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CHAPTER I

Introduction

Our story begins with McKay’s observation regarding binary polyhedral groups,

i.e. finite subgroups of SL(2,C). Each binary polyhedral group G comes with a

natural, two-dimensional representation Vnat. John McKay associates a graph to G

as follows. The vertices of the graph are the irreducible, complex representations of

G. Two vertices, corresponding to representations ρ1, ρ2, are connected by an edge if

ρ1 is isomorphic to a direct summand of the tensor product ρ2 ⊗ Vnat, or vice-versa;

the condition turns out to be symmetric. McKay’s observation is that the graph

associated to G is a Dynkin diagram of affine type ADE.

Chapter II discusses the place of McKay’s observation within the ADE correspon-

dence. We present the subject from four different viewpoints; namely, representation

theory, equivariant sheaves, invariant theory, and resolution of singularities. Like a

cubist painting, the multitude of perspectives has the effect of fleshing out McKay’s

observation and adding significance to it.

The subject of Chapter III is the Tpqr-correspondence, which is a generalization of

the ADE correspondence. Note that a finite subgroup of SL(2,C) acts linearly on C2,

so it acts on the set of lines through the origin in C2, which is P1. The basic idea of

the generalization is simply to replace P1 with a smooth projective curve Z of genus
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g ≥ 2, equipped with the action of a finite subgroup of automorphisms, G ⊆ AutZ.

We assume there are precisely three exceptional orbits on Z with stabilizer subgroups

in G of orders (p, q, r). The name Tpqr-correspondence refers to the fact that a graph

of type Tpqr can be associated to the pair (Z,G) in several ways (see Section 3.1).

The analogue of an irreducible representation of a binary polyhedral group in

this setting is a G-invariant vector bundle on Z which is stable with respect to the

usual notion of slope stability, and of degree zero. A collection of such objects has a

generalized McKay graph (see III.11, III.15, and III.17). The analogue of McKay’s

observation within the Tpqr-correspondence is a sort of Riemann-Hilbert problem;

it asks whether there exists a collection of such bundles whose generalized McKay

graph is the same Tpqr-graph (see Conjectures III.12 and III.17).This is where the

background material ends and our original work begins.

Chapter IV is the heart of the thesis. We specialize to the case when Z is Klein’s

quartic curve, and G = PSL(2,F7) is its full automorphism group, of order 168. We

examine a certain collection of modules over the ring A = C[x, y, z]/(x7 + y3 + z2)

canonically associated to the pair (Z,G).

The computer algebra program Macaulay2 is used to find presentations of our

modules. Using the presentations, we show that at least four of our modules corre-

spond to stable G-invariant bundles on Z of degree zero. This is the main result.

The novelty of the result is not the discovery of the bundles, but the fact that

they have a uniform construction. To our knowledge, this was previously unknown.

Chapter IV concludes with a peek at future research. We find several stable

bundles in the cases (p, q, r) = (2, 3, 11) and (p, q, r) = (3, 3, 5) as well. This is

perhaps the most mysterious part of the thesis. To be sure, it is a direction one

ought to pursue in the future continuation of this project.



CHAPTER II

The ADE Correspondence

Our goal in this introductory chapter is to review the ADE correspondence. There

are four sections: Polyhedral groups, Equivariant sheaves, Invariant theory, and Res-

olution of singularities. In each of these sections, one sees the same combinatorial

structure; namely, the Dynkin diagram of type ADE. The fact that one can recover

the same combinatorial structure in multiple ways is what we mean by ‘ADE corre-

spondence’. The rest of the thesis is dedicated to generalizing this happy situation

to star-shaped graphs of type Tpqr.

2.1 Polyhedral groups

Our starting point for the ADE correspondence is John McKay’s remarkable obser-

vation regarding binary polyhedral groups. Let us begin by recalling the definitions

involved.

The term binary polyhedral group is synonymous with finite subgroup of SL(2,C).

Polyhedral group means finite subgroup of PSL(2,C). A binary polyhedral group is

the preimage of a polyhedral group under the quotient map SL(2,C) → PSL(2,C).

The reason for the name is as follows. Every finite subgroup of PSL(2,C) is conjugate

into the compact subgroup PSU(2,C). Since PSU(2,C) is isomorphic to SO(3,R), a

finite subgroup of PSU(2,C) is either cyclic, dihedral, or it is the symmetry group of
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a regular convex polyhedron in R3. A regular convex polyhedron is called a Platonic

solid. There are five Platonic solids: tetrahedron, cube, octahedron, dodecahedron,

and icosahedron. A cube and an octahedron are polar polytopes, hence they have

isomorphic symmetry groups, as do a dodecahedron and an icosahedron. As the

reader is undoubtedly aware, binary polyhedral groups have a rich history (see, for

instance, Chapter 1 of [MS02]).

Let G be a binary polyhedral group. The embedding ρnat : G → SL(2,C) is

called the natural representation. Let K(RepG) be the Grothendieck group of the

category of finite dimensional complex representations of G. The McKay pairing

K(RepG)×K(RepG)→ Z is the bilinear pairing defined by the formula

(2.1) 〈ρi, ρj〉 = 2 dimC HomG(ρi, ρj)− dimC HomG(ρnat ⊗ ρi, ρj).

Let B = {ρ1, . . . , ρn} ⊂ K(RepG) be the classes of the irreducible representations

of G. They form a basis for K(RepG). Using the character tables of the binary poly-

hedral groups, McKay observed that the McKay pairing on K(RepG) with respect

to the basis B is a Cartan matrix of affine type ADE.

The natural representation defines an action of G on C2. Let A = C[x, y]G be the

ring of invariants. The variety V = SpecA is called an ADE singularity, Du Val

singularity, rational double point, or simple singularity. The open subset U = V \{0}

is called the punctured quasicone.

The binary polyhedral group G < SL(2,C) is isomorphic to the fundamental

group of the punctured quasicone U . Hence, by the Riemann-Hilbert correspondence,

RepG is equivalent to LocU , the category of local systems on U , i.e. locally free

sheaves on U in the classical, analytic topology.
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2.2 Equivariant sheaves

McKay’s observation regarding the representation theory of a binary polyhedral

group G can be explained in terms of the G-equivariant K-theory of C2. Let us take

a moment to review some terminology from the theory of G-sheaves.

Let X be a smooth quasi-projective variety over C, and G a group acting on X.

Let cohX be the category of coherent sheaves on X. A coherent sheaf E ∈ cohX is

said to be G-invariant if there exists an isomorphism cEg : E → g∗E for each g ∈ G.

If there is a finite collection {cEg }g∈G satisfying cE1 = 1 and cEhg = g∗(cEh ) ◦ cEg then E

is said to admit a G-linearization. If Y is a smooth subscheme of X, then Y is said

to be G-invariant if OX(Y ) is G-linearized.

The term ‘G-sheaf’ will always mean G-linearized sheaf. Whenever we encounter

G-invariant sheaves which are not G-linearized, we will be careful to point it out.

If E and F are G-sheaves, then G acts on HomcohX(E,F ) by the formula g(φ) =

(cFg )−1◦g∗φ◦cEg . In this way G-sheaves form a category cohGX, with homomorphisms

HomcohG X(E,F ) = HomcohX(E,F )G.

By the assumptions that X is quasi-projective and G is finite, every G-sheaf has a

G-equivariant injective resolution (see [Gro57] Prop 5.1.2). This allows one to define

the derived functors of HomcohG X(−,−); they are denoted Exti
cohG X

(−,−). It follows

from [Gro57] Prop 5.2.3 that the taking invariants functor is exact, i.e. G acts on the

space ExticohX(E,F ), i > 0 in such a way that Exti
cohG X

(E,F ) = ExticohX(E,F )G.

Incidentally, the proof uses the fact that the order ofG is coprime to the characteristic

of the ground field.

Let K(cohGX) be the Grothendieck group of cohGX. Let Kc(cohGX) be the

subgroup generated by sheaves with compact support. The equivariant Euler char-
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acteristic K(cohGX)×Kc(cohGX)→ Z is given by

χ(E,F ) =
dimX∑
n=0

(−1)n dim ExtncohX(E,F )G.

It induces a well-defined, bilinear pairing χ(−,−) : K(cohGX)×Kc(cohGX) → Z,

called the Euler form.

With the Euler form in hand, we now return to the specific situation of G <

SL(2,C). The natural representation ρnat defines an action of G on the variety C2.

The origin is fixed, and G acts freely away from the origin.

One may regard C2 as a rank 2 vector bundle over the origin. There is an inclusion

s : {0} ↪→ C2 and a projection π : C2 → {0}.

Both s∗ and π∗ are faithful and exact. Note that the functor π∗ is not full, because

Homcoh C2(O,O) is isomorphic to C[x, y], not C.

Now by Prop 5.4.9 in [CG97], the Euler form between pushforwards may be

calculated by the formula:

(2.2) χ(s∗ρi, s∗ρj) = HomG(Λ2 ρnat ⊗ ρi, ρj)− HomG(ρnat ⊗ ρi, ρj) + HomG(ρi, ρj).

Since G < SL(2,C), the representation Λ2 ρnat is isomorphic to the trivial represen-

tation. Hence we obtain

(2.3) χ(s∗ρi, s∗ρj) = 2 Hom(ρi, ρj)− Hom(ρnat ⊗ ρi, ρj).

That is, the Euler form on Kc(cohG C2) defines a bilinear form on K(RepG), via

the faithful, exact functor s∗, such that it coincides with equation (2.1).

Together, the following two propositions show that the Euler form is a perfect

pairing.

Proposition II.1. For any representation ρ ∈ RepG, the dual of the skyscraper

sheaf s∗ρi with respect to the Euler form is the vector bundle π∗ρi.
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Proof. All higher Ext’s between π∗ρi and s∗ρj vanish because the support of the

sheaf s∗ρj is the origin of C2, which is 0-dimensional. By [CG97] 5.4, one has the

adjunction formula for G-sheaves:

(2.4) Hom(π∗ρi, s∗ρj)
G = HomG(ρi, ρj).

These two facts imply that the π∗ρi’s and s∗ρj’s are dual, i.e.

(2.5) χ(π∗ρi, s∗ρj) = dimC HomG(ρi, ρj) = δij.

Thus π∗B := {π∗ρ1, . . . , π
∗ρn} and s∗B := {s∗ρ1, . . . , s∗ρn} are a set of dual bases

for K(cohG C2) and Kc(cohG C2), respectively.

Proposition II.2. Every G-linearized coherent sheaf on C2 has a resolution of length

at most 2 by free G-bundles, i.e. there exists an exact sequence of the form

(2.6) 0→ π∗ρ2 → π∗ρ1 → π∗ρ0 → F → 0,

for all F ∈ cohG C2, where ρ0, ρ1, ρ2 are representations of G.

Remark II.3. The analogous statement holds for any smooth variety X with G-action

satisfying condition ELFG (enough locally free G-linearized sheaves), i.e. for every

G-sheaf F there exists a G-bundle surjecting onto it.

Proof. Let C[x, y]∗G be the skew group ring. Its elements are formal sums
∑

g∈G agg,

ag ∈ C[x, y], with multiplication satisfying

(2.7) (ag)(a′g′) = a(g(a′))gg′.

A C[x, y] ∗ G-module M is a C[x, y]-module which is also a kG-module, such that

g(ax) = g(a)gx, for g ∈ G, a ∈ A, x ∈ X. One has a canonical equivalence between

the category of finitely generated C[x, y]∗G-modules and the category of G-linearized
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coherent sheaves on C2. Another basic fact is that every projective C[x, y]∗G-module

is projective (hence free) as a C[x, y]-module (see [Aus86]).

Now we reproduce the rest of the proof from [HS87], for the reader’s convenience.

Let M ∈ C[x, y]∗G-mod. There is a G-compatible epimorphism ε : M →M/mM,

where m is the maximal ideal (x, y) of C[x, y]. Since M/mM is finitely generated as

a C[x, y] ∗G-module, it is projective as a C[G]-module. Therefore ε admits a C[G]-

section j : M/mM →M.

We let H := M/mM and define δ : C[x, y] ⊗C H → M by δ(a ⊗ h) = aj(h) for

all a ∈ C[x, y] and h ∈ H. Then δ is a C[x, y]-module epimorphism and compatible

with the G-action on C[x, y] ⊗C H and M . The statement of the proposition now

follows from the Hilbert syzygy theorem.

By the above two propositions, the Euler form is a perfect pairing. Recall that

the Euler form χ(s∗ρi, s∗ρj) between skyscraper sheaves is well-defined. Thus we get

a well-defined bilinear pairing K(cohG C2)×K(cohG C2)→ Z. Note that the pairing

is defined between any two classes, with no assumption of compact support.

2.3 Invariant theory

Let A = C[x, y]G be the ring of invariants, and V = C2/G be the ADE singularity.

Let p : C2 → V be the projection.

Let M = p∗(E)G ∈ cohV be the invariant subsheaf of a G-linearized vector bundle

E ∈ cohG C2. Since G acts freely away from the origin of C2, M is locally free away

from the singular point of V.

Let U be the punctured quasicone and i : U ⊂ V be the open embedding. Let

Γ : cohV → mod A be the canonical equivalence between cohV and the category

of finitely generated A-modules.



9

An A-module M is said to be maximal Cohen-Macaulay if depthM = dimM.

In [BD08], Prop 3.12, it is shown that Γ ◦ i∗ : cohU → mod A restricts to an

equivalence between vectU, the category of vector bundles on U , and CM(A), the

category of (maximal) Cohen-Macaulay A-modules.

