the tasks (Stein, 
Grover, & Henningsen, 1996) and in turn influence students’ learning outcome. 



 25 

GCN tasks that were different from those given to the U.S. and German students. A 

group of GCN tasks with complex diagrams (see Figure 2.1) were given to the Japanese 

students to solve, whereas in Germany and the U.S., however, geometric tasks were 

usually assigned to students one by one. 

 

Figure 2.1 A group of GCN tasks assigned in Japanese classroom (Stigler & Hiebert, 
1999, p.39) 

 
 

Figure 2.1 shows the GCN tasks given in the Japanese lessons. As can be seen, 

these GCN diagrams are diverse and complex. Although each of the GCN task diagrams 

contains a pair of parallel lines, the differences in the number of segments and 

transversals as well as their orientations and position in the GCN diagrams make them 

complex and different from each other. As the complexity of the GCN task diagrams 

increases, so does the cognitive demand of these tasks, because most of them cannot be 

solved by a single geometric property or a well-known procedure (Stein, Grover, & 

Henningsen, 1996). To solve GCN tasks accompanying by complex diagrams, students 

need to visualize the sub-constructs of the diagrams and decide which relevant geometric 

properties can be used to generate the solutions (Zykova, 1975). In addition, such GCN 

tasks also require students to draw auxiliary lines to create new geometric properties to 

obtain solutions, which may involve using a transformational proof scheme (Hsu, 2007). 
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As a result, the GCN tasks provide opportunities to learn beyond practicing numerical 

calculations with the application of a single geometric property. The latter characteristic 

of GCN tasks has been recognized in the literature (Schumann & Green, 2000). 

To explore what additional learning opportunities are afforded by GCN tasks with 

complex diagrams enacted in Taiwanese classrooms, I examine the curriculum materials 

used in an 8th grade mathematics class. Particularly, the materials include both textbooks 

and auxiliary curricular/instructional materials that Taiwanese mathematics teachers may 

use in their instruction. Analysis of both textbooks and auxiliary curricular/instructional 

materials is important because each contains GCN tasks for students to enact and thus 

influences the learning outcomes (Stein & Smith, 1998). Accordingly, I selected a 

Taiwanese mathematics teacher, Nancy 9 , and examined GCN tasks situated in the 

curricular/instructional materials that she used and implemented in her classroom. 

Taiwan has a very strong examination culture, which is another reason to analyze 

both textbooks and auxiliary curricular/instructional materials such as tests. Because of 

this examination culture, Taiwanese instruction at the middle school level can be 

described as examination-driven teaching style with instruction generally aimed at 

helping students get good grades on the high school entrance examination. In this regard, 

practice on tests plays an important role in helping students obtain good scores because 

the tests usually consist of diverse and demanding tasks. Given their contribution, the 

auxiliary curricular/instructional materials (e.g., tests) should be included in the analysis 

of the GCN tasks used in Nancy’s class. 

                                                 

9 Nancy is a pseudonym. 
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To understand the nature and contribution of GCN tasks, especially the 

contribution to the learning of GP, this study investigates two research questions. 

1. What opportunities are provided by the GCN tasks used by a Taiwanese mathematics 

teacher, Nancy, for her students to learn to handle complex geometric diagrams and 

solve these complex GCN tasks? 

2. To what extent and in what ways do the learning opportunities afforded by the GCN 

tasks used in Nancy’s class differ according to curricular/instructional sources? 

Literature Review 

Diagram is a type of representation involving “a data structure in which 

information is indexed by two-dimensional location” (Larkin & Simon, 1987, p. 68). A 

diagram in geometry is more than a representation conveying spatial information by its 

appearance of data structure. In a way, a geometric diagram can be viewed as an abstract 

object that possesses, mentally or externally, conceptual (theoretical) and figural (spatio-

graphical) properties simultaneously (Fischbein, 1993; Laborde, 2005). 

The abstract nature of a geometric diagram can be more deeply understood in 

terms of the notion of apprehension, which is used to describe the cognitive work of 

“several ways of looking at a drawing or a visual stimulus array” (Duval, 1995, p. 143). 

Duval further used the term, discursive apprehension, to refer to the reasoning of 

geometric properties that are embedded in a diagram as a result of the givens. Duval 

introduced the more specific concept of operative apprehension to describe the various 

mental or physical operations on the diagram to obtain an intuitive sense of solutions. 

These operations typically include such activities as dividing the whole diagram into 

parts of shapes, regrouping parts to create another diagram, enlarging or shrinking the 
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given diagrams, changing the position of the diagrams, and inserting auxiliary lines. 

Operative apprehension is similar to the concept of transformational observation (Harel 

& Sowder, 1998), which involves “operations on the objects and anticipations of 

operations’ results” (p. 258) as well as the generative mode of interaction (Herbst, 2004). 

The generative mode of interaction is used to describe how diagrams can be manipulated 

to create new referents (e.g., drawing something on the diagrams) and new signs (e.g., 

new labels) to make reasonable conjectures. Because of the abstract nature of geometric 

diagram, these manipulations involve transformation observations and are often 

necessary to solve GCN tasks. For instance, transformation observations are particularly 

relevant when auxiliary lines need to be drawn on diagrams to create new angles and 

segments to obtain solutions (Hsu, 2007). 

To solve geometric tasks students need to identify relevant diagrammatic 

information. This involves tapping into both figural and conceptual properties of 

diagrams, which Fischbein and Nachlieli (1998) argued should emerge together when 

students learn geometric reasoning. On the one hand, figural properties are important for 

students to determine the diagrammatic information to obtain intuitive senses of a 

solution. On the other hand, students also need to rely on conceptual properties to 

validate each reasoning step related to the diagram. Regarding the cognitive work related 

to the transitions between the two diagrammatic properties, Duval (1998) used the term 

“anchorage change” to elaborate this transition. Anchorage change refers to the 

transitions from visual (figural) to discursive (conceptual) perspective and vice versa. To 

elaborate anchorage change associated with the visual and discursive perspectives, the 

following geometric task is useful. “In a parallelogram ABCD, if the measures of ∠BAD 
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are 30˚, find the measures of ∠ABC”. Solving the task requires students to observe the 

visual (figural) perspective, gestalt organization of the diagram, either as a two-

dimension object (e.g., the appearance of the parallelogram as a roof) or as one-

dimension object (e.g., the sides constituted the shape). Given these observations, 

students need to change their anchorage from the gestalt organization of the diagram, 

visual perspective, to the specific geometric properties embedded in the gestalt shape, 

discursive perspective, (e.g., opposite sides of a parallelogram are parallel). Alternatively, 

instead of working from a gestalt observation, students may start from the theoretical 

properties related to a parallelogram and then visualize how these theoretical properties 

are embedded in the diagram sub-constructs. Thus, the anchorage changes back and forth 

between the visual perspective on gestalt organization of the diagram and discursive 

perspective on the embedded theoretical properties provide students geometric intuition, 

and in turn enable them to envisage a path to generate a solution plan in the diagram. 

Given the movement between the visual perspective and the discursive 

perspective, properties of the diagram, generating a geometric solution can proceed 

smoothly on the basis of diagram information, but not as a result of written information 

(Larkin & Simon, 1987). This is because a diagram is organized in terms of locations that 

can lead to information needed for the next inferring step, which is often in an adjacent 

location in the diagram. However, inferences for the next step in an adjacent location 

cannot easily be made when reasoning on the basis of written statements. If reasoning 

rests on written statements, students first have to apply the sentential information to the 

diagram in order to understand what these written sentences mean and then integrate both 

sentential information and diagrammatic information to determine the next reasoning step 
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in the diagram. This reasoning process usually results in a heavy cognitive load because 

of the split-attention effect (Mousavi, Low, & Sweller, 1995). This effect arises when 

students must divide their attention among different information (both the diagrammatic 

information and sentence information in working memory) when inferring the solutions. 

The resulting heavy cognitive load can prevent students from obtaining solutions, which 

could otherwise be achieved if students simply make references to the key location on the 

diagram. 

Geometric diagrams are potentially more helpful than written statement in solving 

geometric tasks because diagrams can serve as the underlying structure for remembering 

solutions (Lovett & Anderson, 1994). In their study exploring student memory of 

solutions to geometric tasks, Lovett and Anderson (1994) controlled two factors: 

similarity of the diagram used in geometric tasks and the similarity of reasoning structure 

in written sentences from the givens to the proving statements. They then examined how 

these two factors influence student recall of geometric solutions. Lovett and Anderson 

found that if two geometric tasks use the same diagram, students’ experience in solving 

the first task can facilitate their ability to obtain a solution of a subsequent task. The 

reason is that students can remember solution steps in the diagram and use the diagram to 

cue relevant reasoning steps to generate solutions in the subsequent task. However, if two 

geometric tasks have a similar reasoning structure based on written sentences beginning 

with the givens and leading to proving statements, students’ experience with solving the 

first task can not successfully transfer to their work on the second task. Lovett and 

Anderson’s findings, to some extent, suggest that students’ experiences with solving 
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GCN tasks can transfer to their work on GP tasks later if both types of tasks are based on 

similar diagram configurations. 

Further evidence supporting the conclusion that diagram similarity is central to 

students’ problem solving can be found in Koedinger and Anderson. Koedinger and 

Anderson (1990) noticed that geometry experts usually parse geometric diagrams into 

perceptual chunks and use these perceptual chunks to cue relevant geometric knowledge. 

According to their investigation, the diagram configurations are used as operation 

schemes in the abstract planning stage as well as in remembering a complex combination 

of geometric properties (e.g., SAS congruence triangle postulate). Based on the operation 

schemes, geometry experts can focus on key steps and ignore less important ones when 

generating solutions. 

Diagrams are even more central to geometry tasks because they can also function 

as artifacts that can scaffold students as they learn proofs. In this regard, Cheng and Lin 

(2006; 2007) reported that junior high school students’ construction of proofs was greatly 

improved after an instructional intervention that had students read the given information 

and then color the property information on the diagrams. They concluded that the colored 

parts of the diagram facilitate students’ ability to visualize useful geometric properties 

and then use these properties to generate proof solutions. 

Finally, diagrams are also the key to developing geometry intuition. According to 

Fujita, Jones, and Yamamoto (2004), the development of student intuition can be 

achieved by creating and manipulating geometric diagrams mentally or physically. Such 

manipulations of geometric diagrams can direct students to visualize relevant geometric 

properties and relative images and relate them to geometric concepts and theorems. 
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Manipulations of geometric diagrams also help students decide where and how to start 

solving a problem. As a result, Fujita et al. concluded that using a series of well-designed 

tasks with diverse diagrams can nurture students’ geometry intuition. 

Methods 

The methods contain five sections. The first section offers the operative 

definitions of terms relevant to the framework development and the coding procedure. 

The second section describes the framework with its (sub) categories specific to 

geometric diagrams for capturing diverse learning opportunities afforded by GCN tasks. 

The following two sections further detail the data and the procedure in analyzing the data. 

The final section demonstrates the process of establishing the reliability of the (sub) 

categories in the framework. 

Operative Definitions of the Terms Used  

A Task 

Tasks identified in this study include both worked examples in the instructional 

blocks used to scaffold students understanding mathematics and facilitating skill 

acquisition (Renkl, 2002) and problems in the exercise blocks planned to be solved by 

students. Considering that the lengths and requirements of tasks situated in 

curricular/instructional materials may vary, thus causing the inconsistency of coding, this 

study defines tasks as problems asking for an answer (Charalambous, Delaney, Hsu, & 

Mesa, 2010; Zhu & Fan, 2006). For instance, if a GCN problem listed in curricular 

materials requires of inferring three different unknown measures, then the problem is 

coded as three tasks. 

A Geometric Property 
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Geometric properties refer to those geometric statements or definitions formally 

introduced in the textbooks. In particular, this study defines a geometric property as that 

which supports a problem-solving step to visualize a specific location or a relation in a 

diagram configuration (e.g., two congruent segments in an isosceles triangle) so that a 

solution can be obtained. Thus, a geometric statement described in the textbook may 

contain more than one geometric property. Further clarification of a geometric property 

in regard to a geometric statement listed in textbooks is provided in Appendix 2.1. 

Solution Steps 

A reasoning step is defined as a calculating step set up by applying a geometric 

property. Recognizing that a GCN task usually can be solved by multiple solutions, 

which may require different reasoning steps, the coding will cause inconsistency. To 

solve this problem, this study defines the solution identified in a GCN task as the one that 

requires the minimum number of reasoning steps to obtain the answer. Also important 

here is that each reasoning step in the solution identified should be supported by a 

geometric property that students have learned. 

 Reference Diagram 

A reference diagram is defined as the geometric diagram accompanying a 

geometric property that is formally introduced in textbooks. With the idea of treating a 

diagram as an external representation (Laborde, 2005), this definition is important 

because it can prevent inconsistencies in coding as it does not consider differences in the 

mental images of a diagram concept processed by individuals. For example, Figure 2.2 

provides different images of a parallelogram that one may possess. 
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Figure 2.2 Different mental images of a parallelogram 
 
 
The term “reference” is borrowed from the notion of reference examples 

(Michener, 1978), conveying the special characteristics that the diagram accompanying a 

geometric property has. Michener elaborates reference examples as 

“…examples that one refers to over and over again. They are basic, widely 
applicable and provide a common point of contact through which many results 
and concepts are linked together” (p. 366) 

 
 

According to Michener, an example of a reference diagram can be an isosceles 

triangle in Figure 2.3 that not only conveys the definition of a shape with two congruent 

segments, but is also linked to other geometric properties (e.g., the sum of interior angles 

of a triangle is 180˚).  

Moreover, a reference diagram also possesses salient features, which can help 

distinguish other relevant geometric properties. For example, the reference diagram for 

an isosceles triangle (see the diagram on left side in Figure 2.3) shows that the lengths of 

two congruent legs stand symmetrically on the two sides with the base side on the bottom 

parallel to the horizontal axis. Thus, the congruence of the segments in the isosceles 

triangle is visible and easy to be perceived. The reference diagram for an isosceles 

triangle also reveals the difference in lengths between the congruent segments and the 

bottom segment so that there can be no confusion with the reference diagram for an 

equilateral triangle (the diagram on the right side in Figure 2.3). 
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Figure 2.3 Reference diagrams for the isosceles triangle definition (on the left side) and 

for the equilateral triangle definition (on the right side) (Nan-I, vol. 4, p. 39) 
  

Framework Development 

This study developed an innovative framework because existing frameworks 

employed in textbook analysis studies associated with geometry are often too general to 

depict the specific characteristics of diagrams and to capture how diagrams influence 

opportunities for students to learn geometry (Fujita, Jones, & Kunimune, 2009; Haggarty 

& Pepin, 2002; Schmidt, McKnight, Valverde, Houang, & Wiley, 1996; Valverde, 

Bianchi, Wolfe, Schmidt, & Houang, 2002). The framework developed contains diagram 

complexity and problem-solving complexity with (sub) categories. The diagram 

complexity aims to describe the characteristics of a complex GCN task diagram that in 

turn may prevent students from generating a solution because of the visual obstacles. The 

problem-solving complexity focuses on exploring the kinds of cognitive work associated 

with geometric diagrams that students have to do when solving a GCN task. Details of 

developing the framework with corresponding (sub) categories are described as follows. 
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Figure 2.4 The developed framework with (sub) categories 
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Diagram complexity 

The initial idea of developing diagram complexity with corresponding categories 

was to use segments and vertices, essential elements in constituting a diagram, to 

describe how a diagram given in GCN task can be complicated. In particular, this study 

illustrates the diagram complexity representing a GCN task as changes of the vertices and 

segments by comparing the GCN task diagram with a reference diagram10. Analyzing 

GCN task diagrams through a comparison to a reference diagram can provide information 

regarding possible visual obstacles that students may encounter when identifying the 

reference diagram along with its corresponding geometric property in the given GCN task 

diagram. 

Accordingly, by applying the grounded-theory approach (Strauss & Corbin, 1998), 

this study developed five categories11 to describe the complexity of a diagram given in a 

GCN task (see Figure 2.4) including: (1) the number of deleted segments in reference 

diagram; (2) the number of original vertices influenced because of the deleted segments; 

(3) the number of segments added to reference diagram; (4) the number of original 

vertices influenced because of the added segments; and (5) the number of new vertices 

created because of the segments added. 

To clarify the analysis used to categorize GCN task diagrams with respect to the 

five categories, a comparison of a GCN task diagram with a reference diagram embedded 

in the diagram is illustrated here. 

                                                 

10 The reference diagram used for the comparison with a GCN task is the one that represents a particular 
geometric property necessary to obtain the selected solution to the GCN task. Detail of the criteria for 
determining the reference diagram for a GCN task is described in the coding procedure section. 
11 The framework does not consider changes to diagram positions and those to angle or segment measures 
as another category in diagram complexity because these changes does not alter the numbers of vertices or 
segments in the original diagram. 
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Table 2.1 GCN task diagram and a reference diagram embedded in the diagram 
GCN task diagram Reference diagram 

embedded in GCN task 
diagram 

Reference diagram for the 
alternate interior angles 
property (Nan-I, vol. 4, p. 
156) 

   

 

Table 2.1 provides a GCN task diagram (on the left side) and a reference diagram 

representing the alternate interior angles property (on the right side), as well as how the 

reference diagram is embedded in the GCN task diagram (the middle diagram). An initial 

look at the GCN task diagram and the compared reference diagram gives the impression 

that the two diagrams do not look the same. Nor are the shapes of reference diagram and 

that of the corresponding sub-construct embedded in the GCN task diagram. Some 

segments in the reference diagram are absent and some have been added to the GCN task 

diagram. The following is the analysis that details the differences in the two diagrams in 

terms of the five categories. 

 
Table 2.2 Changes of reference diagram by deleting segments 
Category One: Number of deleted 
segments in the reference diagram 

Category Two: Number of original 
vertices influenced because of the deleted 
segments 
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Table 2.2 shows the changes to the reference diagram made by segment deletion. 

Category One counts the number of deleted segments, showing that a total of 4 segments 

(labeled with circles) is deleted from the reference diagram12 (diagram on the left side of 

Table 2.2). Category Two, which analyzes the number of original vertices in the 

reference diagram influenced because of the deleted segments, indicates two original 

vertices in the reference diagram (labeled with circles) are influenced (diagram on the 

right side of Table 2.2). 

 
Table 2.3 The addition of segments and its influence on vertices 
Category Three: Number 
of new segments added to 
the reference diagram 

Category Four: Number of 
original vertices influenced 
because of the added 
segments 

Category Five: Number of 
new vertices formed 
because of the added 
segments 

   

 

The remaining three categories used to describe diagram complexity regarding 

how a reference diagram is made more complex by segment addition, which in turn 

influences the original vertices or create new vertices on the reference diagram. Category 

Three takes into account the number of segments that are added to a reference diagram. 

                                                 

12 The below diagram shows another two segments (labeled with circles) which are also absent in the GCN 
task diagram. However, these two segments are not be coded as deleted segments because they are segment 
extension and do not influence the original vertices in the reference diagram (point D and point C). 

 

 

B C 

D 

E

A 

 



40 

As shown on the left side of Table 2.3, two segments (the thicker black lines) are added. 

Categories Four and Category Five aim to describe the changes to the vertices caused by 

the segment addition. Category Four identifies the number of original vertices influenced 

by the segment addition, which in this example are 2 vertices in the reference diagram. 

Category Five captures how many new vertices are created because of the segment 

addition. The GCN task diagram is coded as having three new vertices (designated by the 

circles) (see the diagram on the right hand column in Table 2.3). 

Because of these changes in the segments and vertices, the GCN task diagram 

looks different from the compared reference diagram. These Changes to the segments and 

vertices also yield a variety of sub-constructs of geometric shapes (see Appendix 2.2), 

most of which are absent from the original reference diagram. The variety of geometric 

shapes in the GCN task diagram provides task designers an opportunity to create diverse 

GCN tasks, allowing students to practice identifying different geometric shapes and 

different combinations of geometric properties embedded in the given diagram in order to 

obtain solutions. 

Overall, the above analysis shows that the combination of the five categories can 

comprehensively capture the ways in which a diagram is made more complex in a GCN 

task, using the reference diagram representing one of geometric properties embedded in 

the diagram as a starting point. 

The following section further discusses the cognitive complexity underlying the 

GCN task diagram in Table 2.1 and the related increase in cognitive demand on students 

when working on the diagram. As Category One reports that four segments are deleted in 

the reference diagram when GCN task diagram (Table 2.2), the segment deletion 
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occludes the reference diagram embedded in the diagram of GCN task because the 

reference diagram does not resemble its original shape. If students recognize the diagram 

only based on its appearance of shape, which Duval (1995) terms perceptual 

apprehension, they will not be able to identify or they will misinterpret which part of the 

configurations of the GCN task diagram represents the reference diagram. Nor can they 

figure out the geometric properties that correspond to the reference diagram in the GCN 

task diagram. 

Another challenge for students is that, as discussed earlier, the segment deletion 

also influences the original vertices of reference diagram; thus, these constituted angles in 

the original reference diagram are also changed. Detail is illustrated as follows. 

 
Table 2.4 Reference diagram and its changes in GCN task diagram after segment deletion  
Reference Diagram for the alternate 
interior angles property with angle labels 

The reference diagram embedded in part of 
the GCN task diagram configurations 

 
 

 

Table 2.4 shows cognitive complexity of the GCN task diagram when compared 

to the reference diagram after segment deletion. The reference diagram is constituted by a 

pair of parallel lines and a transversal with eight angles, two of which (∠3 and ∠6, ∠4 

and ∠5) represent the alternate interior angles property. The right side of Table 2.4 shows 

what happens to the reference diagram after segment deletion. As can be seen, only two 

of the original eight angles are retained in the GCN task diagram, namely ∠4 and ∠5. 
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The change in angles increases the cognitive demand of inferring the alternate interior 

angles property because students have to recognize where embedded in the given diagram 

are the parallel lines and the transversal as well as angles corresponding to this property. 

 
Table 2.5 The new angles created because of the two added segments 
Reference Diagram for the alternate interior 
angles property with angle labels  

Two segments added to the reference 
diagram 

  

 

In addition, when the segments are added to the reference diagram, as shown on 

the right of Table 2.5, the angle formations are even more complex. Specifically, the 

three angles (∠ 9, ∠10, and ∠11), which do not exist in the reference diagram, are 

created because of the two added segments. The perspective of this study is that these 

created new angles may cause difficulties for students in recognizing the alternate interior 

angles property for two reasons. First, ∠9 and ∠10 are situated in diagram locations 

similar to ∠3 and ∠6 in the reference diagram corresponding to the alternate interior 

angles. Hence, if students use the perceptual images of the related locations of these 

angles to identify the alternate interior angles property, they may conclude that ∠9 and 

∠10 are congruent, which is not correct. Second, the addition of segments and the 

formation of ∠9 and ∠10 also occlude the inference of the congruence of ∠4 and ∠5 

corresponding to the alternate interior angles property. The segment deletion and addition 

make the GCN task diagram look quite different from the original reference diagram. 
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Consequently, students have to physically or mentally decompose and recompose the 

given diagram (Gal & Linchevski, 2010) in order to identify the sub-construct with the 

alternate interior angles in the GCN task diagram. 

In sum, this section compares a GCN task diagram with a reference diagram to 

elaborate the coding with respect to the five categories and how complicating a diagram 

may cause visual obstacles in recognizing the sub-constructs of the diagrams with 

corresponding geometric properties. 

Problem-Solving Complexity 

Problem-solving complexity developed in the framework consists of four 

categories: auxiliary lines required or not, number of solution steps, number of geometric 

properties required, and number of diagram transformations (slides, flips, and turns) 

required in a solution. The four categories are included because they represent the kinds 

of cognitive work essential for solving a GCN task. 

 Auxiliary lines 

The first category included in problem-solving complexity captures cognitive 

demand of drawing auxiliary lines necessarily to obtain the solution with minimum 

number of reasoning steps in a GCN task. For some GCN tasks, geometric properties 

embedded in a GCN task diagram are not sufficient to generate the solution, thus creating 

cognitive work on adding lines to create new sub-constructs and new geometric 

properties helpful for solution generation. Pólya (1945) indicates that to construct 

auxiliary lines students need to recall prior knowledge and previous problem-solving 

experiences, which help them decide the locations of the lines in diagrams that can 

contribute to the solution generation. Yerushalmy and Chazan (1990) further specify that 
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constructing the new lines facilitates students to “generate new insights into the diagram, 

both questions and conjectures” (p. 213). However, the work of drawing auxiliary lines 

on a diagram usually is highly demanding because it forces students to anticipate the 

creation of sub-constructs associated with corresponding geometric properties that can be 

used to form a solution plan. This anticipation further requires students to view the 

diagram dynamically and apply the transformational observation (Harel & Sowder, 1998) 

to visualize a solution generated with the help of such auxiliary lines (Hsu, 2007). 

 Solution steps 

The second category contained in problem-solving complexity involves analyzing 

the solution steps, i.e. the minimum number of reasoning steps that are necessary to 

obtain the solution in a GCN task. Here, a reasoning step is a problem-solving action set 

up by applying a geometric property. 

Previous studies have addressed number of solution steps that can influence the 

cognitive demand of a task because generating a multiple-step solution requires students 

not only to retrieve geometric properties for each reasoning step based on either the 

diagram or the givens, but also to chain the reasoning steps into a logic sequence (Ayres 

& Sweller, 1990; Cheng & Lin, 2008; Heinze, Reiss, & Rudolph, 2005; Ufer & Heinze, 

2008). Specially, inferring the intermediate reasoning steps for a multiple-step GCN task 

is usually more challenging for students than obtaining the answer to the task (Ayres & 

Sweller, 1990). This is because the intermediate steps require students to reason forward 

and backward between the givens and the conclusion statements in order to map out a 

solution path that satisfies both the givens and the conclusion statements, the cognitive 

work termed as “hypothetical bridge” (Cheng & Lin, 2008). 
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However, textbook analysis studies usually categorize solutions steps for tasks in 

a binary matter as single-step verses multiple-step (Li, 2000; Son & Senk, 2010; Stigler, 

Fuson, Ham, & Kim, 1986; Zhu & Fan, 2006). This binary classification scheme provides 

very limited information regarding cognitive demand of tasks situated in curricular or 

instructional materials because the classification could not elaborate the differences in 

cognitive demand for different number of solution steps. In contrast to these studies, the 

present framework can systematically determine the number of solution steps and use the 

coding result to describe the cognitive demand that a GCN task requires. 

 Required geometric properties 

In addition to determining solution steps for a GCN task, problem-solving 

complexity also analyzes the minimum number of geometric properties required in a 

solution. Three considerations underline the decision to include this category in the 

framework. First, the number of geometric properties necessary to obtain a solution for a 

GCN task may not be same as that of solution steps because different reasoning steps in a 

solution may require the use of the same geometric property. Therefore, analyzing 

required geometric properties can provide richer information regarding the opportunities 

that a GCN task can provide students to learn. Second, the coding of the required 

geometric properties for GCN tasks also influences the subsequent identification of 

reference diagrams because these are necessarily the diagrams representing the geometric 

properties needed to obtain the solution with minimum reasoning steps. Third, analyzing 

the geometric properties are also significantly related to the examination of diagram 

transformations, which compare the transformation actions involved in mapping 
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reference diagrams representing these geometric properties necessary to obtain the least-

step solution onto the given GCN task diagram. 

Diagram Transformation 

The fourth category included in analyzing the complexity of problem-solving 

process is minimum number of diagram transformations (e.g., rotating) because it reveals 

the cognitive work created when students are required to map reference diagrams onto a 

GCN task diagram in order to retrieve geometric properties that are necessary to generate 

the fewest-step solution to the task. During this mapping process, students may need to 

mentally or physically transform the reference diagrams (e.g., rotating) to check if they 

resemble a part of the diagram configurations in a GCN task. This manipulation causes 

cognitive difficulties for students because the orientation and position of a GCN task 

diagram may influence the identification of corresponding reference diagrams (Fischbein 

& Nachlieli, 1998). In this process, three types of manipulative activities are relevant for 

the extant study: slides (translations), turns (rotations), and flips (reflections) (Kidder, 

1976; Piaget & Inhelder, 1967; Williford, 1972). These actions leave a diagram 

unchanged except for its position and orientation. 

Data 

This study focuses on a geometry chapter with the content of properties related to 

parallel lines and quadrilaterals as the data boundary to collect both textbook materials 

and auxiliary instructional materials from the mathematics teacher, Nancy, when she 

taught an 8th grade class with about 40 students in a private girls’ high school in Taiwan. 

The reason to select Nancy is that she represents a typical expert Taiwanese teacher at the 

middle school level because she has several attributes that are part of the cultural script 
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(Stigler & Hiebert, 1999) of Taiwan instruction, including the profound understanding of 

subject content knowledge for mathematics (Ma, 1999); good mathematics knowledge for 

teaching (MKT) (Ball, Hill, & Bass, 2005); and, the most important, examination-

oriented teaching style. The high-stakes entrance examination plays a crucial role in 

influencing Nancy’s instruction because she aims to help her students obtain high scores 

in the entrance examination and believes that students’ success on the examination is a 

very important criterion for evaluating the quality of teaching. 

