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Abstract 
 
 

The non-enveloped murine polyomavirus (Py) binds to receptors on the cell 

surface to gain entry into host cells. The virus then traffics to the endoplasmic 

reticulum (ER) where it penetrates the membrane and enters the cytosol, finally 

reaching the nucleus to cause infection. How Py is transported from the plasma 

membrane to the ER, however, is not clear. The sialic acid-galactose containing 

gangsliosides GD1a and GT1b have been reported to be the functional receptors 

for Py to stimulate Py infection in host cells. Many glycoproteins, which also 

contain terminal sialic acid-galactose moiety, can in principle engage Py to be 

Py’s receptors. However, how these glycolipid and glycoprotein receptors guide 

Py intracellular transport and regulate Py infection are poorly understood.  

 

We show that GD1a is the functional entry receptor for Py. GD1a binds to Py on 

the plasma membrane, and the GD1a-Py complex is internalized and transported 

to the endolysosomes where the low pH triggers a conformational change that 

promotes the subsequent ER-to-cytosol membrane penetration of Py. GD1a then 

sorts Py from the endolysosomes to the ER, leading Py to the infectious pathway. 

By contrast, glycoproteins act as decoy receptors. They compete with GD1a on 

the cell surface and interact with Py, guiding Py to the endolysosomes where the 

virus is trapped and infection is restricted. Therefore, glycolipids and 

glycoproteins, two major constituents of the plasma membrane, act in opposing 

manners to control Py infection. 



 1

 

 

 

Chapter 1 

 

Introduction 

 

Polyomaviruses are noneveloped, icosahedral viruses with double strand DNA. 

Polyomaviruses are named from their ability to induce multiple tumors. The 

family of polyomaviruses includes murine polyomavirus (Py), simian SV40, 

human JC virus (JCV), BK virus (BKV), KI virus, WU virus and Merkel cell 

polyomavirus (MCPyV). Murine polyomavirus induces tumors in mouse skin, 

gland, thymus, and other organs (Benjamin, 2001). SV40, a polyomavirus of the 

rhesus macaque, is oncogenic to rodents, and is also a potential oncogenic virus 

in human (Lee and Langhoff, 2006). BK virus and JC virus naturally infect 

humans, causing nephropathy and progressive multifocal leukoencephalopathy 

(Eash et al., 2006). KI (Allander et al., 2007), WU (Gaynor et al., 2007), Merkel 

cell (Feng et al., 2008) viruses were three new polyomaviruses recently isolated 

in humans, which further stimulate the studies of polyomaviruses as human 

pathogens.   

 

Polyomaviruses are icosahedral particles with ~40 nm in diameter. They have 

three capsid proteins, VP1, VP2, and VP3 (Figure 1.1). Each virion contains 72 

pentamers (360 copies) of the major capsid protein VP1, and 72 copies of 

internal structural protein VP2/VP3. Each VP1 pentamer is associated with an 

internal protein VP2 or VP3. The C-terminal arm of the VP1 molecule is extended 

to the adjacent pentamers to stabilize the interpentamer interaction (Liddington et 

al., 1991; Stehle et al., 1994). The virion also contains ~200 copies of histones, 

which is enclosed in the center of the viral particle. The genomes of 

polyomaviruses are ~5k bp in size. They encode T antigens that initiate viral DNA 

synthesis. Assessing the expression of large T antigens is an efficient way to 
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determine whether the virus infection is successful. All these capsids, histones 

and T antigens contain nuclear location sequence (NLS), which is not exposed in 

the intact virion (Benjamin, 2001). 

 

Polyomaviruses hijack cellular machineries to cause diseases (Figure 1.2). Upon 

binding to their receptors on the plasma membrane, polyomaviruses are first 

endocytosed into the cell, and retrograde transported to the ER. Then they 

penetrate the ER membrane to enter the cytosol. From the cytosol, they are 

transported to the nucleus to replicate and transcribe the DNA, which leads to 

lytic infection or cell transformation (Whittaker, 2003). As the ER membrane is 

continuous with the nuclear membrane, it remains possible that polyomaviruses 

can enter the nucleus directly from the ER by penetrating the inner nuclear 

membrane. However, at least for SV40, reaching the cytosol is important 

because virus infection is inhibited by introducing an antibody against VP1 or 

VP3 to the cytoplasm (Nakanishi et al., 1996).    

 

Murine polyomaviruses (Py) is the first isolated polyomavirus (Gross, 1953). 

They cause multiple tumors in different organs of mouse (Benjamin, 2001). Even 

though Py may not relate to human diseases directly, it is considered a good 

model to study the cellular machineries that guide the infection process 

generally. Additionally, findings based on Py should also lead to a better 

understanding of human polyomavirus infection. To initiate infection, Py first 

binds to ganglioside GD1a, which is the functional receptor for Py, on the plasma 

membrane (Tsai et al., 2003). The entry pathway of Py seems to be cell 

dependent. In mouse NIH 3T3 cells or primary baby mouse kidney (BMK) cells, 

Py enters cells through a clathrin independent and caveolin-1 independent 

pathway (Gilbert and Benjamin, 2000). By contrast, in rat glioma C6 cells, Py 

enters cells via a caveolin-1 dependent pathway (Gilbert and Benjamin, 2004). 

After entry, Py has been reported to be transported through the early 

endosomes, and the acidic environment in the endosomes is critical for Py 

infection, since neutralization of pH in the endosomes by NH4Cl treatment blocks 
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Py infection (Liebl et al., 2006). However, there is another report demonstrating 

that Py does not need to traffic through an acidic compartment, and NH4Cl 

treatment does not affect Py infectivity (Gilbert and Benjamin, 2000). This 

discrepancy may be due to the differences in methodology. Regardless, Py does 

not appear to traffic through the Golgi complex en route to the ER (Gilbert and 

Benjamin, 2004).  

 

After initial entry, Py must be transported to the ER and penetrate the ER 

membrane to reach the cytosol for productive infection. Brefeldin A (BFA), which 

inhibits retrograde β-COPI-dependent retrograde transport from the plasma 

membrane to the ER, blocks Py infection (Gilbert and Benjamin, 2004), 

consistent with the premise that ER targeting is required for virus infection.  

 

In the ER, Py undergoes conformational changes that facilitate Py to breach the 

ER membrane to access the cytosol (Magnuson et al., 2005). As disulfide bonds 

and calcium ions stabilize the viral structure (Brady et al., 1978; Stehle et al., 

1994; Stehle et al., 1996), ER-resident reductases and calcium binding proteins 

likely destabilizes Py in the ER and promotes the ER-to-cytosol penetration 

event. For example, Py infection is inhibited by knockdown of protein disulfide 

isomerase (PDI), an ER-resident protein that facilitates oxidation-reduction 

reactions, and restored by expression of PDI. Py could reach the ER but fail to 

exit the ER in cells with reduced PDI (Gilbert et al., 2006). ERp29, a member of 

the PDI family, plays a critical role in Py conformational change and initiates the 

ER membrane penetration of Py. Specifically, ERp29 unfolds the VP1 C-terminal 

arm, which normally functions to stabilize Py by interacting with the adjacent VP1 

pentamer. The ERp29-dependent reaction results in formation of a hydrophobic 

viral particle that bind to and integrate into the ER membrane (Magnuson et al., 

2005; Rainey-Barger et al., 2007), events that prime Py for penetration across 

the ER membrane. Derlin-2, an ER-resident protein that removes misfolded 

proteins from the ER to the cytosol for proteasomal degradation (Oda et al., 
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2006), is required for Py infection, suggesting that Py penetrates the ER through 

a protein-conducting channel (Lilley et al., 2006).  

 

Upon reaching the cytosol, Py is transported to the nucleus to replicate its DNA. 

Although all the capsid proteins and histones contain NLS, the NLS are not 

exposed in the intact virion (Benjamin, 2001). Since the size of nuclear pore 

complex (around 26 nm in diameter) (Otis et al., 2006; Yang et al., 2004) is 

smaller than the size of intact Py (about 40 nm in diameter) and that exposure of 

the NLS is required for nuclear entry, Py thus needs to undergo dramatic 

conformational changes and uncoating before entering the nucleus. 

 

Other members of the polyomavirus family are also transported from the cell 

surface through the ER and the cytosol en route to the nucleus. However, they 

may bind to different receptors and take different endocytosis pathways. SV40 

binds to ganglioside GM1 on the plasma membrane (Tsai et al., 2003; Low et al., 

2004; Neu et al., 2008) and is endocytosed into cells via a caveolae-dependent 

pathway (Pelkmans et al., 2001). SV40 is then transported either to a pH-neutral 

compartment called caveosome for productive infection, or to the early 

endosome for non-productive infection (Pelkmans et al., 2004). It is also critical 

for SV40 to traffic to the ER, where it penetrates the ER membrane to the 

cytosol. The ER-resident protein PDI, ERp57 and ERp72 are reported to mediate 

the ER membrane penetration of SV40 (Schelhaas et al., 2007).  

 

For human polyomaviruses, JC virus may also bind to gangliosides as receptors 

since the infectibility of JC virus coated with GT1b is inhibited (Komagome et al., 

2002). JC virus is endocytosed into cells via a clathrin-dependent pathway and 

transported through the early endosomes (Pho et al., 2000; Querbes et al., 2004; 

Querbes et al., 2006). BK virus engages ganglioside GD1b and GT1b as 

functional receptors (Low et al., 2006) and enters cells via a caveolar-mediated 

pathway (Eash et al., 2004). Low pH is required for BK virus infection (Eash et 
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al., 2004). The ER-resident protein Derlin-1 interacts with BKV in the ER and 

facilitates infection (Jiang et al., 2008). 

 

The observation that gangliosides are used by several members of the 

polyomavirus family for infection raises the possibility that these glycolipid 

receptors possess unique properties that facilitate the entry and intracellular 

sorting of the viruses along the infectious route. Ganglioside is a sialic acid-

containing glycosphingolipid, consisting of a hydrophobic ceramide domain and a 

hydrophilic carbohydrate moiety (Kolter and Sandhoff, 2005; Schwarzmann, 

2001). Gangliosides are biosynthesized on the ER and Golgi membranes, and 

then transported to the plasma membrane. On the plasma membrane, they are 

inserted into the outer leaflet via their hydrophobic ceramide residue, with their 

hydrophilic sugar portion protruding into the extracellular space. These lipids are 

normal components of plasma membranes, and usually concentrated in lipid 

rafts. Gangliosides on the cell surface undergo endocytosis into cells for 

catabolism. After internalization, these lipid molecules are transported through 

the early and late endosomes, finally reaching the lysosomes where they are 

hydrolyzed by lysosomal enzymes. If gangliosides are not properly degraded by 

the enzymes in the lysosome, it results in a disease called "Gangliosidosis“, 

which is a form of lipid storage disorder. From the endolysosomal system, 

gangliosides could be transported to the Golgi complex. However, their 

retrograde transport to the ER has not been observed (Schwarzmann, 2001). 

 

Many research groups have documented that gangliosides act as functional 

receptors for polyomaviruses. Specifically, ganglioside GD1a and GT1b are the 

functional receptors for Py (Smith et al., 2003; Tsai et al., 2003); GM1 is the 

functional receptor for SV40 (Tsai et al., 2003; Low et al., 2004); GD1b and GT1b 

are the receptors for BKV (Low et al., 2006); GT1b is the receptor for the newly 

discovered Merkel Cell polyomavirus (Erickson et al., 2009). In addition, 

ganglioside GM1 also serves as the functional receptor for cholera toxin 

(Fujinaga et al., 2003). The virus-receptor interaction is based on the interaction 
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of the VP1 protein of the virus and the sialic acid-containing moiety of the 

receptor. Py binds to ganglioside GD1a / GT1b via the interaction of Py VP1 with 

the sialic acid-galactose moiety in GD1a / GT1b (Stehle et al., 1994; Stehle and 

Harrison, 1997; Tsai et al., 2003). Interaction of Py with the terminal sialic acid 

residues induces conformational change of the viral capsid, which may facilitate 

the viral entry step (Cavaldesi et al., 2004). SV40 also engages ganglioside GM1 

via sialic acid binding (Neu et al., 2008). However, although the concept that 

gangliosides acting as polyomavirus receptors has been well established, 

whether gangliosides must engage polyomaviruses on the cell surface to serve 

as entry receptors, and how gangliosides regulate virus intracellular trafficking to 

promote infection, are still not clear.  

 

In addition to Py’s functional ganglioside receptors GD1a / GT1b, most 

glycoproteins on the cell surface also contain sialic acid-galactose moiety 

(Kornfeld and Kornfeld, 1985). Hence, glycoproteins in principle are able to serve 

as cell surface receptors for Py. Glycoprotein α4β1 integrin has been reported as 

the postattachment receptor of Py (Caruso et al., 2003). However, it remains 

unknown the general role of glycoprotein receptors in influencing Py infection. 

Whether glycoproteins act collaboratively with ganglioside to facilitate Py 

infection, or act as decoy receptors to compete with ganglioside for Py binding, is 

not understood well.  

 

Studies in this thesis focus on the Py trafficking pathway from the plasma 

membrane to the ER, and the roles of ganglioside GD1a and glycoproteins in 

regulating Py trafficking and infection. With a combination of live cell imaging, cell 

infection and biochemical studies, we show that after internalization, Py is first 

transported through the endolysosomal compartments before reaching the ER. 

Trafficking through the endolysosomal system is part of the Py infectious 

pathway, as the low pH environment in the endolysosomes triggers a 

conformational change that promotes the subsequent ER-to-cytosol membrane 

penetration of Py (Chapter 2). Moreover we discovered that, after reaching the 
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endolysosomes, ganglioside GD1a plays a critical role in sorting Py from the 

endolysosomes to the ER (Chapter 2). That a glycolipid serves as an intracellular 

sorter for viral trafficking has not been reported. 