Let Â = CJx, yKG be the completion of A. Auslander has shown that the taking-

invariants functor pG∗ : CJx, yK−mod→ Â−mod induces an equivalence between the

full subcategory pro CJx, yK ∗G ⊂ CJx, yK ∗G−mod consisting of projective modules

and the full subcategory CM(Â) ⊂ Â−mod consisting of Cohen-Macaulay modules:

(2.8) pG∗ : pro CJx, yK ∗G ' CM(Â).

By composing the pullback π∗ : RepG → CJx, yK ∗ G with the equivalence pG∗ , we

get a faithful, exact, essentially surjective functor

(2.9) ϕ : RepG→ CM(Â).

An Â-module M is indecomposable iff End(M) is a local ring (see Prop 1.18 in

[Yos90]). This implies that Â-mod satisfies the Krull-Schmitt property, meaning,

every module has a unique decomposition into indecomposables.

Since Â-mod is Krull-Schmitt, one can define the AR quiver of CM(Â). Its ver-

tices are the indecomposable objects; and the number of arrows between two in-

decomposables Mi and Mj is the dimension of the space of irreducible morphisms

Irr(Mi,Mj) ⊂ Hom(Mi,Mj), where Irr(Mi,Mj) is the quotient of the space of non-

invertible morphisms ϕ : Mi →Mj by the subspace of ones which can be written as

a product ϕ = ϕ1 ◦ ϕ2.

Theorem II.4. [Aus86]The AR quiver of CM(Â) coincides with the quiver associated

to the McKay pairing of G.
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Theorem II.5. [AR87, KST07] The AR quiver of CM(Â) is a Dynkin diagram of

affine type ADE.

Together, these two facts constitute an independent explanation of McKay’s ob-

servation. In other words, McKay’s observation is ‘subsumed’ into the theory of CM

modules.

Remark II.6. For an irreducible representation ρ, a presentation of the module ϕ(ρ) is

known. From the explicit presentation, one can see that ϕ(ρ) is given as the cokernel

of a matrix over A, not merely Â. That is, ϕ factors through the canonical map

CM(A) → CM(Â). Recall that RepG is equivalent to the category of local systems

on U, and CM(A) is equivalent to vectU. Thus we regard ϕ as a canonical way of

associating an (algebraic) vector bundle on U to a local system on U . In Chapter III,

we will see a map that is analogous to ϕ, using the Narasimhan-Seshadri theorem,

and in Chapter IV we will study its image.

2.4 Resolution of Singularities

Let X be a smooth, quasi-projective, complex variety, with a finite subgroup of

automorphisms G < Aut(X). The G-Hilbert scheme G-HilbX is the closure of the

set of regular G-orbits in the Hilbert scheme Hilb[n] X of 0-dimensional subschemes

of length n = |G|. It comes with a tautological family X Z
poo q // G-HilbX . A

reference for these facts about G-Hilbert schemes is [Blu06].

For an abelian category A, let Db(A) be its derived category (in the sense of

[Del77], pages 262-311). The functor Φ : Db(coh G-HilbX)→ Db(cohGX) given by

the formula Φ(E) = Rp∗(Lq
∗(E)) is called the Fourier-Mukai transform, with kernel

OZ . Here Rp∗ and Lq∗ are the right and left derived functors, respectively.

The following theorem sparked a lot of excitement in the field because it holds for
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three-dimensional varieties.

Theorem II.7. [BKR01] Suppose X is a complex symplectic variety of dimension

≤ 3, and G acts by symplectic automorphims. Then Y := G-HilbX is a crepant

resolution of the categorical quotient X/G and the Fourier-Mukai transform Φ :

Db(cohY )→ Db(cohGX) is an equivalence of triangulated categories.

One specializes to the case X = C2. Let V = SpecA, where A = C[x, y]G is the

ring of invariants. Let Y → V be a minimal resolution of V . Y is a smooth variety,

birational to V , with trivial canonical bundle ωY ' O. The reduced exceptional

divisor E ⊂ Y is an ADE configuration of rational curves {Ei, i = 2, . . . , n}. The

fundamental cycle, Z, is an effective divisor, supported on E , such that if one adjoins

Z to the set {Ei, i = 2, . . . , n}, then the configuration is a Dynkin diagram of affine

type ADE.

Kapranov and Vasserot examine the functor in the opposite direction.

Theorem II.8. [KV00] Let Ψ : Db(cohG C2) → Db(cohY ) be the Fourier-Mukai

transform defined by Ψ(E) = Rq∗(Lp
∗(E))G. Then Ψ is an equivalence of categories.

Moreover, let i : Ei → Y, i = 2, . . . , n be the reduced irreducible components of

the exceptional curve E. Let Z be the fundamental cycle. Let si = s∗ρi, i = 1, . . . , n

be the irreducible 0-dimensional G-invariant sheaves supported at the origin, where

s : {0} → C2 is the inclusion, and ρ1, . . . , ρn are the irreducible representations of

G, with ρ1 the trivial representation.

Then Ψ(s1) is quasi-isomorphic to the torsion sheaf OZ, and Ψ(si) is quasi-

isomorphic to the torsion sheaf i∗OEi
(−1)[1] for i = 2, . . . , n.

Here (−1) denotes the Serre twist for OP1 , and [1] denotes the shift functor.

Since an equivalence induces an isometry on the level of K-groups, one has equal-
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ities

(2.10) χ(i∗OEi
(−1)[1], i∗OEj

(−1)[1]) = χ(si, sj) for i = 2, . . . , n, j = 2, . . . , n.

This is yet another interpretation of the McKay pairing. It shows that the Euler

characteristic between G-sheaves on C2 can be interpreted as an Euler characteristic

between sheaves on the minimal resolution, Y , and vice-versa. In this sense, McKay’s

observation is subsumed into intersection theory on Y .

Let us elaborate a bit on the previous sentence. Y is a partial compactifi-

cation of U . The boundary divisor E defines a bilinear form on the subgroup

KE(cohY ) ⊂ K(cohY ) generated by sheaves supported on E . The Euler form

K(cohY )×KE(cohY )→ Z is a perfect pairing (it is possible to show this directly,

but it also this follows from the BKR theorem and our discussion of G-sheaves on

C2). We get a well-defined pairing K(cohY ) × K(cohY ) → Z, which agrees with

the McKay pairing on K(RepG).

From an even higher vantage point: One starts with a local system on U . Then

one associates to it an algebraic vector bundle on U, by means of a partial com-

pactification of U . The compactification induces a bilinear pairing between vector

bundles on U ; therefore, it induces a bilinear pairing between local systems on U .

This is the explanation of the McKay pairing. Equivalently, one can say that the

McKay pairing on LocU , with respect to the natural representation Vnat, detects the

combinatorial structure of the partial compactification of U .



CHAPTER III

The Tpqr Correspondence

The Tpqr correspondence is a generalization of the ADE correspondence to star-

shaped graphs of type Tpqr, that is, graphs with three arms emanating from a central

vertex, of lengths p, q, r. For example, here is a picture of T237.

• • • • • • • • •

•
As in the ADE case, the word correspondence refers to the fact that the Tpqr

graph can be recovered in several ways.

3.1 Analogue of McKay’s observation

This section begins with a discussion of equivariant sheaves, derived categories of

singularities, and resolution of singularities, just as in Chapter II. Then we formulate

a conjecture which, if true, would be analogous to McKay’s observation.

3.1.1 G-sheaves on curves

Let Z be a smooth projective curve over C of genus g ≥ 2, with a finite subgroup

of automorphisms G ⊆ Aut(Z). Let us assume the quotient Z/G is isomorphic to

P1, and the quotient map Z → Z/G is ramified over three points, with ramification

13
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indices (e1, e2, e3).

The reduced preimages of the ramification points areG-invariant divisorsD1, D2, D3

on Z. The divisors D1, D2, D3 are called ground forms.

Let WDivG(Z) be the group of G-invariant divisors modulo G-invariant rational

functions. The ground forms generate WDivG(Z), and they satisfy the relations:

(3.1) e1D1 = e2D2 = e3D3.

The common value is the class of a regular orbit Dreg. WDivG(Z) is isomorphic to

the group of G-linearized line bundles, modulo G-invariant isomorphisms, i.e. we

have an isomorphism

(3.2) WDivG(Z) ' Pic(G;Z).

Our reference for all of these facts concerning ground forms is [Dol99].

Pic(G;Z) is a rank 1 abelian group. One can show, see [Dol09], that the torsion

part is isomorphic to Z/c1Z⊕ Z/c2Z, where

(3.3) c1 = gcd(e1, e2, e3), c2 = gcd(e1e2, e2e3, e3e1).

The Riemann-Hurwitz formula is

(3.4) K = −2Dreg +
∑

(ei − 1)Di

= Dreg −
∑

Di.

If one prefers, the pair (Z,G) defines an orbifold curve.

Definition III.1. A complex orbifold curve is a smooth, separated, irreducible, DM

stack, X, of dimension 1, and finite type over C, with trivial generic stabilizer.
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Following [Kre09], a compact orbifold curve X, with underlying coarse moduli

space X and orders of ramification e1, . . . , er is spherical, respectively Euclidean,

respectively hyperbolic, when the quantity

2− 2g −
r∑
i=1

ei − 1

ei

is positive, respectively zero, respectively negative, where g is the genus of X.

Let O(D) ∈ cohG Z be a G-linearized line bundle on Z. We may write D uniquely

in the form

(3.5) D = cDreg +
r∑
i=1

ciDi, where c ∈ Z, and 0 ≤ ci < ei.

Then, for any n ∈ Z, there is an isomorphism

(3.6) H0(Z,O(nD))G ' H0(P1,O(nc+
r∑
i=1

bnci
ei
c)),

where bqc denotes the round-down integral part of a rational number q ∈ Q. This

follows from the equivalence between G-sheaves on Z and parabolic sheaves on

Z/G = P1 (see [Bis97]).

Example III.2. Let D ∈ {D1, D2, D3} ⊂ DivG(Z) be one of the ground forms. Then

the space H0(Z,O(D))G is one-dimensional, because H0(Z,O(D))G is isomorphic to

H0(P1,O(b1
e
c)). Similarly, we get

(3.7) Hom(O(jDi),O((kDi))
G ' C; 0 ≤ j < k ≤ ei − 1

and

(3.8) Hom(O(jDi),O(kD`))
G = 0; for i 6= `; j = 1, . . . , ei − 1; k = 1, . . . , e` − 1.

Recall the following fact from [BD08]:
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Lemma III.3. Let A be an additive category, L an object of A and Γ = EndA(L)

its endomorphism ring. Then the functor HomA(L,−) : A → mod Γ induces an

equivalence of categories

HomA(L,−) : add(L)→ pro(Γ),

where pro(Γ) is the category of finitely generated projective right Γ-modules, and

addL is the full subcategory consisting of finite direct sums of direct summands of L.

Let L be the following G-linearized vector bundle on Z:

(3.9) L = O ⊕3
i=1

ei−1⊕
j=1

O(jDi).

The above lemma implies that addL ⊂ cohG Z is equivalent to End(L)−mod. From

equations (3.7) and (3.8), one sees that End(L) is isomorphic to the path algebra of

the following quiver Q. Hence End(L)−mod is equivalent to RepQ, the category of

finite-dimensional representations of Q.

(3.10) O(D1) // · · · // O((e1 − 1)D1)

Q = O

<<yyyyyyyyy
//

""EE
EE

EE
EE

E O(D2) // · · · // O((e2 − 1)D2)

O(D3) // · · · // O((e3 − 1)D3)

In particular, we have a fully faithful functor ϕ : RepQ ⊂ cohG Z. We would like

to suggest that this is the first part of the Tpqr-correspondence.

Remark III.4. ϕ is not essentially surjective because O(Dreg) is not contained in

addL (see [GL87]).

3.1.2 Ground forms

Next, let A = ⊕n≥0 H0(Z, ωn)G be the canonical ring of invariants of the pair

(Z,G). The surface V = SpecA is called a canonical singularity, or Fuchsian singu-
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larity, and A is called a Fuchsian ring [Loo84].

All the localizations at maximal ideals are regular except for one: A>0. It will

always be referred to as the origin, or the singular point. As in the ADE case, the

complement U = SpecA\{A>0} is called the punctured quasi-cone.

Definition III.5. The Poincaré ring is the total ring of invariants:

Aab := ⊕L∈Pic(G;Z) H0(Z,L)G.

It is graded by the abelian group Pic(G;Z).

Proposition III.6. The Poincaré ring has a uniform presentation:

Aab = C[x, y, z]/(xe1 + ye2 + ze3).

The functions x, y, and z are also called ground forms.

Remark III.7. The ring C[x, y, z]/(xe1 + ye2 + ze3) appears on page 237 of Poincaré’s

article on Fuchsian functions [Poi82]. The brilliant idea behind ground forms is

that there is a relation between invariant functions and invariant orbits. For any

G-linearized very ample line bundle L0, one has a G-invariant embedding of Z in the

projective space P(H0(L0)) ' ProjAL0 , where AL0 = ⊕n≥0 H0(Z,L0
n).

Z ↪→ ProjAL0 .

This implies that the ring of invariants AGL0
is contained in Aab as a subspace. Thus

one makes the startling observation that all the invariant functions, for all the G-

invariant embeddings of Z into a projective space, can, in principle, be written as

polynomials in the ground forms x, y, z.