The reason for selecting this geometry chapter is because of its particular role in 

facilitating students’ cognitive movement from empirical explorations into formal GP. In 

line with the National Curriculum Standard (Ministry of Education, 2003), this geometry 

chapter not only aims to help students become familiar with geometric content (e.g., 

definition, properties), but also to gradually introduce students to the concept of GP 

through different instructional activities (e.g., hands-on activities). Accordingly, 

mathematics textbooks for this grade level contain GP that show students what a GP 

looks like and how to make general inferences based on geometric properties in a proof 

construction. However, students at this stage are not expected to construct formal proofs 

themselves; rather, they only complete already partly-constructed proof tasks (e.g., 

writing down one of the proving sentences) or to figure out the geometric properties that 

support a proving sentence. To achieve the curricular goal, a high proportion of GCN 

tasks are used as alternative materials that help students acquire the geometric knowledge 

and solution skills that can be used to solve GP later. 

Totally four types of curricular/instructional materials were collected when Nancy 

taught this geometry chapter in an 8th grade class, including the textbook series, the 



48 

supplemental materials, the tests, and the tasks created by Nancy that she used when 

teaching this geometry chapter. Details of the four types of curricular/instructional 

materials are provided in Appendix 2.3. 

Coding Procedure 

Figure 2.5 provides a flowchart showing the procedure for coding geometric tasks 

collected from Nancy’s class. 
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Figure 2.5 Flowchart for the coding procedure 
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The coding procedure started with determining whether a geometric task was a 

GCN task. A problem related to the determination of a GCN task was encountered when 

a GC task does not use any algebraic expressions in the givens but requires the 

application of algebraic calculations to obtain the solution with the fewest reasoning steps. 

To solve this problem, this study clarified a GC as a Non-GCN task if its solution 

requires the application of algebraic skills whether or not the givens use algebraic 

expressions. Further details regarding the problem and the coding decision are illustrated 

in Appendix 2.4. 

The next coding procedure centered on the problem-solving complexity with its 

four categories (auxiliary lines required or not, minimum number of solution steps, 

minimum number of geometric properties required in a solution, and diagram 

transformations). In particular, the coding began with the determination of minimum 

number of solution steps, which in turn affected the next steps of analysis. Therefore, 

Step Two of the coding procedure examined solution steps necessary to obtain the answer 

requiring the fewest reasoning steps. After the number of the solution steps for a GCN 

task was identified, Step Three checked if the solution required the drawing of auxiliary 

lines. Step Four assessed the number of geometric properties used to support minimum 

number of reasoning steps in the identified solution. Specifically, the geometric 

properties were those that were formally introduced in textbooks previously. Any 

geometric properties that had not been learned were excluded even if these properties 

could be used to generate the solution to a GCN task.  

Step Five of the coding procedure furthered the investigation of transformation 

together with its three sub-categories. Because the coding of diagram transformations 
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necessitated the present of given diagrams in the task presentation, GCN tasks without 

accompanying diagrams were excluded from the analysis. The coding computed the 

minimum number of transformation actions that were required to map the reference 

diagrams representing the geometric properties identified in the solution onto the given 

GCN task diagram. 

The final two coding steps focused on diagram complexity dimension. Again, as 

the analyses of diagram complexity also required the presence of given diagrams in the 

GCN tasks, these tasks in which diagram were not provided were excluded from the 

analysis. Step Six determined the reference diagram that was the basis for examining the 

complexity of a diagram given in a GCN task. Several steps were carried out to determine 

the reference diagram represented in a GCN task. First of all, the reference diagram used 

to analyze the complexity of a GCN task diagram must be one of the reference diagrams 

corresponding to the geometric properties that were necessary to obtain the minimum 

number of solution steps in this task. Secondly, when several reference diagrams were 

identified in a GCN task, reference diagram representing the geometric property that was 

one of the to-be-learned properties in the current teaching unit was selected as the one 

used to analyze the diagram complexity with corresponding categories. After a reference 

diagram was identified for a GCN diagram task, Step Seven of the coding procedure 

furthered to analyze the diagram complexity with its five coding categories based on the 

reference diagram identified. After coding the five categories, this study computed 

coding results as the minimum number of changes needed to transform a reference 

diagram into the diagram that accompanied the task. This minimum number was used an 

indicator to describe the complexity for a GCN task diagram. 
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Inter-Rater Reliability 

Inter-rater reliability for the sets of (sub) categories in the framework was 

established with a coder who has master’s degree in mathematics education and has 

teaching experience in Taiwan. To ensure the consistency of the coding results, several 

steps were taken. First, we selected tasks from each unit of the geometry chapter and each 

type of curricula/instructional material to examine if the categorizations in the framework 

could capture the characteristics of a GCN task in terms of its diagram and the kinds of 

cognitive work involving the diagram when solving the task. We deliberately selected 

tasks that were difficult to classify and used the coding from these tasks to validate and 

modify the (sub) categories. 

Secondly, about 10 % of the tasks selected from each unit of the geometry chapter 

were coded by the author and the coder individually. In the first trial, very good inter-

rater reliability13 was achieved for the categories of auxiliary lines, and the sub-category 

of slide in diagram transformation category (kappa statistics (κ) =0.95 for auxiliary lines, 

κ=1.00 for slide) (Altman, 1991). For the coding of the five categories used to access the 

diagram complexity, the strength of inter-rater agreements was good (κ=0.73 for deleted 

segments in reference diagram; κ=0.70 for original vertices influenced because of deleted 

segments; κ=0.71 for new segments added to reference diagram; κ=0.69 for original 

vertices influenced because of the added segments; and κ=0.75 for new vertices formed 

because of the added segments). But for the rest of (sub) categories in the framework—

the solution steps, required geometric properties, and rotation and flip in diagram 

                                                 

13 The Cohen’s κ was used to assess the inter-rater agreement. According to Altman (1991), κ=<0.20 
reflects poor strength of agreement, 0.21-0.41 fair, 0.41-0.60 moderate, 0.61-0.80 good, and 0.81-1.00 
indicates very good strength of agreement. 
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transformation category—the reliability was low. The discrepancies can be attributed to 

the fact that the answer to a GCN task could be obtained in different ways. Even though 

this study defined the solution to a GCN task as the one requiring the fewest number of 

reasoning steps, identifying this solution was still demanding because the fewest-step 

solution could be identified only when all solutions to a task could be determined. To 

address this difficulty, we proposed an alternative approach to ensure the coding 

reliability for those (sub) categories by discussing all the possible solutions to a GCN task 

before formally coding the task with respect to (sub) categories and calculating the inter-

rater agreements. The author and the coder analyzed each task individually and then 

discussed together to merge our knowledge of a GCN task to determine the fewest-step 

solution to the task. After achieving consistency in selecting the solution for a GCN task, 

we re-coded the low-reliability (sub) categories separately again. Importantly, 

recognizing that coding of the five categories in diagram complexity dimension was also 

related to determination of the fewest-step solution to a GCN task, we also re-coded these 

five categories. The calculations of inter-rater reliability showed that the recoding of 

these (sub) categories all achieved very good strength of agreement. For the solution 

steps and required geometric properties, kappa statistics (κ) was 0.98 and 0.97 

respectively. Regarding both the rotation and flip sub-categories, we had kappa statistics 

(κ) =1.00. We also achieved outstanding reliability for the coding of the five sub-

categories of diagram complexity (κ=1 for all the five categories in diagram complexity). 

Limitations 

The major limitation of this study originates from the decision to select one 

Taiwanese mathematics teacher of teaching an 8th grade class with a population of 40 
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students and collect the curricular/instructional materials from one geometry chapter. 

Although well-justified, selecting a Taiwanese mathematics teacher and her instruction 

related to a single geometry chapter limits any generalization because the study cannot 

capture how learning opportunities are afforded to students engaged in other geometry 

chapters or with other geometric teachers. As a result, the results cannot be generalized to 

other Taiwanese mathematics teachers or to other grade levels. Different teachers may 

have different viewpoints regarding what tasks from which curricular/instructional 

materials should be chosen for students to enact. Furthermore, considering students’ 

naïve competencies in learning the mathematics and the pressures from students and their 

parents aimed at influencing teacher’s choice of the curricular materials (Herbel-

Eisenmann, Lubienski, & Id-Deen, 2006), it is also very possible that the same teacher 

may use different curricular/instructional materials for a different student population. 

Another limitation of this study is the focus on middle school level. While 

recognizing the role of examination in influencing the curricular/instructional materials 

given to students to enact at this level, the use of auxiliary curricular/instructional 

materials at the elementary school level14 may be very different from those found in this 

study. In addition, a limitation may also derive from the geometry content analyzed in 

this study. As each geometry topic has its special characteristics in terms of shapes, 

properties, and relation to calculations and proofs, it is possible that the analysis of GCN 

tasks associated with other geometry topics may generate results different from those in 

this study. 

                                                 

14 For high school level, because students also need to take the university entrance examination, the use of 
auxiliary curricular/instructional materials may be similar to those used in middle school level. However, 
the use of curricular/instructional materials implemented in high school classes requires further 
investigation. 
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Findings 

GCN Tasks Used in Nancy’s Class 

A total of 1084 geometric tasks were identified in the curricular/instructional 

materials as available for use by Nancy when she taught the geometry material that is the 

focus of this study. Among these geometric tasks, about one-half (529 tasks) were 

categorized as GCN tasks and the remaining half were non-GCN tasks (e.g., GCA, 

construction, exploration, or GP). In general, given that this dissertation focuses on GCN 

tasks, the analyses presented here focused on those 529 tasks. More specifically, some 

analyses (e.g., diagram complexity and diagram transformations) required the presence of 

given diagram in the task presentation, so these analyses found on the 423 of the 529 

GCN tasks in which a diagram was provided15 . First, I report the results regarding 

diagram complexity, after which I detail the analyses regarding problem-solving 

complexity. 

 Diagram Complexity 

The analysis of diagram complexity was based on the 423 tasks that included a 

given diagram. Diagram complexity was determined by the minimum number of changes 

needed to transform a reference diagram into the diagram that accompanied the task. The 

number of changes (i.e., segment addition or segment deletion) ranged from 0-22. Table 

2.6 gives the observed frequencies for the changes. A very high percentage (81.7%) of 

GCN task diagrams used in this class involved at least one change from a reference 

                                                 

15 For these GCN tasks in which a diagram is not provided, their written information either indicates the 
geometric shape or elaborate the diagram constructions for the tasks. In this regard, students require to 
mentally or physically construct the geometric shapes themselves in order to set up the calculating steps to 
obtain solutions.  
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diagram16. In general, these changes to the reference diagram influenced the original 

vertices or created new vertices. As can be seen in Table 2.6, about 55% of the GCN 

tasks involved diagrams with at least 6 changes from a reference diagram. 

 
Table 2.6 Distribution of frequency and percentage of diagram complexity 

Numbers of changes Frequency Percent (%) 

0 80 18.3 
1-5 117 26.8 

6-10 178 40.8 
11 through the highest (22) 61 14.1 

Total 436 100 
 

A total of 356 GCN tasks had diagrams that involved at least one change from a 

reference diagram. For these diagrams, I identified five categories of changes from a 

reference diagram and tabulated the frequency of each type of change. Table 2.7 

summarizes the means and standard deviations for each category of change. Several 

observations can be made from the data reported in the table. First, the GCN task 

diagrams were more likely to be obtained by adding segments to reference diagrams 

(mean value=2.04) than by deleting original segments from the diagrams (mean 

value=1.04). Second, segment additions to a reference diagram were more likely to create 

new vertices (mean value=2.19) rather than to influence the original vertices (mean 

value=1.17) of the diagram. Third, the number of original vertices in a reference diagram 

influenced by segment deletion was less than those affected by segment addition. In 

addition, the analysis shows that, on average, GCN task diagram had about 7 changes 

(mean value=7.38) involving segments and vertices. 

                                                 

16 Though the diagrams used in about 18% of the GCN tasks did not involve changing a reference diagram 
by adding or deleting segments, these diagrams were sometimes different from the corresponding reference 
diagrams because of the changes in diagram positions or measures of angles and segments. 
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Table 2.7 Descriptive analysis of categories in diagram complexity dimension per 
diagram 

Category Mean Std. D 
Deleted segments in reference diagram 1.04 1.390 
Vertices influenced because of the deleted segments .95 1.386 
New segments added to reference diagram 2.04 1.438 
New vertices formed because of the added segments 2.19 1.699 
Original vertices influenced because of the added segments 1.17 1.243 
Sum of the five categories for a GCN task diagram 7.38 4.438 

 

 Problem-Solving Complexity 

In this section, I present the analysis of complexity of problem-solving complexity 

of the GCN tasks. This analysis consisted of four components: whether auxiliary lines 

required or not, the minimum number of solution steps, the minimum number of 

geometric properties required in a solution, and whether diagram transformations (slides, 

flips, and turns) were required or not and if required, how many frequencies. The first 

three components were investigated for the set of 529 GCN tasks, but the analysis of 

transformations used only the 436 tasks that contained diagrams. An example of a GCN 

task and the analysis of this task with respect to each of the four components can be 

found in Appendix 2.5. 

 Auxiliary lines 

About one in four of the 529 GCN tasks required students to draw auxiliary lines 

in order to obtain a solution. In general, the solutions to the GCN problems used in 

Nancy’s classroom required the drawing of at most one auxiliary line. 

Solution Steps 

Table 2.8 gives the distribution for the frequency and percentage of the minimum 

number of solution steps for the GCN tasks. The number of required solution steps 

ranged from 0 to 17. More than 70% of the GCN tasks required multiple solution steps 
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with nearly half of the tasks requiring 2-4 steps. About one task in five required at least 5 

solution steps. 

 
Table 2.8 Distribution of frequency and percentage of solution steps 

Number of solution steps Frequency Percent (%) 
0 4 0.8 
1 152 28.7 

2-4 260 49.1 
5-7 75 14.2 

8 through the highest (17) 38 7.2 
Total 529 100 

 

Required geometric properties 

Similar to the analysis of the minimum number of solution steps, I also analyzed 

the minimum number of geometric properties required for a solution of a GCN task. 

Table 2.9 displays the distribution for frequency and percentage of the minimum number 

of geometric properties for the GCN tasks. The number of required geometric properties 

ranged from 0 to 13. About two-thirds of the tasks required students to apply at least two 

geometric properties in order to obtain a solution. In addition, one can notice the 

similarity of frequencies in Table 2.8 and Table 2.9 which indicate that most GCN tasks 

situated in Nancy’s class require of different geometric properties to obtain solutions. 

 
Table 2.9 Distribution of frequency and percentage of geometric properties needed 

Required geometric properties Frequency Percent (%) 
0 4 0.8 
1 172 32.5 

2-4 285 53.9 
5-7 47 8.9 

8 through the highest (13) 21 4.0 
Total 529 100 

 

 



59 

Diagram Transformations 

For the 436 GCN tasks that had accompanying diagrams, I examined whether a 

solution required a transformation of diagram using a rigid transformation (i.e., slide, flip, 

or rotation). Table 2.10 gives the distribution for the frequency and percentage of 

required transformations for the GCN tasks. The number of required transformation 

actions ranged from 0 to 10. More than two-thirds of these tasks required students to 

perform at least one transformation action. Nearly four in ten of these GCN tasks 

required at least 2 transformation actions. 

 
Table 2.10 Distribution of frequency and percentage of transformation actions required 

Number of required transformation actions Frequency Percent 
0 132 30.3 
1 142 32.6 
2 78 17.9 

3 through the highest (10) 84 19.2 
Total 436 100.0 

 

An examination of the specific transformation actions required for the GCN tasks 

used by the Taiwanese teacher, Nancy, revealed that (a) none of GCN tasks required the 

action of sliding, because the diagrams in the GCN tasks were static and did not indicate 

any dynamic changes in location; and (b) the GCN task diagrams that required 

transformations were almost twice as likely to require a turn (mean value=0.91) than a 

flip (mean value=0.52). 

GCN Tasks Situated in Different Curricular/Instructional Materials 

Here I further discuss the GCN tasks situated in different curricular/instructional 

materials used by the Taiwanese teacher, Nancy. In her classroom, four types of 

curricular/instructional sources were used, including the textbook series, the 
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supplemental materials, the tests, and the tasks created by her. Of the 529 GCN tasks 

analyzed, more than three-fourths (414 tasks) were situated in the auxiliary 

curricular/instructional materials that Nancy added for her students to practice. Almost 

one-half (256 GCN tasks) were found in the tests and roughly 29% (151 tasks) were in 

the supplemental materials. Very few tasks (1%) were created by Nancy. 
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Table 2.11 Descriptive analysis of different types of curricular/instructional materials 

Problem-Solving Complexity 
Diagram Complexity Auxiliary 

lines 
Solution Steps 

Required Geometric 
properties 

Transformation 

 N Mean Std. D N Needed N Mean Std. D N Mean Std. D N Mean Std. D 

Textbook 
series 

115 3.94 3.726 115 
8 

(7.0%)* 
115 1.92 1.874 115 1.69 1.314 115 0.63 .755 

Supplemental 
materials 

125 5.73 4.500 151 
26 

(17.2%) 
151 2.85 2.523 151 2.33 1.719 125 1.14 1.150 

Tests 
189 7.47 4.291 256 

81 
(31.6%) 

256 4.07 3.027 256 3.19 2.047 189 2.08 1.754 

Tasks created 
by Nancy 

7 6.86 4.180 7 
4 

(57.1%) 
7 3.14 1.215 7 2.43 1.134 7 1.18 .378 

Total 
436 6.03 4.438 529 

119 
(22.5%) 

529 3.24 2.786 529 2.61 1.903 436 1.42 1.495 

* Number of tasks and percentages in (parenthesis)

61 
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Table 2.11 presents a summary of the number of GCN tasks used by Nancy, the 

mean values, and standard deviations for different curricular/instructional materials with 

respect to diagram complexity and the four components of problem-solving complexity 

(auxiliary lines, minimum number of solution steps, minimum number of geometric 

properties required in a solution, and diagram transformations). Several observations can 

be made from the data reported in the above table. First of all, the GCN tasks in the 

textbook series had the lowest mean values or percentage in all of the categories analyzed. 

Second, GCN tasks included on the tests had the highest mean values for most of 

categories analyzed, except for the category of auxiliary lines. For the category of 

auxiliary lines, the percentage of GCN tasks on the tests ranked the second highest 

among the four types of curricular/instructional materials. Third, the mean values or 

percentage for the supplemental materials in the categories analyzed are all higher than 

those for the textbook series and lower than those for the tests and the tasks created by 

Nancy. 

The statistical analyses provide further information regarding cognitive 

complexity of GCN tasks used in the types of curricular/instructional materials. As 

presented in Table 2.12 and Table 2.13, ANOVA analysis for GCN tasks with respect to 

diagram complexity and the three components of problem-solving complexity (minimum 

number of solution steps, minimum number of geometric properties required in a solution, 

and diagram transformations) as well as Chi-square test for auxiliary line category in 
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problem-solving complexity all show the significant differences in the mean values or 

percentages among the three types of curricular/instructional materials17. 

 
Table 2.12 ANOVA analysis for diagram complexity and the three components of 
problem-solving complexity 

ANOVA test and P values 
 Sum of Squares df Mean Square F Sig. 

Between 
Groups 

904.318 2 452.159 25.557 .000* 

Within 
Groups 

7554.568 427 17.692   

Diagram 
Complexity 

Total 8458.886 429    
Between 
Groups 

398.788 2 199.394 28.031 .000* 

Within 
Groups 

3691.825 519 7.113   

Solution Steps 

Total 4090.613 521    
Between 
Groups 

195.102 2 97.551 29.622 .000* 

Within 
Groups 

1709.174 519 3.293   

Required 
Geometric 
Properties 

Total 1904.276 521    
Between 
Groups 

74.711 2 37.355 18.422 .000* 

Within 
Groups 

1052.425 519 2.028   

Transformation 

Total 1127.136 521    
*: A significant difference at the .05 level 

 

Table 2.13 Chi-Square Test for auxiliary lines in problem-solving complexity 

Chi-Square Test and p value 

 Value df Asymp. Sig. (2-sided) 
Pearson Chi-Square 31.012a 2 .000* 
N of Valid Cases 522   

a: 0 cells (.0%) have expected count less than 5. The minimum expected count is 25.34 
*: A significant difference at the .05 level 

                                                 

17 For the tasks created by Nancy, because of the small sample size (N=7) which can cause the difficulty in 
statistically comparing the means and percentages, this type of curricular/instructional material was 
excluded from the following analyses. 
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Post hoc tests for the diagram complexity and the three components of problem-

solving complexity (see Table 2.14) as well as posteriori comparisons for auxiliary lines 

(see Table 2.15) further show that any two of the three curricular/instructional materials 

all achieved significant differences, except for the comparison of the supplemental 

materials and the textbook series in the diagram transformations. The mean values or 

percentages for the tests are all significantly higher than the textbook series and the 

supplemental materials in diagram complexity and components of problem-solving 

complexity. The mean values or percentages for the supplemental materials are also 

significantly higher than the textbook series in the coding categories, except for the 

diagram transformations. The statistical analysis confirms that GCN tasks used in the 

tests were the most cognitively complex, whereas those situated in the textbook series 

were the least demanding. 
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Table 2.14 Post hoc analyses for diagram complexity, solution steps, required geometric properties and diagram transformations 

Dependent Variable 
(I) Type of 
curricular/instructional 
materials 

(J) Type of 
curricular/instructional 
materials 

Mean Difference 
(I-J) 

Std. Error Sig. 

Diagram Complexity Tests Textbook series 3.524 .497 .000* 
  Tests Supplemental materials 1.735 .484 .002* 
  Supplemental materials  Textbook series 1.789 .543 .005* 
Solution Steps Tests Textbook series 2.149 .299 .000* 
  Tests Supplemental materials 1.216 .274 .000* 
  Supplemental materials  Textbook series .933 .330 .019* 
Required Geometric Properties Tests Textbook series 1.501 .204 .000* 
  Tests Supplemental materials .856 .186 .000* 
  Supplemental materials  Textbook series .644 .225 .017* 
Transformation Tests Textbook series .913 .160 .000* 
  Tests Supplemental materials .566 .146 .001* 
  Supplemental materials  Textbook series .347 .176 .144 

* A significant difference at the .05 level 

Table 2.15 Posteriori comparisons for auxiliary lines 
Simultaneous Confidence Interval (I) Type of curricular/instructional 

materials 
(J) Type of curricular/instructional 
materials 

Percentage 
Difference(I-J) Lower Bound Upper Bound 

Tests Textbook series -24.6% (*) -.338 -.154 
Tests Supplemental materials -14.4% (*) -.197 -.006 
Supplemental materials  Textbook series -10.2% (*) -.247 -.040 

* A significant difference at the .05 level 
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Summary 

These analyses of the GCN tasks used in Nancy’s classroom indicate that her 

students had frequent opportunities to encounter tasks that embodied diagram complexity 

and problem-solving complexity. The GCN tasks in her classroom frequently required 

students to use two or more geometric properties to solve a problem, and they often 

required multiple solution steps. A portion of GCN tasks also required the drawing of an 

auxiliary line or a transformation of a diagram by flipping or rotating. In addition, the 

vast majority of tasks were accompanied by diagrams that were complex variants of 

reference diagrams obtained by adding or deleting segments in the reference diagrams. 

Furthermore, the analyses also show that a high portion of the GCN tasks 

involving diagram complexity and problem-solving complexity came from the auxiliary 

curricular/instructional materials, especially the tests, that Nancy added for her students 

to enact. These GCN tasks situated in the auxiliary curricular/instructional materials had 

more complex diagrams and higher problem-solving requirements than those in the 

textbook series. Among the three types of auxiliary curricular/instructional materials, the 

GCN tasks in the supplemental materials had the lowest complexity in terms of the 

diagram and problem-solving requirements. 

Discussion 

Developed Framework 

This study demonstrates that the innovative framework consisting of (sub) 

categories can capture specific relevant characteristics of GCN tasks with respect to 

geometric diagrams and the cognitive work involving diagrams. No previous study has 

undertaken this work (Fujita, Jones, & Kunimune, 2009; Haggarty & Pepin, 2002; 
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Valverde, Bianchi, Wolfe, Schmidt, & Houang, 2002). In particular, since the 

construction of GP tasks involves geometric diagrams and the kinds of cognitive work 

analyzed, the proposed framework can also be applied to examinations of GP. 

Another contribution of the framework is that it allows investigators to 

systematically and scientifically analyze the geometric tasks without the consideration of 

students’ prior knowledge, which may influence the coding of mathematical tasks. 

Numerous studies have proposed frameworks for classifying cognitive levels of 

mathematical tasks (Doyle, 1983; Li, 2000; Stein, Smith, Henningsen, & Silver, 2000; 

Valverde, Bianchi, Wolfe, Schmidt, & Houang, 2002), and have used these levels to 

categorize the cognitive demand of mathematical tasks situated in curricular materials. 

However, applying these frameworks based on levels to analyze mathematical tasks often 

are limited in their ability to determine the cognitive demand of mathematical tasks 

because of students’ prior knowledge and experiences. As Stein et al. (2000) pointed out 

factors relevant to 

“...deciding the level of challenge provided by a task is the students (their age, 
grade level, prior knowledge and experiences) and the norms and expectations for 
work in their classroom” (p. 17-18) 
 

The proposed levels of cognitive demand of a task can be debated when 

considerations are made with regard to students’ age, level, prior knowledge and 

experiences. These considerations are important, but they may cause problems in coding 

mathematical tasks in textbooks. For example, as Stein et al. (2000) suggest, tasks 

involving a well-established procedure be categorized as procedures without connections. 

However, in a textbook analysis, it is difficult to determine whether an established 
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procedure is targeted at a particular group of students as well as aimed at distinguishing 

between a procedure without connection and procedure with connection. The difficulty 

arises due to the challenges in examining the extent to which tasks drew connections to 

the meaning of the underlying procedures or not (Charalambous, Delaney, Hsu, & Mesa, 

2010). The framework proposed in this study can avoid this coding dilemma because the 

basis for analyses is the geometric properties and diagrams in the textbooks which are not 

related to students’ prior knowledge or previous learning experiences. 

GCN Tasks in Curricular/Instructional Materials 

Tasks play a very important role in mathematics learning because they can 

structure the way students think about mathematics, direct students’ attention to a 

particular perspective of mathematics, and specify ways to process the information 

(Doyle, 1988; Henningsen & Stein, 1997; Silver, 2009). In line with this viewpoint, the 

analyses in this study show that the tasks used in Nancy’s class not only helped students 

to become familiar with certain geometric properties and numerical calculations, which 

were possibly treated only as a minor instructional goal, but aimed to offer opportunities 

to learn geometry specifically in the following areas: (1) visualizing the sub-constructs in 

complex diagram configurations; (2) determining if auxiliary lines are necessary to solve 

the tasks; (3) generating solutions that require multiple reasoning steps; (4) retrieving sets 

of geometric properties needed to obtain solutions; and (5) transforming corresponding 

reference diagrams to map them onto the GCN task diagrams. Because of these learning 

opportunities the GCN tasks used in Nancy’s class are likely to play a particularly 

important role in sharpening students’ geometry thinking and reasoning, especially in 

relation to geometry proofs. 
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Of particular interest are the GCN tasks that Nancy added to her instruction to 

supplement the tasks found in the textbook series. Though we do not know all of the 

reasons for this teacher’s decision to supplement the textbook tasks as she did, there are 

some plausible motivations that are worth noting. One reason is very likely related to the 

examination culture in Taiwan (Lin & Tsao, 1999; Lin & Li, 2009). Nancy stated that the 

goal of instruction is to help students obtain high grades on the high school entrance 

examination. Given that she perceived the Taiwanese high school examinations as 

requiring diverse problem-solving knowledge and skills beyond that likely to be acquired 

only through the practice of the textbooks problems, it is reasonable to conclude that 

Nancy decided to include auxiliary instructional materials containing highly demanding 

GCN tasks as opportunities for her students to learn. 

A closely related question is how the students in this classroom managed to learn 

to solve the high demand GCN tasks. Though this study did not directly investigate this 

issue, the findings of this study and a companion investigation (see Chapter Three of this 

dissertation) point to three possible explanations. The first relates to Nancy’s instructional 

skill in sustaining students’ intellectual work and in motivating the students to take on 

intellectually demanding work, which will be discussed in Chapter Three. The second 

explanation pertains to the use of the supplemental materials. Although the basis for 

Nancy’s decision to include the supplemental materials as a major source of instructional 

material was not directly investigated here, the findings requiring the cognitive demand 

of the GCN tasks in the supplemental materials were that the cognitive demand fell 

between the low-demand tasks that were abundant in the textbook and the very high-

demand tasks created by the teacher and those found on the tests. Thus, it seems 
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reasonable that the teacher would include the supplemental materials tasks because these 

would scaffold students’ learning of how to solve the tasks she created and the highly 

demanding tasks on the tests. The analysis of cognitive demand suggested that the 

supplemental materials contained both low-level—providing students opportunities to 

practice using geometric properties by solving simple and single-step tasks—and tasks of 

higher cognitive demand that could help them become accustomed to the very 

challenging tasks included on the classroom tests, as well as those they might be likely to 

encounter on the high school entrance examination. 

