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CHAPTER I 

 

Introduction 

 

 One challenge in systems biology is integrating different biological data types to 

more accurately describe how a biological system functions. Most biological data types 

fall under one of the “-omics” classification such as genomics (DNA sequence, genome 

mapping, etc.), proteomics (protein structure and functions), transcriptomics (expression 

data, set of RNA’s including mRNA’s) and metabolomics (study of metabolites as a 

result of cellular processes). In this work I will show how gene expression data 

(transcriptomics) can be merged with gene transcriptional regulation networks (genomics 

and proteomics). By merging these data types, I demonstrate that I can identify which 

regulator-gene associations better explain the patterns of gene expression under different 

conditions and disease states. 

 

I.1 Gene Expression Data 

 One of the most information rich and easily obtainable pieces of information 

about the state of the cell is a measure of its gene expression values. Gene expression is 

the process by which the information contained in genes is transcribed into an RNA 



	   	   2	  

molecule (mRNA, tRNA, or rRNA) and eventually translated into a functional product, 

which in the case of mRNA is a protein. Knowing the level at which a specific gene is 

expressed in a particular cellular event provides information about which genes are 

involved in such event.  For example, measuring the expression level of an oncogene in a 

tissue sample may indicate the presence of active cellular growth associated with a tumor.  

 A practical way to measure the expression of a gene is by detecting mRNA levels. 

Ideally the final product (a protein) is detected for the estimation of the gene expression 

too but this latest detection is more complicated due to other biological events that might 

affect the final active form of proteins. Northern blotting and reverse transcription 

quantitative polymerase chain reaction methods (RT-PCR and qPCR) are widely used 

methods to quantitatively measure mRNA levels [1, 2]. However, these methods can be 

time consuming, expensive and impractical when studying many genes in a sample. 

 A more cost effective way of measuring gene expression is to use microarray 

technology. Gene expression measurements using microarray technology allow to 

simultaneously measure the expression of thousands of genes. These simultaneous 

measurements are widely used for gene expression profiling in which a global picture of 

the cellular functions associated with the samples can be obtained. In a typical expression 

profiling analysis, a list of genes that shows difference in expression between two 

different types of samples can be identified statistically. In addition, methods such as 

Gene Set Enrichment Analysis (GSEA) [3] identify which differentially expressed genes 

in the samples are associated with known biological processes or pathways and suggest a 

more specific list of genes. 
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However, most current bioinformatic techniques only describe the pattern of 

differential expression without indicating the causal events that initiated the pattern. In 

this thesis, I attempt to fill this gap by integrating gene expression data with 

transcriptional regulatory networks. 

 

I.2 Transcriptional Regulatory Networks 

 Another source of information showing how genes are regulated during the 

transcription process is regulatory networks. These networks contain transcriptional 

regulatory associations between proteins and genes. Transcriptional regulation is one of 

the earliest control mechanisms of gene expression.  Interaction of regulatory proteins 

with DNA is the most direct method to change transcription levels. The transcription 

control responses are varied (enhancing, repressing, activating, etc.), but at the most basic 

level all of the mechanisms involve the binding of a protein to a regulatory binding site to 

exert its regulatory role on a gene.  

Significant research has been invested to understand and predict these regulatory 

networks [4-6]. One common and used method to predict regulator-gene associations 

include sequence analysis on genes to identify specific regulatory binding sites or 

“motifs” where a known protein can bind. Databases such as TRANSFAC [7] contain 

information of proteins with their possible binding sites for eukaryotic genes regulation. 

Applications have been developed for this search and prediction process like for example 

Alibaba2 [8] among others.  
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Another method used to identify regulatory sites on genes is called phylogenetic 

footprinting in which different genomes are compared to identify conserved regions [9]. 

These conserved base sequences between genomes are again mapped to candidate 

regulators. All these regulatory associations predictions provide information about the 

global regulatory activities involved in different signaling. The main limitation using 

these transcription networks generation methods based on sequence analysis is that they 

also predict false positive associations. Binding sites are usually short (~5-15 bases), 

hence some of these predicted binding sites can be found by chance with no real 

regulatory function. Furthermore, some of these predictions, even when they are true, 

might not be active in some situations. 

  Another challenge associated with these regulatory associations, specifically with 

the active state of a regulatory protein, is that cells use other mechanisms to modify 

proteins after synthesis (post-translational modifications) and before they exert their 

regulatory role.  As an example, Figure 1 shows how a group of 5 proteins (SET, HMG2, 

NME1, pp32 and Ape1) in a protein complex named “SET complex” await for the 

cleavage action of GZMA before each one can exert regulatory roles by binding to their 

respective DNA binding site. Cleavage is just one of others chemical modifications 

(phosphorylation, acetylation, etc.) that proteins frequently need before binding and 

regulate genes. Because of this regulatory complexity, one would not expect the mRNA 

level of a regulatory protein to map to the activity level of the protein itself.  Indeed, 

research by others has shown that mRNA and protein expression levels only poorly 

correlate [10, 11]. 
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 The bioinformatic community has collected many of these regulator-gene 

relationships in databases such as RegulonDB for E.coli [12], MsigDB for human [3], 

among others. Different from gene expression data, these regulatory-gene networks 

provide the mechanism that, in part, drives changes in gene expression. However, even 

when a fully complete and accurate regulatory network is known, two main challenges 

remain that limit their study and interpretation: (1) The false positive predictions as 

explained above and (2) the challenge to infer which specific associations have a real 

regulatory role.  As mentioned earlier, some regulator-gene activities will be only 

relevant for a given cellular environment. For example, some gene regulatory mechanism 

may only be used in cases of stress or during a short developmental stage. This same 

regulatory mechanism may not be relevant to other processes making a general regulatory 

network less useful for these cases.  

 

 

 

Figure 1. Example of protein-level regulatory 
processes influencing gene expression. 
http://www.biocarta.com/pathfiles/h_setPathway.asp. 
This diagram illustrates how a group of already 
synthesized proteins (SET Complex) are modified 
by protein level events before they actually bind 
and exert regulate roles. Cleavage by GZMA is the 
main modification to the group of proteins in the 
SET complex. Other proteins like Ape1 need 
additional cellular cues (oxidative signals). 
Measuring the activity of proteins is difficult but 
the collection of their binding sites is common. 
Databases containing these collections can be used 
to construct regulatory networks. 

 

 In this thesis, I hypothesize that merging gene expression data with transcriptional 

network information will allow me to identify relevant and possibly causal mechanisms 
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that govern the observed gene expression patterns.  Due to the size of gene expression 

data sets and the complexity of regulatory networks information, a computational tool is 

needed to manage the merging task and further interesting queries about the system under 

study. The ideal computational tool should be able to handle graphical representation, 

noisy data, and any linear, nonlinear, and combinatoric relationships that might exist 

between regulatory proteins and genes. 

 

I.3 Bayesian Networks 

 In the next sections I describe the machine-learning tool used in this project: 

Bayesian networks (BNs). First I will provide some information about Bayesian networks 

as they are the central tool used in this thesis. Next I will describe how BNs are uniquely 

well suited to the problem described in this thesis.   

At its core, a Bayesian network is a directed graph that describes causal or 

apparently causal relationships between variables. For example, in this work, I adopted a 

bipartite graph representation to model a transcriptional network as shown in Figure 2. 

Variables in the bottom layer of the bipartite model represent gene expression profiles 

and the variables in the top layer represent protein activities. For computational 

efficiency, BN’s analysis is mostly used on discrete variables specially if the amount of 

variables is large. In the regulatory model presented here, variables can be allowed to 

take 3 different outcomes such as low-med-high expression or activity level. Together, 

the variables have a joint probability that describes the probability of finding any set of 



	   	   7	  

values for the variables. For example, for the network illustrated in Figure 2, the joint 

probability distribution can be written as: 

P(R1, R2, G1, G2, G3,G4) = P(G1|R1)P(G2)P(G3|R1,R2)P(G4|R2)P(R1)P(R2) 

This joint probability statement is a Bayesian network and it defines which 

variables influence which other variables and which variables are independent of each 

other. In terms of the graphical model, each variable is represented as a node and the 

arrows between nodes represent probabilistic dependencies indicating a causal 

relationship between the two variables. Note that the graphical representation of a 

Bayesian network is similar to that of a kinetic model such as a signaling pathway, but is 

interpreted differently. In a kinetic model, edges represent a specific function (activation, 

repression, a linear relationship, etc.), or a transformation (e.g. A -> B implies A becomes 

B). In a Bayesian network, these causal relationships may be any activation effect as well 

as inhibition and also includes linear, nonlinear, and/or multimodal associations between 

variables. 

 

 

Figure 2. Bipartite model used to illustrate a 
transcriptional regulatory network. 

 

Three features that make Bayesian networks analysis suitable for modeling 

transcriptional networks with gene expression data are (1) BNs are directed acyclic 

graphs (DAGs), (2) BNs can make quantitative predictions and (3) BNs are robust to 

noise and nonlinear inputs.  



	   	   8	  

The first feature that makes BNs appropriate for this problem is the DAG 

property.  With a DAG there is always a set of nodes that are ultimate causes and always 

a set of nodes that are ultimate responses. Because the main problem in this work is 

modeled as a bipartite network where only the top layer of regulators influence the 

bottom layer of genes with no allowed influences between regulators or between genes, 

the BN model studied here represent a simpler case of a typical Bayesian network. 

Because a Bayesian network is a statement of a conditional probability relationship, loops 

or cycles are not allowed in any Bayesian network. For example, consider a two variable 

system of A and B.  If we were to create a model where A and B both influenced each 

other, we would obtain a model of the form P(A,B)=P(A|B) P(B|A) P(A|B)… The result 

would be a logical circularity and would not yield a working model or a clear statement 

of causation. A common question would then be “how do BNs handle biological loops?”. 

A common way to handle loops is by using a time stamp on the variables allowing one 

variable in a time ti to influence a variable in a time tj even when it is the same variable or 

a loop is created if the time stamp is not present. For this, we require time series 

expression data that consist of periodic measurements of a sample to obtain a time 

varying gene expression profile.  

 In this thesis, I am using static expression data which consist of a set of 

expression measurements made under different conditions, treatments, or sample types. 

Nevertheless, feedback signaling between a protein and its gene can be present in the 

network because protein activity and the gene expression represent two different 

“entities” in our model. For example, protein activity of variable “A” can be regulating 
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the expression of variable “A” in the network without violating the DAG property of the 

model.  

The second feature that makes BNs attractive for this study is that once a BN 

model is learned, it is possible to make quantitative predictions. The quantitative 

predictions produced by a Bayesian network have the advantage that they provide error 

estimates on the predictions in the form of probability distributions, and these predictions 

are directly comparable to experimental data. Using either approximate or exact inference 

algorithms, temporal predictions about how genes will respond to specific perturbations 

(genes knockdowns, mutations, etc.) can be made.  

The third feature associated with BN’s robustness to noise and nonlinear inputs is 

a key element in making this computational tool attractive for this study. Because BNs 

are fundamentally probabilistic, they are well suited to handle noise and possible 

contradictions in data in a rational and systematic way. The main reason for this 

flexibility is that this approach does not assume an underlying analytical function to 

interrelate the variables in the model. BNs can model the linear, nonlinear, and 

combinatoric relationships present in biological data equally well.     

 There are different levels of difficulty when using and/or learning a BN 

depending on the type of data and the prior structural knowledge. In the next sections I 

explain the three general Bayesian network learning problems and the approaches used 

for each one. 
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I.3.1 Bayesian Network Learning: Complete data and known topology 

 When data are available and the best model describing the data is known, the 

Bayesian network learned is mostly used for inference purposes. The set of conditional 

probabilities for each variable (parameters of the model) is defined by the data and the 

model. The complete set of parameters for a BN model is referred as a conditional 

probability table (CPT). With this information, inference on the network can be done. For 

example, imagine that the model shown in Figure 2 is the best model explained by a 

discrete data set of binary variables that can take outcomes of “On” or “Off”. Based on a 

hypothetical data set associated with the variables in the model, the conditional 

probability values for variable G1 is: 

 

 

Table 1. Hypothetical conditional probability 
values for variable G1 

 

 Using information from Table 1 the probability of finding variable G1 at any state 

is given by the state of its parent. For example, the probability of finding variable G1 

“Off” given that its parent R1 is “On” is 0.02. More complex exact inference can be done 

using the information in CPTs and Bayes’ rule, variable elimination methods or junction 

tree methods [13-15]. When the network is large and complex, reasonable probability 

estimates can be done using approximate methods such as Markov Chain Monte Carlo 

methods discussed in detail elsewhere [16]. 