 

Importantly, our studies unveiled that glycolipids (i.e. ganglioside GD1a) and 

glycoproteins act as two competitive receptors for Py binding on the cell surface 

(Chapter 3), guiding the virus down different intracellular pathways with opposite 

consequences on infection. In particular, we found that ganglioside GD1a acts as 

the functional entry receptor for Py: GD1a must bind to Py on the plasma 

membrane to promote Py infection. The GD1a-Py complex is internalized into 

cells and transported through the endolysosomes. GD1a next sorts Py from the 

endolysosomes to the ER, thus leading Py to the infectious pathway. GD1a 

binding is responsible for ER targeting, since an artificial particle designed to bind 

to GD1a also reaches the ER. In contrast, glycoproteins generally act as decoy 

receptors for Py to protect cells from virus infection. They compete with GD1a on 

the cell surface for Py binding, bringing the virus to the endolysosomes where Py 

becomes trapped and virus infection is restricted. Therefore, glycolipids and 

glycoproteins, two major constituents of the plasma membrane, act in opposing 

manners to regulate Py infection. 
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Figure 1.1.  The general structure of polyomaviruses. 
(a) The polyomavirus particle is composed of 72 pentamers (360 copies) of the major capsid 
protein VP1. (b) Each VP1 pentamer is associated with an internal protein VP2 or VP3. 
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Figure 1.2.  Intracellular trafficking of polyomaviruses. 
Polyomavirus is transported from the plasma membrane to the nucleus to cause infection. It can 
be divided into four steps. Step 1, polyomavirus binds to the receptor on the host cell surface to 
initiate entry. Step 2, polyomavirus is transported from the plasma membrane to the ER. Step 3, 
polyomavirus penetrates the ER membrane to reach the cytosol. Step 4, polyomavirus is 
transported to the nucleus to cause infection. Since the ER membrane is contiguous with the 
nuclear membrane, it remains possible for polyomavirus to penetrate the inner nuclear membrane 
to reach the nucleus from the ER.  
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Chapter 2 

 

A Lipid Receptor Sorts Polyomavirus from the Endolysosome  

to the Endoplasmic Reticulum to Cause Infection 

 

Background and Introduction 
Most nonenveloped viruses need to be endocytosed into cells and transport to 

the proper organelles to cause productive infection. Members of the 

polyomavirus family, including the murine polyomavirus (Py), SV40, and human 

BK, JC, KI, WU, Merkel Cell viruses, are non-enveloped DNA viruses (Tsai and 

Qian, 2010). They engage specific receptors on the plasma membrane, and are 

transported from the cell surface to the nucleus, where the DNA genomes are 

transcribed and replicated.  

 

Py is composed of 72 pentamers of the outer structural protein VP1. Each VP1 

pentamer encloses an internal structural protein VP2 or VP3. The DNA genome 

is encapsulated in the center of the viral particles (Stehle et al., 1994; Chen et al., 

1998).  

 

To initiate infection, Py interacts with the ganglioside receptor GD1a on the 

plasma membrane, and is transported from the cell surface to the lumen of the 

endoplasmic reticulum (ER) (Tsai et al., 2003). In the ER, Py interacts with ER-

resident factors and undergoes conformational changes, facilitating the 

penetration of Py from the ER to the cytosol (Magnuson et al., 2005). Py finally 

reaches the nucleus to cause lytic infection or cell transformation. The successful 

arrival of one viral particle to the nucleus is sufficient to cause infection 

(Diacumakos and Gershey, 1977).  
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Ganglioside is sialic acid-containing glycosphingolipid, which consists of a 

hydrophobic ceramide domain that is inserted into the outer leaflet of the plasma 

membrane, and a hydrophilic carbohydrate moeity (Kolter and Sandhoff, 2005; 

Schwarzmann, 2001). After internalized into cells, ganglioside is transported to 

the early endosomes, the late endosomes and finally to the lysosomes where 

they are hydrolyzed by lysosomal enzymes. Although ganglioside could be 

transported to the Golgi (Schwarzmann, 2001), only a very low level could arrive 

in the ER. Ganglioside GD1a has been reported as the functional receptor for Py 

(Tsai et al., 2003), and supplementing GD1a in ganglioside deficient cell lines 

increase Py infection (Gelbert and Benjamin, 2004; Gilbert et al., 2005). The 

sialic acid-galactose moiety in GD1a interacts with the VP1 protein in Py. 

However, how GD1a promotes Py infection is poorly understood.  

 

With a combination of live cell imaging, cell infection and biochemical studies, we 

show that Py is transported to the endolysosomal system after internalization. 

The low pH environment in the endosomes and lysosomes triggers structural 

alternations in Py, which is critical for its subsequent conformational change in 

the ER to initiate the ER-to-cytosol penetration process. Ganglioside GD1a then 
sorts Py from the endolysosome to the ER for productive infection. GD1a binding 

seems to be responsible for ER targeting, as an artificial particle coated with an 

antibody against GD1a is also targeted to the ER. Overall, our results 

demonstrate that the endolysosomal pathway is part of the Py infectious route, 

and identify a lipid-dependent mechanism that targets Py to the ER for productive 

infection. 

 

Results 
Live Cell Imaging of Polyomavirus Transport to the Endolysosome 
First we investigated the Py internalization pathway in cells. Purified Py was 

labeled with Texas-Red or Alexa Fluor 594 dye, and imaged with wide field 

fluorescence microscopy. We showed that at 3 hrs post-infection, the 

fluorescence signal of the labeled Py overlapped significantly with the 
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fluorescence signal from immunofluorescence staining using an antibody against 

VP1 in NIH 3T3 cells (Figure 2.1A). This result indicates that most of the purified 

Py are labeled efficiently with Texas-Red or Alexa Fluor 594 dye, and the labeled 

dye still associates with Py after virus entry into cells. To test whether the 

labeling procedure affects Py infection, the expression of large T antigen was 

measured by immunofluorescence staining with an antibody against large T 

antigen. Both unlabeled Py and labeled Py infected cells with similar efficiency 

(Figure 2.1B), indicating that the labeling procedure did not affect Py infection. 

This finding is consistent with a previous observation (Gilbert and Benjamin., 

2000). Therefore the labeled Py could be used to study the Py trafficking 

pathway inside the cells.  

 

Intracellular trafficking of Py was studied using live cell imaging. Py infection was 

synchronized by incubating cells with Py at 4°C for 0.5 hr. Cells were washed to 

remove unbound Py and incubated in 37°C to allow Py to enter cells. To rule out 

any coincident co-localization, only those labeled Py that co-localizes with 

vesicles for more than 30 s were counted as real co-localization. 

 

As GD1a is normally transported from the plasma membrane through the early 

and late endosome to the lysosome, we hypothesized that Py is also transported 

through this pathway after its initial entry. Co-localization of Py with the early 

endosome was investigated in cells transfected with cyan fluorescent protein 

(CFP)-Rab5, a marker of the early endosomes. It should be noted that when 

expressed at a moderate level, CFP-Rab5 did not alter the morphology or 

distribution of the early endosomes, which were stained with an antibody against 

EEA1 (Figure 2.8A). This result is consistent with a previous report that the low 

level expression of GFP-Rab5 did not affect the size of the early endosomes 

(Sonnichsen et al., 2000). An example of labeled Py (red) continuously co-

localizing with the early endosome (blue) for 120 s is shown in Figure 2.1C. Py 

appears to be located on the endosome membrane, suggesting that the virus 

may still be attached to the receptors on the endosome membrane and not 
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released into the lumen of the endosome (Figure 2.1C). Quantification of the 

percentage of Py co-localizing with the early endosome at indicated post-

infection time points is shown in Figure 2.1F (blue curve).  Approximately 10% of 

the internalized Py co-localized with the early endosome after initial entry (0.5-2 

hrs post-infection), and only about 5% of the internalized Py was located in the 

early endosomes at the later time points (after 4hrs post-infection). This finding is 

consistent with a previous report demonstrating that in fixed cells only a low 

percentage of Py was found in the Rab5-containing early endosomes (Mannova 

and Forstova., 2003). 

 

Co-localization of Py with the late endosome was assessed in cells transfected 

with yellow fluorescent protein (YFP)-Rab7, a marker of the late endosomes 

(Rink et al., 2005). When expressed at a moderate level, YFP-Rab7 did not alter 

the morphology or distribution of the late endosomes / lysosomes, which were 

stained with an antibody against LAMP1 (Figure 2.8B). A typical image of labeled 

Py (red) continuously co-localizing with the Rab7-containing late endosome 

(green) for 80 s is shown in Figure 2.1D. The percentage of Py located in the late 

endosomes was quantified in Figure 2.1F (green curve). At the early time point 

(0.5-2 hrs post-infection), only a low percentage of Py (less than 20%) co-

localized with the Rab7-containing late endosomes. However, unlike that found in 

the early endosomes, the percentage of Py in the late endosomes increased as 

the incubation time increased. More than 50% of Py were found in the late 

endosomes at 4-6 hrs post-infeciton, and the percentage of Py co-localizing with 

the late endosomes increased to about 70% at 16-17 hrs post-infection. This 

result suggests that Py gradually accumulates in the late endosomes. 

 

Similarly, co-localization of Py with the endolysosomes was studied in cells 

expressing LAMP1-YFP, a marker of the late endosomes and the lysosomes. A 

representative image of labeled Py (red) continuously co-localizing with LAMP1-

containing vesicles (cyan) for 45 s is shown in Figure 2.1E. Quantification 

analysis showed that the percentage of Py located in the LAMP1-containing 
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vesicles increased from about 12% at the early time point (0.5-2 hrs post-

infection) to about 50% at the later time points (after 4 hrs post-infection) (Figure 

2.1F, cyan curve), indicating that Py gradually accumulated in the LAMP1-

containing vesicles. It should be noted that there is a significant overlap between 

the Rab7 and LAMP1 containing vesicles (Meresse et al., 1995). Thus the total 

percentage of Py located in the Rab7- and LAMP1-containing vesicles could 

exceed 100%, as observed in the green and cyan curves at the later time points 

(after 4 hrs post-infection) in Figure 2.1F. The result of the co-localization finding 

between Py and the Rab7- or LAMP1-containing vesicles is in contrast to a 

previous study (Mannova and Forstova, 2003) which showed that there was no 

co-localization between Py and Rab7- or LAMP2-containing vesicles. The 

conflicting result might be due to the differences in the detection methods (e.g., 

live cell imaging versus immunofluorescence staining in fixed cells) or the cell 

types used (NIH 3T3 cells used in our study versus 3T6 cells used in Mannova’s 

paper).  

 

In addition, by incubating NIH 3T3 cells expressing GFP-Caveolin-1 with Py at 

4°C, we found that Py has very low co-localization with caveoline-1 containing 

vesicles (Figure 2.9), indicating that Py is internalized via a caveolin-1 

independent pathway, consistent with a previous report (Gilbert and Benjamin, 

2000). Overall, our results suggest that Py is transported through the 

endolysosomal compartments. 

 

Effects of Expressing Rab5 and Rab7 mutants on Polyomavirus Infection 
As Py is transported through the endolysosomal pathway, we sought to 

determine whether this endolysosomal pathway is part of the Py infectious or 

non-infectious pathway. It has been reported that Rab5 and Rab7 play an 

important role in regulating cargo transport in the endosomes and lysosomes 

(Zerial and McBride, 2001), and expression of dominant negative mutants of 

Rab5 or Rab7 block normal cargo transport in the endolysosomal system 

(Stenmark et al., 1994; Feng et al., 1995). Therefore, we asked whether Py 
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infection could be inhibited when cargo transport in the endolysosomes is 

blocked by expressing Rab5 or Rab7 dominant negative mutants. We first 

assessed Py infection in NIH 3T3 cells expressing wild type CFP-Rab5, and 

found that the virus infection was not affected by expression of CFP-Rab5 when 

compared to expression of CFP as a control. When virus infection in cells 

transfected with dominant negative CFP-Rab5 S34N (CFP-Rab5 DN) was tested, 

we found that expression of CFP-Rab5 DN decreased Py infection (Figure 2.2A). 

This result is consistent with a previous report that expression of a dominant 

negative Rab5 construct reduced Py infection (Liebl et al., 2006). In addition, 

expression of a constitutively active form of Rab5 (CFP-Rab5 Q79L, marked as 

CFP-Rab5 CA in Figure 2.2A) slightly increased Py infection. Therefore, 

trafficking through the early endosome is part of the Py infectious pathway.  

 

Furthermore, we asked whether trafficking through the late endosome was also 

part of the Py infectious pathway by expressing dominant negative YFP-Rab7 

N125I (YFP-Rab7 DN), which has been reported to block the transport of the 

vesicular stomatitis virus G protein from the early to the late endosome (Feng et 

al., 1995). As a control, we found that expression of YFP-Rab7 did not affect Py 

infection when compared to expression of YFP. However, expression of YFP-

Rab7 DN inhibited Py infection (Figure 2.2B). These findings suggest that 

trafficking through the late endosome is also important for Py infection. Overall, 

we conclude that transport through the endolysosomal system is part of the Py 

infectious pathway. 

 

A Role of the Endolysosomal Low pH in Py Infection and Conformational 
Change 
We next asked why transport through the endolysosomal pathway is critical for 

Py infection. Does Py merely follow the ganglioside receptor GD1a trafficking 

pathway, or is the low pH environment in the endolysosomal system important for 

Py infection? We assessed whether the acidic environment in the endolysosomal 

system is important for Py infection by adjusting the endolysosomal environment 
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to a neutral pH.  Bafilomycin A1 is a specific inhibitor of the vascular proton 

ATPase and blocks acidification of the endolysosomes. NIH 3T3 cells were 

incubated with bafilomycin A1 at different time points pre- or post-infection, and 

the effect on Py large T antigen expression was measured. We found that 

treatment with bafilomycin A1 at 2 hrs prior to infection or at infection significant 

inhibited Py infection, while treatment with bafilomycin A1 at 3 hrs after infection 

had no effect on Py infection (Figure 2.3A). Similarly, the effect of NH4Cl, which 

is a weak base that could adjust the pH in the endolysosomes to a neutral level 

(Maxfield, 1982), on Py infection was also assessed. We found that, similar to 

bafilomycin A1 treatment, treatment with NH4Cl at 2 hrs pre-infection or at 

infection blocked Py infection, while treatment with NH4Cl 3 hrs post-infection 

had no effect (Figure 2.13). It should be noted that one previous report showed 

that NH4Cl treatment inhibited Py infection (Liebl et al., 2006), while another 

finding showed that it did not (Gilbert and Benjamin, 2000). We concluded that 

the low pH environment in the endolysosomal system is essential for Py infection. 

