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ABSTRACT 

 

Phylogeography and Demography of Common Plant Species from the Philippine Islands 

 

by 

 

Sandra L. Yap 

 

 

Chair: Robyn J.  Burnham 

 

 

Effects of historical and current environmental conditions on plant populations 

from the Philippine Archipelago are investigated. The complex geologic history of the 

Philippines creating a diverse and highly endemic flora is reviewed. Apart from tectonic 

activity, the islands were subjected to changes in topography, temperature, and 

precipitation from Pleistocene glacial and interglacial periods (Heaney, 1991). 

Comparative phylogeography is used to determine the effects of Pleistocene events on the 

population genetic structure of two endemic species, Daemonorops mollis (Arecaceae) 

and Macaranga bicolor (Euphorbiaceae). Limited variation and the distribution of unique 

haplotypes in both species suggest that during periods of lowered sea levels, rainforest 

habitats were maintained as refugia throughout the archipelago. A land barrier between 

eastern and western Luzon and water surrounding each island restricted dispersal among 

populations. A potential route of island colonization in the south- and west- ward 

direction from northeast Luzon was recovered in M. bicolor. An eastern Luzon 

population was studied to document spatial distributions and species-habitat associations, 
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and determine possible mechanisms facilitating coexistence in species-rich communities. 

Torus translation tests showed contrasting patterns of stream- and elevation- microhabitat 

associations between three palm tree species and D. mollis, a liana, suggesting a potential 

for niche differentiation between growth forms. In 30 dominant tree species, each was 

associated with at least elevation, slope, or stream at one or more life stages (saplings, 

juveniles, or adults), but associations varied across life stages in most species. Species 

sharing a microhabitat are shown to partition the niche, in time if not in space. 

Distributions at different life stages were also analyzed to infer what processes resulted in 

the observed spatial patterns. Aggregation was exhibited in all species at multiple scales, 

and decreased with species abundance and long-distance dispersal. Correlation analyses 

measured the relationship between clusters of saplings, or juveniles, with clusters of 

adults or distance to the nearest conspecific adult. Results show greater clustering of 

saplings around adults in three species, attributed to negative density dependent effects 

on juveniles. In ten species, juveniles clustered more around adults indicating negative 

density dependence before the sapling stage, while recruitment into the juvenile stage 

was successful for saplings located in suitable habitats near adults. Seed dispersal, 

negative density dependence, and niche differentiation, are therefore important in 

maintaining the diverse tree community in Palanan, Philippines. 

!
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Introduction 

 

Phytogeography of the Philippine Islands 

 

Islands fascinate scientists. They inspired Alfred Russell Wallace to develop the 

field of biogeography from his knowledge of the fauna of the Malay Archipelago 

(Wallace, 1869). Wallace discovered a distinct zoological break, famously called 

Wallace’s Line, which distinguishes the origin of the fauna of the islands west of the line 

as predominantly Asian and the fauna of islands east of the line as Australian (Wallace, 

1860). The placement of the Philippine Archipelago to the west of Wallace’s Line 

however, was contested and the line redrawn such that the Philippine Islands excluding 

the Palawan group lies to the east of Wallace’s Line, now called Huxley’s Line 

(Dickerson et al., 1928). Many other lines have been drawn through the Philippines and 

the eastern Indonesian islands, an area Simpson (1977) acknowledges as having a 

complex mix of Asian, Australian, and endemic species. In fact, Simpson (1977) 

proposed not assigning this area to either Asian or Australian regions, or even defining it 

as a transitional or intermediate zone, believing this would encourage research into the 

biota of these islands. 

At present, Philippine phytogeography is still poorly understood. The majority of 

biogeographic research on Philippine species is on terrestrial mammals, birds, or marine 

animals (Jones & Kennedy, 2008). For example, a search on the Web of Science using 

the keywords “biogeography + Philippines” resulted in 134 articles, only seven of which 
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were on plants. Of these seven articles, five were restricted to either a single site (Linis, 

2009; Tan, 1996) or included a single Philippine species (Keppel et al., 2008; Ladiges et 

al., 2003; Vanwelzen et al., 1992). Only two papers analyzed the phylogenetic 

relationships of multiple Philippine species, the first studying the genus Cyrtandra 

(Gesneriaceae) that documented some support for Huxley’s Line (Atkins et al., 2001). 

The second paper included eight species of Rhododendron (Ericaceae), which presented a 

set of species-area relationships that neither conformed to Huxley’s nor Wallace’s Line 

(Brown et al., 2006). A collection of similar studies is needed to conclusively determine 

whether the flora of the Philippine Islands belong to the Asian or Australian 

phytogeographic region.  

Several factors must have contributed to the assembly of the Philippine flora, 

including the complex geological history of the 7,107 islands that comprise the 

archipelago (Hall, 2002), species diversification, stasis, and endemism within islands, and 

the effects of climate change throughout the Cenozoic (Morley, 2000). Clearly, 

colonization of the oceanic islands by plants occurred via dispersal from nearby Asian 

and Australian sources, but the timing of dispersal events and the routes taken by 

propagules remain uncertain (Jones & Kennedy, 2008). Tectonic activity gradually 

formed the islands that comprise the Philippine Archipelago and plate movements shifted 

island positions (Hall, 2002). Therefore, dispersal events occurred at different times and 

between different islands beginning 50 million years ago with the formation of Luzon 

Island. The extraordinarily high endemicity in plants, estimated between 45 to 76.5 

percent (Heaney & Mittermeier, 1997; Myers et al., 2000), suggests localized 

diversification occurred after colonization early in the Philippines’ history. However, 
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distributions of some taxa limited to Borneo and Palawan (e.g., two recently diverged 

Cyrtandra species) also indicate dispersal during recent times, possibly during periods of 

low sea level during the Pleistocene (Atkins et al., 2001). For two endemic species, 

Daemonorops mollis (Arecaceae) and Macaranga bicolor (Euphorbiaceae), I examined 

the effects of land connections between islands that formed aggregate island complexes 

during the Pleistocene and the drier climate during this same period, on the genetic 

composition of island populations. 

Historical conditions allowed for the dispersal and establishment of insular 

populations of the current diverse Philippine flora. Sadly, forests that were logged from 

the mid-1500s (Bankoff, 2007) until today have very little remaining area intact (Myers 

et al., 2000). The Philippines is one of the 25 megadiversity countries (Caldecott et al., 

1994) but is also one of the 25 hotspots identified for conservation based on the high 

number of endemic species and extent of habitat loss in the country (Myers et al., 2000). 

The previous statement and other data collected by the scientific community have been 

used to increase awareness within public and government agencies, as well as non-

government organizations of biodiversity and conservation.  The hope is to provide an 

impetus for the development of conservation programs. A review of current conservation 

projects reports some success with increasing populations of endemic animals like the 

Cacatua haematuropygia (Philippine cockatoo), Aceros waldeni (Visayan wrinkled 

hornbill), Crocodylus mindorensis (Philippine crocodile), and Pithecophaga jefferyi 

(Philippine eagle) (Posa et al., 2008). In an effort to preserve these animals, each 

respective agency managing these projects lobbied for protection of natural habitats for 

each species (Posa et al., 2008). In addition, Republic Act. No. 7586 was enacted in 
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1991, establishing protected areas under the National Integrated Protected Areas Systems 

(NIPAS). As of 2007, approximately 3,330,810 hectares have been proclaimed as 

protected areas and this number is still increasing (PAWB, 2007). 

 My dissertation also included evaluation of present-day environmental conditions 

that may dictate the observed distribution and abundance of species. I collected and 

analyzed data from a 16-hectare plot in Palanan, Isabela, which is part of the largest 

protected area under NIPAS, the Northern Sierra Madre Natural Park (PAWB, 2007). 

Implementation of forest protection however, is very poor, so illegal logging of timber 

species such as Pterocarpus indicus (Fabaceae) and Shorea guiso (Dipterocarpaceae) still 

occurs within the park (Van der Ploeg et al., 2008). Fortunately, the Palanan plot is 

guarded so tree populations are maintained. Still, I am concerned that human disturbance 

in nearby areas of the forest have reduced animal visitation to the plot, and therefore 

potentially pollination and seed dispersal processes that visitation facilitates. Research 

must be conducted to find evidence to confirm or refute this. Below, I will describe how 

results from studying the demography of 30 dominant tree species can be applied in the 

rehabilitation of disturbed habitats. 

Overview of the Dissertation and Application in Conservation 

This dissertation examines the effects of Pleistocene geographic change, 

Pleistocene climatic change, and current environmental conditions on plant populations 

in the Philippine Islands. Extant plant populations are highly threatened particularly by 

deforestation. Understanding the effects on island plant populations of a reduced 

population size within isolated rainforest refugia during the Pleistocene, provides insight 

into the potential response of plant populations to today’s fragmented forests. 
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Furthermore, research into the ecology of common, native tree species at local scales 

identifies specific environmental factors associated with species distributions that might 

be mimicked in reforestation to ensure a successful recovery of deforested areas.  

Chapter One of this dissertation provides a review of the geologic and climatic 

history of the Philippine Islands from the initial island formation 50 million years ago up 

to the present. Geologic reconstruction of the Southeast Asian region indicates that 

intense tectonic activity resulted in the formation of the oceanic islands that ultimately 

moved to their current positions (Hall, 2002). The historical assembly of the modern 

Philippine flora occurred through the climatic fluctuations of the Cenozoic, culminating 

in the increase of global temperatures to present levels after the Last Glacial Maximum 

(Morley, 2000). Colonization from both Asian and Australian floras combined with 

isolation in islands resulted in a highly diverse and endemic flora (Morley 2000). Despite 

threats to the Philippine flora from habitat loss (Fernando et al., 2008), new species are 

still discovered in remnant primary and even in secondary forests (Barcelona et al., 

2009), emphasizing the need for conservation of forest habitats.  

Chapter Two documents the effects of changes in climate and geography during 

the Pleistocene on two widespread endemic Philippine plants, Daemonorops mollis 

(Arecaceae) and Macaranga bicolor (Euphorbiaceae). Both species occur in sympatry, 

bird-dispersed, and dioecious yet represent two separate evolutionary lineages. Lowered 

sea levels during the Last Glacial Maximum of the Pleistocene created land connections 

between present-day islands where savanna vegetation is hypothesized to have replaced 

rainforest habitats due to a cooler and drier climate (Heaney, 1991). Phylogeographic 

structure is recovered only in M. bicolor and in neither species does present-day nor 



!

"!

Pleistocene island boundaries reflect the distribution of genetic variation. Haplotypes 

with restricted distributions demonstrate the unique contributions of most of the sampled 

populations to the total genetic pool in M. bicolor, making prioritizing sites for 

conservation difficult. More information from comparative phylogeographic analyses of 

additional species is needed to further distinguish distinct genetic characteristics among 

sites. My initial recommendations would be to begin conservation initiatives with the 

Palanan and Bislig sites, not only based on the genetic features of the populations but also 

because of the better quality of forest relative to other sites. Better forest quality would 

increase the chances of a successful conservation effort.  

The preservation of natural habitats and biodiversity in the Philippines spans a 

century with some success as reviewed in Chokkalingam et al. (2006). Forest 

rehabilitation efforts purportedly increased forest cover in 28 of 46 sites studied, 

however, in most sites trees were planted in open grasslands as part of short-term projects 

(< 25 years) with limited funding (Chokkalingam et al., 2006). The likelihood of planted 

seedlings reaching maturity and establishing closed canopy forest cover in this time is 

suspect. In addition, despite the objectives of these programs to increase forest cover, 

conserve biodiversity, decrease soil erosion, and improve watershed management, non-

native tree species, such as the neotropical tree Swietenia macrophylla (Meliaceae), were 

extensively planted, and no baseline soil and water measurements were taken 

(Chokkalingam et al., 2006). Published silvicultural methods guided the planting and 

subsequent care of planted trees, typically limited to a few timber species and the 

ubiquitous S. macrophylla (Dayan et al., 1995; Chokkalingam et al., 2006). To properly 

re-establish native forests, the ideal plan would mimic natural communities and gather 
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data on soil, light, and nutrient conditions. This type of plan would avoid creating 

monoculture timber plantations or forests with little total biodiversity. A detailed 

demographic study of the distributions of common native species should be completed 

deriving data from the environmental attributes of the species’ habitat that could be used 

to model reforestation initiatives.  

Chapters Three to Five analyze 35 species in association with environmental 

features that influence species distributions within the 16-hectare plot in Palanan. Chapter 

Three focuses on palms, which are dominant components of tropical forests (Henderson 

et al., 1995). In the Palanan plot, palms are speciose, abundant, and include a large 

proportion of the basal area. From among the 14 palm species present on the plot, four 

palm trees and one climbing palm were included in the demographic study here. 

Morisita’s Index, a statistical measure of dispersion, shows all five species have clumped 

distributions influenced by the patchiness of suitable microhabitats. Caryota cumingii, 

Orania decipiens, and Pinanga maculata are positively associated with low elevations, 

whereas the fourth tree species, P. insignis is not associated with any elevation, and the 

lianous Daemonorops mollis is preferentially found at high elevations. In addition, P. 

maculata is positively associated with stream habitats while D. mollis is positively 

associated with non-stream habitats, suggesting a potential niche distinction of the two 

growth forms. Non-timber forest products include canes for furniture from climbing 

palms and some palm trees provide food for humans and other animal species. Further 

development of this potential in a sustainable manner would suggest that knowledge of 

the habitats best suited to each palm species is important for community-based 

reforestation programs that provide economic incentives for shareholders. 
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Chapter Four analyzes the association of 30 dominant tree species with 

topographic features such as elevation, slope, and stream location. All species associated 

with at least one topographic feature, which typically changed with age. Only four 

species were consistently associated with the same elevation microhabitat from saplings, 

to juveniles, and finally as adults.  In contrast, seven species associated with one stream 

microhabitat across all the three life stages. This result indicates that the habitat best 

suited to a species may change as they age, suggesting careful monitoring of planted 

seedlings is necessary to ensure successful establishment of trees into maturity. Site 

selection for planting, is therefore key to plant survival. It is also clear that soil nutrients, 

soil moisture, and light availability are some of the environmental factors that must be 

measured so that these can be adjusted accordingly for each species during their 

development, because adjustment of the location of planted seedlings is not possible.  

Chapter Five explores the spatial patterns in distributions of 30 dominant tree 

species and the potential roles of dispersal and density dependence on recruitment. 

Aggregation is observed in all species at multiple spatial scales in the three life stages: 

saplings, juveniles, and adults. The 15 most abundant species showed a peak of clustering 

at the scale of 45m
2
 while clustering at a smaller scale (25m

2
) was exhibited by less 

abundant species. Negative density dependent effects are observed at the sapling stage in 

three species and at the juvenile stage in ten species. These results provide guidelines for 

the proper placement of the appropriate number of seedlings to enhance recruitment into 

maturity of each species.  

Results from my research provide several important guidelines in designing forest 

conservation programs. Limited genetic variability and restricted distribution of 
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haplotypes in the sampled populations shows that conservation should be intensified and 

include as many populations in as many islands as possible. In addition, collecting 

seedlings from many populations to rehabilitate a forest would ensure that the genetic 

diversity of a species is preserved if not all populations can be protected.  

The ideal site to apply the findings from my research for rehabilitatation of 

disturbed forests and reforest cleared areas is the area surrounding the plot in Palanan. As 

previously stated, I recommend conservation efforts that begin with the forests in Palanan 

and Bislig. Fortunately, the lowland dipterocarp forests of Palanan are already protected 

by law, if not in practice. Surrounding the 16-ha plot are logged forests and less than 

1500 meters from the plot are open clearings from abandoned agricultural fields. It is 

expected that the 30 dominant trees should also be dominant in the disturbed forest 

adjacent to the plot. An area with heterogeneous topography should be selected to 

facilitate coexistence of a diverse set of species. A census of the trees in the disturbed 

forest would identify which species are missing or in lower abundance than anticipated, 

based on plot data.  Individuals of these species can then be supplemented by planting of 

trees in appropriate topographic or soil habitats. For example, selective logging would 

have removed dipterocarp species in the disturbed forest and therefore require additional 

individuals. Seedlings of Shorea guiso and six other dipterocarp species should thus be 

planted in the highest elevations within the disturbed forest while S. philippinensis may 

be planted at any elevation. Seedlings planted may be collected from the Palanan plot in 

sites where an over abundant population subject to negative density dependent effects 

exists. Shorea guiso juveniles are found farther from adults than saplings, indicating 

some negative density dependence effects, but the difference is not statistically 
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significant.  However, mortality of individuals transitioning from juveniles to adults is 

high with juveniles showing only 32% survivorship. At the minimum, the same number 

of adults in the plot (assuming a 16-ha disturbed forest), comprising 12% of the total S. 

guiso population, may be collected as seedlings, saplings, or juveniles to be planted in the 

disturbed forest. Constant monitoring is required to assess the status of planted trees. At 

the same time, measurements of soil nutrients, soil moisture, and light availability can be 

conducted for the 30 most abundant species within the plot and the recorded conditions 

for the same species duplicated to the extent possible in the regenerating forest. 

Moreover, demographic analyses must also be completed for the other 293 tree species 

found in the plot to incorporate as many species as possible in this biodiversity 

conservation program. A similar methodology using the same data may be adapted to 

other sites like Bislig if the species composition is similar between sites. In other habitat 

types, such as limestone, mangrove, or ultramafic forests, baseline data must be gathered 

first before implementing the same methodology.  

The species included in this dissertation were observed under natural conditions 

and not in disturbed habitats, therefore the response of the 30 species to the drastically 

different environmental conditions found in completely cleared forests is uncertain and 

requires further study. Nevertheless, I would recommend prioritizing cleared areas near a 

water source to avoid deficiency in soil moisture from extreme exposure to the sun. In 

addition these preliminary reforestation efforts are more likely to succeed if water for 

seedlings is easily available to workers implementing the plantings. Among the 30 

species, five are abundant close to a stream. These are the candidate species to be planted 

with the addition of the palm tree, Pinanga maculata, also found in stream habitats. Gaps 
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in the plot should also be studied to identify species that are key in the natural 

regeneration process, so that these may be included in reforestation of open habitats. 

Keeping in mind that the area was farmed and abandoned, the soils must be nutrient poor. 

If necessary, these soils must be replenished to ensure growth of planted trees. Upon 

establishment of some forest cover, other species may be added following the same 

guidelines as in the rehabilitation of the disturbed forest.  

The proposed biodiversity conservation program requires a long-term investment 

in time, effort, and money. Successful programs also require cooperation from other 

scientists, the government, and the local community. Educating the public on the 

importance of biodiversity conservation must be a priority as well as economic incentives 

to encourage the local community to develop and maintain the program. For example, 

rattans, particularly D. mollis, which is abundant in the plot, should be incorporated into 

the planting design with the intention of sustaining a population that can be selectively 

harvested. Intensive research on topics such as pollination and dispersal are also needed 

to enhance the development and sustainability of the forest.  

Plant conservation programs from tree plantations to reforestation require prior 

knowledge of plant ecology, but equally require support from interested parties in the 

government and society. Perhaps difficult to attain, this is nevertheless the main agenda 

in order to successfully preserve the rich biodiversity in the Philippines. 
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Chapter 1 

Origin, Evolution, and Future of the Philippine flora 

 

 

The origin and evolution of the Philippine flora was influenced by the complex 

geological and climatological history of the archipelago throughout the Cenozoic Era 

(65-0 million years ago).  Although very little is known about the evolutionary history of 

Philippine plants, some information has been published on the Philippine fauna, so 

inferences can be made from these data as well as the more extensive Southeast Asian 

floristic history. Here, I provide a review of the geological history of Southeast Asia, and 

the Philippines in particular, to illustrate the origins of the existing landmasses in the 

Indo-Malayan region. I present documented biogeographic histories of some of the 

region’s flora and fauna that give insight into the assembly of the modern Philippine 

biota. Finally, the future prospects of tropical forest taxa in the Philippine Islands will be 

addressed.  

Palaeogeography of the Philippines 

The palaeogeography of Southeast Asia, including the Philippines, during the 

Cenozoic was very complex, due to tectonic activity. Through the interaction of the 

Australian, Caroline, Eurasian, Indian, Pacific, and Philippine Sea Plates, plate collisions 

were common and widespread occurring between island arcs, island arcs and continents, 

and between continents (Hall, 2002). Two collision events played major roles in the 

geological development of Southeast Asia, and subsequently influenced the evolutionary 
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history of plants and animals in the region. The first major Cenozoic event occurred 50 

million years ago (Ma) involving the rafting of the Indian subcontinent toward the Asian 

mainland, colliding with the Eurasian Plate (Figures 1.1 & 1.2; Hall, 2002; Lomolino et 

al., 2006). The second event occurred in the late Oligocene (25 Ma) with the collision of 

Australia and the eastern Philippines-Halmahera-New Guinea arc system resulting in 

major changes in plate boundaries, rotation of the Philippine Sea Plate, and closing of the 

passageway between the Indian and Pacific Oceans (Hall, 1996, 1998, 2002; Lomolino et 

al., 2006). 

The geologic history of the islands that comprise the Philippine Archipelago 

parallels the complex history of Southeast Asia.  The amalgam that is now called the 

Philippine Islands is the result of several areas with separate origins and underwent 

distinct historical developments different histories. Fragments of continental crust from 

the southern margin of China make up the islands of Palawan and Mindoro (Figure 1.1; 

Hall, 2002).  A small portion of Mindanao Island, the northwestern tip called 

Zamboanga, is also of continental origin, but from the Sunda Shelf (Hall, 1996). The rest 

of the Philippine Archipelago is volcanic in origin (Hall, 2002). Subduction zones 

surrounding the Philippine Sea Plate were responsible for the formation of the oceanic 

islands of the Philippines, Moluccas, and northern New Guinea beginning 50 Ma in the 

Eocene (Figures 1.1 & 1.2; Hall, 2002) and are still active today (Yumul et al., 2008). 

The Philippine Archipelago is now situated on the eastern margin of the Eurasian Plate, 

separated from the western border of the Philippine Sea Plate by the Philippine Trench 

(Queano et al., 2007). 
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The current arrangement of islands in the Philippines resulted from the 

convergence of northern and southern groups of islands primarily caused by the 

subduction and rotation movements of the Philippine Sea Plate (Figures 1.1-1.5, see also 

Hall’s animated plate tectonic reconstruction at www.searg.rhul.ac.uk). The oldest 

volcanic island, Luzon, appeared 50 Ma followed by the eastern Philippine islands 45 Ma 

(Hall, 2002). Luzon, initially located near Borneo, then moved in a northeast direction 

and rotated counter-clockwise before colliding with the Palawan-Mindoro block of 

continental crust. That crust separated from the Asian mainland in the mid-Oligocene as 

the seafloor spread, creating the South China Sea (Hall, 2002; Queano et al., 2007). Close 

to the end of the Miocene (10 Ma), the Palawan-Mindoro Block reached the Sunda Shelf 

and was lifted above sea level (Hall, 1998). Islands in the eastern Philippine arc, at the 

same latitude as present-day Sulawesi, began moving north 25 Ma and then northwest 5 

Ma until reaching their current position and completing the existing arrangement of 

Philippine islands (Hall, 2002). Geological features responsible for the continuing 

tectonic activity in the Philippines are reviewed in Yumul et al. (2008).  

Palaeoenvironment of the Philippines: Insight from the broader Southeast Asian region 

 Tropical rainforest habitats have occupied the Southeast Asian region at least 

since the beginning of the Cenozoic Era. In fact, global climate was warmer and more 

humid than today which supported tropical rainforests as far north as Japan, 35° north of 

the equator (Woodruff, 2003). Paleoclimate data for the Philippines is lacking, so records 

from surrounding areas are evaluated to provide insight into the climatic conditions 

across the Archipelago during the Cenozoic. Special attention is placed on the 

Pleistocene and Holocene epochs when conditions are better understood. 
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Periodic contraction of tropical rainforests with replacement by more open 

savanna-like vegetation, accompanied by increasing or decreasing land area resulting 

from changes in sea levels characterize the changing Southeast Asian environments 

throughout the Cenozoic, particularly during the Pleistocene. Palynological studies 

reviewed by Morley (2000) have pointed to a low diversity moist, warm climate in 

Myanmar, Sarawak, and Eastern Java in the Paleocene (60 Ma). At this time and through 

the early Eocene, when the first islands of the Philippines were being formed from 

volcanic activity on the ocean floor, sea levels were higher than today, often as much as 

75m higher, and at one point more than 120m, above current sea level (Miller et al., 

2005). Fewer and smaller fluctuations occurred in the middle and late Eocene, a period 

during which Morley (2000) contends that the Philippine island arc system situated 

between Sundaland and the western Melanesian arc developed a local flora from 

colonizing species and autochthonous speciation, possibly serving as a dispersal pathway 

for Laurasian and Gondwanan taxa. The Philippines may even have been a minor floristic 

source for the Malesian and South Pacific region. No fossil evidence substantiates this 

(Morley, 2000). Furthermore, some geological reconstructions of the Philippines 

hypothesize that prior to the late Miocene, the majority of the land area of the Philippine 

islands was beneath shallow waters (Hall, 1998). 

In the Oligocene, after the collision of India with Asia, an everwet period was 

followed by a drier seasonal climate, with low sea levels (minus 50-65 m from present 

levels) associated with ice formation in Antarctica (Wade & Palike, 2004). Subsequent 

ice growth (Miller et al., 1986; Woodruff, 2003) corresponded with periods of sea level 

lowering of 50 to 120 m below current levels in the late Miocene and the Pleistocene, 
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respectively (Voris, 2000; Miller et al., 2005). During periods of lowered sea levels, 

much of the Sunda Shelf was exposed, creating landbridges across many islands in the 

region. In the Philippine Archipelago during the Pleistocene, this created a grouping of 

six Pleistocene Aggregate Island Complexes (PAIC) at the maximum decrease of 120 m 

(Heaney, 1986; Brown & Diesmos, 2002). However, Voris (2000) estimates that only 

15,000 of the last 250,000 years were sea levels 120m below present levels. Furthermore, 

at the Last Glacial Maximum (LGM, 17000 ya) sea levels were below 120m only 6% of 

the time (~1,000 years) and decreased by only 20 meters.for 9,200 years (54%).  

Pleistocene glacial and interglacial periods subjected the Southeast Asian islands 

to changes in topography, temperature, and precipitation. As a result, the islands 

underwent a turnover in vegetation types. Heaney (1991) proposed that during the glacial 

period, cooler and drier conditions from decreased evaporation and moisture content of 

monsoonal winds reduced the extent of tropical rainforest and opened a savanna corridor 

from Thailand to Peninsular Malaysia. The savanna corridor included the newly exposed 

interior Sunda Shelf, extending to Java and the southern Lesser Sunda Islands, which 

today have seasonal climates with low rainfall. The same savanna corridor was 

interpreted based on the primate fauna (Brandon-Jones, 1998) and termite communities 

(Gathorne-Hardy et al., 2002) in Sundaland. It is hypothesized that rainforest habitats 

were maintained as fragmented refugia in northeast Indochina, north Borneo, north 

Sumatra, west Java, and in parts of Peninsular Malaysia (Heaney, 1991; Brandon-Jones, 

1998; Gorog et al., 2004). The savanna corridor hypothesis is supported by evidence 

from geomorphology, biogeography, palynology, and vegetation modeling of the LGM, 

but the width of the corridor is still contentious (Flenley, 1998; Bird et al., 2005). 
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Palynology records across Southeast Asia and the West Pacific demonstrate the 

appearance of savanna vegetation during the LGM where previously only lowland 

rainforest taxa were present (Flenley, 1998). Additional pollen records of the LGM from 

a part of the raised Sunda Shelf north of Borneo show an assemblage of lowland 

rainforest and lower montane rainforest taxa, suggesting that despite the cooler climate, 

humidity was sufficient to maintain rainforest habitats at low elevations (Wang et al., 

2009). Thus, rainforest habitats could have occupied large areas including the exposed 

Sunda Shelf or contracted to small refugia in Sumatra and Borneo. However, it is clear 

from pollen records that open vegetation separated rainforest habitats during Pleistocene 

glaciations, creating a dispersal barrier for closed canopy dependent species between 

Borneo and Sumatra. It is also possible that the same conditions were present during 

periods of lowered sea levels before the Pleistocene. 