 

R1 P(G1=On | R1) P(G1=Off | R1) 

 On 0.98 0.02 

Off 0.30 0.70 
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I.3.2 Bayesian Network Learning: Complete data and unknown topology 

 When only a complete data set describing the variables in a system is available, 

Bayesian networks can be used to learn the most probable network explained by the data.  

In this case, the body of data is used to score candidate networks by estimating the 

probability of a network given the data set or p(network|data). To estimate the probability 

of a single network is difficult if the whole set of possible networks is not known. This 

problem can be simplified using Bayes’ rule to rearrange the term p(network|data): 

	   	   	   	   	   	  	  	  	  	  	  	  	  (1)  

 The term p(data), or the prior probability of the data, is a scaling term that does 

not change between candidate networks. The p(network), or the prior probability of the 

network, is a term that can be used to favor certain networks based for example on expert 

knowledge or literature. When no information is available to favor any candidate 

network, a uniform distribution for all the candidate networks can be assumed. The term 

p(data|network) is the probability of the data given a network. This term is calculated by 

marginalizing over all parameter values (conditional probability values associated with 

each node).  Note that this marginalization produces an automatic penalty for the more 

complex models, therefore favoring simpler graph structures [16]. A closed form solution 

for discrete data using standard approaches from probability theory exists for this term of 

p(data|network) [17, 18]. This solution is known as the Bayesian Dirichlet Equivalent 

metric (BDe) and has the following form: 

    (2) 

! 

p(network | data) =
p(data | network)p(network)

p(data)

! 

p(data | network) =
( ir "1)!

( ijN + ir "1)! ijkN !
k=1

ir
#

j=1

i
q
#

i=1

n

#
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where “n” is the total number of variables, “qi” is the total possible state configurations 

for a parent, “ri” is the number of states of a variable (arity), “Nij” is the number of cases 

parent of variable “i” is in state (or state combination) “j”, “Nijk” is the number of cases 

variable “i” is in state “k” and parent(s) in state “j”. The expression in equation (2) 

describes the product of the probability of a variable being in a state k and the parents of 

this variable in a state j. The more informative the parents are of their child, the higher 

the value of p(data|network). 

With this metric available to score networks based on a body of data, it is possible 

to cycle through different networks configurations to identify which network is best 

described by the data. The challenge associated with this process is not calculating the 

score of a network but searching through the vast space of possible networks.  Work by 

others has shown that exhaustive network search is an NP-complete problem [19], 

meaning that for all but the smallest problems an exact solution is not obtainable. To 

overcome this challenge, a wide range of tools from the field of discrete optimization 

such as greedy learning, simulated annealing, genetic algorithms, etc. can be used [16].  

For example, in greedy learning, the learning process starts by choosing a network at 

random or an initial network created from prior knowledge known to have a mixture of 

correct and incorrect connections. The network is scored using the BDe metric. Next, a 

change is made to the network by adding, removing or reversing an arrow that does not 

violate the acyclic property of the network. After scoring the new network, if the score is 

better, the change is accepted and the network is subject to further modifications. If the 

score of the network is worst, the change is undone and a new modification is proposed. 

Note that in the case of a bipartite model like the one proposed in this work, only 



	   	   13	  

connections removals or additions from the top layer towards the bottom layer would be 

allowed. 

In the end, all network learning algorithms generate a ranked set of networks that 

are likely given the data. In some cases, the network with the highest score might be 

significantly better than all the other networks representing the best network described by 

the data. Alternatively, a group of the top-scoring networks can be very similar and a 

composite of those networks can be generated as a consensus network. Once a network or 

consensus network is learned from the data, it can be used to make inferences as 

described in section I.3.1. 

 

I.3.3 Bayesian Network Learning: Incomplete data and unknown topology 

 Sometimes, besides not knowing the topology associated with the variables in a 

dataset, some pieces of data may be missing. Furthermore, there are cases where some 

variables in the network have no data at all.  These variables are commonly referred as 

hidden variables. For example, as mentioned in section I.2, the activity values for 

regulators are difficult to measure and do not map well to the mRNA expression levels.  

In cases like the one presented in this thesis, the dataset is incomplete in the sense that 

only mRNA data are available for the variables in bottom layer of the network (genes 

mRNA expression) but no data are available for the top layer (regulators activity). 

 A modification on the network scoring process can be made to evaluate the score 

of a network even when some entries are missing. One approach to estimate an average 

score is by considering all possible missing entries state configurations. For example, 
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consider the network shown in Figure 3 where two regulators R1 and R2 are hidden 

variables. If these variables were binary (only having two possible outcomes), the total 

missing entries in a data set containing only 3 samples will be 6 (3 for each regulators). 

Therefore, the size of all possible missing entries state configurations will be 2all missing 

entries=26=64. An average score for this network can be estimated by averaging the scores 

obtained by using each of the 64 states configurations for the regulators. The limitation of 

this exact enumeration method is that is not computationally practical for large datasets 

having more than 2 or 3 hidden variables.  For example, if for this same network in 

Figure 3 a 25 samples data set is available, the missing entries state configurations will be 

250 which is > 1x1015! 

 

 

Figure 3. Model containing hidden variables. Here, the 
variables in solid ovals (genes) are observed and the 
variables in dashed ovals (regulators) are hidden. 

 

 An alternative to the exact enumeration approach to evaluate a score of a network 

in the presence of missing entries is adopting a sampling method to sample over the 

missing entries state configuration space. Gibbs sampling is a well-developed tool in 

computational statistics and has found extensive use in missing value estimation on 

Bayesian Networks [20-23]. Broadly, Gibbs sampling works in the following way: 

• Values for all unobserved entries are randomly chosen each time a possible 

network is going to be scored using the BDe metric. 

R1 R2

G1 G2 G4G3
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• A randomly chosen unobserved entry is re-sampled based on the probability 

distribution for that variable after estimating p(network|data) for each possible 

state. 

• The new sampled value for an entry is used when evaluating a future entry. 

The last two steps are repeated many times. Note that a Gibbs sampler does not select a 

single best data configuration, but instead samples a wide variety of possible 

configurations for the hidden values favoring the more likely configurations over the less 

likely ones. The result of this calculation is an average probability score of the network 

given the available data. 

 

I.4 General research approach 

 In the following three chapters I will include a description of the modeling 

approach designed for the integration of gene expression data and general knowledge of 

transcriptional regulatory networks to predict relevant regulator-gene associations based 

on the data.  

 Because Bayesian networks are the computational tool used for this research 

work, in Chapter II I present a proof of concept analysis showing that Bayesian networks 

can recognize the most predictive regulator-gene associations even when no data are 

available for the regulators. I test a simplified toy model using both synthetic data and E. 

coli expression data to identify plausible regulatory modules.    
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In Chapter III, I introduce a novel approach I call POBN2 to modify the scoring 

method that allows the study of large networks with hidden variables. Synthetic data and 

E. coli gene expression data were used again to validate POBN2. The E. coli network 

studied in this chapter consisted of 189 genes and 62 hidden regulators.  

In Chapter IV I shift focus toward identifying regulatory associations that are 

more likely to explain the gene variances. To carry out this analysis, I describe a new 

analysis tool I created called RegNetB. I test RegNetB using a human prostate cancer 

data set describing regulatory activities between 253 genes and 292 regulators. 

 Chapter V concludes this work by summarizing the capabilities of the designed 

approach and how it can aid in identifying potentially causal mechanisms for observed 

changes in gene expression. 



	   	   17	  

CHAPTER II 

 

Learning Regulatory Networks Using Gene Expression Data Alone 

 

II.1 Background 

 The pathways that regulate mRNA expression play key roles in many cellular and 

disease processes. If these pathways were well characterized, then we could rationally 

design therapies to modify undesired gene expression patterns and the phenotypes that 

result from them. Unfortunately, most regulatory pathways remain only partially known. 

Here we present a new method for automatically reconstructing these regulatory 

pathways from data directly. 

 Bioinformatic models of regulatory pathways are generally constructed in one of 

three ways: (1) literature, (2) promoter analysis, and (3) analysis of mRNA expression 

data.  These three methods are described graphically in Figure 4. Literature based 

regulatory pathways include those found in public databases such as KEGG, RegulonDB, 

and BioCarta. These pathways are hand-curated based on findings gleaned from a wide 

range of experiments and laboratories. While these literature based regulatory pathways 

are fairly accurate, they can only reveal transcriptional associations that have been 

explicitly studied, biasing the results toward well-characterized genes. Furthermore, these 
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literature-based pathways often use mRNA, protein, and protein activity interchangeably, 

producing models where the transcriptional regulatory steps are not clear.  

 A second approach to construct regulatory pathways is via promoter analysis. In 

this approach, the DNA sequence of the promoter region controlling the expression of 

each gene is analyzed to identify regulatory motifs that may be responsible for 

controlling mRNA expression. However, these regulatory motifs are usually short (~5-15 

bases) compared to the whole genome, hence many of these predicted binding sites can 

be found by chance with no real regulatory function [24]. Thus, a disadvantage of 

promoter analysis is that many of the regulatory associations are false positive 

connections [8, 24, 25]. Furthermore, some regulatory activities are context specific, 

meaning that even when there is a binding site for a specific transcription factor, that 

regulatory mechanism may be inactivated by other proteins that don’t bind directly to the 

promoter. An example of this off-promoter regulation is illustrated in the mechanism in 

Figure 4A, where the co-regulator (R2) regulates G3 by binding to its transcription factor 

(R1).  For this case, the R1 binding site found in G3’s promoter may or may not be 

active, depending on the activity of R2.  A final, and possibly most significant challenge 

with promoter analysis is that promoters are often difficult to identify, particularly in 

eukaryotic organisms[26, 27]. 

 A third approach is to use mRNA expression data directly to reconstruct the 

regulatory network. This data driven approach is attractive in that the most direct effect 

of a regulatory network is to control the mRNA expression levels. One commonly used 

method for analyzing these expression data to identify regulatory mechanisms is 

clustering, as is reviewed elsewhere [28-30]. Clustering identifies groups of genes that 
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have similar patterns of gene expression and therefore thought to be part of a common 

regulatory pathway. However, clustering as it is commonly carried out has two 

limitations. First, genes are generally clustered using a linear pairwise distance metric 

such as a Pearson’s correlation coefficient. Gene regulation, in contrast, is largely 

nonlinear and combinatoric, meaning that most genes are regulated by a set of regulators 

that increase or decrease expression in non-additive ways. If two genes have identical 

regulation, then pairwise clustering will identify them as having a common regulatory 

mechanism (e.g. G1 and G2 in Figure 4C), while genes that have some similarities in 

their regulation may not cluster as well (e.g. G3 in Figure 4C).  

 

 

 

 

 

 

Figure 4. Methods for identifying regulatory mechanisms from gene expression data. (A) A hypothetical 
mechanism whereby two regulators (R1 and R2) control the expression of four genes  (G1-G4). (B) View 
of this same system from the perspective of promoter sequence analysis assuming no false positive binding 
sites. (C) Expected clustering results for the expression data on G1-G4.  (D) A partially observed bipartite 
network (POBN) model of the mechanism based on only the expression data for G1-G4. 

 

A second problem with using clustering alone to find regulatory networks is that 

clustering does not suggest causation. A set of genes that tightly cluster may indeed have 

a common regulatory mechanism, but from the cluster one can’t identify if one gene is 

responsible for the cluster or if an external factor governs the cluster.    