A third explanation may be related to the philosophy of “practice make perfect” 

(Fwu & Wang, 2006), an ancient Chinese proverb, that sums up the rationale for asking 

students to work on highly demanding tasks. This belief emphasizes that the more 

students practice on high demanding tasks, the greater the possibility they will understand 

the mathematics and solve challenging tasks themselves in the future. In line with this 

belief is also the notion that students may not succeed in their initial attempts to solve 

GCN tasks. Rather, through repeated practice on those demanding tasks, Nancy expected 

her students to develop intuitions for finding solutions and understanding the 

mathematics. This expectation is widely held among other Taiwan mathematics teachers 

as well. 

We cannot conclude from the findings of this study that solving highly demanding 

tasks during classroom lessons will necessarily ensure that all students in Nancy’s class 

learn mathematics well. Nevertheless, the findings of this study does suggest possible 

ways that students’ mathematics proficiency might be leveraged through their 

experiences in solving many cognitively demanding tasks, especially given evidence that 
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Chinese students can learn mathematics effectively by repeatedly working on 

mathematical tasks (Zhu & Simon, 1987). Practice on well-arranged mathematical tasks, 

according to Zhu and Simon, helps Chinese students internalize mathematics knowledge 

and skills with understanding even though classroom teachers do not lecture or teach 

these students. On the other hand, the findings of other research suggest that teaching 

mathematics using many challenging tasks may not be effective for low-ability students 

(e.g., Gal, Lin, & Ying, 2009). In fact, Gal et al. (2009) reported that low-achieving 

students in Taiwan often could not participate in classroom discussions. Thus, those 

students may have little chance to learn mathematics through an approach that requires 

students to solve frequently high cognitive demand tasks. 

While cross-national comparisons have consistently reported the outstanding 

ability of East Asian students as demonstrated by their superb achievements in 

mathematics, the curriculum, especially the curriculum embodied in textbook materials, 

is treated as having a significant influence on learning and teaching (Charalambous, 

Delaney, Hsu, & Mesa, 2010; Li, Chen, & An, 2009; Son & Senk, 2010; Stevenson & 

Bartsch, 1992; Valverde, Bianchi, Wolfe, Schmidt, & Houang, 2002; Zhu & Fan, 2006). 

However, in line with the Mathematical Tasks Framework (MTF), the argument 

proposed is that relying on textbook analysis as predictor of students’ learning outcomes 

may fail to identify the actual reasons for the differences in students’ performances in 

cross-national comparisons. A reliance on textbook analyses alone is risky because it 

ignores how teachers adopt the textbook and include auxiliary materials for their 

instructional activities, especially in Asian countries where instruction is often strongly 

influenced by an examination culture. 
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Appendix 2.1 

Number of Geometric Properties in a Geometric Statement 

 

Geometric Statement: “Diagonals of a rhombus are perpendicular and bisect each other” 

(Nan-I, vol. 4, p. 181). 

Below provides one example of GCN task to show the number of geometric 

properties for the geometric statement listed above. 

 
Table 2.16 GCN task used to analyze the number of geometric property related to the 
geometric statement listed above. 

The given diagram The written givens 
A

C

D
O

B

 

As the diagram on the left side shows, given the 

diagonals AC and BD of the rhombus are 6 
centimeters and 8 centimeters respectively. Find the 

length of AD . 

 

Table 2.17 Solution for the GCN task in Table 2.16 
Steps Calculating sentences Geometric reasons 

Step 1 AO=OC=3 cm Diagonals of a rhombus bisect each other 
Step 2 DO=OB=4 cm Diagonals of a rhombus bisect each other 

Step 3 
AC⊥DB  
so that ∠AOD=90˚ 

Diagonals of a rhombus are perpendicular to 
each other 

Step 4 AD= 22 43 + =5 cm The Pythagoras Theorem 

 

To obtain the solution, each calculating step requires part of the geometric 

statement related to a rhombus listed above. For example, inferring the measure of AO 

requires the part of the geometric statement indicating that the diagonals of a rhombus 

bisect each other. The inference process directs students’ attention to the segment AC and 

leads them to recognize that this segment is bisected by segment DB so that AO=OC. 
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This process is a problem-action involving a specific location of the diagram (segment 

AC). Similarly, students have to apply the same geometric property to infer another 

segment DO=OB, which is treated as another reasoning step because inferring segment 

DO=OB involves visualizing segment DB, which is a different location in the diagram. In 

addition, since the givens of the GCN task indicate only that AC and DB are diagonals, 

the task requires students to infer that these two diagonals are perpendicular. As a result, 

the geometric statement related to a rhombus involves three geometric properties that can 

be applied to set up different calculating sentences. 
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Appendix 2.2 

List of Sub-Constructs Embedded in the GCN Task Diagram 

 

Table 2.18 demonstrates the sub-constructs labeled by thick bold lines with 

corresponding geometric properties embedded in the GCN task diagram in Table 2.1. 

 
Table 2.18 Sub-constructs with corresponding geometric properties embedded 

Triangle (1) Triangle (2) Triangle (3) Triangle (4) 

  

  

Triangle (5) The alternate 
interior angles 

property 

The corresponding 
angles property (1) 

The corresponding 
angles property (2) 

    
The exterior angle 

property (1) 
The exterior angle 

property (2) 
The consecutive 
interior angles 
property (1) 

The consecutive 
interior angles 

property(2) 

 
 

  

Property of angle 
bisector (1) 

Property of angle 
bisector (2) 

Quadrilateral Property of linear 
pair (1) 

    
Property of linear 

pair (2) 
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Appendix 2.3 

Four Types of Curricular/Instructional Materials Collected from Nancy’s Class 

 

Four different types of curricular/instructional materials were collected during 

Nancy’s teaching of this geometry chapter. The first type is the textbook series18 which 

includes the student textbook and the student workbook (Chen, 2008). The student 

textbook contains both instructional blocks that comprise of diverse mathematical 

activities (e.g., paper folding activity, diagram construction, proving, and measuring) and 

exercise blocks. The student workbook encloses only exercises for students to practice. A 

total of 55 pages in the student textbook and 14 pages in the student workbook associated 

with this geometry chapter were analyzed in this study. 

The second type of instructional material is the supplemental materials. 

Supplemental materials used in Nancy’s classroom contain not only the sequence of 

mathematical topics but also the content and exercises for students to practice. Although 

every student in Nancy’s class had the textbook series, she rarely used the mathematical 

tasks in the textbook series for her instruction. Alternatively, she taught from the 

supplemental materials which were written by her school mathematics teachers as the 

major instructional materials. She taught some of tasks in the supplemental materials and 

asked her students to practice others. Sometimes, she also assigned a portion of the 

exercise tasks in the supplemental materials as student homework. The supplemental 

materials were available to all mathematics teachers and all 8th grade students in the 

                                                 

18 The teacher guide book was excluded because it is to be used by class teachers and could not be accessed 
by class students. 
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school, but the mathematics teachers had the right to decide whether or not they wanted 

to use it in their instruction. 

The supplemental materials written for this geometry chapter contain 18 dense 

pages, each of which covers either many geometric properties and definitions or many 

geometric tasks. For example, one of pages in supplemental materials associated with the 

second unit of this chapter consists of 31 tasks. To understand more of the supplemental 

materials, several characteristics of the supplemental materials need to be highlighted. 

First of all, the supplemental materials designed for this chapter are divided into the same 

number of units as those listed in the textbooks. Each unit in the supplemental materials 

presents several topics, focusing on the main geometry content (e.g., the properties 

related to rectangles) that should be learned in this unit. Secondly, only few of the 

geometric tasks used in the supplemental materials are exactly the same as those designed 

in the textbook series. Most of the geometric tasks in supplemental materials differ from 

the textbook series in terms of geometric diagrams and the description of the task settings.  

Thirdly, at the beginning of each geometric topic, the supplemental materials 

summarize the definitions and geometric properties relevant to the topic that students 

have learned previously or will learn in the unit. After the summary sections, the 

supplemental materials include diverse geometric tasks for students to practice and 

sequence those tasks from low to high cognitive demand. For example, in the first unit of 

the chapter under study here, after a one-page summary of the geometric content, the 

supplemental materials present a very high percentage of one-step tasks (74%) in the first 

two pages. These tasks can be solved using a single geometry property. After these one-

step tasks, the supplemental materials include tasks that require multiple reasoning steps 
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to obtain solutions. Finally, the supplemental materials contain worked examples, but 

those examples are not fully worked out and do not provide solutions for students. 

In addition to using the supplemental materials as a major source of instructional 

material, Nancy also used geometric tasks that she created herself. She posed those 

geometric tasks when she thought they were highly relevant to the class content. Twenty-

five such tasks were created by Nancy during the instruction of the geometry chapter. 

Another main type of curricular/instructional material collected from Nancy’s 

class was the tests that were used for formative or summative purposes. Some of the tests 

were assigned as student homework and some were used on a weekly basis to evaluate 

students’ learning of newly introduced geometry content. The remaining tests were 

employed as summative evaluations to check if students understood the mathematical 

content in the chapter and were able to connect the learned content with relevant 

mathematical topics. Usually, Nancy discussed the test tasks in classes to address the 

difficulties students had in solving them. A total of eighteen tests were administrated to 

students during the instruction of the chapter under study. 
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Appendix 2.4 

Decision of Determining a GCN task 

 

In this study it was observed that a group of GC tasks had givens used no 

algebraic expressions (e.g., 2X+1) to describe angles or segments of geometric diagrams, 

but did require algebraic skills to generate a solution. In dealing with situation, this study 

used a problem-solving perspective to categorize a GCN task. A GC that can be solved 

without using any algebraic skills, the task was coded as a GCN. If algebraic skills are 

necessary to find the unknowns, the GC is a Non-GCN task. The following is an example 

that illustrates this coding decision. 

 
Table 2.19 Task Description (selected from the tests used by Nancy) 

The given diagram The written givens 

DA

B C
 

In a parallelogram ABCD. Given that two times ∠B 
plus three times ∠D equal ∠A, find the measure of 
∠C. 

 

As shown in Table 2.19, the written givens for this task do not use any algebraic 

expressions (e.g., 2X+1) except for the notations of the four angles (e.g., ∠A) of the 

parallelogram. A GC task is categorized based only on the description of the givens, the 

task is considered as a GCN. However, further examination of the solution for this task 

shows that algebraic skills are essential to obtain the answer. 
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Table 2.20 A solution for the GC task in Table 2.19 
Steps  Calculating sentences Geometric reasons 
Step One ∠B=∠D 

So that ∠A=5∠B 
Opposite angles of a parallelogram are 
congruent 

Step Two AD//BC19 Opposite sides of a parallelogram are 
parallel 

Step Three ∠A+∠B=180˚ The consecutive interior angles 
property 

 Equation 1: ∠A=5∠B 

Equation 2: ∠A+∠B=180˚ 

Answer: ∠A=150˚; ∠B=30˚ 

 

Step Four ∠C=∠A=150˚ Opposite angles of a parallelogram are 
congruent 

 

As Table 2.20 shows, solving the task requires four reasoning steps, which are set 

up based on the corresponding geometric properties. In particular, before obtaining the 

measures of ∠A and ∠B, students have to solve two equations, ∠A=5∠B and 

∠A+∠B=180˚ between the third step and the fourth step. Solving these two equations 

requires the application of algebraic skills, and, thus, this task should be coded as a non-

GCN task. 

This example shows that using the information on the givens alone is not a 

reliable way to determine whether or not a GC task is a GCN. This is because solving a 

geometric task may require of algebraic work, even though the givens do not use 

algebraic expressions (e.g., 2X+1). Equally, it is also possible the givens in a GC task use 

algebraic expressions, but the solution does not necessitate the application of algebraic 

skills to find the solution. 

                                                 

19 Here, the geometric properties used to support calculating sentences were determined on the basis of 
those geometric properties listed and introduced in the Nan-I textbooks analyzed. Because Nan-I textbook 
series do not include the geometric statement that the consecutive interior angles of a parallelogram are 
supplementary, it suggests students to reason this property themselves when solving or proving geometric 
tasks.  
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Appendix 2.5 

An Example of GCN Task Requiring the Drawing of Auxiliary Line 

 

Table 2.21 Description of the GCN task selected from the tests 
The given diagram The written givens 

B C

A D

16 86 10
 

As shown in the diagram, in a quadrilateral 
ABCD given that AD//BC and the length 
measures for AD=10, BC=16, AB=6, 
CD=8, and measure of ∠DCB=48˚, find the 
measure of ∠BAD=_________. 

 

The drawing of auxiliary line and its solution 

B C

A D

16 86 10
O  

Figure 2.6 The drawing of auxiliary line AO on the given diagram 

 
The GCN task in Table 2.21 cannot be solved unless an auxiliary line is added to 

the given diagram. In order to obtain solutions that involve the fewest reasoning steps, it 

is possible to construct the auxiliary line by creating an AO segment such that OC=10 

and BO=6. The segment construction in turn creates new sub-constructs and new 

geometric properties that can be used to generate the solution, as shown in Table 2.22. 
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Table 2.22 The solution for the GCN task in Table 2.21 
Steps Calculating sentences Geometric properties 
Step One Because AD//OC and 

AD=OC=10, 
AOCD is a parallelogram 

If one pair of the opposite sides 
is parallel and congruent, the 
quadrilateral is a parallelogram. 

Step Two ∠DCO=∠DAO=48˚ Opposite angles of a 
parallelogram are congruent 

Step Three AO//CD The opposite sides of a 
parallelogram are parallel 

Step Four ∠DCO=∠AOB=48˚ The corresponding angles 
property 

Step Five BA=BO=6 
∠AOB=∠BAO=48˚ 
So that ∠BAD=48˚+48˚=96˚ 

Properties of isosceles triangle 

 

The drawing of auxiliary line AO creates AD=OC and leads to the inference that 

the quadrilateral AOCD is a parallelogram because of the property stating “if one pair of 

the opposite sides is parallel and congruent, the quadrilateral is a parallelogram”. After 

recognizing that AOCD is a parallelogram, the next step is to deduce 

∠DOC=∠DAO=48˚ on the basis of the property of “opposite angles of a parallelogram 

being congruent”. The third step requires the inference that AO//CD based on the 

property that “the opposite sides of a parallelogram are parallel”. In the fourth step, 

∠AOB=48˚ can be obtained using the corresponding angles property. The final step is to 

apply the properties of isosceles triangles to figure out ∠BAO=48˚ and use this result to 

calculate ∠BAD by adding up the measures of ∠BAO and ∠DAO, which is 96˚. 

Analysis of cognitive demand involving the drawing of auxiliary lines 

This section tries to unpack the cognitive demand involving the generation of 

solutions for this task, which can be discussed from two perspectives. The first 

perspective involves recognizing the necessity to draw auxiliary lines because the 
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geometric properties embedded in the diagram and properties in the given are not 

sufficient to generate a solution. Accordingly, these embedded geometric properties that 

can be inferred from the givens and the diagram include the identification of ABCD as a 

trapezoid and its relevant geometric properties (e.g., area formula for a trapezoid, 

property of trapezoid median) on the basis of the given AD//BC. The given parallel lines 

AD//BC also can be used to deduce that ∠DAB+∠ABC=180˚ and ∠ADC+∠DCB=180˚ 

using the consecutive interior angles property. Another geometric property that can be 

retrieved is the angle sum of a quadrilateral. In addition, the measures of the four sides of 

the trapezoid ABCD in the written givens also inform students that the trapezoid is not 

special (e.g., isosceles trapezoid); thus geometric properties specific to special trapezoids 

cannot be applied to obtain a solution in this task (e.g., base angles of an isosceles 

triangle are congruent). 

In the application of those embedded geometric properties to generate a solution, 

the cognitive demand comes from recognizing the reasoning gap between the unknown 

and the givens that cannot be bridged by these identified geometric properties. As the 

given measure of ∠DCB=48˚ is located in the opposite angle to the unknown ∠BAD in 

the trapezoid, the search is initiated for any geometric property that can be directly 

applied to bridge between the given ∠DCB and the unknown ∠BAD to obtain a solution. 

However, no geometric property is available to support this bridging action because the 

trapezoid is not special. As a result, the task creates the demand to infer the sides or 

angles adjacent to the given ∠DCB or the unknown ∠BAD. One strategy is to start the 

reasoning from ∠DCB=48˚ and obtain the measure for the adjacent angle of ∠ADC, 

which is 132˚ according to the consecutive interior angles property. After ∠ADC is 
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inferred, the next step is to try to bridge between ∠ADC=132˚ and the unknown ∠BAD 

by searching for any geometric property that can support this inference. However, this 

strategy does not work because no existing geometric property in the diagram can be used 

for this bridging action. An alternative strategy is to reason backward from the unknown 

to the given. Here, the first step is to deduce ∠DAB+∠ABC=180˚ based on the 

consecutive interior angles property. The second step is to establish the relationship 

between ∠ABC and the given ∠DCB=48˚. Nevertheless, similar to the first strategy, the 

second strategy does not work because of the same difficulty encountered by the first 

strategy. As a result, the task requires students to recognize the reasoning gap between 

the givens and the unknown and see the need to construct auxiliary lines to create new 

sub-constructs and geometric properties that can help them generate a solution. 

The second perspective regarding the cognitive demand involved with solving this 

GCN task is to determine where to draw needed auxiliary line on the diagram, which is 

the most difficult part of this task. This task requires reasoning what geometric properties 

can possibly be created by adding auxiliary line and how the created geometric properties 

can contribute to the generation of a solution. In particular, to solve this GCN task 

students have to observe the relationship among the measures of the trapezoid sides, 

AD+AB=BC (10+6=16), which leads to the problem-solving strategy of dividing the 

segment BC=16 into BO=6 and OC=10 (see Figure 2.6). The divided segments BO and 

OC in turn reveal the possible places where the auxiliary line can be drawn on the given 

diagram. As shown in Figure 2.6, an auxiliary line is constructed by connecting vertex A 

to the point O on segment BC so that a solution requiring the fewest number of reasoning 

steps can be generated. 
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Analysis of minimum number of solution steps, minimum number of geometric 

properties, and number of diagram transformation required 

As shown in Table 2.22, the minimum number of solution steps required for this 

GCN task is five and the number of required geometric properties is also five. Regarding 

the transformations, Table 2.23 provides the reference diagrams corresponding to the 

geometric properties necessary to obtain the solution listed Table 2.21. The identification 

of individual reference diagrams forms the basis for analyzing what transformation 

actions are required to map the reference diagrams onto the GCN task diagram, which is 

described in Table 2.24. 
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Table 2.23 Reference diagrams corresponding to the geometric properties required in the 
solution 

Steps Calculating sentences Geometric properties 
Corresponding 

reference diagrams 
Step 
One 

AOCD is a 
parallelogram 

If one pair of the opposite 
sides is parallel and 
congruent, the 
quadrilateral is a 
parallelogram. 

 
(Nan-I, vol. 4, p. 166) 

Step 
Two 

∠DCO=∠DAO=48˚ Opposite angles of a 
parallelogram are 
congruent 

 
(Nan-I, vol. 4, p. 178) 

Step 
Three 

∠DCO=∠AOB=48˚ The corresponding angles 
property 

 
(Nan-I, vol. 4. p. 154) 

Step 
Four 

AD=OC=10 
So that BO=6 

Opposite sides of a 
parallelogram are 
congruent. 

 
(Nan-I, vol. 4, p. 174) 

Step 
Five 

BA=BO=6 
∠AOB=∠BAO=48˚ 
So that 
∠BAD=48˚+48˚=96˚ 

If two sides of a triangle 
are congruent, then their 
corresponding angles are 
congruent.  

(Nan-I, vol. 4, p. 133) 
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Table 2.24 Transformation actions required to map each reference diagram onto part of given GCN task diagram configuration 
Solution 

steps 
Transformation 

Actions 
Reference diagrams 

appearing in the textbooks 
Reference diagrams after 

transformations 
Sub-constructs in the given 

GCN task diagram 
Step One Flip (Reflection) 

   
Step Two Flip (Reflection) 

 

 
 
 
 

 

Step Three Turn (Rotation) 
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Solution 
steps 

Transformation 
Actions 

Reference diagrams 
appearing in the textbooks 

Reference diagrams after 
transformations 

Sub-constructs in the given 
GCN task diagram 

Step Four Flip (Reflection) 

   

Step Five Turn (Rotation)  
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As shown in Table 2.24, a total five transformation actions were required in order 

to map the corresponding reference diagrams onto the sub-constructs of the GCN task 

diagram. For step one, step two, and step four, flipping actions (reflection) were needed. 

For step three and step five, turning actions (rotation) are needed to move the reference 

diagrams to the same orientations as they appear in the sub-constructs of the GCN task 

diagram. 
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Appendix 2.6 

Geometric Statements with Corresponding Reference Diagrams Listed in the 

Analyzed Textbook Chapter 

 

Translation 
Geometric statements 

in Chinese 
Corresponding Reference Diagrams 

Definition of parallel 
lines: If two lines are all 
perpendicular to a third 
line, then the two lines 
are parallel lines. 

平行線定義：若兩條

直線都垂直於同一直

線，則此兩直線叫做

平行線。 

 
(Nan-I, 8th grade, vol. 2, p. 148) 

There exists only one 
line that is parallel to 
line L through a given 
point outside line L. 

通過直線外一點，有

一條且只有一條直線

與 L平行。 

(Nan-I, 8th grade, vol. 2, p. 149) 
If a line is 
perpendicular to one of 
two parallel lines, then 
this line is also 
perpendicular to the 
other line. 

如果有一直線垂直於

兩條平行線中的一條

直線，那麼此直線也

垂直於另一條平行

線。  
(Nan-I, 8th grade vol. 2. p. 150) 

If two lines are parallel 
to a third line 
respectively, then these 
two lines are parallel to 
each other 

如果有兩條直線都分

別與第三條直線平

行，那麼這兩條直線

也互相平行。 
 

(Nan-I, 8th grade, vol. 2, p. 150) 

The distance between 
two parallel lines is 
constant. 

兩平行線之間的距離

處處相等。 

 
(Nan-I, 8th grade, vol. 2, p. 151) 

Two parallel lines never 
intersect. 

平行的兩條直線永不

相交 

 
(Nan-I, 8th grade, vol. 2, p. 151) 
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Corresponding angles 
(non parallel lines) 

同位角（非平行線） 

 
(Nan-I, 8th grade, vol. 2, p. 153) 

Alternate interior angles 
(non parallel lines) 

內錯角（非平行線） 

 
(Nan-I, 8th grade, vol. 2, p. 153) 

Consecutive interior 
angles on the same side 
of the transversal (non 
parallel lines)  

同側內角（非平行

線） 

 
(Nan-I, 8th grade, vol. 2, p. 153) 

Corresponding angles 
property: If two lines 
are cut by a transversal, 
then the corresponding 
angles are congruent. 

同位角性質（平行

線） 

 
(Nan-I, 8th grade, vol.2, p. 154) 

Alternative interior 
angles property: If two 
parallel lines are cut by 
a transversal, then the 
alternate interior angles 
are congruent.  

內錯角性質（平行

線） 

 
(Nan-I, 8th grade, vol. 2, p. 156) 

Consecutive interior 
angles property: If two 
parallel lines are cut by 
a transversal, then the 
interior angles on the 
same side of the 
transversal are 
supplementary. 

同側內角互補性質

（平行線） 

 
(Nan-I, 8th grade, vol. 2, p. 156) 

If two lines are cut by a 
transversal and the 
corresponding angles 
are congruent, then the 
two lines are parallel. 
 

兩條直線被一直線所

截，如果同位角相

等，那麼這兩條直線

必平行。 

 
(Nan-I, 8th grade, vol. 2, p. 159) 
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If two lines are cut by a 
transversal and the 
alternative interior 
angles are congruent, 
then the two lines are 
parallel. 
 

兩條直線被一直線所

截，如果內錯角相

等，兩條直線平行。 

 
(Nan-I, 8th grade, vol. 2, p. 159) 

If two lines are cut by a 
transversal and the 
consecutive interior 
angles on the same side 
of the transversal are 
supplementary, then the 
two lines are parallel. 

兩條直線被一直線所

截，如果同側內角互

補，兩條直線平行。 

 
(Nan-I, 8th grade, vol. 2, p. 159) 

A parallelogram is a 
quadrilateral with both 
pairs of opposite sides 
in parallel.  

兩組對邊分別平行的

四邊形叫做平行四邊

形 
 

(Nan-I, 8th grade, vol. 2, p. 166) 
The opposite sides of a 
parallelogram are 
congruent; the opposite 
angles are congruent; 
and the two diagonals 
bisect each other. 

平行四邊形的對邊相

等、對角相等、兩條

對角線互相平分 
 

(Nan-I, 8th grade, vol. 2, p. 168) 

A parallelogram is 
divided into two 
congruent triangles by 
its diagonal.  

平行四邊形的對角線

把此平行四邊形分成

兩個全等的三角形 
 

(Nan-I, 8th grade, vol. 2, p. 169) 
The diagonals of a 
parallelogram bisect 
each other. 

平行四邊形的對角線

互相平分 

 
(Nan-I, 8th grade, vol. 2, p. 171) 

The area of a 
parallelogram is equal 
to the base times the 
altitude. 

平行四邊形的面積公

式=底 X高 
 

(Nan-I, 8th grade, vol. 2, p. 172) 

If both pairs of opposite 
sides of a quadrilateral 
are congruent, then the 
quadrilateral is a 
parallelogram 
 

平行四邊形的判斷─

兩組對邊相等 

 
(Nan-I, 8th grade, vol. 2, p. 174) 
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If the diagonals of a 
quadrilateral bisect each 
other, then the 
quadrilateral is a 
parallelogram. 

兩條對角線互相平分

的四邊形是平行四邊

形 

 
(Nan-I, 8th grade, vol. 2, p. 174) 

If one pair of opposite 
sides of a quadrilateral 
is both parallel and 
congruent, then the 
quadrilateral is a 
parallelogram. 

平行四邊形有一組對

邊平行且相等的四邊

形 
 

(Nan-I, 8th grade, vol. 2,p. 175) 

If both pairs of opposite 
angles of a quadrilateral 
are congruent, then the 
quadrilateral is a 
parallelogram. 

兩組對角分別相等的

四邊形是平行四邊形 

 
(Nan-I, 8th grade, vol. 2, p. 176) 

Rhombus is a 
quadrilateral whose 
four sides all have the 
same length. 

四邊都相等的四邊形

叫做菱形。 

 
(Nan-I, 8th grade, vol. 2, p. 180) 

The diagonals of a 
rhombus are 
perpendicular and 
bisect each other. 

菱形的對角線互相垂

直、平分 

 
(Nan-I, 8th grade, vol. 2, p. 181) 

Rhombus is symmetric 
across each of its 
diagonals. 

菱形是線對稱圖形，

他的對秤軸就是兩條

對角線 

 
(Nan-I, 8th grade, vol. 2, p. 181) 

The area of a rhombus 
is half the product of 
the diagonals. 

菱形的面積等於兩條

對角線乘積的一半 

 
(Nan-I, 8th grade, vol. 2, p. 183) 

A rectangle (oblong) is 
a quadrilateral where all 
interior angles are right 
angles. 

四個角是直角的四邊

形叫做長方形（矩

形） 
 

(Nan-I, 8th grade, vol. 2, p. 185) 
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A rectangle (oblong) is 
symmetric across lines 
that connect midpoints 
of opposite sides. 

矩形是線對稱圖形，

兩組對邊中點的連線

就是兩條對稱軸 
 

(Nan-I, 8th grade, vol. 2, p. 187) 
The diagonals of a 
rectangle (oblong) are 
congruent and bisect 
each other. 

矩形的對角線互相平

分且等長 

 
(Nan-I, 8th grade, vol. 2, p. 187) 

The midpoint of the 
hypotenuse of a right 
triangle is equidistant 
from three polygon 
vertices. In other words, 
OA=OB=OC. 

直角三角形斜邊上的

中點 O到三個頂點
的距離相等，即 OA
＝OB＝OC  

(Nan-I, 8th grade, vol. 2, p. 187) 

A square is a polygon 
with four equal sides 
and right angles. 

四邊等長、四個角都

是直角的四邊形就是

正方形 

 
(Nan-I, 8th grade, vol. 2, p. 189) 

The diagonals of a 
square are congruent, 
perpendicular, and 
bisect each other. 

正方形的對角線相互

平分，垂直且等長 

 
(Nan-I, 8th grade, vol. 2, p. 189) 

A quadrilateral with 
one pair of parallel 
sides is referred to as 
trapezoid. 

一組對邊平行而另一

組對邊不平行的四邊

形叫做梯形 
 

(Nan-I, 8th grade, vol. 2, p. 191) 
A trapezoid in which 
non-parallel sides are 
equal is called as an 
Isosceles Trapezoid. 

兩腰等長的梯形叫做

等腰梯形 

 
(Nan-I, 8th grade, vol. 2, p. 191) 

The base angles of an 
isosceles trapezoid are 
congruent.  

等腰梯形兩底角相等 

 
(Nan-I, 8th grade, vol. 2, p. 192) 
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The diagonals of an 
isosceles trapezoid are 
equidistant. 

等腰梯形的兩條對角

線等長 

 
(Nan-I, 8th grade, vol. 2, p. 192) 

Two congruent 
isosceles trapezoids 
constitute a 
parallelogram. 