Modern molecular techniques have been used to analyze the evolutionary 

histories of rainforest taxa in the Malesian region, providing a potential representation of 

the region’s paleoenvironment. The phylogeographic pattern in the rainforest tree genus 

Lithocarpus indicates persistence in Southeast Asia since the late Eocene, with 

fragmentation of Asian mainland and Bornean populations, and development of unique 

evolutionary lineages in several isolated populations most likely predating the Quaternary 

(Cannon & Manos, 2000). Although the timing of events is not clear, the research of 

Cannon & Manos (2000) does not contradict the idea that open vegetation habitats (non 

rain forest) appeared during dry intervals in the Miocene and Pliocene.  This would have 

fragmented forest populations, reducing dispersal across rainforest refugia, and resulting 

in locally endemic evolutionary lineages. 
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The palaeoenvironment of the Philippine Archipelago, if representative of the 

Southeast Asian region’s environmental history, was therefore most likely wet and moist 

in the early Cenozoic. Tropical rainforest species would have dispersed to newly exposed 

islands later developing into the widespread tropical rainforest habitats found across the 

archipelago. Periodic changes in the vegetation must have subsequently occurred in 

response to climatic fluctuations. Only the recent Pleistocene palaeoenvironmental 

history has been analyzed in the Philippines, but it is possible that the Philippine islands 

underwent events analogous to those that occurred in Sundaland. The western half of the 

Philippines has been reconstructed with a drier climate during the LGM (Heaney, 1991). 

The western islands are presently categorized as having Type I (pronounced dry season 

November-April) and Type III (relatively dry season November- April) climate 

(PAGASA, 2009). Bird et al. (2007), using a novel method of gathering 

palaeoenvironmental information based on carbon isotope data from guano deposits in 

the island of Palawan, postulate that the areas surrounding the collection sites were 

grasslands suited to the drier climate during the LGM. By the mid-Holocene, tropical 

forest, much like the modern forest in the area today developed and replaced the savanna-

like vegetation. In contrast to the grasslands in the west, a reconstruction by Heaney 

(1991) shows the eastern half of the Philippines with an everwet climate coinciding with 

areas of Type II (aseasonal, with pronounced rainfall November-April) and Type IV 

(evenly distributed rainfall) climate (PAGASA, 2009). The proposed vegetation 

distribution during the Pleistocene implies that the range of tropical rainforest flora and 

fauna was increasingly restricted in the western islands, whereas tropical rainforest 

habitats in the eastern islands were only slightly contracted at the glacial maximum. 
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Inferring from Heaney’s savanna hypothesis (1991), tropical forest taxa in the Philippines 

today exist primarily due to the persistent rainforest habitats in the eastern islands, and 

probable introductions from Borneo or other nearby landmasses. In order to account for 

the extremely rich and endemic modern flora of the Philippines (76.5% endemicity, 

Myers et al., 2000), significant pockets of rainforest habitat must have existed during the 

LGM even within the savanna corridor, as it seems highly unlikely that the eastern 

islands hosted all the extant endemic species. Therefore, it is more probable that during 

glacial periods, rainforest species persisted in fragments of forest habitat throughout the 

Philippines, but mainly in the eastern islands, coupled with some disjunct rainforest 

refugia within the widespread savanna vegetation in the western islands. 

Origin of the modern Philippine flora 

 Species-rich tropical rainforests are the dominant habitats throughout the 

Philippine archipelago, extending from 5° to 21° N latitude (Heaney & Regalado, 1998; 

Co et al., 2006). Several areas with highly diverse floras exist along the boundaries of the 

Philippines. These areas may have contributed to the current diverse Philippine flora. The 

Asiatic flora of Taiwan and mainland China form the northern border, Borneo is 

immediately to the southwest, and Sulawesi and New Guinea are in the southeast. It is 

unfortunate that there is no fossil record of the vegetation that appeared following the 

emergence of the current Philippine islands in the Eocene (Ashton, 1993; Morley, 2000) 

to signal which phytogeographic region contributed the majority of colonizing species to 

the Philippines. The fossil record could contribute to a clearer picture of the floristic 

history of islands during the Cenozoic and clarify how the flora underwent change due to 
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plate tectonics. Nevertheless, modern floristic similarity analyses and phylogenetic 

studies give insight into events that have led to the development of the present flora. 

Floristic distributions suggest that the Philippine flora is largely Sundaic in origin 

(Peninsular Malaysia+Borneo+Sumatra), with some temperate Asian and tropical 

Australasian elements (Merrill, 1926, 1943). Wallace’s Line (Figure 6) was drawn in 

recognition of the zoological boundary between the Asian and Australian regions 

(Wallace, 1860). Wallace’s Line separated Bali and Lombok, extended north between 

Borneo and Sulawesi, and finally southeast of the Philippines (Simpson, 1977). 

Subsequently, the line was redrawn to the west of all Philippine islands except the 

Palawan group to explain bird distributions and was named Huxley’s Line (Simpson, 

1977). Huxley’s Line was supported by Merrill (Dickerson et al., 1928), due to the 

significant number of Australian plant genera (43 genera) with their western limits in the 

Philippines. Nonetheless, a greater number of Asian plant genera (181) reach their eastern 

limits in the Philippines (van Steenis, 1950; Ashton, 1993) and reflect the greater 

influence of Bornean taxa. Hence, Wallace’s Line best demarcates the floristic region 

where the Philippine Islands belong. 

The Eocene fossil record of Java includes pollen types found in older deposits in 

India (Morley, 2000, 2003), suggesting the eastward dispersal of Indian taxa via a 

dispersal corridor through Indochina (Harley & Morley, 1995). Phylogenetic and 

biogeographic studies corroborate this trend of dispersal from India to Southeast Asia, 

including the Philippine Islands (Aglaia (Muellner et al., 2008); Caryota (Hahn & 

Systsma, 1999); Leea (Molina, 2009); Spatholobus (Ridder-Numan, 1998); Vitex 

(Bramley et al., 2009)). In some cases, introductions from India resulted in a shift of 
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centers of diversity to Southeast Asia via radiations of taxa with distributions currently 

limited to Malesia (Calamoideae, Baker et al., 2000; Dipterocarpaceae, Dayanandan et 

al., 1999). Further, the Philippines may have served as a source or simply a conduit for 

plant dispersal to the islands of New Guinea and the South Pacific (Aporosa, Schot, 1998; 

Aglaia, Cycas, Heterospathe, and Syzygium, Keppel et al., 2009). In contrast, 

contribution of the Australian taxa to the Philippine flora is observed in the range 

expansion of Eucalyptus subgenus Symphyomyrtus from the Australian continent to 

Sulawesi and Mindanao Island, Philippines (Ladiges et al., 2003). The low number of 

Australian taxa in the Philippine flora, as well as in the Western Malesian flora in 

general, has been explained as a result of the adaptation of Australian taxa to poor soils 

and open habitats, thereby making it difficult to establish successfully in the already rich 

and exuberant rainforest vegetation in Malesia (van Steenis, 1979). 

Despite generic similarities with both Asian and Australasian flora, the Philippine 

flora is distinct at the species level (Ashton, 1993). Endemic species make up 76.5% 

(5,832 species) of all plant taxa in the Philippine Islands (Myers et al., 2000), many of 

which are widespread in their distribution. However, the local floras of Luzon, Mindanao, 

and Palawan, include many species endemic only to each of these islands and taxa only 

shared with Taiwan, Moluccas, and Borneo, respectively (Merrill, 1926; Ashton, 1993). 

In contrast, the centers of endemism documented for non-volant mammals and birds 

correspond to six PAICs (Peterson et al., 2000; Heaney et al., 2005).  Preliminary 

analysis of the highly endemic and speciose genus Cyrtandra (Gesneriaceae) indicates 

two dispersal phases that demonstrate the Palawan-Borneo connection and subsequent 

development of endemic species in Luzon and Palawan (Atkins et al., 2001). The first 
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phase occurred before the Quaternary, documented by a divergence into two 

monophyletic clades: Palawan versus Luzon+Mindoro. Both clades are represented by 

five to six locally endemic species, indicating rapid diversification within the 

Archipelago. Cyrtandra seem to demonstrate rapid diversification following a single 

dispersal event to oceanic islands, as seen in the Pacific and Hawaiian clades (Cronk et 

al., 2005). It appears as though a similar radiation occurred after the first dispersal into 

the Philippines. The second phase of dispersal involved several events attributed to the 

close proximity of Borneo, particularly during the LGM when Palawan was separated 

from Borneo by only 12 km (Voris, 2000; Atkins et al., 2001; Meijaard & van der Zon, 

2003). 

An interesting pattern identified by Merrill (1926) highlights taxa that are found 

only in the eastern portion of the Archipelago, from Mindanao to Luzon, including areas 

with Types II and IV current climate. This area coincides with the proposed Pleistocene 

distribution of rainforest habitat by Heaney (1991). The presence of local rainforest 

endemic taxa in Palawan, Mindoro, Negros, and Panay, however, points to the 

maintenance of fragmented forest refugia, even in the drier western islands. 

Phylogenetic or phylogeographic data on Philippine plants illustrating vegetation 

history through the glacial cycles is mostly lacking. While several genetic diversity 

studies have been performed, yielding information that could be used to interpret plant 

population dynamics, the taxa investigated were non-native, introduced, and cultivated 

species that would not represent Pleistocene populations (Anacardium occidentale 

(cashew), Maranan and Mendioro, 2008; Capsicum frutescens (chili pepper), Yamamoto 

& Nawata, 2005); Colocasia esculenta (taro), Lebot & Aradhya, 1991; Lebot et al., 
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2004).  A study of the genetic differentiation of natural populations of Rubus moluccanus 

is an exception (Busemeyer et al., 1997). However, only four populations were sampled, 

one in Luzon and three in Mindanao. Not surprisingly, the Luzon population was found 

to be genetically distinct from the Mindanao populations. This is evidence that plants 

across the Archipelago are not genetically homogeneous and that gene flow can be 

limited. Intra-island gene flow in Mindanao was found to be relatively high, but the 

easternmost population, separated from the two western populations by 130-245 km, was 

significantly different suggesting that even short distances can result in population 

divergence (Busemeyer et al., 1997). In that case, the role of water as a barrier could not 

be tested because geographic distance was a confounding factor.  

In contrast to plants, research on the phylogeny and biogeography in several 

animal groups has been documented since 1985: birds (Jones & Kennedy, 2008; Outlaw 

& Voelker, 2008; Sheldon et al., 2009), fruit bats (Heaney et al., 2005; Roberts, 2006), 

rodents (Apomys, Steppan et al., 2003); Rattus, Heaney et al., 2005; most genera, Jansa et 

al., 2006), and shrews (Esselstyn & Brown, 2009; Esselstyn et al., 2009). The general 

trend recovered is of pre-Pliocene dispersal and diversification events (Steppan et al., 

2003, Outlaw & Voelker, 2008; Esselstyn et al., 2009). Speciation was likely driven by 

dispersal into new habitats subsequently isolated by the insular setting. Pleistocene 

glaciation effects are varied across the animal taxa. In shrews, genetic divergence is 

affected by geographic isolation and genetic diversity can be explained by either modern 

or Pleistocene island boundaries (Esselstyn & Brown, 2009). In fruit bats and in Rattus 

everitti, genetic structure is clearly correlated with PAIC boundaries (Heaney et al., 2005; 

but see Roberts, 2006). In contrast, the distribution of genetic variation in birds extends 
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outside some of the PAIC boundaries, suggesting that genetic interchange was not 

significantly increased by Pleistocene landbridges (Jones & Kennedy, 2008). 

The assembly of plants in the Philippines resulted from a combination of 

colonization events from multiple sources and high rates of local diversification, 

accounting for the high proportion of endemic taxa. Given that endemicity is lower in 

vertebrate animals (57%, Heaney & Regalado, 1998) than in plants (76.5%), and 

diversification rates are, on average similar in plants and animals (McPeek & Brown, 

2007), it can be inferred that the process of colonization and diversification in plants 

began, if not prior to, then at least simultaneously with animals. Estimates of divergence 

times, however, require significant phylogenetic reconstructions (Ricklefs, 2007), which 

have yet to be compiled for Philippine plants. In addition to testing and timing broad-

scale phylogenetic hypotheses, direct evidence of lineage divergence can be determined 

from population genetics studies (Ricklefs, 2007). The phylogenetic approach in 

conjunction with genetic and geographic information of populations can be used to 

document the response of the flora to strong environmental stimuli, like climate change. 

Faunal response to Pleistocene glaciations has been varied (see above) suggesting the 

same could be true for plants. Research in this area is necessary to understand past events 

and potentially allow the approximation of the effects of future climate change. 

 Future of the Philippine Flora 

 Tropical forests covered at least 95% of the land area in the Philippine 

Archipelago before human civilization established in Palawan ~40,000 years ago 

(Heaney & Regalado, 1998; Bankoff, 2007). Today, only 7% of primary rainforests 

remain and most are still being threatened with the highest relative rates of deforestation 
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in the world, even if classified as a protected area (1.4% yr-1 in Southeast Asia vs. 1.2% 

in Central America or 0.5% in South America; Sodhi et al., 2004). The high diversity, 

high endemicity, and high habitat loss have earned the country a not-to-be-coveted top 

spot in the world’s biodiversity hotspots list (Myers et al., 2000). Increasing population 

size combined with slow economic growth (Sodhi et al., 2004) is not conducive to the 

success of conservation efforts.  

 Current floristic research and conservation initiatives include botanical 

inventories (Hamann et al., 1999; Langenberger et al., 2006), creation of protected areas 

(DENR, 2009), establishment of seed banks (IRRI, 2009), in-situ conservation of food 

crops (Coronel, 2002; Carpenter, 2005), and numerous interests in the development of 

sustainable agriculture and the preservation of agrobiodiversity (DENR, 2009). 

Plant surveys conducted in recent years have recorded several new species. The 

most amazing discoveries have been of the genus Rafflesia (Rafflesiaceae). Since the 

1980s, Borneo and Sumatra have been identified as the centers of diversity with 8 and 7 

species, respectively (Barcelona et al., 2009). A thriving ecotourism industry in Malaysia 

is built on viewing these parasitic plants. Prior to 2002, only two species were known to 

occur in the Philippines.  Since then, eight (maybe nine) new species have been 

discovered (Barcelona et al., 2006, 2009). This is exciting because some of the species 

have been discovered in disturbed, or even degraded forests (Barcelona et al., 2009). 

Another newly recorded species is Nepenthes attenboroughii, collected in Palawan, 

which bears pitchers at the tip of leaves approximately 30 cm in size (Robinson et al., 

2009). Both Rafflesia and Nepenthes are large and striking, and were collected in areas 

previously visited by other botanists. The potential for other species, less conspicuous 
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than the Rafflesia or Nepenthes, to be discovered is thus very high and floristic 

inventories are necessary to address this. I recommend the mountains of the Sierra Madre 

as well as the islands of Palawan as sites for future surveys because the majority of 

remaining forests are located in these areas. 

Approximately 11% of the total land area of the Philippines is designated as 

Protected areas (PA) (PAWB, 2007). All the primary forests that remain have been 

mandated to be ‘no-use zones’ within a protected area. Theoretically, these forests are not 

accessible to any form of extraction of any forest product except by indigenous people 

inhabiting the park. In practice, illegal logging and the collection of many non-timber and 

animal goods are carried out in most of these PAs (DENR, 2009). Members of 

communities near a PA, usually poverty-stricken, find the exploitation of resources 

within the PA essential for survival. Even the addition of buffer zones, regions 

surrounding protected areas allocated for traditional agricultural use, has not curtailed the 

exploitation of the parks (Lynagh & Urich, 2002). Unfortunately, implementation of the 

policies regarding the protection of PAs is not strict due to the limited resources of the 

responsible agencies. Thus, the threat of habitat and biodiversity loss continues in the 

Philippines.  

Conservation of fruit-bearing trees and other crops is a national priority supported 

by the Philippine government, NGOs, and external government agencies (Dillaha et al., 

2008; DENR, 2009). Several national institutes have been tasked to establish gene banks, 

in the form of seed or living specimens in gardens (Coronel, 2002).  Ex-situ and in-situ 

conservation programs have been designed, particularly for rice, to preserve the many 

traditional varieties (Carpenter, 2005). Timber species, especially native hardwood 
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species like Pterocarpus indicus (Fabacaeae), Shorea contorta (Dipterocarpaceae), and 

Vitex parviflora (Verbenaceae), are also targeted for conservation (Baja-Lapis, pers. 

comm.; Martin, 2007; Snelder & Lasc, 2008). Even non-timber forest products such as 

rattans (Arecaceae) are being preserved because of their economic importance 

(Dransfield et al., 2002). 

Currently, the future of Philippine forests appears dismal. However, intensive 

research and proper implementation of conservation programs can help to preserve the 

remaining forests and possibly even restore some habitats. I recommend that research be 

focused on species that still have a widespread distribution in many islands as the 

understanding of their metapopulation dynamics could provide insight into the interaction 

of anthropogenically-fragmented habitats. This research needs to be conducted 

immediately before further habitat loss makes it impossible. In addition, species with 

limited distributions that have persisted through geological time, could also serve as a 

model for the maintenance of small populations. Both of these approaches require 

replication across various taxa before generalized conclusions can be made. The 

immediacy in starting this considerably large task is imperative. 
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Figure 1.1. Reconstruction of Southeast Asian geology at 50 Million years B.P. with the 

first appearance of the volcanic island, Luzon, and the continental islands of Palawan, 

Mindoro, and Zamboanga (shaded dark gray). Philippine Islands remained under shallow 

water (Hall 1998). Areas outlined in black (outside of the Philippine Islands) are above 

sea level and light gray areas represent the continental crust below sea level. The arrow at 

top left indicates the movement of the Indian Plate towards the Eurasian Plate (modified 

from Hall 2002). 

 
Figure 1.2. Reconstruction of Southeast Asian geology at 45 Million years B.P. with the 

first appearance of the eastern Philippine islands. A small area in central Luzon appears 

above water (modified from Hall 1998, 2002). 
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Figure 1.3. Reconstruction of Southeast Asian geology at 25 Million years B.P. showing 

the southward movement of Palawan and Mindoro, the rotation and northward movement 

of Luzon, and northward movement of the eastern Philippine Islands. Most Philippine 

islands remain under shallow water (modified from Hall 1998, 2002).  

 
Figure 1.4. Reconstruction of Southeast Asian geology at 5 Million years B.P. showing 

Palawan and Mindoro north of Borneo and south of Luzon island. The eastern Philippine 

islands are at a northern latitude. Majority of the islands appear above water (modified 

from Hall 1998, 2002). 
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Figure 1.5. Present Day Southeast Asian geography. This resulted from the tectonic 

activity of the Carolina, Eurasian, Indo-Australian, Pacific, and Philippine Sea Plates 

(modified from Hall 2002). 

Figure 1.6. Wallace’s and Huxley’s Line. 
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Chapter 2 

Population genetics of endemic Philippine plants – patterns in Daemonorops mollis 

(Arecaceae) and Macaranga bicolor (Euphorbiaceae) 

 

Abstract 

 The biogeographic history of endemic plant populations from the Philippine 

Archipelago was addressed using 97 Daemonorops mollis (Arecaeceae) lianas and 71 

Macaranga bicolor (Euphorbiaceae) trees. DNA sequences were collected from the 

chloroplast region, rpl16, in D. mollis, and used to identify five haplotypes. In M. bicolor, 

the nuclear ITS region and chloroplast trnL-f region were sequenced, recovering 7 and 6 

haplotypes, respectively. Phylogeographic structure is recovered only in M. bicolor and 

shows a potential route of colonization in the south- and west- ward direction from 

populations in northeast Luzon. Water barriers are more easily crossed by D. mollis, 

although for both species, AMOVA tests showed no effect on the observed genetic 

structure of present-day boundaries and Pleistocene island boundaries. In contrast, high 

FST values (0.72 in D. mollis and 0.97 in M. bicolor) imply that dispersal among 

populations is restricted, both within and among islands. Genetic discontinuities 

corresponding to the isolation of islands and a topographic barrier between eastern and 

western Luzon populations were identified in SAMOVA and help explain the distribution 

of genetic diversity. 

Introduction 

Active tectonic history in the Southeast Asian region throughout the Cenozoic via 

the collision of the Eurasian, Pacific, and Indo-Australian plates (Hall, 2002) resulted in 
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the mixing of Gondwanan and Laurasian taxa followed by subsequent rapid development 

of endemic floras in the newly formed island arcs (Morley, 2000). Today, among the 

7,107 islands of the Philippine Archipelago, 76% of the flora is endemic (Myers et al., 

2000). Sadly, an estimated 3,400 (58%) species of Philippine endemic plants are believed 

to be extinct primarily due to the effects of habitat loss (Brooks et al., 2002). Today, less 

than 3% of primary vegetation remains in the Philippine islands (Heaney & Regalado, 

1998; Myers et al., 2000) and a total of 21% of the land area has primary or secondary 

forests (Mendoza, et al., 2010).  

Despite the diversity of taxa in this unique archipelagic setting, and the threatened 

status of most of the species, the flora of the Philippines and the Southeast Asian region 

as a whole, has been the focus of very few evolutionary studies (Beheregaray, 2008). The 

application of molecular phylogeographic techniques on Malesian taxa has lagged behind 

research on plant species from Europe, North America, and tropical South America (Petit 

et al., 2002; Soltis et al., 2006; Dick & Heuertz, 2008). The majority of phylogeographic 

research has been on continental species, although recent studies have tackled the history 

of the Caribbean (Butaud et al., 2005), Hawaiian (Wallace et al., 2009), Canary 

Archipelagos (Juan et al., 2000), and the Asian islands of Taiwan and the Ryukus 

(Chiang & Schaal, 2006). 

The foremost phylogeographic research on plants in Malesia was conducted on 

the stone oak genus Lithocarpus (Cannon & Manos, 2000). The study addressed the 

population dynamics of the genus, demonstrating its persistence in rainforest habitats 

through a series of drying events during the Pleistocene. However, a broader 
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biogeographical history of the Philippines, particularly of endemic plants, is very poorly 

understood.  

The phylogenetic and biogeographic histories of animal taxa in the Philippine 

Islands have received greater attention, providing a testable framework for plant studies. 

Widespread continental species that colonized and established in the islands, 

subsequently speciated and diversified to create a highly endemic fauna (47% of 

vertebrates) with geographically and genetically isolated populations (Heaney & 

Regalado, 1998; Outlaw & Voelker, 2008; Sheldon et al., 2009). In the caddisfly genus 

Hydropsyche, adaptive radiation of 12 species occurred in a single river in the island of 

Luzon (Mey, 2000). In the Asian cobra, Naja naja, three distinct forms (currently 

taxonomically considered subspecies) each inhabit a single island or group of islands 

connected during the Pleistocene (Wuster & Thorpe, 1990), supporting the hypothesis of 

a potential opportunity for dispersal among connected islands during periods of lowered 

sea level.  

Using phylogeographic analyses, which determine the genealogical relationships 

of spatially distributed populations within a species (Avise, 2000), Peterson and Heaney 

(1993) examined fruit bats and discovered patterns of genetic differentiation associated 

with Pleistocene island water boundaries. In a subsequent study including five species of 

bats and one species of murid rodent, phylogeographic structure was correlated with 

boundaries of Pleistocene islands rather than present-day island boundaries (Heaney et 

al., 2005). Historical sea level fluctuations, particularly during the Last Glacial Maximum 

(LGM), are thus presented as influential in the evolutionary history of Philippine fauna.  

In contrast, this pattern was not evident in the malaria vector Anopheles flavirostris 
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(Foley & Torres, 2006). Inter-island population gene flow was only partially inhibited by 

water barriers of present-day islands and a south-to-north range expansion was recovered. 

Further, allozyme analysis of milkfish populations indicated no genetic isolation among 

marine populations that were separated by landbridges during each glaciation event 

(Winans, 1980) but see (Lourie et al., 2005). A brief review of comparative 

phylogeographic studies on Philippine animals tested four major patterns of colonization: 

(1) north (N) to south (S) via Taiwan; (2) S to N from Borneo via Palawan; (3) S to N 

from Borneo via Mindanao; and (4) S to N from Sulawesi via Mindanao (see Figure 1 in 

Jones & Kennedy, 2008). The strongest support was found for south-to-north 

colonizations from Borneo via both Palawan and Mindanao, accompanied by speciation 

and within species differentiation on isolated islands (Jones & Kennedy, 2008).  

In contrast to the increasing number of phylogeographic studies on animals, 

research on plant population genetics is limited to a few phylogenetic studies conducted 

at higher taxonomic levels.  Phylogenetic analyses have presented potential colonization 

routes in both northward and southward directions, along the 1600 km of the archipelago, 

and indicate the importance of water barriers to facilitating speciation (Atkins et al., 

2001; Muellner et al., 2008). Restricted gene flow within and across islands was also 

documented in a limited sample of Rubus moluccanus (Rosaceae), from three populations 

in Mindanao and a fourth from Luzon (Busemeyer et al., 1997). The genetic structure of 

Philippine populations has the potential to clarify the evolutionary and ecological history 

of a highly diverse flora distributed across many islands. The present study is the first 

range-wide comparative phylogeographic study of Philippine plants. 
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Here, comparative analyses are performed on Daemonorops mollis and 

Macaranga bicolor, two phylogenetically distant species that bear some important 

similarities. The two species occur in sympatry and share several traits particularly those 

involving their mechanism of dispersal. Both species inhabit primary and secondary 

forests, are widespread Philippine endemics, bird-dispersed, and dioecious (Merrill, 

1926; Uhl & Dransfield, 1987).  

Daemonorops mollis is a spiny, long-lived liana species belonging to the oldest 

and largest lineage in the Arecaceae, the Calamoideae subfamily (Lewis et al., 2000; 

Asmussen et al., 2006). The Calamoids are distributed throughout the Old World tropics 

(Uhl & Dransfield, 1987) and typically comprise nearly half of the palm species in the 

Malesian region. In the Philippines, four Calamoid genera include 65 of the total 135 

palm species (Fernando, 1990). While the Philippine palm flora is not very species-rich, 

including only 5.8% of all palm species, over 70% of the species that occur in the 

Philippines are endemic (Fernando, 1990), suggesting a high speciation rate within the 

Philippine islands. The palm flora of nearby Celebes, Malay Peninsula, and Borneo, share 

the largest number of species with the Philippine flora, suggesting that the introduction of 

palms into the volcanic islands of the Philippines came from these areas (Fernando, 

1990). The southern locations of these probable sources indicate a south to north 

colonization route into the Philippine islands. 

Macaranga bicolor is a short-lived pioneer tree species in the Euphorbiaceae. The 

genus Macaranga is comprised of approximately 250 species, distributed in the 

paleotropics (Govaerts et al., 2000).  Like the Calamoid palms, Macaranga is most 

diverse in the Malesian region including 133 of 250 (53.2%) species (Govaerts et al., 
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2000). Twenty-three (9.2%) species are found in the Philippines, 17 (74%) of which are 

endemic (Merrill, 1926; but see Whitmore, 2008). The high number of endemic 

Macaranga species in the Philippines also attests to the fast pace of evolution in the 

islands, given that the oldest island in the Philippine archipelago is only 50 Million years 

old (Hall, 2002). Furthermore, the restricted distribution of some species like M. 

amplifolia, M. balabacensis, and M. leytensis to a single or a few islands indicates that 

dispersal across islands is limited, potentially contributing to population or species 

divergence. Local and widespread endemism is also exhibited in Daemonorops and thus, 

analysis of both D. mollis and M. bicolor, could reveal a comparable account of the 

evolutionary history of the Philippine flora. 

The following hypotheses are tested here: (1) Colonization events among islands 

proceeded from south to north resulting in ancestral haplotypes found in Mindanao, and 

more derived haplotypes in Luzon. (2) Increased geographic distance between 

populations reduced gene flow producing a correlation between geographic and genetic 

distance. (3) Water barriers isolated island populations and thus the distribution of 

genetic variation is predicted to be among rather than within islands. (4) Lower sea levels 

during the Pleistocene facilitated gene flow between currently isolated island populations 

within a larger Pleistocene island. It is expected that genetic differentiation among 

populations will be correlated with the Pleistocene grouping of present-day islands 

(Figure 2.1.a). 

Methods 

Sampling 
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Leaves from 4-16 individuals of Daemonorops mollis and Macaranga bicolor 

were collected from 9 and 8 sites, respectively (Figures 2.2.a, 2.3.a, 2.4.a, and 2.5.a; 

Table 2.1). Sites were chosen based on forest quality and including as much as possible 

of each species’ known distribution. Leaf samples were preserved in silica gel 

immediately after collection. Outgroup species were selected and used to determine if the 

target species were monophyletic or comprised of a species complex. For Macaranga, 

five outgroup species included (1) M. triloba, which belongs in the same clade as M. 

bicolor based on the phylogeny constructed by Kulju et al. (2007), (2, 3) two species (M. 

hispida and M. tanarius) from the only other clade with Philippine representatives, and 

(4, 5) two endemic species (M. dipterocarpifolia and M. ovatifolia) of unknown position 

in the phylogeny. No proposed phylogeny exists for Daemonorops, so two endemic 

sympatric species, D. loheriana and D. ochrolepis, were selected as outgroup species.  