 

Elevating endolysosomal pH could affect Py infection in several ways. One 

possibility is that the acidic environment is critical for cargo transport from the 

early endosomes to the late endosomes (Clague et al., 1994). Thus perturbing 

the endolysosomal pH might block virus transport from the early to late 

endosomes, which would be important for Py to be delivered to the ER. To test 

this hypothesis, we studied whether treatment of bafilomycin A1 affects co-

localization of Py with the late endosome or the ER using immunofluorescence 

staining. Cells expressing YFP-Rab7 were incubated with Py and bafilomycin A1 

simultaneously, washed and fixed at 4.5 hrs post-infection, subjected to 

immunofluorescence staining with an antibody against Py VP1, followed by 

staining with a fluorescently tagged secondary antibody. We found that treatment 

with bafilomycin A1 did not affect co-localization of Py with the Rab7-containing 

late endosome (Figure 2.3B, top panel), indicating that Py trafficking to the late 

endosome is not affected by perturbation of the endolysosomal pH. Next, we 

assessed co-localization of Py with the ER using cells expressing the ER-
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resident protein heme oxygenase-2 fused to CFP (CFP-HO2). We found that 

bafilomycin A1 did not block co-localization of Py with the ER as well (Figure 

2.3B, bottom panel). Collectively, these results suggest that perturbation of 

endolysosomal pH does not block the delivery of Py to the late endosome or the 

ER. These findings suggest that the low pH environment in the endolysosomes 

might promote Py infection by acting directly on the viruses.   

 

We therefore hypothesized that the low pH in the endolyosome induces Py 

conformational changes that facilitate the subsequent viral penetration, as 

reported in other viral systems (Skehel and Wiley, 2000). First we investigated 

whether there were any conformational changes induced on Py when the virus 

was exposed to a pH approximating the endolysosomal pH by using limited 

proteolysis. The pH in the early endosome is approximately 6.0, and pH in the 

late endosome / lysosome is approximately 5.0. Therefore Py was incubated at 

pH 7.5 (as a control), 6.0 (mimicking the pH in the early endosome), or 5.0 

(mimicking the pH in the late endosome / lysosome) for 1 hr, neutralized to pH 

7.5, and then treated with a low concentration of proteinase K (2.5 ng/ml). We 

found that pre-incubation with low pH generated discrete fragments of VP1 

(Figure 2.3C, compare lanes 5 and 6 to lane 4). Similarly, Py was more sensitive 

to trypsin (1 mg/ml) digestion when Py was initially exposed to low pH (Figure 

2.10, bottom panel, compare lanes 2 and 3 to lane 1). These results imply that 

low pH in the endolysosomal system could induce a conformational change to Py 

VP1.  

 

We then asked why the low pH-triggered conformational change facilitates Py 

infection. We hypothesized that this low pH-triggered conformational change 

might be important to the subsequent conformational change the virus 

experiences in the ER, which has been shown to be essential for the ER-to-

cytosol penetration process and infection (Magnuson et al., 2005). Our previous 

work established an in vitro trypsin digestion assay that measure the ER-

dependent conformational change of Py (Magnuson et al., 2005; Rainey-Barger 
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et al., 2007). As disulfide bonds and calcium ions stabilize the viral structure 

(Brady et al., 1978; Stehle et al., 1994), Py was first incubated with the reducing 

agent DTT and the calcium chelating agent EGTA to destabilize the virus. When 

Py was incubated with the control protein bovine serum albumin (BSA), treatment 

with a low concentration of trypsin (0.25 mg/ml) generated a VP1-derived 

fragment called VP1a (Figure 2.3D, lane 2). In contrast, if Py was initially 

incubated with DTT, EGTA and ER luminal extract (an extract containing ER 

lumenal proteins), treatment with trypsin generated an additional cleavage 

product called VP1b (Figure 2.3D, lane 4); VP1b formation reflects a specific viral 

conformational change critical for its ER-to-cytosol penetration (Magnuson et al., 

2005). It should be noted that in vivo Py might be destabilized by ER-resident 

PDI to reduce the disulfide bonds and by calcium-binding proteins calnexin / 

calreticulin to extract the calcium ions (Gilbert et al., 2006). Importantly we 

assessed whether there was more VP1b generated by this trypsin digestion 

assay if Py was initially exposed to low pH. We found pre-exposure to low pH did 

increase VP1b generation (Figure 2.3D, compare lane 8 to lane 6, and in 

duplicates, compare lane 12 to lane 10; quantified in right graph). Therefore, the 

low pH-triggered conformational change enhances the subsequent ER-

dependent conformational change that facilitates the ER-to-cytosol penetration of 

Py.   

 
Decreased Co-localization of Py with the Late Endosome and Lysosome in 
Cells Supplemented with GD1a 
As our results suggest that Py trafficking through the acidic endolysosomal 

system is important for Py infection, and previous results showed that 

ganglioside GD1a is the receptor for Py and addition of GD1a in C6 cells 

promotes Py infection (Tsai et al., 2003; Gilbert and Benjamin, 2004), we asked 

whether GD1a stimulates Py infection by affecting Py trafficking through the 

endolysosomal system.  
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First we verified that supplementing GD1a in NIH 3T3 cells also promote Py 

infection as found in C6 cells (Tsai et al., 2003; Gilbert and Benjamin, 2004). NIH 

3T3 cells were incubated with GD1a or a control ganglioside GM1 overnight, 

washed to remove unbound ganglioside, incubated with Py for 2 days, and then 

subjected to immunofluorescence staining with an antibody against large T 

antigen. We found that supplementing GD1a but not GM1 stimulated Py infection 

in NIH 3T3 cells (Figure 2.4A). 

 

We then asked whether the increase in Py infection in GD1a-supplemented cells 

is due to enhanced Py binding to the plasma membrane. GD1a supplemented 

cells or control cells were incubated with Py at 4ºC for 1 hr, washed to remove 

the unbound Py, harvested, and the total cell lysate subjected to SDS-PAGE 

followed by immunoblotting with an antibody against VP1. We found that the VP1 

level in GD1a-supplemented cells was similar to that in control cells (Figure 2.4B, 

compare lane 2 to lane 1). To confirm that the VP1 signal represents the Py on 

the cell surface, the proteinase K digestion assay was applied because cell 

surface bound Py should be sensitive to proteinase K digestion. As expected, we 

found that the VP1 signal disappeared completely after proteinase K treatment in 

both control and GD1a-supplemented cells (Figure 2.4B, lane 3 and lane 4). Our 

results indicate that supplementing GD1a did not stimulate cell surface binding of 

Py, consistent with a previous report in C6 cells (Gilbert and Benjamin, 2004). 

Since there are large amounts of endogenous sialic acid-galactose moiety 

containing gangliosides and glycoproteins that can bind to Py on the NIH 3T3 cell 

surface, it is not surprising that we did not detect any increase in Py binding in 

the GD1a-supplemented cells. 

 

Next we asked whether the increase in Py infection in GD1a-supplemented cells 

is due to enhanced Py entry. Control or GD1a-supplemented cells were 

incubated with Py at 4 ºC and then shifted to 37ºC to allow Py entry into cells. 

Cells were harvested and treated with proteinase K to digest cell surface viruses. 

The remaining VP1 signal should represent the internalized Py since internalized 
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Py is resistant to proteinase K digestion. We found that supplementing GD1a did 

not stimulate Py entry into cells (Figure 2.4B, compare lane 8 to lane 7). Overall, 

we conclude that supplementing GD1a did not promote Py binding or entry in 

NIH 3T3 cells. Thus the addition of GD1a stimulates Py infection probably by 

regulating intracellular trafficking of the virus. 

 

We asked whether supplementing GD1a stimulates more Py trafficking to the 

endolysosomal system. We found that supplementing GD1a in NIH 3T3 cells did 

not affect co-localization of Py with the Rab5-containing early endosomes in 

either early time points (0.5-2 hrs post-infection) or later time points (4-6 hrs post-

infection) (Figure 2.4C). Also, supplementing GD1a did not affect co-localization 

of Py with the Rab7-containing late endosomes in the early time points (0.5-2 hrs 

post-infection) (Figure 2.4D). Surprisingly, GD1a addition significantly decreased 

co-localization of Py with the late endosomes in the later time points (4-6 hrs 

post-infection) in NIH 3T3 cells (Figure 2.4D). A similar decrease in co-

localization of Py with the late endosomes was also observed in C6 cells at 1-2 

hrs post-infection, a time point when about 70% of Py already localized in the late 

endosomes (Figure 2.4E). As C6 cells are ganglioside deficient cells, trafficking 

of Py to the late endosomes suggests that non-ganglioside receptors such as 

glycoproteins can also guide Py to the endolysosomal pathway. We also 

assessed co-localization of Py with the LAMP1-containing vesicles in control or 

GD1a-supplemented NIH 3T3 cells, and found that addition of GD1a also 

decreased co-localization of Py with the LAMP1-containing late endosomes / 

lysosomes at 4-6 hrs post-infection (Figure 2.4F). We conclude that 

supplementing GD1a decreases co-localization of Py and the late endosomes / 

lysosomes.    

  

One possibility that supplementing GD1a decreases co-localization of Py with the 

late endosome and lysosome compartments is that GD1a creates a novel 

pathway for Py infection independent of the endolysosomal pathway. If this is the 

case, then expression of dominant negative Rab7 should not block Py infection in 
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GD1a-supplemented cells. However, we found that expression of YFP-Rab7 DN 

still inhibited Py infection in GD1a-supplemented cells (Figure 2.4G), indicating 

that the endolysosomal pathway remains part of the infectious pathway for Py in 

GD1a-supplemented cells.  

 

Another possibility is that that GD1a supplement induces constriction of 

endolysosomes, which results in decrease of Py trafficking to the late endosomes 

and lysosomes. The sizes of CFP-Rab5, YFP-Rab7, or LAMP1-YFP vesicles 

were measured in control and GD1a-supplemented cells. No significant 

difference in vesicle sizes was detected between control and GD1a-

supplemented cells (Figure 2.11 A-C), suggesting that GD1a supplement did not 

affect the size of the endolysosomal vesicles. 

 

Taken together, we found that supplementing GD1a increased Py infection but 

decreased co-localization between Py and the late endosomes / lysosomes. 

These results suggest that GD1a addition sort Py out of the late endosomes / 

lysosomes to a specific organelles for productive infection. 

 

GD1a Stimulates Transport of Py to the ER 
What is Py’s destination after it is sorted out of the endolysosomes? Trafficking of 

Py to the ER is a required step for infection. Thus we tested the level of Py in the 

ER in control and GD1a-supplemented cells. Control or GD1a-supplemented NIH 

3T3 cells co-expressing CFP-HO2 and YFP-Rab7 were incubated with labeled 

Py for 4-6 hrs, and co-localization of Py with the ER was assessed using live cell 

imaging. As the ER tubules are highly convoluted, the ER images were filtered to 

ensure that the ER boundaries are clear (Figure 2.12). A representative image of 

continuous co-localization of labeled Py with the filtered ER for 60 s is shown in 

Figure 2.5A. We found that there were no co-localization between Py and the ER 

when cells were incubated with Py in 4ºC, a condition that prevents Py 

internalization into cells (Figure 2.5B). About 4% of Py co-localized with the ER 

when non-supplemented cells were incubated with Py at 37ºC for 4-6 hrs (Figure 
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2.5B). If BFA was added to the non-supplemented cells, the percentage of Py 

localized in the ER decreased to less than 1% (Figure 2.5B). These results 

indicate that the observed co-localization between Py and the ER represents the 

actual amount of Py in the ER, and not due to random co-localization. When cells 

were supplemented with GD1a, we found that the percentage of Py co-localizing 

with the ER increased to about 10% (Figure 2.5B). This result suggests that 

supplementing GD1a triggers more Py to be transported to the ER, consistent 

with a previous report in the ganglioside-deficient C6 cells (Gilbert and Benjamin, 

2004). To further confirm this conclusion, we incubated cells with non-labeled Py 

followed by immunofluorescence staining. Similarly, we found that at 4-6 hrs post 

infection, the percentage of Py inside the ER increased in GD1a-supplemented 

cells when compared to that in non-supplemented cells (Figure 2.5C). Therefore, 

our data show that GD1a facilitates Py transport to the ER. 

 

As the endolysosomal pathway is part of the infectious pathway, and ER 

trafficking is also required for infection, we hypothesized that the Py infectious 

pathway involves trafficking first to the endolysosomal system and then sorting to 

the ER. If this is the case, expression of dominant negative Rab7 should block 

Py’s trafficking to the ER. We assessed co-localization of Py with the ER in cells 

transfected with wild type YFP-Rab7 or YFP-Rab7 DN construct. Indeed, we 

found that the trafficking of Py to the ER was inhibited in cells with YFP-Rab7 DN 

expressed (Figure 2.5D). As a control, we show that expression of YFP-Rab7 DN 

did not affect the trafficking of cholera toxin B subunit (CTB) to the ER (Figure 

2.5E). It has been known that CTB does not require transport through the 

endolysosomal system to reach the ER (Fujinaga et al., 2003). In sum, our data 

indicate that Py is transported from the plasma membrane through the 

endolysosomal system to the ER as an infectious pathway, and that GD1a sorts 

Py from the endolysosomes to the ER for productive infeciton.  

    

Transport of an Artificial Particle Coated with a GD1a Antibody to the ER 
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As we showed that supplementing GD1a facilitates Py transport to the ER, and 

that other polyomaviruses such as SV40, BKV and some bacterial toxins such as 

CT also bind to gangliosides to transport to the ER, we hypothesized that the 

ganglioside binding event might be sufficient to drive the ligands to the ER. To 

test this hypothesis, we asked whether an artificial particle that bind to GD1a can 

also be targeted to the ER. 