Remark III.8. The notationAab is used because the complement Uab = SpecAab\(Aab)>0

is the maximal abelian, finite, unramified cover of U . It will not be crucial for us,
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but there is an exact sequence (see [Dol09])

1→ Z/kZ→ Gal(Uab/U)→ Pic(G;Z)tors → 1.

Let grmodAab be the category of modules graded with respect to the abelian

group Pic(G;Z). Let qgrAab be the quotient by the abelian subcategory of torsion

modules. The homomorphisms in qgrAab are given by

(3.11) Homqgr(M,N) = lim
→

Homgrmod(M ′, N),

where the limit is taken over all submodules M ′ ⊂M such that the quotient M/M ′

is finite dimensional.

The following proposition is the analogue of Serre’s theorem.

Proposition III.9. (see [GL87]) Let Aab = ⊕L∈Pic(G;Z) H0(Z,L)G = C[x, y, z]/(xe1+

ye2 +ze3) be the Poincaré ring of (Z,G). Then there exists an equivalence of categories

(3.12) ϕ : qgrAab → cohG Z.

Moreover, for L ∈ Pic(G;Z), let Aab(L) be the Serre twist of Aab, defined by the

formula Aab(L)N = Aab
L⊗N , where N ∈ Pic(G;Z). Then the equivalence ϕ can be

chosen such that ϕ(A(L)) is isomorphic to L, simultaneously for all L ∈ Pic(G;Z).

Similarly, the category qgrA is equivalent to cohC∗
U, and cohC∗

U is equivalent

to cohG Z. The latter equivalence may be conveniently expressed as an isomorphism

of stacks:

(3.13) [[W/C∗]/G] ' [[W/G]/C∗],

where W is the punctured cone over some very ample G-linearized line bundle on Z,

e.g. the canonical bundle, in the case when Z is not hyperelliptic.
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The morphisms in cohC∗
U are C∗-equivariant; so, for instance, cohC∗

U is not a

full subcategory of cohU. Thus, we are led to consider T+ ⊂ cohU, the subcategory

whose are objects are C∗-linearized sheaves, and whose morphisms are given by

(3.14) HomcohT+(E,F ) = HomcohU(E,F )≥0.

Here, HomcohU(E,F )≥0 is the positively graded submodule of the graded A-module

HomcohU(E,F ).

Geometrically, T+ is equivalent to the full subcategory π∗+ cohG Z ⊂ cohG T, where

π+ : T → Z is the tangent bundle of Z. Indeed, homorphisms between pullbacks are

given by the following formula:

(3.15) HomcohG T (π∗+E, π
∗
+F ) = ⊕n≥0 HomcohG Z(E,F (nK))G.

Let us fix an equivalence cohG Z ≡ qgrA. Let Ω+ : qgrA → grmodA be the

functor given by

(3.16) Ω+(E) = ⊕n≥0 H0(Z,E(nK))G.

Geometrically, Ω+ is the same as pulling back to the tangent bundle of Z, and then

taking global sections:

(3.17) Ω+(E) = H0(T, π∗+E)G.

Ω− and T− are defined similarly; Ω− is the same as pulling back to the cotangent

bundle and then taking global sections.

Now, Orlov [Orl09] shows that the derived functor RΩ+ exists and is fully faithful:

RΩ+ : Db(qgrA) ⊂ Db(grmodA).

Moreover, by examining the image of RΩ+, he obtains a fully faithful functor

(3.18) ϕ : Db(qgrA)→ Db(grmodA)/Perf .
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Here, Perf is the full triangulated subcategory generated by bounded complexes of

locally free sheaves, and the quotient q : Db(grmodA)→ Db(grmodA)/Perf is taken

in the sense of localization. The category Db(cohV )/Perf is defined for any variety

V ; it is a fundamental object of study.

Recall that we had a fully faithful functor RepQ ⊂ cohG Z. The composition of

fully faithful functors is fully faithful. Thus, there is a fully faithful functor

(3.19) RepQ ⊂ Db(grmodA)/Perf .

We would like to suggest this is the second part of the Tpqr-correspondence.

3.1.3 The K-trivial smooth surface at infinity

To physicists, Db(grmodA)/Perf is known as the category of B-branes. String

theory predicts that the category of B-branes should not change under crepant res-

olution [Asp07, BD96, Rei02]. The variety V does not admit a crepant resolution,

but there is a K-trivial, smooth surface, Y , which is birational to V.

Y is the G-Hilbert scheme of the cotangent bundle π : T ∗ → Z, where the G-action

on T ∗ is the canonical one, extending the action of G on Z.

The local coordinate ring in an affine neighborhood a point x on the zero-section

s ⊂ T ∗ is of the form C[x, y], where y is the coordinate along the fiber. Sometimes

one writes y = ∂x, but we avoid this because C[x, y] is a commutative ring; there are

no relations between x and y.

Suppose x ∈ s is a fixed point. Then the stabilizer subgroup H = Stab(x) < G is

a cyclic group, say H = Z/mZ. Let ξ be a fixed primitive m-th root of unity.

Since we are on the cotangent bundle, as opposed to the tangent bundle, the

action of G on the ring C[x, y] factors through an action of H given by the formula

(x, y) 7→ (ξx, ξ−1y).
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Thus the surface T ∗/G has 3 singular points along the curve Z/G ' P1. These

singular points are of type Aei−1, i = 1, 2, 3.

Since T ∗/G has three singular points of type Aei−1, the reduced pullback on Y of

the line Z/G ⊂ T ∗/G is a Te1,e2,e3-configuration of rational curves, E = ∪i,jEij ⊂ Y.

(3.20) E1,1 · · · E1,e1−1

E = E0,0

zzzzzzzz

DD
DD

DD
DD

E2,1 · · · E2,e2−1

E3,1 · · · E3,e3−1

Since G-acts symplectically on T ∗, we are in the situation of the BKR theo-

rem. Let Y = G-HilbT ∗, and let Z be the tautological family, with projections

T ∗ Z
poo q // Y .

By the BKR theorem, the Fourier-Mukai transform Φ : Db(cohY )→ Db(cohG T ∗)

with kernel OZ is an equivalence of categories.

Since Y is K-trivial, e.g. by the BKR theorem, all of the irreducible components

of the Te1,e2,e3-configuration E have self-intersection −2, including the central vertex.

Remark III.10. There is an alternate construction of the surface Y as an open subset

of a rational surface. Unlike the cotangent bundle construction discussed above, the

alternate construction relies on the fact that there are precisely three ramification

indices.

3.1.4 Conjecture

The three main points of the chapter thus far can be summarized as follows:

Starting from the punctured quasicone U , one encounters the Tpqr-diagram in three

ways. First, one examines the category of C∗-linearized coherent sheaves on U ,

and finds that there is a fully faithful functor RepQ ⊂ cohC∗
U, where Q is the
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quiver in equation (3.10). Second, one considers the derived category of singu-

larities, Db(grmodA)/Perf, and finds a fully faithful functor RepQ ⊂ cohC∗
U ⊂

Db(grmodA)/Perf . Third, one has the open embedding U ⊂ Y, such that the com-

plement E = Y \U is a Tpqr-configuration of rational curves.

Admittedly, one can imagine an even tighter analogy with the ADE case. However,

the point we would like to make is that there is a very glaring omission: One expects

to be able to recover the Tpqr-diagram from LocU , the category of local systems on

U .

Let Π be the fundamental group of U . By the Riemann-Hilbert correspondence,

Rep Π is equivalent to LocU.

The group Π comes with a natural embedding Π < ˜SU(1, 1), where ˜SU(1, 1)

is the universal cover of the topological group SU(1, 1) [BPR03]. Π is a cocom-

pact, discrete subgroup of ˜SU(1, 1). Composing with the covering homomorphism

˜SU(1, 1)→ SU(1, 1) yields a natural representation ρnat : Π→ SU(1, 1).

Conjecture III.11. Let Π be a cocompact discrete subgroup of ˜SU(1, 1) of signature

(0; p, q, r). Let ρnat : Π→ SU(1, 1) be the natural representation. Then there exists a

finite collection of complex representations ρ1, . . . , ρn ∈ Rep Π such that the McKay

pairing

(3.21) (ρi, ρj) = 2 dimC HomΠ(ρi, ρj)− dimC HomΠ(ρj, ρi ⊗ ρnat)

on the set {ρ1, . . . , ρn} is a Cartan matrix of type Tpqr.

One can of course make stronger conjectures by imposing additional conditions

on the representations.

An irreducible representation of Π is said to be absolutely irreducible if it remains

irreducible when restricted to any subgroup of finite index.
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Conjecture III.12. One may choose the representations appearing in Conjecture

III.11 to be unitary and absolutely irreducible.

3.2 The Narasimhan-Seshadri theorem

Recall that in the ADE correspondence, there is a procedure that associates an

indecomposable CM A-module to an irreducible local system on U . The idea is to

generalize that procedure to the Fuchsian case, then describe which CM A-modules

arise from absolutely irreducible local systems. One of our main tools for doing this

is the Narasimhan-Seshadri (NS) theorem.

3.2.1 Classical case

We begin with the statement of the original NS theorem.

Theorem III.13. [NS64] Let Z be a smooth projective curve over C. Let π1(Z)

be the fundamental group of Z, acting on the hyperbolic plane D by means of the

natural representation ρnat : π1(Z) → SU(1, 1). Then the map Rep π1(Z) → cohZ

given by E 7→ (D ×C E)π1(Z) establishes a natural bijective correspondence between

(isomorphism classes of) representations of π1(Z), and vector bundles on Z of degree

zero. Under this correspondence, unitary representations correspond to semistable

bundles, and irreducible unitary representations correspond to stable bundles.

More generally, there is a natural correspondence between stable bundles of rank n

and irreducible unitary representations of π
(n)
1 (Z), where π

(n)
1 (Z) is a discrete group,

acting effectively and properly on a simply connected Riemann surface Y with quo-

tient Z such that Y → Z is ramified over a single point z ∈ Z, with order of

ramification n.

The degree zero condition is very interesting. Recall that in the category cohZ,
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there is a non-split extension Ext1(O(−K),O) ' H0(O)∨ ' C called the Euler

sequence:

(3.22) 0→ O → Vnat → O(−K)→ 0.

In [Ati57], it is shown that a vector bundle E on Z is of degree zero if and only if

the Euler sequence splits after tensoring with E.1

Stable bundles generate the Grothendieck group of cohZ in finitely many steps.

Let us explain what this means. First, all objects of the derived category of Z are

quasi-isomorphic to finite length complexes of coherent sheaves. Second, since Z is

smooth, all coherent sheaves have a finite length resolution by vector bundles. Third,

it is a standard fact (see [LP97]) that every vector bundle admits a flag such that the

indecomposable components of the associated graded bundle are semistable. Fourth,

every semistable bundle admits a flag such that the indecomposable components

of the associated graded bundle are stable. Putting all four pieces of information

together, one sees that stable bundles generate the Grothendieck group of cohZ.

It is also known that every vector bundle admits a full flag, i.e. a filtration by line

bundles; hence, the image of PicZ under the natural inclusion PicZ ⊂ K(cohZ) is

a spanning set for K(cohZ).

Note: Line bundles on Z of degree zero correspond to one-dimensional irreducible

unitary representations of π1(Z), i.e. characters of π1(Z).

3.2.2 Equivariant case

In this section we discuss the equivariant version of the Narasimhan-Seshadri the-

orem, following [Dol99, Dol09]. Another good reference for this material is [BPR03].

1There is a very interesting cohomological characterization of semistable bundles as well: Let E be a coherent
sheaf on Z. Then E is a semi-stable vector bundle if and only if there is a sheaf 0 6= F ∈ cohZ such that
H0(E ⊗ F ) = H1(E ⊗ F ) = 0 (see [HP05]).
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Let Γ ⊂ SU(1, 1) be the orientation preserving subgroup of the reflection group

of a hyperbolic triangle with angles (π/p, π/q, π/r). Γ is an index 2 subgroup of the

reflection group, for the product of reflections in all three sides does not preserve the

orientation of the triangle. The triple (p, q, r) is called the signature of Γ. Sometimes

one also writes (0; p, q, r) to signify that the genus of the curve D/Γ ' P1 is zero.

Let π1(Z) be a surface subgroup of Γ, equal to the fundamental group of a Rie-

mann surface Z := D/π1(Z), where D ' H ∪ Q ∪ ∞ is the unit disk model of the

compactification of the upper half plane obtained by adjoining Q along the real line,

and adjoining a point at infinity.

LetG = Γ/π1(Z) be the quotient of Γ by π1(Z). G is a finite group acting faithfully

on Z by automorphisms.

Let g ≥ 2 be the genus of Z. Let m be a positive integer dividing 2g− 2. Let mG

be a central extension of G by Z/mZ such that the subgroup Z/mZ acts trivially on

Z

(3.23) 1→ Z/mZ→ mG→ G→ 1.

Let mΓ ⊂ SU(1, 1) be the double extension of π1(Z) corresponding to the (un-

faithful) action of mG on Z. As in [Dol09], mΓ is the image of the class of mG under

the inflation map H2(G,Z/mZ)→ H2(Γ,Z/mZ). We have an exact sequence

(3.24) 1→ Z/mZ→ mΓ→ Γ→ 1.

Let Π be the preimage of Γ in the universal cover of SU(1, 1). The group Π is an

infinite cyclic extension of Γ.

(3.25) 1→ Z→ Π→ Γ→ 1.

This is the analogue of the extension 1→ Z/2Z→ SL(2,C)→ PSL(2,C)→ 1. The

group Π is analogous to a binary polyhedral group.
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Π is also an infinite cyclic extension of mΓ:

(3.26) 1→ mZ→ Π→ mΓ→ 1.