G1

G2

G3

G4

R1: DNA binding protein
R2: Co-regulates R1
activity for some genes

(A) Mechanism (B) Sequence Analysis
G1
G2
G3
G4

(C) Clustering
G1
G2
G3
G4

R1 R2

G1 G2 G4G3

(D) POBN Model
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In this work, we present a graphical modeling method to overcome some of the 

problems found in clustering to identify regulatory networks. The method we term 

Partially Observed Bipartite Network or POBN, uses a simplified Bayesian network 

topology to describe a regulatory network, as is illustrated in Figure 4D. A POBN has a 

top layer of unobserved regulators (protein activities) that connect to a lower level of 

observed variables (mRNA expression values). By casting the regulators as unobserved, a 

POBN makes it explicit that the activity of the regulatory proteins are not directly known.   

In some cases, the activity of a regulator could be simply proportional to the mRNA 

expression level of a transcription factor. Alternatively, the activity of a regulator could 

be the result of post-translational modifications, protein localization, or cleavage 

mediated by other processes. In this latter case, the activity of the regulator is difficult to 

directly measure, even though the effects of the regulator may be consistent. Related 

work using  bipartite graph models have been used elsewhere to identify regulatory 

signals, but assume a linear mixing model [6, 31-34]. In contrast, the POBN models 

presented here use a multinomial model with Dirichlet priors, which has been shown to 

better reflect the nonlinear patterns seen in gene and protein regulation networks [35-38]. 

The POBN algorithm is tested using both synthetic data and experimental gene 

expression data from E. coli. E. coli gene expression data were used because this 

organism has one of the best studied gene regulatory networks available, allowing us to 

assess the quality of the predictions made by POBN. 
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II.2 Methods 

In the following sections we describe the algorithms and sample studies used to 

evaluate the utility of POBN for analyzing gene expression data. 

POBN Topology Scoring 

 Each network topology is modeled as a Bayesian network with the regulators as 

hidden nodes. In this network, variables are assumed to be discrete and modeled using a 

multinomial model with Dirichlet priors. The hidden regulatory nodes are scored using a 

Gibbs sampler to explore the large space of possible hidden node configurations [20-23]. 

The number of Gibbs sampling rounds required to accurately estimate the posterior 

probability density varies with the number of hidden nodes, quantity and quality of the 

data, and how the data are discretized. In this study, networks were scored using 1.4x107 

rounds of Gibbs sampling for the 266 sample case (532 missing entries in the dataset). 

This level of sampling was empirically found to be sufficient by repeating the scoring 10 

times on the same dataset. At the end of these runs, the scores were nearly identical and 

the rank ordering of networks was identical.    

Scoring was done using PEBL, a python library previously developed in our 

group [39]. PEBL evaluates the probability of a discretized dataset given a topology 

using the BDe scoring metric described elsewhere [17]. The source code for PEBL is 

freely available online (http://code.google.com/p/pebl-project/).  

Network Searching 

Because the networks used in this project are relatively small, we exhaustively 



	   	   22	  

tested all unique topologies. In general, the full set of bipartite graphs with R regulators 

and G genes includes 2RG networks. For 2 regulators and 4 genes used in this work this 

exhaustive set includes 256 possible networks. However, because the regulators are 

unobserved, many of these possible networks are structurally equivalent because the 

unobserved nodes can be permuted to yield identical predictions. For the two-regulator 

case, most networks have a structurally equivalent twin topology with R1 and R2 

swapped. The exceptions to this twin rule are networks in which all hidden regulators 

share the same gene or group of genes. The total number of networks without a twin in 

the 2 regulators bipartite system is 2G or16 for the 4 gene case. After accounting for these 

symmetries, the full set of unique 2 regulators 4 genes networks is 136. In the following 

case studies, all 136 unique network topologies are scored. 

Consensus Network Evaluation 

After all distinguishable networks are scored, they are sorted to identify a 

consensus regulatory network that captures features common to the top networks. By 

reporting a consensus network instead of the top network alone, we can provide a more 

robust estimate of topology predicted by the data. Unfortunately, construction of 

consensus networks is more complex when hidden nodes are present due to the structural 

equivalence of networks when the regulatory nodes are permuted. Thus the POBN 

consensus was identified using the following algorithm. First the networks from the top 

99.9% of the normalized posterior density are included in the consensus network 

construction list. Next, the top scoring network topology is stored as the reference 

topology. Proceeding down the network construction list, each network is compared to 

the reference topology to determine which permutation of the regulator identities is most 
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similar to the reference topology. Similarity between topologies is measured by counting 

the number of edges in common. For each network in the construction list, we use the 

regulator permutation that is most similar to the reference. Finally, we constructed the 

consensus network by including only those edges that were present in every entry in the 

construction list. 

In cases where a strong signal from the regulated variables is present in the data, 

the consensus and top scoring networks are the same. In contrast, if the signal from the 

regulated variables is weak, the consensus network will tend to be sparse. 

Network Prediction using Synthetic Data 

A synthetic test network was used to validate the network scoring and search 

algorithm when the underlying network topology is known. In addition, we used the 

synthetic network to evaluate the robustness of the scoring and search algorithm to noisy 

data, underlying nonlinearities, and different numbers of samples. 

The topology of the synthetic network is shown in Figure 5. Values for the 

regulators in this model (R1 and R2) were randomly assigned from 0 to 1. The 

disconnected gene, G2, was assigned a random value between 0 and 1. The two genes 

with a single regulator were assigned using the linear models G1=1.5*R1, G4=0.5*R2.  

Gene 3 was assigned the maximum value of R1 and R2.   

Given this model, sample datasets were created with 50, 266, and 532 

observations. For comparison, the biological studies discussed later included 266 

observations. After sampling, the values for the R1 and R2 were removed, making these 
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regulator variables unobserved. Next, all possible networks were scored to identify where 

the known and consensus networks appeared. 

Data Discretization 

The scoring metrics used in this study require that the data be discretized. In all 

cases in this paper, data were binned into two states, high and low, with the top half of 

the values assigned to high and the remainder to the low bin. This even sized binning 

strategy is widely used for discretization of gene expression data [36, 40], and has been 

shown empirically to be robust in capturing relevant details of the systems under study. 

The POBN method can be used with any discretization scheme and any number of bins, 

however a models with variables with many states will require significantly longer 

compute times to achieve convergence with the Gibbs sampler used by POBN.   

Network Prediction from Gene Expression Data 

 We tested our algorithm using a set of 266 gene expression profiles in E. coli 

described elsewhere [41], and available online on GEO as GSE6836. This dataset 

represents a diverse range of biological backgrounds and environmental conditions 

including genetic perturbations, drug treatments, different growth phases, and a range of 

metabolic states. The study is well suited to this work because the large palate of 

perturbations should provide sufficient signal variation to detect meaningful bipartite 

regulatory networks. 

 To identify gene sets that could be meaningfully analyzed using our tools, we 

selected sets of 4 target genes that satisfied the following two criteria: (1) the target genes 

contained significant signal variation as measured by the variance of the gene’s 



	   	   25	  

expression across the chip; and (2) the 4 target genes had clear regulators based on the 

regulatory model presented in RegulonDB. The first criterion was further refined to limit 

the genes to only those in the top 200 most variation across chips to ensure that only the 

genes with the most signal were included in the analysis. These filtering steps ensured 

that the target genes had sufficient signal in this 266 observations study to be 

meaningfully evaluated. By selecting sets of 4 genes that have a clear model in 

RegulonDB, we could easily compare the results of our bipartite network search to a 

validated literature source. 

After these steps, we found 3 networks that satisfied these criteria, shown in 

Figure 6 as Bacterial network I, II, and III. Note that larger networks could also have 

been selected, but due to computational limitations we only evaluated these models. For 

each set of 4 target genes, POBN was used to identify the score distribution for all two 

regulator/4-gene networks.  In this step, the two regulators were assumed to be 

unobserved.   

Next, the three bacterial networks were rescored assuming the regulators were 

observed.  In this case, the observed regulators were inferred from the RegulonDB 

topology, and the activity of the regulator was assumed to be equivalent to the mRNA 

expression level of that gene. 
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II.3 Results 

Network Prediction using Synthetic Data: 

50 sample synthetic data set 

The POBN results for three different samples of 50 data points showed the 

original network ranked in a position 27, 30 and 8 out of 136 models (see Figure 5A). 

The consensus ranked 2, 13, and 3. Interestingly, the scores of the networks divide into 

two tiers when only 50 observations are included, with this break most evident in Run 1 

in Figure 5A. Examination of the networks in each tier indicate that the top tier contains 

combinations of features in the original network, while the bottom tier contains 

combinations of features that are not present in the original network. 

Figure 5:  Synthetic network identification ability for different numbers of data observations. (A) Posterior 
distribution of models for 50 observations with the true model shown as a circle, and the consensus 
network shown as a diamond. Three different runs are shown, each one represents a different sampling of 
50 observations.  Dashed arrows indicate weakly supported edges, while solid arrows indicate strongly 
supported edges. (B) Posterior distribution of models for 266 observations. In this case, the true model and 
consensus model were at or near the top scoring models for each of the 3 different data samplings. These 
results indicate that POBN predictions with 266 observations are both accurate and stable. 
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266 and 532 sample synthetic data sets 

 When 266 samples were used, the true and consensus networks were the same and 

at or near the top of the distribution (Figure 5B). The tiers observed in the 50 sample case 

are also present when 266 samples are used, but there are more tiers when more data are 

included. For the 532 sample case, the true and consensus networks were also the top 

network by a larger margin. For computational efficiency, we only scored the top 25 

networks found from the 266 sample case because of these topologies already captured 

most of the density in the previous rounds. These results indicate that that beyond a 

certain point, additional data for a given model does not yield useful increases in 

prediction accuracy. Furthermore, for this network size and complexity, a dataset of 266 

samples is sufficient to accurately recover the underlying topology. 

Network Prediction from Gene Expression Data: 

 

Figure 6: Regulatory modules found using E. coli gene expression data. Gray dots represent the sorted 
scores of each of the possible 136 POBN networks. The networks illustrated in the lower left corner of each 
panel represent the consensus network found for each case after POBN analysis. The networks at the upper 
right corner of each panel represent the RegulonDB models for the genes under study. 
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Data for three bacterial networks were scored in POBN, the results of which are 

shown in Figure 6. For each of these networks, the consensus network happened to also 

be the top-scoring network, and is shown as the POBN consensus model in the lower left 

of each panel. The complete network suggested by RegulonDB is also shown for each 

model in Figure 6. Interestingly, in all three cases, the posterior score distribution also 

contained clear separation between tiers, with Bacterial network I having only 4 tiers, 

while network III has at least 9 tiers. As can be seen by the complexity of the POBN 

consensus for each network, the more complex the consensus, the more tiers are present 

in the posterior. 

Figure 7. Network comparisons. Each column in the figure represents each of the biological cases analyzed 
in this study. The first row contains the models suggested by RegulonDB. The second row shows the 
consensus network found after scoring all possible models for the regulators/genes suggested by 
RegulonDB using mRNA data for the regulators. The third row shows the predicted models using POBN 
analysis (regulators treated as hidden variables). The second to last row show the consensus networks after 
exhaustively scoring all possible models for the variables shown and using mRNA data for the regulators.  
The last row summarizes the best estimate of the identity of the regulators based on the analysis. 

To compare the RegulonDB models to the POBN models, we next rescored the 
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shown in Figure 7. From these results, we see that in some cases the unobserved regulator 

can be fairly well predicted based on the expression values of the regulators suggested by 

RegulonDB. However, in Bacterial network II (Figure 7B), the POBN model is 

significantly different from any of the RegulonDB models, suggesting that other factors 

not captured by RegulonDB or by the mRNA data play a significant role in regulating 

these target genes. 

 

II.4 Discussion 

Synthetic data and general findings 

Using a synthetic test case, we found that POBN was able to accurately identify 

the original model, or near the original model with surprisingly few observations as is 

shown in Figure 5. When only 50 observations were used, POBN recovered essential 

features of the original network, while with 266 or more observations, POBN was able to 

recover the original model exactly. Although this analysis does not provide a definitive 

estimate of the number of observations required for any POBN analysis, it does suggest 

that datasets on the order of hundreds of observations are sufficient to identify relevant 

features of a POBN type model. 

The synthetic study also demonstrated that a POBN could capture nonlinear 

relationships. Because the POBN is based on a Bayesian network, we expected that both 

linear and nonlinear relationships should be detectable.  In the synthetic network, target 

gene G3 was assigned the maximum value of R1 or R2, thereby creating a nonlinear 

relationship. The results in Figure 5 indicate that this nonlinear relationship was evident 
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with only 50 observations, and increasingly more evident with more data. 