 

Quantum-dot (Q-dot) is a fluorescent artificial particle that could be coated with 

an antibody against GD1a (Q-dot:GD1a Ab) and thus bind to GD1a. Q-dot is 

approximately 20 nm in diameter, thus mimicking the size of Py (about 45 nm in 

diameter). We employed the sucrose flotation assay, used previously to detect 

the Py-GD1a interaction (Tsai et al., 2003), to measure the interaction of Q-

dot:GD1a Ab with GD1a. Q-dots coated with a high concentration of a GD1a 

antibody (10 mg/ml) were incubated with control or GD1a-contaning liposomes, 

and subjected to flotation in a sucrose gradient. We showed that the GD1a 

antibody heavy chain was floated to the top fraction in the sample with GD1a-

containing liposomes, but not in the sample with liposomes only (Figure 2.6A). 

This result indicates that Q-dot:GD1a Ab particles can bind to GD1a. 

 

We then assessed the level of Q-dot:GD1a Ab particles that bind to GD1a on the 

cell surface of NIH 3T3 cells. Q-dots were coated with either a low (0.1 mg/ml), 

middle (1 mg/ml) or high (10 mg/ml) concentration of antibody against GD1a, or 

with the control antibodies including an antibody against Myc (10 mg/ml, called 

Q-dot:Myc Ab high) and an antibody against transferrin receptor (TfR) (10 mg/ml, 

called Q-dot:TfR Ab high). GD1a-supplemented NIH 3T3 cells were incubated 

with these coated Q-dots at 4ºC for 30 min, and washed to remove the unbound 

Q-dots. As expected, there was a low level of Q-dot:Myc Ab but a higher level of 

Q-dot:TfR Ab particles binding to the plasma membrane per cell (Figure 2.6B), 

consistent with the fact that the cell surface contains TfR but not Myc. For Q-dots 

coated with GD1a antibody, the binding level increased in a GD1a antibody 

concentration-dependent manner. Specifically, about 500 Q-dot:GD1a Ab (low), 
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1000 Q-dot:GD1a Ab (middle) and 2200 Q-dot:GD1a Ab (high) bound to the 

plasma membrane per cell (Figure 2.6B). Therefore, Q-dots bind to the cell 

surface in a GD1a antibody concentration-dependent manner, suggesting that Q-

dots coated with a higher concentration of GD1a antibody tend to have stronger 

interaction with GD1a on the cell surface. 

 

We then asked whether Qdot:GD1a Ab particles can be targeted to the ER.  We 

found that neither Qdot:Myc Ab or Qdot:TfR Ab can be transported to the ER, 

while Qdot:GD1a Ab particles were transported to the ER in a GD1a antibody 

concentration-dependent manner (Figure 2.6C, quantified in right graph). A 

representative image of Q-dot:GD1a Ab co-localizing with the ER for 40 s was 

shown in Figure 2.6C (left panel). To demonstrate that the co-localization 

observed is not random, we showed that the transport of Q-dot:GD1a Ab (high) 

was inhibited by addition of BFA, and very few Q-dot:GD1a Ab (high) were 

transported to the ER when cells were incubated at 4ºC to prevent endocytosis 

(Figure 2.6C, right graph). Therefore, we conclude that Q-dots coated with a 

higher concentration of GD1a antibody are more likely to be transported to the 

ER, indicating that GD1a binding contributes to the ER targeting of the ligands.  

 

Discussion 
To cause productive infection, Py must bind to receptors on the plasma 

membrane and be transported from cell surface to the ER. Here it breaches the 

ER membrane to enter the cytosol and finally to the nucleus. How Py reaches the 

ER is not clear. Our results demonstrate that after initial internalization, Py is 

transported through the endolysosome pathway to reach the ER. The low pH 

environment in the endolysosome system induces a conformational change in Py, 

which facilitates the subsequent ER-to-cytosol penetration process. Our results 

also indicate that GD1a sorts Py from the endolysosome to the ER, and that this 

lipid-dependent sorting event serves as a general ER targeting mechanism. 

 

Transport to the Endolysosome 
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We found that the endolysosomal pathway was part of the infectious pathway for 

Py, as expression of dominant negative Rab5 or Rab7 inhibited Py infection. The 

low pH environment in the endolysosomal system triggers a conformational 

change in Py, and this conformational change is directly related to the 

subsequent ER dependent conformational change that enables the virus to 

breach the ER membrane (Magnuson et al., 2005; Rainey-Barger et al., 2007). 

We used bafilomycin A1 and NH4Cl to elevate pH in the endolysosomes, and 

both treatments significantly inhibited Py infection. These results are consistent 

with one report which demonstrated that NH4Cl addition blocked Py infection 

(Liebl et al., 2006), while not consistent with another study which showed that 

NH4Cl treatment did not affect Py infection (Gilbert and Benjamin, 2000). The 

discrepancy may be due to the differences in methodology, and also it should be 

noted that in the Gilbert paper, the authors used a very high level of virus, which 

might result in the resistance of Py to NH4Cl treatment.  

 

In the polyomavirus family, infection of human JC and BK viruses have also been 

reported to be dependent on the low pH in the endolysosomes (Ashok and 

Atwood, 2003; Eash and Atwood, 2005). In contrast, SV40 was reported to be 

transported to caveosome, which is a pH-neutral compartment, and infection of 

SV40 was shown to be pH independent (Pelkmans et al., 2001; Ashok and 

Atwook, 2003). Whether the ganglioside receptor GM1 (Tsai et al., 2003) also 

sorts SV40 out of the caveosome to the ER requires further investigation.   

 

In our studies, co-localization of Py with the early endosome, late endosome and 

lysosome was assessed at different time points post infection using live cell 

imaging. This method allows a more accurate co-localization measurement 

because coincident co-localization, which often occurs with immunofluoresence 

in fixed cells, can be excluded. Our results showed that only a small fraction of 

Py (less than 10%) was observed in the early endosomes during the entire time 

course, and most Py accumulated in the late endosomes and lysosomes. It 

should be noted that about 5% of Py remained localized in the early endosomes 
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for a long time. As internalization of Py was synchronized by incubating cells with 

Py at 4ºC for 30min, followed with washing to remove the unbound viruses and 

shifting to 37ºC to allow entry, it is not likely that those Py remained in the early 

endosomes at late time points were newly endocytosed virus. That some Py was 

transported to the late endosomes while some Py was localized in the early 

endosomes for a long time may be due to the existence of two populations of 

early endosomes -- dynamic early endosomes and static early endosomes 

(Lakadamyali et al., 2006). Py trafficking to the dynamic early endosomes could 

be transported to the late endosomes and lysosomes, while Py in the static early 

endosomes might be trapped for a long period and cause no infection. 

 

A Role of GD1a in the Endolysosome-to-ER Transport of Py 
Our results indicate that ganglioside GD1a plays an essential role in Py 

trafficking through its infectious pathway. GD1a is normally transported from the 

plasma membrane to the lysosomes for degradation (Schwarzmann, 2001). 

However, the data analyzed thus far indicate that targeting Py to the 

endolysosomes is not the critical function of GD1a. Our result in Figure 2.4E 

showed that Py was transported to the late endosomes efficiently in ganglioside-

deficient C6 cells, indicating that non-ganglioside receptors such as glycoproteins, 

which contain the sialic acid-galactose moiety, could also target Py to the 

endolysosomes. Instead, we found that supplementing GD1a decreased the 

extent of Py in the late endosomes and lysosomes, suggesting that Py was 

sorted out of the endolysosomes by GD1a. Furthermore we found that 

supplement of GD1a facilitates Py transport to the ER. Therefore, one crucial role 

of GD1a is to sort Py out of the endolysosomes to the ER for productive infection, 

while the role of non-ganglioside receptors might be to trap Py in the 

endolysosomes for an extended period without causing infection.   

 

Whether GD1a sorts Py out of the early endosome or the late endosome / 

lysosome is not clear. Our studies showed that dominant negative Rab7 inhibited 

Py infection, suggesting that trafficking through the late endosome is also part of 
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the infectious pathway. We also showed that addition of GD1a decreased co-

localization of Py with the late endosomes / lysosomes and increased co-

localization of Py with the ER. Hence a simple explanation is that Py is sorted out 

of the late endosome / lysosome to the ER by GD1a. However, it is also possible 

that Py is sorted out of the early endosome to the ER, and expression of 

dominant negative Rab7 interfered with upstreaming sorting processes in the 

early endosome and thus blocked Py infection. Therefore, further studies are 

required to determine which compartment Py is sorted from to reach the ER.   

 

It was reported that lipid rafts / caveolae are important in the infectious pathway 

of Py in the rat glioma C6 cells (Gilbert and Benjamin, 2004). In our studies, we 

did not observe significant co-localization of Py with caveolin-1 containing 

vesicles in mouse NIH 3T3 cells, consistent with a previous report (Gilbert and 

Benjamin, 2000). However, it is still possible that the caveolin-1 dependent 

pathway interact with the endolysosome pathway to facilitate Py infection, since it 

has been reported that there is a complex crosstalk system between these two 

pathways (Pelkmans et al., 2004, Querbes et al., 2006). Also, we did not detect 

any significant co-localization of Py with Golgi, consistent with a previous report 

(Gilbert and Benjamin, 2004). Finally, it remains unclear how fusion occurs 

between Py-containing vesicles budded out of the endolysosomal system and 

the ER membrane.   

 

Ganglioside Binding as a General ER Targeting Mechanism 
The molecular mechanism by which GD1a sorts Py from the endolysosome to 

the ER is not clear. One possibility is that clustering of GD1a around Py may be 

important for sorting and represents an ER targeting mechanism. One Py virion 

contains 360 copies of VP1, and each copy of VP1 provides one GD1a binding 

site. Thus each viral particle has the potential to bind to multiple GD1a on the cell 

surface. In addition, since GD1a is normally transported from the plasma 

membrane to the lysosome, Py may recruit even more GD1a during its trafficking 

through the endolysosomal pathway. Therefore, one viral particle may already 
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cluster multiple molecules of GD1a before Py reaches the ER. This clustering of 

ganglioside may be critical for the ER targeting reaction. This has been indicated 

in the case of CT (Wolf et al., 2008; Fujinaga et al., 2003), whose receptor-

binding B subunit is also a pentamer and has the potential to bind to five 

ganglioside GM1 receptors for each toxin. The cholera toxin-induced clustering of 

ganglioside GM1 likely targets CT to the ER. We also used an artificial particle Q-

dot coated with an antibody against GD1a to cluster GD1a, and found that these 

particles were transported to the ER in a GD1a-clustering dependent manner. 

Therefore, it appears that ganglioside binding and clustering are responsible for 

the ER-targeting mechanism. 

 

There are two possible GD1a-triggered sorting mechanisms. First, GD1a 

clustering may induce the formation of a hydrophobic platform within the bilayer 

of the endosomal membrane, and stimulate transmembrane signaling via 

unidentified transmembrane proteins to recruit cytoplasmic factors. These 

cytoplasmic factors then facilitate the budding of Py-containing vesicles from the 

endosomal membrane. Alternatively, GD1a clustering might alter the physical 

properties of the endolysosomal membrane attached to the virus, inducing 

membrane invagination and budding of Py-containing vesicles from the 

endolysosome. This concept has been reported in shiga toxin, where its binding 

to the glycolipid GB3 receptor trigger membrane invaginations and facilitate its 

uptake into cells (Romer et al., 2007). Thus we propose that ganglioside 

clustering is an essential component of the mechanism by which Py is sorted 

from the endolysosomes to the ER.    
 

Experimental Methods 
Materials 
Purified Py and antibodies against Py VP1 and large T were generous gifts from 

Tom Benjamin (Harvard Medical School). The CFP-Heme Oxygenase-2 

construct was provided by Melissa Rolls (Penn State). The wild type CFP-Rab5a, 

dominant negative CPF-Rab5a S34N, constitutively active CFP-Rab5a Q79L, 
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wild type YFP-Rab7, dominant negative YFP-Rab7 N125I and wild type LAMP1-

YFP constructs were provided by Joel Swanson (University of Michigan). A 

monoclonal antibody against GD1a was purchased from Millipore, purified GD1a 

and GM1 from Matreya, monoclonal Myc antibody, Quantum dots 655, Texas 

Red-X, and Alexa Fluor 594 from Invitrogen, and proteinase K, trypsin, and 

NH4Cl from Sigma. 

 

Preparation of Texas Red or Alexa Fluor 594 labeled Py 
Purified Py was labeled with Texas Red–X succinimidyl ester (1 mM) or Alexa 

Fluor 594 succinimidyl ester (1 mM) following the manufacturer’s protocol 

(Invitrogen). The labeled Py was separated from excess labeling reagent using a 

Micro Bio-Spin 30 Column (Bio-Rad Lab). 

 

Preparation of Quantum dot coated with a GD1a or Myc antibody  
Quantum dot 655 (goat F (ab’) 2 anti-mouse IgG conjugate) (1 uM) was 

incubated with a monoclonal antibody against GD1a (0.1, 1, or 10 mg/ml) or Myc 

(10 mg/ml) in 30 ul PBS at 4ºC for 16 hrs with mixing. Protein A agarose beads 

were added to the sample to precipitate the excess GD1a or Myc antibodies. 

GD1a- or Myc-coated Quantum dots were present in the resulting supernatant.  

 

Infection assay 
NIH 3T3 cells were transfected using Effectene (Qiagen) with constructs 

encoding wild-type and mutant CFP-Rab5, or wild-type and mutant YFP-Rab7. 

24 hrs post-transfection, cells were incubated with Py (multiplicities of infections 

were approximately 100 PFU/cell), washed after 24 hrs, and incubated for an 

additional 24 hrs. Cells were then fixed and subjected to immunofluorescence (IF) 

with an antibody against the virus-encoded large T antigen. Phase and IF images 

were collected with a Nikon TE2000-E microscope using the Plan Fluor Ph2 

40X/Na 0.75 objective. Only those cells expressing the transfected protein were 

analyzed. Where indicated, GD1a (180 uM) or GM1 (180 uM) were incubated for 

24 hrs prior to infection. For characterizing the effect of bafilomycin A1 and 
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NH4Cl on Py infection, cells were treated with bafilomycin A1 (0.2 uM) or NH4Cl 

(50 mM) 2 hrs pre-infection, simultaneously with infection, or 3 hrs post-infection. 