Representations of Π which factor through some such mΓ are said to be of level

m (more precisely: ‘level at most m’, since we allow for the possibility of factoring

through some smaller nΓ, n < m.)

Recall that absolutely irreducible representations of Π are representations which

are a) irreducible and b) their restriction to any subgroup of finite index remains

irreducible.

A G-linearized bundle E is said to be G-stable if every G-linearized subbundle

F ⊂ E has smaller slope, i.e. degF/ rankF < degE/ rankE. In general, G-stability

is a weaker condition than stability, because in G-stability, one only considers G-

linearized subbundles.

Proposition III.14. (Equivariant NS, Part 1) The natural map Rep Γ → cohG Z

given by E 7→ (D×CE)π1(Z) establishes a bijection between (isomorphism classes of)

representations of Γ, and G-linearized bundles on Z of degree zero. Under this corre-

spondence, unitary representations correspond to semistable bundles, and irreducible,

unitary representations correspond to G-stable bundles.

By the classical NS theorem, unitary representation of Γ such that their restriction

to π1(Z) remains irreducible define stable bundles on Z. This is the idea behind the

following, stronger version of the equivariant NS theorem.

Proposition III.15. (Equivariant NS, Part 2) There is a natural bijection between

irreducible, unitary representations of mΓ and mG-stable mG-linearized degree zero

bundles on Z. Under this correspondence, unitary representations of mΓ which are
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absolutely irreducible as representations of Π correspond to mG-linearized degree zero

bundles on Z which are stable in the usual sense.

For instance, G-linearized line bundles of degree zero correspond to irreducible

characters of Γ.

Let us now specialize to the case when Z is Klein’s quartic curve, and G =

PSL(2,F7). In this case, the group of G-invariant line bundles is the same as the

group of SL(2,F7)-linearized line bundles. We write SL(2,F7) = 2G, because there

is an extension 1→ Z/2Z→ SL(2,F2)→ PSL(2,F7)→ 1.

Specializing to the (2, 3, 7)-case, one has the following proposition.

Proposition III.16. Let Z be Klein’s quartic curve, and G = PSL(2,F7). Let Π be

the fundamental group of the punctured quasicone U canonically associated to (Z,G).

Then there is a natural bijective correspondence between (isomorphism classes of)

G-invariant, stable vector bundles on Z of degree zero, and absolutely irreducible,

unitary representations of Π.

To summarize: Starting with an absolutely irreducible, unitary local system on

the punctured quasicone U , the equivariant Narasimhan-Seshadri theorem associates

to it an (algebraic) vector bundle on U , linearized with respect to a potentially

unfaithful C∗-action on U , such that the corresponding bundle on [U/C∗] is stable

in a very strong sense.

There are many questions one can ask at this point. For instance, the vector

bundle on U comes with a canonical extension to Y , the smooth compactification

of U at infinity. By Deligne’s theory (see [Bry96]), such an extension corresponds

to a boundary divisor on Y . The conjecture in [Dol09] asks whether there exist

finitely many such representations, such that the Chern classes of the corresponding
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vector bundles on Y are dual to the reduced, irreducible components of the boundary

divisor E ⊂ Y.

Another natural question goes as follows. Let CM(A) be the stable category,

whose objects are CMA-modules, and whose morphisms are given by HomCM(M,N) =

HomA(M,N)/P , where P is the subspace of morphisms factoring through a projec-

tive A-module.

We have just seen that the NS theorem associates a vector bundle on U to a

unitary local system on U . Composing with the natural functor CM(A)→ CM(A),

we get a map

(3.27) ϕ : Repunitary Π→ CM(A).

We want to describe the image of ϕ. Let us say a CM A-module is absolutely irre-

ducible if it is of the form ϕ(ρ), where ρ is an absolutely irreducible unitary repre-

sentation.

Conjecture III.17. There exists a finite collection of absolutely irreducible CM A-

modules whose incidence graph with respect to the Euler characteristic pairing on

CM(A) is a star-shaped graph of type Tpqr.

Remark III.18. The Euler pairing on CM(A) is finite. In fact, CM(A) is a Calabi-Yau

category of dimension 1 (see [BIKR08]). It is not known whether the Euler form on

CM(A) restricted to the image of ϕ agrees with the McKay pairing on (Rep Π, ρnat).

3.3 The partial sum of twists of a G-invariant divisor

In this section, we will discuss a technique for producing CM A-modules which

seem like they might be absolutely irreducible, i.e. they are candidates. Several of
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our candidate CM A-modules will turn out to be absolutely irreducible, in Chapter

IV.

The idea is to start with coherent sheaves on the K-trivial surface, Y := G-HilbT ∗.

In analogy with the ADE case, we consider torsion sheaves of the form OEi
, where

Ei is an irreducible component of the boundary curve E . We may take their second

syzygies on Y :

(3.28) 0→ P2 → P1 → P0 → OEi
→ 0 ∈ cohY.

In an affine open subset containing the arm of the boundary curve E to which Ei

belongs, this minimal resolution restricts to a resolution of OEi
which may not be

minimal, but this is Ok.

Let U = Y \E be the complement of the boundary curve. The P ’s restrict to

non-trivial vector bundles on U .

We ask whether the vector bundle P2|U admits a connection such that the sheaf

of horizontal sections is a local system on U corresponding to an irreducible unitary

representation of Π = π1(U).

Observe that Ω+(O(D)) cannot be a torsion A-module, by equation (3.6) on page

15 (recall that Ω+ is defined on page 19). Also note that torsion sheaves supported on

the zero section of the tangent bundle are not of the form π∗+F for any F ∈ cohZ.

On the other hand, Ω−(O(D)) is a torsion A-module, by equation (3.6). Torsion

sheaves supported on the zero section of the cotangent bundle are not of the form

π∗−F for any F ∈ cohZ.

Such observations lead us to consider A-modules of the form Ω+(O(D)). These are

the modules we will be studying Chapter IV. Let us restart and precisely formulate

this idea.
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Let Z be a smooth projective curve and let D be an effective G-invariant divisor

on Z of degree d. Let C≥d ⊂ Zn be the positive cone given by

(3.29) C≥d = Z≥0{O(E) ∈ Pic(G;Z)| degE − degD ≥ 0}.

For a fixed D, let I be the ideal of the Poincaré ring Aab given by

(3.30) I = {f ∈ Aab| deg(f) ∈ C≥d},

where deg(f) refers to the Pic(G;Z)-grading on Aab.

I is indeed an ideal. Since Aab is noetherian, I is finitely generated.

In the 237 case, A is equal to Aab, so I is the same as pulling back to the tangent

bundle of Z and then taking G-invariant global sections:

(3.31) I = Ω+(D) = H0(T, π∗+O(D))G ∈ grmodA.

Returning to the general (p, q, r)-case, let syz2(I) be the second syzygy of I:

(3.32) 0→ syz2(I)→ F1 → F0 → I → 0.

Here P1 and P0 are free graded Aab-modules, and this sequence is Pic(G;Z)-graded.

Now composing with the fundamental sequence 0→ I → Aab → Aab/I → 0, we

obtain an exact sequence:

(3.33) 0→ syz2(I)→ F1 → F0 → Aab → Aab/I → 0.

Let j : Uab → V ab be the inclusion of the punctured quasi-cone. Applying j∗ we

get an exact sequence of vector bundles on U :

(3.34) 0→ j∗ syz2(I)→ j∗F1 → j∗F0 → O → 0.

We are asking whether j∗ syz2(I) admits a connection such that the sheaf of horizon-

tal sections corresponds to an irreducible unitary representation of [Π,Π] = π1(Uab).
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Applying the exact functor π : grmodA → qgrA to equation (3.33), we get an

exact sequence of G-linearized vector bundles on Z:

(3.35) 0→ π syz2(I)→ πF1 → πF0 → πA→ 0.

The simplest possible example is the natural action of the group Z/2Z on C[x, y].

In that case, A = C[x, y]Z/2Z is isomorphic to the ring C[u, v, w]/(u2 + v2 +w2), with

grading deg(u, v, w) = (1, 1, 1). Let m be the maximal ideal A>0. One can find a

presentation of m.

A>0 = coker


v w 0 u

−u 0 w v

0 −u −v w

 .

One can also find a presentation of the kernel of the above matrix, either by hand

or using a computer.

syz2A>0 = coker



−w v −u 0

v w 0 −u

−u 0 w −v

0 u v w


.

The map A4 → A given by the vector (w,−v, u, 0) defines an exact sequence

(3.36) 0→ A(−1)→ syz2A>0 → A>0 → 0

Let k = A/A>0 be the skyscraper sheaf of the singular point. Composing with the

fundamental sequence 0→ A>0 → A→ k → 0 we get an exact sequence:

(3.37) 0→ A(−1)→ syz2A>0 → A→ k → 0.

Applying Serre’s theorem, we have an exact sequence of vector bundles on P1:

(3.38) 0→ O(−2)→ π syz2A>0 → O → 0.
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Tensoring with O(2) yields the Euler sequence:

(3.39) 0→ O → π syz2A>0(2)→ O(2)→ 0.

In short, the natural representation Vnat of G = Z/2Z can be obtained as the second

syzygy of A>0, up to a twist.

We will carry out a similar procedure in the case (p, q, r) = (2, 3, 7).



CHAPTER IV

The Case (p, q, r) = (2, 3, 7)

We now specialize to the case when the signature of the triangle group Γ <

SU(1, 1) is (0; 2, 3, 7).

4.1 Klein’s quartic

For the pair (Z,G), one may take

(4.1) Z = Proj C[X, Y, Z]/(X3Y + Y 3Z + Z3X),

and G = PSL(2,F7). The curve Z is lovingly known as Klein’s quartic. A great

deal of things are known about Klein’s quartic [Lev99], therefore it is a good testing

ground.

One important property is Pic(G;Z) ' Z. This is actually true whenever the

weights (p, q, r) are coprime, by equation (3.3). Moreover, in the 237 case, the

canonical bundle ω generates Pic(G;Z). This is not always true, even when the

weights are coprime. For example, in the case (2, 3, 11), the class of ω is divisible by

5 (see [Dol99]).

Let A = Aab = C[X, Y, Z]/(X3Y + Y 3Z + Z3X)G be the ring of invariants of the

canonical ring of Z. We have a canonical isomorphism

(4.2) A = ⊕n≥0 H0(O(nK))G = C[x, y, z]/(x7 + y3 + z2).

33
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This is a very natural Z-grading on A. As the relation must be homogeneous, one

sees that the weights of the variables are deg(x, y, z) = (6, 14, 21). Using the relations

e1D1 = e2D2 = e3D3 and the Riemann-Hurwitz formula, one can easily see there are

relations D1 = 6K,D2 = 14K,D3 = 21K. This is a consistency check. The ground

forms x, y, z are generators of H0(D1)G,H0(D2)G, and H0(D3)G, respectively.

Let 2G = SL(2,F7) and G = PSL(2,F7). Let λ be the 2G-linearized line bundle

on Z which generates the G-invariant Picard group. Let R = C[X, Y, Z]/(X3Y +

Y 3Z+Z3X) be the canonical ring of Z, where X, Y, Z are generators of V+, the three

dimensional irrep representation of G, which is equal to the positive eigenspace of

the seven-dimensional irrep V of 2G.

Remark IV.1. With the grading (12, 28, 42), qgrA is equivalent to the category of

SL(2,F7)-linearized bundles on Z. Since every PSL(2,F7)-invariant sheaf admits an

SL(2,F7)-linearization, qgrA is equivalent to the category of PSL(2,F7)-invariant

sheaves on Z. However, for consistency, we will always stick with the grading

(6, 14, 21).

Let us familiarize ourselves with the notation by performing some elementary, yet

interesting calculations with the tensor product structure of the group K(cohG Z).

By simple arithmetic we get

(4.3) [6K]3[14K] + [14K]3[−21K] + [−21K]3[6K] = [32K] + [21K] + [−57K].

Applying the group isomorphism ϕ : K(cohG Z) ' Z⊕ Pic(G;Z), we obtain

(4.4) ϕ([32K] + [21K] + [−57K]) = (3[O], [(32 + 21− 57)K]) = (3[O], [−4K]).

Since [6K][14K][−21K] = [(6 + 14 − 21)K] = [−K], we have the relation [−4K] =

([6K][14K][−21K])4.
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4.2 Computations with Macaulay2

The computer algebra program Macaulay2 can be used to compute syzygies of

finitely generated, graded A-modules. This is the new part of the thesis, so we

carefully explain the procedure again.

A≥d is by definition the ideal generated by all elements f ∈ A such that deg(f) ≥

d.

For any n ∈ Z, the graded A-module A(n) is defined by A(n)i = An+i. For

example, A(−6) is isomorphic to the ideal (x) ⊂ A.

Observe that A>d is isomorphic to A>d+1, as a graded A-module, for

d ∈ {6, 12, 18, 24, 30, 36, 14, 28, 21, 42}; i.e. Ad+1 is zero for these d’s.

The second syzygy of A≥d fits into an exact sequence:

(4.5) 0→ syz2A≥d → F1 → F0 → A≥d → 0.

Here the F ’s are free graded A-modules of the form

(4.6) F1 = ⊕iA(−b1,i), F0 = ⊕jA(−b0,j).

The b’s are strictly positive integers, because the generators of the ideal A≥d are in

positive degrees, and the resolution is assumed to be minimal.