DNA extraction, amplification, and sequencing 

DNA extraction – Twenty milligrams of dried leaf material were ground in a 

Retsch MM 301 mixer mill (Retsch, Haan, Germany) from which DNA was extracted 

using the DNeasy Plant Mini Kit (Qiagen, Valencia, California). The manufacturer’s 

protocol was followed with an additional incubation step to digest proteases using 5µl of 

Proteinase K for five minutes at room temperature.  

PCR amplification – Nine notably variable regions, including the barcode region 

psbA-trnH (Table 2), were initially tested for genetic variation but only two regions 

showed nucleotide differences among test samples. Two gene regions, one nuclear and 

one noncoding chloroplast, were amplified via polymerase chain reaction (PCR) for all 

samples of Macaranga bicolor. A ~900 bp segment of the nuclear internal transcribed 



!

"#!

spacer (ITS) was amplified with the primers 17SE (5’- 

ACGAATTCATGGTCCGGTGAAGTGTTCG-3’) and ITS4 (5’-

TCCTCCGCTTATTGATATGC-3’) following Baker et al. (2000). The primer sequences 

trnQ (5’-GCGTGGCCAAGYGGTAAGGC-3’) and rps16 (5’-

GTTGCTTTYTACCACATCGTTT-3’) were used to amplify the plastid genetic marker, 

trnQ (Shaw et al., 2007). Amplification reactions were performed in 25µl volumes 

containing 2.5µl of 10X Buffer, 2.5µl of 2mM dNTPs, 1µl of each primer at 10 pmol/µl 

dilution, 0.1µl of Qiagen HotStar Taq polymerase, and 1µl of DNA template, which was 

prepared by diluting the total genomic extracts 1:50. PCR was performed with a 

Touchdown PCR protocol (Qiagen) with an initial heating at 95ºC for 15 min; each of 35 

subsequent cycles used the following annealing temperatures: 60ºC, 59ºC, 58ºC, 57ºC, 

55ºC, 52ºC, and 50ºC; and elongation was set at 72ºC for 45 seconds. A final extension at 

72ºC was run for 15 min. The noncoding region, rpl16, was sequenced for all D. mollis 

samples using the primers rpLF71 (5’ – GCTATGCTTAGTGTGTGACTCGTTG-3’) and 

rpL1516 (5’-CCCTTCATTCTTCCTCTATGTTG-3’) from Shaw et al. (2005). Amplification 

reactions comprised of 2.5µl of 10X Buffer, 2.5µl of 2mM dNTPs, 1.5µl of each primer 

at 10 pmol/µl dilution, 0.1µl of Qiagen HotStar Taq polymerase, 2µl of DNA template, 

and 15 µl of ddH2O. PCR followed the protocol used for M. bicolor. PCR amplification 

quality was assessed by visualizing 3µl of the product in 1% agarose gel with ethidium 

bromide. 

DNA Sequencing - PCR products from successful reactions were cleaned using 

ExoSAP-IT® (USB Corp., Cleveland, Ohio) following manufacturer’s specifications, 

and then submitted to the University of Michigan DNA Sequencing Core Facility for 
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sequencing using Applied Biosystems DNA Sequencers (Model 3730 XL sequencer). 

Each DNA fragment was sequenced in both forward and reverse directions.  

Sequence Alignment and Data Analysis 

Sequence Alignment – DNA sequences were manually edited in Sequencher ver. 

4.6 (Gene Codes Corp.) and initially aligned with ClustalW (European Bioinformatics 

Inst.) using default parameters. Minor adjustments were made in MacClade 4.0 

(Maddison & Maddison, 2005).  The two regions, ITS and trnQ, sequenced for M. 

bicolor were concatenated in MacClade 4.0.  

Data Analysis - The alignment was converted into a NEXUS file and was used to 

perform maximum parsimony (MP) analyses in PAUP* v4.0 (Swofford, 2003). Heuristic 

searches were performed with 100 random addition-sequence replicates and tree-

bisection reconnection branch swapping, saving all most parsimonious trees. A 50% 

majority-rule consensus tree was reconstructed from all saved MP trees. A MP bootstrap 

analysis (Felsenstein, 1985) was performed with 1000 bootstrap pseudoreplicates. 

Partition homogeneity was tested for the M. bicolor concatenated data with the 

incongruence-length difference (ILD) test (Farris et al., 1994) in PAUP.  

The program PERMUT (Pons & Petit, 1996) was used to assess phylogeographic 

structure by testing for significant differences between measures of population 

differentiation based on either haplotype frequencies only (GST) or haplotype frequencies 

and divergence (NST). Population pairwise FST values were determined in Arlequin 

ver.3.1 (Excoffier et al., 2005) and used to conduct analyses of molecular variance 

(AMOVA) in order to partition molecular variance into among and within populations at 

three hierarchical levels: among populations, among present-day islands, and among 
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Pleistocene islands. To define groups of populations that are geographically 

homogeneous with maximum genetic differentiation (based on total genetic variance), a 

spatial analysis of molecular variance (SAMOVA) was performed. The test is used to 

identify the number of groups (K) that would result in the largest FCT value (proportion of 

total genetic variance due to differences between groups of populations) (Dupanloup et 

al., 2002). K was set between two and eight, with 100 simulated annealing processes. 

Isolation by distance (IBD) was tested with a Mantel test in GenAlEx ver. 6.0 (Peakall & 

Smouse, 2006) between geographic distance and Slatkin-transformed genetic distance, 

FST/(1-FST). Significance was assessed using 9999 permutations. Geographic locations 

used were collected on-site with a Garmin e-Trex Legend GPS unit. Haplotype 

relationships of D. mollis and M. bicolor were inferred using statistical parsimony 

methods in TCS v.1.21 (Clement et al., 2000) represented by a haplotype network. 

Results 

DNA sequence data was obtained for 71 individuals of M. bicolor and 97 

individuals of D. mollis (Table 2.1, Figure 2.1.b). The D. mollis samples were collected 

from six islands, with a mean sample size of 10.8 individuals. Five islands are 

represented in the M. bicolor data with a mean sample size of 8.9 individuals.  

Daemonorops mollis 

Within D. mollis, rpl16 sequences amplified were comprised of 906 nucleotides. 

There were only four variable sites, three of which were parsimony-informative. Five 

polytomous clades were recovered, corresponding to the five haplotypes recognized in 

the statistical parsimony analysis conducted. Four D. mollis haplotypes were different 

from haplotype h1 by a single base pair substitution. Parsimony analysis shows four of 
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five equally likely trees of 20 steps with a consistency index of 1.0 and retention index of 

1.0. The strict consensus tree with bootstrap support values is presented in Figure 2.2.b. 

The haplotype network (Figure 2.2.c) depicts the same phylogenetic relationships. 

Nevertheless, when combined with sequences from the outgroup species, all the D. mollis 

individuals still formed a moderately supported (63%) monophyletic group. The outgroup 

species, D. ochrolepis, is different from the most common and ancestral D. mollis 

haplotype, h1, by only one base substitution. D. loheriana, however, is 12 mutational 

steps from D. ochrolepis, 9 of which are base substitutions and 4 are single-base 

deletions. 

One haplotype, h1, is very common and found in 59 of 97 (61%) individuals and 

from eight of nine sites (Figure 2.2.a and 2.2.c). Two haplotypes, h2 and h3, are shared 

by two and three populations, respectively. The two remaining haplotypes, h4 and h5, are 

rare and each restricted to one population. Three populations, S4, S10, and S11, are fixed 

with only one haplotype. 

The comparison between NST and GST (NST= 0.718, GST=0.669, p>0.05) shows a 

higher NST but is not significantly different from GST indicating that haplotype 

distribution is not phylogeographically structured. However, FST analyses reveal some 

genetic structure across populations, with significant FST values observed in a majority of 

the population pairwise comparisons (Table 2.3). The AMOVA presents similar findings 

with FST of 0.720 (p<0.001) (Table 2.5). Significant genetic variation is found among 

populations (76%) and within populations (24%). The significantly higher proportion of 

variance among populations indicates that the genetic diversity is distributed at larger 

spatial scales rather than within sampling sites. Islands, however, do not form natural 
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groups of populations that explain the distribution of genetic variation. The negative FCT 

result indicates the absence of genetic structure based on island boundaries. When 

considering Pleistocene island groups, genetic variation attributed to this hierarchical 

structuring is also insignificant (2.58%, p<0.32). The Mantel test conducted on the 

geographic distance between each pair of populations and the linearized FST shows no 

correlation between genetic and geographic distance (R
2
=0.0082, p<0.357). However, 

according to the SAMOVA with the highest FCT value (K=3, FCT=0.811, p<0.001), 

genetic discontinuities were identified that separate the sampled populations into three 

genetically and geographically homogeneous groups of populations. The first group is 

comprised of S7 and S8, the second of S4, and the third group includes all other 

populations (Table 2.1 and Figure 2.2.a).  

Macaranga bicolor 

In Macaranga bicolor, nuclear and non-coding chloroplast regions were 749 and 

982 bases long, respectively. The ITS sequences included 55 variable sites, 30 of which 

were parsimony informative (4%). The best of the 100 saved trees was of 149 steps with 

a consistency index (CI) of 0.658 and a retention index (RI) of 0.745. The chloroplast 

region had 27 parsimony informative characters (2.7%) and four equally likely trees were 

recovered with 25 steps, CI = 0.960 and RI=0.992. The data partition homogeneity test 

failed to detect significant heterogeneity between the two regions (p!1.000), so the 

combined ITS+trnQ sequence for M. bicolor is also analyzed. A maximum parsimony 

tree of 165 steps (CI=0.891, RI=0.959) was constructed using the 57 parsimony-

informative characters from the combined sequence length of 1731 bases. The MP 

majority rule tree from the ITS, trnQ, and combined ITS+trnQ analyses are presented in 
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Figures 2.3.b, 2.4.b, and 2.5.b, respectively, with bootstrap values (> 50%) indicated on 

the supported node. 

Results from separate analyses of the nuclear and chloroplast data show a marked 

difference in tree topologies (Figures 2.3.b and 2.4.b) and resolution of haplotype 

relationships (Figures 2.3.c and 2.4.c). The ITS sequence data presents ambiguous 

relationships between clades and haplotypes, whereas the chloroplast data recovered no 

polytomies with one less clade and haplotype. Both DNA regions show the monophyly of 

M. bicolor with strong support for some of the nodes (59-100%). Nevertheless, in both 

datasets, the h1 haplotype from S1 and S11 (Figures 2.3 and 2.4) is clearly the basal 

clade. Haplotypes h2 and h3 form sister clades and the remaining clades (four from the 

ITS dataset and three from trnQ dataset) form a group sister to the h2+h3 clade.  

In the combined ITS+trnQ analysis, phylogenetic relationships are more clearly resolved. 

Seven clades were recognized, each representing one of the eight haplotypes recovered in 

the TCS haplotype network (Figure 2.5), except the clade of S6 individuals containing 

both h4 and h5 haplotypes. Monophyly of M. bicolor has 100% bootstrap support and 

most other nodes are moderately to highly supported (55-99%). The outgroup species M. 

triloba was recovered as sister to M. bicolor with a net sequence divergence of 1.5% 

(26/1731) from M. bicolor. 

Phylogenetic relationships from the MP tree indicate S6 individuals (h4 and h5) 

diverged from the S5 population (h2 and h3). Populations S7 (h8) and S8 (h7) are sister 

to S9 and S10 (both h6). Collectively, all other populations are sister to S1 and S11 (h1). 

In most populations, only one haplotype was found (six of eight) and in two cases, two 

populations shared one haplotype (S1 and S11, S9 and S10). On the other hand, only 
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populations S5 and S6 had more than one haplotype, and both haplotypes found in each 

population were unique.  

Phylogeographic structure in M. bicolor haplotype distributions is reflected in the 

significant difference between NST and GST (NST=0.889, GST=0.673, p<0.05). FST 

analyses corroborate this finding with the majority of population pair-wise comparisons 

showing significant FST values (Table 2.3). FST values range from 0.776 to 1.000, except 

in two cases, between populations S1 and S11, and populations S9 and S10, both of 

which share the same haplotype resulting in an FST value of 0.00.  

The AMOVA also showed significant structuring of genetic variation (Table 2.4). 

Considering only among and within population differentiation, almost all of the genetic 

variation is distributed among populations (96.8%) and very little within populations 

(3.2%). Even more than in D. mollis, genetic diversity in M. bicolor is distributed among 

populations and beyond the limits of a single collecting area. Furthermore, the negative 

FCT value in the among-island grouping indicates that island barriers do not delineate 

populations in M. bicolor. Based on the assignment of populations to their respective 

Pleistocene island groups (Table 2.1 and Figsures 2.1.b and 2.5.a), some genetic variation 

(15.98%) is attributed to this hierarchical structuring, but is not significant (p<0.18).  This 

is likely caused by the distribution of six of seven haplotypes in two Pleistocene island 

groups (G. Luzon and G. Mindanao) and the seventh haplotype shared in the other two 

island groups (G. Negros and G. Mindoro PI), Additional samples particularly from G. 

Negros and G. Mindoro are needed to obtain stronger statistical results from this test. Six 

groups of populations identified in the SAMOVA (K=6, FCT=0.974, p<0.001), indicate 

where gene flow occurs among populations, and locations of barriers to gene flow (Table 
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2.8). According to the Mantel test conducted on the geographic distance between any two 

populations and the linearized FST, there is a slight (R
2
=0.223, p<0.05) negative 

correlation between genetic and geographic distance.  

Discussion 

 Analyzing phylogeographic patterns for both Daemonorops mollis and 

Macaranga bicolor presents an opportunity to find congruent or contrasting patterns of 

lineage sorting of plant populations within the Philippine Archipelago. This has provided 

information on the genetic characteristics of these two species, and given the paucity of 

phylogeographic information for Philippine plant species, provides a preliminary view of 

plant migration and diversification within the islands. 

Daemonorops mollis 

Genetic differentiation recognized among D. mollis populations is attributed to 

only five haplotypes with little nucleotide divergence. Low genetic variation is not 

unexpected in palm species, as prior studies have indicated that palm DNA is relatively 

slow in accumulation of base-pair changes (2.5- to 13- fold slower than grasses, Baker et 

al., 2000). The polytomous phylogenetic relationship among the D. mollis haplotypes 

clearly presents no sign of a distinct island colonization route. Stepwise island 

colonization is also not recovered in the isolation by distance test, which shows no 

correlation between genetic similarities and proximity of populations.  

AMOVA results show that population differentiation is not consistent with island 

boundaries. Furthermore, the presence of a widespread haplotype (h1) in almost all 

populations and a second haplotype (h2) in three separate island populations is evidence 

that water surrounding each island is not a strong barrier to gene flow via seeds. Although 
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neither D. mollis seeds nor fruits are adapted to water flotation, seeds have an 8% chance 

of germination after a single day of immersion in salt water, which may be sufficiently 

good odds for successful water dispersal across the narrow seas separating some islands 

(Yap, unpublished). Also, birds have been noted to feed on the sarcotesta of the fruit and 

are proposed to aid in the dispersal of the seeds (Gunawan, 1991). These dispersal 

mechanisms potentially explain the distribution of the common haplotypes. In contrast, 

the limited distribution of three haplotypes each on a single island lends support to the 

potential of water as a genetic barrier.  

There is no evidence to support an increase in dispersal across islands that formed 

land connections during the Pleistocene. The AMOVA test shows that grouping 

populations according to the Pleistocene island on which they were located, does not help 

to explain the distribution of genetic variation. Despite the increase in land area during 

lowered sea levels, gene flow across present-day islands was not facilitated by the 

appearance of Pleistocene landbridges. This suggests that either the newly opened 

landmasses were not suitable habitats for D. mollis or that they were open for an 

insufficient time for migration. This pattern is unlike that found in Schiedea globosa 

(Caryophyllaceae), which was proposed to have expanded its population from Molokai to 

Maui when both islands formed the Pleistocene island, Maui Nui, of the Hawaiian 

Archipelago (Wallace et al., 2009). 

It is possible that the haplotypes represent ancestral polymorphisms with current 

distributions resulting from population bottlenecks during the LGM or a recent 

population expansion after the LGM. Climate change in Southeast Asia during the LGM 

supposedly facilitated the replacement of rainforest habitats with savanna-like vegetation 
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(Heaney, 1991; Bird et al., 2007). The reduced extent of forest cover supporting smaller 

populations may have resulted in the rapid loss of genetic variation from increased 

genetic drift in each island population. Thus, a random set haplotypes would exist after 

the bottleneck event and phylogeographic structure cannot be recovered (NST = GST). The 

dispersal of ancestral haplotypes after the LGM would further contribute to the random 

distribution of haplotypes in the current populations. 

For D. mollis, water is a very weak barrier, and water dispersal across long 

distances is possible. Nonetheless, land barriers can curtail long distance dispersal. Based 

on the SAMOVA, a genetic discontinuity between the eastern and western halves of 

Luzon Island isolates populations S1 and S11 from S7 and S8 (Figure 2.2.a). The genetic 

break corresponds to the Archipelago’s two largest plains divided by the combined 

foothills of the central Cordillera Mountains and the Sierra Madre Mountains in the east. 

This is the first record of a land barrier resulting in the isolation of plant lineages in 

Luzon Island, and the Philippines in general. 

The importance of the information that can be interpreted from the limited 

variation in the chosen marker warrants further study of the species using more variable 

regions or by developing microsatellite markers, and increasing the extent of sampling. 

Sampling should include more populations from a greater number of islands and areas 

located at both sides of potential land barriers, like the Cordillera Mountain Range, 

Compostela Valley, and Kitanglad Mountain Range.  

Macaranga bicolor  

In M. bicolor, there is evidence of phylogeographic structure expressed by the 

distribution of genetically distinct populations with unique and fixed haplotypes. M. 
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bicolor shows a possible pattern of island colonization but not parallel to the south to 

north direction, as seen in birds and bats (Jones and Kennedy, 2008). The plant dispersal 

route includes a south-oriented dispersal from eastern Luzon to the southeastern islands 

of Samar (S5) and Mindanao (S6), and a concurrent (cpDNA dataset) or subsequent 

(nuDNA dataset) dispersal event to western Luzon (S7 and S8) and the western islands of 

Mindoro (S9) and Panay (S10). A similar southward colonization from Luzon was also 

documented for a genus of rodents, Apomys (Steppan et al., 2003). In both Apomys and 

M. bicolor, the ancestral lineage is documented in Luzon and derived populations in the 

southern islands, which is chronologically consistent as Luzon was one of the earliest, if 

not the first, islands to emerge from beneath sea level after formation from ocean floor 

volcanic activity (Hall, 2002).  

Luzon was initially located just off the northeast tip of Borneo, making Borneo a 

potential source of Macaranga species to the Philippines, before rearrangement of the 

Pacific and Philippine Sea Plates rotated Luzon and moved it roughly 7 latitudinal 

degrees north to its present position (Hall, 2002). It is thus possible that M. bicolor 

diverged from its most recent common ancestor in Luzon during this time of tectonic 

activity, before expanding its range to other recently formed islands south of Luzon. 

Other Luzon endemics like Calamus arugda (Arecaceae) and Trigonostemon 

oblongifolius (Euphorbiaceae; Merrill, 1926), illustrate the development of divergent 

evolutionary lineages in this island. Another species of Macaranga, M. stonei, may also 

have evolved in Luzon based on its restricted distribution to this single island. Two other 

Macaranga species are found only in Luzon and one other island, Leyte or Mindoro 

(Whitmore, 2008). Luzon also has the largest land area of all the islands in the 
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archipelago which fits with the island biogeography theory (MacArthur & Wilson, 1967), 

harboring higher species diversity than smaller islands and hosting many of the endemic 

species of the Philippine flora, like M. bicolor.  

Range expansion after evolution, however, may not have occurred in a stepwise 

island colonization manner, as the IBD test does not show a positive correlation between 

genetic and geographic distance. The IBD test result indicates that distance per se does 

not explain the observed phylogeographic structure. Rather, it points to the possibility of 

geographic features, such as variable topography or the ocean, serving as barriers 

between sampled populations. A slight negative relationship is recovered because the 

eastern Luzon populations are more closely related (based on ITS, trnQ, and combined 

datasets) to the southeastern populations of Samar (S5) and Mindanao (S6), than to the 

geographically closer western Luzon populations (S7 and S8).  

Gene flow to and from the eastern Luzon populations appears to be restricted by 

land and water barriers as indicated by the unique haplotypes present in most populations 

within and among islands. AMOVA results also show high genetic differentiation 

between any two pairwise population comparisons, except the shared haplotype 

composition of S1 with S11, and S9 with S10. S1 and S11 are separated by a mountain 

range including one of the highest peaks in the country (1850m), yet both populations are 

identical in genetic composition (Nm = inf). However, the same genetic discontinuity is 

uncovered in SAMOVA between the Luzon island eastern populations and the western 

populations as seen in D. mollis. In this case, geographic distance and perhaps 

topography, although not topography alone, may be the more influential factor in the 

genetic differentiation of these particular populations. In the unique case of S9 and S10, 
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water boundaries between the two islands seem to have not hindered genetic exchange. 

However, this may not hold and genetic differentiation may be observed between S9 and 

S10, if additional sampling from multiple localities in each island can be accomplished. 

In all other haplotype distributions, water creates a barrier between island 

populations. Still, island boundaries do not delineate populations (negative or zero 

contribution to genetic variance). Pleistocene islands also do not provide a significant 

proportion of genetic variation (16%, p=0.18). This is supported by SAMOVA results 

(Table 2.8) assigning S5 and S6 populations (both in the Greater Mindanao PI) into two 

different groups, and combining S9 and S10 (Mindoro and G. Panay PI, respectively) into 

one group.  The sixth genetic discontinuity (Table 2.8 and Figure 2.5.a) is between the 

two western Luzon populations. Only a short distance separates these two populations 

and there is no evident topographic barrier between them. It is possible that a contraction 

of the forests in these two areas during the LGM resulted in the fixation of a single 

haplotype in each of these two sites. Recolonization events are sometimes accompanied 

by the introduction of other haplotypes into the area (Petit et al., 2003), but this pattern is 

not exhibited in my sampling of the M. bicolor populations. Extensive habitat loss in the 

Philippines however, may be a confounding factor erasing this predicted signal. 

Climate during the LGM was drier and cooler, as previously mentioned, which 

led to the hypothesis of savanna-type vegetation dominating the western Philippine 

islands (Heaney, 1991).  However, some forest cover must have remained as fossils of 

forest-dependent animals were found in the western island of Palawan (Reis & Garong, 

2001). This would suggest that small populations of M. bicolor could have persisted in 

both eastern and western islands, with reduced genetic diversity, both during the LGM 
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and during the expansion of forest habitats after the glacial event. This scenario can 

explain the current genetic structure of M. bicolor, largely represented by populations 

with fixed haplotypes. To test the hypothesis that rainforest species persisted in 

Pleistocene forest refugia in both the drier western and wetter eastern parts of the 

Philippines, extensive sampling should be conducted in Luzon and Mindanao island, 

which experienced the drying phenomenon only in the most western areas in conjunction 

with the use of fast evolving genetic markers like SSRs. Forest refugia should have been 

more dominant in the eastern populations and thus a population genetic survey is 

predicted to demonstrate an east to west post-LGM population expansion. A similar east-

west pattern was revealed by IBD tests in 5 Lepidopteran species in New Guinea, which 

authors suggest reflects the influence of sea level rise during the Holocene (Craft, K.J., et 

al. 2010).  

Conclusion 

The co-occuring species addressed here, despite having similar habitat 

preferences and dispersal characteristics, exhibit dissimilar evolutionary histories. First, 

rates of sequence evolution are not equal in both species.  With palm DNA more slowly 

evolving, less genetic variation is recorded in D. mollis than in M. bicolor. 

Phylogeographic relationships are thus more easily resolved in M. bicolor.  A congruent 

colonization route cannot be determined, but M. bicolor presents support for dispersal in 

a south- and west-ward direction from the eastern Luzon populations, contrary to the 

prediction of a northward colonization route. Subsequent isolation of the majority of the 

populations, from reduced gene flow across water and land barriers, resulted in the 

recovery of some genetic structure.  



!

"#!

The widespread distribution of the two endemic species, D. mollis and M. bicolor, 

demonstrates that water does not serve as a barrier to dispersal. However, the presence of 

phylogeographic structure in M. bicolor and haplotypes unique to a single island (also in 

D. mollis) can be argued to support the contention that water serves as a weak barrier to 

dispersal. A genetic break is evident between eastern and western Luzon populations in 

both species, which corresponds to a topographic feature in Luzon. There is no evidence 

that water boundaries of either present-day islands or Pleistocene islands strongly 

demarcate inter-population gene flow. Persistence of small genetically-depauperate 

populations in forest fragments, across the larger islands during the LGM, sufficiently 

explains the current genetic structure in M. bicolor. 

 Future research should expand the range of sampling sites to include replicates 

from each Pleistocene island and across all potential land barriers. Furthermore, the 

population genetics of several other species using more variable markers (like SNPs or 

microsatellites) is important to determine whether the origin and subsequent evolutionary 

history of a diverse flora follow a common pattern. However, the minimal forest cover 

left in the Philippine Archipelago and increasing habitat loss will continue to limit the 

breadth of sampling and recovery of a complete history for Philippine taxa. Nevertheless, 

every effort to document a piece of complex historical events can only help to assemble a 

true record of the past. 

Effective forest conservation that addresses maintenance of biodiversity as well as 

potential for climate change mitigation from carbon sequestration (Putz & Redford, 2010) 

needs the information collected in studies such as this to identify sites with genetically 

distinct populations that must be prioritized for conservation. The data here, however, 
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indicates many of the sampled sites, six of eight in M. bicolor and four of nine in D. 

mollis, qualify as areas that contain different evolutionary lineages. Analyzing the 

population genetics of additional species may confirm or refute this finding. For the two 

species in this study, which are widespread and therefore capable of long distance 

dispersal, limited genetic exchange resulting in fixation of some haplotypes, indicates a 

need for dispersal corridors to be maintained across island populations. In addition, 

finding phylogeographic structure in widespread species suggests that species with 

weaker dispersal abilities such as gravity-dispersal or wind-dispersal, will have greater 

genetic differentiation among populations. If this is the case, it presents a stronger 

incentive to preserve as many forest fragments as possible in order to include the greatest 

proportion of the existing genetic diversity. However, if resources for conservation were 

limited, I would recommend starting with the Palanan (S1 or S11) and Bislig (S6) forests 

because these are large forest fragments which also happen to be on the two most diverse 

islands, Luzon and Mindanao (Merrill 1926), thereby facilitating the preservation of 

many other species. 
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Figure 2.1a. Map of the Philippines. Figure 2.1.b. Pleistocene island groups formed at       

the Last Glacial Maximum (Heaney et al., 2005). 

Collection sites are denoted by dots with 

corresponding site codes.                  

 

M. bicolor D. mollis 

Site 

  

Locality 

Present-day 

Island 

Pleistocene 

Island N 

S1 

Eastern Sierra Madre, 

Palanan Luzon G. Luzon 10 16 

S2 Valencia Negros G. Negros 0 9 

S4 Lake Danao Leyte G. Mindanao 0 12 

S5 Balantac Falls Samar G. Mindanao 11 11 

S6 Bislig Mindanao G. Mindanao 10 12 

S7 Bataan Luzon G. Luzon 4 9 

S8 

Mt. Makiling,  

Los Banos Luzon G. Luzon 11 10 

S9 Mt. Malasimbo Mindoro Mindoro 9 0 

S10 Sibaliw Panay G. Negros 6 10 

S11 

Western Sierra Madre, 

Palanan Luzon G. Luzon 10 8 

total       71 97 

Table 2.1. Macaranga bicolor and Daemonorops mollis samples. Sites with 

corresponding locality and island location are listed with the number of individuals 

collected per site (N) per species. 



!

"#!

 

 

Table 2.2. Molecular markers tested for variability with corresponding length of the 

region amplified and no. of variable sites. Species where variable sites were found is 

indicated. 

 

Figure 2.2.a-c. Phylogenetic and phylogeographic relationships of D. mollis haplotypes 

based on cpDNA variation of 906bp from rpl16. Haplotype distributions are mapped in 

Fig.2.2.a with corresponding site codes. The MP majority rule tree with bootstrap values 

recovered in the analyses is shown in Fig. 2.2.b, showing the relationship of the 5 D. 

mollis haplotypes, each of which are labeled as h1, h2, h3, h4, and h5. Fig. 2.2.c is the 

haplotype network constructed from a statistical parsimony analysis. Size of the circles 

represents haplotype frequency, colors correspond to the collecting sites as labeled in 

Fig.2.2.a, and each line between haplotypes represents one mutational change. 