兩個全等的等腰梯形

可以組成一個平行四

邊形  
(Nan-I, 8th grade, vol. 2, p. 192) 

The area of a trapezoid 
is half the product of 
the altitude and sum of 
its two bases.  

梯形的面積= 
1/2 x (上底+下底) x
高 

 
(Nan-I, 8th grade, vol. 2, p. 193) 

The length of the 
trapezoid median is the 
average length of the 
bases. 

梯形的中線長等於兩

底和的一半 

 
(Nan-I, 8th grade, vol. 2, p. 194) 

The median of a 
trapezoid is parallel to 
the bases. 

梯形的中線平行於兩

底 

 
(Nan-I, 8th grade, vol. 2, p. 195) 

The area of a trapezoid 
is the product of its 
median and altitude. 

梯形的面積=中線長
乘以高 

 
(Nan-I, 8th grade, vol. 2,p. 195) 
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CHAPTER THREE  

SUNTAINING THE COGNITIVE DEMAND OF MATHEMATICAL TASKS: AN 

EXAMINATION OF ONE TAIWANESE TEACHER’S SEQUENCING OF 

GEOMETRIC CALCULATION WITH NUMBER (GCN) TASKS 

Introduction 

Investigations of mathematics classroom teaching across countries have provided 

rich information regarding the effectiveness of schooling and ways of teaching that can 

contribute to student learning (Hiebert et al., 2003; Stigler, Gallimore, & Hiebert, 2000; 

Stigler & Hiebert, 1999). Although it cannot be concluded from these studies that there is 

one best approach, numerous studies have explored models of exemplary mathematics 

teaching, especially those in East Asian countries, which are believed to be an important 

factor contributing to the outstanding performance of students in those countries. 

One the matter of excellence in mathematics teaching, the 2009 issue of the 

ZDM—International Journal on Mathematics Education (Volume 41, Issue 3) highlighted 

characteristics of exemplary mathematics instruction in East Asian countries, including 

the clear flow of lessons, the emphasis on the key mathematical concepts, the use of 

multiple representations and solution strategies, and the emphasis on explanations and 

reasoning (Huang & Li, 2009; Kaur, 2009; Lin & Li, 2009). The publication also 

specifics another two characteristics of East Asian mathematics teachers, namely they 

carefully select and sequence mathematical tasks and maintain the cognitive demand of 
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these tasks during instruction (Mok, 2009; Pang, 2009; Yang, 2009). To help clarify why 

Taiwanese students have consistently scored at the top in cross-national comparisons, the 

present study focuses on the latter two instruction characteristics and investigates what 

opportunities the selection of mathematical tasks set up by a Taiwanese mathematics 

teacher, Nancy 20 , can provide students to learn and how she sustains the levels of 

cognitive demand when enacting the mathematical tasks with classroom students. 

In fact, emphasizing the importance of selecting mathematical tasks and making 

connection among these tasks to facilitate students’ learning in classroom is not new to 

mathematics education (Bell, 1993; Krainer, 1993; Lampert, 2001). According to Bell 

(1993), mathematical instructional tasks have significant features that can contribute to 

student learning. These include the connection among mathematics topics, the flexibility 

in adjusting the degree of challenge in a mathematical task, and extending a single task 

into multiple tasks by changing the elements (e.g., type of number), structure, and context 

of a single task. While providing general criteria of selecting and making connection 

among mathematical tasks, to explore what learning opportunities the tasks can provide 

the examination of a single type of task has been overlooked and not fully explored in 

previous studies. Specifically, as Herbst (2006) used the term instructional situation to 

identify various systems of norms students have to know and to do when working on 

different mathematical tasks, he addressed that different mathematical tasks can 

constitute different intellectual context for students to think about the mathematics at 

stake in a problem. In this regard, examining the intellectual context of a type of 

                                                 

20 Nancy is a pseudonym. 



 102 

mathematical tasks can provide insight into its special role in students’ learning of 

mathematics. 

More specifically the extant this study examines the learning opportunities of 

geometric calculations with number (GCN)21 tasks set up by the Taiwanese mathematics 

teacher and how she sustains the level of cognitive demand of the tasks. The reason that 

GCN tasks are well suited for this investigation is because these tasks together with their 

related diagrams can reveal how diverse learning opportunities are afforded by selecting a 

sequence of mathematical tasks. In particular, since GCN tasks usually require the same 

reasoning and knowledge as geometric proofs (GP) do (Hsu, 2007; 2008), this 

investigation can further specify what learning opportunities associated with GP that the 

GCN tasks can afford. 

To explore the extent to which the selection and sequencing of GCN tasks can 

contribute to students’ learning, the Mathematical Tasks Framework (MTF) (Silver & 

Stein, 1996; Stein, Grover, & Henningsen, 1996; Stein & Smith, 1998; Stein, Smith, 

Henningsen, & Silver, 2000) is applied to model and trace learning opportunities. As 

shown in Figure 3.1, in the MTF framework mathematical tasks lead to student learning 

as a result of how they appear in the pages of textbooks or other curricular mathematics, 

how they are set up by teacher, and how these mathematical tasks are enacted by the 

teacher and students in classroom. The first three stages in the MTF framework have a 

strong influence on students’ learning outcomes (Silver & Stein, 1996; Stein et al., 1996; 

Stein & Smith, 1998; Stein et al., 2000). In particular, the examination focuses on the 

                                                 

21 A GCN is generally described as numerical calculation done in relation to mental or physical geometric 
diagrams on the basis of geometric principles or formulae (e.g., calculating an angle measure in a triangle 
given that measures of the other two angles are 30˚ and 100˚, respectively). 
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second and the third stages, namely tasks as set up and enacted by classroom teacher and 

students. 

 
 

 

 

 
 
 

Figure 3.1 The Mathematical Tasks Framework (Stein, Smith, Henningsen, & 
Silver, 2000, p. 4; Silver, 2009, p. 829) 

 
 

Furthermore, the MTF framework not only helps this study trace the influence of 

sequencing and the implementation of GCN tasks, but also examine how the cognitive 

demands of the tasks are sustained. While sustaining a high demand of a mathematical 

task through the stages can have a significant impact on students’ learning (Boaler & 

Staples, 2008; Hiebert & Wearne, 1993; Stein & Lane, 1996; Stigler & Hiebert, 2004; 

Tarr et al., 2008), this study investigates how Nancy was able to facilitate student 

learning by maintaining the cognitive demand through her efforts of setting up a 

sequence of GCN tasks and enacting these tasks with her students. 

Specifically, the investigation focuses on how GCN task diagrams influence the 

maintenance or the increase in cognitive demand when enacting the sequence of tasks in 

classroom. Another facet that will be examined in this study is the use of gestures.  

Instruction in East Asian countries can be described as teacher-centered (Leung, 2002; 

2005) while classroom teachers often talk more than students. In this regard, how 

students can learn mathematics in this environment is of interest. From the perspective of 

embodied cognition (Lakoff & Núnez, 2000), non-verbal communication can be a 

Student 
Learning 

TASKS 
as they appear 
in curricular/ 
instructional 
materials 
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as set up by 
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teachers 
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students 
during 
instruction 



 104 

possible way to make learning happen in the classroom in East Asian countries. This 

study particularly focuses on examining the use of gestures, one type of non-verbal 

communication, because gestures can function as a semiotic aid to facilitate students’ 

learning of mathematics (Nemirovsky & Ferrara, 2009). To this end, the research 

question proposed in this study is described as follows:  

In what ways does a Taiwanese mathematics teacher sustain or increase the levels of 

cognitive demand and facilitate students’ learning by setting up a sequence of GCN tasks 

and how she uses gestures to facilitate the learning? 

Literature Review 

Mathematical Task 

In recent years, considerable attention has been given to mathematical tasks in 

order to improve the quality of mathematics teaching and learning (Bell, 1993; 

Henningsen & Stein, 1997; Herbst, 2003; 2006; Krainer, 1993; NCTM, 2000; Simon & 

Tzur, 2004; van Boxtel, van der Linden, & Kanselaar, 2000). As defined by Doyle (1988), 

a task is 

(a) a goal state or end product to be achieved; (b) a problem space or set of 
conditions and resources available to accomplish the task, (c) the operations 
involved in assembling and using resources to reach the goal state or generate the 
product, and (d) the importance of the task in the overall work system of the class 
(p. 169). 
 
 
In line with Doyle, a mathematical task can be considered as the context that 

conveys the message of what mathematics must be done while solving the task. When 

task elements are manipulated, tasks have the potential to influence and structure how 

students think about mathematics. Tasks can also direct students’ attention to a particular 

perspective of the mathematics and broaden or limit their viewpoints of mathematics 
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(Henningsen & Stein, 1997; Silver, 2009). As such, a good mathematical task can 

scaffold students’ development of a proficient understanding of mathematics. 

Herbst (2006) further elaborated a mathematical task as a specific unit of meaning 

that “constitutes the intellectual context in which individuals think about the 

mathematical ideas at stake in a problem” (p. 315). He argued that teaching requires more 

than understanding what mathematics problems are and how students interact with them. 

Significance as well is recognizing how a teacher is able to sustain the intellectual 

demand of a task in the classroom. To explore this, he proposed the term instructional 

situation, which identifies what various systems of norms students have to know at a 

particular time and what they have to do to fulfill the implicit didactical contract 

(Brousseau, 1997) agreed upon between teacher and students in the classroom. 

Researchers also suggest that mathematical tasks should be used to organized 

instruction, especially the tasks of a high-level (Krainer, 1993; Lampert, 2001; Stein & 

Smith, 1998; van Boxtel et al., 2000). For example, Krainer (1993) suggests using 

powerful tasks (i.e. high level) so that teachers can manage complex and conflicting 

instruction (e.g., the conflict between the well-developed mathematics system and 

students’ prior knowledge). Here, a powerful task refers to a task that can be strongly 

interconnected with other tasks and can facilitate students in actively and reflecting 

confronting mathematics, which can further generate interesting questions (Krainer, 

1993). Bell (1993) also investigated the effectiveness of mathematical tasks and 

suggested several principles that should be followed to improve mathematics teaching, 

including (1) selecting a mathematical task that contains mathematical concepts to be 

learned and ideas that students will want to work on; (2) determining and adjusting the 
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degree of challenge in a mathematical task to allow students to explore the mathematics 

concepts in accordance with their ability; (3) extending a single task into complex and 

multiple tasks so that students will broaden their experiences working on certain 

mathematics topics and then relate those learned mathematics topics to other 

mathematical content; and (4) providing students opportunities to reflect and to review 

their self learning in relation to a broader sense of mathematics, different types of 

problems, and different methods of solutions within the field. 

Despite the value placed on tasks of high cognitive demand, researchers have 

recognized that such tasks do not always guarantee that students’ enactment remains at 

the same high level in terms of their mathematics understanding (Stein, Grover, & 

Henningsen, 1996; Stein, Smith, Henningsen, & Silver, 2000). One reason for this put 

forth by Stein, Grover, and Henningsen (1996) is that teachers can not exactly predict 

students’ responses when enacting these tasks because students may generate diverse 

mathematics ideas in solving them. In this regard, these tasks require that teachers 

possess good instructional skills to maintain the cognitive demand during classroom 

instruction. If teachers do not effectively manage tasks with a high level of cognitive 

demand, students’ enactment may remain at a level of demand that is lower than the 

initial cognitive demand.  

A lowering of cognitive can be attributed to six factors articulated by Stein et al. 

(1996). The first factor occurs when the challenge of the tasks becomes a non-problem 

for students. This results when teachers respond to students’ request that teachers reduce 

the demand of the task by providing more explanation for the tasks, which in turn reduces 

the complexities and the challenges of a task. Teachers may take over the challenge of the 
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work by unintentionally performing the work for students or directly telling students how 

to do it. The second factor that reduces the level of the cognitive challenge is when 

inappropriate tasks are assigned to students. In this circumstance, students fail to engage 

in high–level cognitive activities because of a lack of motivation, interest, or prior 

knowledge related to the mathematics work. The third factor is related to the process of 

implementing the task. If teachers shift the learning focus from understanding 

mathematical meaning, and concepts to emphasizing the correctness or completeness of 

the answers, the cognitive challenge will be reduced. The fourth factor is related to the 

time allocated to tasks. Time constraints that prevent students from going through the 

mathematical ideas can lead to a lower level of cognitive demand. The fifth factor is the 

lack of student accountability if students do not take responsibility for learning the 

mathematics and monitoring the work progress themselves. For example, students will 

not learn mathematics if they think the classroom teacher should always give them the 

answers to problems and, thus, refuse to reason out the problem themselves. The final 

factor that can lower cognitive demand has to do with classroom management. If teachers 

lack sufficient skills to manage the flow of task implementation, a high-level cognitive 

activity may become a low-level one. 

Gestures as Semiotic Aid to Facilitate Student Learning 

In recent years, many researchers have investigated how gestures play a role in 

human communication and in influencing the teaching and learning (Chen & Herbst, 

2007; Hsu, 2008; Maschietto & Bussi, 2009; Nemirovsky & Ferrara, 2009; Pozzer-

Ardenghi & Roth, 2005; Radford, 2003; 2009; Roth, 2001; 2002; Roth & Lawless, 2002; 

Roth & Thom, 2009; Sabena, 2004; Williams, 2009). Previously, gestures were viewed 
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as spontaneous accompaniments of speech realized through the movements of figures, 

hand, and arms; in other words gestures and speech are usually co-present in the social-

interactive context of communication (McNeill, 1992). But, recent studies have deepened 

our understanding of gestures by recognizing their cognitive nature and arguing that 

gestures are more than accompaniments to spoken messages during communication. 

Language cannot be separated from imagery (McNeill, 2005), and gestures are 

representations of thought. In this regard, gestures have cognitive possibilities as they 

universally and automatically occur with speech to convey meanings during 

communication and have an important influence on the communication context. 

The cognitive possibilities of gestures were revealed in a study by Radford (2009), 

which uses a broader context of the interplay of the various sensuous sources to explain 

the learning. Rodford (2009) argued that knowing is an experience resulting from multi-

sensorial experiences of the world and then self-sensuous apprehension of to-be-learned 

objects. Thus, gestures are one of importance in conveying abstract thinking. Other 

support for the importance of gestures comes from the viewpoint that treats mathematics 

learning as the development of a particular type of imagination (Nemirovsky & Ferrara, 

2009; Radford, 2009). In this sense, gestures have a cognitive function , this possibly 

facilitating students’ understanding and imagination of mathematics. 

Considering that teachers are responsible for scaffolding students in learning 

mathematics, they should take advantage of all resources available to do so. Since 

gestures can convey mathematical meaning to students in classroom (Arzarello & Paola, 

2007), they provides teachers an alternative way to externalize their thoughts (Roth, 2002) 

and then potentially enhance students’ understanding of the content embodied in the 
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inscriptions (e.g., diagram, photograph) (McNeill, 1992; Pozzer-Ardenghi & Roth, 2005). 

Given that teachers need to interact with diagrams to illustrate geometric meaning for 

students, the interplay between diagrammatic properties and gestures is worthy of further 

investigation (Chen & Herbst, 2007). 

Methods 

The Methods here consist of four sections. The first section describes the rationale 

of selecting a Taiwanese teacher for the investigation of this study. The second section 

explains the data source and the selected episodes for analysis. Section Three provides 

information on the selected episodes in the context of the instruction. The final section 

elaborates the methodological approaches used to analyze the selected episodes. 

Rationale for Teacher Selection 

One teacher, Nancy, was selected for this study because she represents a typical 

expert Taiwanese mathematics teacher at the middle school level. As teaching is a 

cultural activity (Stigler & Hiebert, 1999), Nancy’s teaching reflects several attributes 

specific to Taiwan instruction. First, Nancy has a profound understanding of subject 

content knowledge for mathematics (Ma, 1999). Given her more than twenty years of 

teaching experience, Nancy can clearly describe the teaching sequence for mathematical 

topics and elaborates how these topics relate to other mathematics content. She can do 

this from the perspective of both student learning and mathematics curriculum 

development. In this regard, she is capable of evaluating whether or not the arrangement 

of a topic in a textbook is appropriate and aligned with students’ learning trajectories. 

The second reason that Nancy is representative of the Taiwanese teaching culture has to 

do with her teaching style in the classroom. Nancy’s classroom is teacher-centered 
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(Leung, 2002; 2005). She usually dominates the classroom activities by deciding what 

work her students have to do and what mathematics should be discussed in class. 

Although she assigns students to demonstrate their task solutions in front of the 

classroom, students are constrained in elaborating their solutions because the solutions 

should be relevant to the tasks assigned. It seems that the underlying didactical contract 

(Brousseau, 1997) between Nancy and her students is to work on the mathematical tasks 

assigned, while avoiding moving beyond the scope of the tasks. The classroom norm is 

that Nancy grants students some freedom to solve a task by different solution paths, while 

being very clear about the mathematics content to be learned. As a result, Nancy typically 

expects only those answers that can be used to solve the tasks being discussed or can be 

used as materials for subsequent instructional activity. The third typical characteristic that 

Nancy has is consistent with the examination culture in Taiwan (Lin & Tsao, 1999). 

Nancy believes that students’ success on the high school entrance examination is a very 

important criterion for evaluating the quality of teaching. Thus, this high-stakes entrance 

examination plays a central role in her instruction. Specifically, in relation to geometry, 

Nancy comments that this is the most difficult topic for middle school students, 

especially the construction of GP. However, she also believes that geometric tasks can 

provide students an opportunity to acquire mathematics intuition because of the 

particularity and complexity of individual geometric task. Considering that each 

geometric task is special and complex, students can not simply apply a well-developed 

procedure to derive the solution. This lack of a ready-made procedure forces students to 

visualize the underlying structure of the geometry, especially the structure of geometric 

diagrams, and to develop the intuition of geometry. This intuition, Nancy believes, is the 
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key to the success of mathematics learning and to getting good grades on the high school 

entrance examination. 

Data Source and Episode Selection 

The data used in this study consists of video records of 30 lessons22 collected 

from Nancy’s instruction in 8th grade mathematics class with about 40 students. The 

geometry content taught in those lessons was properties related to parallel lines and 

quadrilaterals. 

Among these 30 video records, two episodes were selected for a close analysis. 

The selection of the first episode was of interest because it indicates how Nancy sustained 

or raised the cognitive demand of the work when she and her students solved a sequence 

of GCN tasks in class. The investigation of this episode focused on the role of diagrams 

in sustaining or raising the cognitive demand of the tasks and possibly in turn changing 

instructional mathematical tasks (Doyle, 1983; Stein, Smith, Henningsen, & Silver, 2000). 

The second episode was selected because it revealed how Nancy used gestures to 

scaffold her students in learning geometry. Visualizing the diagram configurations with 

sub-constructs are essential to retrieving useful geometric properties and there are one of 

keys to solving GCN tasks. To aid in visualization, teachers may use gestures. Thus, the 

analysis here focuses on the interaction between the diagram and gestures that can 

convey geometric meaning to students without lowering the level of cognitive demand of 

the GCN tasks Nancy gave her students to solve. 

                                                 

22 About 50% of tasks used by Nancy during the 30 lessons were GCN tasks. 
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Sustaining the level of cognitive demands by selecting and sequencing GCN tasks 

as well as the use of diverse gestures to facilitate learning is very common in Nancy’s 

classroom. Selecting the two episodes as convenient examples can allow author to 

explicitly and inclusively demonstrate the ways to facilitate students’ learning through 

the selection of GCN tasks and the use of gestures. 

Background of the Two Selected Episodes 

Episode One 

Episode One involves Nancy’s setting up of a sequence of GCN tasks. When 

setting up the sequence of GCN tasks, Nancy altered the diagram configurations to make 

them more complex. The geometric content associated with the sequence of GCN tasks 

was the properties related to parallel lines. Before working on the sequence of GCN tasks, 

Nancy introduced students to the definitions and properties of parallel lines (e.g., the 

alternate interior angles theorem). Together she and the students worked on several GC 

tasks which required students to apply the learned properties. 

In the selected episode, Nancy first set up a task (the task on the left side of Figure 

3.2) and led the classroom discussion to solve the task using the relevant geometric 

properties for each reasoning step in the solution. After obtaining the solution, Nancy set 

up another two tasks (the one in the middle of Figure 3. 2 and the one on right) which 

were similar to the first task in terms of the shape of the diagrams (two horizontal parallel 

lines and several segments which constitute angles in between the parallel lines), the 

given numerical measures of the angles, and the unknowns that the students had to figure 

out. The major difference in the three tasks was the number of segments in between the 

two parallel lines and the angles formed by both the segments and the parallel lines. 
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Figure 3.2 A sequence of GCN tasks set up by Nancy 

 
Episode Two 

Episode Two aims to explore how Nancy used gestures as semiotic aid to 

facilitate student learning. This episode involves a GCN task from a test sheet that Nancy 

used for formative purpose to evaluate students’ learning of the properties related to 

quadrilaterals. The GCN task was selected because the task diagram is complex and 

involves a transformation action that offers an opportunity to observe the interplay 

between Nancy’s use of gestures and the diagram. The following is the description of the 

GCN task. 

  

Table 3.1 The GCN task used to illustrate the analysis of gestures 

The given diagram The written given 

 

As shown on the left side diagram, a rectangle 
ABCD was folded along the segment EF so 
that the point A and point B are moved to the 
new positions A’ and B’. Given that measure 
of ∠EGB=45˚, measure of ∠GFB’=45˚, and 
AB=8 cm, find the area of ∆EFG=________. 

 

Table 3.1 shows that the GCN diagram is constituted by different sub-constructs 

(e.g., a rectangle) and involves a folding action. The task requires students to understand 

how the folding action is accomplished and influences the given diagram as well as the 
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geometric properties that are created as a result of folding. In addition, because the 

geometric properties embedded in the given diagram are not sufficient to obtain a 

solution, the task also requires students to draw auxiliary lines that create new sub-

constructs and relevant geometric properties and to anticipate how these added lines can 

contribute to the generation of a solution (Hsu,2007). 

 

Figure 3.3 One of the methods to draw auxiliary lines on the diagram 

 

 

Figure 3.3 demonstrates an approach to drawing auxiliary lines on the diagram to 

create sub-constructs and new geometric properties that can be used to generate a 

solution. As can be seen in Figure 3.3, the first line is constructed through point E so that 

it is perpendicular to segment BC; the second line is drawn through point G so that it is 

perpendicular to segment AD. By constructing the two auxiliary lines, one can obtain a 

solution, which is detailed in Appendix 3.1. For this problem, managing and sustaining 

the cognitive demand of the task without telling students where to draw the auxiliary 

lines requires good instructional skills, including the use of gestures as a semiotic aid. 

The gestures Nancy used facilitated students were the efforts to visualize the sub-

constructs in the GCN diagram with corresponding geometric properties embedded as 

well as helped them recognize the need to draw auxiliary lines to generate a solution. 
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Mode of Data Analysis 

This case study documents the instruction of a Taiwanese mathematics teacher 

with a view toward systematically illuminating the reality of the instruction phenomenon 

in detail (Merriam, 1998). Discourse analysis tools were used to analyze the video 

records (Erickson, 2004; Johnstone, 2002; Lemke, 1990). Similar to most other research 

in education, this study focuses on the interaction among teacher, students, and subject 

matter content as manifested in speech, gestures, written symbolization, and non-verbal 

actions (Erickson, 2006). In addition, multimodal analysis suggested by Thibault (2000) 

is used to frame the transcription of the video clips in order to reveal the co-deployed and 

co-contextualized textual meaning as created by the distinct semiotic resources systems. 

The examination of the teacher’s gestures involved in solving a GCN task in 

Episode Two employs a comprehensive classification of gestures developed by Pozzer-

Ardenghi and Roth (2005) developed from observations the use of gestures by biology 

teachers when interacting with visual representations (e.g., photographs, diagrams).  

Pozzer-Ardenghi and Roth identified eight types of gestures, which are described 

as follows. 

• Representing refers to the gestures used to denote the objects or phenomena that are 

not directly available in the visual representations but related to some features of it 

(e.g., to present the movement of something real but can not be shown in the static 

diagram). 

• Emphasizing describes gestures that emphasize an entity directly available in the 

visual representation. 
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• Highlighting gestures are those used to draw attention to an approximate area in the 

visual representation where an object can be identified. Usually, these gestures are 

circular or elliptical. 

• Pointing refers to the gestures that clearly point to specific objects in the visual 

representation or entire representation from some distance. 

• Outlining gestures are used to trace a shape in the visual representation. Hence, the 

shape of this gesture is determined by the shape of the reference object. 

• Adding gestures are similar to outlining, but the objects outlined are not available in 

the visual representation, even though it could have been there. 

• Extending describes gestures that add something beyond the boundary of the visual 

representation. 

• Positioning refers to the gestures that strongly relate to the body orientation and then 

constitute a form of extension into three-dimensional space. 

This comprehensive classification reveals what geometric meaning was conveyed 

through the interplay between the gestures and the diagrams during the process of solving 

the GCN task. 

Findings 

Episode One 

Episode One focuses on exploring how Nancy set up a sequence of GCN tasks 

and enacted these tasks with her students. The sequence of classroom discussion with 
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respect to the three tasks is demonstrated in the following transcripts23, which are framed 

into three sections: the subjects (Nancy or the students), the verbal and non-verbal (e.g., 

physical actions related to the mathematics) communications, and the diagram alterations 

or locations to which the physical actions (e.g., gesturing) refer. 

The key to solving the first GCN task is to recognize that auxiliary lines need to 

be drawn on the given diagram so that new sub-constructs and corresponding geometric 

properties can be created and used to generate solutions. Nancy left the essential work 

deciding where to draw the auxiliary lines to the students and facilitated the class 

discussion regarding solutions by asking what angle measures students were inferring and 

what geometric properties were used to support their inferences. 

                                                 

23 Episodes were translated into English by the author and then validated by a Taiwanese whose expertise is 
in English. 
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124 T: How to solve this task? 
2 SG: The answer is 40. 

3 T: Why 40? 
4 
5 

SG: To draw a parallel line [gesture a horizontal line 
virtually]25 

6 
7 
8 

T: To draw a parallel line (1.0). Some one just said to 
draw a parallel line. Ok, we draw it here [draws a 
parallel line]. Then? 

9 
10 

SG: The measures for the acute angle are 30 [point at the 
30˚ angle virtually]. 

11 
12 

T: So, the measures for this angle are 30 [points at the 30˚ 
angle]. What will be the next? 

13 
14 
15 

SG: That (0.5) the measures of the alternate interior angle 
are 30 [point at the angle corresponding to the alternate 
interior angle]. 

16 
17 
18 

T: Ok, the measures for the alternate interior angle are 30 
[writes 30 on the angle] (.). How’s about this angle 
[points at the lower part of 70 degrees angle]? 

19 SG: The measures are 40. 

20 
21 

T: How’s about this angle? [points at the angle with a 
question mark] 

22 SG: The measures are 40. 
23 
24 

T: What geometric property can support this inference 
[points back and forth between the two angles]? 

25 SG: The alternate interior angles property 

 

 

 

 

 
26 
27 
28 
29 

T: Ok. So we know that the measures for this angle are 40 
[erases the question mark and writes 40 on the 
unknown angle]. Is that correct? (.) Do you have any 
alternative strategies to this task? 

 
 

                                                 

24 The numbers used in the transcript refer to the sequence of the text demonstrated in the study and may 
not be the actually numbers in the transcript for the whole episode analyzed. 
25 Notes for all transcript in this study: (.) short pause; (number) longer pause lasts the number of seconds; 
(inaudible) talk can not be recognized clearly; _____emphasis of the words; [] writing or physical actions 
from Teacher Nancy or students; T: Teacher Nancy; SG: group of students; S: individual student. 
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30 SG: We can extend the line down to the parallel line   
31 
32 
33 

T: What do you mean [erases the auxiliary line and angle 
measures discussed previously and puts the question 
mark back to the task diagram]? 

 
34 
35 

SG: Extend the middle segment to intersect the below line 
[gesture the line extension virtually]. 

36 T: Extend the line [extends the line virtually]?  
37 SG: Yes. 

38 T: What else can we do after extending the line? 
39 SG: The corresponding angles 
40 SG: The alternate interior angles 

41 
42 

T: Corresponding angles or alternate interior angles 
(smiles)? 

43 SG: Alternate interior angles 

 

44 
45 
46 
47 
48 

T: Alternate interior angles [points at the 30˚ angle]. 
Thus, this angle is the alternate interior angle 
corresponding to the angle with 30˚ [points at the 
alternate interior angle]. Right?(.) Ok, measures for 
this angle are 30 [writes 30˚ on the angle]. And then? 

 
49 SG: The exterior angle property  

50 
51 
52 

T: We can apply the exterior angle property [points at the 
three angles corresponding to this property] and 
calculate the angle measures to obtain the 40˚ answer. 

 
 

 

The above transcript illustrates the discussion between Nancy and her students 

when working on the first GCN task. Her students proposed two different methods of 

constructing the auxiliary lines that can obtain the unknown angle measures; one involves 

drawing a line parallel to the given parallel lines and the other is to extend one of the 

segments in between the two given parallel lines so that the line drawn can intersect the 

bottom parallel line. After the students elaborated the methods regarding constructions of 
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the auxiliary line, Nancy worked with them to figure out the geometric properties 

corresponding to each reasoning step. 