Combining with the fundamental sequence 0→ A≥d → A→ A/A≥d → 0, we get

an exact sequence:

(4.7) 0→ syz2A≥d → F1 → F0 → A→ A/A≥d → 0.

Applying the exact functor π : grmodA → qgrA kills the torsion module; whence,

we have an exact sequence:

(4.8) 0→ π syz2A≥d → πF1 → πF0 → πA→ 0.
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Let ϕ : qgrA → cohG Z be the equivalence of categories such that ϕ(A(n)) =

O(nK).

Applying ϕ, we arrive at an exact sequence of G-bundles on Z:

(4.9) 0→ ϕπ syz2A≥d → ϕπF1 → ϕπF0 → ϕπA→ 0.

In particular, on the level of the K-group,

Proposition IV.2. The class of ϕπ syz2A≥d in K(cohG Z) is given by

(4.10) [ϕπ syz2A≥d] =
∑
i

[O(−b(1,i)K)]−
∑
j

[O(−b(0,j)K)] + [O],

where all the b’s are positive.

Remark IV.3. The Grothendieck group K(cohG Z) does not capture all the informa-

tion regarding stability, i.e. there can two bundles with the same class in the K-group

one of which is stable and the one not. We will address this point in Section 4.4.

The following very simple program finds the generators of A up to degree 84, then

truncates that to get generators of the ideals A[d,84] and A[d+1,84]. Here A[d,84] is the

ideal generated by all elements f ∈ A such that d ≤ deg f ≤ 84.

Program: geqIdeals

start

A= ZZ/5857[x,y,z,Degrees=>{6,14,21}]/(xˆ7+yˆ3+zˆ2)

d = 7

I = mingens ideal for i from d to 84 list basis(i,A)

– going to find 0 -> M -> F1 -> F0 -> I -> 0

F0 = (degrees I) 1

output: (12, 14, 21)
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syz I;

F1 = degrees source syz I

output: ( 26, 33, 35, 42)

M = presentation ker syz I

output: M = coker



z y2 x5 0

y −z 0 x5

x2 0 −z −y2

0 −x2 y −z


RankM = #F1 - #F0 +1

output: RankM = 4 - 3 +1 = 2.
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The results of running program geqIdeals for d ∈ {7, 13, 19, 25, 31, 37, 15, 29, 22, 43}

are displayed below.

The ideals are:

d A[d,84]

7 (x2, y, z)

13 (y, x3, z)

19 (xy, z, x4, y2)

25 (x2y, xz, y2, x5, yz)

31 (x3y, x2z, xy2, yz, x6, z2)

37 (x4y, x3z, x2y2, xyz, z2, y3, y2z)

15 (x3, xy, z, y2)

29 (x5, x3y, x2z, xy2, yz, z2)

22 (x4, x2y, xz, y2, yz)

43 (x5y, x4z, x3y2, x2yz, xz2, xy3, y2z, yz2)
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The Betti numbers are:

d (F0, F1)

7 ((12, 14, 21), (26, 33, 35, 42))

13 ((14, 18, 21), (32, 35, 39, 42))

19 ((20, 21, 24, 28), (34, 38, 41, 42, 45, 49))

25 ((26, 27, 28, 30, 35), (40, 41, 44, 47, 48, 49, 51, 56))

31 ((32, 33, 34, 35, 36, 42), (46, 47, 48, 50, 53, 54, 55, 56, 57, 63))

37 ((38, 39, 40, 41, 42, 42, 49), (52, 53, 54, 55, 56, 59, 60, 61, 62, 63, 63, 70))

15 ((18, 20, 21, 28), (32, 34, 39, 41, 42, 49))

29 ((30, 32, 33, 34, 35, 42), (44, 46, 47, 48, 51, 53, 54, 55, 56, 63))

22 ((24, 26, 27, 28, 35), (38, 40, 41, 45, 47, 48, 49, 56))

43 ((44, 45, 46, 47, 48, 48, 49, 56), (58, 59, 60, 61, 62, 62, 65, 66, 67, 68, 69, 69, 70, 77))

The matrices are:

syz2A[7,84] = coker



z y2 x5 0

y −z 0 x5

x2 0 −z −y2

0 −x2 y −z



syz2A[13,84] = coker



z x4 y2 0

x3 −z 0 y2

y 0 −z −x4

0 −y x3 −z
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syz2A[19,84] = coker



z 0 y2 0 x3y x6

0 z x4 0 −y2 −x3y

y x3 −z 0 0 0

0 0 xy z x4 −y2

0 −y 0 x3 −z 0

x 0 0 −y 0 −z



syz2A[25,84] = coker



z 0 0 y2 0 x5 x3y 0

0 z x4 0 y2 0 0 0

0 x3 −z 0 0 0 −y2 0

y 0 −x3 −z 0 0 0 x5

0 y 0 0 −z 0 x4 0

x2 0 0 0 xy −z 0 −y2

0 0 y 0 −x3 0 −z 0

0 −x 0 x2 0 −y 0 z
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syz2A[31,84] = coker



z 0 0 0 y2 0 x5 0 x3y 0

0 z 0 x4 0 y2 0 0 0 0

0 0 z 0 x2y 0 −y2 0 x5 0

0 x3 0 −z 0 0 0 0 −y2 xy2

y 0 0 −x3 −z 0 0 x4 0 0

0 y 0 0 0 −z 0 0 x4 −x5

x2 0 −y 0 0 0 −z 0 0 0

0 −x2 0 0 x3 0 −xy z 0 −y2

0 0 x2 y 0 0 0 −xy −z 0

0 0 −x 0 0 −x2 0 y 0 z



syz2A[37,84] = coker



z 0 0 0 0 y2 0 x5 0 x3y 0 0

0 z 0 0 x4 0 y2 0 0 0 0 0

0 0 z 0 0 x2y 0 −y2 0 x5 0 0

x3 0 0 z 0 0 x2y 0 y2 0 0 x6

0 x3 0 0 −z 0 0 0 0 0 y2 0

y 0 0 0 −x3 −z 0 0 −x4 0 0 x3y

0 y 0 0 0 0 −z 0 0 0 −x4 0

x2 0 −y 0 0 0 0 −z 0 0 0 0

0 −x2 0 y 0 x3 0 0 −z 0 0 0

0 0 x2 0 y 0 0 0 xy −z 0 −y2

0 0 0 0 y 0 −x3 0 0 0 z 0

0 0 0 x 0 0 0 x2 0 y y −z
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syz2A[15,84] = coker



z 0 y2 x5 0 x4y

0 z x2y −y2 0 x6

y 0 −z 0 x4 0

x2 −y 0 −z 0 0

0 0 −x3 xy −z y2

0 x 0 0 −y −z



syz2A[29,84] = coker



z 0 0 0 y2 x5 0 x3y 0 0

0 z 0 0 x2y −y2 0 x5 0 0

x3 0 z 0 0 0 y2 0 x5 0

0 0 0 z x4 −x2y 0 −y2 0 0

y 0 0 x3 −z 0 0 0 0 0

x2 −y 0 0 0 −z 0 0 0 0

0 0 y 0 x3 0 −z 0 0 x5

0 x2 0 −y 0 0 0 −z 0 0

0 0 x2 0 0 x3 0 xy −z −y2

0 0 0 −x 0 0 −x2 0 y −z



syz2A[22,84] = coker



z 0 x4 y2 0 0 0 0

0 z 0 x2y y2 0 x5 0

x3 0 −z 0 0 y2 0 0

y 0 0 −z 0 −x4 0 0

−x2 y 0 0 −z 0 0 x5

0 0 −y x3 0 −z 0 0

0 x2 0 0 0 xy −z −y2

0 0 −x 0 −x2 0 y −z
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syz2A[43,84] =

coker



z 0 0 0 0 0 y2 0 x5 0 0 x3y 0 0

0 z 0 0 x4 0 0 y2 0 0 0 0 0 0

0 0 z 0 0 0 x2y 0 −y2 0 0 x5 0 0

x3 0 0 z 0 0 0 x2y 0 y2 0 0 x5 0

0 x3 0 0 −z 0 0 0 0 0 y2 0 0 0

0 0 0 0 0 z x4 0 −x2y 0 0 −y2 0 0

y 0 0 0 0 x3 −z 0 0 0 0 0 0 0

0 y 0 0 0 0 0 −z 0 0 −x4 0 0 0

x2 0 −y 0 0 0 0 0 −z 0 0 0 0 0

0 −x2 0 y 0 0 x3 0 0 −z 0 0 0 x5

0 0 0 0 −y 0 0 x3 0 0 −z 0 0 0

0 0 x2 0 0 −y 0 0 0 0 0 −z 0 0

0 0 0 x2 0 0 0 0 x3 0 xy xy −z −y2

0 0 0 0 −x −x 0 0 0 −x2 0 0 y −z
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The ranks of these vector bundles are:

d r(d) = rank syz2A[d,84] = #F0−#F1 + 1

7 2

13 2

19 3

25 4

31 5

37 6

15 3

29 5

22 4

43 7

We display the ranks in a Dynkin diagram according to the following ordering:

r(15) r(29) r(43) r(37) r(31) r(25) r(19) r(13) r(7)

r(22)

Ranks:

3 5 7 6 5 4 3 2 2

4
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We also run the program geqIdeals for the list {6, 12, 18, 24, 30, 36, 14, 28, 21, 42}.

This time we only report the ideals and the ranks:

d A[d,84] rank syz2A[d,84]

6 (x, y, z) 2

12 (x2, y, z) 2

18 (x3, xy, z, y2) 3

24 (x4, x2y, xz, y2, yz) 4

30 (x5, x3y, x2z, xy2, yz, z2) 5

36 (x6, x4y, x3z, x2y2, xyz, z2, y2z) 6

14 (y, x3, z) 2

28 (y2, x5, x3y, x2z, yz) 4

21 (z, x4, x2y, y2) 3

42 (z2, y3, x5y, x4z, x3y2, x2yz, y2z) 6

2 4 6 6 5 4 3 2 2

3
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4.3 Data analysis

There is a lot of data to comment on! Therefore let us begin with the rank two

bundles syz2A[7,84] and syz2A[13,84].

Proposition IV.4. The following matrix defines a degree zero G-invariant stable

bundle E on Klein’s quartic curve, fitting into an exact sequence

(4.11) 0→ O(−5λ)→ E → O(5λ)→ 0,

where λ is the unique G-invariant line bundle class satisfying λ2 ' ω.

(4.12) syz2A[7,84] = coker



z y2 x5 0

y −z 0 x5

x2 0 −z −y2

0 −x2 y −z


.

Proof. This matrix defines a homogeneous mapA(−21)⊕A(−28)⊕A(−30)⊕A(−37)→

A(0) ⊕ A(−7) ⊕ A(−9) ⊕ A(−16). Let s1, . . . , s4 be the canonical generators of the

cokernel of this map. The columns of the matrix are homogeneous relations among

s1, . . . , s4. To aid the reader in verifying these statements, we write the degrees in a

matrix all by themselves:

(4.13)



21 28 30 0

14 21 0 30

12 0 21 28

0 12 14 21


The choice of the grading is not unique. We now shift by an overall factor, to

obtain (6, 13, 15, 22) for the target and (27, 34, 36, 43) for the source:

(4.14) A(−27)⊕A(−34)⊕A(−36)⊕A(−43)→ A(−6)⊕A(−13)⊕A(−15)⊕A(−22).
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Increasing the degrees of the module by 6 corresponds to tensoring with O(−6K) on

the curve Z.

The map ϕ : syz2A[7,84] → A(−1) given by

(4.15) (s1, s2, s3, s4) 7→ (0,−x2, y, z)

is well-defined, because the relations go to zero. It is also homogeneous (e.g. s2 and

x2 are both in degree 13). Note: we are regarding A(−1) as an A-module, not a ring.

The image of ϕ is the submodule (−x2, y, z) ⊂ A(−1). The cokernel of ϕ is the

torsion module T := C1⊕Cx, with degrees 1, 7. The kernel of ϕ is the submodule of

syz2A[7,84] generated by s1; it is a free module isomorphic to A(−6). Thus we have

an exact sequence

(4.16) 0→ A(−6)→ syz2A[7,84] → A(−1)→ T → 0.

Applying π : grmodA→ qgrA kills the torsion module T .

(4.17) 0→ O(−6K)→ π syz2A[7,84] → O(−K)→ 0.

One of the special properties of (2,3,7) is that there exists a unique, G-invariant

(but not G-linearized) theta characteristic, i.e. a line bundle class λ such that λ2 ' ω.

In terms of λ, the sequence reads

(4.18) 0→ O(−12λ)→ π syz2A[7,84] → O(−2λ)→ 0.

Tensoring with 7λ, we get an exact sequence

(4.19) 0→ O(−5λ)→ π syz2A[7,84](7λ)→ O(5λ)→ 0.

The degree of the central term E := π syz2A[7,84](7λ) is zero.
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As for E being a stable bundle, recall that a bundle is said to be stable if

degE ′/ rankE ′ < degE/ rankE for every subbundle E ′ ⊂ E.

Suppose E is not stable. Then there is a maximal destabilizing line bundle, which

is unique [Ses82] Prop 2, hence it must be G-invariant, so it is of the form λa, for

some a ≥ 0. Applying Hom(λa,−)G, one has a long exact sequence in G-invariant

cohomology:

(4.20) 0→ H0(λa, λ−5)G → H0(λa, E)G → H0(λa, λ5)G → H1(λa, λ−5)G → . . .