Tier formation  

An unexpected finding was the appearance of tiers in the posterior plots shown in 

Figures 5 and 6. Intuitively, the top tier will group the models with the highest scores and 

the bottom tier the worst scored models. After an analysis of the connection weights 

between the regulators and genes, we always observed that the strongest and most 

significant connections (the ones shown in the consensus network) were present in each 

of the top tier networks. Similarly, the bottom tier networks consisted of networks with 

combinations of the weakest connections. In the middle tiers, there was a mixture of 

strong and weak edges. A clear example of this tier formation is the Bacterial network I 

illustrated in Figure 6(A). The four connections in the consensus network had an almost 

indistinguishable and high weight when compared to the other connections. Analysis of 

the networks in the second tier revealed that these networks all have R1 connected to G1 

and G2. Similarly in the third tier, all networks have R2 connected to G3 and G4.   

 The presence of these tiers suggests a possible simplification to the POBN 

algorithm whereby only tiers of networks are identified instead of scoring each possible 

topology. In cases such as Figure 6A, a tier based search would only need to identify four 

roughly equivalent network families instead of the 136 searched in this study. 

Unfortunately, identifying the number of tiers a priori is still an open problem. 

Identifying unknown regulators 

Both an advantage and disadvantage to the POBN approach is that we don’t know 

the identity of the variables in the unobserved regulatory layer. This lack of knowledge of 
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the regulators is an advantage in that it models a real case where a process that we may 

not know about governs the expression of a subset of genes. This unknown process could 

be the activity of another gene, a pathway, an environmental condition, or a particular 

physiological state of the cell. The clear disadvantage of this unknown regulator is that 

the regulator is unknown and therefore difficult to assess and test.   

The unknown regulator problem arises in clustering in general, but we argue that 

the problem is less severe for a POBN model. When genes are clustered using a 

traditional method such as hierarchical clustering or k-means, it is often difficult to assign 

a common explanation or hidden regulator responsible for the cluster. In contrast 

however, POBN allows genes to be regulated by different numbers of regulators, thereby 

providing an implicit link between regulators. This link between regulators can be helpful 

for defining the regulator as it suggests a smaller set of possible causes.   

Ways that the unknown regulator in a POBN model can be identified are 

illustrated in the analysis of the bacterial networks shown in Figure 7. In bacterial 

network I (Figure 6A and 7A), the POBN model has only marginal overlap with the 

RegulonDB model. The targets of R1 suggest that R1 could be araC, as they both have 

the same regulatory topology. When R1 was replaced with araC expression (Figure 7A, 

fourth row), the regulatory pattern remained, providing further evidence that R1 is araC. 

The targets of R2 predicted by the POBN model were most similar to the pattern of σ70, 

however RegulonDB also suggests that σ70 regulates araB and araA. When R2 is 

replaced by the expression of σ70, the regulatory pattern is identical to the POBN model. 

In bacterial network II (Figures 6B and 7B) the POBN model and the RegulonDB 
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models are significantly different. A detailed analysis of the score distribution for this 

case suggests that recA is the least strongly connected to R1, providing weak evidence 

that R1 could be fnr. Furthermore, replacing R1 with the gene expression data for fnr 

produces model similar to the POBN model (Figure 7B, fourth row), which further 

suggests R1 could be fnr. The identity of R2 is less well defined. According to 

RegulonDB, σ70 coregulates rpsP, but σ70 also regulates rplW and recA—connections 

not observed in the POBN model. Furthermore, σ70 expression is not predictive of recA, 

but is predictive of rplM (Figure 7B, fourth row) in conflict with the accepted 

RegulonDB model. In this case, R2 appears to be a factor outside of the RegulonDB 

model. 

In bacterial network III (Figure 6C and 7C) the POBN model and RegulonDB 

model disagree, but can be partially aligned to identify the regulators. Similar to bacterial 

case II, the POBN model for R1 is most similar to the fnr model in RegulonDB, except it 

is missing two connections. However, an examination of the literature reveals that fnr is 

known to regulate the rpsLG-fusA-tufA operon, which could explain the association 

between fnr and fusA [42]. Also, under certain environmental conditions the activity of 

fnr has been associated with rpoA responses [43, 44]. Furthermore, if R1 is replaced by 

the fnr expression level the regulatory pattern is the same as for the POBN model, 

suggesting that R1 is modeled well by the expression of fnr. Using the same logic, the 

POBN model for R2 is identical to the RegulonDB model for σ70. However, replacing 

R2 with the expression level of σ70 suggests that σ70 regulates rplM and fusA—a result 

that differs from the POBN and RegulonDB model. In this case, R2 may represent the 

activity of σ70, but not the expression level. 
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In all three bacterial networks it is possible that the two regulators are better 

described by something outside of RegulonDB. As an example, in bacterial networks II 

and III, it is possible that R1 is actually indicating the aerobic state of the cell, for which 

fnr is a readout. In cases like this, the identity of the regulator in the POBN model is 

ambiguous, but the pattern of regulation is clear. 

 Overall POBN provides an impartial and human interpretable method for 

identifying complex regulatory patterns directly from experimental data. In some cases, 

the identity of the regulators can be inferred using literature or other resources, however 

this identity need not be known to identify consistent regulatory patterns. Using a POBN 

model for identifying transcriptional regulatory networks provides a complementary 

approach to more traditional methods of transcription factor binding motif-based 

networks. 
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CHAPTER III 

 

POBN2: Gene Expression Data and Transcriptional Networks Integration  

 

III.1 Background 

Significant effort has been invested in identifying which genes regulate the 

expression of which other genes in a given genome[4-6]. The bioinformatics community 

has collected many of these gene-gene regulatory relationships into transcriptional 

networks that provide a global view of how gene regulation is orchestrated. For example, 

TRANSFAC collects protein-DNA binding interactions to identify potential gene 

regulatory mechanisms[7]. Similarly, RegulonDB provides a hand annotated regulatory 

network for the E. coli genome[12]. As more data become available, these transcriptional 

regulatory networks will become increasingly complete in the sense that they will 

describe the set of possible mechanisms for regulating each gene. 

However, even with a fully complete and accurate transcriptional regulatory 

network, only some of the regulatory relationships will be relevant for a given cellular 

environment. For example, some gene regulatory mechanisms may only be used in rare 

cases of stress, or during a short developmental stage. In these cases, these rarely used 

regulatory mechanisms are correct, but largely inactive and as such may not be relevant 
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to the process under study. In these specific cases, the general regulatory network is less 

useful. 

In this chapter, we introduce a Bayesian network based method to differentiate 

active and inactive connections in a transcriptional regulatory network given a body of 

gene expression data. The method we term Partially Observed Bipartite Network 2, or 

POBN2, uses a simplified Bayesian network topology to describe a regulatory network, 

as is illustrated in Figure 2. A POBN2 has a top layer of unobserved regulators (protein 

activities) that connect to a lower level of observed variables (mRNA expression values). 

By casting the regulators as unobserved, a POBN2 makes it explicit that the activities of 

the regulatory proteins are unknown. As a first approximation, the activity of a regulator 

could be modeled as simply proportional to the mRNA expression level of a transcription 

factor, however this approximation ignores other regulatory events that are known to 

influence the regulatory process. For example, the activity of a regulator may be 

influenced by post-translational modifications, changes in protein localization, 

sequestration, and/or cleavage—all of which are mediated by other pathways in the cell. 

Unfortunately, this more complete view of transcriptional factor activity is complex, 

poorly understood, and difficult to quantitatively model. To circumvent this problem, the 

POBN2 approach allows the expression of the target genes to dictate the likely activities 

of each regulator.   In doing so, POBN2 strives to identify regulatory topologies that are 

maximally consistent with both the expression data and the known regulatory network, 

while not specifying the mechanistic details that lead to the particular state of the 

regulatory proteins. 

Expression data for learning these regulatory relationships can be divided into two 
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classes: time series and static. Time series data consist of periodic measurements of a 

sample to obtain a time varying gene expression profile, while static data consist of a set 

of expression measurements made under different conditions, treatments, or sample 

types. If designed correctly, a time series study can identify the sequence of events that 

trigger a regulatory event, as has been widely explored elsewhere[45-47]. In contrast, a 

static study can only be used to infer relationships between regulators without a clear 

picture of the sequence. Methods to use these static data for transcriptional regulatory 

network analysis have been less widely explored, although a majority of the gene 

expression data collected are static. For example, over 80% of the expression data in the 

public repository GEO are from static measurements. Although more challenging, in this 

work we have chosen to explore how these static data can be used to infer regulatory 

networks using POBN2. 

To test the performance of the POBN2 algorithm for regulatory network 

reconstruction, we focus on the regulatory networks in E. coli. The regulatory network in 

E. coli is one of the best characterized, giving us a clear picture of the network we expect 

to find. In addition, digital resources such as the RegulonDB database provide the 

regulatory network in a machine readable form that is suitable for comparison to the 

POBN2 results. 

 

III.2 Methods 

In the following sections we describe the algorithms and sample studies used to 

evaluate the POBN2 algorithm’s ability to identify active and inactive regulatory 
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relationships based on gene expression data. 

Gene expression data 

We tested POBN2 using a set of 266 gene expression profiles in E. coli described 

elsewhere [41], and available online on GEO as GSE6836. This dataset represents a 

diverse range of biological backgrounds and environmental conditions including genetic 

perturbations, drug treatments, different growth phases, and a range of metabolic states.  

The study is well suited to this work because it contains many samples and covers a range 

of perturbations. 

The selection of genes that could be meaningfully analyzed using POBN2 was 

based on the following two criteria: (1) genes must exhibit differential expression in at 

least some samples; and (2) genes must be present in the RegulonDB regulatory network. 

The first criterion was enforced by selecting the 300 genes with the largest variation as 

measured by the magnitude of the standard deviation of the expression value across 

samples. This selection approach will tend to favor genes with larger absolute expression 

levels, and a diverse range of expression values across the samples. When the second 

criterion was applied, only 189 of the 300 genes were found in the RegulonDB network, 

producing a final list of 189 genes.  

Data discretization   

 For computational efficiency, the scoring metrics used in this study require that 

the data be discretized. Data were binned into three states, high, medium and low, with 

the top third of the values assigned to high, the bottom third assigned to low, and the 

remaining values assigned to the medium bin. This even sized binning strategy is widely 
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used for discretization of gene expression data in the systems biology community [36, 40, 

48, 49], and has been shown empirically to be robust in capturing relevant details of the 

systems under study. We note that the POBN2 method can be used with continuous 

values directly, however the continuous scoring algorithms that are currently available 

are computationally impractical for networks involving more than a few hidden nodes.  

Instead, POBN2 scores the probability of each network using discrete data as described 

below. 

Scoring method 

The regulatory bipartite networks tested here are modeled as a Bayesian network 

with the regulators as hidden nodes. In this network, variables are modeled using a 

multinomial model with Dirichlet priors, as is described elsewhere [17, 38, 50]. See 

section I.3.3 for a more detailed discussion about Bayesian networks with hidden nodes. 

Below we provide a brief summary of the method. 

In most Bayesian network problems, a completely observed data set is used to 

estimate the likelihood of a network. However, in the network used in this work, the 

activity of the regulators is not observed. To fill in the missing activity levels of the 

regulators, the hidden regulatory node state values were estimated using a Gibbs sampler 

to sample the space of possible hidden node configurations [20-23]. The sampling and 

scoring was done using PEBL, a python library previously developed in our group [39]. 

PEBL evaluates the probability of a discretized dataset given a topology using the BDe 

(Bayesian Dirichlet equivalent) scoring metric described elsewhere [17]. The source code 

for PEBL is freely available online (http://code.google.com/p/pebl-project/).  
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The scoring process in our simulations comprised two main steps: (1) Gibbs 

sampling of the hidden variables (after burn in) using the initial global graph and (2) 

calculating of an average score across samples. The score for each network was estimated 

using the BDe metric and the sampled states for the hidden nodes. This scoring process 

was carried out for the initial network and each single edge removal from that initial 

network. 