Cells were then infected with crude Py for 3 hrs and the unbounded virus was 

removed by washing. Cells were incubated at 37ºC for additional 48 hrs, fixed 

and subjected to T antigen expression analysis.  

 

Time-lapse live fluorescence microscopy and image analysis 
NIH 3T3 cells were transfected using Effectene (Qiagen) with the indicated 

constructs for 1 to 2 days, and where indicated, GD1a was added 24 hrs pre-

infection. Cells were incubated with labeled Py (or Q-dot) at 4ºC for 0.5 hr and 

the unbounded virus (or Q-dot) was removed by washing. Cells were incubated 

at 37ºC for the indicated time, and observed with a Nikon TE2000-E microscope 

equipped with 100x objective.  Images were acquired at 5 s or 10 s intervals.  

 

For co-localization of Py (or Q-dot) and endolysosomal markers (CFP or YFP), 

different color images were taken sequentially with Nikon filter cubes for Texas 

Red (96313), CFP (96341) and YFP (96345).  For co-localization of Py with ER 

(CFP-HO2), the ECFP/DsRed filter set (51018, Chroma) was used to 

simultaneously image the two colors. The dual-color image was split to two 

channels by Dual-View image splitter (Optical Insight) and projected to the two 

halves of a CCD camera (CoolSnap EZ2, Photometrics). To correct the imaging 

mis-alignment between different channels, Py or Q-dot images were registered to 

the other channels by bilinear transformation. To define the boundaries of the ER 

clearly, the ER images were subjected to filtering with the Fast Fourier Transform 

Bandpass Filter embedded in Image J (NIH). Co-localization was defined as 

overlapping of the objects of interest in the two channels for at least 30 s in a 

movie.  

 

Immunofluorescence staining 
Cells were fixed with formaldehyde (3%), permeabilized with Triton X-100 (0.2%), 

and incubated with either an antibody against Py large T antigen or VP1. Cells 
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were then washed, and incubated with a fluorescently tagged secondary 

antibody (rhodamine labeled donkey anti-rat for large T or anti-rabbit for VP1). 

 

Cell surface binding and entry 
Control or GD1a-supplemented cells were incubated at 4ºC, infected with Py, 

and either continued to be incubated at 4ºC for 1 hr or incubated at 37ºC for 1 hr 

to allow entry. Cells were harvested and treated with proteinase K (30 ug/ml) 

where indicated. Proteinase K was heat-inactivated, and the lysate was 

subjected to SDS-PAGE followed by immunoblotting with a VP1 antibody. 

 

Low pH-induced Py conformational change 
Py was initially incubated in phosphate buffered saline (PBS) at pH 7.5, 6.0, 5.0, 

or 4.0 for 60 min at 37ºC. Virus incubated at pH 6.0, 5.0, and 4.0 were then 

neutralized to pH 7.5 by addition of PBS (pH 10.0). The virus was subsequently 

incubated with a high concentration of the general protease trypsin (1 mg/ml) for 

30 min at 4ºC, and subjected to SDS-PAGE followed by immunoblotting with a 

VP1 antibody.  

 

ER-dependent conformational change 
Py incubated at pH 7.5, or pretreated at pH 6, 5, or 4 and neutralized to pH 7.5, 

were analyzed as described in Magnuson et al., 2005. 

 

Sucrose flotation of Q-dot 
Sucrose flotation analysis is described in Tsai et al., 2003, except that Q-dot 

coated with a GD1a antibody was used instead of Py, and a monoclonal 

secondary antibody fused to HRP was used during immunoblotting. 
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Figure 2.1.  Time-dependent transport of Py through the endolysosome. 
(A) NIH 3T3 cells were incubated with Texas-Red-labeled purified Py for 3 hrs at 37ºC, washed, 
and subjected to immunofluorescence using a VP1 antibody followed by FITC-labeled secondary 
antibody. White line, edge of cell. Scale bar, 5 um. (B) Cells were incubated with labeled or non-
labeled Py for 48 hrs, and the extent of infection assessed by immunofluorescence using a Py 
large T antigen antibody. Cells stained with large T antigen in the nucleus were scored as positive 
for infection. Scale bars, 30 um. (C-E) Live cell imaging of labeled Py in cells expressing (C) CFP-
Rab5, (D) YFP-Rab7, or (E) LAMP1-YFP. C and E are images taken at the 4-6 hrs post-infection 
time point, and D is images taken at the 16-17 hrs post-infection time point. Yellow lines, edge of 
cells. Scale bars, 10 um (whole cell) and 1 um (inset). (F) Quantification of the extent of co-
localization between labeled Py and the respective markers at the indicated post-infection time 
points. For each time point, at least 90 viral particles were analyzed from 3 cells. Data are the 
mean +/- SD. 
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Figure 2.2. Expression of Rab5- and Rab7-interfering mutants affects Py infection 
NIH 3T3 cells expressing (A) CFP control, wild-type CFP-Rab5, dominant-negative CFP-Rab5 
(DN), or constitutively active CFP-Rab5 (CA) or (B) YFP control, wild-type YFP-Rab7, or 
dominant-negative Rab7 (DN) were incubated with Py. 48 hrs later, the extent of infection in 
transfected cells was assayed as in Figure 2.1B. Data represent the mean +/- SD of at least four 
independent experiments. At least 220 transfected cells were analyzed for each construct. 
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Figure 2.3.  Effect of low pH on Py infection and conformational change. 
(A) NIH 3T3 cells were treated with bafilomycin A1 2 hrs before, at the same time, or 3 hrs after 
infection with non-labeled Py, and washed to remove the drug. 48 hrs later, the extent of large T 
antigen expression was determined as in Figure 2.1B. Infection efficiency was normalized to the 
control cells. Data are the mean +/- SD. (B) Cells expressing YFP-Rab7 (top) or CFP-HO2 
(bottom) were infected with non-labeled Py and treated with bafilomycin A1 simultaneously. 4.5 
hrs post-infection, cells were fixed and stained with an antibody against Py VP1, followed by 
addition of a fluorescently tagged secondary antibody; the extent of co-localization between this 
fluorescent signal and the fluorescence from YFP-Rab7 or CFP-HO2 were assessed. Data are 
the mean +/- SD. (C) Py was incubated at pH 7.5, 6.0, or 5.0, neutralized to pH 7.5, and then 
treated with a low concentration of proteinase K (2.5 ng/ml). The samples were immunoblotted 
with an antibody against VP1. (D) Py pretreated at pH 7.5 (top and bottom panels) or at pH 5 
(bottom panel) was incubated with DTT, EGTA, and either BSA or an ER lumenal extract, and 
then treated with a low trypsin (0.25 mg/ml) concentration. Appearance of the ER-induced VP1b 
fragment was analyzed by immunoblotting with an antibody against VP1. Graph on the right 
represents quantification of the relative VP1b level generated from Py pretreated at pH 7.5 or 5. A 
two-tailed t test was used. Data are the mean+/2SD. 
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Figure 2.4.  Decreased co-localization of Py with the late endosome and lysosome in 
GD1a-supplemented cells. 
(A) NIH 3T3 cells were incubated with purified GM1 or GD1a, washed, infected with Py, and the 
extent of infection was assessed as in Figure 2.1B. Results were normalized to non-
supplemented cells (control cells). (B) Untreated (control) or GD1a-supplemented NIH 3T3 cells 
were incubated with Py at 4ºC to allow viral binding and then treated with proteinase K where 
indicated (top panel) or incubated at 37ºC for 1 hr before proteinase K treatment to determine 
viral entry (bottom panel). (C, D) The extent of co-localization of labeled Py with (C) Rab5-
containing vesicles or (D) Rab7-containing vesicles at the early (0.5-2 hrs) and late (4-6 hrs) time 
points in both control and GD1a-supplemented NIH 3T3 cells. (E) Co-localization of labeled Py 
with Rab7-containing vesicles at 1-2 hrs post-infection in the ganglioside-deficient C6 cells. (F) 
Co-localization of labeled Py with LAMP1-containing vesicles 4-6 hrs post-infection in NIH 3T3 
cells. (G) The extent of Py infection in GD1a-supplemented cells expressing wild type YFP-Rab7 
or dominant negative YFP-Rab7 (DN). At least 220 transfected cells were analyzed from three 
independent experiments. All data are the mean +/- SD. 
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Figure 2.5.  Increased co-localization of Py with the ER in GD1a-supplemented cells.  
(A) Live cell imaging of labeled Py co-localization with the ER. NIH 3T3 cells co-expressing CFP-
HO2 and YFP-Rab7 were infected with labeled Py and the extent of co-localization of Py with the 
ER was analyzed 4–6 hrs post-infection. The images of the ER were subjected to filtering (see 
Figure 2.12) to more clearly define the ER tubule boundaries. Scale bar, 1 um. (B) Quantification 
of Py and ER co-localization in GD1a (4ºC, 37ºC, BFA+37ºC) and GD1a-supplemented cells. 
More than 300 viral particles were analyzed from at least 5 different cells. (C) Py and ER co-
localization in control and GD1a-supplemented cells using immunofluorescence staining. Scale 
bar, 2 um. (below) Quantification of the extent of co-localization, normalized to control cells. 
Arrowhead, Py that co-localized with the ER. Arrow, Py that did not co-localize with the ER. (D) 
Quantification of Py and ER co-localization in cells expressing either wild-type YFP-Rab7 (WT) or 
dominant-negative YFP-Rab7 (DN) using live cell tracking, as in A. The extent of co-localization 
was normalized to wildtype Rab7 expressing cells. (E) Quantification of CTB and ER co-
localization in cells expressing either wild-type YFP-Rab7 or dominant-negative YFPRab7. Data 
are the mean+/-SD. A two-tailed t test was used. 
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Figure 2.6.  Quantum-dot coated with a GD1a antibody is transported to the ER.  
(A) Q-dot GD1a Ab (high) was incubated with liposomes or liposomes containing GD1a. Samples 
were floated in a sucrose gradient, fractionated, subjected to SDS-PAGE, and immunoblotted for 
the GD1a antibody heavy chain. (B) Q-dot:Myc Ab (high), Q-dot:TfR Ab (high), Q-dot:GD1a Ab 
(low), Q-dot:GD1a Ab (middle), and Q-dot:GD1a Ab (high) were incubated with GD1a-
supplemented cells at 4ºC, washed to remove unbound Q-dots, and imaged. Left panels, 
representative images. Yellow lines, edge of cells. Scale bars, 10 um for bright field image, and 2 
um for Q-dot image. Right panel, quantification of the indicated Q-dot binding to the plasma 
membrane from at least 3 cells. Data are mean+/-SD. (C) Co-localization of Q-dot:GD1a Ab 
(high) with CFP-HO2 in GD1a-supplemented NIH 3T3 cells. Left panel, representative images 
(ER image processed as in Figure 2.5A). Scale bar, 2 um. Right panel, quantification of the 
indicated Q-dot co-localizing with the ER at various conditions from at least 3 different cells. Data 
are the mean+/-SD. A two-tailed t test was used. 
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Figure 2.7.  Model for sorting of Py from the plasma membrane to the ER. 
Model for sorting of Py from the plasma membrane to the ER. Polyomavirus binds to ganglioside 
GD1a or non-ganglioside receptors at the plasma membrane and is transport to the 
endolysosome. The low pH in this environment induces a conformational change on the virus that 
facilitates its subsequent structural alteration in the ER. Py that is bound to GD1a in the 
endolyosome is sorted to the ER where it undergoes an ERp29-dependent structural change that 
initiates viral penetration across the ER membrane. 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 39

Figure 2.8.  Morphology and distribution of early endosomes in CFP-Rab5 expressing 
cells, and of the late endosomes/lysosomes in YFP-Rab7 expressing cells. 
(A) A non-transfected cell (arrow head) and a cell expressing CFP-Rab5 (arrow) were fixed and 
stained with an antibody against the early endosomal marker EEA1, followed by addition of a 
fluorescently tagged secondary antibody. The fluorescent signal from this antibody and CFP-
Rab5 are shown. (B) As in A, except cells are expressing YFP-Rab7 and an antibody against the 
late endosomal/lysosomal marker LAMP1 was used. Scale bar, 10 µm. 
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Figure 2.9.  Lack of Py and caveolin-1 co-localization in NIH 3T3 cells. 
Cells expressing caveolin-1-mCitrine were incubated with Py for 20 min, fixed and stained with an 
antibody against Py VP1. Caveolin-1-mCitrine in green and Py in red. 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2.10.  Effect of low pH on polyomavirus conformational change. 
Py incubated with the indicated pH were neutralized and incubated with a high trypsin (1 mg/ml) 
concentration (bottom panel) or untreated (top panel). The samples were immunoblotted with an 
antibody against VP1. 
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Figure 2.11.  GD1a does not alter the size of endolysosomal vesicles. 
(A) The diameters of vesicles containing CFP-Rab5 in control and GD1a-supplemented cells 
were measured using an automated image analysis algorithm written for Image J (NIH). The 
fraction of total Rab5 vesicles within indicated vesicle sizes is shown. (B) As in A, except the 
diameter of vesicles containing YFP-Rab7 was analyzed. (C) As in A, except the diameter of 
vesicles containing LAMP1-YFP was analyzed. Data are the mean+/−SD. More than 400 vesicles 
were analyzed from 3 cells. 
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Figure 2.12.  Image filtering of the ER image. 
A raw image of the ER (i.e. expressing CFP-HO2) was subjected to filtering with the Fast Fourier 
Transform Bandpass Filter embedded in Image J (NIH), and pseudocolored. Yellow square, area 
used for live cell tracking in Figure 5A. Scale bar, 2 µm. 
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Figure 2.13.  Effect of NH4Cl on Py infection. 
NIH 3T3 cells were treated with NH4Cl 2 hrs before, at the same time, or 3 hrs after infection with 
non-labeled Py, and washed to remove the drug. 48 hrs later, the extent of large T antigen 
expression was determined as in Figure 2.1B. Infection efficiency was normalized to the control 
cells. Data are the mean +/- SD. 
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Chapter 3 

 

Lipids and Proteins Act in Opposing Manners  

to Regulate Polyomavirus Infection  

 

Background and Introduction 
To initiate infection, viruses bind to receptors on the plasma membrane to enter 

cells. Previous works indicated that polyomaviruses engage multiple receptors on 

the plasma membrane, such as gangliosides and glycoproteins (Tsai and Qian, 

2010). However, how these different receptors function together to regulate virus 

infection is still poorly understood. 