The first term H0(λa, λ−5) is zero because the degree of λ−5−a is less than zero. So

if there was a destabilizing subbundle, then H0(λa, λ5)G would be nonzero for some

a ≥ 0.

The only a’s to check are 0, . . . , 5. For a even, the space H0(λ5−a)G is empty,

because λ (hence λodd) is SL(3,F7)-linearized but not PSL(2,F7)-linearized, i.e. the

line bundle λ is not represented by a G-invariant divisor.

For a = 1, 3, we get H0(K)G = A1 = 0 and H0(2K)G = A2 = 0, respectively, since

λ2 = K.

As for a = 5, we have dimC H1(λ5, λ−5)G = dimC H0(6K)G by Serre duality. Since

H0(6K)G = A6 is non-zero (spanned by x), the extension 0 → λ−5 → E → λ5 → 0

does not split. This implies that the map ϕ : H0(λ5, λ5)G → H1(λ5, λ−5)G from the

long exact sequence is nonzero, because, by definition, it is cupping with the class of

the extension. Thus H0(λ−5, E)G is zero.

We have arrived at a contradiction; therefore, a destabilizing subbundle cannot

exist.

One may also consult [Dol99], where it is shown that the bundle E(−5,5) is stable

using different techniques.
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Let us further study the nonsplit G-invariant sequence

(4.21) 0→ O → E → O(5K)→ 0.

Tensoring with 2K we get

(4.22) 0→ O(2K)→ E(2K)→ O(7K)→ 0.

Now let us pull this sequence back to the tangent bundle π+ : T → Z. Equivalently,

we pull it back to the subcategory T+ ⊂ cohU. Since π∗+ is exact, we get an exact

sequence:

(4.23) 0→ π∗+O(2K)→ π∗+E(2K)→ π∗+O(7K)→ 0.

Now we take the long exact sequence in G-invariant cohomology:

(4.24) 0→ H0(π∗+O(2K))G → H0(π∗+E(2K))G → H0(π∗+O(7K))G →

H1(π∗+O(2K))G → H1(π∗+E(2K))G → H1(π∗+O(7K))G → 0.

To compute cohomology on T , recall that we use the formula:

(4.25) Hk(π∗+F) = ⊕n≥0 Hk(F(nK))G.

Furthermore, recall that a version of Serre duality holds in the category cohG Z :

(4.26) H1(F)G ' (H0(F(K))∨)G ' (H0(F(K))G)∨.

Indeed, the first isomorphism follows from Serre duality in cohZ, and the second

isomorphism follows from the fact that a finite dimensional representation of G is

trivial if and only if its dual representation is trivial.

The term H0(π∗+O(2K))G is canonically isomorphic toA>0(2). The term H0(π∗+O(7K))G

is canonically isomorphic to A≥7(7). The term H1(π∗+O(2K)))G is zero, by Serre du-

ality. Hence we get a short exact sequence in grmodA:

(4.27) 0→ A>0(2)→ H0(π∗+E(2K))G → A≥7(7)→ 0.
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Recall that one has the Euler sequence:

(4.28) 0→ O → Vnat → O(−K)→ 0,

corresponding to the generator of H1(K)G ' (H0(O)G)∨ = A∨0 . Caution: For an

A-module M , the module M∨ := HomC(M,C) is not to be confused with M∗ :=

HomA(M,A).

Tensoring with K, then applying π∗− to the Euler sequence yields an exact se-

quence:

(4.29) 0→ H1(π∗−O(K))G → H1(π∗−Vnat(K))G → H1(π∗−O)G → 0.

This yields an exact sequence of graded A-modules:

(4.30) 0→ A>0(2)∨ → H1(π∗−Vnat(K))G → A>0(1)∨ → 0.

The functor HomC(−,C) is exact, so we get

(4.31) 0→ A>0(1)→ (H1(π∗−Vnat)
G)∨ → A>0(2)→ 0.

Putting the two short exact sequences (4.27) and (4.31) together, we arrive at a long

exact sequence in grmodA:

(4.32) 0→ A>0(1)→ (H1(π∗−Vnat)
G)∨ → H0(π∗+E(2K))G → A≥7(7)→ 0.

Caution: this does not necessarily imply that syz2(A≥7(7)) is isomorphic to A>0(1),

because the two central terms may not be projective modules.

Proposition IV.5. The ideal (y, x3, z) defines a G-invariant, degree zero stable bun-

dle on Z fitting into an exact sequence 0→ O(λ−11)→ E → O(λ11)→ 0.
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(4.33) syz2A[13,84] = coker



z x4 y2 0

x3 −z 0 y2

y 0 −z −x4

0 −y x3 −z


Proof. The grading data of the matrix is (6, 9, 13, 16). The map cokerM → A(5)

defined by (s1, . . . , s4) 7→ (0, y, x3, z) defines an exact sequence

(4.34) 0→ O(−6K)→ E → O(5K)→ 0.

Tensoring with λ we get 0 → O(λ−11) → E → O(λ11) → 0. This is shown to be

stable in the same way as above, using the long exact sequence in cohomology, or by

consulting the paper [Dol99], where this bundle is also studied.

4.4 Filtration by line bundles

By [Dol99], every G-linearized vector bundle E ∈ vectG Z of rank r admits a full

flag

(4.35) 0 ⊂ E1 ⊂ E2 ⊂ · · · ⊂ Er = E,

such that Ei+1/Ei is a G-linearized line bundle, for i = 1, . . . , r. This is called a

filtration of E by line bundles.

In the previous sections, we found the filtration by hand. However, this becomes

impossible as the rank of E increases. We now explain a systematic way of finding

a filtration by line bundles for E = ϕπ syz2A[d,84]. Here, and throughout this entire

section, A is the ring C[x, y, z]/(x7 + y3 + z2).

Suppose we have a finitely generated CM A-module M. Let s1, . . . , sn be a set of

generators of M , such that the si’s are distinct. Let r be the rank of M . Necessarily,

one has n ≥ r.



52

Let b1, . . . , bn be the degrees of the generators s1, . . . , sn. Assume that bi > 0 for

all i = 1, . . . , n.

Now let (s1, . . . , sk) be the submodule of M generated by s1, . . . , sk, for 1 ≤ k ≤ n.

We have a flag:

(4.36) s1 ⊂ (s1, s2) ⊂ · · · ⊂ (s1, . . . , sr−1).

Let π : grmodA → qgrA be the projection, and let ϕ : qgrA → cohG Z be the

equivalence such that ϕ(A(n)) = O(nK), for all n ∈ Z.

Lemma IV.6. The quotient M/(s1, . . . , sr−1) is of the form (t0) ⊕ T, where (t0) is

a principle ideal, and T is a finite dimensional A-module.

Proof. Since M is CM, ϕπM is locally free. The subsheaf ϕπ(s1) is also locally free.

Since s1 is not of the form as′1 for any a ∈ A>0, s
′
1 ∈ M, the inclusion ϕπs1 ⊂ ϕπM

is saturated, i.e. the quotient ϕπ(M)/ϕπ(s1) is locally free, of rank r − 1.

Proceeding by induction, one gets that ϕπM/ϕπ(s1, . . . , sr−1) is locally free of

rank 1. Hence it corresponds to an A-module of the form X ⊕ T, where T is finite

dimensional, and X is a rank one CM A-module. But the class group of A is trivial,

because it coincides with the torsion part of Pic(G;Z), which is trivial in the case

when the weights (p, q, r) are coprime, by equation (3.3); therefore X must be a

principle ideal generated by a single element, t0 ∈ A.

Let (s1, . . . , sr−1, t0) be the submodule of M obtained by taking the preimage of

(t0) in M . Applying π : grmodA→ qgrA, we obtain an isomorphism

(4.37) πM ' π(s1, . . . , sr−1, t0).

Let E = ϕπ(s1, . . . , sr−1, t0). Then E is a G-bundle of rank r, and we get a full
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flag:

(4.38) 0 ⊂ E1 ⊂ E2 ⊂ · · · ⊂ Er = E,

such that Ei+1/Ei ' O(−biK), for i = 1, . . . , r − 2, and Er/Er−1 ' O(bt), where

bt ∈ Z is the degree of the element t0 ∈ A.

We call (−b1, . . . ,−br−1, bt) a sequence of exponents of E.

Recall that the integers b1, . . . , br−1 are the degrees of the r − 1 distinct elements

s1, . . . , sr−1. To compute bt, we use the following isomorphism:

(4.39) O(btK) ' detE
r−1⊗
i=1

O(−biK)−1.

This equation can be used to compute bt assuming that the right hand side is known.

For our bundles of the form ϕπ syz2A[d,84], the right hand side is known. Indeed,

we have seen how to find their class in the K-group K(cohG Z), and there is an

isomorphism K(cohG Z) ' Z⊕ Pic(G;Z) given by [E] 7→ (rankE, detE).

For example, in the case of the ideal (x2, y, z), the degree of t0 can be read off

from the Betti numbers:

(4.40) deg t0 = 12 + 14 + 21− (26 + 33 + 35 + 42) = −89.

The command

(4.41) degrees target presentation ker syz gens ideal (x2, y, z)

immediately gives one the degrees of the presentation of M = syz2(x2, y, z):

(4.42) A(−47)⊕ A(−54)⊕ A(−56)⊕ A(−63)→M → 0.

By the above discussion, we obtain a sequence

(4.43) 0→ O(−47K)→ E → O(−42K)→ 0.
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The last term, O(42K), was chosen to ensure detE = O(−89K).

Therefore, (−47,−42) is a sequence of exponents for E.

Now tensoring with O(42K), we obtain

(4.44) 0→ O(−5K)→ E(42K)→ O → 0.

So (−5K, 0) is a sequence of exponents of E(42K).

Recall that λ = (1/2)K generates the G-invariant Picard group of Z.

A necessary and sufficient condition for a G-linearized bundle E to define a G-

invariant bundle of degree zero is

(4.45) degE(λk) = 0,

for some k ∈ Z. In terms of a sequence of exponents (a1K, . . . , arK), the necessary

and sufficient condition becomes:

(4.46) 2kr +
r∑
i=1

4ai = 0,

for some k ∈ Z. Here we are using deg λ = 2, and degK = 4, since the genus of

Klein’s quartic curve is 3.

In the following table, we calculate the sequences of exponents for the bundles

ϕπ syz2A[d,84](42K), and whether or not they can be twisted to become degree zero

G-invariant bundles. In the case when it can be untwisted, we also display the level,

i.e. whether the degree zero bundle is PSL(2,F7)-linearized (= level 1) or strictly

SL(2,F7)-linearized (= level 2); equivalently, whether the k in equation (4.46) is even
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(= level 1) or odd (= level 2).

d (a1, . . . , ar) twist deg 0? level

7 (−5K, 0) y 2

13 (−11K, 0) y 2

19 (−13K,−17K, 0) y 1

25 (−19K,−20K,−23K, 0) y 2

31 (−25K,−26K,−27K,−29K, 0) n −

37 (−31K,−32K,−33K,−34K,−35K, 0) y 2

15 (−11K,−13K, 0) y 1

29 (−23K,−25K,−26K,−27K, 0) n −

22 (−17K,−19K,−20K, 0) y 1

43 (−37K,−38K,−39K,−40K,−41K,−41K, 0) n −

d (a1, . . . , ar) twist deg 0? level

6 (K, 0) y 2

12 (−5K, 0) y 2

18 (−11K,−13K, 0) y 1

24 (−17K,−19K,−20K, 0) y 1

30 (−23K,−25K,−26K,−27K, 0) n −

36 (−29K,−31K,−32K,−33K,−34K, 0) y 2

14 (−11K, 0) y 2

28 (−23K,−25K,−26K, 0) y 2

21 (−17K,−19K, 0) y 1

42 (−35K,−37K,−38K,−39K,−40K, 0) y 2

Remark IV.7. A sequence of exponents is not necessarily unique. Also, it is possi-
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ble for the sequence of exponents of an unstable bundle to be the same unordered

sequence as the sequence of exponents of a stable bundle.

Honesty forces us to emphasize the fact that not all of the above vector bundles

on Z can be untwisted to be of degree zero. Stability is even more delicate, as we

will now see.

From [Dol99], it is known that there are precisely four rank three stable G-

invariant stable bundles of degree zero, with sequence of exponents:

(−10λ, 0, 10λ)

(−22λ, 0, 22λ)

(−2λ,−4λ, 6λ)

(−6λ, 4λ, 2λ)

Switching to K, we get:

(−10K,−5K, 0)

(−22K,−11K, 0)

(−4K,−5K, 0)

(−4K,K, 0)

Our three candidates are:

(−13K,−17K, 0)

(−11K,−13K, 0)

(−17K,−19K, 0)

The following proposition says that we have found two of the four stable bundles

of rank three.

Proposition IV.8. The vector bundles with sequences of exponents (−17K,−19K, 0)

and (−10K,−5K, 0) are isomorphic upto twisting by a power of K. Also, the vector
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bundles with sequences of exponents (−11K,−13K, 0) and (−4K,K, 0) are isomor-

phic upto twisting by a power of K.

Proof. Let E(a1,...,ar) denote a bundle with sequence of exponents (a1, . . . , ar).

Tensoring E(−17,−19,0) with 7K, we get E(−10,−12,7). To show that E(−10,−12,7) is

isomorphic to E(−10,−5,0), it suffices to show that Hom(O(−10K), E(−10,−5,0))
G ' C,

and E(−12,7) ' E(−5,0).