The number of Gibbs sampling rounds used to estimate the score for any network 

was determined empirically. The threshold used to cast a connection as active or inactive 

was the rank of the initial global network based on score relative to all the other tested 

networks as will be explained in the next section. Based on this approach, Gibbs 

sampling round sizes of 100, 250, 500 and 1,000 samples were tested in the first POBN2 

optimization round. We observed insignificant changes between the results obtained for 

250, 500, and 1,000 rounds of sampling. For these 3 sample sizes, 3 inactive edges out of 

75-78 cast as inactive (as described in the next section) were observed to be different 

between each set results. Nevertheless, the networks evaluated after disconnecting these 

three discrepant edges ranked just below the threshold established to cast the edge as 

active/inactive. For the 100 Gibbs sampling rounds case, the difference was of 6 edges.  

As a result of this analysis, all subsequent POBN2 optimization rounds were run using 

250 Gibbs sampling rounds as a balance between accuracy and computational efficiency. 

Network searching and optimization process  

The filtered 189 genes were mapped to target genes in the RegulonDB network.  

This mapped network produced a bipartite graph between regulators and targets 
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containing 570 connections between 62 unobserved regulators and the selected 189 

genes. Given this network as an initial global network, we examined all one-edge 

removals in this network, resulting in 570 additional networks, for a total of 571 

networks. 

If removing an edge in the global network improved the score then the 

disconnected edge was labeled as inactive. If the initial global network did not rank first 

on the list, we proceeded with another scoring round after updating the initial global 

graph by eliminating the set of inactive connections. These steps were repeated until the 

starting global regulatory network (initial network for each round) ranked first on the list 

as the best network.  Figure 8 shows a conceptual flow diagram of this process.  Source 

code for the optimization is provided in the Appendix 1. 

Synthetic Network Validation 

 To assess the POBN2 algorithm’s discriminatory capability, we tested the 

algorithm using a synthetic dataset where the active and inactive edges are known 

beforehand. First, a bipartite network was defined with 4 regulators and 9 response 

variables.  Each response variable was assigned to have 1-3 parents for a total of 11 

connections in the synthetic network. After defining the topology, conditional 

probabilities were assigned for all nodes based on connectivity and the 3 discrete values 

that were allowed.  Based on these parameters, 5,000 samples were generated to create a 

data set simulating a discrete static data set. Full details of the data generation script are 

provided in the Appendix 2. 
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After sampling, the values of the 4 regulators were removed, making these 

regulator variables unobserved.  Next, all combinations of possible inactive connections 

were added to the initial graph one at a time for a total of 25 cases, i.e. 25= (4 

regulators)*(9 response variables)-(11 defined connections).  Once a single inactive edge 

was added, the weight for all edges in the graph were evaluated as described in the 

Scoring Method section above. This same process was repeated for all combinations of 

pairs of inactive edges that could be added to the original graph (300 pair addition cases). 

 

 

 

 

 

 

 

 

 

 

Figure 8:  POBN2 algorithm conceptual diagram. Note that the creation of the inactive edges list is based 
on the rank of the network after an optimization round.  If a connection is eliminated and the resulting 
model has a worse score than the initial network, this connection should stay as it plays an explanatory role 
based on the data.  Otherwise, the connection is listed as inactive and eliminated from the global network. 
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III.3 Results      

Synthetic data set 

The synthetic case study provides a way to evaluate POBN2’s ability to 

discriminate between inactive and active edges with a known network. When a single 

inactive edge was added in all possible positions, 23-22-24 out of 25 inactive edges were 

correctly identified in three independent runs, and in no case was a true edge called 

inactive. For the cases where POBN2 did not call the added edge inactive, the inactive 

edge was ranked as the first or second weakest (score just below the initial graph). When 

a pair of inactive edges were added in all possible positions, in 282 out of 300 cases the 

inactive edges were correctly identified and in 13 of the remaining 18 cases the 

connections were ranked as the first or second weakest. Here again, in no case was a true 

edge called inactive. In runs with fewer samples the number of hits were lower but the 

algorithm was consistently precise in not calling a true edge inactive.  

Different levels of false edges present in the initial network were also tested 

keeping the samples size constant (5000 samples): A fully connected graph with 100% of 

all possible false edges present, 80%, 60%, 25% and 10% of all possible false edges were 

tested. Results for these tests showed that POBN2 started identifying the false 

connections in the graph when the level of false edges present was between 25-30% of 

the total possible false edges. Again, in none of the cases POBN cast a true edge as an 

inactive one.    

Overall, these synthetic results indicate that the POBN2 algorithm is frequently 

able to correctly identify the added inactive edge(s) with no observable false positive rate 
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and a moderate false negative rate. Also, it indicates that the quality of the initial network 

plays an important role in the ability of POBN2 to identify the inactive edges. This result 

suggests that the edges POBN2 identifies as inactive in the biological dataset will likely 

be inactive, however, edges deemed active may be only marginally so, depending on 

where they appear relative to the initial network. 

Inactive connections predicted using gene expression data 

When the POBN2 analysis was applied to experimentally gathered gene 

expression data, the algorithm identified 93 inactive connections out of the 570 

connections present in the initial regulatory network from RegulonDB. From this total, 75 

inactive connections were found during the first score-ranking round of POBN2 analysis, 

13 in a second round, and the last 5 in a third round. After the third optimization round, 

the score of the initial graph was no longer improved by removing any edges. During all 

the rounds of optimization, we observed that well characterized regulatory associations in 

E. coli such as the genes regulated by LexA (recA, recN, sulA, umuD, lexA) and AraC 

(araA, araB) were within the group of the best scoring edges in the network. A complete 

list of the 93 connections cast as inactive is provided in Table 2. 
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Regulator(s) Gene(s) 
CpxR, EnvY, Lrp, OmpR ompC, ompF 
FruR, IclR aceB 
GutM, GutR srlA 
Rob, SoxS sodA 
GalR, GalS mglB, galE, galT 
Fis nuoB, nuoE, hupA 
CRP cyoA, cyoB, ompF 
FNR sucB, sucC, sdhA, sdhD, sdhC 
ArgP nrdB, nrdA 
ArgR nusA, metY 
HU galE, galT 
ArcA mdh, nuoB, sucB, sucC, aceB, sdhA, sdhD, treB, sdhC 
CspA Hns 
NarL nuoB, nuoE 
RstA ompF 
TorR hdeB 
Sigma70 serV, metW, metZ, metV 
Fur sodB, cyoA, cyoB, ompF, sodA 
FlhDC mglB, mdh 
DgsA ptsH 
Sigma38 mglB, galE, galT, hdeB, hdeA 
CdaR rnpB 
Sigma32 gapA 
MarA sodA, hdeB, hdeA 
H-NS sodB, srlA, galE, galT, cydB 
GadE cyoA, cyoB, hdeB 
GadX hns, hdeB 
TreR treB 
IHF sucB, sucC, nuoB, sodB, ompC, nuoE, aceB, ompF, soda 

 
Table 2. List of connections removed after POBN2 optimization. Regulators in first column were initially 
connected with the corresponding genes in the second column. 
 

III.4 Discussion 

By integrating a specific expression data set and a global regulatory network, 

POBN is able to identify a simplified regulatory network that is both mechanistically 

sound and maximally consistent with the expression data. This simplified network 

suggests which connections are of particular importance in the expression data.   

During the optimization process, we observed that POBN2 tended to remove 

edges from genes that had the higher connectivity (>3 parents).  In the initial regulatory 
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network from RegulonDB, each target gene had between 1-9 parent regulators.  After 

POBN2 optimization, the connectivity range was between 1-6 regulators per gene with 

most genes having between 1-4 parents. 

An extreme example of regulator trimming took place for the gene ompF. This 

gene is associated with 9 regulators based on the RegulonDB database. After 

optimization, 8 regulatory connections were removed from ompF suggesting that, based 

on the data set under study, the expression of this gene is better explained by 1 regulator 

rather than 9. Upon examination of the siblings of ompF in the optimized network (e.g. 

the genes that are also regulated by the same single parent), we see a regular, but 

nonlinear relationship between the gene expression values of ompF and its siblings (see 

Figure 9).  
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Figure 9. Expression value comparisons between siblings. All the genes shown are regulated by the same 
single regulator Sigma70.  Panels (A) and (B) compare the expression values of genes that originally 
appeared regulated by the same regulator in the global regulatory network. The genes rspD and rspM 
shown in  (A), are nearly linear related, while  glyW and asnT shown in (B) have a more complex 
relationship. After POBN optimization, ompF gene was disconnected from 8 of its 9 originally regulators in 
the global regulatory network. Panels (C) and (D) illustrate two examples of the association of ompF with 
genes under this same single regulator.  Note that different but clear non-linear associations are observed 
between ompF and its siblings. 

 

One may ask why any edges should be removed from the annotated regulatory 

network at all.  Presumably the annotated network is well validated experimentally, and 

as such should represent our best prediction of the gene regulatory relationships.  Based 

on the analysis here, we see two possible explanations.  First, it is possible that the edge 
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regulatory relationship present in RegulonDB would be an error or missannotation in the 

database.  A second more likely reason for an edge to be called inactive is that the 

regulatory association is biologically correct, but is not active in the gene expression 

samples used in this study.  In this latter case, removing the regulatory connection does 

not suggest that the there is no biological mechanism for the relationship, but instead that 

the connection is not relevant to the study.  In both cases, POBN2 will favor reducing the 

number of regulators for each gene and consequently reducing the complexity of the 

model with little or no impact on the model’s ability to predict the observed gene 

expression data. 

The genes metZ, metW, and metV illustrate an interesting ability of POBN2, as 

all of these genes are associated with only Sigma70 in the prior global network from 

RegulonDB. After optimization with POBN2, these methionine t-RNA coding genes 

ended with no parents at the end of the analysis as shown in Figure 10 (C).  A possible 

explanation for this parent elimination is that, for these genes, the prior network in 

RegulonDB did not have a complete list of possible regulators.  There is evidence in the 

literature that under grow rate perturbations, the factor for inversion stimulation Fis, is 

been known to drastically alter the tRNAs pool composition including methionine tRNAs 

[51]. The intracellular concentration of this global regulator (Fis) varies substantially in 

response to changes in the nutritional environment and growth phases [52], conditions 

present as part of the samples set used in this study. It is possible that the expression 

variance for these genes metZ, metW and metV is better explained by a different 

regulator, i.e Fis instead of Sigma70.  These results suggest that even when the true 

regulator is missing, POBN2 can still discriminate between consistent and inconsistent 
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connections. 

Figure 10. Optimization of genes regulated by the same group of regulators.  The networks in the top 
section are sub-networks of the original global network. Each sub-network has the original connectivity for 
the genes as suggested by RegulonDB.  In each case, each gene has an identical parent set.   Note that in the 
three cases, the same inactive connections were predicted for each gene within each group. 

 

By using a Bayesian network based approach the POBN algorithm is able to 

identify both linear and nonlinear relationships. For example, the regulatory relationship 

shown in Figure 3 includes both linear and nonlinear relationships.   By identifying both 

kinds of relationships, POBN is able to detect relationships between genes that are not 

possible to detect using linear methods or most commonly used clustering methods. 

In a larger context, the POBN approach provides a general way to integrate static 

observational data with knowledge about known regulatory relationships.   In the 

example provided here, we found networks that were maximally consistent with both a 

set of gene expression data and a gene regulatory network.   One could use a similar 

approach to identify relevant or active signaling pathways or protein phosphorylation 

networks from a mixture of experimental data and known topologies. By using POBN, all 
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members of the network need not be directly observed, as long the measurements that are 

used in some way reflect the activity of the unobserved nodes.
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CHAPTER IV 

 

RegNetB: Predicting Explanatory Regulator-Gene Relationships  

 

IV.1 Background 

What changes are responsible for making a tumor a tumor? If we knew the 

underlying cause for this change, then it may be possible to directly address the 

underlying dysfunction that causes tumorogenesis. One possible route to identifying a 

causal mechanism for tumorogensis is to gather a rich body of experimental data 

describing the state of many tumors and search for relevant signatures. Unfortunately, it 

is difficult to distinguish the signatures that are a consequence of the dysfunction from 

the signatures that cause the dysfunction.   