 

marker region length of region no. of variable sites 

5snts nu 365 0 

ITS nu 852 16 (both) 

M4 cp 740 0 

ndhF-rpl32R cp 800 0 

psbA-trnH cp 800 0 

rpl16 cp 915 4 (D. mollis only) 

rpl32F-trnL cp 957 0 

trnL cp 870 0 

trnQ-rps16 cp 1157 10 (M. bicolor only) 
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Figure 2.3.a-c. Phylogenetic and phylogeographic relationships of M. bicolor haplotypes 

based the ITS region. The distribution of collection sites is mapped in Fig.2.3.a. The MP 

majority rule tree with bootstrap is shown in Fig. 2.3.b, showing the relationship of the 7 

D. mollis haplotypes, each of which is labeled as h1 to h7. Fig. 2.3.c is the haplotype 

network showing the distribution of each unique and shared haplotype. Small empty 

circles indicate hypothetical haplotypes not found in the dataset. Size of the circles 

indicates haplotype frequency, hatch marks correspond to the collecting sites as labeled 

in Fig.2.3.a, and each line between haplotypes represents one mutational change. 

 
Figure 2.4.a-c. Phylogenetic and phylogeographic relationships of M. bicolor haplotypes 

based on the trnQ region. Collection sites are mapped in Fig. 2.4.a. The MP majority rule 

tree with bootstrap values is shown in Fig. 2.4.b, and Fig. 2.4.c shows the haplotype 

network.  
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Figure 2.5.a-c. Phylogenetic and  phylogeographic relationships of M. bicolor haplotypes 
based on the combined ITS and trnQ regions. Collection sites are mapped in Fig.2.5.a. 
The MP majority rule tree of the combined ITS and trnQ dataset (PHT p=1.0), with 
bootstrap values recovered in the analyses is shown in Fig.2.5.b, showing the relationship 
of the 8 D. mollis haplotypes. Fig.2.5.c shows the haplotype network.  
 
 
 

Table 2.3. Pairwise FST values of D. mollis from all sites. Haplotype number, h, is 
indicated with the number of haplotypes unique to one site, (unique). All significant FST 
values (p<0.05) are marked with an asterisk (*). 
 
 
 
 
 
 

Site h (u) S1 S2 S4 S5 S6 S7 S8 S10 S11 

S1 2 0         

S2 2 (1) 0.267* 0        

S4 1 0.703* 0.903* 0       

S5 2 0.004 0.273* 0.904* 0      

S6 2 (1) 0.136 0.285* 0.923* 0.000 0     

S7 2 0.799* 0.886* 1.000* 0.908* 0.912* 0    

S8 2 0.637* 0.689* 0.910* 0.702* 0.713* 0.097 0   

S10 1 0.144 0.394* 1.000* -0.009 -0.016 1.000* 0.778* 0  

S11 1 0.119 0.354 1.000* -0.032 -0.037 1.000* 0.755* 0.0 0 
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Site h (u) S1 S5 S6 S7 S8 S9 S10 S11 

S1 1 0        

S5 2 (2) 0.977* 0       

S6 2 (2) 0.924* 0.776* 0      

S7 1 (1) 1.000* 0.955* 0.893* 0     

S8 1 (1) 1.000* 0.963* 0.914* 1.000* 0    

S9 1 1.000* 0.967* 0.914* 1.000* 1.000* 0   

S10 1 1.000* 0.961* 0.897* 1.000* 1.000* 0.000 0  

S11 1 0.000 0.981* 0.934* 1.000* 1.000* 1.000* 1.000* 0 

 Table 2.4. Pairwise FST values of M. bicolor from all sites. Haplotype number, h, is 

indicated with the number of haplotypes unique to one site, (unique). All significant FST 

values (p<0.05) are marked with an asterisk (*). 

 

Groups  Source of Variation  df !-statistic  P value Percent 

variation  

One  Among populations  8                 75.6  

  Within populations  88    0.720  <0.001 24.4 

Present-day Among groups   5   -0.020  <0.70  -2.08  

Islands  Within groups   3    0.725  <0.001  73.97 

  Within populations  88    0.719 <0.001   28.11  

Pleistocene Among groups   3   -0.117  <0.65             -11.75                  

Islands  Within groups   5    0.742 <0.001  82.88  

  Within populations  88    0.711 <0.001   28.87  

Table 2.5. AMOVA of the chloroplast DNA sequence, rpl16, in D. mollis.  

 

Groups  Source of Variation  df !-statistic  P value  Percent 

variation                  

One  Among populations  7               96.8  

  Within populations  63    0.968  <0.001      3.2  

Present-day Among groups   4   -0.089  <0.59      -8.91  

Islands  Within groups   3    0.970 <0.001  105.66  

  Within populations  63    0.967 <0.001      3.25  

Pleistocene Among groups   3    0.160 <0.18    15.98  

Islands  Within groups   4    0.963 <0.001        80.96  

  Within populations  63    0.969            <0.001       3.07  

Table 2.6. AMOVA of the combined ITS and trnQ sequences in M. bicolor.  
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Figure 2.6. Isolation by distance in D. mollis determined between geographic distance 

and genetic distance using Slatkin’s linearized FST. Coefficient of determination, R
2
, is 

presented with corresponding p-value. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.7. Isolation by distance in M. bicolor determined between geographic distance 

and genetic distance using Slatkin’s linearized FST. Coefficient of determination, R
2
, is 

presented with corresponding p-value. 
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No. groups (K) Group Composition FSC FST FCT 

Two Group I: S7, S8 0.602 0.856 0.638 

 

Group II: S1, S2, S4, S5, S6, S10, 

S11    

Three Group I: S7, S8 0.183 0.846 0.811 

 Group II: S4    

 Group III: S1, S2, S5, S6, S10, S11    

Four Group I: S7, S8 0.093 0.820 0.802 

 Group II: S4    

 Group III: S2    

 Group IV: S1, S5, S6, S10, S11    

Five Group I: S7 0.089 0.816 0.798 

 Group II: S8    

 Group III: S4    

 Group IV: S2    

 Group V: S1, S5, S6, S10, S11    

Six Group I: S7, S8 0.017 0.776 0.772 

 Group II: S4    

 Group III: S2    

 Group IV: S1    

 Group V: S5, S6, S10    

 Group VI: S11    

Seven Group I: S7 -0.032 0.772 0.779 

 Group II: S8    

 Group III: S4    

 Group IV: S2    

 Group V: S1    

 Group VI: S5, S6, S10    

 Group VII: S11    

Eight Group I: S7 -0.0496 0.7608 0.772
NS

 

 Group II: S8    

 Group III: S4    

 Group IV: S2    

 Group V: S1    

 Group VI: S5, S6    

 Group VII: S11    

  Group VIII: S10       

Table 2.7. Group composition and FCT values detected by SAMOVA in 9 populations of 

D. mollis from 6 Philippine Islands based on the chloroplast region, rpl16. FSC, 

proportion of genetic variation between populations within groups; FST, proportion of 

genetic variation across all populations; FCT, proportion of genetic variation among 

groups. All values are significant (P<0.05) unless indicated as not significant (NS). 
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No. groups (K) Group Composition FSC FST FCT 

Two Group I: S1, S11 0.946 0.978 0.597 

 Group II: S5, S6, S7, S8, S9, S10    

Three Group I: S5, S6, S7, S8 0.921 0.974 0.673 

 Group II: S1, S11    

 Group III: S9, S10    

Four Group I: S5, S6 0.819 0.972 0.844 

 Group II: S7, S8    

 Group III: S1, S11    

 Group IV: S9, S10    

Five Group I: S5 0.563 0.971 0.933 

 Group II: S9, S10    

 Group III: SS6    

 Group IV: S1, S11    

 Group V: S7, S8    

Six Group I: S7 -0.132 0.970 0.974 

 Group II: S8    

 Group III: S6    

 Group IV: S9, S10    

 Group V: S1, S11    

 Group VI: S5    

Seven Group I: S8 -0.161 0.969 0.973
NS

 

 Group II: S5    

 Group III: S6    

 Group IV: S9, S10    

 Group V: S7    

 Group VI: S11    

  Group VII: S1       

Table 2.8. Group composition and FCT values detected by SAMOVA in 8 populations of 

M. bicolor from 5 Philippine Islands based on chloroplast and nuclear DNA regions. FSC, 

proportion of genetic variation between populations within groups; FST, proportion of 

genetic variation across all populations; FCT, proportion of genetic variation among 

groups. All values are significant (P<0.05) unless indicated as not significant (NS). 

 

 

 

 

 

 

 

 

 

 

 



!

"#!

References 

 

Asmussen, C.B., Dransfield, J., Deickmann, V., Barfod, A.S., Pintaud, J.-C. and Baker, 

W.J. 2006. A new subfamily classification of the palm family (Arecaceae): 

evidence from plastid DNA phylogeny. Bot. J. Linnean Soc., 151: 15-38. 

Atkins, H., Preston, J. and Cronk, Q.C.B. 2001. A molecular test of Huxley's line: 

Cyrtandra (Gesneriaceae) in Borneo and the Philippines. Biological Journal of the 

Linnean Society, 72: 143-159. 

Avise, J. 2000. Phylogeography: The History and Formation of Species. Cambridge, 

Massachusetts: Harvard University Press. 

Baker, W.J., Hedderson, T.A. and Dransfield, J. 2000. Molecular phylogenetics of 

subfamily Calamoideae (Palmae) based on nrDNA ITS and cpDNA rps16 intron 

sequence data. Molecular Phylogenetics and Evolution, 14: 195-217. 

Beheregaray, L.B. 2008. Twenty years of phylogeography: the state of the field and the 

challenges for the Southern Hemisphere. Molecular Ecology, 17: 3754-3774. 

Bird, M.I., Boobyer, E.M., Bryant, C., Lewis, H.A., Paz, V. and Stephens, W.E. 2007. A 

long record of environmental change from bat guano deposits in Makangit Cave, 

Palawan, Philippines. Earth and Environmental Science Transactions of the Royal 

Society of Edinburgh, 98: 59-69. 

Brooks, T.M., Mittermeier, R.A., Mittermeier, C.G., da Fonseca, G.A.B., Rylands, A.B., 

Konstant, W.R., Flick, P., Pilgrim, J., Oldfield, S., Magin, G. and Hilton-Taylor, 

C. 2002. Habitat loss and extinction in the hotspots of biodiversity. Conservation 

Biology, 16: 909-923. 

Busemeyer, D.T., Pelikan, S., Kennedy, R.S. and Rogstad, S.H. 1997. Genetic diversity 

of Philippine Rubus moluccanus L. (Rosaceae) populations examined with VNTR 

DNA probes. Journal of Tropical Ecology, 13: 867-884. 

Butaud, J.F., Rives, F., Verhaegen, D. and Bouvet, J.M. 2005. Phylogeography of Eastern 

Polynesian sandalwood (Santalum insulare), an endangered tree species from the 

Pacific: a study based on chloroplast microsatellites. Journal of Biogeography, 

32: 1763-1774. 

Cannon, C.H. and Manos, P.S. 2000. Phylogeography of the Southeast Asian stone oaks 

(Lithocarpus). Paper presented at the Conference on the Biogeography of 

Southeast Asia 2000 - Organisms and Orogenesis, Netherlands, 2000. 

Chiang, T.Y. and Schaal, B.A. 2006. Phylogeography of plants in Taiwan and the 

Ryukyu archipelago. Paper presented at the International Symposium on Asian 

Plant Diversity and Systematics, Sakura, JAPAN, 2006. 

Clement, M., Posada, D. and Crandall, K.A. 2000. TCS: a computer program to estimate 

gene genealogies. Molecular Ecology, 9: 1657-1659. 

Dick, C.W. and Heuertz, M. 2008. The complex biogeographic history of a widespread 

tropical tree species. Evolution, 62: 2760-2774. 

Dupanloup, I., Schneider, S. and Excoffier, L. 2002. A simulated annealing approach to 

define the genetic structure of populations. Molecular Ecology, 11: 2571-2581. 

Excoffier, L., G., L. and Schneider, S. 2005. Arlequin ver. 3.0: An integrated software 

package for population genetics data analysis. Evolutionary Bioinformatics 

Online, 1: 47-50. 



!

"#!

Farris, J.S., Kallersjo, M., Kluge, A.G. and Bult, C. 1994. Testing significance of 

incongruence. Cladistics-the International Journal of the Willi Hennig Society, 

10: 315-319. 

Felsenstein, J. 1985. Confidence limits on phylogenies - an approach using the bootstrap. 

Evolution, 39: 783-791. 

Fernando, E.S. 1990. A preliminary analysis of the palm flora of the Philippine Islands. 

Principes, 34: 28-45. 

Foley, D.H. and Torres, E.P. 2006. Population structure of an island malaria vector. 

Medical and Veterinary Entomology, 20: 393-401. 

Govaerts, R., Frodin, D.G. and Radcliffe-Smith, A. 2000. World Checklist and 

Bibliography of Euphorbiaceae &#xA;        (with Pandaceae), Vol. 3. Kew: Royal 

Botanic Gardens. 

Gunawan, L.W. 1991. Rattans. In Biotechnology in Agriculture and Forestry: Trees III 

(Y.P.S. Bajaj, ed). Berlin: Springer-Verlag. 

Hall, R. 2002. Cenozoic geological and plate tectonic evolution of SE Asia and the SW 

Pacific: computer-based reconstructions, model and animations. Journal of Asian 

Earth Sciences, 20: 353-431. 

Heaney, L.R. 1991. A Synopsis of Climatic and Vegetational Change in Southeast Asia. 

Climatic Change, 19: 53-61. 

Heaney, L.R. and Regalado, J.C. 1998. Vanishing Treasures of the Philippine Rain 

Forest. Chicago: The Field Museum. 

Heaney, L.R., Walsh, J.S. and Peterson, A.T. 2005. The roles of geological history and 

colonization abilities in genetic differentiation between mammalian populations in 

the Philippine archipelago. Journal of Biogeography, 32: 229-247. 

Jones, A.W. and Kennedy, R.S. 2008. Evolution in a tropical archipelago: comparative 

phylogeography of Philippine fauna and flora reveals complex patterns of 

colonization and diversification. Biological Journal of the Linnean Society, 95: 

620-639. 

Juan, C., Emerson, B.C., Oromi, P. and Hewitt, G.M. 2000. Colonization and 

diversification: towards a phylogeographic synthesis for the Canary Islands. 

Trends in Ecology & Evolution, 15: 104-109. 

Kulju, K.K.M., Sierra, S.E.C., Draisma, S.G.A., Samuel, R. and van Welzen, P.C. 2007. 

Molecular phylogeny of Macaranga, Mallotus, and related genera (Euphorbiaceae 

s.s.): insights from plastid and nuclear DNA sequence data. American Journal of 

Botany, 94: 1726-1743. 

Lewis, C.E., Baker, W.J. and Asmussen, C.B. 2000. DNA and plam evolution. Principes, 

44: 19-24. 

Lourie, S.A., Green, D.M. and Vincent, A.C.J. 2005. Dispersal, habitat differences, and 

comparative phylogeography of Southeast Asian seahorses (Syngnathidae : 

Hippocampus). Molecular Ecology, 14: 1073-1094. 

MacArthur, R.H. and Wilson, E.O. 1967. The Theory of Island Biogeography. Princeton, 

New Jersey: Princeton University Press. 

Maddison, D.R. and Maddison, W.P. 2005. MacClade 4.0. Sunderland, Massachusetts.: 

Sinauer Associates. 



!

"#!

Mendoza, M.D., Acosta, R.T., Consolacion, C.P., Bambalan, N.A. and Flores, J.E. 2010. 

Global Forest Resources Assessment 2010, Country Report: Philippines. In 

Global Forest Resources Assessment Country Report Series. Rome, Italy: FAO. 

Merrill, E.D. 1926. An Enumeration of Philippine Flowering Plants, Vol. 4. Manila, 

Philippines: Bureau of Printing. 

Mey, W. 2000. Insular radiation of the genus Hydropsyche (Insecta, Trichoptera: 

Hydropsychidae) Pictet, 1834 in the Philippines and its implications for the 

biogeography of Southeast Asia. Paper presented at the Conference on the 

Biogeography of Southeast Asia 2000 - Organisms and Orogenesis, Netherlands, 

2000. 

Morley, R.J. 2000. Origin and Evolution of Tropical Rain Forests. West Sussex, 

England: John Wiley & Sons Ltd. 

Muellner, A.N., Pannell, C.M., Coleman, A. and Chase, M.W. 2008. The origin and 

evolution of Indomalesian, Australasian and Pacific island biotas: insights from 

Aglaieae (Meliaceae, Sapindales). Journal of Biogeography, 35: 1769-1789. 

Myers, N., Mittermeier, R.A., Mittermeier, C.G., da Fonseca, G.A.B. and Kent, J. 2000. 

Biodiversity hotspots for conservation priorities. Nature, 403: 853-858. 

Outlaw, D.C. and Voelker, G. 2008. Pliocene climatic change in insular Southeast Asia 

as an engine of diversification in Ficedula flycatchers. Journal of Biogeography, 

35: 739-752. 

Peakall, R. and Smouse, P.E. 2006. GENALEX 6: genetic analysis in Excel. Population 

genetic software for teaching and research. Molecular Ecology Notes, 6: 288-295. 

Peterson, A.T. and Heaney, L.R. 1993. Genetic differentiation in Philippine bats of the 

genera Cynopterus and Haplonycteris. Biological Journal of the Linnean Society, 

49: 203-218. 

Petit, R.J., Aguinagalde, I., de Beaulieu, J.L., Bittkau, C., Brewer, S., Cheddadi, R., 

Ennos, R., Fineschi, S., Grivet, D., Lascoux, M., Mohanty, A., Muller-Starck, 

G.M., Demesure-Musch, B., Palme, A., Martin, J.P., Rendell, S. and Vendramin, 

G.G. 2003. Glacial refugia: Hotspots but not melting pots of genetic diversity. 

Science, 300: 1563-1565. 

Petit, R.J., Csaikl, U.M., Bordacs, S., Burg, K., Coart, E., Cottrell, J., van Dam, B., 

Deans, J.D., Dumolin-Lapegue, S., Fineschi, S., Finkeldey, R., Gillies, A., Glaz, 

I., Goicoechea, P.G., Jensen, J.S., Konig, A.O., Lowe, A.J., Madsen, S.F., Matyas, 

G., Munro, R.C., Olalde, M., Pemonge, M.H., Popescu, F., Slade, D., Tabbener, 

H., Taurchini, D., de Vries, S.G.M., Ziegenhagen, B. and Kremer, A. 2002. 

Chloroplast DNA variation in European white oaks - Phylogeography and 

patterns of diversity based on data from over 2600 populations. Forest Ecology 

and Management, 156: 5-26. 

Pons, O. and Petit, R.J. 1996. Measuring and testing genetic differentiation with ordered 

versus unordered alleles. Genetics, 144: 1237-1245. 

Putz, F.E. and Redford, K.H. 2010. The Importance of Defining 'Forest': Tropical Forest 

Degradation, Deforestation, Long-term Phase Shifts, and Further Transitions. 

Biotropica, 42: 10-20. 

 



!

"#!

Reis, K.R. and Garong, A.M. 2001. Late Quaternary terrestrial vertebrates from Palawan 

Island, Philippines. Palaeogeography Palaeoclimatology Palaeoecology, 171: 

409-421. 

Shaw, J., Lickey, E.B., Beck, J.T., Farmer, S.B., Liu, W.S., Miller, J., Siripun, K.C., 

Winder, C.T., Schilling, E.E. and Small, R.L. 2005. The tortoise and the hare II: 

Relative utility of 21 noncoding chloroplast DNA sequences for phylogenetic 

analysis. American Journal of Botany, 92: 142-166. 

Shaw, J., Lickey, E.B., Schilling, E.E. and Small, R.L. 2007. Comparison of whole 

chloroplast genome sequences to choose noncoding regions for phylogenetic 

studies in angiosperms: The tortoise and the hare III. American Journal of Botany, 

94: 275-288. 

Sheldon, F.H., Lohman, D.J., Lim, H.C., Zou, F., Goodman, S.M., Prawiradilaga, D.M., 

Winker, K., Braile, T.M. and Moyle, R.G. 2009. Phylogeography of the magpie-

robin species complex (Aves: Turdidae: Copsychus) reveals a Philippine species, 

an interesting isolating barrier and unusual dispersal patterns in the Indian Ocean 

and Southeast Asia. Journal of Biogeography, 36: 1070-1083. 

Soltis, D.E., Morris, A.B., McLachlan, J.S., Manos, P.S. and Soltis, P.S. 2006. 

Comparative phylogeography of unglaciated eastern North America. Molecular 

Ecology, 15: 4261-4293. 

Steppan, S.J., Zawadzki, C. and Heaney, L.R. 2003. Molecular phylogeny of the endemic 

Philippine rodent Apomys (Muridae) and the dynamics of diversification in an 

oceanic archipelago. Biological Journal of the Linnean Society, 80: 699-715. 

Swofford, D.L. 2003. PAUP: Phylogenetic Analsysi Using Parsimony version 4.0. 

Sunderland, Massachusetts: Sinauer Associates. 

Uhl, N. and Dransfield, J. 1987. Genera Palmarum. Kansas: Allen Press. 

Wallace, L.E., Weller, S.G., Wagner, W.L., Sakai, A.K. and Nepokroeff, M. 2009. 

Phylogeographic patterns and demographic history of Schiedea globosa 

(Caryophyllaceae) on the Hawaiian Islands. American Journal of Botany, 96: 958-

967. 

Whitmore, T.C. 2008. The Genus Macaranga: a prodromus. Kew: Royal Botanic 

Gardens. 

Winans, G.A. 1980. Geographic variation in the milkfish Chanos chanos. 1. Biochemical 

evidence. Evolution, 34: 558-574. 

Wuster, W. and Thorpe, R.S. 1990. Systematics and biogeography of the Asiatic cobra 

(Naja naja) species complex in the Philippine Islands. In Vertebrates in the 

tropics (G. Peters and R. Huttcrer, eds), pp. 333-344. Bonn: Museum Alexander 

Koenig. 

 

 

 

 

 

 

 

 



!

"#!

Chapter 3 

Hydrologic and topographic associations of a palm community in a lowland 

dipterocarp rainforest in the Philippines 

 

Abstract 

Paleotropical palm species, both climbing and free-standing growth forms, are 

dominant components of the lowland mixed dipterocarp forest in Palanan, ranking high 

in importance based on species richness, abundance, and basal area. The distributions of 

five palm species were recorded and determined to be aggregated at all spatial scales 

tested (25m
2
 to 2500m

2
), using Morisita’s Index. In Pinanga maculata and Daemonorops 

mollis, aggregation is being influenced by associations with patchily distributed 

microhabitats. Elevation and stream location, but not slope, were correlated with palm 

abundance and distribution. Torus translation tests showed contrasting positive 

correlations with elevation and stream microhabitats between D. mollis (a climbing 

species) and three of the four palm tree species, suggesting a potential for niche 

differentiation among different growth forms. Three palm tree species were significantly 

positively associated with low elevations unlike D. mollis, but Pinanga insignis is 

randomly distributed in the plot with respect to elevation. Stream microhabitats, however, 

are rich in P. maculata trees but rarely are D. mollis and P. insignis in this microhabitat. 

Furthermore, the same species-habitat relationships were found in more than one life 

stage but were not consistent across all three age classes.  

Introduction 

The Arecaceae includes 2,300 accepted species in 190 genera (Govaerts & 
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Dransfield, 2005). Palms are largely restricted to the tropics, with the highest 

concentration of species in the Americas and Asia. Large arborescent palms are 

prominent in the canopy of Neotropical forests, which easily distinguishes these forests 

from their counterparts in the Paleotropics, where palms are represented in the canopy 

layer only by the cirruses (hooked whip at the tips of leaves) of climbers. In the 

Americas, Central America (southern Mexico to NW Ecuador) and Amazonia have the 

highest regional species richness with approximately 150 and 189 species, respectively 

(Henderson et al., 1995; Bjorholm et al., 2005, 2006).  

Research on the species diversity and abundance of palms across the Neotropics 

has provided an insightful approximation of the structure and dynamics of tropical forests 

because the group is an important and conspicuous component of those forests. Within 

the Neotropics, palm diversity is more strongly correlated with geographical distance 

than with environmental variation, suggesting that dispersal limitation promotes beta 

diversity, at least between local sites in Peru and Ecuador (Vormisto et al., 2004; 

Normand et al., 2006). However, habitat specialization has also been recognized as 

important to high beta diversity among palms from terra firme forests to floodplains in 

the Peruvian Amazon (Kahn & Decastro, 1985). Moreover, it has been shown that 

humidity, specifically total rainfall and the number of wet days, is positively correlated 

with species richness of palms in the Americas (Bjorholm et al., 2006). 

At a smaller spatial scale, alpha diversity and the ecology of Neotropical palms 

are influenced by the heterogeneity among microhabitats in environmental factors such as 

light, topography, soil nutrients, and soil moisture (Svenning, 2001). Microhabitat refers 

to environmental conditions that vary at scales < 1000m, e.g., treefall gaps or local 
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topographic variation (Svenning, 1999). Overall palm community composition and the 

abundance of eight focal species varied among terra firme sites in the Peruvian Amazon 

wherein differences in abundance were related to the amount of exchangeable cations in 

the soil and topographic position (Vormisto, 2002). The same environmental factors 

accounted for the relationship between the densities of five abundant palm species at La 

Selva Biological Station, Costa Rica (Clark et al., 1995). In Amazonian Ecuador, 14 of 

the 23 palm taxa studied in a 50-ha plot had distributions correlated with topographic 

position, and significantly, but less so, with drainage and canopy height (Svenning, 

1999). Further, light availability affects palm distribution and abundance as shown in the 

increasing growth and fecundity of the understorey palm Geonoma macrostachys with 

greater crown illumination (Svenning, 2002). 

In contrast to Neotropical palms, less is known about microhabitat specialization 

in palms from the Paleotropics. Recent research examined the species diversity and 

abundance of climbing palms across different habitat types in Borneo, Java, and 

Indonesia finding variable species diversity and abundance among sites, including sites of 

the same habitat type (Siebert, 2005; Watanabe & Suzuki, 2008). Greater species richness 

was recorded at higher elevations (1180-1280m) within one study area (830-1330m) in 

Central Sulawesi, Indonesia but abundance was similar at all elevations (Siebert, 2005). 

On the other hand, more species were found in lowland mixed dipterocarp forests 

(<240m) in Borneo than in lower montane forest (1100m) in Java, but palm density was 

higher in the montane forest (Watanabe & Suzuki, 2008). These studies were limited to 

palm species of a single growth form, climbers, which only comprise about half of the 

species in the Paleotropical palm flora. Fruitful investigations on the relationship of 
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microhabitat heterogeneity and palm species richness and abundance should determine 

the association of all palm species of all growth forms with specific microhabitat features 

such as elevation, slope, convexity, soil moisture, soil nutrients, and light availability. 

The Philippines harbors 135 species of palms, equally represented by tree species 

and climbing species (Fernando, 1990). Desmoncus is the only climbing palm genus in 

the Neotropics and is species-poor (12 spp.), whereas the Paleotropical climbing genera 

Calamus and Daemonorops include 350 and 115 species, respectively (Govaerts & 

Dransfield, 2005). Climbing palms, commonly known as rattans, are represented 

worldwide by 650 species belonging to the subfamily Calamoideae. These species have a 

restricted distribution limited to the Old World from Africa to Southeast Asia, with the 

center of diversity in Malesia. Rattans are a valuable resource for the region earning as 

much as US$1.0 billion annually (INBAR, 2007). This is, however, also the cause for the 

decline in their abundance in the wild. Exploitation and deforestation have resulted in the 

increasing loss of this resource (Dransfield et al., 2002). Aside from rattans, other palms 

are important as non-timber forest products, such as species in the genus Caryota, a 

source of the starch sago (Whitmore, 1998). It is important to understand the 

microhabitat preferences and niche differences among palm species, both free-standing 

and climbing, because these data may be crucial to the conservation and management of 

palm resources. 

Here, I report on the palm community of a 16-ha plot in a lowland rainforest of 

the Philippines and evaluate the relationship between topography (elevation, slope, and 

proximity to water) and palm species distribution and abundance. Optimum conditions 

for growth can vary with age leading Grubb (1977) to posit that all stages in the life 
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history of species are important. Separate analyses on three different age classes (young, 

middle-age, old) for each palm species are conducted to determine if microhabitat 

preferences change or are maintained throughout the species’ lifetime. A plant’s 

requirements for growth need to be met beginning at the earliest life stages, likely 

resulting in strong species-habitat associations in young stems. If habitat preferences are 

consistent across life stages, the same habitat associations are expected in the three age 

classes, whereas no pattern is expected when habitat preferences are modified with age. 