 

Gangliosides have been shown to be receptors for many members in the 

polyomavirus family, such as the murine polyomavirus (Py), SV40, BK virus (BKV) 

and Merkel Cell Polyomavirus (MCPyV). Gangliosides are synthesized in the ER 

and Golgi, and then transported to the plasma membrane. These lipids can be 

recycled to the endolysosomal compartment through endocytosis. Gangliosides 

in the lysosomes are then degraded by exohydratases which remove saccharide 

units. Defects in ganglioside degradation in the lysosomes will cause lysosomal 

storage disorders (Schwarzmann, 2001; Jeyakumar et al., 2005). Although 

gangliosides can be transported from the plasma membrane to the Golgi 

complex, only a very low level are transported back to the ER (Schwarzmann, 

2001).   

 

Py engages ganglioside GD1a as its functional receptor. Structurally, Py is a 

non-enveloped virus that is composed of 360 copies (72 pentamers) of the major 

capsid protein VP1 and 72 copies of the minor capsid protein VP2 / VP3 (Stehle 

et al., 1994; Chen et al., 1998). Py binds to GD1a through interaction of VP1 with 
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the sialic acid-galactose moiety in GD1a. After engaging the receptor on the 

plasma membrane, Py is endocytosed and transported through the early 

endosomes, late endosomes and lysosomes (Liebl et al., 2006; Qian et al., 2009). 

GD1a then sorts Py out of the endolysosomes to the ER (Qian et al., 2009) 

where the virus penetrates the ER membrane to reach the cytosol (Magnuson et 

al., 2005). Py subsequently enters the nucleus to cause infection. However, 

whether GD1a acts as an entry receptor for Py or only as an intracellular sorter 

still remains unknown. 

 

In addition to ganglioside GD1a, many glycoproteins also contain the sialic acid-

galactose moiety (Kornfeld and Kornfeld, 1985), a motif sufficient to bind to Py on 

the cell surface (Stehle and Harrison, 1996; Stehle et al., 1994; Tsai et al., 2003). 

In this case, it is also unclear what role the glycoprotein receptors play in 

regulating Py infeciton.  

 

Using a combination of microscopy, cell infection and biochemical studies, we 

clarified that GD1a acts as the functional entry receptor for Py. GD1a must 

engage Py on the plasma membrane, and the ensuing GD1a-Py complex is 

transported through the endolysosomes to the ER to cause infeciton. In addition, 

we show that retrograde transport of gangliosides to the ER is induced by ligand-

binding. Importantly, we found that removal of glycoproteins stimulated Py 

infection, while over-expression of model glycoproteins blocked infection. These 

results indicate that glycoproteins generally act as decoy receptors that drive Py 

away from the ER to the non-infectious pathway, thus attenuating infection. Our 

results demonstrate that glycolipid and glycoprotein receptors function in 

opposing manners to regulate Py infection.  

 

Results 
GD1a Addition to a Cell Line Lacking Functional Receptors Stimulates Py 
Binding, Entry, ER Transport, and Infection 
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Previous work indicates that GD1a is the functional receptor for Py infection (Tsai 

et al., 2003). To determine how GD1a functions at different stages of Py infection, 

we used the A1-1 cell line, a murine mammary tumor-derived cell line that is 

devoid of gangliosides including GD1a (Gilbert et al., 2005). To test whether 

addition of GD1a to A1-1 cells stimulates Py cell surface binding, cells 

supplemented with or without GD1a or GM1 were incubated with Py at 4ºC for 1 

hr to prevent endocytosis, and then washed to remove the unbound virus. Cells 

were fixed and subjected to immunofluorescence with an antibody against VP1. 

We found that the amount of cell surface virus increased in the GD1a-

supplemented cells when compared to that in non-supplemented cells or GM1-

supplemented cells (Figure 3.1A), indicating that GD1a interacts with Py on the 

cell surface. Py entry was investigated by incubating A1-1 cells with Py at 37ºC 

for 4 hrs. The entry of Py into cells also increased in GD1a-supplemented cells 

(Figure 3.1B). These results indicate that the functional receptor GD1a interacts 

with Py on the plasma membrane, and promotes Py binding and internalization. 

 

After entry, Py is transported to the ER and undergoes conformational changes 

in the ER, a reaction important for subsequent ER-to-cytosol penetration and 

infection (Gilbert and Benjamin, 2004; Magnuson et al., 2005; Qian et al., 2009). 

To test whether GD1a stimulates transport of Py to the ER, A1-1 cells were 

transfected with the ER marker CFP-Heme Oxygenase-2 (CFP-HO2). ER 

images were subjected to filtering with the Fast Fourier Transform Bandpass 

Filter embedded in Image J (Qian et al., 2009) to define the ER boundaries 

clearly. This method ensures that co-localization of Py with the ER can be 

analyzed more accurately. An example of the Py-ER co-localization after filtering 

is shown in Figure 3.1C (top panel). By examining co-localization of Py with the 

ER in A1-1 cells at 4.5 hrs post-infection, we found that the less than 1% of Py 

co-localized with the ER in non-supplemented cells, and that about 4.7% of Py 

co-localized with the ER in GD1a-supplemented cells (Figure 3.1C, see 

quantification in graph below). Thus supplementing GD1a increased the transport 

of Py to the ER. Furthermore, Py infection was measured by the percentage of 
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cells expressing virally-encoded large T antigen in the nucleus. Consistent with 

Gilbert’s report (Gilbert et al., 2005), A1-1 cells without GD1a supplement 

displayed a very low Py infection, while supplementing GD1a increased Py 

infection significantly (Figure 3.1D). Together, these results show that 

ganglioside GD1a promotes the binding, entry, ER transport and infection of Py. 

 

Py Co-localizes with GD1a on the Plasma Membrane, the Late Endosomes, 
and the ER 
To ask whether GD1a remains complexed with Py after viral entry, guiding the 

virus through the endolysosomes en route to the ER, we used BODIPY-GD1a to 

assess co-localization of Py with GD1a in A1-1 cells. BODIPY-GD1a is a 

modified form of GD1a in which the BODIPY fluorophore is conjugated to the 

ceramide domain of GD1a (Boldyrev et al., 2007; Kalinin et al., 2001). When A1-

1 cells were incubated with BODIPY-GD1a at 4ºC for 20 min, the majority of 

BODIPY-GD1a was localized on the plasma membrane (Figure 3.2A, top panels). 

When A1-1 cells were incubated with BODIPY-GD1a at 37ºC for 30 min, most of 

BODIPY-GD1a was internalized into cells and localized to vesicular structures, 

indicating that BODIPY-GD1a are internalized into cells efficiently (Figure 3.2A, 

bottom panels).  

 

Purified Py labeled with Alexa Fluor 594 dye (AF594-Py) was used to study co-

localization of Py with BODIPY-GD1a. The labeling procedure was previously 

shown to be efficient and do not affect Py infection (Qian et al., 2009). To show 

co-localization of Py with BODIPY-GD1a on the plasma membrane, A1-1 cells 

were incubated with BODIPY-GD1a at 4ºC for 15 min, washed to remove the 

unbound BODIPY-GD1a, and then incubated with labeled Py at 4ºC for 30 min. A 

representative image of labeled Py (red) co-localizing with BODIPY-GD1a (green) 

is shown in Figure 3.2B. The percentage of Py co-localizing with BODIPY-GD1a 

was quantified, and only approximately 12% of Py co-localized with BODIPY-

GD1a on the plasma membrane (Figure 3.2E). The low percentage of Py co-

localizing with GD1a on cell surface is not surprising because non-ganglioside 
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receptors such as glycoproteins compete with GD1a for Py binding on the 

plasma membrane. 

 

To visualize co-localization of Py with GD1a in the endolysosomal system, A1-1 

cells were transfected with CFP-Rab7, a marker of the late endosomes. A1-1 

cells expressing CFP-Rab7 were incubated with BODIPY-GD1a at 4ºC for 15 min, 

washed, and then incubated with labeled Py at 37ºC for 3 hrs to allow Py to enter 

the late endosomes. A typical image of labeled Py (red) co-localizing with 

BODIPY-GD1a (blue) in the Rab7-containing late endosome (green) is shown in 

Figure 3.2C. We found that approximately 43% of Py in the late endosomes co-

localized with BODIPY-GD1a (Figure 3.2E), indicating that a higher percentage 

of Py co-localizes with GD1a in the late endosomes when compared to that on 

the cell surface.  

 

To assess the extent of co-localization of Py with BODIPY-GD1a in the ER, A1-1 

cells expressing CFP-HO2 were incubated with BODIPY-GD1a at 4ºC for 15 min, 

washed, and then incubated with labeled Py at 37ºC for 4.5 hrs to allow Py to 

enter the ER. A typical image of labeled Py (red) co-localizing with BODIPY-

GD1a (blue) in the ER (green) is shown in Figure 3.2D. Quantification analysis 

showed that approximately 67% of Py in the ER co-localized with BODIPY-GD1a 

(Figure 3.2E), indicating that an even higher extent of Py co-localized with GD1a 

in the ER when compared to that in the late endosomes.  

 

These results suggest that GD1a binds to Py on the plasma membrane and 

remains complexed with Py when they are transported to the late endosomes 

and the ER. The increasing percentage of Py-GD1a co-localization, starting from 

12% on the plasma membrane to 43% in the late endosomes and then to 67% in 

the ER, suggests that those Py that bind to GD1a on the plasma membrane is 

preferentially targeted to the ER.  This is consistent with our previous finding 

demonstrating that GD1a sorts Py to the ER (Qian et al., 2009).     
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Ligand-Induced Retrograde Transport of Gangliosides to the ER 
As addition of GD1a to A1-1 cells stimulates the transport of Py to the ER (Figure 

3.1C), and that more than half of Py in the ER co-localizes with GD1a (Figure 

3.2D, 3.2E), we want to test whether addition of Py to cells stimulates transport of 

GD1a to the ER. A1-1 cells expressing CFP-HO2 were incubated with BODIPY-

GD1a at 4ºC for 15 min, washed, and then incubated with or without Py at 37ºC 

for 4.5 hrs. A typical image depicting a punctated BODIPY-GD1a (red) co-

localizing with the ER (green) is shown in Figure 3.3A (left panel). We found that 

the amount of punctated BODIPY-GD1a co-localizing with the ER significantly 

increased in Py-supplemented cells when compared to that in non-supplemented 

cells (Figure 3.3A, see quantification on the left graph). As a control, the amount 

of BODIPY-GD1a in the ER did not increase when cells were incubated with 

cholera toxin B subunit (CTB), which binds to ganglioside GM1 (Figure 3.3A, see 

quantification on the right graph). These findings indicate that Py is transported 

together with GD1a to the ER, thus increasing the amount of GD1a in the ER. 

We conclude that Py binding promotes the retrograde transport of ganglioside 

GD1a to the ER. 

 

In order to understand whether ligand-triggered retrograde transport of 

gangliosides to the ER is a common mechanism, we studied whether CTB 

triggers the transport of its receptor GM1 to the ER. Ganglioside GM1 normally 

binds to cholera toxin (CT) on the plasma membrane, and guides the toxin to the 

ER to cause intoxication of intestinal epithelial cells (Lencer and Tsai, 2003). NIH 

3T3 cells were incubated with BODIPY-GM1 at 4ºC for 30 min, washed to 

remove unbound BODIPY-GM1, and then incubated with or without CTB at 37ºC 

for 1 hr. A representative image showing co-localization of a punctated BODIPY-

GM1 (red) with the ER (green) is shown in Figure 3.3B (left panel). We found that 

the amount of punctated BODIPY-GM1 co-localizing with the ER significantly 

increased in CTB-supplemented cells when compared to that in non-

supplemented cells (Figure 3.3B, see quantification on the left graph). Co-

localization between BODIPY-GM1 and the ER did not increase in Py-
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supplemented cells (Figure 3.3B, see quantification on the right graph). These 

data indicate that the interaction of CTB with its receptor GM1 facilitates the 

retrograde transport of BODIPY-GM1 to the ER. 

 

Our results imply a general mechanism of the ligand-induced retrograde 

transport of gangliosides to the ER. They also indicate that gangliosides remains 

complexed with their ligands from the plasma membrane to the ER, and are not 

released from the ligands immediately after entry into the ER. It is interesting to 

note that both Py VP1 capsid and CTB are pentamers when assembled into their 

native structures (Lencer and Tsai, 2003; Stehle et al., 1994), indicating that a 

multivalent ligand-ganglioside interaction might be important for the ligand-

ganglioside complex to be transported to the ER.  

 

GD1a Must be Added Before, but not After, Incubation of Cells with Py to 
Stimulate Infection 
As Figure 3.1 shows, supplementing GD1a to A1-1 cells stimulated Py binding 

and entry, indicating that GD1a is the entry receptor. We want to further confirm 

that GD1a is the entry receptor by asking whether addition of GD1a after Py 

entry also stimulates Py infection. Should addition of GD1a after Py entry 

promotes Py infection, Py does not need to engage GD1a on the cell surface. 

For example, it is possible that cell surface glycoproteins, which contain sialic 

acid-galactose moiety, bind to Py on the plasma membrane and guide the virus 

to the endolysosomes. In this compartment, Py may be released from the 

glycoprotein receptor, re-bind to GD1a and cause productive infection. In this 

situation, GD1a does not act as the entry receptor. By contrast, if addition of 

GD1a after Py entry fails to stimulate Py infection, Py most engage GD1a on the 

plasma membrane, suggesting that GD1a functions as the entry receptor.  