A further complication is that the activity of the factors that influence gene 

expression is difficult to observe directly. For example, consider the simplest case of a 

single transcription factor that regulates the expression of one target gene. In this case, 

the activity of the transcription factor may be governed by its past history of mRNA 

expression, possible splice variants, protein modification, binding with other factors, and 

where the transcription factor is localized in the cell. In this case, the most direct measure 

of the activity of the transcription factor is the expression of the target gene itself.   

However, when multiple genes are coordinately regulated by multiple regulators, 
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analyzing these cause and effect relationships becomes more difficult. 

One source of information relating transcription factors to their target genes is the 

transcription factor-DNA binding information in databases such as TRANSFAC and 

MsigDB [3, 7]. However, knowing transcription factor-DNA binding relationships alone 

does not identify which regulatory activities are relevant for a specific disease or tissue 

under study [24, 25].  This limitation can be partially overcome if gene expression data 

are integrated with transcription factor-DNA binding information to identify which 

transcriptional activities better explain the observed expression variation.   

Regulatory Networks-Bayesian (RegNetB) 

In this work, we have developed and tested a tool called Regulatory Networks-

Bayesian, or RegNetB, to carry out this integration of gene expression data and 

transcription factor-DNA binding information. RegNetB uses a simplified topology to 

describe a regulatory network in which the top layer of this network represents the group 

of unobserved regulators (transcription factor activities) and the bottom layer represents 

observed genes (mRNA expression values). This regulatory bipartite network model has 

been used elsewhere to represent transcriptional regulatory networks by adopting a linear 

mixing model [6, 31, 53]. Here we extend these models to account for nonlinear and 

combinatoric effects using a multinomial Bayesian model with Dirichlet priors as 

described elsewhere [17, 38, 50]. 

RegNetB is tested using gene expression data from a prostate cancer study carried 

out elsewhere [54, 55]. Despite the high incidence and mortality rate, the molecular 

mechanisms underlying the oncogenesis and progression of prostate cancer are still 
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unclear. Significant research has been dedicated to identifying prognostic markers, 

however less research has focused on identifying the regulatory mechanism that drives 

the disease [56]. 

By identifying a group of the most relevant regulatory relationships, RegNetB is 

able to identify which regulators are most likely responsible for the expression variations 

in the prostate cancer study evaluated here. In the next sections we describe the data 

processing and results obtained after RegNetB analysis. 

 

IV.2 Methods 

In the following section, I describe the RegNetB algorithm and the data 

preprocessing used in our test cases.  

RegNetB algorithm 

The transcription factor-gene network presented here is modeled as a Bayesian 

network by RegNetB. Regulators in this network are modeled as hidden variables and the 

observed variables (genes) are modeled using a multinomial model with Dirichlet priors 

as described elsewhere [17, 38, 50]. Below we provide a summary of the scoring process. 

For a typical Bayesian network scoring problem, a complete discrete data set 

describing the variables included in the network of interest is available. However, in this 

case again the transcription factors are not observed. To fill in the activity levels for the 

regulators, a Gibbs sampler is used to sample over the space unobserved regulators [20-

23].  Gibb’s sampling and network scoring were carried out using PEBL, a python library 
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developed in our research group [57]. PEBL estimates the probability of a discretized 

dataset given a specific network using a Bayesian Dirichlet equivalent metric described 

elsewhere [17]. The source code of PEBL can be freely downloaded from 

(http://code.google.com/p/pebl-project/). 

Two scoring steps are performed by RegNetB to evaluate the relative strength of 

each connection in the transcription factor-gene network. First, sample states of the 

unobserved transcription factors are taken using a Gibbs sampler. The sample states are 

taken after a burn in of 10 iterations. The second scoring step uses these sample states to 

rescore the whole network when each transcription factor-gene edge is removed and then 

re-added. The relative importance of the edge can then be interpreted as the change in the 

average score of the network when the edge is removed versus present. 

To generate the final list of regulators and genes of interest in our study, we first 

ranked all the connections based on the scores estimated by RegNetB. After normalizing 

all the connection scores, a graphical analysis was used to identify thresholds that 

differentiate a group of relatively stronger connections from the rest based on their 

scores. A list of all the genes and regulators was generated from this set of connections. 

Global human transcription factor-gene network 

A global human transcription factor-gene network was created using the 

Molecular Signatures Database (MsigDB) [3]. The source of the “C3: Motif Gene Set” 

information in this database, the collection we used to create the global human 

transcription network, is described elsewhere [9]. Briefly, the transcription factor binding 

sites were predicted using promoter sequence analysis, gene set enrichment analysis 
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(GSEA), and comparative genomic analysis. After collecting these transcription factor 

binding sites and the genes associated with them, the gene names were mapped to their 

official Entrez gene symbols. Only those genes mapping to unique official gene symbols 

were included. Similarly, some binding sites mapped to known transcription factors 

(regulators) names documented in TRANSFAC while others were only described as the 

sequence of the promoter itself. Regulatory sequences not mapping to any known 

regulator were listed as UK (unknown) followed by an integer.  

Gene expression data 

We used RegNetB to analyze 146 gene expression profiles from prostate tissue 

samples described elsewhere [54, 55] and available online on GEO as GDS2545. This set 

of expression profiles includes 18 profiles from normal prostate tissues, 63 profiles from 

normal prostate tissues adjacent to localized tumor, and 65 profiles from primary prostate 

cancer tumors. The 146 gene expression profiles were pre-processed using the web-based 

genechip analysis system (WGAS) described elsewhere [58, 59] for data normalization 

and mapping of probe sets ID to official gene symbols.  

Next we filtered the gene list to only include genes that could be meaningfully 

analyzed. The genes passing the filter must: (1) exhibit differential expression across the 

samples; (2) be present in the global human transcription network; and (3) not have more 

than 10 regulators as parents in the global human transcription network. The first 

criterion was satisfied by selecting the top 500 genes with the largest variation as 

measured by the magnitude of the standard deviation of the expression values across 

samples. The second and third criteria were then applied to this list of 500 genes to 
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identify genes in the network with 10 or fewer regulators. We note that while it is 

possible that a gene with more than 10 regulators could mechanistically participate in a 

strong regulatory relationship, this relationship will not be identifiable with a small 

dataset in a multinomial model such as we are using here.  In a multinomial model, the 

number of parameters increases exponentially with the number of regulators, making any 

relationship in a highly connected gene weak. As such, by eliminating genes with more 

than 10 regulators we are eliminating genes that are unlikely to score well.   

Data discretization   

The scoring metric used by RegNetB requires that the data be discretized. The 

data for this study were binned into three states describing a high, medium and low 

expression level for the variables. The bin sizes were evenly distributed across samples 

for each variable generating a discretized data set in which variables have their top 1/3 of 

the data entries based on expression as “high”, the bottom 1/3 of the entries as “low” and 

the remainder 1/3 of the entries as “medium”. This binning strategy has been used 

elsewhere and has been shown empirically to be robust in capturing relevant details of the 

systems under study [36, 40, 48, 49]. 

 

IV.3 Results and Discussion 

Global human transcription factor-gene network 

The final global human transcription factor-gene bipartite network generated from 

the MsigDB consists of 12,026 gene symbols and 392 regulators with a total of 134,874 
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regulator-gene associations. From these 392 regulators or regulatory regions, 217 were 

associated with known transcription factors names. The remaining 175 regulators (UK1 

to UK175) consisted of 60 known regulatory sequences documented in TRANSFAC and 

115 regulatory sequences found and documented elsewhere [9]. After filtering, we 

compiled a final list of 253 genes and 292 regulators interconnected in a bipartite network 

with 1,266 connections. 

Strongest connections identified by RegNetB 

Figure 11(A) shows the score distribution of transcription factor-gene 

connections.  Based on this distribution, we selected the connections that ranked at the 

top area of the curve illustrated in the Figure 11(A). This group of regulatory connections 

shows a clear similarity in terms of the regulatory strength. A total of 250 regulatory 

connections were collected, all with a score >0.993.  Figure 11(B) shows the top 10 

connections from this list. 

Figure 11. Connections ranked by score: (A) Relative score distribution for the regulatory connections kept 
after RegNetB analysis. The shadowed region shows the top 250 connections based on score. (B) Top 10 
connections predicted by RegNetB. 
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We noticed that not all connections associated with a regulator included in the top 

250 strongest connections list were part of the group of top connections.  This relative 

strength distribution implies that some regulatory connections associated with a specific 

regulator play a more relevant regulatory function than the others. 

PAX4 regulatory role 

Regulation of RLN1 by PAX4 ranked top on the list of strong connections in 

Figure 11(B). Similarly, the regulation of RLN2 by PAX4 also ranked well (fifth 

position). RLN1 and RLN2 have been associated with prostate cancer in other studies 

[60]. The regulator PAX4 has been identified as a tumor suppressor in melanoma studies 

[61], however has not been associated with prostate cancer [62]. 

To further evaluate the RegNetB prediction of PAX4’s influence on RLN1 and 

RLN2, we examined the expression levels of the target genes and any other regulator(s) 

associated with the genes. As shown in Figure 12(A), the expression patterns of RLN1 

and RLN2 share a strong similarity in terms of regulation not only by the topological 

model but also by the coordinated linear pattern observed in the data. This observation 

supports the prediction that PAX4 is a common factor responsible for changes in the 

expression of RLN1 and RLN2. 

ACPP (PAP) regulation 

Another connection observed in the strong connection list shown in Figure 11(B) 

was the regulation of ACPP by JUN. ACPP or PAP (Prostatic Acid Phosphatase) is a 

known prostate cancer marker used to monitor tumor progression and/or patients 

improvement [63]. RegNetB suggested that the main regulatory activity associated with 
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this gene is best described by the regulators JUN, BACH1, and BACH2. JUN is an 

oncogene that has been associated with different types of cancer including prostate cancer 

tumor progression [64, 65]. In the case of BACH1 and BACH2, even though there are 

some associations with breast cancer and leukemia[66, 67], we found no links with 

prostate tumor progression. 

MAZ and TAF co-regulation 

To further explore RegNetB’s results, we examined sets of two or more genes that 

shared the same group of regulators within the selected list of 250 regulatory connections. 

We found two genes, PGC and GDF15 that are both co-regulated by TAF and MAZ.  

Both PGC and GDF15 have been associated with prostate cancer and have been 

documented as potential biomarkers [68-70]. Figure 12(B) shows coordinated patterns 

between these genes but not in a linear manner. Interestingly, MAZ and TAF have been 

associated with other types of cancer [71-73], but we found no reports associating MAZ 

and TAF with prostate cancer. 

 

Figure 12. Top scoring regulatory relationships and discretized data patterns. Each grid in (A) and (B) 
shows the nine possible state combinations in which each pair of variables is observed in the discretized 
expression data.  In the regulatory networks, the dotted ovals represent regulators while the solid ovals 
represent target genes. (A) RLN1 and RLN2  expression and regulatory network.  Note that RLN1 and 
RLN2 show a nearly linear co-expression pattern.  (B) PGC and GDF15 expression and regulatory 
network.  The expression pattern of PGC relative to GDF15 does not show a linear pattern, but still scores 
well in the multinomial model used by RegNetB. 
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These results suggest that RegNetB is able to identify physiologically relevant 

regulatory protien-gene relationships based on gene expression data. Many of the target 

genes identified by RegNetB have been implicated in prostate cancer progression, but the 

relevant regulatorion is largely new. In particular, RegNetB identified the regulators 

PAX4, BACH1, BACH2, MAZ and TAF as playing a central role in this prostate cancer 

gene expression data set. 

 The method used by RegNetB can be directly applied to any gene expression 

dataset, as long as a transcriptional regulatory network is known for the organism. By 

identifying explanatory regulatory protien-gene relationships, RegNetB allows a 

researcher to look beyond changes in gene expression, and start to identify possible 

causes for that change in expression.
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CHAPTER V 

 

Conclusions 

 

In this thesis I showed how integration of gene expression data with existing 

knowledge about gene networks can identify parts of the gene network that are relevant 

to the specific cellular conditions contained in the data. My study focused on 

transcriptional regulation, but a similar approach can be applied to other biological 

networks. A key feature of the methods I have developed in this thesis is the ability to 

infer relationships in observed variables through a network containing both observed and 

unobserved elements.  