Alternatively, the effects of environmental filtering, or the establishment and survival of 

individuals best suited to a certain set of environmental conditions, could be reflected by 

the stems reaching the later life stages and thus exhibit the strongest associations in the 

old age class comprised of large-sized stems (Keddy, 1992; Tuomisto et al., 2003).  

Methods 

 

Study Site 

Fieldwork was conducted in the 16-hectare Palanan Forest Dynamics Plot (PFDP) 

(Figure 3.1). The PFDP is a permanent plot monitoring tree demography in a primary 

lowland mixed dipterocarp forest within the Northern Sierra Madre Natural Park, 

Palanan, Isabela, Philippines. PFDP is located at 17° 02’ 36 N, 122° 22’ 58 E, with an 

elevational range from 76m to 118m a.s.l. Topographic data was recorded during the 

establishment of the plot in 1994. Two streams, one on each side of a ridge, bisect the 

plot in a southwesterly direction. The nearest meteorological station in Casiguran, 90km 

SSW of Palanan, records annual rainfall in this region as 3,200mm. However, Palanan 

probably receives more annual rainfall, possibly exceeding 5000mm (Co et al., 2006). 

There is very little seasonality in Palanan: rainfall is more or less evenly distributed 



!

"#!

throughout the year. Tropical cyclones coincide with Southwest monsoons during the 

months of June to November. About 10-15 typhoons pass through the Philippines 

annually and super typhoons with gale force exceeding 200kph occur every five years. 

More details of the plot are presented in Co et al. (2006). 

Data collection and Analyses 

A census of all trees in the PFDP was conducted in 2004, which included free-

standing palms (Co et al., 2006). All palms with a trunk ! 1cm above 1.3m were tagged, 

measured for diameter at breast height (DBH), and identified. Assuming that trees of 

similar size are of similar age, three age classes were created based on the 33
rd

 and 66
th

 

percentile of the diameters measured (including each observed diameter only once), 

representing three age classes of palm trees. The exact location of each tree in the plot 

was also recorded using x and y coordinates (Figure 3.2). A voucher specimen for each 

species was collected and stored at the University of the Philippines Herbarium (PUH). In 

May 2005, a survey of climbing palms in the plot was made, followed by a complete 

census of the most abundant species, Daemonorops mollis. At any given time, there are a 

few adult stems of the D. mollis population maturing edible fruits, but the species also 

reproduces vegetatively, forming small (<1m diameter) distinct clusters of genetically 

identical (genets) stems. All individuals in each cluster of D. mollis were counted. Each 

cluster was tagged, mapped, and measured for diameter at the base. Each individual was 

then classified as a juvenile, a sub-adult (! 3 leaves or appearance of cane), or an adult (! 

5m long cane).  

Using Morisita’s index (Krebs, 1989) as a measure of dispersion, the spatial 

distribution of each species was analyzed for patterns of aggregation or random 
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distribution. Morisita’s Index of Dispersion (Id) values are categorized into the following: 

<1 (uniform distribution), =1 (random), and >1 (aggregated). Whereas Morista’s Index of 

Dispersion uses counts within a specified area, Ripley’s K is a tool which also measures 

aggregation but uses the location coordinates of each stem (Ripley, 1981). Ripley’s K 

function can describe spatial patterns at multiple distance scales, and this was used to 

calculate aggregation at five spatial scales (5, 15, 25, 35, and 45m) for three age classes 

in four palm species (not including O. decipiens). To estimate palm biodiversity for the 

PFDP, Fisher’s alpha (Fisher et al., 1943) was calculated using EstimateS (Colwell, 

2009). 

Within the plot, each of the 400 20 x 20m quadrats was assigned microhabitat 

types according to three topographical features: elevation, slope, and stream location.  

The quartiles (from lowest to highest values) of the elevation data were used to assign 

equal numbers of quadrats for each of four elevation microhabitat types: Low= first 

quartile (lowest elevation), Mid-low = second quartile (mid-low elevation), Mid-High = 

third quartile (mid-high elevation), and High = fourth quartile (highest elevation). The 

same procedure was carried out based on the slope of each quadrat. Stream vs. non-

stream microhabitat types were scored based on the presence or absence of a stream of 

any size in each quadrat.  

Three age classes based on stem diameter were assigned for each palm tree 

species, with the exception of O. decipiens due to small sample size, which was only 

analyzed as a species with all stems combined. The three size classes based on tertiles of 

the observed range of DBH, for C. cumingii, P. insignis, and P. maculata, respectively, 

were as follows: young (!13.7cm, !9.8cm, !3.6cm); middle-age (>13.7 & !21.5cm, >9.8 
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& !13.8cm, >3.6 & ! 5.4cm); old (>21.5cm, >13.8cm, >5.4cm). For D. mollis, life stages 

were as described above. 

 Using the quartiles from the elevation and slope data, the four elevation 

microhabitats were defined by the following break points: (Low) <90.50m, (Mid-low) " 

90.50 and < 97.75m, (Mid-high) " 97.75 and < 105.01m, and (High) " 105.01m. The 

slope microhabitats were assigned into the following bins according to the degree of 

inclination: (Low) <11.96º, (Mid-low) " 11.96º and < 16.94º, (Mid-high) " 16.94º and < 

23.57º, and (High) " 23.57º. Three maps show the distribution of microhabitat types 

according to elevation, slope, and stream locations (Figures 3.4, 3.5, and 3.6). 

Torus translation tests, following Harms et al. (2001), were conducted to 

determine the strength and sign of the relationships between palm distributions and 

habitat characteristics, taking into account spatial autocorrelation. The test compares the 

observed relative density of a species on the true habitat map with expected relative 

densities from simulated habitat maps. By shifting the true habitat map in 20-m 

increments along the x and y coordinates, I created 400 simulated maps. Habitat 

association is significantly positive or negative if the observed relative density is greater 

or lesser than 97.5% of expected relative densities (390/400 simulations). Analyses of 

these data sets were performed using R (R Development Core Team, 2008), and 

conducted on each of the three life stages for each species, as well as a combined dataset 

of all individuals per species, hereafter referred to as per-species analysis.  

A univariate general linear model was used to conduct ANOVA tests from the 

results of the torus translation tests. The number of positive associations per microhabitat 

for each species was used to determine the effects of age class, microhabitat type, and 
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species identity on the species-habitat associations. 

Results 

Palm community 

Fourteen species of palms were present (Table 3.1), and Fisher’s ! was 1.6 for the 

PFDP plot. Four palm species were free-standing trees and ten species were climbing 

palms in the genera Calamus and Daemonorops. Three of the six subfamilies of palms 

are represented in the plot: Arecoideae, Calamoideae, and Coryphoideae. Daemonorops 

mollis was the only climbing palm completely censused because this species was 

extremely common (6,496 clusters) whereas all other species were relatively very rare 

(Table 3.1). The distribution of the abundant D. mollis should have the strongest support 

for any pattern of habitat association. Of the five palm species censused, D. mollis was 

the most abundant, followed by Pinanga maculata (1,371) and P. insignis (1,075). 

Orania decipiens was the rarest, represented by only 31 individuals in 19 quadrats, after 

Caryota cumingii with 431 trees.  

Spatial Distribution 

The distribution of each of the five species was mapped on the elevational contour 

map (Figure 3.2). The mapped species exhibit heterogeneous distribution patterns, some 

showing obvious patchiness across the landscape. Tests of dispersion, conducted 

individually at spatial scales of 25, 100, 400, and 2500 m
2
, indicate aggregation of 

individuals of each of the five species at all spatial scales (Figure 3.3).  Aggregation 

appears to be greatest at the smallest spatial scale tested (25m
2
), with decreasing 

aggregation of individuals at larger spatial scales. Morisita’s index indicates that O. 

decipiens has the most clustered pattern with Id > 7.4, followed by C. cumingii (Id > 
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1.45), P. maculata (Id > 1.4), D. mollis (Id >1.22), and P. insignis (Id >1.19), at the 

2500m
2
 spatial scale, where aggregation is at its minimum. Ripley’s K reveals a similar 

decreasing intensity in aggregation with increasing scale (after 5m) for all age classes in 

C. cumingii and P. insignis, and the opposite trend for P. maculata and D. mollis (Table 

3.2). In all four palm species, old stems are more clustered than young or middle-age 

stems, at all spatial scales.
 

Habitat Preferences 

 Based on both per-species and age-class analyses, three species of free-standing 

palms, C. cumingii, O. decipiens, and P. maculata, were significantly positively 

associated with areas below the median elevation for the plot (<98m) in contrast to the 

climbing palm, D. mollis (Table 3.3), which was found primarily in the highest elevations 

within the plot. P. insignis is most often positively associated with low elevations  

(347/400 simulations were positive), although the result is not statistically significant. 

Significant microhabitat associations also varied within a species among the 

different age classes (Table 3.3). In C. cumingii, only the young trees show a significant 

preference for the lowest elevations while the old trees exhibit a negative association with 

the highest elevations, a pattern reflected in the per-species analysis. Both P. maculata 

and D. mollis show significant associations in all three age classes, similar to their per-

species associations. In P. maculata, significant positive associations are with below 

median elevations with a corresponding negative association with elevations above the 

median. The opposite is observed in D. mollis, where stems are only significantly 

positively associated with the highest elevations. No relationship is seen in P. insignis, in 

any age class, nor collectively as a species. No comparisons across age classes can be 
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made based on the limited O. decipiens dataset, although the per-species data are 

positively associated with the lowest elevations in the plot. 

 None of the species exhibited preferences based on the slope of the microhabitat, 

even in multiple analyses creating bins using different break points to assign slope 

microhabitat types (results not included here). The only correlation observed was a 

positive association (p<0.06) of young C. cumingii stems with the steepest slopes in the 

plot. 

In stream microhabitats, P. insignis, P. maculata, and D. mollis showed significant 

microhabitat preferences (Table 3.3). Results from both per-species and age class 

analyses showed significantly fewer individuals of D. mollis in stream microhabitats, 

whereas P. maculata was positively associated with stream microhabitats. O. decipiens 

also was positively associated with stream habitats, but this was not statistically 

significant (p<0.075). Only old P. insignis trees showed a significant negative association 

with stream microhabitats, whereas C. cumingii showed no demonstrable preference for 

either stream microhabitat type.   

The results of the ANOVA showed no significant effect of age class (p<0.986), 

elevation (p<0.309), species (p<0.946), or age class x species interaction (p<0.988) on 

the overall species-elevation associations. When only tree palms are included in the 

ANOVA, (excluding D. mollis), the test reveals that only elevation (p<0.0001), not age 

class (p<0.925) nor species identity (p<0.936), is correlated with the elevation-

microhabitat preferences of palm tree species. A torus translation test performed on a 

dataset of the three palm tree species also shows a collective positive association with 

below median elevations (p<0.005) and a negative association with the highest elevations 
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(p<0.005). Similarly, with species-stream associations, none of the above-mentioned 

variables were significant except when only palm trees are included in the ANOVA, 

stream location is nearly significant (p<0.058).  

Discussion  

 

The Arecaceae includes many economically valuable species and is an important 

component of forests in both the Neo- and Paleotropics. A survey of the assemblage of 

palm species in the PFDP and pattern analysis of species distributions, will aid in 

understanding the role of palms in forests. For conservation and trade goals, habitat 

preferences can be a guiding principle when allocating habitats for the preservation of 

threatened species and in the design of palm plantations that are economically viable. 

This study describes and reveals the patterns observed, but does not determine the 

mechanisms causing such patterns to occur. 

Palm community  

The five genera represented in the PFDP, Calamus, Caryota, Daemonorops, 

Orania, and Pinanga, are restricted to the Paleotropics. Generic endemism is common in 

the Arecaceae, as noted by Corner (1966), despite the strong pantropical distribution of 

the family. Seven of the eleven (64%) identified species in the plot are endemic to the 

Philippines, consistent with the 76.5% endemicity ratio estimate for the whole Philippine 

vascular flora (Myers et al., 2000). 

 Palm species diversity is higher in the 16-ha PFDP than in other Neotropical 

sites, where 2, 6, and 10 species of tree and climbing palms were found (50-ha Barro 

Colorado Island, 25-ha La Planada, and 16-ha Luquillo plots, respectively), except in 

comparison with the species-rich 50-ha plot in Yasuní where 24 species occur (Co et al., 
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2004). High palm species richness in the Yasuní region was previously recorded, with a 

mean Fisher’s ! of 5.26 for 11 transects (Vormisto et al., 2004), notably higher than the 

Fisher’s ! of 1.6 for the Palanan plot. The Palanan FDP, which is at a similar latitude as 

the Luquillo FDP, has more palm tree and climber species but is comparable in richness 

to the Yasuni FDP when taking into account the disparity in the size of the plots.  

Palm species diversity decreases with increasing latitude (Appendix 3.1; 

Bjorholm et al. 2006), a pattern demonstrated among the Neotropical plots, with the 

exception of the Luquillo plot. In the absence of comparable datasets from Paleotropical 

plots, data from the World Checklist of Arecaceae Database was examined (Appendix 

3.1; Govaerts et al., 2006). A clear latitudinal gradient in palm species richness is also 

present in the Paleotropics. However, a series of palm surveys should be conducted 

within areas of limited latitudinal range, rather than an entire country, to firmly establish 

that latitude is correlated with species richness. For example, the surveys can be 

performed in similar-sized plots among islands in the Philippines, which are located from 

5°N to 20°N latitude. At this time, a comparison of palm species diversity within the 

Philippines cannot be made due to differences in sampling strategies, but floristic lists 

show that in Mt. Makiling, Laguna (14°N), there are at least 14 palm species (Fernando 

et al., 2004) and in Mt. Pangasugan, Leyte (10.5°N) there are 67 species (Langenberger 

et al., 2006), suggesting consistency with a latitudinal gradient. 

 Tree and climbing species of palms in the Palanan plot rank first in abundance, 

second in basal area, and seventh in species richness among the 67 families represented. 

Excluding climbing species, the Arecaceae rank ninth in abundance, fifth in basal area, 

and 23rd in species richness. In other Asian FDP plots, palm trees have not been 



!

"#!

censused, but only a few palm tree species are present in the Huai Kha Kheng plot, the 

Khao Chong plot (Thailand), the Nanjenshan plot (Taiwan), the Bukit Timah plot 

(Singapore), and the Malaysian Lambir and Pasoh plots (LaFrankie, J. and Sun, I, 

personal communication). Climbing palms may be more abundant in species and number 

in these plots, but climbing species are not included in plot censuses. It is clear from the 

Palanan plot that palms are dominant components of the forest, and because palm 

diversity increases with decreasing latitude, it is expected that palms are even more 

important in the Southeast Asian region, south of the Philippines, such as in Singapore 

and Malaysia. It is thus essential to include palms, especially climbers, in future censuses.  

Among the palms found in the PFDP, eight of the 11 species (three are yet to be 

identified to the species level) are widely distributed throughout the Philippines 

(Govaerts & Dransfield, 2005; Merrill, 1926) and one palm in particular, D. mollis, is the 

most dominant species surpassing the abundance and basal area of all other palm species 

combined. A complete census of the rattans in the plot is needed to confirm the absolute 

dominant status of D. mollis.  Although. D. mollis is commonly found in many islands 

throughout the archipelago, it appears to be most abundant in the PFDP (pers. obs.). The 

dominance of D. mollis may have been the natural condition in all lowland dipterocarp 

forests prior to deforestation, as it is in the pristine forest plot at Palanan.  This is similar 

to the oligarchic dominance of six palm species in the western Amazonian sites of Yasuní 

and Iquitos-Pebas (Vormisto et al., 2004). The relatively lower numbers of individuals of 

D. mollis in other sites could be due to habitat loss and excessive cane collection. 

Alternatively, the current abundance pattern may represent the dominance of one species 

in the Palanan site, while another complementary species dominates in a different 
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locality. Comparative censuses conducted in multiple islands with well-preserved forest 

cover are necessary to address the question of whether one or a group of palm species is 

equally dominant across lowland dipterocarp habitats.  

Abundance and Spatial Distribution 

 The five palm species analyzed show varying levels of abundance, from the 31 

individuals of O. decipiens to the 6,496 clusters of D. mollis. The two congeneric 

Pinanga species have almost equal numbers of stems yet exhibit different growth 

strategies. P. insignis develops large diameter stems resulting in its dominance of basal 

area (13.38 m
2)

, whereas all stems of P. maculata have a collective basal area of 2.36 m
2
. 

Caryota cumingii individuals show a total basal area of 11.14 m
2
, despite representation 

by a third of the stem abundance of P. maculata, a testament to its big, solitary trunk. 

Taking into account both abundance and basal area, D. mollis has the highest importance 

value (I.V. = 1.5) of the five species, with P. insignis (IV. = 0.2) following as a distant 

second. Among the tree species, there is no one species clearly dominant over the others, 

although O. decipiens includes few individuals and total basal area. On the PFDP, O. 

decipiens is a rare species with few individuals, but could possibly be recently dispersed 

into the area. Censuses in other protected areas as well as in the PFDP in the future may 

distinguish between these alternative scenarios. If O. decipiens is found to be more 

abundant and occupying a greater proportion of the PFDP in future censuses than at 

present, we should expect larger populations in other areas as well.  

 Aggregation of conspecific trees is well documented in tropical forest species 

(Condit et al., 2000; Harms et al., 2001), and is exhibited by all five species of palms 

studied. Stem distribution of each species is aggregated at all spatial scales analyzed (25 
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m
2
 to 2500 m

2
), but the aggregation decreases in intensity with increasing scale, possibly 

attributable to seed dispersal limitation or patchiness of microhabitat distribution (Condit 

et al., 2000; Harms et al., 2001; Valencia et al., 2004). Small rodents disperse Pinanga 

fruits (Zona, 2007) and in the Neotropics, small rodent species disperse palm fruits only 

short distances from the parent tree: 5 - 75 cm in Attalea, and 3.6 - 5.2 meters in 

Astrocaryum (de Almeida & Galetti, 2007; Donatti et al., 2009). If dispersal limitation 

was the sole cause of the distribution pattern, a decrease in aggregation intensity should 

not be observed with increasing scale beyond five meters (25m
2
, Figure 3.3). As 

decreasing aggregation beyond 25m
2
 is found in all five species, the data suggests that 

seed dispersal limitation does not explain palm distributions. Furthemore, aggregation in 

the old age class is greater relative to the young and middle-age groups in four palm 

species, reflecting the collection of adults in the most suitable habitats that are patchily 

distributed. The disparity in the results of the Morisita’s Index and Ripley’s K is likely 

driven by the strong associations of both P. maculata and D mollis with specific 

microhabitats that are irregularly distributed in the plot (see below).  

Habitat Preferences 

A typical lowland dipterocarp forest was differentiated into several microhabitats 

based on variability in elevation, slope, and location of streams. Microhabitat 

heterogeneity is correlated with the distribution and abundance in four of the five palm 

species within the plot. Elevation is the best predictor of abundance, while stream 

presence affected only P. maculata and D. mollis. Slope, however, was not found to be 

associated with any of the species at any age class, contrary to findings of equal effects 

on tree species distributions by slope, aspect, elevation, and convexity, where 70, 63, 67, 
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and 73 tree species, respectively, were related to each topographic variable in a 20-ha plot 

in subtropical China (Wang, et al., 2009).  

The single species of climbing palm censused, D. mollis, was positively 

associated with areas of higher elevation in the plot, above that of the median elevation of 

98m. D. mollis is very common in primary forests at low to medium elevation, but this is 

the first recorded habitat preference based on elevation of D. mollis, or of any Philippine 

rattan. One potential explanation for association with the higher end of the elevation 

range is a preference by rattans for greater solar radiation (Gale, 2004). In Sarawak and 

Peninsular Malaysia, rattans are more abundant on ridges than in valleys (Putz & Chai, 

1987; Siebert, 1993). To confirm rattan preference for ridges and higher light intensities, 

photosynthetically active radiation (PAR) could be measured at the PFDP and analyzed 

for D. mollis preference with high elevation and high PAR microhabitats. 

In contrast to D. mollis, the distributions of palm trees (excluding P. insignis) 

were significantly correlated with a lower elevational range. Preference for low 

elevations, despite separation of these microhabitats by a ridge (Figure 3.4), indicates that 

distribution and abundance of the three palm species is more influenced by topography 

than dispersal. The preference for contrasting elevation microhabitats between a climbing 

species and three palm tree species suggest a potential for niche differentiation between 

growth forms. A characteristic shared by the palm tree species is their low stature (P. 

maculata, 5m to C. cumingii, 15m), whereas D. mollis, and most other rattan species, 

reach the top of the canopy layer by attaching to trees (Uhl & Dransfield, 1987), 

including members of the dipterocarp family that attain heights of 50m at maturity. At 

Palanan, palm tree species occupy the forest understorey, are shade-tolerant, and are 
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adapted to the decreased light intensities in lower elevations or non-ridge microhabitats. 

In order to validate this as a rattan generality, other rattan species in the plot could be 

included in future analyses.  

The aseasonal forest of Palanan receives at least 100mm of rain every month, thus 

high soil water content is expected throughout the plot. However, water drainage can 

create differences in available moisture in an area with heterogeneous topography.  Water 

run-off in streams distinguishes microhabitats with relatively higher moisture, which in 

Palanan are preferentially occupied by P. maculata and avoided by D. mollis and adult P. 

insignis. Only one out of five species is significantly positively associated with stream 

microhabitats, suggesting that habitats with high soil moisture are unsuitable for palms. 

The survival probability of vegetative stems of D. mollis is reduced by five percent after 

five days immersed in freshwater, and up to 20% after 20 days of immersion (Yap, 

unpublished). D. mollis stems rotted from water exposure likely damaging the apical 

meristem resulting in the death of immersed plants.  Constant exposure to water would be 

a deterrent to the successful establishment of palms. Thus, palms typically do not flourish 

in flooded habitats, with the exception of examples like Mauritia flexuosa swamps in the 

Neotropics (Henderson et al., 1995), and Paleotropical peat swamps harboring Calamus 

caesius, C. trachycoleus, and C. trachycoleus (Ali & Barizan, 2002). Presently, P. 

maculata, can be added to the list of exceptions, as it is shown to prefer the most flooded 

areas in the PFDP.  

Liana and tree life forms in palms show contrasting preferences for stream 

microhabitats. In addition, there is an antagonistic stream microhabitat association 

between the two understorey Pinanga species in the plot, congruent with the results 
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found in eight species pairs of small and medium-sized Neotropical palms (Svenning, 

1999). However, no antagonistic relationship based on elevation is exhibited by the four 

palm tree species in this study. Thus, only partial support is provided for Svenning’s 

hypothesis that the coexistence of palms of the same growth form is promoted by 

antagonistic patterns of microhabitat specialization. On the other hand, there is 

substantial evidence that the two different growth forms have opposing microhabitat 

preferences. Further censuses, including all rattan species in the PFDP, should help 

determine whether lianas and trees occur in sympatry due to differences in microhabitat 

specialization. 

There is no trend of increasing strength in association across subsequent life 

stages for any of the species that would indicate increased recruitment in suitable 

habitats, whether grouped by growth form or not. However, the present data may be 

insufficient in detecting a gradient in intensity of habitat association because all stems 

included in the study of palm tree species were at least 1cm in diameter at 1.3m above 

ground. Palm trees grow in girth before allocating resources to increasing height, thus, all 

three groups may be considered as belonging to one life stage. The observed preferences 

for the microhabitats defined in the study are not constant across life stages but the same 

relationships are found in one or more life stages as found in the per-species analysis. 

Including all stages of the palm life cycle from seed to maturity would be optimal to gain 

a better understanding of palm population dynamics. 

Increasing our knowledge on the basic biology of palms facilitates every effort to 

preserve palm diversity and the natural habitats they occupy. This study is particularly 

important because four of the five species included are endemic to the Philippine Islands 
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and endemic island species are most notably prone to extinction (Frankham, 1998). The 

climbing palm, D. mollis, is currently being collected because of the rarity of other 

species with better quality cane due to overexploitation. Fortunately, rattan nurseries and 

plantations have been established, growing the most economically viable species like 

Calamus merrilli and Calamus ornatus var. philippinensis (Lapis & Bueser, 2008; 

Rivera, 1999). Nevertheless, forests must be constantly monitored to maintain sustainable 

wild populations of other rattan species especially since nine of the ten rattan species in 

the Palanan plot are rare. The palm tree species, on the other hand, are relatively free 

from threats except for O. decipiens whose population is naturally small and thus more 

likely to succumb to extinction in the presence of disturbances. The pattern of distribution 

observed here will serve as a baseline, representing a healthy palm community in 

comparison with other forests. In the future, it would be advantageous to determine the 

survivorship of seedlings so seedlings may be collected for nurseries and plantations 

without negative effects on palm population dynamics. 

Conclusion 

Paleotropical palm species rank high in importance based on species richness, 

abundance, and basal area, emphasizing the need to include both tree and climbing 

species in censuses and forest dynamics studies. The rich palm flora in Palanan should be 

compared to the palm flora of other sites located at different latitudes across the 

Philippine archipelago to determine whether the latitudinal gradient in palm diversity 

exists in the Paleotropics. Confirmation that the gradient is present will allow for 

predictions of species diversity for understudied areas to be more accurate.  

Aggregation is common in palm species distributions. For two palm tree species 
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there is indication of aggregation being influenced by associations with patchily 

distributed microhabitats. Microhabitat heterogeneity due to elevation and stream 

location, but not slope, influences palm abundance and distribution. Microhabitat 

specificity facilitates the occurrence of five palm species in sympatry. Antagonistic 

microhabitat specialization patterns are exhibited between two palm life forms, trees and 

lianas. Additional analyses incorporating more liana species and all life stages of the 

palm is expected to clarify the antagonistic pattern of relationships between different 

growth forms as well as to provide a better estimate of the contribution of microhabitat 

specialization (i.e. niche differentiation) to palm species coexistence.   
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Figure 3.1. Study site. Palanan Forest Dynamics Plot in NE Luzon Island, Philippines. 

The contour map is shown at the far right. 

 

 

Species Name (Code) Subfamily 
Abundance (16 

has.) 

Basal area, 

m
2
  (16 has.) 

Calamus dimorphocanthos Calamoideae 1 - 

Calamus discolor Calamoideae est. < 100 - 

Calamus ornatus var. 

philippinensis 

Calamoideae 
est. < 100 - 

Calamus reyesianus Calamoideae est. < 50 - 

Calamus siphonospathus Calamoideae est. < 10 - 

cf. Calamus daemonoropoides Calamoideae 2 - 

Calamus sp. 1 Calamoideae 1 - 

Calamus sp. 2 Calamoideae est. < 10 - 

Daemonorops mollis (DAEMMO) Calamoideae 6,496 (clusters) 128.53 

Daemonorops ochrolepis Calamoideae est. < 200 - 

Caryota cumingii (CARYCM) Arecoideae 431 (trees) 11.14 

Orania decipiens (ORANDE) Arecoideae 31 (trees) 0.68 

Pinanga insignis (PINAIN) Coryphoideae 1,075 (trees) 13.38 

Pinanga maculata (PINAMA) Coryphoideae 1,371 (trees) 2.36 

Table 3.1. Palm species in the PFDP.  The species name, subfamily, abundance, and basal 

area are listed. Abundance is based on individual tree stems and cluster of climbing palms. 

Estimated abundances of surveyed but non-censused species are also indicated. 
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Figure 3.2.a-e. Distribution maps of the 5 

palm species surveyed. Contour lines indicate 

elevational gradient in the plot. (a) Orania 

decipiens,(b) Caryota cumingii, (c) Pinanga 

maculata, (d) P. insignis, and (e) 

Daemonorops mollis.  
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Figure 3.3. Test for dispersion using Morisita’s Index. Test indicates all  

palms are clustered (p<0.0001) at different spatial scales (25, 100, 400,  

and 2500 m
2
).  

 

    Ripley's K (distance in m) 

Species Age Class 5 15 25 35 45 

C. cumingii young 1.1 4.37 3.95 3.17 0.45 

  middle-age -0.08 2.04 0.97 0.53 -0.99 

  old 5.05 10.61 17.37 15.51 12.89 

P. insignis young 1.52 2.95 2.01 0.46 0.13 

  middle-age -0.73 1.04 0.01 -0.85 -1.29 

  old 0.94 4.22 4.57 3.13 2.02 

P. maculata young 0.47 1.73 -0.01 -1.1 0.17 

  middle-age 0.21 2.76 3.13 3.2 3.36 

  old 4.64 7.61 9.6 10.09 8.9 

D. mollis young -0.41 2.21 2.65 2.88 2.82 

  middle-age -0.5 2.53 2.84 3.39 3.6 

  old 0.25 4.37 6.03 8 9.73 

Table 3.2. Degree of aggregation in the three age classes of four palm species. Positive 

values indicate clustering and negative values overdispersion at the 0.05 significance level. 
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Figure 3.4. Distribution map of the 

four elevation habitats. Increasing 

elevation is represented by lighter to 

darker colors. 