Several learning opportunities were afforded by the task and related work in class. 

First, Nancy provided students the opportunity to visualize and operate the given diagram 

to decide where to add auxiliary lines as well as to figure out how the line additions could 

help them obtain the solutions, the work requiring the operative apprehension (Duval, 

1995). The second learning opportunity was that the students could work on recognizing 

the sub-constructs in the diagram and corresponding geometric properties which can be 

used to support reasoning steps in the solution generations. The cognitive process of 

recognizing the sub-constructs in the diagram requires the perceptive apprehension and 

the process of identifying the geometric properties embedded in these sub-constructs 

further asks for the discursive apprehension of the diagram (Duval, 1995). For example, 

in lines 23 and 24, Nancy pointed back and forth at the angles of diagram, which allowed 

students to visualize the triangle shape with the three angles and identify they were 

corresponding to the alternate interior angles property. Another example can be seen in 

lines 50 and 51, which captures how Nancy pointed at the three angles corresponding to 

the exterior angle property on the diagram, which allowed students to correctly 

understand the geometric property embedded in the diagram. This is relevant because 

drawing auxiliary lines and identifying sub-constructs with corresponding geometric 

properties correctly on a diagram require different diagram apprehensions (operative, 

perceptive, and discursive) (Duval, 1995), which are fundamental competencies in 

constructing GP. The third learning opportunity was that students could apply different 

strategies with different sets of geometric properties to obtain a solution to this task (e.g., 
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the alternate interior angles property for the first method and the exterior angle property 

for the second method). 

After this first GCN task was solved, Nancy introduced another GCN task by 

adding complexity to the diagram of the first task, as shown in the middle of Figure 3.2. 

She then asked students to find the unknown measure. At this moment, one of her 

students immediately replied that the answer to the second GCN task was 40˚. In response, 

Nancy decided to add the third GCN task (the one on the right side of Figure 3.2) to the 

associated diagram so that the resulting diagram was even more complex than those of 

the previous two GCN tasks. Nancy then discussed the second GCN task with students 

again, focusing how to draw auxiliary lines on the diagram and what geometric properties 

embedded in the diagram can be used to generate a solution. After figuring out the 

unknown measure to this task, Nancy hinted to the students that a pattern may possibly 

exist in the sequence of the three GCN tasks. 

 

53 
54 
55 
56 

T: ….let’s think how we solved these tasks. (1.0) Actually, my point does not 
ask you to memorize the finding, but you will find out a rule existing in 
these tasks. Later, when you encounter similar tasks again, you can obtain 
the answer quickly by applying the rule. 

 
 

Nancy emphasized that the pattern can benefit students in their future problem 

solving, but she did not expect or want students to memorize the rule. Nancy wanted 

students to systematically think through the three GCN tasks and guess what pattern was 

embedded in the tasks. In a way, the explanation in the transcript allowed Nancy to 

manage the transition of instructional situations (Herbst, 2006). Originally, the didactical 

contract between Nancy and her students was to solve the GCN tasks and found the 
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unknown measures. After providing the explanation as shown in the transcript, Nancy 

changed the instructional situation from solving the GCN tasks to conjecturing the 

patterns embedded in the sequence of the GCN tasks. 

In addition, the students’ inability to solve the third task with the most complex 

diagram also forced Nancy to change the classroom activity. She asked students to work 

in groups instead of in individual and walked around the classroom to check if they were 

able to solve the task. After making sure that the students knew how to solve it, Nancy re-

directed their attention to the pattern embedded in the three GCN tasks again. 

 

57 
58 
59 

T: Ok, now we can see what conclusion we can obtain. 
We just solved several tasks and can anyone 
perceive the conclusion? (2.0)  

 

 
60 SS: (inaudible)  

61 
62 
63 
64 
65 
66 
67 
68 
69 
70 

T Ok, I re-write the measures again [re-labels the 
measures in the three GCN diagrams]. (.) When you 
solve the tasks and notice that you can apply the 
same properties and solution strategies to obtain the 
solutions. Do you think it is possible some patterns 
embedded in the tasks? (0.5) Actually, 
mathematical patterns or rules were discovered in 
history when similar cases appeared in different 
mathematics settings. Now, can you figure out the 
embedded patterns?  

71 
72 

SG: Yes. (1.0) To add angle measures on both sides of 
the diagram. 

73 T: What do you mean? To add both sides? 
74 
75 

SG: To add the angle measures on left side in the 
diagram  

76 T: And then? 
77 
78 

SG: That equals the sum of angle measures on the right 
side. 

79 
80 
81 

T: Sum of angle measures on the left side of the 
diagram equals that on the right side. Ok, let us 
check if the pattern is correct with the three tasks. 
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As can be seen in lines 57, 58, and 59 in the transcript, Nancy asked if students 

could identify the pattern in the three GCN tasks. Because none of her students responded 

to her immediately, she scaffolded students thinking as they tried to find the pattern. 

Specifically, Nancy re-labelled the measures of the angles in the three GCN diagrams and 

used the example of how mathematics has been discovered (i.e., observing similar 

examples that appear in different mathematics setting) to facilitate the learning. The 

action of re-labelling the measures directed students’ attention to particular locations on 

the diagram and seemed to hint students that the pattern is related to these measures. 

Nancy’s effort successfully brought students from measure calculations to pattern 

conjecturing. After the students figured out the pattern, Nancy confirmed it by checking 

the measures in the three GCN tasks with her students. 

Episode Two 

Episode Two uses another GCN task to show how the use of gestures is an 

important tool to scaffold students learning of geometry and to help students obtain 

solutions by visualizing geometric diagrams with relevant geometric properties.  

Specifically, because the GCN task diagram is complex and involves a transformation 

action, the analysis can illustrate the use of diverse types of gestures can scaffold students 

reasoning geometric relationship but not lower the level of cognitive demand of the task. 

Similar to Episode One, the transcript in Episode Two also has three frames: the 

subjects, the verbal and non-verbal communication, and the diagram alterations or 

locations to which the physical actions refer. 
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82 
83 
84 
85 
86 
87 
88 
89 
90 
91 
92 
93 
94 
95 
96 
97 

T: Pay attention to here. Like this paper folded 
problem [gestures the action of folding 
virtually], there are many things we need to 
know. For example, we do not know any 
numerical information here [points to the 
diagram]. However, because this part 
[points at ABFE] is flipped and turned 
[gestures the flipping and turning actions] so 
this part becomes this piece [points at 
A’B’FE]. These angles should be right 
angles [puts right angle marks on ∠B’, ∠A’, 
∠B and ∠A]. (.) What is the relation 
between the quadrilateral [outlines the four 
sides of the quadrilateral ABFE] and the 
quadrilateral [outlines the four sides of the 
quadrilateral A’B’FE]? (.) 

 

 
98 SG: Congruence.  
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99 
100 
101 
102 
103 
104 
105 
106 
107 

T: Congruence. Are these two congruent? (.) 
These two [points at ABEF and A’B’EF] 
are flipped [gestures the folding action]. So, 
these two shapes [points to ABEF and 
A’B’EF] are congruent. Because these two 
quadrilaterals are congruent [puts labels on 
∠AEF], these two angles [points at ∠AEF 
and ∠FEG] should be congruent too [puts 
labels on ∠FEG]. 

 
 
 

The transcript shows how Nancy scaffolded her students to interpret the diagram 

configurations and the word “folded” as well as how the word “folded” influences the 

geometric properties embedded in the given diagram that can be used to obtain solutions. 

The word “folded” in the written givens implies that the two quadrilaterals ABFE and 

A’B’FE and corresponding angles and segments (e.g., ∠AFE=∠A’FE). To scaffold 

students to visualize the congruence of the quadrilaterals and the corresponding segments 

and angles, Nancy used different gestural moves. 

First of all, in lines 83, 84, and 89, Nancy used a gesture, which can be considered 

a representing gesture, to demonstrate the folding action from quadrilateral ABFE to 

quadrilateral A’B’FE. Thus, students had the opportunity to understand the relationship 

between the flipping action and the diagram configurations (e.g., the two congruent 

quadrilaterals), which is not visible in a static geometric diagram. Secondly, the use of 

the pointing gesture revealed in lines 88, 90, and 91 also provides students an opportunity 

to make connection of the two congruent quadrilaterals. In addition, the use of pointing 
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gestures also helped students follow Nancy’s reasoning and explanation. For example, 

the pointing gesture (line 106) in relation to ∠AEF and ∠FEG helped students 

understand that these two angles are the corresponding angles of the congruent 

quadrilaterals.  

Thirdly, Nancy used an outlining gesture to re-draw the two quadrilaterals ABFE 

and A’B’FE to further impress upon her students the shapes of the two congruent 

quadrilaterals. This outlining gesture can further facilitate students’ ability to see the 

corresponding properties (e.g., AB=A’B’). Fourthly, the repeated representing gestures 

can also be viewed as a kind of emphasizing gesture because they highlight the 

importance of the folding action to the interpretation of the diagram configuration. 

Overall, the use of gestures to interact with the diagrams can convey the spatio-graphical 

meaning of the diagram (e.g., shape of quadrilateral ABFE) and provide students the 

opportunities to connect between spatio-graphical properties and theoretical properties 

(e.g., the congruence of the two quadrilaterals ABFE and A’B’FE). Outlining, 

representing, and pointing gestures also function as an informal proof that allows students 

to retrieve theoretical properties. For example, students inferred the congruence of ∠AEF 

and ∠FEG which are labeled with circles in the diagram in lines 104, 105, 107, and 108. 

After using gestures to help students understand the congruence of the two 

quadrilaterals with the corresponding angles and segments, Nancy asked students to infer 

any other geometric properties embedded in the diagram based on the written given 

without considering the goal of this task. These goal-free inferences eventually led 

students to recognize the necessity of drawing auxiliary lines on the diagram because 

geometric properties embedded in the given diagram were not sufficient to obtain 



 127 

solutions. In the end, Nancy asked two of the students to find solutions themselves and 

then demonstrate their methods to construct the auxiliary lines and solutions generated 

based on the auxiliary constructed lines. 

Discussion 

Sustaining the Cognitive Demand of GCN tasks 

The analysis of Episode One shows that the Nancy’s setting up of a sequence of 

GCN tasks provided students diverse opportunities to learn geometry. Specially, they had 

opportunities to (1) operate the diagram to decide where to draw auxiliary lines; (2) 

visualize geometric properties embedded in the diagram that can be used to obtain 

solutions; (3) apply different strategies to solve the GCN tasks. While GCN tasks and GP 

tasks require similar knowledge and problem-solving processes (further analysis is given 

in the companion study in Chapter Four of this dissertation), students’ engagement with 

GCN tasks can contribute to their potential competence in constructing GP tasks later. 

In particular, setting up a sequence of tasks also allowed Nancy to scaffold 

students as they made conjectures about the pattern that could possibly be used for future 

problem solving. The conjectures about the pattern in the three GCN tasks directed 

students’ attention to their underlying mathematical structures, which is the work that 

would not have been successful had the students been working on individual task. The 

ability to identify the pattern also can facilitate students’ reification of the GCN tasks into 

an object (Sfard, 1991) on which they could draw when dealing with a more complex 

GCN tasks or GP tasks and more possibly manage the work. 

The set up of a sequence of mathematical tasks can be accomplished by changing 

the elements of the tasks (e.g., different angle measures in a similar diagram 
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configuration) (e.g., Bell, 1993). However, the analysis shows that Nancy did not do so. 

Rather, she carefully made the GCN task diagram more complex to sustain or increase 

the level of cognitive demand of the tasks. In this regard, students could not directly 

apply the experiences gained by solving the first GCN task diagram to obtain the 

solutions of the second and the third high-demand tasks. This kind of teaching that 

consistently maintains the cognitive demand can enable more learning to occur (Hiebert 

& Wearne, 1993; Stein & Lane, 1996; Stigler & Hiebert, 2004; Tarr et al., 2008) and 

possibly prevent shallow learning that occurs when students apply the superficial visual 

associations of the diagram to guess the answers to the GCN tasks without understanding 

(Aleven, Koedinger, Sinclair, & Snyder, 1998). 

Sustaining or increasing the cognitive demand of the tasks in a classroom may 

also unfortunately mean that some students cannot solve the problems because they are 

too challenging. To address this potential problem, Nancy used different instructional 

strategies to help all students participate in reasoning through challenging tasks. For 

example, Nancy had students work in cooperative learning groups (Schoen, Cebulla, Finn, 

& Fi, 2003) and used peer discussion to facilitate learning. Furthermore, when students 

could not identify the pattern, Nancy re-labeled the measures and used mathematical 

discovery to scaffold students’ work to produce the pattern. These efforts created a 

classroom environment that allowed Nancy to foster and monitor high-level learning by 

setting the bar high and expecting students to reach it. 

In addition, the sequence of GCN tasks with different diagram configurations also 

enhances students’ ability to make the generalizations from the pattern in one task to that 

of other tasks. The pattern in the GCN task described here can be applied more broadly 
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than to just the geometric diagram settings as a pair of parallel lines with two segments in 

between. Although the instruction did not discuss the extent to which the derived pattern 

can be generalized, the classroom discussion did potentially provide students learning 

opportunities to do so to any number of angles formed by segments with two parallel 

lines. 

Use of Gestures to Facilitate Student Learning 

The analysis of Episode Two further shows how Nancy used different types of 

gestures to facilitate students’ learning without lowering cognitive level of the task. As a 

semiotic mediator (Arzarello & Paola, 2007), Nancy’s use of gestures scaffolded students 

mentally operating the diagrams, and enhancing their ability to recognize the congruence 

of the two quadrilaterals and relevant embedded geometric properties. The interplay 

between gestures and the diagram functioned as an informal proof for proving the 

congruence of the two quadrilaterals and activated relevant geometric properties. The 

activation of these geometric properties, Nancy expected, could help students infer other 

geometric properties and recognize that auxiliary lines are necessary to obtain a solution. 

In particular, this study shows the gesturing scaffold did not lower the cognitive demand 

level of the task, because students themselves had to work on recognizing the need to 

draw auxiliary lines on the diagram and retrieving sufficient geometric properties 

embedded in the diagram to obtain solutions. 

This analysis of gestures is particularly important because it reveals how 

instructional intervention focusing on the use of non-verbal communication can possibly 

sustain the cognitive demand of tasks and facilitate learning, especially in the classroom 

in East Asian countries classrooms, which usually are described as teacher-centered 
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because mathematics teachers in East Asian countries often talk more than students 

(Leung, 2002; 2005). Most studies have concentrated on investigating the routines in 

activity types such as reviewing previous lessons, teacher demonstrations, whole-class 

discussion, as well as student group or seat work (Fwu & Wang, 2006; Hiebert et al., 

2003; Lemke, 1990; Shimizu, 2009; Stigler & Hiebert, 1999). This study, however, 

proposes an alternative approach to understanding teaching and learning in the classroom 

in Taiwan by observing the use of gestures, which is a type of embodied cognition 

sources that can construct mathematical meaning for students (Nemirovsky & Ferrara, 

2009; Roth & Thom, 2009).  

In addition, as the teaching in East Asian countries is often examination-driven, 

the analysis of a non-verbal communication way also suggests caution about focusing 

only on verbal utterances to understand the instructional practice of Asian teachers. Using 

non-verbal communication by teachers in East Asian countries’ classrooms may also 

influence students’ learning. For example, as students frequently work on tests, it is 

possible that a mathematics teacher can diagnose students’ misconceptions by evaluating 

their responses to tests items and then use classroom lectures to help students understand 

the misconceptions. It is also possible that a skillful mathematics teacher can identify 

students’ facial expressions to know if students follow the lectures and understand the 

mathematics without the need for any verbal communication. While classroom teachers 

may use non-verbal communications to facilitate students’ learning, students in teacher-

centered and examination-oriented classroom may also learn mathematics that cannot be 

identified by only examining the verbal communication between teacher and students. 

For example, it can be the case that students learn mathematics by practicing abundant 
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mathematical tasks and evaluate their learning by checking the answers to the tasks. In 

this regard, the students do not need to participate in classroom discussion. When they 

have problems regarding the challenging tasks, the can listen to classroom lectures to 

obtain the solutions. These possibilities all can make learning occur in a teacher-centered 

and examination-driven classroom in East Asian countries, and should be carefully 

considered in interpreting and understanding the differences in students’ performance in 

cross-national comparisons. 
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Appendix 3.1 

Solution to the GCN Task Analyzed in Episode One 

 

Table 3.2 Solution Steps with geometric reasons to GCN task in Table 3.1 
Step  Calculating sentences Geometric reasons 

Step 1 AD//BC Opposite sides of a rectangles are parallel 
because rectangle is a parallelogram 

Step 2 ∠A=∠B=∠C=∠D=90˚ Interior angles in a rectangle are 90˚ 
Step 3 AB=ES=8 cm The distance between two parallel lines is 

constant. 
Step 4 AB=TG=8 cm The distance between two parallel lines is 

constant. 
Step 5 ∠EGB=∠GED=45˚ The alternate interior angles property 
Step 6 ∠TGE=180˚-90˚-45˚=45˚ Angle sum property of a triangle 
Step 7 TG=ET=8 cm Property of an isosceles triangle 
Step 8 EG=8 2  cm The Pythagorean Theorem 
Step 9 ∠AEA’=180˚-45˚=135˚ Property of linear pair 
Step 10 ∠AEF=∠A’EF=67.5˚ Symmetry property 
Step 11 ∠EFG=∠AEF=67.5˚ The alternate interior angles property 
Step 12 EG=GF=8 2 cm Properties of isosceles triangle 
Step 13 Area of ΔEFG=32 2 cm 2  Triangle area formula 

 

 

The minimum number of solution steps proposed in the above table is established 

on the basis of the drawing of two auxiliary lines, as shown in Figure 3.3. A total of 13 

reasoning steps are required in this solution. The first step is to infer AD//BB on the basis 

of the property that “opposite sides of a rectangle are parallel because rectangle is a 

parallelogram.” Step Two is to infer that the four interior angles of the rectangle are all 

90˚. Based on the first reasoning step that AD//BC, the third step can deduce that 

AB=ES=8 cm using the property “the distance between two parallel lines is constant.” 

The fourth step is to infer TG=8 applying the same geometric property as the third step 

does. The fifth step further deduces ∠EGB=∠GED=45˚ on the basis of the alternate 

interior angles property and Step Six reasons ∠TGE=45˚ on the basis of the angle sum 
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property of a triangle. Step Seven further infers TG=ET=8 cm based on the property of an 

isosceles triangle. Step Eight can conclude EG=8 2  cm because of the Pythagorean 

Theorem. Next, one can infer ∠AEA’= 135˚ using the property of linear pairs. Step Ten 

further reasons ∠AEF=˚A’EF=67.5˚ because of the symmetry property that results from 

the folding action described in the givens. Step Eleven infer EG=GF=8 2 cm on the 

basis of an isosceles triangle property. Finally, the area of ΔEFG=32 2 cm 2 can be 

concluded on the basis of triangle area formula. 

 



 139 

 

 

 

CHAPTER FOUR 

CONCEPTUALIZATION OF THE RELATIONSHIP BETWEEN GEOMETRIC 

CALCULATION WITH NUMBER (GCN) AND GEOMETRIC PROOF (GP) 

 

Introduction 

The value of teaching and learning proof at the secondary school level has been a 

matter of some disagreement in the field. On the one hand, some scholars have argued 

that proof and mathematical reasoning are fundamental to knowing and using 

mathematics and have claimed that even elementary students are capable of constructing 

a proof with the appropriate scaffolding (Ball & Bass, 2003; Maher & Martino, 1996; 

Stylianides, 2007; Zack, 1999). In line with this view the National Council of Teachers of 

Mathematics (2000) has identified proof and reasoning as an essential topic to be taught 

across all grade levels, and, as such, a central goal of mathematics education. On the 

other hand, the teaching of proof is often resisted by teachers and students who relegate it 

to a less important role in mathematics curriculum, because of challenges in teaching and 

learning of this topic not only in the U.S. but also in other countries with a tradition of 

teaching proof in the secondary curriculum (Chazan, 1993; Harel & Sowder, 1998; 

Mariotti, 2006). Mariotti (2006) highlights the concern of the idea of “proof for all” 

wondering whether 
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“these words26 would have been possible only a few years ago, and still now the 
idea of “proof for all” claimed in the quotation is not a view that most teachers 
hold, even in countries where there is a longstanding tradition of including proof 
in the curriculum. I’m thinking of my country, Italy, but also, as far as I know, 
France or Japan. In fact, the main difficulties encountered by most students have 
led many teachers to abandon this practice and prompted passionate debate 
amongst math educators” (Mariotti, 2006, p. 173).  

 

When geometry proof is viewed as a difficult topic for middle school students, 

many attractive alternative options have been proposed (e.g., making reasonable 

conjectures; Herbst, 2006). One of such options can be geometric calculation with 

number (GCN), which generally involves numerical calculations within a mental or 

physical geometric diagram (e.g., calculating angle measures in a triangle by applying 

angle sum property) (Aleven, Koedinger, Sinclair, & Synder, 1998; Ayres & Sweller, 

1990; Chinnapan, 2000; Lulu Healy & Celia Hoyles, 1998; Küchemann & Hoyles, 2002). 

GCN is an attractive alternative because it can provide opportunities for students to 

become familiar with and apply geometric properties, one of the aims in the secondary 

geometry curriculum (Schumann & Green, 2000). In this regard, the major link between 

GCN and GP seems to be the application of geometric properties. Another benefit of 

GCN comes from the perspective of cognitive development. The use of GCN to practice 

geometric properties aligns well with children’s development of the concept of geometry 

and space. As Piaget, Inhelder, and Szeminska (1960) indicated, children at the 

elementary school level are capable of performing calculating tasks by applying 

                                                 

26 [these words] refers to the citation from NCTM  
“Reasoning and proof are not special activities reserved for special times or special topics in the curriculum 
but should be a natural, ongoing part of classroom discussions, no matter what topic is being studied 
(NCTM, 2000, p. 342). 
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geometric properties (e.g., size of angle, length of distance) and using calculation as a 

way to envisage the truth and validity of mathematics.  

A more comprehensive theory specifying the relationship between proof and 

calculation is the three mathematics worlds model proposed by Tall and his colleagues 

(Tall, 2002; 2006a; 2006b; 2007). In this theory, calculation and proof are treated as two 

different mathematics worlds, each of which has its own way of thinking of and operating 

on mathematical objects as well as developing the standards of validity and mathematical 

truth. Even though Tall and his colleagues establish the theory by recognizing the 

conceptual and abstract entity that a calculation can possess because calculations are both 

the problem-solving actions and the thinking over these actions (Gray & Tall, 1994), Tall 

and his colleagues only treat calculation as a pre-stage of learning formal proof. This is 

because calculation can be a generic example contributing to the understanding of 

mathematical definition in the formal mathematics world. Regarding the development of 

geometry through the three mathematical worlds, Tall anchors van Hiele’s theory (Tall, 

2002; 2004), emphasizing that the operation of Euclidean proofs and theorems as well as 

the description of these geometric properties in the embodiment world can lead students 

to the understanding of mathematical formal proof and the relations among geometric 

properties. 

Although Tall and his colleagues propose this theory to reveal the relations 

between calculation and proof in general as two different mathematics systems where 

calculations are treated as a pre-stage of learning formal proofs, they do not particularly 

deal with the relations between GCN and GP, nor the role that a geometric diagram can 

play in influencing the relations. Nor does the theory proposed by van Hiele (Fuys, 
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Geddes, & Tischler, 1988). The link between GCN and GP also cannot be articulated in 

some empirical survey studies, which survey students’ performance on GCN and GP 

(Healy & Hoyles, 1998; Lin, Cheng, & et al., 2003), because diverse factors can 

confound the comparisons (e.g., the geometric properties required to obtain a solution, 

the number of reasoning steps to calculate or prove the problems). Other studies have 

directly treated GCN as low-level cognitive demand tasks only for the application of 

properties and rules and have used this perspective to compare students’ performance on 

the two types of tasks to assess the relations (Heinze, Cheng, Ufer, Lin, & Reiss, 2008; 

Heinze, Cheng, & Yang, 2004; Heinze, Ufer, Cheng, & Lin, 2008). For example, using 

the two tasks in Table 4.1, Heinze, Ufer, Cheng, and Lin (2008) characterized the GCN 

tasks (in above part of the table) as the one requiring the application of basic knowledge, 

and the other (in below part of the table) as GP tasks.  

 
Table 4.1 The examples of GCN task (above) and GP task (below) used to survey 
students’ performance between German and Taiwan (Heinze, Ufer et al., 2008)  

Diagram Givens 

 

The triangle is isosceles with |AC| = |BC|. 
Calculate the missing angles. 

 

C and D are points on the line BE. We have |BD| 
= |EC|, γ = δ and β = ε. 
Prove that |AB| = |EF| 
Give reasons for all steps of your proof 

 

As shown in Table 4.1, the GCN task focuses on calculating unknown angle 

measures, whereas the GP task requires proving that two segments are congruent 

(AB=EF). These two tasks are different from each other in terms of the geometric 
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properties needed to obtain the solutions, diagram visualization demands, and the number 

of proving or calculating steps. Solving the GCN task requires the triangle angle sum 

property and the properties related to an isosceles triangle to find the measures, whereas 

solving the GP task necessitates the use of the Angle-Side-Angle triangle congruence 

postulate to prove the conclusion. The visualization demands also differ between the two 

tasks. Proving the GP task requires one to recognize the sub-constructs (two overlapping 

triangles) in the given diagram, the work of which work can be more demanding than that 

needed to identify the diagram in the GCN task as an isosceles triangle. Moreover, the 

reasoning steps required to generate the solution in each of the two tasks are also 

different. For the GCN task, each of the unknowns can be inferred by applying a 

geometric property (e.g., measure of ∠ABC can be obtained by using isosceles triangle 

property). For the GP task multiple reasoning steps are needed: (1) steps of finding the 

needed conditional statements to conclude that two overlapping triangles are congruent; 

and (2) step of applying the result of congruent triangles to infer that segment AB = EF.  

However, considering GCN as tasks of lower-level cognitive-demand ignores the 

complexity and particularity a task can be (Stein, Smith, Henningsen, & Silver, 2000), 

and may underestimate the link between both types of tasks. For instance, using the tasks 

in Table 4.1 as examples again, we see that a one-step GCN may be much easier to solve 

than constructing a multiple-step GP not because of their differences in task format, but 

because of the cognitive demand as determined by the number of reasoning steps needed 

to generate a solution. Thus, using only simple applications of basic knowledge to 

characterize GCN tasks as low demanding tasks, we may fail to see the relationship 

between GCN and GP. The argument proposed in this study is that the link between GCN 
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and GP can be stronger than the application of geometric properties, because of the 

abstract nature of geometric diagrams. 

To explore how diagram configurations create a stronger link between the two 

types of tasks, I hypothesize that the diagram and the geometric properties required to 

obtain a solution are keys to the link. Researchers have provided evidences of the various 

functions of diagram that can support this proposed hypothesis. Diagram is the milieu in 

which students can dynamically operate and anticipate a solution based on the dynamic 

operations (Duval, 1995; 1998; Harel & Sowder, 1998; Herbst, 2004; Hsu, 2007). 

Diagrams are also the scheme by which students remember the givens, the labels, and the 

reasoning steps needed to generate a proof solution (Lovett & Anderson, 1994) as well as 

the objects that can be parsed into chunks to cue the geometric knowledge needed to 

generate a proof solution (Koedinger & Anderson, 1990). Moreover, Larkin and Simon 

(1987) indicated that diagrams are the site where problem solving occurs so that they can 

function as artifact in scaffolding students in learning proofs. For instance, asking 

students themselves to read the given information and then color these properties on the 

diagram greatly can facilitate students’ learning of constructing GP tasks (Cheng & Lin, 

2006; 2007). Through the use of the color in a diagram students can visualize the useful 

geometric properties that can be used to obtain a proof solution. As a result, diagrams can 

be the key to establishing the relationship between GCN and GP, and create a closer 

connection of the two types of tasks, which is worthy of further investigation. 

Furthermore, diagrams are relevant for solving both GCN and GP because for 

each type of tasks students need to visualize geometric diagram and identify what 

geometric properties embedded in the diagram that can be used to generate a solution, 
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aligned with the concept of descriptive mode proposed by Herbst (2004). However, 

recognizing geometric properties had been reported as one of the main difficulties in 

learning geometry (Duval, 1995; Fischbein & Nachlieli, 1998; Zykova, 1975). 

Given that geometric diagrams are common to both GCN and GP and geometric 

properties needed to obtain a solution, this study investigates the following research 

question: 

To what extent is GCN similar to GP when controlling the diagram configurations and 

requirements of geometric properties necessary for a solution? 