Understanding how genes are regulated is an important step to identify a 

molecular mechanism associated with a condition. Furthermore, if this condition is a 

disease, the understanding of key genes and proteins relationships provides new research 

opportunities to develop new treatments or drug designs.  

In the following three sections I summarize the major findings and conclusions on 

each of the research chapters II, III and IV. I also include a fourth section with new 

research directions motivated by this work. 
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V.1 Regulatory relationships identification with unobserved regulators 

 In Chapter II I addressed how to identify most explanatory regulator-gene 

relationships using only observed gene expression data. Using synthetic data and a small 

network I showed that the original network could be recovered reliably using gene 

expression data alone. The relationships captured in the network included both linear and 

non-linear cases, and the synthetic analysis was done in the presence of significant noise. 

Interestingly, the simulations showed that after some point, more data do not necessarily 

mean more accurate results. On the other hand, even when a relatively small dataset, 

important features can still be obtained. 

 After evaluating different sets of 2 regulators and 4 genes examples using E. coli 

gene expression data it was clear that when the tested regulatory associations contained 

genes with a strong signal, the predicted true network scored significantly better than any 

other network containing the same genes. Also, when the predicted models were 

compared with global regulatory models from literature, the predicted method showed 

simpler relationships suggesting that literature models contained relationships that were 

not supported by the dataset used.  

The ability of this method to identify specific and true regulatory relationships 

even with the limitation of having hidden variables motivated further studies in this area 

to improve the efficiency of the method in terms of scalability and computational speed. 
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V.2 Integration of gene expression data and general transcriptional regulation 

knowledge 

 Chapter III introduced a novel approach, POBN2, to systematically integrate 

transcriptional regulatory networks with gene expression data to identify inactive or false 

connections. The main advantage of POBN2 is that it can be applied to large networks.  

POBN2 addresses the main limitation found on traditional sequence analysis 

methods: the identification of false predictions. The reduced network suggested by 

POBN2 provides a more clear and accurate view of the regulatory associations that are 

both mechanistically sound and maximally consistent with the expression data. POBN2 

can also be used to identify active signaling pathways or portions of a known pathway 

that is highly active if experimental data and some knowledge of the underlying topology 

are known. 

 

V.3 Identification of the most important regulator-gene activities associated with 

a disease 

 In Chapter IV I changed focus from non-relevant or false connections to 

connections that were more active in the network based on the data. After the analysis of 

results in Chapter III I observed that the list of the strongest connections based on score 

did not significantly change during the optimization of the initial network. This 

observation not only suggested that these connections consistently scored well on each 

independent optimization steps but that these group of connections play an important role 

explaining the genes expression variances observed in the dataset. 
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 The human prostate cancer dataset studied in this chapter revealed a group of 

strong connections in a human transcription network that are more likely to be associated 

with prostate tumor progression or prostate cells malfunctioning that could promote 

localized prostate tumors. Although most of the genes included in the top regulator-gene 

associations group are genes that have been associated in the past with prostate tumor 

progression based on literature review, some of the regulators had not been implicated 

and neither their regulatory roles associated with the disease. 

 These computational approaches developed in this work (POBN2 and RegNetB) 

to integrate expression data and transcription networks allow a researcher to look beyond 

a group of differentially expressed genes between two conditions and identify possible 

regulatory mechanisms that cause the expression changes. 

 

V.4 Future research 

 In the next sections I include some ideas for future research mainly motivated by 

some of the challenges observed in this work. 

 

V.4.1 New sampling approaches 

 One of the limitations of working with hidden variables is the computational time 

associated with sampling across hidden variables. For methods similar to the one 

presented in this work, some exploration can still be done to improve the sampling 

computational time without sacrificing consistency and accuracy on the predictions. 
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 For the system studied in Chapter IV, all regulators in the global network were 

usually present when the network was mapped against different list sizes of the top 

differentially expressed genes based on variance. Further selection of genes and the graph 

portion associated with these top differentially expressed genes were also filtered based 

on the number of parents. Genes with many parents can be difficult to analyze not only 

because the signal in the data could not be enough for parameters estimation and 

connections score evaluation but also because it can represent a challenge in terms of 

memory demand. 

One possible approach to test after following the method presented in Chapter III 

and IV is to vary the number of highly connected genes to the network. Before the 

sampling process, genes having a maximum of X parents = 3, 4, 5, 8, 10 can be selected 

as a starting point (one xi at a time).  For each value of xi, the initial network is sampled 

to store regulators states configurations. After this sampling, genes having xj > xi parents 

can be added to the sampled network.  Each connection can be scored using the sampled 

regulators state configurations values obtained with xi  parents even when some additional 

connections were added to the sampled network.  

Three key questions could be answered from this analysis.  First, are the 

predictions for the genes consistent when sampled values for the regulators are fixed 

based on a smaller portion of the network (xi vs. xj)?  Second, how sensitive are the 

predictions to the difference between xi and xj?  Third, can a similar approach be used to 

predict missing connections on the initial network (possible false negatives in the initial 

network? 
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V.4.2 Regulatory networks learned from data alone 

 In Chapter II we showed that it is possible to accurately learn a network with 

hidden regulators using only data from the observed regulated variables. The challenge 

here was again the sampling method to score each possible network. One interesting 

feature of the networks learned using only the data from the observed variables is that the 

regulators not only can represent proteins but any chemical or environmental factor that 

might affect the expression of the observed variables. In that sense, a network learned 

directly from data and in which the regulators are modeled as hidden variables will 

contain a more complete view of the factors regulating the genes. 

 Alternate sampling approaches can be explored to overcome the computational 

time limitation. Methods such as variational bayesian learning [53] have been suggested 

as a computationally faster alternative for hidden variable states sampling. However, the 

optimization or scoring process when using variational Bayes methods involves the 

assumption of an auxiliary distribution over the hidden variables [74]. Two main 

questions can lead this research: First, is there a systematic way that can be develop using 

the observed variables information in a system to suggest a sounded probability 

distribution for the hidden variables? Second, for a specific type of regulatory networks, 

e.g. transcriptional regulatory networks, is there a typical or recurrent probability 

distribution that can be assumed as a general approximation? 

Furthermore, even with a faster sampling method, some areas of the network 

learning steps need to be explored. For example, how many hidden regulators are 

optimums to construct such network? As a first approximation, information from 
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transcriptional networks and pathways associated with the genes to be analyzed can be 

used to estimate a total number of starting regulators in the network. In addition, some 

initial structural parts of the network can be fixed or suggested based on clustering or 

mutual information analysis on the observed variables prior to the network learning steps.  

Another area to explore in this network learning problem using only expression 

data is how this type of more global regulatory networks compares with other networks 

such as pathways, transcriptional networks, etc.? Can the identity of some of the hidden 

regulators be deduced, for example the proteins suggested as regulators in pathways and 

transcriptional networks, by direct comparison of the networks structures?             

 

V.4.3 Tissue specific regulatory associations and causality 

For a specific biological condition, e.g. a specific cell type, the approaches 

presented in chapter III and IV can be used to identify the most active regulatory 

associations describing the difference in expression of the genes. These regulatory 

activities may include common regulatory steps needed by most cells as well as cell or 

tissue specific regulatory activities. By comparing independent networks learned from 

two different cells/tissues/conditions, can the normal regulatory associations common for 

most cells versus the ones that are tissue/cells or condition specific be differentiated? 

Furthermore, can a disease condition or gene profile describing a disease be 

compared to what it is expected to be a normal gene profile to identify a small causal 

group of genes associated with the transition of the normal state to the disease state? 

Using a network learned from normal tissue samples, identification of a small subset of 
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key variables that could be the cause of an abnormal tissue condition can be suggested.  

Most of the differences in the expression of genes arise from changes in expression of a 

few causal variables. Sampling methods can be designed to predict the top candidate 

causal variables responsible of the global differences between two tissue profiles. Using a 

learned network and a distance metric, the difference between two profiles can be 

quantified after a single perturbation is suggested in a normal profile. 

 

 Hidden variables analysis in general is a challenging problem. Nevertheless, the 

network-based models used in computational biology can benefit from the expressiveness 

and representational accuracy of models containing hidden variables. The methods 

presented here provide a practical alternative to computationally expensive hidden 

variable methods currently available.   Furthermore, the methods developed in this thesis 

provide the foundation to further explore interesting areas such as regulatory networks 

and biological pathways with more flexibility and in more depth. 
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Appendix 1 

 

POBN2 single round source code 

              
# Created by: Angel Alvarez 
# angelpr@umich.edu 
# Date: 09-21-09 
################################## 
# This is a python code that uses PEBL, a python library, (see reference below) to sample from a  
# bipartite network with hidden variables and gene expression data to calculate the BDe score of the 
# initial network and any resultant network after disconnecting one edge at a time.   
# Use a prior graph with hidden regulators containing active and inactive connections to  
# approximate missing entries states configuration to identify most of the inactive edges.    
# Only present connections in this prior graph will be evaluated to identify the weakest and  
# strongest connections.  
# This script run a single POBN2 optimization round. For subsequent analysis, data and graph  
# need to be updated based on each POBN2 optimization rounds results. 
# PEBL needs to be installed to run this script. PEBL downloads can be found at 
# http://code.google.com/p/pebl-project/ or more specific Installation instructions can be  
# found at http://ano.malo.us/pebl/docs/ 
  
import datetime        
from pebl import cpd    # PEBL need to be installed to import this module 
cpd.MultinomialCPD = cpd.MultinomialCPD_Py # When working with many hidden variables 
       # this is needed to avoid memory problems. 
from pebl import data, network, evaluator  # normal modules from PEBL to handle data,  
       # networks and scoring processes.  
import numpy as N    # For the data generation/modification process  
from pebl.util import unzip   # For the data modification process (when  
       # substituting missing entries for sampled values. 
import cPickle 
import numpy 
from numpy import * 
import random 
 
# General variables: 
WINDOW=250     # Number of missing entries state configurations to  
       # be used for averaging networks scores 
DATAFILE1="final_contXX_NAT_data_set_r4.txt" # File containing gene expression and list of  
       # regulators based on starting graph used. 
       # All entries for regulators should be an 'X' 
DATAFILE2="final_cont_NAT_data_set_dummy_r4.txt" # Same data with dummy entries for  
        # regulators. Dummy values will eventually  
        # be substituted by the sampled values after  
        # Gibbs sampling. It is just to create a data  
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        # object with no missing entries. 
PRIOR_NET="final_prior_graph_NAT_data_set_r4.dat" # Initial global graph as a tupple list of  
        # connections 
OUTFILE1="scoring_edges_effect_NAT_set_r4.txt"  # computational time monitoring data 
OUTFILE2="connections_results_NAT_set_r4.dat"  # Dictionary with results. Evaluated  
        # connections are the keys 
OUTFILE3="results_r4.txt"    # results as a tab delimitted txt file. 
 