 

Figure 3.5. Distribution map of the 

four slope habitats. Increasing 

steepness is represented by lighter 

to darker colors. 

 

Figure 3.6. Distribution map of the 

two stream habitats. Blue 

represents stream habitats and 

green non-stream habitats. 
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    ELEVATION STREAM 

Species Life Stage Low Mid-low 

Mid-

high High 

Non-

stream Stream 

C. cumingii per-species ++   ---    

  young         

  middle-age ++++   ----    

  old       ----     

O. decipiens per-species ++           

P. insignis per-species         

  young         

  middle-age         

  old           ---- 

P. maculata per-species ++++ ++++  ---- ---- ++++ 

  young    ----    

  middle-age ++++ ++++  ---- ---- ++++ 

  old ++++   ---- ----   +++ 

D. mollis per-species ---- --  ++++ ++++ ---- 

  young ----   ++++ ++++ ---- 

  middle-age --   ++++ ++++ ---- 

  old   ----   ++++ ++ ---- 
Table 3.3. Habitat associations of five palm species. Elevation habitats: (1) <95.5m; (2)!95.5 & 

<97.75; (3) !97.75 & <105.01; (4) !105.01. Stream habitats: (1) Non-stream; (2) Stream habitats. 

Positive and negative associations are denoted by ++++/---- (p<0.025) and ++/-- (p<0.05). 
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Country 
Median 

latitude 

No. of palm 

species 

Land area 

(km
2
) 

Sp/area (per 

10,000km
2
) 

Paleotropics 

Taiwan 23°N 11 35,980 3.06 

Vietnam 17°N 119 331,690 3.59 

Thailand 15°N 196 513,120 3.82 

Philippines 10°N 166 299,764 5.54 

Malaysia 5°N 278 329,845 8.43 

Borneo 1°N 307 743,330 4.13 

Sumatra 1°S 177 470,000 3.77 

Sulawesi 2°S 67 174,600 3.84 

New Guinea 5°S 257 786,000 3.27 

New Zealand North 

Island 38°S 1 113,729 0.09 

 Latitude 

No. of palm 

species per 

1°grid * 

Land area 

(km
2
) 

Sp/area (per 

10,000km
2
) 

Neotropics 

 23°N 6 12,000 5 

 17°N 13 12,000 11 

 15°N 15 12,000 13 

 10°N 26 12,000 22 

 5°N 40 12,000 33 

 1°N 44 12,000 37 

 1°S 44 12,000 37 

 2°S 41 12,000 34 

 5°S 38 12,000 32 

Appendix 3.1. Comparison of palm species diversity in the Paleotropics and the 

Neotropics. The country is listed along with the median latitude of each country, the 

number of palm species (including varieties), land area, and no. of sp/area. Data was 

compiled from Govaerts, et al. (2006) for the Paleotropics and from Figure 2 in 

Bjorholm et al. (2005) for the Neotropics. 
* 1°grid estimated area is 12,000km

2 
(110km per  degree latitude and 109km per degree 

longitude). 

 

 

 

 

 

 

 

 

 

 



!

"##!

References 

 

Ali, A.R.M. and Barizan, R. 2002. Country report on the status of rattan resources and 

uses in Malaysia In Rattan: current research issues and prospects for 

conservation and sustainable development, Non-Wood Forest Products. Rome, 

Italy. 

Bjorholm, S., Svenning, J.C., Baker, W.J., Skov, F. and Balslev, H. 2006. Historical 

legacies in the geographical diversity patterns of New World palm (Arecaceae) 

subfamilies. Botanical Journal of the Linnean Society, 151: 113-125. 

Bjorholm, S., Svenning, J.C., Skov, F. and Balslev, H. 2005. Environmental and spatial 

controls of palm (Arecaceae) species richness across the Americas. Global 

Ecology and Biogeography, 14: 423-429. 

Clark, D.A., Clark, D.B., Sandoval, R. and Castro, M.V. 1995. Edaphic and Human 

Effects on Landscape-Scale Distributions of Tropical Rainforest Palms. Ecology, 

76: 2581-2594. 

Co, L., LaFrankie, J., Lagunzad, D., Pasion, K., Consunji, H., Bartolome, N., Yap, S., 

Molina, J., Tongco, M., Ferreras, U., Davies, S. and Ashton, P. 2006. Forest 

Trees of Palanan, Philippines: a study in population ecology. Quezon City, 

Philippines: Megatone Printhauz, Inc. 

Co, L.C., Lagunzad, D., LaFrankie, J.V., Bartolome, N., Molina, J.E., Yap, S.L., Garcia, 

H.G., Bautista, J.P., Gumpal, E.C., Arano, R.R. and Davies, S.J. 2004. Palanan 

Forest Dynamics Plot, Philippines. In Tropical Forest Diversity and Dynamism: 

Findings from a Large-Scale Plot Network (E. Losos and E.G.J. Leigh, eds). 

Chicago, USA: The University of Chicago Press. 

Colwell, R.K. 2009. EstimateS 8.2.0: Biodiversity Estimation. University of Connecticut. 

Condit, R., Ashton, P.S., Baker, P., Bunyavejchewin, S., Gunatilleke, S., Gunatilleke, N., 

Hubbell, S.P., Foster, R.B., Itoh, A., LaFrankie, J.V., Lee, H.S., Losos, E., 

Manokaran, N., Sukumar, R. and Yamakura, T. 2000. Spatial patterns in the 

distribution of tropical tree species. Science, 288: 1414-1418. 

de Almeida, L.B. and Galetti, M. 2007. Seed dispersal and spatial distribution of Attalea 

geraensis (Arecaceae) in two remnants of Cerrado in Southeastern Brazil. Acta 

Oecologica-International Journal of Ecology, 32: 180-187. 

Donatti, C.I., Guimaraes, P.R., Jr. and Galetti, M. 2009. Seed dispersal and predation in 

the endemic Atlantic rainforest palm Astrocaryum aculeatissimum across a 

gradient of seed disperser abundance. Ecological Research, 24: 1187-1195. 

Dransfield, J., Tesoro, F.O. and Manokaran, N. 2002. Rattan: Current Research Issues 

and Prospects for Conservation and Sustainable Development. Food and 

Agriculture Organization of the United Nations (FAO). 

Fernando, E.S. 1990. A preliminary analysis of the palm flora of the Philippine Islands. 

Principes, 34: 28-45. 

Fernando, E.S., Sun, B.Y., Suh, M.H., Kong, H.Y. and Koh, K.S. 2004. Flowering Plants 

and Ferns of Mt. Makiling. Seoul, Korea: ASEAN-Korea Environmental 

Cooperation Unit Seoul National University. 

Fisher, R.A., Corbet, A.S. and Williams, C.B. 1943. The relation between the number of 

species and the number of individuals in a random sample of an animal 

population. Journal of Animal Ecology, 12: 42-58. 



!

"#"!

Frankham, R. 1998. Inbreeding and extinction: Island populations. Conservation Biology, 

12: 665-675. 

Gale, J. 2004. Plants and Altitude – Revisited. Annals of Botany, 94:199. 

Govaerts, R. and Dransfield, J. 2005. World Checklist of Palms. Kew: Royal Botanic 

Gardens Press. 

Govaerts, R., Dransfield, J., Zona, S.F, Hodel, D.R. and Henderson, A. (2006). World 

Checklist of Arecaceae. The Board of Trustees of the Royal Botanic Gardens, 

Kew. Published on the Internet; http://www.kew.org/wcsp/ accessed 21 June 

2010. 

Grubb, P.J. 1977. Maintenance of Species-Richness in Plant Communities - Importance 

of Niche Regeneration. Biological Reviews of the Cambridge Philosophical 

Society, 52: 107-145. 

Harms, K.E., Condit, R., Hubbell, S.P. and Foster, R.B. 2001. Habitat associations of 

trees and shrubs in a 50-ha neotropical forest plot. Journal of Ecology, 89: 947-

959. 

Henderson, A., Galeano, G. and Bernal, B. 1995. Field Guide to the Palms of the 

Americas. Princeton: Princeton University Press. 

INBAR. 2007. INBAR (International Network for Bamboo and Rattan) Database on 

Bamboo and Rattan Trade. 

Kahn, F. and Decastro, A. 1985. The Palm Community in a Forest of Central Amazonia, 

Brazil. Biotropica, 17: 210-216. 

Keddy, P.A. 1992. Assembly and Response Rules - 2 Goals for Predictive Community 

Ecology. Journal of Vegetation Science, 3: 157-164. 

Krebs, C.J. 1989. Ecological Methodology. New York: Harper and Row Publishers. 

Langenberger, G., Martin, K. and Sauerborn, J. 2006. Vascular plant species inventory of 

a Philippine lowland rain forest and its conservation value. Biodiversity and 

Conservation, 15: 1271-1301. 

Lapis, A. and Bueser, K.G. 2008. Demonstration and application of production and 

utilization technologies for rattan sustainable development in the ASEAN 

member countries. In Production and Utilization Technologies for the Rattan 

Sustainable Development. Yokohama, Japan: International Tropical Timber 

Organization. 

Merrill, E.D. 1926. An Enumeration of Philippine Flowering Plants, Vol. 4. Manila, 

Philippines: Bureau of Printing. 

Myers, N., Mittermeier, R.A., Mittermeier, C.G., da Fonseca, G.A.B. and Kent, J. 2000. 

Biodiversity hotspots for conservation priorities. Nature, 403: 853-858. 

Normand, S., Vormisto, J., Svenning, J.C., Grandez, C. and Balslev, H. 2006. 

Geographical and environmental controls of palm beta diversity in paleo-riverine 

terrace forests in Amazonian Peru. Plant Ecology, 186: 161-176. 

Putz, F. and Chai, P. 1987. Ecological studies on lianas in Lambir National Park, 

Sarawak, Malaysia. Journal of Ecology, 75: 523-531. 

Ripley, B.D. 1981. Spatial Statistics. New York: Wiley. 

Siebert, S.F. 1993. The abundance and site preferences of rattan (Calamus exilis and 

Calamus zollingeri) in 2 Indonesian National Parks. Forest Ecology and 

Management, 59: 105-113. 

Siebert, S.F. 2005. The abundance and distribution of rattan over an elevation gradient in 



!

"#$!

Sulawesi, Indonesia. Forest Ecology and Management, 210: 143-158. 

Svenning, J.C. 1999. Recruitment of tall arborescent palms in the Yasuni National Park, 

Amazonian Ecuador: are large treefall gaps important? Journal of Tropical 

Ecology, 15: 355-366. 

Svenning, J.C. 2001. On the role of microenvironmental heterogeneity in the ecology and 

diversification of Neotropical rain-forest palms (Arecaceae). Botanical Review, 

67: 1-53. 

Svenning, J.C. 2002. Crown illumination limits the population growth rate of a 

Neotropical understorey palm (Geonoma macrostachys, Arecaceae). Plant 

Ecology, 159: 185-199. 

Tomlinson, P.B., Fisher, J.B., Spangler, R.E. and Richer, R.A. 2001. Stem vascular 

architecture in the rattan palm Calamus (Arecaceae-Calamoideae-Galaminae). 

American Journal of Botany, 88: 797-809. 

Tuomisto, H., Ruokolainen, K. and Yli-Halla, M. 2003. Dispersal, environment, and 

floristic variation of western Amazonian forests. Science, 299: 241-244. 

Uhl, N. and Dransfield, J. 1987. Genera Palmarum: a classification of palms based on 

the work of Harold E. Moore, Jr. Kansas: L. H. Bailey Hortorium and the 

International Palm Society. 

Valencia, R., Foster, R.B., Villa, G., Condit, R., Svenning, J.C., Hernandez, C., 

Romoleroux, K., Losos, E., Magard, E. and Balslev, H. 2004. Tree species 

distributions and local habitat variation in the Amazon: large forest plot in eastern 

Ecuador. Journal of Ecology, 92: 214-229. 

Vormisto, J. 2002. Palms as rainforest resources: how evenly are they distributed in 

Peruvian Amazonia? Biodiversity and Conservation, 11: 1025-1045. 

Vormisto, J., Svenning, J.C., Hall, P. and Balslev, H. 2004. Diversity and dominance in 

palm (Arecaceae) communities in terra firme forests in the western Amazon 

basin. Journal of Ecology, 92: 577-588. 

Wang, Z., Ye, W., Cao, H., Huang, Z., Lian, J., Li, L., Wei, S. and Sun, I. 2009. Species-

topography association in a species-rich subtropical forest of China. Basic and 

Applied Ecology, 10:648-655. 

Watanabe, N.M. and Suzuki, E. 2008. Species diversity, abundance, and vertical size 

structure of rattans in Borneo and Java. Biodiversity and Conservation, 17: 523-

538. 

Whitmore, T.C. 1998. Palms of Malaya. Bangkok, Thailand: White Lotus Co. Ltd. 

Zona, S. 2007. Additions to "A Review of Animal-Mediated Seed Dispersal of Palms". 

Miami, Florida: Fairchild Tropical Garden. 

 



!

"#$!

Chapter 4 

 

Topography and species-habitat associations of dominant tree species in a tropical 

forest in the Philippines 

 

Abstract 

Microhabitat associations based on topographic features including elevation, 

slope, and stream location, were examined for the 30 most important species in a mixed 

dipterocarp forest in Palanan, Philippines. Species were also categorized into saplings, 

juveniles, and adults, and separately analyzed for microhabitat preferences. All species 

were found to be significantly associated with at least one topographic feature at one or 

more life stages, but usually varied across life stages. Only four species were consistently 

associated with the same microhabitat (elevation) across all three life stages, and seven 

species were consistently associated with one stream microhabitat across all life stages. 

Among three growth form categories based on height attained at maturity, canopy species 

were most often associated with high elevations, understory species were most often 

associated with low or high elevations in similar abundance, and shrub growth-form was 

associated with low elevations, suggesting a correlation between growth form and 

elevation as a function of light availability. Habitat heterogeneity, via niche 

differentiation, is therefore an important factor in the distribution of the dominant tree 

species within the tropical forest community in the Philippines. Furthermore, 

differentiation of niches to facilitate species coexistence seems to occur both in space and 

time.
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Introduction 

The latitudinal gradient in species diversity peaks in tropical rainforests (Wallace, 

1878; Willig et al., 2003). A comparable gradient also exists for rates of deforestation 

with the fastest rates recorded in tropical rainforest habitats (FAO 2005). Tropical forests 

host a multitude of coexisting species and the rapid pace of habitat loss increases the 

threat of extinction to the hyper-diverse biota, making habitat preservation and restoration 

an immediate global concern. Protocols for effective forest management for species and 

habitat preservation must be based on sound knowledge of the patterns and mechanisms 

producing the structure and dynamics of tropical forest habitats. 

A comprehensive explanation for the assembly and maintenance of high species 

diversity in tropical forests has not been generated, but many hypotheses have been 

offered to explain species coexistence, including the neutral theory proposed by Hubbell 

(2001).  The neutral theory proposes that species are ecologically equivalent, whereas 

niche theory, proposes that each species is unique and occupies an exclusive specific 

niche, by way of Gause’s competitive exclusion principle (Hardin, 1960; Tilman, 2004). 

Habitat partitioning, such that a different functionally equivalent species dominates in 

each habitat, is the end-result of niche differentiation among species. Habitat 

heterogeneity, therefore, may provide the opportunity for species to coexist (Tilman & 

Pacala, 1993).   

Many studies from the Neotropics have demonstrated the association between 

single species and environmental factors that define the habitat it occupies (Harms et al., 

2001; Nishimura et al., 2008; Potts et al., 2002; Svenning, 2001; Valencia et al., 2004). 

Important factors for plants include light (Svenning 2001), soil nutrient composition 
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(Clark et al., 1995; Potts et al., 2002), soil water availability (Kahn & Decastro, 1985), 

and topographic variation (Harms et al., 2001; Vormisto, 2002).  In the last decade, 

several studies in the Paleotropics have analyzed species-habitat associations in forested 

communities, also finding that community composition is correlated more with habitat 

than with geographic distance (Potts et al., 2002) and that light, soil nutrients, and 

topographic features, including elevation, slope, and convexity influence species-habitat 

associations (Gunatilleke et al., 2006; Lai et al., 2009; Paoli et al., 2006; Potts et al., 

2002; Webb & Peart, 2000). The strength of the relationship between environmental 

factors and species distributions, however, is not equivalent among forest communities. 

Observed habitat preferences vary among sites from 44% of the species studied in a 

Bornean forest (Webb & Peart, 2000), to 80% in a dipterocarp forest in Sri Lanka 

(Gunatilleke et al., 2006), and to 87% in a subtropical forest in China (Lai et al., 2009).  

Habitat associations have also been tested on members of species-rich families 

that occur in sympatry.  Despite close phylogenetic relationships, closely related species 

are expected to show niche differentiation, demonstrating the role of habitat 

heterogeneity in facilitating species divergence (Fine et al., 2005) and coexistence 

(Nishimura et al., 2008). Ten Fagaceae species in West Sumatra (Nishimura et al., 2008), 

eight Fagaceae and 20 Lauraceae species in Thailand (Noguchi et al., 2007; Sri-

Ngernyuang et al., 2003), and ten Sterculiaceae species in Lambir, Malaysia (Itoh et al., 

2003; Yamada et al., 2006), were analyzed demonstrating 60%, 100%, 65%, and 80% of 

species with habitat specialization, respectively. These studies all show the important 

contribution of heterogeneity in topographic factors in the coexistence of so many species 

through niche differences (Harms et al., 2001).  
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Clearly, each life stage from seed to mature adult is important in niche 

differentiation for the maintenance of species richness (Grubb, 1977).  If niche 

preferences vary through the life history of a species (Lai et al., 2009), more 

opportunities are provided for promoting coexistence. Previous results of research into 

habitat specialization, however, have only rarely evaluated life stages independently, 

most often incorporating all individuals of a species’ distribution, including stems 1cm in 

diameter to those at maximum diameter and maturity. A few studies have addressed the 

potential error in assuming that stems of all ages are equally suited to the same habitat by 

separately investigating different life stages and have indeed found habitat associations to 

vary across life stages (Comita et al., 2007; Lai et al., 2009; Webb & Peart, 2000). Webb 

& Peart (2000) compared habitat associations of adults (!10cm dbh) and seedlings (! 

1cm dbh, >5cm tall) of 22 abundant tropical species in Borneo, finding that trees were 

more strongly associated with topography than seedlings. Comita et al., (2007) also 

analyzed habitat association patterns based on elevation, slope, stream, and swamp 

locations at two life stages: large ("1cm dbh, diameter at breast height) and small (<1cm 

dbh, >20cm tall) individuals across 80 neotropical species, finding that although a similar 

number of species in both small and large size classes were associated with habitat, only 

5 of 30 (16%) species were consistent in habitat associations at both stages.  Lai et al. 

(2009) subdivided all tree individuals "1cm dbh of 60 species in a subtropical forest in 

China into three life stages: sapling, juvenile, and mature stages. They also subdivided 

species by mature stage growth form (shrub, understory, or canopy tree). Their research 

demonstrated more species-habitat associations at the sapling (43) and juvenile (41) stage 

than the mature (33) stage, and only 31% (16 of 52) of species consistently associated 
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with the same habitat, defined by elevation, slope, convexity, and aspect, across all three 

stages. 

 This study evaluates the correlation of elevation, slope, and proximity to streams 

with species distributions for 30 species from a dipterocarp-dominated forest in Palanan, 

Philippines. In addition, three life stages (ala Lai et al., 2007) are used to assess the 

variability in habitat associations throughout the life history of each species. Based on the 

work of Webb and Peart (2000), it is predicted that saplings and juveniles will have 

weaker associations than adult trees, suggesting increased mortality at earlier life stages 

in ‘suboptimal’ habitats. Moreover, weaker associations between habitats and saplings 

than for habitats and adult trees are anticipated for canopy species because of the high 

sapling:adult ratio in Old World forests (LaFrankie et al., 2006). There, saplings of 

canopy species overwhelm the understory and are unlikely to be restricted to specific 

habitats until they grow to larger sizes. 

Methods 

Study Site and Data Collection 

Data used in this study were collected during a census (2004) of all trees with 

diameter ! 1cm at breast height in the 16-hectare Palanan Forest Dynamics Plot (PFDP, 

Figure 4.1, see Co et al. 2006 for a more detailed plot description). The PFDP is located 

within the largest remaining tract of primary forest in the Philippines and represents the 

dominant forest type in the Philippine Islands, Mixed Dipterocarp Forest (MDF). Trees 

were tagged, dbh recorded, and location of each individual mapped within the 16-ha plot. 

The PFDP includes a tree flora dominated by members of the Dipterocarpaceae, 

Meliaceae, and Sapindaceae, a pattern typical of MDF. Dipterocarpaceae species 
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represent 11% of all stems and 50% of the total basal area in the plot. Of the 323 tree 

species identified in the plot, 30 dominant species based on relative abundance and basal 

area were selected and used here in the analysis of habitat association.  

The 400 x 400m plot was gridded into 400 20x20m quadrats, each of which was 

assigned two microhabitat types, one based on the quartiles of the recorded elevations 

and the second based on the quartiles of the slopes measured for all quadrats. 

Topographic data were collected during plot establishment in 1994, and both elevation 

and slope for each quadrat are recorded as the calculated mean of the four corners of each 

quadrat. The plot is divided equally into four microhabitat types (N=100 quadrats per 

microhabitat type) per topographic feature. Elevation in the plot ranged from 76m to 

118m a.s.l. and slopes ranged from 2.44° to 48.5°. The four elevation microhabitats were 

defined by the following break points: (Low) <90.50m, (Mid-low) ! 90.50 and < 97.75m, 

(Mid-high) ! 97.75 and < 105.01m, and (High) ! 105.01m. The slope microhabitats were 

assigned into the following bins according to the degree of inclination: (Low) <11.96º, 

(Mid-low) ! 11.96º and < 16.94º, (Mid-high) ! 16.94º and < 23.57º, and (High) ! 23.57º. 

Stream microhabitats were assigned to all quadrats partially or completely occupied by 

the two streams crossing the plot in a southeasterly direction found on either side of a 

ridge, and all other quadrats were designated as non-stream microhabitats.  

 

Data Analyses 

To select the 30 dominant tree species on the plot, Importance Values (IV = 

relative basal area + relative abundance) were calculated (Table 4.1). The 30 species with 

the highest IV were then assigned to one of three growth form categories determined by 

the maximum height of adult trees: shrub (<5m), understory (!5m and <15m), or canopy 
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tree (!15m). Individuals from each species were further classified into three size classes 

representing three life stage categories: saplings (shrub 1.0-1.5cm dbh, understory 1.0-

2.5cm dbh, canopy 1.0-2.5cm); juveniles (shrub !1.5-2.5 dbh, understory !2.5-5.0cm 

dbh, canopy !2.5-7.5cm dbh); and adults (shrub !2.5cm dbh, understory !5.0cm dbh, 

canopy !7.5cm dbh). 

Microhabitat association tests using torus translation (Harms et al., 2001) were 

conducted for each species including all individuals, hereafter referred to as per-species, 

as well as subdividing each species into the three life stages for additional analysis. 

Taking into account spatial autocorrelation of plant distributions, the test compares the 

observed relative density of a species to the expected relative densities based on 400 

simulated plant distributions under a null model of random distribution.  The true habitat 

map is shifted by 20-m increments in four directions (north, south, east, west) to create 

the simulated maps. Microhabitat association is recorded as significantly positive or 

negative, if the observed relative density is greater or less than 97.5% of expected relative 

densities (p<0.05 in two-tailed test). Positive microhabitat associations represent higher 

occurrences of a species in the specific microhabitat tested whereas negative microhabitat 

associations represent significantly low numbers of trees in a microhabitat than expected 

by chance.  

Results 

Dominant tree species 

The 30 dominant species include 16 families and 22 genera (Table 4.1). Three 

genera are represented by > 1 species: Shorea (6 species), Litsea (3 species), and Aglaia 

(2 species), belonging to the Dipterocarpaceae, Lauraceae, and Meliaceae families, 
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respectively. The 30 species include 54.2% of the individuals in the plot and 77.03% of 

the total basal area (BA). The species with the lowest stem count is Shorea polysperma 

with only 256 individuals but it has the third highest basal area (35.37m
2 
BA). On the 

other hand, the most abundant species, Nephelium ramboutan-ake, has 14 times more 

stems than S. polysperma but includes smaller diameter trees with only about half the 

total basal area of S. polysperma (19.64m
2 
BA). The species with the smallest basal area 

is Aglaia edulis (0.596m
2 
BA) but is very abundant (1236 stems). Only three dominant 

species are shrubs, nine are understory species, and 18 are canopy species (Table 4.1).  

Microhabitat Associations: Per-species-microhabitat associations 

Significant microhabitat associations (p<0.05) were found in 27 of the 30 (90%) 

per-species analyses based on results from elevation, slope, and stream microhabitat torus 

translation tests, excluding N. ramboutan-ake, C. pentandrus, and C. blancoi, but only 24 

of 30 (80%) if only positive associations are included. For elevation alone, 21 species 

showed positive habitat associations, only two for slope alone, and 12 species for stream 

alone (Table 4.2). Positive and negative associations are reported and are both 

informative, but only positive associations are evaluated unless otherwise stated because 

negative associations identify habitats that are outside of a species’ niche.  

Microhabitat Associations: Life stage-microhabitat associations 

Based on the three life stages, all species (100%) at one or more life stages are 

significantly associated with at least one of the elevation, slope, or stream microhabitat 

categories (Table 4.3). A total of 105 (of 360) significant positive and negative 

associations were found between the three life stages of the 30 species and the four 

elevation microhabitats. In the stream microhabitats, there are 79 (of 180) significant 



!

"""!

associations with the two stream microhabitats, and 21 (of 360) microhabitat associations 

with four slope microhabitats (Table 4.3). There are equal numbers of positive or 

negative associations among the three life stages at each topographic feature tested. For 

example, with elevation, 36, 32, and 37 significant associations are found in the sapling, 

juvenile, and adult life stages, respectively (Table 4.3).  

Of the 23 species that are significantly positively associated with elevation, most 

are associated with a single elevation microhabitat category. Only four species, D. 

paniculatus, D. oppositifolium, D. validus, and S. negrosensis are consistently positively 

associated with one elevation habitat from saplings to adults. Seven species are found to 

be consistently positively associated with the same stream microhabitat in all three life 

stages, including the four species consistently associated with a single elevation 

microhabitat and S. palosapis, S. guiso, and F. congesta. Increasing strength of 

association with age is only recorded for S. contorta (stronger negative association of low 

elevation with age), H. reticulata (weaker negative association with age for the highest 

elevation habitat), and L. congesta (increasing abundance with age at the mid-lower 

elevations).  

Microhabitat Associations: Growth form and elevation microhabitat associations 

In the three growth forms, canopy species were most often associated with 

median to high elevations (12 of 18 species). Three understory species were found in low 

elevations and six species in high elevation while the shrub growth-form was positively 

associated with low elevations. 

Microhabitat Associations: Shared microhabitats 

Based on both per-species and life stage analyses, many species are associated 



!

""#!

with the same microhabitats (Table 4.2). In the four elevation microhabitats, at least 37% 

(11/30) of the species are found to be positively associated with the highest elevations (as 

well as negatively associated with the lower elevations). Seven species are positively 

associated with non-stream habitats and five species are positively associated with 

streams. There are only eight species positively associated with any slope habitat at any 

life stage and, not surprisingly, no two species are associated with the same slopes. 

Discussion 

 The forest structure of the Palanan MDF is largely represented by the 30 most 

important species chosen for this study. The 30 species with the highest IV include less 

than 10% of the total tree species diversity in the plot, yet comprise more than half the 

individuals and close to 80% of the total upright plant basal area in the plot. Focusing on 

only these species incorporates a majority of the stems contributing the most biomass for 

nutrient cycling (Saatchi et al., 2007), most of the large-diameter host trees for lianas 

(Homeier et al., 2010), and the trees that define the vertical forest strata influencing 

recruitment via light dynamics and detritus deposition (Shiels et al., 2010). In hurricane-

affected forests, canopy opening after a disturbance increases recruitment of seedlings 

and pioneer trees that are later replaced by non-pioneer trees, until the next hurricane 

restarts the process of succession (Shiels et al., 2010), Understanding environmental 

influences on canopy tree distributions, many species of which are included in this study, 

is thus particularly important for the Palanan plot because the Philippines is visited by 20 

tropical cyclones every year (PAGASA, 2002) 

 All of the species studied exhibited some preference with respect to slope, 

elevation, or stream proximity at one or more stages in their life cycle. When considering 
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only positive associations, either 80% (24 of 30) or 87% (26 of 30) of species are 

microhabitat specialists, based on analyses using all stems or grouping stems according to 

three life stages. The proportion of species in the PFDP plot with significant positive 

microhabitat associations, based on separate analyses of three topographic features, is 

similar to those previously found in Sri Lanka and China (Gunatilleke et al., 2006; Lai et 

al., 2009) but higher than the reported 64% in Barro Colorado Island (Harms et al., 2001) 

and 44% in a Bornean forest (Webb & Peart, 2000). In the other studies, microhabitats 

were defined by combining variables including some of the following: elevation, slope, 

convexity, aspect, and soil characteristics. Analyzing habitat associations at different life 

stages only adds few habitat-specific species to those recovered in per-species analyses 

but the former test gives additional insight into a potential mechanism for sharing a niche 

through time (see below) as well as the variability among species in habitat fidelity with 

age.  