Theoretical Comparison between GCN and GP 

The relationship between GCN and GP is roughly analogous to the distinction 

between a problem to find and a problem to prove (Pólya, 1945). In his seminal book, 

How to solve it, Pólya explicates the differences between the two kinds of problems from 

three perspectives: the aim of the problem, the principals, and the actions taken during the 

problem-solving process. In relation to the aims, Polya states that 

“The aim of a problem to find is to find a certain object, the unknown of the 
problem…The aim of a problem to prove is to show conclusively that a certain 
clearly stated assertion is true, or else to show that it is false.” (Polya, 1945, p. 
154) 

 
 
Accordingly, when GCN is viewed as a problem to find, GCN and GP have quite 

different aims. Specifically, GCN viewed from this perspective is directed at finding 

certain answers to a problem, whereas GP involves proving or disproving statements. 

This key difference in aims also impacts the nature of the inferences one can make from 

the problems. For instance, GP allows generalization to all cases that satisfy a given 
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statement. GCN, on the other hand, is limited to only a particular instance of a problem, 

lacking the power to generalize to all cases. 

Considering the second perspective, the principals, Polya asserts that the 

principals for a problem to prove are the hypothesis and the conclusion, whereas the 

principals for a problem to find are the data, the unknowns, and the conditions. To better 

understand the differences in the principals for GP and GCN, the following examples are 

useful here. A GP statement can be formulated as an if-then statement “if one of the 

angles of a parallelogram is 90˚, then the parallelogram is a rectangle.” In this statement, 

the hypothesis is a conditional statement starting with “if” and the conclusion is the 

second part starting with “then.” The if-then formulation provides students guidance for 

organizing proving steps into a logic sequence. An example of a GCN can be to calculate 

the measure for ∠A in a triangle ABC given that the measures for ∠B and ∠C are 50˚ 

and 70˚, respectively. An analysis of the principals for this GCN reveals that the data are 

the measures for ∠B and ∠C and the unknown is the measure for ∠A. The condition is 

the connection between the data and the unknown, which in this task is the angle sum 

property for a triangle. By applying the angle sum property, students can connect the 

relationship between the data and the unknown, and determine the answer to this task. 

The discussion so far has shown that GCN and GP are quite different in terms of 

the aims and principals. However, with regard to the third perspective, actions taken 

during the problem-solving process, the two types of tasks are similar, especially when 

the diagram configurations and the geometric properties required to obtain solutions are 

controlled. To explain the similarity in the problem-solving actions for the two types of 

tasks, a pair of GCN and GP tasks is presented. 
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Table 4.2 GP (above) and GCN (below) with the same diagram configurations and the 
same requirements of geometric properties for obtain a solution 

The given diagram The written givens 

 

Triangle ABC in which AB and AC are the same 
lengths. Construct a line through point A so that the 
line is parallel to BC and the bisectors of angle B 
and angle C intersect the line at point D and point 
E. Prove AE=AC 

 

Triangle ABC in which AB and AC are the same 
lengths. Construct a line through point A so that the 
line is parallel to BC and the bisectors of angle B 
and angle C intersect the line at point D and point 
E. If AC=6 cm, measure of A∠ CB=75˚. Find (1) 
the length of AE (2) Find the measure of AEC.∠  

 

As Table 4.2 displays that the diagrams attached to the GCN and GP tasks are the 

same. The written givens in the two tasks all specify the construction of diagrams which 

implicitly reveal what geometric properties can be used to generate a solution. For 

example, the sentence, “construct a line through point A that is parallel to BC,” implies 

that segments ED and BC are parallel. The major difference in the two task is that the GP 

provides a to-be-proved statement, whereas the GCN offers the angle and segment 

measures and indicates what unknowns need to be found. 

To further illustrate the similarities between GCN and GP, the concept of a plan 

tree is used to outline the actions regarding the knowledge structure needed during the 

problem-solving process. Plan tree have its basis in ACT-R theory and has been defined 

by Anderson et al. (1981) as “an outline for actions” (p. 193) that is generated based on 

the logically separate stages. Using geometry proofs as the subject content to explain the 
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thinking mechanisms of a plan tree, Anderson et al. describe stages as a set of geometric 

rules that allow students to move from the givens of the task through intermediate levels 

of statements to the to-be-proved statements. The plan tree for proof is the knowledge 

structure generated by unpacking various links of relevant knowledge and re-organizing 

these links and knowledge into a logic sequence. This process results in reasoning 

solution paths that usually involve forward and backward searches. In a forward search, 

students must search from the givens to find sets of solution paths that can yield the to-

be-proven statements. In a backward search, students also have to infer from the to-be-

proven statements that may be related to the givens. The process of forward and 

backward reasoning gradually maps out a path containing relevant geometric knowledge 

that can connect and fit with both the givens and the conclusion statements. 

To solve the GCN and prove the GP, given that multiple strategies can be applied 

to generate solutions, the plan trees in Figure 4.1 demonstrate one strategy with the same 

geometric properties that can be used to obtain the solutions for the two tasks.  

GP GCN 
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Figure 4.1 The plan trees of the GP (on the left side) and the GCN (on the right side) 

 
 

According to the plan trees for both GP and GCN, the geometric properties 

required to obtain the solutions are the same: the property of angle bisector, the alternate 

interior angles property, and the isosceles triangle property. Meanwhile, the plan trees 

also demonstrate the similarity in sequencing these geometric properties to generate 

solutions for each task. As can be seen on the left side of Figure 4.1, the GP solution 

involves several reasoning steps to prove that AE=AC. The first step is to infer 

∠ECB=∠ACE using the property of angle bisector. Then, ∠AEC =∠ECB can be 

obtained by applying the alternate interior angles property given that ED is parallel to BC. 

In the following, the inferences ∠AEC=∠ECB and ∠ECB=∠ACE together allow one 

to deduce that ∠AEC=∠ACE. The final step is to use this inferred result together with 

the property of an isosceles triangle to obtain the conclusion AC=AE, which is the goal of 

the task. 

To find the length of AE and the measures of ∠AEC, the GCN also requires the 

same sequence of geometric properties as GP does. The first step is to infer that 

∠ECB=∠ACE=37.5˚ because of the property of angle bisector. The second step further 

reasons ∠AEC=∠ECB=37.5° on the basis of the alternate interior angles theorem so 

that the answer to the first unknown can be obtained. The next step is to use the statement 

∠AEC =∠ACE = 37.5°, the given AC=6 cm, and the property of an isosceles triangle to 

conclude that the length of AE is 6 cm, which is the answer to the second unknown. 

Furthermore, the sequence of reasoning steps along with corresponding geometric 

properties for both tasks also requires students to visualize the same sub-constructs in the 
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given diagram. Table 4.3 summarizes the steps together with the description of 

visualizing the sub-constructs of the given diagram and identifying the relevant geometric 

properties necessary to obtain solutions for the two tasks. 

Table 4.3 The process of visualizing sub-constructs of the diagram for corresponding 
geometric properties 

Steps with description of visualizing the diagram Sub-construct in the diagram 
Step One: Identify ∠ACB with its two sub-angles 
(∠ACE and ∠ECB) and infer that ∠ACE=∠
ECB because EC is an angle bisector. 

 

Step Two: Identify lines ED, BC, and transversal 
EC and then infer that ∠AEC=∠ECB because of 
ED//BC and the alternate interior angles property. 

 

Step Three: Identify Δ AEC and infer that 
AE=AC because of the property of isosceles 
triangle and the inferred result ∠AEC=∠ACE. 

 
 
 

Here students need to identify and infer from the diagram: (1) the bottom ∠ACB 

in the ΔABC and its relation to segment EC; (2) the relationship among the parallel lines 

ED, BC, and its transversal EC; and (3) the ΔAEC associated with ∠AEC and ∠ACE as 

well as segments AE and AC. 

In sum, this section demonstrates that GCN and GP are similar to each other in 

terms of the actions taken during the problem-solving process, especially in relation to 

the actions of visualizing the sub-constructs in the diagram to retrieve relevant geometric 

properties. This analysis is consistent with the observation Kuchemann and Holyes (2002) 

who noted that the skills used to solve a GCN are also necessary to construct a GP 
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because each step in a GCN involves a deduction. The analytical analysis shown above 

further elaborates the similarities in reasoning steps for both GP and GCN tasks and how 

these steps are strongly associated with the geometric diagram as well as the geometric 

properties necessary to obtain the solutions for both types of tasks. 

Methods 

The study investigates the extent to which GCN is similar to GP when controlling 

the diagram configurations and the requirements of geometric properties necessary for a 

solution. To this end, I conducted a study to examine whether students’ performance on 

GCN and GP is more dependent on variations in the format (proving or calculation), or 

on students’ ability to visualize the diagram in such a way that allows them to retrieve the 

geometric properties necessary for a solution. 

Rationale for Survey Design 

Four pairs of GCN and GP items (see Appendix 4.1) were designed for the survey. 

To explore the visualization of the given diagram that may influence students’ 

performance, a total of five criteria are considered in designing the items. The first 

criterion for designing the items is to control the configurations of diagram used in the 

items. Each pair of GCN and GP items in the survey employs the same diagram 

configurations, in which the labels are located in the same places, and both the size and 

orientation presented in the survey are identical. The second criterion has to do with the 

requirements of the geometric properties necessary to obtain a solution. Since a task 

usually can be solved by employing different solution strategies with different sets of 

geometric properties, the use of identical diagrams in a pair of GCN and GP items 
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provide students the same opportunity to visualize the sub-constructs in the diagram 

along with corresponding geometric properties that can be used to obtain a solution. 

 

Table 4.4 Pair 1 items included in the survey 
Given diagram GCN item GP item 

 

ΔABC in which AC=BC 
and BCD is collinear. If 
the measure of ∠ACD is 
130˚, find the measure of 
∠ABC. 

ΔABC in which AC=BC 
and BCD is collinear. 
Prove ∠ACD=2∠ABC 

 
 

Taking the items in Table 4.4 as an example, we see that solutions to both GCN 

and GP items can be obtained by applying two sets of geometric properties. The first set 

includes the triangle sum property, the property of a linear pair, and the isosceles triangle 

property, and the second set contains the exterior angle property and the isosceles triangle 

property. 

The third criterion in the survey design is to manage the sequence of the 

geometric properties in the solutions for a pair of GCN and GP items. If the diagrams are 

identical, the study can control how geometric properties embedded in the diagram are 

retrieved sequentially to obtain a solution. 
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GCN GP 

    

Figure 4.2 The plan trees of the Pair 1 GCN (left side) and GP (right side) items 
 
 

Figure 4.2 shows the solution structure in the plan trees for both GCN and GP 

items, in which geometric properties necessary to obtain the solutions appear in the same 

sequence. According to the plan trees, students first apply the property of linear pairs and 

the triangle sum property to infer that ∠ACD=∠ABC+∠BAC. Next, students use the 

isosceles triangle property to obtain the answer to the GCN item, which is 65˚, and to 

prove the statement that ∠ACD=2∠ABC. Sequencing the geometric properties in the 

same order for obtaining the solutions for the pairs of GCN and GP items can ensure that 

student’s attention is directed to the same sub-constructs in the diagram, thus imposing 

the same cognitive demand on students when they work on the pairs of the items. 

The fourth criterion in designing the survey items is to include different geometric 

diagrams for different pairs of GCN and GP items. While individual pairs of items differ 

in terms of diagram configuration and the geometric properties needed to obtain a 
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solution, this study can prevent a confounding variable from being generated because of 

students’ prior experiences working in a similar diagram setting.  

In order to further probe how the given geometric diagram may influence 

students’ performance on GCN and GP items, the fifth criterion is to design Pair 1 and 

Pair 4 items27 so that their given diagrams can be further compared. The two pairs of 

items are designed to be similar in terms of the application of the same sets of geometric 

properties to obtain solutions. The major difference in the two pairs of items is the given 

diagrams. The given diagram in Pair 1 items is simpler than that in Pair 4 items. Figure 

4.3 details the procedure used to make the Pair 4 diagrams more complex in comparison 

to the Pair 1 diagrams. This process includes adding two auxiliary segments, changing 

the measures of the angles and sides, and rotating the diagram to a new orientation. 

 
Pair 1 diagram  Adding a segment  Adding another segment 

 

 

 

 

 

Changing the measures           Rotating the diagram (Pair 4 diagram) 

                     

Figure 4.3 Procedure of complicating Pair 1 diagram into Pair 4 diagram 
 
 

                                                 

27 I particularly arranged the Pair 1 in the beginning of the survey and the Pair 4 as the final items that 
students need to solve. Doing so is to minimize the influence caused by students’ experiences in solving the 
Pair 1 items on their performance of solving Pair 4 items. 
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The major consideration leading to the decision of how to add greater complexity 

from Pair 1 to Pair 4 is based on pilot study results. The pilot study included two pairs of 

items (see Table 4.5) in which the givens for GCN and GP items as well as the geometric 

properties necessary to obtain solutions were identical. The only difference in the two 

pairs of GCN and GP items was the diagram configurations. Specifically, as shown in 

Table 4.5, the diagrams used in both pairs of items were identical except for segment AE 

added to Pair 2 diagrams. The statistical analysis from the pilot study showed no 

significant differences in the performance of 9th grade students on the Pair 1 and Pair 2 

items for both types of tasks (for GCN: z=.735, p>.05; for GP: z=.925, p>.05). 

 
Table 4.5 Pairs of items with diagrams designed in the pilot study 
 Diagram configurations GCN givens GP givens 
Pair 1 

 

D 

C 

B 

A
 

Pair 2 
 

D 

C 

B 

A

E

 

ABC is collinear 
and BD＝BC. If the 
measure of ∠ABD 
is 76˚， find the 
measure of 
∠BDC=_____. 

ABC is collinear 
and BD＝BC. 
Prove 
∠ABD=2∠BDC 

 
 
Although the pilot study was not rigorously designed in terms of the procedures to 

administer the items to students and the sample size (about 60 students solved each pair 

of items), which may weaken the interpretation of the results, the pilot study does raise 

two concerns with respect to the diagram configurations accompanying the items. The 

first concern is that adding only one segment to the diagram in Pair 2 items may not 

prevent students from recognizing the sub-constructs of the diagram and the 
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corresponding geometric properties as they did when solving Pair 1 items. Thus, there 

was no significant difference in students’ performance between the two pairs of items. 

This result is consistent with a subsequent research question. To what extent can the 

diagram complexity influence students’ performance on each type of task when 

controlling the geometric properties necessary to obtain solutions? This research question 

also leads to the decision of complicating the diagram in the Pair 4 items in the formal 

survey, as shown in Figure 4.3. 

The second concern in designing the task items is that the similarity of the givens 

in GCN and GP items may also become a confounding variable in interpreting the results. 

While the givens for both pairs of GCN and GP items are identical, practice on Pair 1 

items should contribute to students’ ability to figure out the solutions for Pair 4 items. 

To address the limitations in the pilot study as a result of the added of one 

segment, the diagrams used in Pair 4 items in the formal survey were made more 

complex than those used in Pair 1 by total adding two segments, rotating the diagram 

position, and changing the given measures. In doing so, this study aims to confirm that 

the diagram complexity does influence students’ performance on GCN and GP. 

Regarding the investigation of the extent to which the diagram complexity may influence 

students’ ability to identify the relevant geometric properties in diagram configurations is 

beyond the scope of this dissertation. The main concern here is whether the addition of 

segments, which will increase the diagram complexity in terms of creating new sub-

diagram configurations and new geometric properties embedded in the diagram, may 

prevent students from recognizing the correct diagram configurations to guess the correct 

geometric properties to obtain a solution. 



 157 

According to these criteria and concerns in designing the GCN and GP items in 

the survey, this study investigates the extent to which GCN is similar to GP when 

controlling the diagram configurations and the requirements of the geometric properties 

necessary for a solution. 

Survey Structure 

Four pairs of GCN and GP items are included in the survey. Each item in the 

survey asks students to complete three sections, including writing down each proving or 

calculating step, labeling the given diagrams to indicate what actions with respect to 

geometric property that was worked, and providing geometric properties as reasons to 

support each calculating or proving step. An example of how to complete the item (see 

Appendix 4.3) is also given in the survey. Collecting information on how students label 

their problem-solving process on the diagrams as well as on the geometric reasons for 

each calculating or proving step can benefit this study by revealing students’ visualization 

of the given diagram regarding the geometric properties needed for solutions. 

Furthermore, requiring students to complete these two sections on the survey also 

provides insights into how the superficial visual associations of the diagrams (Aleven et 

al., 1998) may influence student performance on answering both GCN and GP items. 

Survey Procedure 

This study employed two survey procedures to administer the items to students. 

As it is unclear how students experiences with GP items may influence their performance 

on the paired GCN items and vice versa, the use of different survey procedures can 

contribute to examining the influence of working on GCN items before or after working 

on GP items. For example, in Pair 1 items (see Table 4.4) students can calculate the 
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answer for GCN directly (∠ABC=35˚) by applying the conclusion statement of its paired 

GP (∠ACD=2∠ABC). The direct application of the GP conclusion can free students 

from making inferences based on the given information (e.g., AC=BC) or the geometric 

properties (e.g., exterior angle property) embedded in the diagram, the cognitive that 

constructing paired GP item requires. It is also possible that the conclusion statement in 

GP item also provides students a hint to the solution because they can reason backward 

from the conclusion (∠ACD=2∠ABC) to generate a solution plan. 

In addition, another uncertainty is regarding whether asking students to solve 

GCN and GP items at different times also influences their performance on the two types 

of items. To further understand how students’ work on both types of tasks may interrelate, 

this study creates a four-condition model. Central idea to the model is asking students to 

work on GCN and GP items in different orders and different time sequences. The four-

condition model will provide rich data for investigating the interface of students’ work on 

both GP and GCN items. 

 
Table 4.6 Details of the four survey conditions 
Survey Condition Day 1 Day 2 

Condition 1: GP first and GCN 
later 

4 GP 4 GCN 

Condition 2: GCN first and GP 
later 

4 GCN 4 GP 

Condition 3: GP first and GCN 
later 

2 GP first and 2 paired 
GCN later 

2 GP first and 2 paired 
GCN later 

Condition 4: GCN first and GP 
later 

2 GCN first and 2 
paired GP later 

2 GCN first and 2 
paired GP later 

 
 

All participating students completed four pairs of GP and GCN items on two 

consecutive days. As Table 4.6 shows, Condition 1 refers to the situation in which 



 159 

students solved all four GP items on Day 1 and solved paired GCN items on Day 2. 

Opposite to Condition 1, Condition 2 asked students to solve GCN items on Day 1 and 

paired GP items on Day 2. For Condition 3, students were required to solve two GP items 

first and then two paired GCN items on Day 1. These students worked on another two 

pairs of items in the same way on Day 2. Condition 4 is also opposite to Condition 3 and 

asked students to work on two GCN items first and then two paired GP items on Day 1 as 

well as the other two pairs of GCN and GP items in the same sequence on Day 2. 

Because of the study design, Condition 1 and Condition 2 allow a direct comparison of 

order effects (GP before or after GCN), and Condition 3 and Condition 4 also allow a 

comparison of the same order effect. In addition, conditions 1 and 3, as well as conditions 

2 and 4, also allow a direct comparison of timing effects (i.e., paired GP/GCN items 

solved close in terms of time versus separated by one day). 

Students were not informed that they needed to work on GCN or GP items on 

Day 2 when they worked the items on Day 1. Students were also not allowed to revise 

their previous work while they worked on the paired items. Before formally surveying the 

items, students were well informed about how to work on the items in survey. 

Student Sample and Procedure to Answer the Survey Items 

8th and 9th grade students from Taiwan participated in this study. By selecting 

these two grades of students, this study can compare how students’ experiences in 

learning GP may influence their performance on solving GCN and GP items. 8th grade 

students in Taiwan do not have to learn how to construct GP but 9th graders do. The 

Taiwanese curriculum standard of mathematics introduces mostly geometry content in 8th 

grade and 9th grade. In the 8th grade, the curriculum standard uses the geometric content 
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of the congruence of triangles and the properties related to parallel lines and 

quadrilaterals to gradually introduce the proof concept to students (Ministry of Education, 

2003). In this stage, students are required to fill out only one of the steps in a proof or 

provide the corresponding geometric properties for a proof step. In 9th grade, GP is 

formally introduced and students are required to learn to construct proofs by themselves. 

The survey was administrated to 9th grade students during May and June 2009 

after the students had completed all the proof lessons presented at the middle school level. 

Survey for the 8th grade students was administrated in June 2009 after students had 

learned the geometric content of the properties related to triangles and quadrilaterals. 

Thus, students had enough geometric knowledge to answer the pairs of items in the 

survey. 

A total of 483 9th grade students from three middle schools and 509 8th grade 

students from two middle schools in Taiwan answered the survey items. In order to 

prevent the competence disparity among classes and schools from being a confounding 

variable in the comparison of students’ responses, student participants were assigned to 

condition treatments on the basis of their class. In other words, students in a class were 

equally and randomly assigned to one of the four condition treatments and completed the 

required survey items in different orders and time sequences on two consecutive days. 

Because some of the participating students only answered the survey items on one 

of the two consecutive testing days, their responses were excluded from this study. 

Finally, a total of 413 9th grade students and 502 8th grade students constituted the valid 

sample for this study. The following table summarizes the distributions of students in the 

two grade levels assigned to the four condition treatments. 
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Table 4.7 Distributions of students in two grade levels assigned to condition treatments 

 9th grade 8th grade Number of 
students 

Condition 1: GP first and GCN later (separated a 
day) 

100 124 224 

Condition 2: GCN first and GP later (separated a 
day) 

103 122 225 

Condition 3: GP first and GCN later (solved at a 
close proximity) 

107 128 235 

Condition 4: GCN first and GP later (solved at a 
close proximity) 

103 128 231 

Total number of students 413 502 915 
 
 

Coding Scheme Used to Analyzed the Response on the GCN and GP Items 

An elaborated coding scheme developed by Cheng and Lin (2005; 2006) was 

employed to evaluate students’ responses on GP items. In the scheme, Cheng and Lin 

categorized students’ responses on GP on the basis of crucial geometric properties that 

are necessary to obtain a proof solution. They proposed four levels in describing student 

performance on constructing GP items: acceptable proof, incomplete proof, improper 

proof, and intuitive responses. Their clarification in relation to geometric properties 

necessary to generate proof solution is aligned with the study, which aims to explore how 

the geometric properties embedded in diagram configurations can determine student 

performance on GCN and GP. In order to compare GCN and GP items, levels of 

students’ responses on the GCN items in correspondence with these on the GP items were 

established (see Appendix 4.4) in the following manner: correct calculation with reasons, 

incomplete calculation, improper calculation, and intuitive response. 

In addition, researchers have reported that students are better at providing 

numerical answers than articulating the geometric properties as reasons for their 
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calculations because they can rely on the superficial visual associations of geometric 

diagrams as a way to guess answers in GCN items (Aleven et al., 1998; Ayres & Sweller, 

1990). This study also assesses the influence of superficial visual associations of 

geometric diagrams in guessing GCN answers by analyzing the percentages of students 

who can obtain correct answer in each of the five coding levels. The analysis can 

contribute to (1) understanding students’ use of superficial visual associations of diagram 

in relation to their ability to identify the geometric properties necessary to obtain the 

solutions; and to (2) examine if the use of superficial visual associations of diagrams to 

guess the answers of GCN is task-dependent. If guessing numerical answers to GCN 

items is task-dependent, it may bring up a follow-up research question: is it possible for 

certain GCN tasks in which students can not rely on superficial visual associations of 

diagrams to obtain the correct numerical answers? Although investigating this research 

question is beyond the scope of this study, it should be carefully considered as one of key 

factors in outlining the relationship between GCN and GP. Moreover, as proof is often 

regarded as a hard topic (Chazan, 1993; Cheng & Lin, 2005; 2006; 2008; Harel & 

Sowder, 1998; Heinze, Cheng, & Yang, 2004; Senk, 1989; Weber, 2002), this study also 

investigates the percentages of students who did not provide any response to the GCN 

and GP items respectively. 

To analyze students’ overall performance on the four pairs of items, points for the 

categories in the coding framework were assigned for the statistical purposes. The 

criterion to determining the points to students’ responses is aligned with the proposed 

hypothesis: diagram and geometric properties necessary to obtain solutions are keys to 

students’ performance on GCN and GP items. In this regard, the better ability to visualize 
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the geometric properties from the diagrams and then use these geometric properties to 

generate a solution, the more points that students can obtain. If students could not 

recognize any geometric properties in the diagram, even though they can provide some 

intuitive responses to the GCN and GP items, they still can’t get any point. As a result, 

three points were assigned to responses consisting of an acceptable proof or a correct 

calculation with reasons. Two points were given to responses coded as an incomplete 

proof or incomplete calculation. One point was assigned to responses coded as “improper 

proofs or improper calculations”. Students who provided intuitive responses or did not 

answer the survey items received no points. 

The statistical methods applied to analyze students’ performance on GCN and GP 

items included descriptive analysis, independent-samples T-tests, paired-samples T-tests, 

correlation tests, Chi-square tests, and nonparametric related-samples tests. Furthermore, 

this study also applied a grounded-theory approach to investigate students’ error 

responses on both types of items. The analysis focused on students’ written responses 

including calculating or proving sentences, labels or re-drawing on the given diagram 

configurations, and geometric properties used to support the corresponding calculating or 

proving sentence. The in-depth qualitative analysis can reveal how students visualize the 

diagram configurations and identify the corresponding geometric properties needed for 

their solutions as well as the connection between diagram visualization and identification 

of geometric properties. 

List of Sub-research Questions for the Study 

To explore the extent to which GCN can be similar to GP when controlling the 

diagram configurations and the geometric properties necessary to obtain a solution, this 
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study implemented a survey study. The goal is to investigate students’ performance on 

the designed four pairs of GCN and GP items and to evaluate if increasing the complexity 

of the diagram configurations impacts students’ performance on both types of items. 

Selecting two grade levels of students participating in this study also provides the data 

source to examine students’ experiences of learning proofs in influencing their 

performance on both types of tasks. While it is unclear how students’ experiences in 

solving the pairs of GCN and GP items in survey relates their performances on both types 

of items, two survey procedures and two ways to solve the GCN and GP items in 

different times are also examined.  

In addition, this study explores how students rely on superficial visual 

associations of diagrams to guess the GCN answers by means of comparing the 

percentages between correct calculations only and correct calculation with reasons. As 

GP is often viewed as a difficult topic, this study also checks the percentages of students 

who did not provide an answer between the GCN and GP items. Finally, the qualitative 

analysis of students’ error responses related to the diagram and geometric properties 

needed for solutions can provide rich information in conceptualizing the relationship 

between GCN and GP.  

The following summarizes sub-research questions examined in this study. 

1. When controlling the given geometric diagrams and the geometric properties 

required to obtain a solution, do students perform differently on the GCN and GP 

items? 

2. If the geometric properties necessary to obtain solutions are identical, do different 

diagram shapes influence students’ performance on the GCN and GP items? 
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3. When their performance on the GCN and GP items is compared, do students at 

different grade levels perform differently? 

4. Do the survey procedures (GCN before or after GP) influence students’ performance 

on the GCN and GP items? 

5. Do the timing effects (GCN/GP solved close in terms of time vs. separated by one day) 

influence students’ performance on the GCN and GP items? 

6. Do the percentages of students who provide correct answers with reasons differ from 

those of students who provide correct answers only in GCN items? If so, what are the 

distributions of students, who can obtain correct answers, in relation to the four 

coding categories? 

7. Do the percentages of students who did not provide any responses differ between the 

GCN and GP items? 

8. What types of error responses in relation to diagram configurations and 

corresponding geometric properties  can be found? 

Findings 

Comparison between GCN and GP Items 

As shown in Table 4.8, the mean score on GCN items for both grades of students 

is 6.33 and the mean score on GP items is 6.03. The difference in the mean scores of the 

two types of items is statistically significant (t= -4.508, p<.05). This finding shows that 

GCN items are easier for students than GP items when controlling the given diagrams 

and the requirements of geometric properties for solutions in the survey. 

 
 
Table 4.8 Comparison of students’ performance on GCN and GP in general 
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T test and P value 
 Mean Mean Difference Std. Error Mean T df Sig. 
GCN 6.33 
GP 6.03 

-.305 .068 -4.508 914 .000* 

*: A significant difference at the .05 level 
 
 

A closer examination of the responses of students in each grade reveals a different 

result. Table 4.9 shows that the difference in the mean scores of GCN items and GP items 

for 8th grade are still significant (GCN=6.05, GP=5.65, t=-4.289, p<.05). However, 

different from that for 8th grade, the results for 9th grade students are not significantly 

different for both types of items (GCN=6.68, GP=6.49, t= -1.945; p>.05). 

 
Table 4.9 Comparison of GCN and GP responses between two grade levels 

T tests and p values 

 Mean 
Mean 

difference 
Std. Error 
Deviation 

T df Sig. 