 

To answer this question, A1-1 cells were incubated with GD1a at 2 hrs pre-

infection, 1 hr post-infection or 3 hrs post-infection. We found that supplementing 

GD1a prior to infection stimulated Py infection significantly, while supplementing 
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GD1a after virus incubation did not affect Py infection (Figure 3.4A). To exclude 

the possibility that GD1a added after virus entry failed to reach the 

endolysosomal system efficiently, we assessed co-localization of Py with 

BODIPY-GD1a in the late endosomes in cells supplemented with BODIPY-GD1a 

before or after virus entry. We found that the extent of Py co-localizing with 

BODIPY-GD1a in the late endosomes was similar regardless of whether cells 

were treated with BODIPY-GD1a before or after virus entry (Figure 3.4B; see 

also Figure 3.2E). Therefore, that addition of GD1a after virus incubation does 

not stimulate Py infection is not due to the failure of GD1a to reach the 

endolysosomes containing Py. In NIH 3T3 cells we found that addition of GD1a 

prior to but not after Py incubation stimulated Py infection (Figure 3.4C), similar 

to results in the A1-1 cells. We conclude that GD1a only stimulated Py infection 

when it was added before Py incubation, suggesting that GD1a must engage Py 

on the plasma membrane to initiate infection. These results further confirm that 

GD1a is the entry receptor for Py.  

 

Removing Plasma Membrane Glycoproteins Stimulates Py Infection and ER 
Transport 
Since many glycoproteins also contain sialic acid-galactose moiety and could 

bind to Py on the cell surface (Kornfeld nad Kornfeld, 1985; Stehle and Harrison, 

1996; Stehle et al., 1994; Tsai et al., 2003), we want to understand the role of 

glycoprotein receptors in Py infection. We approached this problem by measuring 

Py infection in NIH 3T3 cells in which the plasma membrane glycoproteins were 

removed.  

 

First we verified the efficiency of removal of the cell surface glycoproteins by 

proteinase K. NIH 3T3 cells were treated with or without proteinase K at 4ºC for 1 

hr, and the contents of the media from these cells were precipitated and 

subjected to SDS-PAGE followed by Coomassie staining. We found that there 

were more degraded proteins of various molecular weights in the media derived 

from the proteinase K-treated cells when compared to that from non-treated cells 
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(Figure 3.5A, compare lane 2 to lane 1). Therefore, proteins could be efficiently 

removed by proteinase K. Furthermore, we asked whether the proteinase K only 

removed the proteins on the cell surface but not proteins inside the cells. Cell 

lysates from NIH 3T3 cells treated with or without proteinase K were subjected to 

SDS-PAGE followed by immunoblotting with antibodies against specific proteins 

on the plasma membrane or inside the cells. We found that the cell surface EGF 

receptor (EGFR) and transferrin receptor (TfR) were degraded completely by 

proteinase K treatment, while the ER membrane protein Derlin-1 was not 

affected (Figure 3.5B, compare lane 2 to lane 1). These results suggested that 

proteinase K treatment removed proteins on the plasma membrane effectively, 

without affecting the internal proteins. 

 

Next we studied virus binding and infection in the proteinase K-treated and non-

treated cells. We found that removing proteins from the plasma membrane by 

proteinase K decreased the number of viral particles bound to cell surface 

(Figure 3.5C). This result indicates that Py binds to glycoproteins on the cell 

surface, as suggested by our previous report (Qian et al., 2009). Importantly, we 

found that NIH 3T3 cells treated with proteinase K showed enhanced 

susceptibility to Py infection (Figure 3.5D). Moreover, we assessed the extent of 

co-localization between Py and the ER, and found that the percentage of Py 

transported to the ER also increased in the proteinase K-treated cells when 

compared to non-treated cells (Figure 3.5G). Our results showed that removing 

proteins from the cell surface enhanced Py infection.   

 

Why does removing cell surface proteins increase Py trafficking to the ER and 

infection? One possibility is that this condition stimulates GD1a expression on the 

plasma membrane. To test this possibility, we measured the GD1a level on the 

cell surface using a quantum dot coated with an antibody against GD1a (Q-

dot:GD1a Ab) that was shown previously to bind to GD1a (Qian et al., 2009). We 

found that cell surface binding of Q-dot:GD1a Ab particles did not increase in 

cells treated with proteinase K (Figure 3.5E), suggesting that the GD1a level 
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remained constant regardless of whether cell surface proteins were removed or 

not.  

 

Hence it is likely that that cell surface proteins normally act to attenuate Py 

infection, and removal of cell surface proteins results in more Py binding to GD1a, 

thereby promoting infection. We asked whether the extent of labeled Py binding 

to BODIPY-GD1a increased in the A1-1 cells treated with or without proteinase K. 

A1-1 cells were used here because they do not contain endogenous GD1a on 

the plasma membrane. We found that proteinase K treatment stimulated co-

localization of labeled Py with BODIPY-GD1a on the plasma membrane (Figure 

3.5F). This result suggests that the increased infection in cells treated with 

proteinase K is due to increased interaction between Py and GD1a on the cell 

surface. 

 

To confirm that glycoproteins compete with GD1a, NIH 3T3 cells were treated 

with PNGase F, a glycosidase that removes carbohydrate residues from 

glycoproteins but not glycolipids, at 37ºC for 1 hr (PNGase F has very low activity 

at 4ºC). When cell lysates were subjected to immunoblotting, we found that the 

carbohydrate residues of the cell surface glycoprotein EGFR were removed by 

PNGase F, while the ER membrane glycoprotein Ribophorin I (Ribo I) was not 

affected (Figure 3.5H, compare lane 2 to lane 1). These findings indicate that 

PNGase F only acts on glycoproteins on the cell surface but not internal 

glycoproteins. When infection was assessed, we found that it was stimulated 

when cells were treated with PNGase F (Figure 3.5I). We conclude that 

glycoproteins normally act in an opposing manner to GD1a in regulating Py 

infection, likely by engaging Py on the cell surface and targeting the virus along 

the non-infectious pathway. 

 

Over-expression of the model glycoprotein EGFR decreases Py infection 
and ER transport. 
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As removing glycoproteins stimulates Py infection, we asked whether over-

expression of a model glycoprotein on the cell surface would decrease virus 

infection. The plasma membrane protein EGFR, which contains terminal sialic 

acid-galactose residues, was used for this experiment. First we showed that the 

EGFR interacted with Py using a co-immunoprecipitation approach. NIH 3T3 

cells were incubated with Py at 4ºC for 1hr, washed to remove the unbound Py, 

and the cell pellets were harvested and incubated with the crosslinker dithiobis 

succinimidyl propionate (DSP) at 4ºC for 1hr. The resulting cell lysates were 

subjected to immunoprecipitation with an antibody against Ribo I or an antibody 

against EGFR. The precipitated samples were then subjected to SDS-PAGE 

followed by immunoblotting with an antibody against VP1 or EGFR. We found 

that the EGFR interacted with Py, while the ER-resident glycoprotein Ribo I did 

not (Figure 3.6A, top panel, compare lane 2 to lane 1).   

 

Next we showed the extent of EGFR over-expression in NIH 3T3 cells 

transfected with an EGFR construct. NIH 3T3 cells were transfected with the 

control GFP construct only or co-transfected with GFP and EGFR, and the total 

cell lysates were subjected to immunoblotting with an antibody against EGFR. 

We found that the EGFR level significantly increased in cells transfected with 

both GFP and EGFR when compared to cells transfected with GFP only (Figure 

3.6B).  

 

To assess the level of Py binding in cells transfected with or without EGFR, NIH 

3T3 cells transfected with GFP only or co-transfected with GFP and EGFR were 

incubated with Py at 4ºC for 1hr, washed to remove the unbound viruses, and 

subjected to immunofluorescence with an antibody against VP1. Only cells with 

GFP fluorescent signal were analyzed. We found that more Py bound to cells 

transfected with both GFP and EGFR when compared to cells transfected with 

GFP only (Figure 3.6C), indicating that EGFR over-expression promotes Py 

binding to the cell surface. 
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To detect the infection efficiency, NIH 3T3 cells transfected with GFP only or co-

transfected with GFP and EGFR were infected with Py, and only those GFP 

positive cells were analyzed. We found that cells co-transfected with GFP and 

EGFR displayed decreased infection when compared to cells transfected with 

GFP only (Figure 3.6D), suggesting that the excess EGFR competes with GD1a 

receptor for Py binding and leads the virus to the non-infectious pathway. 

Furthermore, we assessed the Py-ER co-localization in cells transfected with 

CFP-HO2 only and cells co-transfected with CFP-HO2 and EGFR. We found that 

the extent of Py transported to the ER was also blocked by EGFR over-

expression (Figure 3.6F). In addition, in A1-1 cells, we found that the extent of 

co-localization between labeled Py and BODIPY-GD1a was inhibited in cells co-

expressing CFP and EGFR when compared to cells expressing CFP only (Figure 

3.6E), indicating that excess EGFR competed with GD1a for Py binding. 

Together, these results demonstrate that over-expression of EGFR blocked Py 

transport to the ER and infection, suggesting that the cell surface glycoproteins, 

such as EGFR, compete with GD1a, leading Py to the non-infectious pathway. In 

this way, glycoproteins protect cells from Py infection. 

 

Where are the virus when bound to glycoproteins? Using cells transfected with 

YFP-Rab7 only or co-transfected with YFP-Rab7 and EGFR, we found that the 

extent of Py co-localizing with the Rab7-containing late endosomes increased in 

cells overexpressing the EGFR (Figure 3.6G). Therefore Py that bound to 

glycoprotein receptors such as the EGFR might be trapped in the late 

endosomes and unable to be further sorted to the ER to cause productive 

infection. 

 

To exclude the possibility that overexpression of EGFR may induce signaling 

events that perturbs the Py infectious pathway, we studied Py infection in NIH 

3T3 cells stably expressing the IGF-1 receptor (IGF-1R), which is another 

glycoprotein on the cell surface. Again we found that Py infection was inhibited in 

cells with IGF-1R stably expressed when compared to control cells (Figure 3.6I). 
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Since IGF-1R expression induce different signaling properties than EGFR (Tong 

et al., 2000), the decrease in Py infection is more likely due to competition 

between glycoproteins and GD1a for Py binding, rather than signaling events.  

 

In conclusion, we found that over-expression of model glycoproteins on the cell 

surface inhibited Py infection and trapped Py in the late endosomes. These data 

indicate that glycoproteins normally function to compete with ganglioside receptor 

on the plasma membrane, and guides Py to the non-infectious pathway to restrict 

Py infection. Therefore, ganglioside and glycoprotein receptors act in opposing 

manners to regulate Py infection.  

 

Discussion 
It is not uncommon for viruses to bind to multiple receptors on the cell surface 

during their entry process (Baranowski et al., 2001; Dimitrov, 2004). These 

multiple receptors could be redundant, where several receptors independently 

mediate the entry of viruses. For example, the entry of alphaherpesviruses could 

be mediated by nectins, herpesvirus entry mediator (HVEM) and heparin sulfate, 

and these receptors bind to the virus independently without acting as co-

receptors (Heldwein and Krummenacher, 2008; Shieh et al., 1992).  

 

Alternatively, multiple receptors could also function sequentially. For example, 

the DC-SIGN functions as an attachment receptor that concentrates the dengue 

virus on the plasma membrane, allowing the dengue virus to interact efficiently 

with an unidentified receptor that is responsible for the entry of the virus (Lozach 

et al., 2005). Additionally, HIV initially binds to its primary receptor CD4, and then 

interacts with one of the chemokine receptors, either CCR5 or CXCR4, for entry 

(Kuritzkes, 2009).  

 

Py could use both gangliosides and glycoproteins as receptors, but it was not 

clear what roles these two receptors played during viral infection. In our studies, 

we found that once Py binds to the glycoprotein receptors, it can not be 
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transported to GD1a even when it is exposed to a high concentration of GD1a 

inside cells, indicating that glycoproteins and gangliosides do not act as 

sequential receptors. More importantly, we found that removal of glycoproteins 

increased Py infection, while over-expression of the model glycoprotein EGFR on 

the cell surface inhibited Py infection, suggesting that gangliosides and 

glycoproteins function as competitive receptors, opposing each other to regulate 

Py infection. Therefore, our results clearly demonstrate that gangliosides and 

glycoproteins play opposite roles in Py infection. We will discuss in detail the 

roles of gangliioside and glycoprotein receptors in Py infection. 

 

Glycolipid Ganglioside GD1a as the Functional Entry Receptor 
It is known that ganglioside GD1a is the functional receptor for Py (Gilbert and 

Benjamin., 2004; Gilbert et al., 2005; Qian et al., 2009; Smith et al., 2003; Tsai et 

al., 2003). This conclusion is mainly based on the following three evidences. First, 

direct interaction between Py and GD1a was detected by using sucrose flotation 

experiments, which used liposomes containing GD1a or control gangliosides to 

study the interaction between Py and gangliosides (Tsai et al., 2003). This 

interaction is presumably mediated by the termimal sialic acid-galactose moiety 

in GD1a and VP1 in Py (Stehle et al., 1994; Tsai et al., 2003). Second, addition 

of GD1a to NIH 3T3 cells or ganglioside deficient cells, such as rat glioma C6 

and mouse A1-1 cells, promoted Py infection (Gilbert and Benjamin, 2004; 

Gilbert et al., 2005; Qian et al., 2009; Tsai et al., 2003). Third, supplementing 

GD1a facilitated transport of Py to the ER, a step required for productive infection 

(Gilbert and Benjamin, 2004; Qian et al., 2009; Tsai et al., 2003; Gilbert et al., 

2006; Lilley et al., 2006; Magnuson et al., 2005). 