The environmental feature that most effectively demonstrated niche differences 

among species is elevation, with only two species, N. ramboutan-ake and S. 

philippinensis, showing no significant association with any of the four elevation habitats 

in either the per-species or life stage analyses. Stream microhabitats also distinguish 

habitat preferences for 27 of 30 species, with the exception of N. ramboutan-ake, C. 

pentandrus, and C. blancoi. Slope, on the other hand, only reveals positive associations 

for eight species, and only at a single life stage. Previous studies have defined habitats 

using a combination of two to four topographic features including aspect, convexity, 

elevation, and slope (Comita et al., 2007; Harms et al., 2001; Lai et al., 2009) thus 

equally attributing to each feature any effect of habitat heterogeneity on species 
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distributions. Here, the effect of elevation, slope, and location of stream is analyzed 

separately showing the success of using elevation and stream to capture habitat 

specificity. In a study of 20 Lauraceae species (Sri-Ngernyuang et al., 2003), slope was 

also found to be less important than elevation in explaining species distributions, which 

the authors propose is related to distance from streams. Gunatilleke et al. (2006) suggests 

that mid-slopes are more prone to landslides, and therefore gap openings. Constant 

replacement of trees in gaps within inclined areas could account for the lack of non-

random distributions associated with slope among the 30 species studied, because any 

signal of slope preference by any species would be lost. The distribution of inclined 

microhabitats in the plot (Figure 4.1) is such that this scenario could be true. 

 For most species, habitat associations are not consistent across life stages, similar 

to the pattern found in Indonesia, Panama, and subtropical China (Comita et al., 2007; 

Lai et al., 2009; Webb & Peart, 2000). However, equal numbers of significant 

associations are found here for saplings, juveniles, and adults in all 30 species based on 

elevation, slope, and stream habitats, indicating that there are equal chances for the 30 

species to specialize in the attributes of a specific habitat during their life history. Only 

four species are associated with the same elevational level from saplings until the adult 

stage, and only seven species are associated with the same stream habitat proximity from 

saplings until the adult stage. All other species have variable habitat preferences across 

multiple life stages, likely due to changing ecological preferences resulting from changes 

in the plant’s physiological requirements during growth (Clark & Clark, 1992). 

Alternatively, negative density-dependent effects that regulate population densities 

during recruitment could have driven the observed pattern of change in habitat 
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preferences across life stages (Harms et al., 2000; Zhu et al., 2010).   

By dividing a species’ population into three life stages, we are able to evaluate the 

changing relationship between a species’ ontogenetic phases and it’s habitat 

requirements. More importantly, each life stage illustrates how species partition space 

through time. For instance, S. guiso saplings are usually found in the highest elevations. 

S. polysperma saplings, on the other hand, are randomly distributed in low and high 

elevations. As S. polysperma saplings are recruited into the next life stage, the saplings 

that were in the highest elevations successfully transition into juveniles, and finally into 

adults resulting in a positive habitat association of adult S. polysperma in the highest 

elevations. In contrast, S. guiso saplings in the high elevations grow into juveniles, but 

surviving juveniles from low elevations have a higher survivorship into the adult life 

stage. This results in a randomly distributed adult population of S. guiso. This 

demonstrates how species “time-share” niches. 

The varying patterns of species-habitat associations, including those of consistent 

microhabitat-specificity in all three life stages and “time-sharing”, demonstrate several 

ways that coexisting species respond to microhabitat heterogeneity, suggesting that niche 

partitioning is an important mechanism assisting species coexistence (Silvertown, 2004). 

Shrubs, understory, and canopy tree species are equally associated with habitats at 

the three life stages, contrary to expectations of adult canopy trees being more strongly 

associated with habitat than at younger life stages. The species with consistent habitat 

associations across the three life stages are all canopy species, three of which are most 

associated with the highest elevations located in ridges. The exception is D. paniculatus, 

which is more abundant at low elevations. Although not statistically supported, based on 
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per-species analyses, the major trends in habitat preference in the three growth forms are 

as follows: canopy species (12 of 18) are most often associated with ridge areas (high 

elevations), understory species are split between high abundance in low elevations (3 

species) and high elevations (6 species). Shrubs (all 3 species) are positively associated 

with low elevations.  This suggests a correlation between species growth-form and 

elevation, which may be associated with light availability as the demand for light 

increases with increasing tree height (Osunkoya et al., 2007; Poorter et al., 2003).  

When habitats are defined using a limited set of topographic features, it is to be 

expected that several species would share patterns of habitat associations, which does not 

strongly support the hypothesis of niche partitioning as a mechanism for species 

coexistence. A high proportion of canopy species preferentially inhabit high elevation 

habitats, and in particular, five of the seven dipterocarp species are positively associated 

with the highest elevations and two with no specific elevation level. Four Shorea and one 

Dipterocarpus species share the ridge habitats, including 7% of all stems and 33% of the 

total basal area, suggesting other factors in addition to elevation are important in 

partitioning habitats. Soil nutrients and soil moisture are good candidates for variables 

that would explain sympatry of the dipterocarp species in Palanan because soil factors 

have been shown to influence the distributions of Dryobalanops, Hopea, Shorea, and 

Swintonia species in Borneo (Palmiotto et al., 2004; Potts et al., 2002). In addition, light 

availability may be influential in delimiting niches of the 30 species studied, in accord 

with variable demand for light among eleven Macaranga species (Davies et al., 1998) 

and among eleven species of dipterocarps (Brearley et al., 2007). 

Species-specific habitat associations provide information on the characteristics of 
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the habitat where each species is most abundant. Reforestation programs can use this data 

to appropriately select a suitable habitat for a particular species and therefore, maximize 

the potential for survivorship of each seedling planted. In reforested areas, there must be 

constant monitoring to assess the status of the planted trees. However, additional data 

needs to be collected regarding soil nutrients, soil moisture, and light availability so that 

these may be adjusted accordingly to assist the growth of planted seedlings. Furthermore, 

research needs to be conducted on the phenology of each species to incorporate into the 

planting design the frequency of seedling establishment of a species. Some species may 

produce a cohort every year, while other species every ten years. Lastly, analysis of the 

different species occupying specific microhabitat types indicates that habitat 

heterogeneity promotes species coexistence and is therefore a vital component in 

designating areas for protection. 

Conclusion 

 Habitat heterogeneity defined by three topographic variables: elevation, stream, 

and slope, demonstrates that the 30 most dominant species in a mixed dipterocarp forest 

in the Paleotropics show habitat preferences. Habitat specificity for at least one 

environmental variable, in at least one of the three life stages is recorded here, yet this 

specificity is rarely consistent across life stages. By studying species-habitat preferences 

at three life stages, it is shown how species share the same niche but at different life 

stages. However, because many species share the same preference for a specific habitat, 

additional factors must be important in facilitating species coexistence, and can be 

fruitfully investigated. Experimental research, like transplant, reciprocal transplant or 

controlled greenhouse experiments on phylogenetically related species pairs or same 
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growth-form species, are necessary to test species-habitat associations to infer suitability 

of specific habitats defined by elevation, slope, proximity to streams, light, and soil 

nutrient availability.  
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Figure 4.1 Elevational map of the PFDP. 
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IV Stem Count BA Life form 

Species Family Code   SA JU AD Total (m
2
) Category 

Shorea negrosensis Dipterocarpaceae SHORNE 1 415 459 472 1346 110.28 canopy 

Shorea palosapis Dipterocarpaceae SHORPA 2 923 815 691 2429 95.17 canopy 

Nephelium ramboutan-ake Sapindaceae NEPHRA 3 1998 1011 639 3648 19.64 canopy 

Shorea contorta Dipterocarpaceae SHORCO 4 1364 518 332 2214 29.73 canopy 

Drypetes megacarpa Putranjivaceae DRYPME 5 743 553 821 2117 23.45 canopy 

Diplodiscus paniculatus Malvaceae DPLDPA 6 367 353 551 1271 27.44 canopy 

Shorea polysperma Dipterocarpaceae SHORPO 7 39 38 179 256 35.37 canopy 

Strombosia philippinensis Olacaceae STROPH 8 622 503 590 1715 15.62 canopy 

Dysoxylum oppositifolium Meliaceae DYSOOP 9 1295 681 193 2169 10.17 canopy 

Chisocheton pentandrus Meliaceae CHISPE 10 680 782 309 1771 6.77 canopy 

Haplosticanthus reticulata Annonaceae HAPLBB 11 1382 809 94 2286 1.39 understory 

Leea congesta Leeaceae LEEACG 12 539 1139 567 2245 0.97 shrub 

Dipterocarpus validus Dipterocarpaceae DIPTVA 13 404 403 274 1081 7.85 canopy 

Praravinia sablanensis Rubiaceae PRARSB 14 475 576 573 1624 0.72 shrub 

Leptonychia bahanensis Malvaceae LEPTBA 15 424 405 365 1194 2.70 understory 

Microcos stylocarpa Malvaceae GREWST 16 354 321 210 885 5.00 canopy 

Litsea fulva Lauraceae LITSFU 17 862 394 68 1324 0.94 understory 

Aglaia edulis Meliaceae AGLAED 18 549 478 209 1236 0.60 shrub 

Shorea philippinensis Dipterocarpaceae SHORPH 19 167 111 78 356 8.44 canopy 

Aglaia elliptica Meliaceae AGLAEL 20 550 220 115 885 3.43 understory 

Litsea garciae Lauraceae LITSGA 21 441 272 123 836 3.65 understory 

Litsea albayana Lauraceae LITSAL 22 609 350 149 1108 1.16 understory 

Table 4.1. Top 30 species listed in aphabetical order, ranked based on importance value. The species codes are indicated as well as  

the abundance, basal area, and growth form of each species. Stem count is listed for saplings (SA), Juveniles (JU), and adults (AD). 
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IV Stem Count BA Life form 

Species Family Code   SA JU AD Total (m
2
) Category 

Shorea guiso Dipterocarpaceae SHORGU 23 63 72 93 228 8.98 canopy 

Xanthophyllum excelsum Polygalaceae XPHLFL 24 246 138 247 631 5.06 understory 

Ficus congesta Moraceae FICUCO 25 522 183 147 852 2.21 understory 

Lepisanthes tetraphylla Sapindaceae LEPITE 26 595 276 100 971 0.87 understory 

Calophyllum blancoi Clusiaceae CALOBL 27 480 128 58 666 3.61 canopy 

Palaquium tenuipetiolatum Sapotaceae PALATP 28 162 185 75 422 4.66 canopy 

Dacryodes rostrata Burseraceae DACRRO 29 236 185 56 477 3.90 canopy 

Cynometra inaequifolia Fabaceae CYNOIN 30 155 149 119 423 4.33 canopy 

PROPORTION OF PLOT TOTAL           54.20% 77.03%   

PLOT TOTAL       71,419 576.555  

Table 4.1 continued… 
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    elevation stream Slope 

IV  CODE Low 

Mid-

Low 

Mid-

High High 

Non-

stream Stream Low 

Mid-

Low 

Mid-

High High 

1 SHORNE - ----   ++++ ++++ ----         

2 SHORPA -- -  ++ ++++ ---- +     

3 NEPHRA               

4 SHORCO ---   ++++  ----       

5 DRYPME ---- ----  ++++ ++++ ----       

6 DPLDPA ++++ ++++  ---- --- ++++       

7 SHORPO --   ++++ + ----       

8 STROPH ---  +++   + ---- ----     

9 DYSOOP ---- ----  ++++ ++++ ----       

10 CHISPE    +           

11 HAPLBB ++++  -- ---- ---- ++++       

12 LEEACG   ++++  ---- ---- ++++       

13 DIPTVA ----   ++++ ++++ ----       

14 PRARSB ++   ----   ----     

15 LEPTBA --- ---- ++++    -    ++++   

16 GREWST - ---- +++    ---       

17 LITSFU + ----        ++    

18 AGLAED +     --- -- ++++ -- +++     

Table 4.2. Habitat associations of the 30 dominant species in the PFDP. Codes correspond to Table 1. Elevation habitats: (1) <95.5m; 

(2) !95.5 & <97.75; (3) !97.75 & <105.01; (4) !105.01. Stream habitats: (1) Non-stream; (2) Stream. Slope habitats: (1) <11.96°; (2) 

!11.96° & < 16.94°; (3) ! 16.94° & <23.57°; (4)  !23.57°. Positive associations are denoted by (+) and negative by (-) corresponding 

to p values: p<0.1 (+/-); p<0.075 (++/--); p<0.05 (+++/---); p<0.025 (++++/----). 
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    elevation stream slope 

IV  CODE Low 

Mid-

Low 

Mid-

High High 

Non-

stream Stream Low 

Mid-

Low 

Mid-

High High 

19 SHORPH       ----      

20 AGLAEL --- --  +++         

21 LITSGA  ++++            

22 LITSAL ----  ++   ++++ ----      

23 SHORGU ---- ----  ++++ + ---- +     

24 XPHLFL ---- ---  ++++  ---      

25 FICUCO  +++  ---- ---- ++++      

26 LEPITE   ++++ ----  ---      

27 CALOBL              

28 PALATP --- ---  ++++  ---      

29 DACRRO --- ----  ++++ ++++ ---- ++     

30 CYNOIN -   ++++   ++ ----         
Table 4.2 continued… 
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    elevation stream slope total 

   Life stage + - + - + - + - = 

All species sapling 14 22 12 14 3 6 29 42 71 

  juvenile 14 18 10 14 2 2 26 34 60 

  adult 15 22 14 15 4 4 33 41 74 

TOTAL   43 62 36 43 9 12 88 117 205 

per-species   22 29 12 21 2 5 36 55 91 

sapling 8 13 8 10 2 4 18 27 45 

juvenile 9 11 6 8 1 1 16 20 36 

adult 9 15 8 10 2 2 19 27 46 

canopy          

(18 sp.)   

sub-total 26 39 22 28 5 7 53 74 127 

sapling 4 6 3 3 0 1 7 10 17 

juvenile 4 5 3 5 1 0 8 10 18 

adult 4 6 4 4 1 1 9 11 20 

understory      

(9 sp.) 

sub-total 12 17 10 12 2 2 24 31 55 

sapling 2 3 1 1 1 1 4 5 9 

juvenile 1 2 1 1 0 1 2 4 6 

adult 2 1 2 1 1 1 5 3 8 

shrub              

(3 sp.) 

sub-total 5 6 4 3 2 3 11 12 23 

TOTAL   43 62 36 43 9 12 88 117 205 

Table 4.3 Summary of positive (+) & negative (-) association counts for the three topographic features (elevation, stream, and slope) 

according to the three life stages (saplings, juveniles, adults), per-species, and growth form. 

 

 

 



!

"
#
$
!

 

    life elevation stream slope   
IV code stag

e 

Lo

w 

Mid-Low Mid-High High Non-Stream Stream Low Mid-

Low 

Mid-High High 

SA   ----   ++++ +++ ----         
JU   ----  ++++ ++++ ----      

1 SHORNE 

 
AD --- ----   ++++ +++ ----         
SA   ---     ++++ ----         
JU ---    ++++ ----      

2 SHORPA 

 
AD ---       ++++ ---- +++

+ 

    ---- 
SA   ---                 
JU              

3 NEPHRA 

 
AD                 ++++   
SA -     ++++   ----         
JU ---            

4 SHORCO 

 
AD ----                   
SA ---- ---     ++++ ----   +++ ---   
JU              

5 DRYPME 

 
AD ---- ----   ++++ ++++ ----         
SA   ++++   ----   ++++         
JU +++

+ 

++++ ---- ---- --- ++++      
6 DPLDPA 

 
AD +++

+ 

++++   ----   ++++         
SA                   ---- 
JU     ++++         

7 SHORPO 

 
AD ----     ++++ +++ ----         
SA   ---                 
JU              

8 STROPH 

 
AD ----       ++++ ----         

Appendix 4.1. Habitat associations of the saplings (SA), juveniles (JU), and adults (AD) of the 30 most important species in the plot. 

Codes correspond to Table 1. Elevation habitats: (1) <95.5m; (2) !95.5 & <97.75; (3) !97.75 & <105.01; (4) !105.01. Stream 

habitats: (1) Non-stream; (2) Stream habitats. Slope habitats: (1)<11.96°; (2)!11.96° & < 16.94°; (3)! 16.94° & <23.57°; (4)!23.57°. 

Positive and negative associations are denoted according to these p values:  p<0.05 (+++/---); p<0.025 (++++/----). 
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    life elevation stream slope 
IV code stage Low Mid-

Low 

Mid-High High Non-Stream Stream Low Mid-

Low 

Mid-High High 

SA --- ----   ++++ +++ ----        
JU --- ---  ++++ +++ ----     

9 

 

 

DYSOOP 

 
AD ---- ---   ++++ +++ ----        

SA                     
JU   +++         

10 

 

CHISPE 

 
AD   +++   ----             

SA ++++     ---- ---- ++++        
JU +++  ---- --   +++     

11 

 

 

 

 

 

HAPLBB 

 
AD       -   ++++        

SA   +   ---           --- 
JU  +++  --- ---- ++++     

12 

 

 

LEEACG 

 
AD   ++++   ---- ---- ++++         
SA ----     ++++ +++ ----        
JU ----   ++++ ++++ ----   +++  

13 

 

 

DIPTVA 

 
AD ----     ++++ ++++ ----        

SA     ++++ ----             
JU        ----    

14 

 

 

PRARSB 

 
AD +++         +++         
SA  ---          
JU ---      ---     

15 

 

 

LEPTBA 

 
AD ---- ---- ++++ +++   ---    ++++ ---- 
SA                     
JU  ----          

16 

 

 

GREWST 

 
AD     +++     ---         

SA   ----                
JU  ---          

17 

 

 

LITSFU 

 
AD           ----         

Appendix 4.1 continued… 
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    life elevation stream slope 
IV code stag

e 

Low Mid-

Low 

Mid-High High Non-Stream Stream Low Mid-

Low 

Mid-High High 

SA +++   ---- --- ++++  ++++    
JU    ---         

18 AGLAED AD             ---   +++   
SA              

JU       ---      
19 SHORPH AD              

SA                     

JU ----   ++++  ----      
20 AGLAEL AD                     

SA          ----    

JU  +++        +++    
21 LITSGA AD  ++++  ----  ++++      

SA ----   ++++   ++++ ----         

JU      ++++ ----      
22 LITSAL AD                     

SA  ----  ++++  ---      

JU  ----  ++++  ----   ----   
23 SHORGU AD ----      ---      

SA                     

JU    ++++         
24 XPHLFL AD ----     ++++ +++ ----         

SA  +++  ---- ---- ++++      
JU    ---- ---- ++++      

25 FICUCO AD       ---- ---- ++++         
Appendix 4.1 continued… 
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    life elevation stream slope 

IV code stag

e 
Low Mid-

Low 
Mid-High High Non-Stream Stream Low Mid-

Low 
Mid-High High 

SA   ++++ ---         
JU       ----      

26 LEPITE AD       ---             
SA            ---- 
JU              

27 CALOBL AD  ----            

SA   ---   ++++ +++ ----         

JU ----   +++         
28 PALATP AD             ---       

SA  ----  ++++ +++ ---- +++     

JU      ++++ ----      
29 DACRRO AD              

SA           ---       --- 
JU              

30 CYNOIN AD           ----         
Appendix 4.1 continued 
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Chapter 5 

 

Negative density dependence and dispersal limitation in dominant Philippine tree 

species 

 

Abstract 

 

 Spatial point pattern analysis is used to measure aggregation in 30 dominant tree 

species from the tropical Palanan Forest Dynamics Plot, Philippines. Aggregation is 

calculated at multiple spatial scales from 5m
2
 to 185m

2
 for each species at each of three 

life stages: saplings, juveniles, and adults. All species exhibit clustering with one 

exception (adult Dacryodes rostrata). Clustering commonly peaks at the scale of 45m
2
 

(42 of the 90 individual measures), occurring equally among the three life stages, and is 

the predominant scale of greatest clustering in the 15 most abundant species. Clustering 

at a smaller spatial scale (25m
2
) is more frequently exhibited in the 15 less-abundant 

species of the 30 dominants, particularly within the adult life stage. A second peak of 

clustering at the largest scale tested (185m
2
) in nine species indicates multi-scale effects 

of spatial processes driving species distributions. Two independent correlation tests show 

greater clustering of saplings than juveniles around adult trees in three species that is 

attributed to negative density-dependent effects. Moreover, ten species exhibit greater 

clustering of juveniles around adults, which indicates that saplings experienced negative 

density dependent effects while successful recruitment of juveniles is promoted with 

proximity to adult trees. Based on results, seed dispersal, negative density dependence, 

and species-habitat associations contribute to the spatial pattern in dominant tropical
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trees.

Introduction 

Species-rich communities in the tropics have fueled research into understanding 

the ecological processes facilitating species coexistence. Two contrasting hypotheses 

challenge ecologists: ‘niche partitioning’ and ‘neutral theory’ (Hutchinson, 1957; 

Hubbell, 2001; Leibold, 2008). The traditional explanation requires differences between 

species in their ecological requirements including details of resources, interspecific 

interactions, time, and space (i.e. their niche, Chesson, 2000). The alternative view posits 

that stochastic processes of dispersal and demography allow the coexistence of 

functionally equivalent species (i.e., species have identical niches, Hubbell 2001, 2006). 

Niche differentiation has been demonstrated in a variety of taxa, but does not fully 

explain the distribution and abundance for all species within a diverse tropical 

community (Harms et al., 2001; Silvertown, 2004; Valencia et al., 2004). Neutral 

models, although able to accurately predict patterns of relative abundance for some 

species (Hubbell, 2001; Volkov et al., 2003), also fail to support neutral theory when re-

evaluated due to model limitations (Chase 2005; McGill, 2003; McGill et al., 2006). 

Clearly, neither perspective alone satisfactorily explains the maintenance of complex 

species assemblages. As the two hypotheses are not mutually exclusive, both niche-based 

deterministic and neutral stochastic processes probably structure communities. Thus, 

current approaches used in analyzing tree community structure combine both 

perspectives (Leibold & McPeek, 2006; Stokes & Archer, 2010).  

Negative density-dependence is one of the important deterministic mechanisms 

that facilitate species coexistence (Wright, 2002). Distinguishing the relative importance 
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of negative density-dependence and other mechanisms that promote coexistence, such as 

habitat divergence (Ashton, 1969) and intermediate disturbance (Sheil & Burslem, 2003), 

is as much a challenge as identifying the mechanisms. Numerous studies have shown 

negative density-dependence effects on plant survival (Harms et al., 2000; Wyatt & 

Silman, 2004; Wills et al., 2006), such as increased pests and pathogens (Bell et al., 

2006; Ruiz et al., 2009), congruent with the Janzen-Connell hypothesis (Janzen, 1970; 

Connell, 1971). For this mechanism, the probability of survivorship of a seed is 

negatively correlated with the density of conspecific seeds in the neighborhood allowing 

seeds of other species to establish, thereby increasing species diversity (Harms et al., 

2000). 

A commonly used method for determining density-dependence is analyzing 

spatial patterns in species distributions and abundances (Wiegand et al., 2007b). Point 

pattern analysis provides characteristics of spatial patterns resulting from recruitment, 

and when combined with knowledge of species traits, can be used to infer what processes 

control the pattern observed (Wiegand et al., 2009; Webber et al., 2010). Repeated 

censuses provide data on the recruitment of several cohorts, directly measuring the 

effects of density on plant mortality (Wright, 2002; Wiegand et al., 2009), but multiple 

cohorts also can be represented by dividing a population into several groups using size as 

a proxy for age in the absence of long-term census data (Zhu et al., 2010).  

In this study, the spatial distribution of 30 dominant tree species from a tropical 

forest in the Paleotropics are evaluated. The objectives of the analyses are: (1) to 

investigate changes in spatial patterns among species at different spatial scales and, (2) to 

determine if recruitment is negatively density dependent. The roles of dispersal 
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limitation, species abundance, and dispersal mechanism in structuring species 

distributions are also discussed.  

 

Methods 

Study Site and Study Species 

 The spatial distribution of tree species was determined from a 2004 census of the 

16-hectare Palanan Forest Dynamics Plot (PFDP) in Palanan, Isabela, Philippines. The 

PFDP is part of a network of large-scale permanent plots coordinated by the Center for 

Tropical Forest Science and designed to study population-level processes that drive 

species diversity and distribution (Co et al., 2006). A uniform methodology is applied to 

all plots, where all stems with diameter > 1cm at breast height (DBH) are identified, 

tagged, measured, and mapped relative to their position within a 5m x 5m subquadrat and 

within the 16-ha plot. The Importance Value (IV= relative abundance + relative basal 

area) was calculated to determine the 30 dominant species. The population of each 

species was divided into three size classes representing three life stages: sapling (SA), 

juvenile (JU), and adult (AD), based on the maximum DBH reached at maturity and 

recorded DBH of reproductive plants from the literature (Table 5.1). 

Data Analyses 

The distribution at each size class per species was analyzed for patterns of 

clustering, randomness, or over-dispersion using a Multi-Distance Spatial Cluster 

Analysis based on the Ripley’s K function (Ripley, 1981) in ArcGis 9.0. Ripley’s K is 

used to determine the threshold distance from which to calculate the size of the area 

where spatial processes promoting the overall species distribution pattern is most 

pronounced. Ten distances in 20-meter increments from five meters to 185 meters were 
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included in this study. Clustering or dispersion is statistically significant if the 

observed K is greater than, or less than, the higher confidence envelope and lower 

confidence envelope, respectively (Figure 5.1). To calculate the confidence envelope, 99 

permutations were run for each distance increment (0.01 significance level).  

Individual points (representing a single plant) were combined in 5x5m gridcells, 

and a count of the number of stems per cell was completed for each of 6,400 gridcells 

within the 16-ha plot. Hot Spot Analysis was conducted using the gridcell counts, 

identifying local areas within the plot where a species was highly clustered (Figure 5.2). 

A corresponding Hot Spot Z score is assigned to each grid cell, where a statistically 

significant hotspot is a gridcell with a high stem count surrounded by other gridcells with 

high stem counts. Clustering is indicated by statistically significant Z scores that are 

!1.96 (0.05 significance level). The Hot Spot Analysis was conducted using the Zone of 

Indifference option, combining the threshold distance band determined in Ripley’s K and 

Inverse Distance. Inverse Distance reflects the decreasing influence of two individuals on 

each other the farther apart they are in space.  

Z scores were used to perform two independent correlation analyses. First, 

correlation was analyzed using Z scores between the clusters of saplings and adults, and 

between clusters of juveniles and adults. A second test calculated the correlation between 

Z scores representing clusters of saplings or clusters of juveniles with distance to the 

nearest conspecific adult (point-to-point distance in meters). The first test I will hereafter 

refer to as the CC test to represent the cluster to cluster relationship whereas the second, I 

will refer to as the CD test to indicate a cluster to distance relationship. For each species 
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in each test, 95% confidence intervals were calculated to determine significant 

differences between the correlation coefficients obtained.  

Results 

Ripley’s K 

Clustering of individuals was exhibited by all 30 species tested, ranging in scale 

from 25m
2
 to 185m

2
 (Table 5.2). All species formed clusters of trees in at least one 

spatial scale for each of the three size classes with one exception: adult Dacryodes 

rostrata did not show aggregation, rather, overdispersion was observed in all spatial 

scales but was least overdispersed at the scale of 25m
2
. No species, at any life stage, 

presented a random distribution.  

Clustering was strongest at the scale of 45m
2
 for majority of species (23 of 30 

species, 42 of 90 possible outcomes), and predominant among the 15 most abundant 

species (30 of 42 occurrences, Table 5.1 and 5.2, and Appendix 5.1). The 15 less 

abundant species showed greater variability in the scale of clustering patterns and a 

higher frequency of clustering at 25m
2
 (14 here vs. 3 in the 15 abundant species). In nine 

species, aggregation intensity is seen to increase again following the first peak in 

clustering patterns, until finally at 185m
2
, values of K are at its highest (Table 5.2, 

Appendix 5.1).  