Applying Hom(O(−5K),−)G to the sequence 0 → O(−12K) → E(−12,7) →

O(7K)→ 0 yields

(4.47) 0→ Hom(O(−5K), E(−12,7))
G → Hom(O(−5K),O(7K))→ 0,

whenceO(−5K) is a subbundle of E(−12,7). Hence (−5K, 0) is a sequence of exponents

for E(−12,7). Since Ext1(O,−5K)G is one-dimensional, the bundles E(−5,0) and E(−12,7)

are isomorphic.

As for the claim that Hom(O(−10K), E(−10,−5,0))
G is one-dimensional, the long

exact sequence in cohomology reads:

(4.48)

0→ Hom(O(−10K),O(−10K))G → Hom(O(−10), E(−10,−5,0))
G → Hom(O(−10K), E(−5,0))

G.

Hence it suffices to show Hom(O(−10K), E(−5,0))
G = 0. Taking cohomology we get

(4.49)

0→ Hom(O(−10K),O(−5K))G → Hom(O(−10K), E(−5,0))
G → Hom(O(−10K), 0)G → 0.

Since A5 and A10 are both zero, the central term Hom(O(−10K),O(−5K))G is

zero, as desired.

The argument for E(4,1,0) proceeds in the same fashion. Tensoring E(−11,−13,0)

with O(7K) yields E(−4,−6,7). Applying Hom(O(K),−)G to the short exact sequence
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0 → O(−6K) → E(−6,7) → O(7K) → 0 yields 0 → Hom(O(K), E(−6,7)) →

H0(O(6K))G → 0, whence K is a subbundle of E(−6,7). Hence E(−6,7) is isomorphic

to E(1,0).

However, the bundle E(−13,−17,0) is not isomorphic to the stable bundle E(−22,−11,0)

upto a twist. Indeed, tensoring E(−13,−17,0) with O(−9K) yields E(−22,−26,−9). Clearly

E(−26,−9) is not isomorphic to E(−11,0), because they have different degrees. One can

show that Hom(O(−22K), E(−22,−11,0))
G is one-dimensional, using the long exact

sequence in cohomology. Thus E(−22,−11,0) cannot be isomorphic to E(−22,−26,−9).

Similarly, the stable bundle E(−13,−17,0) is not isomorphic to E(−4,−5,0) upto a twist.

Therefore, one of our bundles; namely, E(−13,−17,0) = syz2A[19,84], is not stable.

For bundles of rank 4 and higher, it becomes increasingly difficult to check for

stability. One very helpful fact is that a non-semistable G-invariant bundle admits

a G-invariant destabilizing subbundle which is stable. So, in principle, it would be

possible to check for semistability provided we know all sequences of exponents of all

G-invariant stable bundles. As of this writing, we only know those G-invariant stable

bundles of rank 2 and 3 which can be untwisted to have degree zero. At this point,

we are forced to postpone the treatment of higher rank bundles to future research.

We would like to conclude this section with an extended remark on the relation

with the work of [KST09] on matrix factorizations. We have been working with CM

modules, but for computing homomorphisms it makes more sense to work in the

stable category CM(A). One reason is that CM(A) has a triangulated structured,

and it is Calabi-Yau (see [BIKR08]).

In the case when A is a hypersurface with equation f(x0, . . . , xn) = 0, CM(A) is
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equivalent to the homological category of matrix factorizations of f (see [KST09])

HMF(f) ' CM(A).

A matrix factorization over the ring Aab = C[x, y, z]/(xp + yq + zr) is simply a pair

of matrices over C[x, y, z], whose product is a diagonal matrix with f(x, y, z) =

xp + yq + zr along the diagonal. Such a matrix factorization is graded if the matrices

define homogeneous maps with respect to the group Pic(G;Z).

Let’s see an example of what a Pic(G;Z)-graded matrix factorization looks like.

Let (a; b, c, d) stand for aDreg + bD1 + cD3 + dD4 ∈ Pic(G;Z), where D1, D2, D3

are the ground forms. The Pic(G;Z)-grading on Aab = C[x, y, z]/(xp + yq + zr) is

given by

(4.50) deg(x, y, z) = {(0; 1, 0, 0), (0; 0, 1, 0, 0); (0; 0, 0, 1)}.

Suppose we have a decomposition of (p, q, r), i.e. positive integers (p′, q′, r′) and

(p′′, q′′, r′′) such that (p′ + p′′, q′ + q′′, r′ + r′′) = (p, q, r).

Consider the following matrix ϕ ∈M4(Aab)

(4.51) ϕ =



z′ x′ y′ 0

x′′ z′′ 0 y′

y′′ 0 z′′ x′

0 y′′ x′′ z′


Let L1 = {0, (−1; p′, 0, r′), (−1; 0, q′, r′), (−1; p′, q′, 0)} and

L2 = {(0; 0, 0, r′), (0; p′, 0, 0), (0; 0, q′, 0), (−1; p′, q′, r′)} be two lists. Let (Aab)L
i

de-

note the direct sum Aab(Li0)⊕ · · · ⊕ Aab(Li3).

The following elementary computations show that ϕ defines a degree zero homo-

geneous map (Aab)L
2 ϕ // (Aab)L

1
.
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column 1 : (0; 0, 0, r′) + 0 = (0; 0, 0, r′)

(0; p′′, 0, 0) + (−1; p′,0, r′) = (0; 0, 0, r′)

(0; 0, q′′, 0) + (−1; 0,q′, r′) = (0; 0, 0, r′)

column 2 : (0; p′, 0, 0) + 0 = (0; p′, 0, 0)

(0; 0, 0, r′′) + (−1; p′, 0, r′) = (0; p′, 0, 0)

(0; 0, q′′, 0) + (−1; p′,q′,0) = (0; p′, 0, 0)

column 3 : (0; 0, q′, 0) + 0 = (0; 0, q′, 0)

(0; 0, 0, r′′) + (−1; 0, q′, r′) = (0; 0, q′, 0)

(0; p′′, 0, 0) + (−1; p′, q′, 0) = (0; 0, q′, 0)

column 4 : (0; 0, q′, 0) + (−1; p′, 0, r′) = (−1, p′, q′, r′)

(0; p′, 0, 0) + (−1; 0, q′, r′) = (−1, p′, q′, r′)

(0; 0, 0, r′) + (−1; p′, q′, 0) = (−1, p′, q′, r′)

One can find by hand another matrix ψ such that the product ψϕ is diag(f),

where f = xp + yq + zr.

(4.52)

ψϕ =



z′′ x′ y′ 0

x′′ −z′ 0 y′

−y′′ 0 z′ x′

0 −y′′ x′′ −z′′





z′ x′ −y′ 0

x′′ −z′′ 0 −y′

y′′ 0 z′′ x′

0 y′′ x′′ −z′


=



f 0 0 0

0 f 0 0

0 0 f 0

0 0 0 f



The matrix ψ gives a presentation of the kernel of ϕ.

All of our presentation matrices for modules of the form syz2A[d,84] define matrix

factorizations. Some of our matrix factorizations in the (2, 3, 7)-case first appeared

in the paper [KST09]. In fact, that is how this project got started.

The cokernel of their matrix q0(V10) = q1(V0) is equal to syz2A>0, and defines a
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bundle with sequence of exponents (0,−K), i.e. it corresponds to the central term

of the Euler sequence.

Their matrix q0(V23) = q1(V23) defines aG-bundle on Z with sequence of exponents

(λ−11, λ11), so it is equivalent to the stable bundle defined by syz2A[13,84].

The rank 3 bundle defined by their matrix q0(V12) = q1(V12) has sequence of

exponents (λ−10, 0, λ10), so it is equivalent to the stable bundle defined by syz2A[21,84].

It is tempting to speculate about the relation of our bundles with ranks ≥ 4 to

those in [KST09]. For instance, our bundle syz2A[43,84] is of rank 7, and they also

have a matrix factorization of rank 7, namely V1. And there is a seven-dimensional

irreducible representation of SL(2,F7). But this requires further thought.

4.5 Towards the general (p, q, r)-case

In the previous sections, we focused on the case (p, q, r) = (2, 3, 7). It is desirable

to have a uniform treatment for all (p, q, r). The (2, 3, 11)-case is similar to the

(2, 3, 7)-case, but some of the arithmetic coincidences fail to hold. The arithmetic

of the (3, 3, 5)-case is even more delicate. We will exhibit several G-invariant stable

bundles in both the (2, 3, 11) and (3, 3, 5)-case.

4.5.1 The case (p, q, r) = (2, 3, 11).

Since (2, 3, 11) are coprime, the Picard group Pic(G;Z) is isomorphic to Z. The

major difference between (2, 3, 7) and (2, 3, 11) is that the class of the canonical

bundle ω is divisible by 5 in Pic(G;Z) in the (2, 3, 11) case. That is, we have

(4.53) [ω] ∈ 5Z, for (2, 3, 11),

whereas [ω] generates Pic(G;Z) in the (2, 3, 7) case.

Recall, the Poincaré ring Aab := ⊕L∈Pic(G;Z) H0(Z,L)G has the following uniform
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presentation:

(4.54) Aab = C[x, y, z]/(x11 + y3 + z2).

The fact that (2, 3, 11) are mutually coprime implies that there is an isomorphism

Aab ' A := ⊕n≥0 H0(Z,O(nK))G.

The question is whether the weights of the variables (x, y, z) are (6, 22, 33) or

(6 ∗ 5, 22 ∗ 5, 33 ∗ 5). In what follows, we will always use the grading (6, 22, 33). We

will never use (6 ∗ 5, 22 ∗ 5, 33 ∗ 5).

Remark IV.9. Incidentally, the isomorphism A ' ⊕n≥0 H0(Z, nK)G is known to exist,

but it is not explicit. Klein and Gordon calculated the invariant functions for (2,3,7),

but not (2,3,11).

The following tables were obtained by running the program geqIdeals for the ring

A = Z/5857[x, y, z]/(x11 + y3 + z2), with deg(x, y, z) = (6, 22, 33). We record the
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ranks of the corresponding vector bundles in a Dynkin diagram.

d A[d,132] rank syz2A[d,132]

7 (x2, y, z) 2

13 (x3, y, z) 2

19 (y, x4, z) 2

25 (xy, x5, z, y2) 3

31 (z, x2y, x6, y2) 3

37 (xz, x3y, x7, y2, yz) 4

43 (y2, x2z, x4y, x8, yz) 4

49 (xy2, x3z, x5y, x9, yz, z2) 5

55 (yz, x2y2, x4z, x6y, x10, z2) 5

61 (xyz, x3y2, x5z, x7y, z2, y3, y2z) 6

23 (x4, xy, z, y2) 3

45 (x2z, x4y, x8, xy2, yz, z2) 5

34 (x2y, x6, xz, y2, yz) 4

67 (x2yz, x4y2, x6z, x8y, xz2, xy3, y2z, yz2) 7

4 7 6 5 5 4 4 3 3 2 2 2

5

3
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d A[d,132] rank syz2A[d,132]

6 (x, y, z) 2

12 (x2, y, z) 2

18 (x3, y, z) 2

24 (x4, xy, z, y2) 3

30 (x5, z, x2y, y2) 3

36 (x6, xz, x3y, y2, yz) 4

42 (x7, y2, x2z, x4y, yz) 4

48 (x8, xy2, x3z, x5y, yz, z2) 5

54 (x9, yz, x2y2, x4z, x6y, z2) 5

60 (x10, xyz, x3y2, x5z, x7y, z2, y2z) 6

22 (y, x4, z) 2

44 (y2, x2z, x4y, x8, yz) 4

33 (z, x2y, x6, y2) 3

66 (z2, y3, x2yz, x4y2, x6z, x8y, y2z) 6

3 6 6 5 5 4 4 3 3 2 2 2

4

2
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Here are presentations for the rank 2 bundles syz2A[d,132], where d ∈ {6, 7, 13, 19} :

{



z y2 x10 0

y −z 0 x10

x 0 −z −y2

0 −x y −z




z y2 x9 0

y −z 0 x9

x2 0 −z −y2

0 −x2 y −z


,



z y2 x8 0

y −z 0 x8

x3 0 −z −y2

0 −x3 y −z


,



z x7 y2 0

x4 −z 0 y2

y 0 −z −x7

0 −y x4 −z


}
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Here are the sequences of exponents, calculated by the procedure discussed at the

end of section 4.4. We also record the level. A bundle E can be untwisted to be of

degree zero if there exists an integral solution k to the equation degE(λk) = 0. In

terms of the sequence of exponents, this reads:

(4.55)
r∑
i=1

ai degK + rk deg λ = 0

r∑
i=1

5ai + rk = 0.

When an integral solution k exists, the level is the equivalence class of k modulo 5.

d (a1, . . . , ar) level

7 (−1, 0) −

13 (−7, 0) −

19 (−13, 0) −

25 (−17,−19, 0) 0

31 (−23,−25, 0) 0

37 (−28,−29,−31, 0) 0

43 (−34,−35,−37, 0) 0

49 (−39,−40,−41,−43, 0) −

55 (−45,−46,−47,−49, 0) 2

61 (−50,−51,−52,−53,−55, 0) 2

23 (−13,−17, 0) 0

45 (−34,−35,−37,−39, 0) 0

34 (−23,−25,−28, 0) 0

67 (−56,−57,−58,−59,−61,−61, 0) −
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d (a1, . . . , ar) level

6 (5, 0) −

12 (−1, 0) −

18 (−7, 0) −

24 (−13,−17, 0) 0

30 (−19,−23, 0) 0

36 (−25,−28,−29, 0) −

42 (−31,−34,−35, 0) 0

48 (−37,−39,−40,−41, 0) 2

54 (−43,−45,−46,−47, 0) 1

60 (−49,−50,−51,−52,−53, 0) −

22 (−13, 0) −

44 (−34,−35,−37, 0) −

33 (−23,−25, 0) 0

66 (−55,−56,−57,−58,−59, 0) −

In particular, we get precisely four rank two bundles. This is the same as the

number of absolutely irreducible unitary representations of the Fuchsian group of

signature (0; 2, 3, 11) by the formula in [Dol99, Bod94]. The rank 2 bundle corre-

sponding to d = 6 is obviously unstable, as expected, because it corresponds to the

maximal ideal (x, y, z). It fits into an exact sequence

(4.56) 0→ O → E → ω−5 → 0.