# Reading network and data files 
d=data.fromfile(DATAFILE1) 
d2=data.fromfile(DATAFILE2) 
# Discretizing data into three equal bin size (3 states). If data is discretized, these 
# steps are not needed.  
includevars = [i for i in range(len(d.variables)) if not all(d.missing[:,i])] 
d.discretize(includevars=includevars, numbins=3) 
hiddenvars=[i for i in range(len(d.variables)) if all(d.missing[:,i])] 
for i in hiddenvars: 
 d.variables[i].arity=3 
d2.discretize(numbins=3) 
# End of discretization. Start reading graph and identifying missing entries indexes. 
f=open(PRIOR_NET,"r") 
edges_list=cPickle.load(f) 
f.close() 
net=network.fromdata(d) 
net.edges.clear() 
net.edges.add_many(edges_list) 
missing_indices = unzip(N.where(d.missing==True)) 
print "" 
print "graph and prior network read succesfully" 
print "" 
 
# Gibbs evaluator, scoring prior graph and missing values retrieval: 
 # Gibbs sampling burn in will run for about 1 hour (these samples will be discarded): 
 # PEBL provides to set the burn in in terms of number of iterations. Default is 10 iterations 
 # One iteration is one round of sampling for all variables. 
burn_time=0 
now=datetime.datetime.now() 
print "One Gibbs sampling iteration started at "+str(datetime.datetime.now()) 
s1="" 
s1+="One iteration started:\t"+str(datetime.datetime.now())+"\n" 
sc1=evaluator.MissingDataNetworkEvaluator(d,net, max_iterations="1") 
sc1.score_network() 
gstates1=sc1.gibbs_state 
now_end=datetime.datetime.now() 
print "One Gibbs sampling iteration ended at "+str(datetime.datetime.now()) 
print "" 
s1+="One iteration ended:\t"+str(datetime.datetime.now())+"\n" 
while burn_time <= 1 and burn_time >=0: 
 sc1=evaluator.MissingDataNetworkEvaluator(d,net, max_iterations="1", gibbs_state=gstates1) 
 scored_prior=sc1.score_network() 
 gstates1=sc1.gibbs_state 
 now2=datetime.datetime.now() 
 burn_time=now2.hour-now.hour 
s1+="burn in ended:\t"+str(datetime.datetime.now())+"\n" 
f21=open("burn_in_time.txt","w") 
f21.write(s1) 
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f21.close() 
print "scored prior after burn in : "+str(scored_prior) 
print "" 
print "Starting creating and storing Window values for missing entries at "+str(datetime.datetime.now()) 
s1+="Start window:\t"+str(datetime.datetime.now())+"\n" 
# Scoring prior avg over WINDOW values:  
results=[]   # all initial global graph scores: one for each collected set. 
gibbs_list=[]   # all gibbs values within WINDOW used to avg-score each net 
for x in range(WINDOW): 
 sc1=evaluator.MissingDataNetworkEvaluator(d,net, max_iterations="1", gibbs_state=gstates1) 
 results.append(sc1.score_network()) 
 gstates1=sc1.gibbs_state 
 gibbs_list.append(sc1.gibbs_state.assignedvals) # "WINDOW" set of configuration values 
print "Ended creating and storing Window values for missing entries at "+str(datetime.datetime.now()) 
print "" 
s1+="End window:\t"+str(datetime.datetime.now())+"\n" 
f4=open("gibbs_list_window.dat","w")   # Storing missing entries configuration set 
cPickle.dump(gibbs_list, f4) 
f4.close() 
av=0.0 
for z in results: 
 av+=z 
av=av/len(results) 
results.append(av) 
print "Ended scoring prior using window values at "+str(datetime.datetime.now()) 
print "" 
# Disconnecting each edge (one at a time) and scoring network with WINDOWS gibbs sampled values for  
# missing entries to estimate each edge effect on global initial network. 
print "started scoring networks with WINDOW values after disconnecting edges: 
"+str(datetime.datetime.now()) 
s1+="Start scoring nets:\t"+str(datetime.datetime.now())+"\n" 
results2={} 
for y in gibbs_list: 
 d2.observations[unzip(missing_indices)] = y 
 sc2=evaluator.SmartNetworkEvaluator(d2,net) 
 if "PRIOR" in results2.keys(): 
  results2["PRIOR"].append(sc2.score_network()) 
 else: 
  results2["PRIOR"]=[sc2.score_network()] 
 for x in edges_list: 
  sc2.alter_network(remove=[x]) 
  if x in results2.keys(): 
   results2[x].append(sc2.score_network()) 
   sc2.alter_network(add=[x])  
  else: 
   results2[x]=[sc2.score_network()] 
   sc2.alter_network(add=[x]) 
print "ended scoring networks with WINDOW values after disconnecting edges: 
"+str(datetime.datetime.now()) 
print "" 
print "started calculating networks avg scores: "+str(datetime.datetime.now()) 
final_results={} 
for x in results2: 
 scores=results2[x] 
 avg_score=0.0 
 for z in scores: 
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  avg_score+=z 
 avg_score=avg_score/len(scores) 
 final_results[x]=avg_score 
print "ended calculating networks avg scores: "+str(datetime.datetime.now()) 
s1+="End scoring nets:\t"+str(datetime.datetime.now())+"\n" 
f6=open(OUTFILE1,"w") 
f6.write(s1) 
f6.close() 
f7=open(OUTFILE2, "w") 
cPickle.dump(final_results, f7) 
f7.close() 
s1="" 
for x in final_results: 
 s1+=str(x)+"\t"+str(final_results[x])+"\n" 
f8=open(OUTFILE3,"w") 
f8.write(s1) 
f8.close() 
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Appendix 2 

 

Synthetic data generator 

 
# 01-19-2010 BY: Angel Alvarez 
# This is a python script that generates synthetic discrete gene expression data for the bipartite network 
# defined in “edges_list”. The data is generated based on a conditional probability table specified in  
# the script for the network (“edges_list”). Variables are allowed a maximum of 3 states (0,1,2).  
# The format of the final data file stored in OUTFILE1 will have the required format to be used by PEBL,  
# a python library for Bayesian networks learning. PEBL downloads can be found at 
# http://code.google.com/p/pebl-project/ or more specific Installation instructions can be  
# found at http://ano.malo.us/pebl/docs/ 
  
import random 
import cPickle 
 
# General variables and constants: 
VARS=13   # Total variables in the study 
CUE=4    # cue nodes (parents) 
SAMPLES=5000   # size of the data set 
OUTFILE1="data_file1.txt" 
# The graph used as the initial graph is defined as a tupple of connections. The first integer  
# in each tuple correspond to a regulator or parent node and the second integer in the tuple is  
# a child node or regulated/observed variable. In this case, the four regulators are 0-3 and  
# the regulated observed variables are 4-12. 
edges_list=[(0,4),(0,5),(0,6),(0,7),(1,7),(1,8),(1,9),(2,7),(3,10),(3,11),(3,12)] 
nodesList=range(VARS) 
parents=range(CUE) 
children=nodesList[CUE:] 
 
# function to get a list of parents for a "node" based on a "graph" containing  
# connections as a tuple list:  
def find_parents(node, graph): 
 parent_list=[] 
 for x in graph: 
  if (node == x[1]) and (x[0] not in parent_list): 
   parent_list.append(x[0]) 
 parent_list.sort() 
 return parent_list 
 
# establish the CPTs as dictionaries and defining each var dictionary as a dictionary: 
# each cpt[node #]={}. Keys for each var dic (node) are parents state configs, and the dict  
# content are parameters. Example: cpt[5][(0,0,1)]=[0.6,0.4,0.1] means that for node 5,  
# having 3 parents in configuration (0,0,1), the parameters are P(node=0)=0.6, P(node=1)=0.4, etc. 
cpt={} 
for i in range(VARS): 
 cpt[i]={} 
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# cpt VALUES FOR PARENTS. For 3 states, the greater amount of variations for a parent is when their  
# parameters are very similar for any state (1/3 or ~0.33) 
for x in parents: 
 v1=random.uniform(0.31,0.35) 
 v2=random.uniform(0.31,0.35) 
 v3=1.0-v2-v1 
 cpt[x][()]=[v1,v2,v3] 
        
# CHILD NODES CPT (conditional probability table): 
cpt[4][(0,)]=[0.1,0.8,0.1] 
cpt[4][(1,)]=[0.2,0.1,0.7] 
cpt[4][(2,)]=[0.8,0.1,0.1] 
cpt[5][(0,)]=[0.2,0.6,0.2] 
cpt[5][(1,)]=[0.1,0.2,0.7] 
cpt[5][(2,)]=[0.7,0.1,0.2] 
cpt[6][(0,)]=[0.1,0.7,0.2] 
cpt[6][(1,)]=[0.1,0.1,0.8] 
cpt[6][(2,)]=[0.6,0.2,0.2] 
cpt[7][(0,0,0)]=[0.7,0.2,0.1] 
cpt[7][(0,0,1)]=[0.6,0.2,0.2] 
cpt[7][(0,0,2)]=[0.8,0.1,0.1] 
cpt[7][(0,1,0)]=[0.7,0.2,0.1] 
cpt[7][(0,1,1)]=[0.6,0.2,0.2] 
cpt[7][(0,1,2)]=[0.8,0.1,0.1] 
cpt[7][(0,2,0)]=[0.6,0.1,0.3] 
cpt[7][(0,2,1)]=[0.8,0.1,0.1] 
cpt[7][(0,2,2)]=[0.2,0.6,0.2] 
cpt[7][(1,0,0)]=[0.7,0.2,0.1] 
cpt[7][(1,0,1)]=[0.6,0.2,0.2] 
cpt[7][(1,0,2)]=[0.7,0.2,0.1] 
cpt[7][(1,1,0)]=[0.7,0.2,0.1] 
cpt[7][(1,1,1)]=[0.1,0.8,0.1] 
cpt[7][(1,1,2)]=[0.2,0.6,0.2] 
cpt[7][(1,2,0)]=[0.7,0.1,0.2] 
cpt[7][(1,2,1)]=[0.2,0.2,0.6] 
cpt[7][(1,2,2)]=[0.1,0.1,0.8] 
cpt[7][(2,0,0)]=[0.7,0.2,0.1] 
cpt[7][(2,0,1)]=[0.6,0.2,0.2] 
cpt[7][(2,0,2)]=[0.7,0.1,0.2] 
cpt[7][(2,1,0)]=[0.8,0.1,0.1] 
cpt[7][(2,1,1)]=[0.1,0.8,0.1] 
cpt[7][(2,1,2)]=[0.2,0.2,0.6] 
cpt[7][(2,2,0)]=[0.1,0.7,0.2] 
cpt[7][(2,2,1)]=[0.2,0.2,0.6] 
cpt[7][(2,2,2)]=[0.1,0.1,0.8] 
cpt[8][(0,)]=[0.7,0.2,0.1] 
cpt[8][(1,)]=[0.1,0.8,0.1] 
cpt[8][(2,)]=[0.2,0.1,0.7] 
cpt[9][(0,)]=[0.8,0.1,0.1] 
cpt[9][(1,)]=[0.1,0.7,0.2] 
cpt[9][(2,)]=[0.1,0.1,0.8] 
cpt[10][(0,)]=[0.8,0.1,0.1] 
cpt[10][(1,)]=[0.1,0.8,0.1] 
cpt[10][(2,)]=[0.1,0.1,0.8] 
cpt[11][(0,)]=[0.6,0.2,0.2] 
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cpt[11][(1,)]=[0.1,0.6,0.3] 
cpt[11][(2,)]=[0.1,0.1,0.8] 
cpt[12][(0,)]=[0.1,0.2,0.7] 
cpt[12][(1,)]=[0.1,0.7,0.2] 
cpt[12][(2,)]=[0.7,0.2,0.1]  
 
# sampler function: provide list [v1, v2, v3...] where v1,v2,v3 are parameters (probability values) 
# and get out a state 
def sampler(probs): 
 r=random.random() 
 sum=0.0 
 count=0 
 for p in probs: 
  sum+=p 
  if sum>r: 
   return count 
  count+=1 
 return len(probs)-1 
 
# Generating data: 
mydata=[] 
state={} 
for x in range(SAMPLES): 
 sample_values=[] 
 for a in parents: 
  state[a]=sampler(cpt[a][()]) 
  sample_values.append(state[a]) 
 for b in children: 
  if len(find_parents(b,edges_list)) == 0: # orphans 
   sample_values.append(sampler(cpt[b][()])) 
  else: 
   pstate=[]     # To store parents state on sample 
   node_parents=find_parents(b,edges_list) # finding child parent(s) 
   for p in node_parents: 
    pstate.append(state[p]) 
   cptvals=cpt[b][tuple(pstate)] 
   sample_values.append(sampler(cptvals)) 
 mydata+=[sample_values] 
 
# saving data as a string/txt ready to be used with PEBL  
s='' 
for x in nodesList: 
 if x == nodesList[len(nodesList)-1]: 
  s+=str(x)+",discrete(3)"+"\n" # This heading will tell PEBL the name of the variable 
 else:    # (here are integers), that the variable is   
  s+=str(x)+",discrete(3)"+"\t" # "discrete" and it has 3 states. 
for x in mydata: 
 for y in range(len(x)): 
  if y == len(x)-1: 
   s+=str(x[y])+"\n" 
  else: 
   s+=str(x[y])+"\t" 
r1=open(OUTFILE1,"w") 
r1.write(s) 
r1.close 
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