The highest degree of aggregation (K= 44.1) at any spatial scale was recorded in 

the saplings of Shorea guiso, followed by S. polysperma, S. philippinensis, P. 

tenuipetiolatum, S. negrosensis, F. congesta, and S. contorta. Incidences of intense 

aggregation mostly correspond with species of low abundance (Table 5.1 and Appendix 
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5.1). Aggregation patterns among different size classes at the same spatial scale show no 

overall trend of increasing or decreasing aggregation with age.  

Correlation Analysis 

 In the CC test, 13 species have clusters of juveniles that are more strongly 

correlated with clusters of adults than are the sapling clusters (Table 5.3). Conversely, 

five species show greater correlation between adult and sapling clusters than adult and 

juvenile clusters. In one species, Lepisanthes tetraphylla, sapling and juvenile clusters are 

equally correlated with adult clusters. Results of the CD test indicate that 12 species 

include juveniles that are more negatively correlated with distance to the nearest adult. In 

other words, clustering of juveniles increases with decreasing distance to a conspecific 

adult for those 12 species. Three species, on the other hand, have saplings increasing in 

clustering the closer to a conspecific adult. 

Only in 13 of the 30 species are the same relationships reported from both 

correlation analyses. Of these, ten species have stronger juvenile-adult clustering and 

three species have more saplings the closer to a conspecific adult.  

Discussion 

Analysis of the spatial patterns in different life-stages of the dominant tree species 

in Palanan gives insight into the processes responsible for the distribution and abundance 

of species within a tropical forest habitat. In earlier spatial analysis studies, little could be 

inferred from the characteristics of clustering or dispersion patterns because tests were 

performed at a single scale or as a static observation of the entire population (Condit et 

al., 2000; Siedler & Plotkin, 2006). Here, several spatial scales are incorporated and 
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tested for patterns of aggregation at three life stages: saplings, juveniles, and adults 

(Wiegand et al., 2007b; Zhu et al., 2010).  

Clumped distributions are common among tropical forest tree species (Condit et 

al., 2000) and this was evident in all 30 species included in the study. Aggregated 

distributions reflect seed dispersal limitation resulting in clustered recruits from seeds 

dispersed in clumps, typically deposited by animal vectors (Russo & Augspurger, 2004). 

Also, in many tree species, the majority of seeds fall beneath the canopy of the parent 

tree, with a small number of seeds experiencing long distance dispersal (Clark et al., 

2005). In some cases, seeds are first dispersed by gravity and undergo secondary 

dispersal by rodents that cache seeds (deAlmeida et al., 2006).  

Among the 30 species in this study, clustering is highest at scales ranging from 

25m
2
 to 185m

2
, illustrating differences among and within species in effective dispersal 

distances and responses to processes with a spatial component. Wind dispersed seeds 

travel shorter distances relative to animal-dispersed seeds (Condit et al., 2000) and this is 

expected to result in greater clustering of wind-dispersed species than animal-dispersed at 

the same spatial scale. Among the Palanan dominant species, seven dipterocarp species 

employ wind to disperse winged seeds, and are shown to have more intense clustering 

patterns than all other species in the plot that are animal dispersed (Appendix 5.1). For 

example, at 45m, Chisocheton pentandrus saplings with seeds dispersed by birds (Velho, 

et al., 2009), has K=1.1 in Ripley’s index whereas, S. negrosensis saplings have a 

K=21.5. 

Still, species with the same dispersal mechanism have different aggregation 

patterns. Shorea polysperma saplings cluster within 25 m
2
, while S. contorta juveniles are 
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most intensely aggregated within 105 m
2
, but the estimated distance traveled by at least 

90% of bird-, monkey-, and wind- dispersed seeds is <60 m (Clark et al., 2005). The 

small proportion of seeds that undergo long distance dispersal (>60m) could potentially 

be important in developing large cluster sizes in dipterocarps. Furthermore, contrasting 

growth strategies in dipterocarp species from Malaysia showed high-growth and high-

mortality species aggregating at smaller distances (<100m) in small trees, whereas slow-

growth and low-mortality species formed larger clusters (>200m; Suzuki et al., 2009).  

The dipterocarp species in the Palanan plot may be differentiated like the Malaysian 

species hence the greatest clustering at small (25m
2
) and large (105m

2
) spatial scales. 

Further investigation into the dipterocarp species in the Palanan plot is warranted to 

confirm physiological divergence as a mechanism for increasing species coexistence 

(Ashton, 1969). 

Clustering most commonly peaks at 45 m
2
, occurring equally among the three 

size classes, but predominantly in the 15 most abundant species. On the other hand, 

clustering at a smaller scale, 25 m
2
, is more frequently observed in the 15 less abundant 

species. Greater aggregation in rarer species was also documented among the 1768 

species analyzed in Condit et al. (2000). In addition, the most intense aggregation 

recorded at any spatial scale for any of the 30 species occurred in saplings of a 

dipterocarp species, S. guiso. This result was also expected based on previous findings of 

greater aggregation in dipterocarps than non-dipterocarps (Condit et al., 2000). All 

dipterocarp species follow this pattern of very intense clustering of individuals, including 

both most and least abundant species among the species studied (S. guiso, ranked 30
th

 in 

relative abundance, S. polysperma, ranked 29
th

, S. palosapis, ranked second most 
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abundant species in the plot). The aggregation observed in dipterocarps is likely driven 

by habitat specificity, as it has been shown that most of these large canopy trees 

proliferate in high elevation ridge habitats (Figure 5.2; Yap, Chapter 4). This result 

contradicts the claim of Plotkin, et al. (2000) that dispersal and gap recruitment are more 

important to the 817 species in Pasoh, Malaysia than habitat specialization with respect to 

topography. 

A second peak in clustering for some species is reminiscent of the results of 

Weigand et al. (2009) showing multi-scale complex clustering, which the authors 

attribute to two methods of dispersal. For the species in the Palanan study manifesting 

this pattern, it is difficult to acknowledge the two-dispersal method scenario, as it does 

not appropriately fit all the species with this pattern. For example, S. contorta has winged 

seeds, which are dispersed by wind with no known secondary dispersal agent (Osada et 

al., 2001). Also, in Leea, dispersal of the small <20mm seeds by ground-welling 

secondary dispersers would certainly not add 140m (from first peak at 45m
2
 to second 

peak at !185m
2
) to the total dispersal distance. Inferring from known habitat association 

in Leea congesta with mid-low elevation habitats that are mostly distributed alongside the 

main ridge bisecting the plot (Figure 5.2), large scale effects from topography and habitat 

heterogeneity are responsible for complex spatial patterns.  

Analyzing and comparing the spatial patterns between cohorts relative to the 

aggregation pattern of adults (CC test) and proximity to adult trees (CD test), shows the 

recruitment of three species to be potentially controlled by negative density dependence. 

D. validus, D. paniculatus, and S. philippinensis saplings cluster near adult trees 

(potential parents) whereas the cohort of juveniles are less associated with adults (Table 
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5.3).  Negative density dependence affects populations by decreasing the density of 

individuals in a cohort in a given area near a parent tree (Janzen, 1970; Connell, 1971). 

As a consequence, the affected cohort will be less aggregated, as is demonstrated by the 

juveniles.  

In contrast, ten species exhibited more intense clustering of juveniles around 

adults than saplings. This pattern points to dispersal not strongly limiting species 

distribution. It also suggests that at an earlier life stage, seedlings were subjected to 

negative density dependent effects resulting in a weak correlation between clusters of 

saplings and adults (Queensborough et al., 2007). Finally, this positive correlation 

between clusters of juveniles and adults shows that juveniles are recruiting in areas that 

are close to established adult trees. Adult trees are likely collecting in habitats that are 

most suitable for the longevity of the species and mortality of juvenile individuals is 

lower in or near these habitats. 

In conclusion, this study finds aggregation in all species at multiple spatial scales. 

Aggregation intensity is decreased by species abundance and long-distance dispersal 

mechanisms. Recruitment is shown in some species to be due primarily to negative 

density dependence and in other species in combination with habitat preference. In order 

to fully understand these processes and how they generate the observed spatial patterns, 

field experiments directly testing the effects of density on mortality or multi-year 

censuses should be conducted.  

The approach taken in this study to describe distribution patterns in relation to the 

abundance of saplings or juveniles near adult trees assesses not only the suitable habitat 

conditions for each life stage of each species but also the roles of seed dispersal and 
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negative density dependence that result in the distribution of adult trees. Aggregation in 

tropical trees is tempered by differential survival due to negative density dependent 

effects. Having prior knowledge of the distribution of a species at different life stages can 

guide conservationists to selectively collect seeds and seedlings from forest sources 

without undue effects on the plant population. Moreover, identity of neighboring species 

can be taken into account to minimize mortality in addition to proper site selection based 

on environmental factors, to boost the project’s potential success rate while effectively 

applying limited resources. 
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Table 5.1. Top 30 dominant species in the PFDP, ranked according to I.V. with 

corresponding number of stems in each sapling (SA), juvenile (JU), and adult (AD) size 

class, and maximum stem diameter. 

 

 

 

 Stem Count 

Max 

DBH 

Species Code IV Total SA JU AD (cm
2
) 

Shorea negrosensis SHORNE 1 1346 721 418 207 190 

Shorea palosapis SHORPA 2 2429 1522 609 296 122 

Nephelium ramboutan-ake NEPHRA 3 3648 1998 1011 639 46.6 

Shorea contorta SHORCO 4 2214 1767 346 101 120 

Drypetes megacarpa DRYPME 5 2117 743 679 695 45.3 

Diplodiscus paniculatus DPLDPA 6 1271 367 654 250 70.4 

Shorea polysperma SHORPO 7 256 66 99 91 145 

Strombosia philippinensis STROPH 8 1715 622 614 479 61.8 

Dysoxylum oppositifolium DYSOOP 9 2169 1295 714 160 76.4 

Chisocheton pentandrus CHISPE 10 1771 680 873 218 38 

Haplosticanthus reticulata HAPLBB 11 2286 1383 809 94 9.6 

Leea congesta LEEACG 12 2245 483 943 819 6.1 

Dipterocarpus validus DIPTVA 13 1081 697 317 67 56.2 

Praravinia sablanensis PRARSB 14 1624 553 616 455 21 

Leptonychia bahanensis LEPTBA 15 1194 424 405 365 49 

Microcos stylocarpa GREWST 16 885 354 377 154 39.5 

Litsea fulva LITSFU 17 1324 862 394 68 20.6 

Aglaia edulis AGLAED 18 1236 549 478 209 25.5 

Shorea philippinensis SHORPH 19 356 248 80 28 74.5 

Aglaia elliptica AGLAEL 20 885 550 220 115 58.6 

Litsea garciae LITSGA 21 836 441 272 123 62.4 

Litsea albayana LITSAL 22 1108 609 350 149 17.6 

Shorea guiso SHORGU 23 228 115 85 28 126 

Xanthophyllum excelsum XPHLFL 24 631 246 246 139 37.5 

Ficus congesta FICUCO 25 852 522 183 147 33.2 

Lepisanthes tetraphylla LEPITE 26 971 595 276 100 15.6 

Calophyllum blancoi CALOBL 27 666 480 134 52 64 

Palaquium tenuipetiolatum PALATP 28 422 300 67 55 124 

Dacryodes rostrata DACRRO 29 477 378 63 36 88 

Cynometra inaequifolia CYNOIN 30 423 270 57 96 68.5 
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Figure 5.1.a. Ripley’s K graph of Shorea negrosensis saplings. Clustering occurs 

from 5m to 145m, peaking at 45m. Confidence Envelopes are at 0.01  

significance level. 

 

 
 

Figure 5.1.a. Ripley’s K graph of Shorea guiso saplings. Clustering occurs from 

5m to 145m, peaking at 45m. Confidence Envelopes are at  0.01 significance  

level. 
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Figure 5.2. Hotspot maps showing areas with high densities of individuals (in red) and 

areas with fewer individuals than expected from random chance (in blue). a-c, Shorea 

negrosensis saplings (a), juveniles (b), and adults (c); d, elevation map showing gradient 

in elevation from red to pale yellow (low to high elevation). 
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      Ripley's K Distance (m) 

Family Species IV Saplings Juveniles Adults 

Dipterocarpaceae Shorea negrosensis 1 45 45 45 

Dipterocarpaceae Shorea palosapis 2 45 45 25 

Sapindaceae Nephelium ramboutan-ake 3 45
a
 45 45 

Dipterocarpaceae Shorea contorta 4 85 105
a
 45 

Putranjivaceae Drypetes megacarpa 5 45 45 45 

Malvaceae Diplodiscus paniculatus 6 45 65 45 

Dipterocarpaceae Shorea polysperma 7 25 65 85 

Olacaceae Strombosia philippinensis 8 45 45
a
 45

a
 

Meliaceae Dysoxylum oppositifolium 9 45 45 65 

Meliaceae Chisocheton pentandrus 10 65 45 45 

Annonaceae Haplosticanthus reticulata 11 45 65 45 

Leeaceae Leea congesta 12 85
a
 45

a
 45 

Dipterocarpaceae Dipterocarpus validus 13 45 45 45 

Rubiaceae Praravinia sablanensis 14 25 45 45 

Malvaceae Leptonychia bahanensis 15 85 65 65 

Malvaceae Microcos stylocarpa 16 25 45 25 

Lauraceae Litsea fulva 17 65 85 25 

Meliaceae Aglaia edulis 18 65 45
a
 65 

Dipterocarpaceae Shorea philippinensis 19 25 45 65 

Meliaceae Aglaia elliptica 20 45 65 25
a
 

Lauraceae Litsea garciae 21 125 185 25 

Lauraceae Litsea albayana 22 45
a
 25 25 

Dipterocarpaceae Shorea guiso 23 45 85 25 

Polygalaceae Xanthophyllum excelsum 24 25 45 65 

Moraceae Ficus congesta 25 85 105 105 

Sapindaceae Lepisanthes tetraphylla 26 85 65 25 

Clusiaceae Calophyllum blancoi 27 45 25 25 

Sapotaceae Palaquium tenuipetiolatum 28 65 85 45 

Burseraceae Dacryodes rostrata 29 85 65 25 

Fabaceae Cynometra inaequifolia 30 45
a
 45 45 

Table 5.2. Varying spatial scales where clustering is exhibited in saplings, juveniles, 

and adult life stages for each of the 30 dominant tree species in the PFDP. 
a
 Second peak in clustering patterns at a larger scale than tested in the study (>185m). 
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Correlation Coefficients 

Family CODE IV 

Sapling-

Adult 

Clustering 

Juvenile-

Adult 

Clustering 

Sapling-

Distance 

to Adult 

Juvenile-

Distance 

to Adult 

Annonaceae HAPLBB 11 0.467* 0.555 -0.318* -0.363 

Burseraceae DACRRO 29 -0.007 0.025 -0.056 -0.040 

Clusiaceae CALOBL 27 -0.127* 0.085 0.220* 0.026 

Dipterocarpaceae DIPTVA 13 0.355* 0.306 -0.289* -0.168 

Dipterocarpaceae SHORCO 4 0.262 0.274 -0.203 -0.185 

Dipterocarpaceae SHORGU 23 0.234 0.201 -0.357 -0.360 

Dipterocarpaceae SHORNE 1 0.745* 0.791 -0.600* -0.630 

Dipterocarpaceae SHORPA 2 0.347 0.339 -0.288 -0.316 

Dipterocarpaceae SHORPH 19 0.295* -0.112 -0.290* 0.122 

Dipterocarpaceae SHORPO 7 0.419* 0.712 -0.336* -0.532 

Fabaceae CYNOIN 30 0.209 0.188 -0.188 -0.134 

Lauraceae LITSAL 22 0.240* 0.513 -0.289* -0.382 

Lauraceae LITSFU 17 0.350* 0.431 -0.293* -0.474 

Lauraceae LITSGA 21 0.197 0.207 -0.249* -0.329 

Leeaceae LEEACG 12 0.557 0.366 -0.224 -0.262 

Malvaceae DPLDPA 6 0.707* 0.609 -0.505* -0.443 

Malvaceae LEPTBA 15 0.750* 0.893 -0.385 -0.407 

Malvaceae GREWST 16 0.134 0.166 -0.095* -0.152 

Meliaceae AGLAED 18 0.779 0.529 -0.263 -0.287 

Meliaceae AGLAEL 20 0.078* 0.216 0.033* -0.007 

Meliaceae CHISPE 10 0.361* 0.232 -0.150 -0.115 

Meliaceae DYSOOP 9 0.652* 0.678 -0.373 -0.398 

Moraceae FICUCO 25 0.815 0.858 -0.374 -0.258 

Olacaceae STROPH 8 -0.029* 0.382 0.001* -0.169 

Polygalaceae XPHLFL 24 0.385* 0.666 -0.329* -0.406 

Putranjivaceae DRYPME 5 0.486 0.497 -0.294 -0.335 

Rubiaceae PRARSB 14 0.404* 0.558 -0.176* -0.301 

Sapindaceae LEPITE 26 0.290 0.290 -0.402 -0.315 

Sapindaceae NEPHRA 3 0.410* 0.556 -0.243 -0.269 

Sapotaceae PALATP 28 0.356* 0.286 -0.195 -0.165 

Table 5.3. Correlation coefficients of 30 dominant tree species in Palanan, Philippines. 

Correlations include: between clusters of saplings and adults; clusters of juveniles and 

adults; saplings with distance to the nearest adult; and juveniles with distance to the 

nearest adult.  

* denotes significantly different values of sapling-adult clustering from juvenile-adult 
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  Ripley's K 

Species IV   5 25 45 65 85 105 125 145 165 185 

AGLAED 18 SA -0.6 0.9 2.2 2.3 2.0 1.6 1.1 0.8 0.3 0.3 

 18 JU -0.5 0.3 1.0 0.8 0.5 -0.2 0.0 0.3 1.4 2.1 

 18 AD 0.6 4.0 5.0 6.0 4.7 3.5 2.8 0.4 -3.2 -4.3 

AGLAEL 20 SA 0.1 4.2 6.7 6.7 6.5 5.5 4.0 2.9 1.9 1.0 

 20 JU -0.1 3.9 5.7 6.2 4.6 2.9 1.4 -0.8 -3.4 -6.2 

 20 AD -5.0 0.4 -1.4 0.0 0.3 -0.5 -0.5 1.0 4.0 5.7 

CALOBL 27 SA -0.3 -0.2 0.9 0.5 -0.1 -0.8 -0.9 -0.7 -0.8 -1.9 

 27 JU -0.5 2.8 2.7 0.6 0.0 0.2 1.8 2.8 2.6 2.9 

 27 AD 3.0 12.8 10.7 8.7 7.4 5.7 3.1 2.6 -1.0 -1.6 

CHISPE 10 SA -0.3 1.1 2.4 2.5 2.1 0.7 -0.6 -1.4 -1.7 -1.6 

 10 JU -0.3 0.5 1.1 0.7 0.2 -0.4 -0.8 -1.1 -1.2 -1.4 

 10 AD 1.5 5.3 5.6 5.2 3.8 2.3 1.7 -0.8 -3.6 -6.0 

CYNOIN 30 SA -0.1 0.6 0.9 -0.2 -0.3 -0.3 0.2 0.9 2.1 3.2 

 30 JU -5.0 2.4 3.6 2.6 -1.0 -1.6 -3.4 0.7 -4.1 -2.8 

 30 AD -0.5 2.8 3.1 0.9 -0.9 -4.0 -5.7 -3.6 -2.3 -1.6 

DACRRO 29 SA 0.3 2.8 4.5 5.7 6.0 5.4 4.3 3.3 2.4 1.5 

 29 JU -0.1 2.2 4.7 10.0 8.3 9.1 10.8 9.3 8.5 7.7 

 29 AD -5.0 -1.3 -7.2 -5.4 -8.7 -9.0 -9.9 -7.3 -9.1 -6.7 

DPLDPA 6 SA 2.7 9.8 11.3 10.2 10.5 8.5 6.1 3.9 2.3 -0.4 

 6 JU 0.6 9.7 13.9 14.2 12.9 10.4 7.8 4.3 1.3 -0.7 

 6 AD 1.7 9.6 10.9 7.6 5.0 4.3 3.7 1.1 0.0 -1.2 

DIPTVA 13 SA 0.9 9.8 11.1 8.1 4.3 0.4 -1.3 -1.0 -0.9 -1.1 

 13 JU -0.6 4.7 6.1 4.7 3.4 2.8 2.1 1.4 1.6 2.1 

 13 AD 1.3 5.4 10.9 7.4 7.7 5.0 4.0 3.6 -0.7 -1.0 

DRYPME 5 SA 0.3 1.1 2.4 2.1 1.2 1.1 0.8 -0.5 -1.8 -2.9 

 5 JU 0.0 1.6 2.5 2.1 1.8 0.5 0.0 -0.7 -1.3 -1.6 

 5 AD -0.7 3.0 4.5 4.1 3.3 2.3 2.0 2.1 2.2 2.9 

DYSOOP 9 SA 1.0 11.5 15.5 13.9 10.9 8.3 6.8 5.0 3.2 2.0 

 9 JU 1.1 9.7 13.5 12.1 8.7 6.1 4.0 0.5 -2.8 -5.4 

 9 AD 0.1 4.4 8.1 8.4 7.0 4.1 2.7 0.9 0.1 -0.8 

FICUCO 25 SA 1.2 8.0 9.2 9.5 10.7 10.5 9.8 8.4 8.2 8.2 

 25 JU 1.2 7.9 10.8 11.4 12.3 12.8 10.4 7.1 5.3 4.8 

 25 AD 4.7 14.3 18.7 18.9 19.1 19.6 18.8 18.6 17.9 14.5 

HAPLBB 11 SA -0.8 1.2 2.3 2.3 2.1 1.5 0.5 -0.6 -2.0 -3.5 

 11 JU -0.8 0.5 1.5 2.1 1.4 0.8 -0.2 -1.7 -2.9 -4.4 

 11 AD -0.4 3.6 4.2 3.9 2.0 2.1 0.6 -2.9 -3.4 -6.3 

LEEACG 12 SA -0.2 4.2 6.3 6.9 7.4 7.0 6.9 6.7 6.3 7.0 

 12 JU -0.3 4.1 5.6 5.5 5.4 5.0 4.8 5.8 7.3 8.4 

 12 AD 0.8 5.3 6.7 6.7 6.2 5.1 4.3 3.7 2.5 1.3 

Appendix 5.1 Ripley's K values for all 30 species including sapling (SA), juvenile 

(JU), and adult (AD) size classes.  
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  Ripley's K 

Species IV   5 25 45 65 85 105 125 145 165 185 

LEPITE 26 SA 1.3 2.6 2.9 3.3 4.2 4.1 3.4 3.7 3.6 3.2 

 26 JU 0.1 3.5 4.4 4.6 4.1 5.0 4.1 3.8 3.4 4.5 

 26 AD 2.8 4.9 2.6 1.4 1.4 0.9 2.1 0.4 -0.6 -2.6 

LEPTBA 15 SA 0.1 4.0 5.2 6.5 7.1 6.7 4.3 1.5 -0.9 -3.2 

 15 JU 1.2 7.8 9.8 10.1 9.3 8.5 6.4 3.1 -0.9 -3.1 

 15 AD 0.6 7.0 9.4 10.4 9.8 7.8 5.1 2.1 -0.7 -2.1 

LITSAL 22 SA -0.4 2.6 3.9 3.5 3.0 2.6 2.8 2.9 3.8 5.6 

 22 JU 1.9 4.3 3.7 2.0 0.5 0.4 2.0 2.5 2.9 3.2 

 22 AD 2.5 5.8 4.8 2.1 2.4 1.1 2.1 1.9 -0.7 -3.2 

LITSFU 17 SA -0.3 1.2 2.0 2.1 2.1 1.6 0.9 0.7 0.7 0.7 

 17 JU 0.7 2.9 3.8 4.7 5.5 5.0 4.9 5.0 4.4 4.1 

 17 AD 5.8 9.5 7.6 5.6 6.6 8.9 9.9 6.6 5.1 4.3 

LITSGA 21 SA -0.6 2.8 4.5 4.9 5.6 6.1 6.5 6.0 5.0 3.9 

 21 JU -0.1 2.6 3.0 3.1 3.6 4.4 5.6 5.9 6.6 7.2 

 21 AD 0.6 5.4 4.6 2.8 4.2 4.1 2.2 0.9 3.1 3.6 

GREWST 16 SA 0.6 2.9 2.3 2.0 0.6 0.0 -0.3 0.1 0.4 1.1 

 16 JU -0.9 0.5 1.2 0.8 0.5 -0.4 -0.3 -0.7 -1.1 -1.2 

 16 AD -0.6 4.3 3.3 1.4 0.2 0.1 0.0 0.0 0.0 -0.2 

NEPHRA 3 SA -0.1 2.1 2.3 2.0 1.8 2.1 2.2 2.2 2.5 2.8 

 3 JU -0.5 1.0 1.4 0.9 0.7 0.6 0.9 1.1 1.8 2.5 

 3 AD -0.5 2.0 2.4 1.2 0.2 0.2 0.8 1.6 1.8 1.4 

PALATP 28 SA -0.6 5.7 10.2 12.4 11.9 11.5 10.0 8.6 8.0 7.6 

 28 JU 3.0 10.1 14.9 18.9 21.8 21.4 19.7 16.6 16.2 17.9 

 28 AD 0.5 1.6 2.0 0.3 -0.4 -3.7 -6.7 -5.1 -5.8 -1.6 

PRARSB 14 SA -0.6 1.5 1.5 0.5 0.1 -0.3 -0.7 -0.5 -0.3 0.0 

 14 JU -0.6 -0.2 1.2 0.7 0.3 -0.1 -1.0 -1.8 -2.2 -2.8 

 14 AD -0.8 2.5 3.3 2.3 1.9 1.4 0.3 -1.6 -3.9 -5.8 

SHORCO 4 SA 2.0 12.2 16.4 17.5 18.3 17.7 16.5 15.5 13.5 11.2 

 4 JU 0.2 4.7 4.8 5.8 5.9 6.8 6.6 6.2 7.4 8.1 

 4 AD 0.3 10.1 15.7 13.6 9.9 5.0 -1.2 -5.2 -7.6 -9.0 

SHORGU 23 SA 6.1 36.9 44.1 40.0 29.2 17.5 13.6 6.7 1.4 -2.6 

 23 JU 1.3 17.3 30.0 33.9 35.2 31.0 29.6 27.1 25.8 26.3 

 23 AD -5.0 11.7 11.7 6.8 7.4 -0.9 -8.3 -4.4 -3.9 -5.7 

SHORNE 1 SA 3.7 18.6 21.5 19.1 15.1 11.7 8.6 4.0 -2.0 -6.8 

 1 JU 2.7 13.9 15.3 13.2 9.5 7.2 4.8 2.3 -0.3 -1.3 

 1 AD 1.4 12.4 18.0 17.1 14.8 9.9 2.9 -2.0 -5.0 -5.2 

SHORPA 2 SA 1.6 9.7 11.5 10.9 10.9 10.7 10.8 11.1 10.3 8.9 

 2 JU 0.1 3.1 4.6 4.3 3.4 2.8 2.5 2.4 3.2 3.8 

 2 AD -0.7 3.0 2.2 0.9 0.2 -0.1 -0.4 -1.6 -1.6 -1.5 

Appendix 5.1 continued…. 
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  Ripley's K 

Species IV   5 25 45 65 85 105 125 145 165 185 

SHORPH 19 SA 5.8 21.4 18.2 14.6 16.6 15.4 14.5 9.8 5.3 2.4 

 19 JU 2.7 6.6 7.6 6.7 3.8 4.1 5.7 3.4 4.7 5.4 

 19 AD 12.9 23.5 24.4 28.0 26.1 22.5 15.5 2.4 -4.8 -11.9 

SHORPO 7 SA 4.4 33.1 29.4 24.2 20.1 14.3 10.1 3.3 -2.7 -11.6 

 7 JU 3.2 14.0 16.5 17.6 15.8 10.8 4.9 4.4 0.8 -2.1 

 7 AD -0.2 7.9 11.0 11.1 12.4 9.7 7.7 5.1 4.9 3.7 

STROPH 8 SA -0.6 2.6 3.3 2.6 2.8 2.7 3.2 2.6 2.2 1.5 

 8 JU -0.1 2.0 2.1 1.0 0.5 -0.1 0.2 0.8 1.8 2.2 

 8 AD -0.4 2.1 2.7 2.1 1.4 1.4 2.2 3.4 4.7 5.2 

XPHLFL 24 SA -0.5 5.6 4.0 3.6 3.0 0.3 -1.3 -2.3 -4.1 -5.2 

 24 JU -1.5 4.2 7.4 6.4 4.8 2.1 -0.1 -0.5 -0.4 -0.8 

  24 AD 0.5 8.6 9.5 9.8 8.1 5.3 3.5 2.8 1.7 0.0 

Appendix 5.1 continued….. 
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