GCN 6.05 
8th grade 

GP 5.65 
-.398 .093 -4.289 501 .000* 

GCN 6.68 
9th grade 

GP 6.49 
-.191 .098 -1.945 412 .052 

*: A significant difference at the .05 level 
 
 

Figure 4.4 provides a graph of the difference in the mean scores of GCN and GP 

items for the two grade levels. As shown in the figure, the mean difference for 8th grade is 

much greater than that for 9th grade. Although for 9th grade students the mean score of the 

GCN items is still slightly higher than that of GP items, the statistical result confirms that 

the GCN and GP tasks impose the same level of cognitive demand on 9th students. In 

other words, for 9th grade students, the given diagram and the requirements of geometric 

properties for the solutions are the key to determining their performance on both types of 
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tasks as opposed to the difference in the format between a calculation task and a proof 

task. 
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Figure 4.4 Mean scores of GCN and GP for both grades 
 
 
The results from correlation analysis also show that students’ performance on the 

GCN items is highly related to that on the GP items. The coefficients (see Table 4.10) for 

both grades together, 8th grade, and 9th grade are 0.874, 0.864, and 0.884 respectively, all 

of which lead to the conclusion that students’ GCN item responses are significantly 

dependent on GP items. The correlation results also indicate the size of the effect of this 

dependence is large (Cohen, 1988; 1992). 

 
Table 4.10 Correlation analysis on GCN and GP for both grades together, 8th grade, and 
9th grade 

Correlation tests and p values 
 Pearson correlation Sig. 

Both grades .874 .000* 

8th grade .864 .000* 

9th grade .884 .000* 

*: A significant different at the .05 level 
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Comparison on Individual Pair Items 

This study also investigates students’ responses on each pair of items. This was 

done to determine whether students’ performance varied depending on the task setting, 

especially for the items included in the survey that also vary in terms of the diagram 

composition and the requirements of geometric properties. 

The first step here is to check the dependency between GCN and GP items for 

two grade levels by applying a chi-square test method. 

 
Table 4.11  Chi-square tests and p values of comparing GCN and GP items for two 
grades 

χ 2 values and p value in parenthesis 
 Pair 1 Pair 2 Pair 3 Pair 4 

8th grade 
435.189  
(.000*)  

522.365  
(.000*)  

606.766  
(.000*)  

353.861  
(.000*)  

9th grade 
327.145  
(.000*)  

487.845  
(.000*)  

529.080 
(.000*)  

388.530 
 (.000*) 

*: A significant difference at the .05 level 
 
 

As revealed by the results in Table 4.11, student performance in each grade on the 

GCN items is significantly dependent to its paired GP items. For 8th grade, the values of 

χ 2 test for the four pairs of items all result in statistical significances at the .05 level. For 

9th grade students, the values of χ 2 test also cause significances at the .05 level for the 

four pairs of items. 

After recognizing student performance on GCN and GP items are significantly 

dependent, the second step is to analyze whether students’ performance differs 

significantly for individual pair of GCN and GP items. Table 4.12 demonstrates that 8th 

grade students performance on GCN items of Pair 1, Pair 2, and Pair 4 was significantly 

better than that on the paired GP items (Z=-2.150, p<.05 for Pair 1; Z=-3.305, p<.05 for 
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Pair 2; Z=-3.651, p<.05 for Pair 4). For Pair 3, 8th grade students’ performance was not 

significantly different between the two types of tasks. 

Opposed to the results of 8th grade students, 9th graders performed no significant 

differences in GCN and GP items for all four pairs of items. 

 
Table 4.12 Paired-samples tests and p values for individual pair of items for two grade 
levels 

Paired-samples tests and p values 
  8th grade 9th grade 
  Mean Z value Sig. Mean Z value Sig. 

GCN 1.81 1.89 Pair 1 
GP 1.71 

-2.150 .032* 
1.82 

-1.230 .219 

GCN 1.47 1.67 Pair 2 
GP 1.35 

-3.305 .001* 
1.60 

-1.819 .069 

GCN 1.13 1.35 Pair 3 
GP 1.14 

-.248 .804 
1.38 

-.941 .347 

GCN 1.64 1.78 Pair 4 
GP 1.45 

-3.651 .000* 
1.69 

-1.850 .064 

*: A significant difference at the .05 level 
 
 

Comparison of Students’ Responses Between Pair 1 and Pair 4 Items 

In order to further investigate how a geometric diagram impacts student 

performance on GCN and GP items, the study designed two pairs of items, Pair 1 and 

Pair 4, in both which the geometric properties necessary for solutions are parallel, but the 

diagrams given in the two pairs of GCN and GP items are different. 

As Table 4.13 shows, students in each grade performed significantly better on 

Pair 1 items than on Pair 4 items. For 8th grade students, the mean scores for GCN (1.85) 

and GP (1.76) for Pair 1 are higher than the mean scores for GCN (1.76) and GP (1.56) 

for Pair 4. This finding is statistically significant (Z= -4.175, p<.05 for GCN items; Z=-

7.155, p<.05 for GP items). A similar result can be found for 9th grade students; for this 
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group the mean scores for GCN (1.81) and GP (1.71) for Pair 1 are greater than that for 

GCN (1.64) and GP (1.45) for Pair 4 items. This finding is also statistically significant 

(Z=-3.570, p<.05 for GCN; Z=-6.653, p<.05 for GP). Figure 4.5 provides two graphs 

showing the differences in mean scores for both types of items in Pair 1 and Pair 4. The 

above findings confirm that the given diagrams do influence students’ performance on 

GCN and GP items, even though the sequence of the geometric properties necessary to 

obtain a solution are in the same order. 

 
Table 4.13 Related-samples tests for comparing on Pair 1 and Pair 4 items 

Related-sample Z tests and p values 
  Mean value Z value Sig. 

Pair 1 GCN 1.81 
Pair 4 GCN 1.64 

-3.570 .000* 

Pair 1 GP 1.71 
8th grade 

Pair 4 GP 1.45 
-6.653 .000* 

Pair 1 GCN 1.89 
Pair 4 GCN 1.78 

-2.274 .023* 

Pair 1 GP 1.82 
9th grade 

Pair 4 GP 1.69 
-3.242 .001* 

*: A significant difference at the .05 level 
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Figure 4.5 Mean scores for Pair 1 and Pair 4 items 
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Comparison between Two Grade Levels 

Table 4.14 shows that the mean difference in 8th grade and 9th grade students’ 

scores on GCN items is -.631, which causes a significance (t= -3.019, p<.05). The mean 

difference in GP performance between the two grades is -.838, which is also statistically 

significant (t= -2.451, p<.05). The results indicate that 9th grade students performed 

significantly better than 8th grade students did for both GCN items and GP items. Figure 

4.6 is a graph showing the significant differences between both grade levels for GCN and 

GP items. 

 
Table 4.14 T tests for comparing grade differences for GCN and GP items 

T tests and p values 
 

 
Mean 

difference 
Std. Error 
Difference T df Sig. 

8th grade 
GCN 

9th grade 
-.631 .278 -3.019 913 .003* 

8th grade 
GP 

9th grade 
-.838 .257 -2.451 913 .014* 

*: A significant difference at the .05 level 
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Figure 4.6 Mean scores for 8th grade and 9th grade on GCN and GP items 
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Comparison between Two Survey Procedures 

As it is unclear if the order of GCN and GP items in which students solve 

problems influences their performance on the two types of tasks, this study examines two 

survey procedures (GCN first or after GP) on students performance on both types of 

items. Illustrated in Table 4.15, for GCN items the mean score for the procedure that 

students solved GCN first and GP later is 6.06, whereas the mean score when GP was 

solved first and GCN later is 6.61. The mean difference in GCN scores in relation to the 

two survey treatments is significant (t=2.156, p<.05). In other words, the experience of 

proving GP items does influence students’ performance on solving paired GCN items. 

For GP items, the means score for the procedure when students solved GCN first is 6.08, 

whereas the mean score of GP when students solved GP first is 5.98. The mean 

difference in GP item scores in the two survey procedures is not statistically significant 

(t= -.339, p>.05). Thus, the experience of solving GCN items first does not influence 

student performance on proving the paired GP items. 

 
Table 4.15  T tests for comparing survey procedures on GCN and GP items 

T tests and p values 
 

Mean 
Std. Error 

Differences t df Sig. 
GCN first GP later 6.06 

GCN 
GP first GCN after 6.61 

.278 2.156 913 .031 a  

GCN first GP later 6.08 
GP 

GP first GCN later 5.98 
.257 -.339 913 .734 

*a: A significant difference at the .05 level 
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Figure 4.7 Mean scores for GCN and GP under two survey procedures 

 
 

Figure 4.7 further shows the difference in mean scores for GCN items, which is 

greater than that for GP items. The intersection of the two lines also indicates that 

students still performed better as a result of their practice on the paired items for both 

GCN and GP items. 

Comparison on the Timing Effect 

This study also examines the timing effect on students’ performance on GCN and 

GP items. As shown in Table 4.16, students’ performance on GCN for the two conditions 

(GCN/GP solved closely together vs. separated by one day) is not significant (t=-.020, 

p>.984). A similar result is obtained for GP items (t= -.508, p>.05). Figure 4.8 displays 

the slight differences in mean scores for GCN and GP under the timing effect treatment. 

The result demonstrates that solving paired GCN and GP items at different times does not 

influence students’ performance on the two types of items. 
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Table 4.16 T tests for comparing the timing effect 
T tests and p values 

 
 Mean 

Std. Error 
Differences t Df Sig. 

A close proximity 6.34 
GCN 

Separated by one day 6.33 
.255 -.020 913 .984 

A close proximity 6.10 
GP 

Separated by one day 5.96 
.278 -.508 913 .612 
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Figure 4.8 Mean scores for two time arrangement conditions 

 
 

Comparison between Correct Calculations and Correct Calculation with Reasons 

Another aim of this study is to understand how superficial visual associations of 

the diagram plays a role in influencing student perception to obtain the numerical 

answers without understanding what geometric properties account for the numerical 

answers. To achieve this aim, this study compares the differences between percentages of 

students who can obtain correct calculations and that of students who can obtain both 

correct calculations and geometric reasons. 

Table 4.17 summarizes the percentages of correct calculation and correct 

calculation with reasons for each GCN item. The table shows that the percentages of 

obtaining correct answers are much higher than those of finding correct answers with 

supportive reasons. For Pair-1 GCN item, the percentage of students who can 
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successfully obtain correct calculations is 73.7%, whereas that of correct calculation with 

reasons is 45.2%. For Pair-2 GCN item, the percentage of correct calculations is 70.1% 

and for correct calculations with reasons the percentage is 29.1%. For Pair-3 GCN item, 

even though the percentages are relatively lower than those for the other three pairs, 

52.9% of students did obtain correct answers but only 13.7% of students could articulate 

their corresponding reasons. For Pair-4 GCN item, 68.9% students found the correct 

answers, but only 40.4% probed the corresponding geometric properties. Figure 4.9 

provides a graph showing the performance differences in the percentages of correct 

calculation and those of correct calculation with reasons. 

 
Table 4.17 Percentages of correct calculation and correct calculation with reasons 

 Pair 1 Pair 2 Pair 3 Pair 4 
Correct calculation 73.7% 70.1% 52.9% 68.9% 

Correct calculation with reasons 45.2% 29.1% 13.7% 40.4% 
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Figure 4.9 Percentage of correct calculation and correct calculation with reasons 

 
 

The distributions of students who provided correct answers within the five coding 

categories were also analyzed. The goal here is to (1) understand what is meant by 

superficial visual associations in the geometric diagram with relation to the crucial 
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geometric properties required for a solution; and to (2) investigate if using superficial 

visual associations to guess the answers of GCN is task-dependent. Table 4.18 

summarizes the distributions of the percentages of students providing correct answers 

among the five coding categories. Figure 4.10 also provides bar charts of the distributions 

for the four GCN items. 

 
Table 4.18  Percentages of correct calculations within the five coding categories 

 Pair 1 Pair 2 Pair 3 Pair 4 
Correct calculations with reasons 61.4% 41.5% 25.8% 58.7% 

Incomplete calculation 17.2% 29.2% 32.6% 17.8% 

Improper calculation 15.7% 18.6% 37.6% 18.4% 

Intuitive response 5.6% 10.8% 3.9% 5.1% 

No response 0% 0% 0% 0% 

Total 100 100 100 100   
Intuitive responsesImproper calculationsIncomplete calculationsCorrect calculations with reasons

PercentPercentPercentPercent100806040200
GC1GC1GC1GC1

Intuitive responsesImproper calculationsIncomplete calculationsCorrect calculations with reasons
PercentPercentPercentPercent100806040200

GC2GC2GC2GC2

Intuitive responsesImproper calculationsIncomplete calculationsCorrect calculations with reasons
PercentPercentPercentPercent100806040200

GC3GC3GC3GC3
Intuitive responsesImproper calculationsIncomplete calculationsCorrect calculations with reasons

PercentPercentPercentPercent100806040200
GC4GC4GC4GC4

 
Figure 4.10 Distributions of correct calculation 



 177 

Several observations can be made from the above table and bar charts. First of all, 

students who could guess the correct answers, but could not articulate the correct 

geometric properties underlying their calculations are distributed among the three coding 

categories: incomplete calculations, improper calculations, and intuitive responses. The 

distributions show that students may, on the one hand, use superficial association of 

diagram to guess the answer (e.g., quantities of segments look equal), but, on the other 

hand, also are able to retrieve some geometric properties embedded in the diagram 

although these properties may not contribute to the solution generations. For example, 

student answers coded as “improper calculation” revealed that students could visualize 

the diagram configurations to retrieve some geometric properties correctly, but these 

geometric properties do not contribute to solution generation. 

Secondly, the distributions shown in Figure 4.10 differ among the four GCN 

items. This finding implies that using the superficial visual associations of diagrams as an 

approach to guess the answer is task-dependent. This result may be attributable to the 

specific characteristics of diagrams which can prompt students’ different superficial 

connections between the given diagrams and the answers to the items as well as the 

design of the tasks. Thirdly, for GCN1, GCN2, and GCN4 students who could obtain the 

correct answer and could also recognize the geometric properties necessary for solutions 

occupy the highest percentages among five categories (61.4% for GCN1, 41.5% for 

GCN2, 58.7% for GCN 4). However, this is not the case for GCN 3 item. The highest 

percentage of students obtaining correct answers is located in the category of improper 

calculations, the situation in which students did not figure out the geometric properties 

were necessary to obtain the GCN solutions. The final observation made from Figure 
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4.10 is that the distributions are similar for GCN 1 and GCN 4, items which have similar 

calculation requirements and the geometric properties for solutions. 

Following up the analysis of distributions for correct calculations, this study also 

examines if grade difference also influences the distributions for GCN items. 

 
Table 4.19 Percentages of correct calculation and of correct calculation with reasons for 
two grade levels 

Pair 1 Pair 2 Pair 3 Pair 4 

 8th  9th  8th  9th  8th  9th  8th  9th  

Correct calculation 68.1% 80.4% 67.9% 72.6% 51.2% 55.0% 64.3% 74.3% 

Correct calculation 
with reasons 

43.4% 47.5% 25.9% 32.9% 10.6% 17.4% 39.0% 42.1% 
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Figure 4.11 Percentages of correct calculation and correct calculation with reasons for 

two grades 
 
 

According to Figure 4.11, the percentages of 9th grade students who provided 

correct answers are higher than those for 8th grade students for the four pairs of items. 

Similar results of correct calculations with reasons can also be found in Table 4.19. 

Another important observation that can be made from Figure 4.11 is that the percentage 

differences between 8th grade and 9th grade for correct calculation are much smaller 

compared to the differences between correct calculations and correct calculations with 
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reasons in general. A similar result can be identified by observing the percentage 

differences in 8th grade and 9th grade for correct calculation with reasons, which is also 

smaller than the differences between correct calculations and correct calculations with 

reasons. 

Further examination of the distributions of the correct answers for individual 

grade level is shown in Table 4.20 and Figure 4.12. Both the table and bar charts indicate 

that the percentage distributions of 8th grade and 9th grade students are similar for Pair 1, 

Pair 2, and Pair 4. However, the distributions for Pair 3 for the two grade levels are quite 

different. Higher percentage of 8th grade students than 9th grade students could not 

provide corresponding geometric properties as reasons but could obtain the correct 

answers. 

 
Table 4.20 Distributions of correct answers for four GCN items between two grade levels 

 Pair 1 Pair 2 Pair 3 Pair 4 

 8th 9th 8th  9th  8th  9th  8th  9th  

Correct calculations 
with reasons 

63.7% 59.0% 38.1% 45.3% 20.6% 31.7% 60.7% 57.6% 

Incomplete 
calculation 

18.7% 15.7% 29.0% 29.3% 27.2% 38.8% 15.2% 20.5% 

Improper 
calculation 

13.2% 18.4% 21.1% 15.7% 47.9% 26.0% 19.2% 17.6% 

Intuitive response 4.4% 6.9% 11.7% 9.7% 4.3% 3.5% 5.0% 5.2% 

No response 0% 0% 0% 0% 0% 0% 0% 0% 
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Intuitive responsesImproper calculationsIncomplete calculationsCorrect calculations with reasonsPercentPercentPercentPercent100806040200
8th grade- GC18th grade- GC18th grade- GC18th grade- GC1

Intuitive responsesImproper calculationsIncomplete calculationsCorrect calculations with reasonsPercentPercentPercentPercent100806040200
9th grade - GC19th grade - GC19th grade - GC19th grade - GC1

Intuitive responsesImproper calculationsIncomplete calculationsCorrect calculations with reasonsPercentPercentPercentPercent100806040200
8th grade - GC28th grade - GC28th grade - GC28th grade - GC2

Intuitive responsesImproper calculationsIncomplete calculationsCorrect calculations with reasonsPercentPercentPercentPercent100806040200
9th grade - GC29th grade - GC29th grade - GC29th grade - GC2

 

Intuitive responsesImproper calculationsIncomplete calculationsCorrect calculations with reasonsPercentPercentPercentPercent100806040200
8th grade - GC38th grade - GC38th grade - GC38th grade - GC3

Intuitive responsesImproper calculationsIncomplete calculationsCorrect calculations with reasonsPercentPercentPercentPercent100806040200
9th grade - GC39th grade - GC39th grade - GC39th grade - GC3

Intuitive responsesImproper calculationsIncomplete calculationsCorrect calculations with reasonsPercentPercentPercentPercent100806040200
8th grade - GC48th grade - GC48th grade - GC48th grade - GC4

Intuitive responsesImproper calculationsIncomplete calculationsCorrect calculations with reasonsPercentPercentPercentPercent100806040200
9th grade - GC49th grade - GC49th grade - GC49th grade - GC4

 
Figure 4.12 Distributions of the two grade students who can provide correct calculations 

in the four GCN items 
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Comparison of “No Responses” 

Table 4.21 summarizes the percentages of students who provided no responses to 

GCN and GP items. As shown in Figure 4.13, the percentages of no responses on GP 

items are all higher than those on GCN items. The percentages for GCN are 4.5%, 8.0%, 

6.2%, and 7.9%, while those for GP are 6.7%, 12.6%, 10.2%, and 13.6% for Pair 1, Pair 

2, Pair 3, and Pair 4 respectively. These results suggest that students are more likely to 

give up on trying to solve GP items than to solve GCN items. 

 
Table 4.21 Percentage of “No responses” on GCN and GP items 

 GCN GP 

Pair 1 4.5% 6.7% 

Pair 2 8.0% 12.6% 

Pair 3 6.2% 10.2% 

Pair 4 7.9% 13.6% 
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Figure 4.13 Percentage of No Responses 

 
 

Analysis of Students’ Error Responses 

In line with the hypothesis that diagram and geometric properties necessary to 

obtain solution are central to the relationship between GCN and GP, I further inspected 
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students’ error responses produced because they incorrectly interpreted the given 

diagrams or retrieved the geometric properties required to obtain solutions. 

Error Responses Related to the Given Diagram and the Geometric Properties Embedded 

in the Diagram Configurations 

Four different types of error responses related to the given diagram and the 

geometric properties embedded in the diagram configurations are reported. They are (1) 

using superficial  visual associations of diagram to guess the solution, (2) applying 

correct geometric property but interpreting the property wrongly on the diagram, (3) 

labeling the geometric property correctly on the diagram but naming the geometric 

property incorrectly, and (4) the retrieved geometric properties cannot form a successful 

solution plan. These four types of error responses are described as follows. 

Type 1: Using superficial visual associations of diagram to guess the solutions 

The first kind of error refers to those in which students relied on the superficial 

visual associations of diagram (Aleven et al., 1998) to guess the solution. In such errors, 

the visual associations of diagram become the warrant for students to believe that there 

are geometric properties in the diagram that they can use. However, these geometric 

properties can not be inferred or are not given in the tasks. For instance, students may 

infer two segments or two angles congruently based on their perceptual images of the 

diagram (e.g., they look the same lengths) but not based on the geometric properties or 

given information that would support the inference. In addition, the perceptual images 

based on the visual associations of diagram may also lead to an incorrect solution. 
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Figure 4.14 Using perceptual images on the diagram to find the solution 

 
 

Figure 4.14 shows the error in relation to perceptual images by using an example 

selected from the responses to GP 1 item, the goal of which is to prove ∠ACD=2∠ABC 

given that BCAC =  and ABC is a triangle. Proving this GP item can be completed by 

two inferring steps. The first step is to infer ∠A=∠B on the basis of the given BCAC =  

and the property of isosceles triangle. The second step has to reason 

∠ACD=∠CAB+∠ABC using the exterior angle property. Combining these two proving 

steps one can conclude that ∠ACD=2∠ABC, which is the goal of this proving task. The 

student example is selected because it shows the incorrect reasoning in the first step 

which may be made based on the superficial visual associations of the diagram. Instead 

of deducing ∠A=∠B, the student inferred ∠B=∠C by the reason that ACAB = , which 

was incorrect for this task. The congruent labels on segments AB and AC in the given 

diagram also shows how the student visualized the diagram configurations for this 

inferring step. To explain the error with regard to the superficial visual associations of the 

ACAB =  
∠B=∠C 

Exterior angle 
property 

Congruence of 
∠B and ∠C  

∠B+∠A=2∠ABC 
 
∠A=∠B 
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diagram, two possibilities are proposed. The first possibility for the error of viewing 

ACAB =  may be that the segments AB and AC look as having the same lengths in the 

diagram so that the student directly assumed these two segments were congruent. The 

second possibility can be attributable to the prototype of an isosceles triangle, the 

congruent angles of which are often the base angles on the bottom. These two 

possibilities associated with an isosceles triangle may be the reasons that can be used to 

interpret the incorrect inference. As a result, the mis-understanding of the diagram 

hindered the student from generating a successful solution since the incorrect proving 

step could not lead to the proving conclusion, ∠ACD=2∠ABC. 

Interestingly, the example analyzed here shows that using visual associations of 

diagram to guess solutions is not specific to GCN items but also can happen when 

constructing GP items. 

Type 2: Applying the correct geometric property, but interpreting it wrongly on the 

diagram 

In the second error type, students applied correct geometric properties which were 

necessary for a solution, but incorrectly interpreted the geometric properties on the 

diagram. 
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Figure 4.15 Misinterpreting the geometric property on the diagram 

 
 

Figure 4.15 provides an example of this type of error response. The task in this 

example is GP 2 item with the goal of proving that ∠DAE=∠DEA given that ABCD is a 

parallelogram and AE and BF are angle bisectors. As shown in Figure 4.15, the student’s 

first step was to infer that the opposite sides of a parallelogram are parallel (AD//BC and 

AB//CD) based on the parallelogram properties. Next, the student attempted to prove this 

task by applying the alternate interior angles property, one of the properties that can be 

used to obtain a solution. However, the student interpreted the alternate interior angles 

property incorrectly on the diagram (see Figure 4.16). She labeled the alternate interior 

angles property on the diagram as ∠1 and ∠6, which were not the angles ∠BAE and 

Parallelogram property 

Alternate interior angles 
property 

Segment CD  bisects both 

segments CF  and ED  
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∠AED corresponding to the alternate interior angles property. Nor were these two angles 

congruent to each other. This misapprehension of the angles corresponding to the 

geometric property on the diagram also prevented the student from achieving a successful 

solution because the incorrect inference ∠1=∠6 could not help the student to reason the 

next step associated with the congruent angles ∠BAE and ∠EAD because of the angle 

bisector property. As a result, the student did not obtain a proof solution to this task. 

 
Figure 4.16 Using correct geometric property but labeling the property incorrectly on the 

diagram 
 
 
Type 3: Labeling the geometric property correctly on the diagram but naming the 

property incorrectly 

This error type is related to the mismatch between the name of geometric 

properties and its embedment in a diagram. The difference between this type error and 

the previous one is that the error here involves the correct interpretation of the diagram, 

but with the wrong name assigned to the geometric property. 
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Proving step Labels on the diagram Geometric reasons 

 
 
Figure 4.17 Error response of correct interpretation of configurations of the diagram but 

with incorrect geometric property 
 
 

The response in Figure 4.17 is part of the proof construction of the GP 2 item 

from another student. As can be seen, the proving step did not match the corresponding 

geometric property. The proving sentence indicates that the student recognized that the 

sum of ∠ADF and ∠BAD was equal to 180˚ and could also recognize that parallel lines 

were the one of the geometric reasons for this. However, instead of using the consecutive 

interior angles property, the student wrote the alternate interior angles property as the 

reason for the step, which was incorrect. 

Type 4: The retrieved geometric properties are not sufficient to generate a solution plan 

Another general type of error response related to the geometric diagram involves 

the use of geometric properties that are not enough to generate a solution to this task. 

Two parallel lines. 
 
Sum of the alternate 
interior angles is 
180˚ 
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Figure 4.18 Example of type 4 error response 
 
 

Figure 4.18 gives an example for this type of error response from the GCN 4 item, 

the goal of which is to calculate the measure of ∠BDC given that BD=BC and the 

measure of ∠DBA=70˚. The figure shows that the student intended to use the alternate 

interior angles property to solve this task by drawing a horizontal line that intersects the 

triangle in the given diagram. Given the measures on the diagram as shown in Figure 

4.18, it seems that the student was able to calculate some angle measures (e.g., 

∠DBC=110˚). Nevertheless, even so the drawing did not help the student retrieve enough 

geometric properties from the diagram configurations to generate a solution. The writing 

of the alternate interior angles property in the task may imply that the students thought 

the property is crucial to the solution, but, however, the student did not know how this 

property can help find the answer to the task. 

Summary 

1. When the given diagram and geometric properties needed to find solutions are 

controlled, 9th grade students performed equally well on both GCN items and GP 

The alternate 
interior angles 
property?! 

ABC is collinear 
and BD=BC. Given 
that ∠ABD=70˚, 
find the measure of 
∠BDC=____. 
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items. But 8th grade students performed better on GCN items than on GP items. 

2. When the geometric properties needed to obtain solutions are controlled, diagram 

configurations did influence students’ performance. Students performed significantly 

better on both GCN and GP items when the diagram had a simple configuration than 

when the diagram was complex. 

3. 9th grade students performed better than 8th grade students on both GCN and GP items. 

4. The treatment of survey procedures (GCN first or after GP) significantly influenced 

students’ performance on GCN items, but not on GP items. Students performed better 

on GCN items when they solved GP items first and then GCN items later. But 

students performed similarly on the GP items regardless of which item type was 

presented first. 

5. The treatment of the time effect (GCN/GP solved closely together vs. separated by 

one day) did not cause a significant difference in student performance on GCN and 

GP items. 

6. The percentage of correct calculations for each GCN item was much higher than that 

for correct calculations with reasons. Students who obtained correct answers, but 

could not explain the correct geometric properties leading to their calculations were 

distributed among the three coding categories: incomplete calculations, improper 

calculations, and intuitive responses. The analysis also indicates that using the 

superficial visual associations of diagram as an approach to guess the answer is task-

dependent. 

7. The percentage of students who did not provide any response to GP items was much 

higher than that for GCN items. 
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8. Four types of students’ error responses specific to the diagram and geometric 

properties are reported as (1) using superficial visual associations of the diagram to 

guess the solutions; (2) applying the correct geometric property, but interpreting it 

wrongly on the diagram; (3) labeling the geometric property correctly on the diagram, 

but naming the geometric property incorrectly; (4) The retrieved geometric properties 

are not enough to generate a solution plan. In particular, the error type caused by 

using superficial visual associations of diagram to guess the solutions can also occur 

when constructing GP items. 

Discussion 

Based on the theoretical analysis regarding the analogous distinction between “a 

problem to prove” and “a problem to find” (Polya, 1945) and comparisons of survey 

responses of two grade levels of students, this study, from a problem-solving perspective, 

conceptualizes the relationship between GCN and GP taking two major perspectives into 

the consideration. The first perspective has to do with the role of geometric diagram and 

geometric properties necessary to obtain a solution. The 9th grade students’ responses 

showed that both the diagram and the required geometric properties are keys to 

determining the cognitive demand of geometric tasks given to students. This result 

highlights the weakness and limitation in theories describing the relationship between 

calculation and proof (Tall, 2002; 2005; 2007), which do not consider how the diagram 

might influence the relationship between the two types of tasks. The result also points out 

the limitations of studies, which have treated GCN as tasks of lower-level cognitive 

demand useful only for practicing geometric properties (Heinze, Cheng, Ufer, Lin, & 

Reiss, 2008; Heinze, Cheng, & Yang, 2004; Heinze, Ufer, Cheng, & Lin, 2008), and did 



 191 

not carefully consider the complexity and specificity of a mathematical task (Stein, Smith, 

Henningsen, & Silver, 2000). 