Meanwhile, the bundle for d = 7 fits into an exact sequence

(4.57) 0→ O → E → λ5 → 0.
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This sequence splits because dim Ext1(λ5,O)G = dim H0(2K)G = dimA2 = 0.

We are led to consider the exact sequence:

(4.58) 0→ O → E → ω5 → 0,

corresponding to the ground form x ∈ (Ext1(ω5,O)G)∨ ' H0(6K)G = A6. We claim

E is stable. As before, we argue by examining the long exact sequence in cohomology:

(4.59) 0→ H0(λ−a)G → H0(E(−aλ))G → H0(λ25−a)G → H1(λ−a)→ · · ·

The only a’s to check are a = 13, . . . , 25. For a not divisible by 5, the space H0(λa)G

is zero because λ is not PSL(F11)-linearized. For a = 15, 20, we get H0(2K)G = 0 and

H0(K)G = 0, respectively. For a = 25, we need to examine the map ϕ : H0(O)G →

H1(λ−25)G. Both the source and target of ϕ are one-dimensional. By definition, ϕ

is cupping with a nontrivial extension class; hence ϕ is an isomorphism. Thus E is

stable.

The same chain of arguments shows that the bundle E fitting into the exact

sequence 0→ O → E → O(11K)→ 0 is also stable.

4.5.2 The case (p, q, r) = (3, 3, 5).

In the (3, 3, 5)-case the ring of invariants is A = x3z + y3x + z2, and the dual

weights are deg(x, y, z) = (3, 5, 9).

Throughout this section we shall make repeated use of the following proposition.

Proposition IV.10. All G-invariant line bundles are of the form µa⊗T k, a ∈ Z, k ∈

{0, 1, 2} where µ satisfies µ4 = O(K) and T is a generator of Pic(G;Z)tors ' Z/3Z.

Proof. Let 2G < SL(2,C) be a binary polyhedral group which is not cyclic of odd

order. Let G be the image of 2G under the 2 : 1 map SL(2,C) → PSL(2,C). Since
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PSL(2,C) is the automorphism group of P1, G acts on P1. There is another natural

action of G on the weighted projective space P(1, 1, 2). One extends the action of 2G

on C[x, y] to an action of 2G on C[x, y, z]. The element −1 ∈ 2G acts by (−1,−1, 1).

In the weighted projective space P(1, 1, 2), multiplication by scalars (t, t, t2) is the

identity. So the action of 2G on P(1, 1, 2) factors through G.

Similarly, let Fd1 , Fd2 , Fd3 ∈ C[x, y]2G be three generators of the ring of invariants

for 2G, of degrees d1, d2, d3, respectively. Then each F defines a G-invariant curve in

P(1, 1, di/2) given by the homogeneous equation

(4.60) z2 = Fi.

This is a hyperelliptic curve Z on which G acts by automorphisms. We claim the

(3, 3, 5)-case arises in this way, when G is the icosahedral group A5 of order 60, and

F is the ground form of degree 12:

(4.61) F12 = xy((x2)5 + 11(xy)5 − (y2)5).

The zeroes of F12 correspond to the vertices of the icosahedron. For the sake of

completeness, the other ground forms found by Klein are

F20 = −((x2)10 + (y2)10) + 228((xy)5(x2)5 − (xy)5(y2)5)− 494(xy)10,

whose zeroes correspond to the 20 faces of the icosahedron, and

F30 = (x2)15+(y2)15+522((xy)5(x2)10−(xy)5(y2)10)−10005((xy)10(x2)5+(xy)10(y2)5),

whose zeroes correspond to the 30 edges. They satisfy the relation:

R := −1728F 5
12 + F 3

20 + F 2
30 = 0.

The group A5 acts on both Z and P1, and Z is a double cover of P1.
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Let O5 = {[xi, yi], i = 1, . . . , 12} be the 12 points on P1 with stabilizer subgroup in

A5 of order 5, i.e. the 12 vertices of the icosahedron. Then (xi, yi, 0) is an A5-invariant

orbit on Z with stabilizer subgroup of order 5.

Let O3 = {[xi : yi], i = 1, . . . , 20} be the 20 points on P1 with stabilizer subgroup

in A5 of order 3. Let ±zi be the solutions to the equation z2
i = F12(xi, yi). Then

(xi, yi, zi), i = 1, . . . , 20 and (xi, yi,−zi), i = 1, . . . , 20 are two different A5-orbits, on

Z, with stabilizer subgroup of order 3.

Let O2 = {[xi, yi], i = 1, . . . , 30} be the 30 points on P1 with stabilizer subgroup

in A5 of order 2. Their stabilizer subgroup in 2A5 < SL(2,C) of order 4 is generated

by the matrix

g2 :=

 0
√
−1

√
−1 0

 .

From the matrix one sees that xi = yi. Thus the pullback of O2 consists of points

on Z of the form (1, 1, a), where a is a solution to z2 = F12(1, 1). The action of g2

on the pullback of O2 is g2(1, 1, a) = (
√
−1,
√
−1, a). Recall that multiplication by

(t, t, t6) is the identity on P(1, 1, 6). Thus (
√
−1,
√
−1, a) is the same point on Z as

(1, 1,−a) (which is not equivalent to (1, 1, a)). Thus the pullback of an element of

O2 is not a fixed point on Z.

The above discussion shows that there are three ramification points, of orders

(3, 3, 5). The genus of Z is 5, as can be seen from the Riemann-Hurwitz formula,

equation (3.4):

(4.62) 2g − 2 = −2(60) + 4(12) + 2(20) + 2(20).

Now, it follows from equation (3.3) that the torsion part of Pic(G;Z) is Z/3Z. In

terms of the ground forms, D1, D2, D3 ∈ DivG Z, the torsion bundle T is represented

by the difference D1 −D2.
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The free part of Pic(G;Z) is rank one (as always happens in the case Z/G ' P1),

and it is generated by a square root of K, say λ. A representative for λ is 2D3 −D1

of degree 2(12)− 20 = 4.

There is no G-invariant torsion, by the same proof as Prop 2.1 of [Dol99]. Hence

the line bundle µ generating free part of the G-invariant Picard group is an m-th

root of K, for some m divisible by 2.

Z is hyperelliptic, so it has a unique (hence G-invariant) g1
2. Since the genus of Z

is 5, the degree of g1
2 is 2; hence the only possibility is µ = g1

2.

We have µ2 = λ and λ2 = K.

First, let us consider the second syzygy of A[4,36] : E = syz2A[4,36]. One has the

following explicit presentation of E :

(4.63) E = coker



x3 + z 0 xy2 0

x2 z 0 xy2

y 0 −z 0

0 y x2 −x3 − z


Let

T1 := coker

 x3 + z xy2

y −z

 ∈ grmodA.

Let

T2 := coker

 z xy2

y −x3 − z

 ∈ grmodA.

Note that the product of the above 2 × 2 matrices is a diagonal matrix with

(x3z + y3x+ z2) along the diagonal.

Let (s1, s2, s3, s4) be the four generators of E. Let (t1, t2) be the two generators
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of T2. Let F : T2 → E be the map given by

(4.64) F (at1 + bt2) = as2 + bs4, for a, b ∈ A.

Note that F is well defined because the relations go to zero. Also note that F is

injective. Hence we have an exact sequence:

(4.65) 0→ T2 → E → 〈s1, s3〉 → 0.

One may observe by looking at the relations that 〈s1, s3〉 is isomorphic to T1:

(4.66) 0→ T2 → E → T1 → 0.

Since we could have reversed the roles of T1 and T2, the sequence (4.66) splits.

Next, let us consider the bundle E corresponding to the ground form x ∈ H0(3K)G:

(4.67) 0→ O → E → O(2K)→ 0.

We claim E is stable. To prove this, we apply Hom(µaT k,−)G, and examine the long

exact sequence in cohomology. The slope of µaT k is deg µa, because the degree of

T is zero. Hence, to show stability, it suffices to show that H0(µ8µ−aT−k)G = 0 for

a ≥ 4. This is obvious for a > 8, so the only a’s we have to check are a = 4, 5, 6, 7, 8.

To compute G-invariant global sections of λnT k, one may use the following for-

mula:

(4.68) H0(Z, λnT k)G = H0(P1,O(−n+ b(n+ k)/3c+ b(n− k)/3c+ b2n/5c)).

For a = 4, we have

(4.69) H0(µ4)G = H0(K)G = 0,

because the degree one component of the ring A is zero. We also have

(4.70) H0(Z, µ4T )G = H0(P1,−2p+
2

3
p1 +

2

3
p2 +

4

5
p3 +

1

3
p1 −

1

3
p2) = 0
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and

(4.71) H0(Z, µ4T 2)G = H0(P1,−2p+
2

3
p1 +

2

3
p2 +

4

5
p3 +

2

3
p1 −

2

3
p2) = 0.

For a = 5 and a = 7, the line bundle µ8−aT k has no G-invariant sections, because

odd powers of µ are not G-linearized.

For a = 6, µ2 = λ = 1/2K is G-linearized, i.e. linearly equivalent to a G-invariant

divisor, namely λ. We have

(4.72) H0(λ)G = H0(P1,−p+ b1
3
cp1 + b1

3
cp2 + b2

5
cp3) = 0

and

(4.73) H0(Z, λ+ T )G = H0(P1,−p+ b1
3

+
1

3
cp1 + b1

3
− 1

3
cp2 + b2

5
cp3) = 0

and

(4.74) H0(Z, λ+ 2T )G = H0(P1,−p+ b1
3

+
2

3
cp1 + b1

3
− 2

3
cp2 + b2

5
cp3) = 0.

For a = 8, we have

(4.75) H0(Z, T )G = H0(P1, b1
3
cp1 − b

1

3
cp2) = 0

and

(4.76) H0(Z, 2T )G = H0(P1, b2
3
cp1 − b

2

3
cp2) = 0.

Of course T and 2T must not have any G-invariant sections, because they are not

linearly equivalent to an effective G-invariant divisor. Lastly, Hom(µ8, E)G = 0

follows from the fact that the map ϕ : H0(O)G → H1(µ8,O)G is injective, which

follows from the fact that the extension E does not split, and that H0(O)G is one-

dimensional.1 Therefore, E is stable. Untwisting by −K, we get an exact sequence

(4.77) 0→ O(−K)→ E(−K)→ O(K)→ 0,
1When A0 ' C one says that A is connected.
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where the central term E(−K) is degree zero, G-linearized, and stable. Hence

E(−K) corresponds to an absolutely irreducible unitary representation of a Fuchsian

group Γ < SU(1, 1) of signature (0; 3, 3, 5).

Notice that, in the above calculation, if we replace µ with K, then we get

(4.78) H0(Z, 4K + T )G = H0(P1,−8p+ b8
3

+
1

3
cp1 + b8

3
− 1

3
cp2 +

16

5
p3)

= H0(P1,−8p+ 3p+ 2p+ 3p) = H0(P1,O) ' C.

This shows that there is a non-split extension:

(4.79) 0→ O → E → 3K + T → 0.

As before, to show that E is stable it suffices to show that H0(µ12−aT k)G = 0 for

a = 6, . . . , 11, k = 0, 1, 2. We need only check even values of a, because odd powers

of µ are not G-invariant.

For a = 8, 10, we have already shown that the space is H0(µ12−aT k)G is zero.

However, for a = 6, we get

(4.80) H0(µ6)G = H0(λ3)G

= H0(P1,−3p+ b3
3
cp1 + b3

3
cp2 + b6

5
cp3) = H0(P1, b1

5
cp3) ' C.

That is, 3λ is linearly equivalent to the G-invariant divisor D3 (= the ground form

with stabilizer subgroup Z/5Z.) So E is not stable. Rather, E is (strictly) semi-

stable.

Similarly, the central term E of the nonsplit extension 0→ O → E → 3K+2T →

0 is strictly semi-stable.

We are led to consider the nonsplit extension E ∈ H1(λ)G ' (H0(3λ)G)∨ corre-

sponding to the ground form D3 = 3λ.

(4.81) 0→ O → E → µ2 → 0.
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We claim that the G-invariant bundle E is stable. Indeed, arguing as above, we

get that Hom(µT k, µ2)G = 0, because µ is not G-invariant. And ϕ : H0(λ, λ)G →

Ext1(λ,O)G is an isomorphism, because ϕ is defined to be cupping with a nontrivial

extension class. Therefore, E is stable. Twisting with µ−1, we get a short exact

sequence

(4.82) 0→ µ−1 → E(µ−1)→ µ→ 0,

such that the central term E(µ−1) is G-invariant, degree 0, and stable. Hence E(µ−1)

corresponds to an absolutely irreducible, level 2, unitary representation of the fun-

damental group Π < ˜SU(1, 1) of signature (3, 3, 5).
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