This finding of survey responses of 9th grade students also leads to an underlying 

assumption regarding the cognition associated with the difference between calculating 

specific measures and proving general statements. A common clarification between GCN 

and GP is that GCN tasks are often viewed as special cases because of the characteristics 

of calculating certain measures, whereas GP involves general statements that cannot be 

replaced by solving a specific case. For example, Kuchemann and Hoyles (2002) state 

“…the task [GCN] is only concerned with finding a specific value of an angle, 
rather than a general relationship between angles, which is more characteristic of 
a proof (p. 48)” 

 
 

As indicated by the quote, Kuchemann and Hoyles treat GCN and GP as different types 

of tasks because GCN deals with certain measures, and not general relationships among 

angles, which GP does. Other researchers have argued the inappropriateness of using this 

binary categorization to describe students’ cognitive behaviors and beliefs in GCN and 

GP. For instance, Chazan (1993) pointed out the complexity of students’ beliefs in using 

measurements and deductive proofs as means to verify an argument. When students 

examine empirical examples for their justification, they can recognize the limitations of 

using this approach and may develop strategies for minimizing these limitations. 

Balacheff (1988) also stated that the use of representations (e.g., numerical calculating 

sentences vs. formal proving sentence) should not be treated as the central in 

conceptualizing students’ proof conceptions. The more importance is how students can 

internalize the mathematical ideas and detach them from particular representations. In 
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line with this viewpoint, GCN can be more than a naïve example and involve a proof 

conception. 

This study further elaborates the abstract nature of a diagram (Duval, 1995; 

Fischbein, 1993; Fischbein & Nachlieli, 1998) can influence the relationship between 

both types of tasks. The argument proposed in this study is that, during the problem-

solving process, visualizing the diagram configurations to retrieve relevant geometric 

properties forces students to see a geometric diagram as an abstract object and to make 

general inferences regarding the relationships between/among different angles or 

segments in the diagram (e.g., angle sum theorem involving three angles in a triangle), 

regardless of whether a student is solving a GCN task or engaging in proving a GP. Even 

though the measures of angles or segments are provided in a GCN task, these measures 

might not help or provide hints to students as they try to figure out the diagram 

configurations with corresponding geometric properties and generate a solution plan. In 

this regard, measures are used only to execute the calculations for the unknowns if 

students recognize the geometric properties that they can use to set up the calculating 

sentence. The results of the 9th grade students’ performance on GCN and GP items 

provides strong evidence to support the argument that geometric diagram and geometric 

properties needed to obtain solutions are keys to the link between the two types of tasks. 

This study also reveals that GCN are not tasks of lower cognitive demand. This 

finding indicates the limitation of the conclusions shown in other studies (Heinze, Cheng, 

Ufer, Lin, & Reiss, 2008; Heinze, Cheng, & Yang, 2004; Heinze, Ufer, Cheng, & Lin, 

2008). One possible reason for this incorrect conclusion is that the GCN tasks designed 

and implemented in previous studies did not, as this study does, ask students to provide 



 193 

geometric reasons to account for each calculating step. If explanations are not required, 

students’ performance on GCN will appear to be significant better than their performance 

on GP because of the shallow learning related to solving GCN tasks (Aleven, Koedinger, 

Sinclair, & Synder, 1998). Here, shallow learning of GCN refers to a situation in which 

students use the superficial visual associations of the diagram to obtain answers to GCN 

tasks rather reasoning logically from geometric properties. Shallow learning, therefore, 

becomes a confounding variable in conceptualizing the relationship between GCN and 

GP since the differences in the percentages of correct responses for GCN and GP should 

be significant when GCN does not require students to provide geometric reasons. 

Concerning the shallow learning in relation to the relationship between GCN and GP, this 

study proposes two perspectives that should be carefully considered and further examined. 

First of all, relying on superficial visual associations of the diagrams is not specific to 

GCN items. This can also occur in the construction of GP, as shown in the example used 

to illustrate Type 1 error response in the findings section, in which the student relied on 

superficial visual associations of the diagram to set up the proving sentences. If the use of 

superficial visual associations of the diagram is not specific to GCN items, how shallow 

learning influences the relationship between GCN and GP should be further investigated 

and should be carefully considered in articulating the relationship between GCN and GP. 

Secondly, I maintain that not every GCN task allows students to use superficial visual 

associations of diagrams as an approach to obtaining answers because this is task-

dependent. To elaborate this viewpoint, I offer the following GCN example in Table 4.22. 
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Table 4.22  The GCN example used to elaborate shallow learning 
Diagram GCN task description 

A

B CE

D

 

In triangle ABC, AE⊥BC, AB//DE, and 
CD=CE. Given that measure of ∠DCE=40˚, 
find the measure of ∠BAE=_____. 

 
 

The written information details the properties that can be used to generate a 

solution, including ABC is a triangle; AE is perpendicular to BC; AB are DE are parallel; 

and CD=CE. The given also indicates that ∠DCE=40˚ and the goal is to find the measure 

of ∠BAE. Table 4.23 demonstrates a solution plan of reasoning the answer to this task. 

 
Table 4.23 A solution to the GCN example in Table 4.22 
Steps Calculating sentence Reason for the calculating sentence 
Step One ∠CDE+∠CED=180˚-40˚=140˚ Triangle sum property 
Step Two ∠CDE=∠CED=70˚ Properties of isosceles triangle 

Step Three ∠EAC=180˚-90˚-40˚=50˚ Triangle sum property 
Step Four ∠DAB=∠CDE=70˚ 

So ∠BAE=70˚-50˚=20˚ 
Corresponding angles property 

 
 

As shown in the above table, the solution plan requires four reasoning steps with 

corresponding geometric properties. The first step is to apply triangle sum property to 

calculate the sum of ∠CDE and ∠CED which is 140˚. The next step involves inferring 

the congruence angles of ∠CDE and ∠CED based on the properties of an isosceles 

triangle in order to obtain ∠CDE =70˚. The third step is to apply the angle sum property 

again to compute the measure of ∠EAC, which is 50˚. Finally, the measure of ∠BAE can 
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be calculated by reasoning the congruent angles of ∠DAB and ∠CDE based on 

corresponding angles property. 

Using superficial visual associations of the diagram would not help students 

figure out the answer to this GCN task for two reasons. First of all, no obvious hints are 

available in the diagram (e.g., two segments or angles appear to have the same measures) 

that can be directly used to obtain the answer. Although the given indicates that CD=CE, 

this may not be so visible to students since the diagram orientation is different from the 

prototype image of an isosceles triangle in which the congruent legs often stand on the 

two sides and the base segment is horizontal on the bottom (see Figure 4.19). 

 
 

Figure 4.19 Sub-construct of an isosceles triangle in the given diagram (on the left side) 
and prototype of an isosceles triangle (on the right side) 

 
 

Secondly, the given diagram is cognitively complex (Duval, 1995) because of the 

demand to identify the superficial visual associations of diagram to guess the numerical 

answer. For example, recognizing the sub-construct for the corresponding angles property 

requires students to suppress the segments AE and BC in order to visualize the sub-

construct (see Figure 4.19) (Gal & Linchevski, 2010) as well as recognize what segments 

and angles in the diagram constitute this property. As a result, students cannot guess the 

answer to the GCN by relying only on the superficial visual associations of the diagram. 
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Figure 4.20 Sub-construct of the diagram for the corresponding angles property 

 

After elaborating the roles of both the diagram and geometric properties necessary 

to obtain the solutions as key to the relation between GCN and GP, I now return to the 

second perspective associated with conceptualization of the relationship between the two 

types of tasks, which has to do with the difference in performance of two grade students 

on GCN and GP tasks. The eighth grade students performed significantly better on GCN 

items than on GP items, which is a different result as opposed to the 9th grade students. 

One possible reason to this finding can be the competence of doing calculations that is 

developed early than constructing proofs. As children at the elementary school level are 

capable of performing calculations tasks by applying geometric properties (e.g., size of 

angle, length of distance) (Piaget, Inhelder, & Szeminska, 1960), it is reasonable that, 

before formally learning GP in schools, students have better competence in solving GCN 

tasks. But, one may question what kinds of knowledge specific to GP that 8th grade 

students could not develop from experiences with solving GCN tasks so that their 

performance on GP is significant lower than that on GCN. For example, combining the 

proving sentences into a deductive chain is important in proof construction, but students 

may be lack of this kind of knowledge (Heinze, Reiss, & Rudolph, 2005; Lin, 2005; Ufer 

& Heinze, 2008). However, students may not develop this kind of knowledge from their 

experiences with solving GCN tasks. To solve a multiple-step GCN task, each calculating 
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sentence uses some quantities from the given and produces new measures. The new 

measures can later be used to set up a new calculating sentence based on the 

corresponding geometric property. The recycling of using quantities from the given and 

new quantities ends when students finally obtain answers to the task. In this regard, the 

recycling in a way already organizes the solution steps into a logic sequence, which does 

not require additional cognitive work as GP does. 

Combining students’ performances of both grade levels on GCN and GP seems to 

suggest a learning trajectory to facilitate students’ proficiency in creating GP because of 

the diagram complexity and problem-solving complexity GCN tasks used and enacted in 

Taiwanese classroom (see Chapter Two and Three). When solving GCN tasks, the 

complexity of diagram provides students opportunities to learn strategic knowledge, 

which is a key for effective problem solvers who need to recall actions that are likely to 

be useful when choosing which actions to apply among several alternatives (Weber, 2002; 

2005). Hence, class experiences in solving GCN tasks prior to formally learning GP can 

nurture students’ strategic knowledge in terms of visualizing diagram configurations so 

that they can retrieve relevant geometric properties and combine different geometric 

properties to generate a valid solution strategy in novel ways. This training with working 

on GCN tasks with diagram complexity can later contribute to the learning of GP. 

Given that much research has reported that students have difficulties in learning 

proofs (Fuys, Geddes, & Tischler, 1988; Harel & Sowder, 1998; Healy & Hoyles, 1998; 

Heinze, Cheng, & Yang, 2004; Heinze, Reiss, & Rudolph, 2005; Li, 2002; Mariotti, 2006; 

Miyazaki, 2000; Senk, 1989), the learning trajectory proposed here can also be used as a 

framework to develop instructional approaches that emphasize diagrams and 
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requirements of geometric properties to improve students’ learning of GP. This 

possibility is very worthy of further investigation. 

The analysis of Pair 1 and Pair 4 with different diagram configurations also shows 

that diagrams significantly influence students’ performance on both GCN and GP tasks. 

When the requirements of geometric properties are controlled, students performed 

significantly better on both types of items that had simple diagram configurations as 

opposed to complex ones. This result confirms that the diagram configurations have an 

influence on the underlying cognitive complexity of solving geometric tasks (Duval, 

1995) and play an important role in students’ ability to recognize relevant geometric 

properties. In this regard, Zykova (1975) used the term “reinterpreting diagrams” (p. 94) 

to describe geometric tasks that require identifying different geometric concepts from the 

same diagram configurations. Reinterpretation of the diagram with different geometric 

properties can be psychologically complex and requires students to understand all of the 

geometric properties in the diagram configurations and make transitions among these 

properties. In addition, diagram complexity due to extra lines and angles may also 

become visual obstacles (Yerushalmy & Chazan, 1990) that prevent students from 

correctly identifying the corresponding geometric properties needed to obtain solutions. 

However, the results from the pilot study suggest that this view may not be entirely 

correct. In the pilot study when diagram configurations were made more complex by 

adding one segment, students’ performance on the two types of tasks did not change. This 

phenomenon suggests the need for further investigation. For instance, a follow-up study 

could examine the extent to which the complexity of diagram configurations influences 

students’ performance on GCN and GP. 
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The analysis of the percentage of students who provided no responses to either 

type of item shows that students are more likely to give up on a GP task than on a GCN 

task. The phenomenon may be due to students’ conceptions and beliefs of the tasks. As 

Chazan (1993) points out, high school students prefer empirical arguments over 

deductive arguments when working on mathematical problems. Since students often face 

difficulties in constructing GP, they may lose their motivation to work on the tasks, even 

though they could infer some geometric properties from the diagram configurations. 

Further investigation of students’ conceptions and beliefs regarding both types of tasks 

would be useful to understand how they perceive the relationship between GCN and GP. 

One example of a research question to explore this could be: what are the underlying 

reasons for student behaviors and cognition on both types of tasks when they provide a 

partial solution or try to solve a GCN as opposed to working on a GP? 

Finally, another important contribution of this study is the design of pairs of GCN 

and GP items which are identical in terms of the diagram configurations and required 

geometric properties need to obtain solutions. The investigation of such parallel tasks has 

not been undertaken by other researchers, but is crucial to the ability to elaborate the 

relationship between GCN and GP. 
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Appendix 4.1 

Summary of the GCN and GP Items Included in the Survey 

Item The given diagram The givens for GCN The givens for GP List of geometric properties for 
solutions 

Pair 1 

 

ΔABC in which 
AC=BC and BCD is 
collinear. If the measure 
of ∠ACD is 130˚, find 
the measure of ∠ABC. 

ΔABC in which 
AC=BC and BCD is 
collinear. Prove 
∠ACD=2∠ABC 

Solution 1: The triangle sum 
property, the property of linear 
pair, the properties of an 
isosceles triangle 
Solution 2: The exterior angle 
property, the properties of an 
isosceles triangle 

Pair 2 

 

ABCD is a 
parallelogram. AE and 
BF are angle bisectors of 
∠A and ∠B. If 
∠AED=25∘, find the 
measure of ∠EAD. 

ABCD is a 
parallelogram. AE and 
BF are angle bisectors 
of ∠A and ∠B. Prove 
∠AED=∠EAD. 

Properties related to 
parallelogram (e.g., opposite 
sides of a parallelogram are 
parallel), the alternate interior 
angles property, the angle 
bisector property. 
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Pair 3 

 

Triangle ABC in which 
AB and AC are the same 
lengths. Construct a line 
through point A so that 
the line is parallel to BC 
where the bisectors of 
angle B and angle C 
intersect the line at point 
D and point E. If AC=6 
cm and AC∠ B=75∘, 
find (1) the length of 
AE; (2) the measure of 

AEC.∠  

Triangle ABC in which 
AB and AC are the 
same lengths. Construct 
a line through point A 
so that the line is 
parallel to BC and the 
bisectors of angle B and 
angle C intersect the 
line at point D and 
point E. Prove AC=AE 

Properties of an isosceles 
triangle , angle bisector property, 
properties related to parallel lines 
(e.g., the alternate interior angles 
property, the consecutive interior 
angles property) 

Pair 4 

 

ΔBDC in which 
BD=BC and ABC is 
collinear. If the measure 
of ∠ABD＝70˚, find the 
measure of ∠BDC. 

ΔBDC in which 
BD=BC and ABC is 
collinear. Prove 
∠ABD=2∠BDC 

Solution 1: The triangle sum 
property, property of linear pair, 
properties of an isosceles triangle 
Solution 2: The exterior angle 
property, properties of an 
isosceles triangle 
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Appendix 4.2 

 Plan Trees for Each Pair of GCN and GP Items in the Survey 

 

    
Figure 4.21 Plan trees for Pair 1 items (GCN on the left side and GP on the right side) 

 
 

   
    

Figure 4.22 Plan trees for Pair 2 items (GCN on the left side and GP on the right side) 
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Figure 4.23 Plan trees for Pair 3 items (GCN on the left side and GP on the right side) 
 
 

   
Figure 4.24 Plan trees for Pair 4 items (GCN on the left side and GP on the right side) 
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Appendix 4.3 

 Solution Example Included in the Survey 

Please clearly write down your calculating or proving steps and indicate what geometric 
properties support your steps. Please also label your steps and geometric properties on the 
given diagram so that we can understand more about how you think of the task. 
 

 

In triangle ABC, if line AD is a 
perpendicular bisector of segment BC. 
Prove △ABD ≅△ACD 

 Proving Steps Labels on diagram Reasons 

Step 1 ∠ADB=∠ADC=90˚ 

 

Properties of 
perpendicular bisector 
(AD⊥BC) 

Step 2 BD=DC 

 

Properties of 
perpendicular bisector 
(BD=DC) 

Step 3 AD＝AD 

 

Shared segment for both 
ΔABD and ΔACD 

Step 4 
△ABD ≅ △ACD 
(RHS) 

 

Triangle congruence 
postulate 
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Appendix 4.4 

 Scheme for Coding GP and GCN Items 

Coding 
Proof 

scheme 
Explanation of the scheme coding 

Calculation 
scheme 

Explanation of the scheme 

1 Acceptable 
proof 

The proof is acceptable by authority 
(e.g., teachers or examiners). The 
proof is a valid deductive process 
from given premises to the wanted 
conclusion. In addition, students 
must provide correct geometric 
properties as reasons to support 
their proving steps. 

1 Correct 
calculation 
with 
supportive 
reasons 

The answer is correct and the calculations are a 
valid deductive process with correct geometric 
properties as reasons to support each calculating 
steps. 

2 Incomplete 
proof 

Crucial elements/properties are 
retrieved from the diagram to 
construct a proof solution but the 
solution has logical errors or a gap. 
For example, students may miss 
step(s) in their proving or show an 
inversive/reversive inference (such 
as using a latter property in a logic 
relation to prove a former 
proposition). 

2 Incomplete 
calculation 

Crucial elements/properties are retrieved from the 
diagram to form a solution but the solution has 
some errors. For example, students may mis-
understand the given information and produce the 
wrong answer even though the inferring process 
from premises to conclusion is valid. Another 
example is that students made some mistakes 
when calculating the measures that lead to a 
wrong answer. 

3 improper 
proof 

Non-deductive approaches, using 
incorrect geometric properties, or 
using properties inappropriately. 
Students producing such solutions 
usually have difficulties with the 
required geometric knowledge or 

3 Improper 
calculation 

Non-deductive approaches, using incorrect 
geometric properties, or using properties 
inappropriately. Students producing such solutions 
usually have difficulties with the required 
geometric knowledge or they have an inadequate 
idea of mathematical reasoning even though they 
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they have an inadequate idea of 
mathematical reasoning even 
though they still can make 
inferences based on non-crucial 
geometric properties 

can make inferences based on non-crucial 
geometric properties. In GCN, it is possible that 
students guess the final answer even though they 
could not identify crucial properties required in 
this task. 

4 Intuitive 
response 

Students just work on the surface 
level without any inferring process 
of the task. For example, make a 
visual judgment or just give an 
intuitive response. 

4 Intuitive 
response 

Students work on the surface level without any 
inferring process of the task. For example, make a 
visual judgment or just give an intuitive response. 
In GCN, it is possible that students guess the final 
answer without any calculating sentences or 
reasoning steps. 

99 No 
response 

 99 No response   
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CHAPTER FIVE 

GENERAL DISCUSSION 

Using GCN Tasks to Facilitate Taiwanese Students’ Competence in Constructing GP 

This dissertation reports a research on geometric calculation with number (GCN) 

in Taiwan by conducting three sequential studies, corresponding roughly to key aspects 

of the Mathematical Tasks Framework (MTF); namely, tasks as found in curriculum 

materials and other instructional resources, tasks as enacted by students and their teacher, 

and student learning from and through mathematical tasks. In particular, the attentions of 

the dissertation focus on how GCN tasks were used and enacted in the classroom of one 

Taiwanese teacher and the extent to which evidence of performance of a sample of 

Taiwanese students on such tasks can be similar to that on geometric proof (GP) tasks. 

Although this dissertation only examined one classroom with one Taiwanese 

mathematics teacher, taken together the three studies offer a comprehensive glimpse at 

how Taiwanese students’ experiences with GCN tasks might contribute to their high 

levels of competence with geometric proving and reasoning, areas that are generally quite 

difficult for students to master (Chazan, 1993; Harel & Sowder, 1998; Mariotti, 2006). 

Study One (Chapter Two) presented an analysis of tasks as appeared in 

curricular/instructional materials; that is, the GCN tasks included in the 

curricular/instructional materials used by one Taiwanese mathematics teacher, Nancy. 

The analysis revealed that the Taiwanese teacher used tasks drawn from several sources, 
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including not only the class textbook series, but also tasks of tests, tasks created by 

herself, and some in the supplemental materials that were collaboratively developed by 

her school colleagues. The analysis also revealed that these GCN tasks varied with 

respect to cognitive complexity, but that a substantial number of the tasks situated in 

auxiliary instructional materials, especially those for use in tests, were cognitively 

demanding because they required students to (1) visualize the sub-constructs in complex 

diagram configurations; (2) check if auxiliary lines are needed to solve the tasks; (3) 

generate solutions with multiple reasoning steps that use multiple geometric properties; 

and (4) apply multiple transformations to map corresponding reference diagrams onto the 

GCN task diagrams. The high demand tasks, in particular, afford opportunities for 

Taiwanese students to master the types of knowledge and the reasoning and problem-

solving skills that are essential in creating GP. 

Study Two (Chapter Three) presented an analysis of tasks as enacted in the 

classroom; that is, how Nancy set up and enacted these GCN tasks with her students. Of 

particular interest were that ways that Nancy sustained the engagement of her students 

with cognitively demanding GCN tasks involving complex diagram configurations. 

When solving these tasks with complex diagrams, students cannot merely apply 

information from geometric statements listed in the textbooks and corresponding 

reference diagrams as well as their previous experiences solving simple problems; instead 

they need to combine multiple facets of their geometric knowledge and their reasoning 

and problem-solving skills in novel ways. Through scaffolded experiences with GCN 

tasks containing complex diagrams, the teacher appeared to nurture students’ competence 

in constructing and reasoning about geometric relationships in ways that are very likely 
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to support their later work with GP. Another facet of the analysis in this study focused on 

the teacher’s use of gestures to facilitate students’ sustained engagement with complex 

GCN tasks. For example, Nancy used a range of gestural moves to scaffold students 

visualizing the complex diagram configurations. The ability to visualize the diagram 

configurations allowed students to keep working on the task and figure out the solutions 

themselves. Taken together, the findings of Studies One and Two offer a glimpse at 

classroom instruction in Taiwan involving GCN tasks and sketch a plausible pathway for 

Taiwanese students to gain competence through their experiences with GCN tasks in 

curricular/instruction materials in ways that are highly likely to support their later success 

with GP. 

Study Three (Chapter Four) presented an analysis of student learning related to 

GCN tasks; that is, Taiwanese students’ performance on a carefully constructed set of 

GCN and GP tasks, which use the same diagrams and require the same geometric 

properties to obtain solutions. The result shows that performance between GCN and GP 

for 9th grade students in Taiwan is similar when the diagram configurations and the 

geometric properties necessary to obtain solutions are controlled. In other words, Study 

Three confirms that Taiwanese students’ prior experiences in solving GCN tasks have a 

significant impact on their competence in creating GP. 

Taken together the three studies that comprise this dissertation suggest why it 

might be the case that Taiwanese students would both develop potential competence in 

constructing GP before formal instruction to do so in schools and out-perform students in 

other countries on geometric proving and reasoning, as has been shown in the particular 

case of Germany (Heinze, Cheng, & Yang, 2004). In addition, the three studies taken 
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together appear to have implications for other research that might seek to understand 

cross-national differences in mathematics performance. 

Investigations of Students’ Performance in East Asian Countries 

Numerous cross-national comparisons of mathematics performance have been 

conducted in recent years (Heinze, Cheng, & Yang, 2004; Mullis, Martin, & Foy, 2008; 

Mullis, Martin, Gonzalez, & Chrostowski, 2004; Mullis et al., 2000; OECD, 2004) to 

examine differences in students’ performance among countries and to identify factors 

associated with those differences. Researchers have focused on a number of different 

aspects of macro-level and micro-level factors in these investigations, ranging from 

country-level differences in curriculum, school organization and management and 

economic prosperity to school-level and classroom-level differences in teacher 

qualifications, instructional practices, and the enacted curriculum. One of the major 

thrusts is this body of work has been to examine the curriculum, usually the official 

textbooks, attempting to understand the relationship between curriculum and students’ 

learning (Charalambous, Delaney, Hsu, & Mesa, 2010; Fan & Zhu, 2007; Fujita & Jones, 

2002; Fuson, Stigler, & Bartsch, 1988; Howson, 1995; Li, Chen, & An, 2009; Lo, Cai, & 

Watanabe, 2001; Mayer, Sims, & Tajika, 1995; Son & Senk, 2010; Stevenson & Bartsch, 

1992; Stigler, Fuson, Ham, & Kim, 1986; Valverde, Bianchi, Wolfe, Schmidt, & Houang, 

2002; Zhu & Fan, 2006). Another major thrust of many of these investigations has been 

to examine classroom instruction to elaborating how instruction influences student 

learning outcomes (Hiebert et al., 2003; Jacobs & Morita, 2002; Leung, 1995; 2005; 

Santagata, 2005; Santagata & Barbieri, 2005; Santagata & Stigler, 2000; Stigler & 

Hiebert, 1999; 2004). 
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Especially popular have been studies examining performance differences between 

students in Western countries and their counterparts in East Asian countries. These 

studies have identified a number of similarities and differences in mathematics education 

between the two sets of countries and have used these similarities and differences to 

explain the diversity in students’ mathematics performance. However, these studies are 

also limited in comprehensively outlining the whole story of how learning occurs in East 

Asian countries so that the students can consistently perform so highly in assessments of 

mathematical proficiency. 

Most studies might be called vertical-dimension investigations, exploring a single 

factor (e.g., textbooks) that can partially explain the differences in students’ learning 

outcomes.  In contrast the three studies that comprise this dissertation might be seen as a 

horizontal-dimension approach that examines a sequence of factors in the teaching-

learning trajectory with respect to geometric tasks in East Asian countries, an approach 

that might have the potential to explain more fully the observed high levels of 

performance in specific areas of mathematics (geometry reasoning and proof, in this 

case). Although this is a case study of only one Taiwanese classroom with one 

mathematics topic, geometric proving and reasoning, the findings do provide an 

insightful picture portraying how students in East Asian countries might learn 

mathematics through enacting abundant mathematical tasks situated in both official and 

auxiliary curricular/instructional materials provided by their teacher. 

In addition, though instruction in East Asian countries, especially at the middle 

school levels, can be described as teacher-centered, in that teachers usually talk more 

than students (Leung, 2002; 2005), the analysis of gestures, a non-verbal communication 
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way, also suggest caution about focusing only on verbal utterances to understand the 

instructional practice of Asian teachers; non-verbal communication by teachers in East 

Asian countries’ classrooms may also influence students’ learning. For example, as 

students frequently work on tests, it is possible that a mathematics teacher can diagnose 

students’ misconceptions by evaluating their responses to test items and then use 

classroom lectures to help students understand the misconceptions. It is also possible that 

a skillful mathematics teacher can identify students’ facial expressions to know if 

students follow the lectures and understand the mathematics without the need for any 

verbal communication. While classroom teachers may use non-verbal communications to 

facilitate students’ learning, students in teacher-centered and examination-oriented 

classroom may also learn the mathematics that cannot be identified by examining the 

verbal communication between teacher and students. For example, it can be the case that 

students learn mathematics by practicing abundant mathematical tasks and evaluate their 

learning by checking the answers to the tasks. In this regard, the students do not 

necessitate to participating in classroom discussion. When they have problems regarding 

the challenging tasks, they can listen to classroom lectures to know the solutions. These 

possibilities all can make learning occur in a teacher-centered and examination-oriented 

classroom in East Asian countries, and should be carefully considered in interpreting and 

understanding the differences in students’ performance in cross-national comparisons. 

Using the MTF Framework to Investigate Student Learning Outcomes 

In a recent paper commenting on cross-national comparison studies involving 

East Asian countries, Silver (2009) suggested that differences in students’ learning across 

countries might be understood by analyzing mathematical tasks together with their 
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cognitive demand levels using the three-stage MTF: tasks as they appear in 

curricular/instructional materials; tasks as set up by classroom teachers; and tasks as 

enacted by classroom teacher and students. These three stages have clear consequences 

for students’ learning outcomes. In this regard, this dissertation provides a good example 

to support Silver’s assertion that the MTF could be a core frame for an investigation of 

factors accounting for the differences in students’ performance in cross-national 

comparisons. 

First, this dissertation provides the evidence that auxiliary curricular/instructional 

materials can have strong influence on students’ learning outcomes. In line with Stein and 

Smith (1998), they clarified that the pages in official printed textbooks are not the only 

curricular materials considered in influencing students’ learning outcomes but also the 

auxiliary materials that a teacher may use in the classroom. Examination of official 

curriculum, usually the textbooks, among countries like most studies did is limited in 

exploring students’ learning opportunities because auxiliary curricular/instructional 

materials can possess a high portion of mathematical tasks with diverse opportunities in 

East Asian countries. 

Second, this dissertation also anchors the importance of sustaining the cognitive 

demand levels when setting up and enacting mathematical tasks with classroom students. 

The dissertation presents how Taiwanese mathematics teacher carefully sustained the 

cognitive demand of tasks and used different instructional strategies to make students’ 

learning occur; these efforts can have significant impact on students’ learning outcomes. 

Finally, as the first three stages in the MTF framework have strong consequence 

on students’ learning, the survey study also shows how including abundant GCN tasks, 
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setting up these tasks, and enacting them with students can greatly influence students’ 

competence not only in solving GCN but also in constructing GP. Taken together with 

the three studies, this dissertation provides an example to illustrate the influence of 

mathematical tasks as one of key factors to East Asian students’ out-performance in 

cross-national comparisons. 
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