 

However, there was no direct evidence that GD1a is an entry receptor for Py. It is 

still possible that Py enters cells by interacting with non-ganglioside receptors, 

and when after entry Py is transferred to GD1a in the endolysosomes where 

gangliosides accumulate. Interaction of Py with GD1a in the endolysosomes may 

also result in sorting of Py to the ER to cause productive infection. In this case, 
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GD1a might only act as an intracellular sorter for Py (Qian et al., 2009), and not 

as an entry receptor. In this paper, we identify GD1a as an entry receptor for Py 

based on the following findings. 

 

First, using a murine A1-1 cell line that lacks of gangliosides (Gilbert et al., 2005), 

we found that supplementing GD1a stimulated Py binding, entry, transport to the 

ER and infection. Second, using a fluorescently-labeled GD1a (BODIPY-GD1a), 

we directly detected co-localization of Py with GD1a on the plasma membrane, in 

the late endosome, and in the ER. Quantitative analysis showed that the 

percentage of Py co-localizing with GD1a increases when Py is transported from 

the plasma membrane through the late endosome to the ER, indicating that 

GD1a binding preferentially targets Py to the ER. Third, we showed that GD1a 

stimulated Py infection only when GD1a was added before, but not after, 

incubation of cells with Py. Also we found that GD1a could still reach the 

endolysosomes efficiently when GD1a was added after Py incubation, excluding 

the possibility that the inability of GD1a to stimulate infection when supplemented 

after virus incubation is due to failure of GD1a to reach the endolysosomes that 

harbor the virus. Therefore, our data demonstrate that GD1a is required to 

interact with Py on the cell surface to stimulate virus infection, and thus GD1a 

plays the role of the functional entry receptor for Py.  

 

Consistent with the finding that Py-GD1a complex was preferentially targeted to 

the ER, we found that the extent of GD1a in the ER was stimulated by incubation 

of cells with Py. Similarly, we found that the level of GM1 in the ER was also 

stimulated by incubation of cells with CTB. These results suggest a general 

mechanism that ligand binding triggers the transport of ganglioside receptors 

from the plasma membrane to the ER. It should be noted that, although 

gangliosides are biosynthesized in the ER and Golgi and transported forward to 

the plasma membrane, the retrograde transport of gangliosides from the plasma 

membrane to the ER is a very inefficient process. Most gangliosides are 

transported to the lysosomes for degradation, and only a small fraction are 
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transported to the Golgi complex, and an even smaller fraction might be 

transported to the ER (Schwarzmann, 2001).    

 

The molecular mechanism by which the ligand-triggered retrograde transport of 

gangliosides to the ER is not clear. One possibility is that the clustering of 

gangliosides around the ligand may generate a hydrophobic platform that is 

responsible for the ER targeting. For Py, one virion contains 360 copies of VP1 

and each copy of VP1 provides one GD1a binding site. Thus each viral particle 

has the potential to accumulate multiple GD1a around it. For cholera toxin, CTB 

is a pentamer and each CTB has the potential to bind to five GM1 molecules. 

Ganglioside clustering around the ligand may induce the formation of a 

hydrophobic platform within the bilayer of the membrane, and stimulate 

transmembrane signaling to recruit cytoplasmic factors. These cytoplasmic 

factors may be able to facilitate budding of the ganglioside-containing vesicles 

and transport of these vesicles to the ER. In addition, ganglioside clustering 

might alter the physical properties of the membrane, inducing membrane 

curvature. This concept has been reported for SV40, where interaction of SV40 

with ganglioside GM1 receptor is sufficient to trigger membrane invagination in 

giant unilamellar vesicles (Ewers et al., 2010). Therefore, clustering of 

gangliosides might be the essential mechanism of retrograde transport of 

gangliosides to the ER.    

 

Glycoproteins as Decoy Receptor 
To enter cells and cause infection, Py needs to bind to the sialic acid-galactose 

containing GD1a on the cell surface. Most glycoproteins on the plasma 

membrane also contain the sialic acid-galactose moiety, and thus have the ability 

to bind to Py and act as Py receptors. In our studies, we found that removing 

glycoproteins stimulated Py infection, while over-expression of two model 

glycoproteins inhibited Py infection. These results show that glycoproteins act as 

the “decoy” receptors for Py. “Decoy” receptors can bind to Py, and guide the 

virus to the endolysosomes, as Py was found in the endolysosomes in 
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ganglioside-deficient C6 cell (Qian et al., 2009). However, Py that engages 

glycoprotein receptors seems to be trapped in the endolysosomes and can not 

be sorted to the ER for infection. 

 

As there are a large amount of different glycoproteins on the plasma membrane, 

glycoproteins act as strong competitors against GD1a to engage Py on the cell 

surface and lead Py to the non-infectious pathway. However, one viral particle 

that successfully arrives in the nucleus is sufficient to cause infection 

(Diacumakos and Gershey, 1977). Therefore, even though NIH 3T3 cells 

probably contain much more glycoprotein receptors than GD1a receptors, and 

have different defensive systems inside the cells to block Py infection, Py can 

nonetheless cause productive infection. In the ganglioside deficient A1-1 cells, 

the infection efficiency of Py is significantly reduced, but there is still a very low 

level of infection (below 0.1%). This might be due to the remaining gangliosides 

on the cell surface, or Py can occasionally escape the non-infectious pathway 

guided by the glycoprotein and enter the nucleus for infection. 

 

Our results show that over-expression of either EGFR or IGF-1R decreases Py 

infection, indicating that this effect is not likely due to specific signaling events. It 

is possible that over-expression of the model glycoprotein overwhelms GD1a on 

the plasma membrane, allowing the glycoprotein to bind to more Py than GD1a. 

This scenario explains why infection is decreased when excess glycoproteins are 

expressed.  

 

A previous finding showed that the glycoprotein integrin acts as a postattachment 

receptor for Py (Caruso et al., 2003). We analyzed the level of integrin in NIH 

3T3 cells treated with proteinase K, and found that proteinase K treatment did not 

degrade integrin efficiently (Figure 3.8). Therefore, it remains possible that some 

specific glycoproteins such as integrin stimulates Py infection, for example, by 

acting together with GD1a as sequential receptors. Nonetheless, our data 
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suggest that glycoproteins in general work as “decoy” receptors to deceive Py to 

the non-infectious pathway.  

 

In conclusion, our findings showed two competitive receptors for Py, ganglioside 

GD1a as the functional entry receptor and glycoproteins as decoy receptors. To 

cause infection, Py develops a direct interaction with the sialic acid-galactose 

moiety in GD1a to maximize its infection efficiency. However, the presence of 

sialic acid-galactose moiety in most glycoproteins in turn inhibits Py infection 

efficiency and protects cells from virus infection.  

 
Experimental Methods 
Reagents.  
Antibodies against VP1 and large T antigen, and purified Py were provided by 

Tom Benjamin (Harvard Medical School). The CFP-Heme Oxygenase-2 

construct was a gift from Melissa Rolls (Penn State). The CFP-Rab7 and YFP-

Rab7 plasmids were from Joel Swanson (University of Michigan). The FLAG-

tagged human EGFR construct was from John Kuriyan (University of California, 

Berkeley). Purified GM1 and GD1a were purchased from Matreya, Alexa Fluor 

594 and BODIPY FL C5-ganglioside GM1 from Invitrogen, dithiobis succinimidyl 

propionate (DSP) from Thermo Scientific , proteinase K from Sigma, and 

PNGase F from New England BioLabs. BODIPY-GD1a was provided kindly from 

Julian Molotkovsky (Russian Academy of Sciences). NIH 3T3 cells stably over-

expressing the IGF-1R is from Peter Arvan’s lab (University of Michigan). 

 

Preparation of Alexa Fluor 594 labeled Py.  
Purified Py (RA strain) was labeled with Alexa Fluor 594 succinimidyl ester (1 

mM) following the manufacturer’s protocol (Invitrogen). Labeled Py was 

separated from excess labeling reagent using a Micro Bio-Spin 30 Column (Bio-

Rad Lab). 

 

Infection assay.  
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NIH 3T3 cells or A1-1 cells were incubated with Py (about 100 PFU/cell or  

1 x 104 particles/cell) for 1 hr, washed and incubated for 48 hrs at 37°C. Cells 

were fixed with 3.6% formaldehyde, permeabilized with 0.2% Triton X-100, and 

subjected to immunofluorescence (IF) with an antibody against the large T 

antigen. Bright phase and fluorescence images were taken under Nikon Eclipse 

TE2000-E microscopy with 40X objective. For the GD1a time course 

experiments, NIH 3T3 cells or A1-1 cells were treated with GD1a (80 uM) at the 

indicated time pre- or post-infection for at least 2 hrs. For the proteinase K or 

PNGase F experiments, cells were treated with 4 ug/ml proteinase K for 1 hr at 

4°C, or with 10,000 units of PNGase F with the G7 buffer in 1 ml medium for 1 hr 

at 37°C. For the EGFR over-expression experiments, cells were transfected 

using Effectene (Qiagen) with either the control GFP construct or with a 

combination of GFP and EGFR constructs for 2 days prior to infection.    

 

Immunofluorescence staining.  
Cells were fixed with formaldehyde (3.6%) and permeabilized with Triton X-100 

(0.2%). The cells were then incubated with an antibody against Py large T 

antigen or an antibody against Py VP1 protein for 1-2 hrs at room temperature, 

washed, and incubated with a fluorescently tagged secondary antibody 

(rhodamine labeled donkey anti-rat antibody for large T antigen or a rhodamine 

labeled donkey anti-rabbit antibody for VP1).  

 

Image analysis.  
Different color images were taken with Nikon filter cubes for Texas Red (96313), 

YFP (96345) and CFP (96341). The images for co-localization experiments were 

taken with a 100X objective in a Nikon TE2000-E microscope. The ECFP/DsRed 

filter set (51018, Chroma) was used to take the images with two fluorescence 

simultaneously. The dual-color image was split to two channels by Dual-View 

image splitter (Optical Insight) and projected to the two halves of a CCD camera 

(CoolSnap EZ2, Photometric). Bilinear transformation calculation was used to 

correct the imaging mis-alignment between different channels. The Fast Fourier 
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Transform Bandpass Filter in Image J (NIH) was used to define the boundaries of 

the ER clearly. The filtering settings were set as filtering large structures down to 

15 pixels and filtering small structures up to 3 pixels, and a tolerance of direction 

of 5%.  

 

Py-EGFR binding studies.  
NIH 3T3 cells were incubated with Py at 4°C for 1 hr, the unbound virus removed 

by washing, and the resulting cell pellet incubated with the crosslinker dithiobis 

succinimidyl propionate (DSP) at 4°C for 1 hr. Cells were lysed with a buffer 

containing 150 mM KOAc, 50 mM HEPES (pH 7.4), 2 mM Mg(OAc)2, 250 mM 

sucrose, and 1% Triton X-100, and the resulting lysate subjected to 

immunoprecipitation using either a control Ribo I or an EGFR-specific antibody. 

The precipitated sample was subjected to SDS-PAGE followed by 

immunoblotting with antibodies against Py VP1 and EGFR. 

 

FACS assay 
NIH 3T3 cells were seeded at 1.5 x10^6 cells/ 60 mm plate.  The next day, cells 

were either mock treated or treated with 4ug/ml PK for 1h at 4°C.  Cells were 

treated with Accutase, spun at 13000 x g for 5m, and resuspended in 1 ml PBSA.  

Cells were split evenly between 3 FACS tubes (mock, secondary Ab alone, and 

CD51 + secondary Ab).  Cells were spun again and resuspended in "residual" 

liquid.  Fcblock was then added and cells incubated on ice for 5 min, except for 

the mock treated which remained in ice.  Anti-CD51 primary Ab was added to 

sample, vortexed, and incubated on ice for 30 min.  Cells were washed with 1 ml 

PBSA and then resuspended in "residual" liquid.  Anti Rat PE was added to 

samples and incubated on ice for 20 min.  Cells were washed with PBSA and 

then resuspended in "residual" liquid.  All cells were fixed with 2% formaldehyde 

and stored overnight at 4°C.  Samples were ran on the FACS and examined for 

level of PE. 
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Figure 3.1. GD1a addition to a murine cell line lacking functional receptors stimulates Py 
binding, entry, ER transport, and infection.  
(A-B) Control, GM1-supplemented (only in A), and GD1a-supplemented A1-1 cells were 
incubated with Py at 4°C for 1 hr (A) or at 37°C for 4 hrs (B), washed to remove the unbound 
virus, and subjected to immunofluorescence with an antibody against VP1. Top panel, 
representative images. Scale bar, 10 um for bright field image, and 2 um (A) or 1 um (B) for the 
Py images. Bottom panel, quantification of the Py binding to the plasma membrane from at least 
3 cells. Data are the mean +/- SD. A two-tailed t test was used. (C) Control and GD1a-
supplemented A1-1 cells expressing CFP-HO2 were incubated with Py at 4°C for 40 min, washed 
to remove the unbound Py, and then incubated at 37°C for 4.5 hrs. Cells were subjected to 
immunofluorescence with an antibody against VP1. Top panel, representative image. Arrow, Py 
that co-localized with the ER. Scale bar, 1 um. Bottom panel, quantification of the Py co-localizing 
with the ER from at least 3 cells. Data are the mean +/- SD. (D) Control and GD1a-supplemented 
A1-1 cells were incubated with Py at 37°C for 48 hrs, and subjected to immunofluorescence with 
an antibody against large T antigen. Data represent the mean +/- SD of at least 2 independent 
experiments. 3/4004 cells expressed T antigen in the control cells. 
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Figure 3.2. Py co-localizes with GD1a on the plasma membrane, the late endosomes, and 
the ER. 
(A) A1-1 cells were incubated with BODIPY-GD1a at 4°C for 20 min (top panels) or at 37°C for 30 
min (bottom panels). (B) Cells were incubated first with BODIPY-GD1a at 4°C for 15 min and then 
with labeled Py at 4°C for 30 min. Arrow, Py that co-localized with BODIPY-GD1a on the plasma 
membrane. Scale bar, 1 um. (C) Cells expressing CFP-Rab7 were incubated first with BODIPY-
GD1a at 4°C for 15 min and then with labeled Py at 37°C for 3 hrs. A representative image of Py 
co-localizing with BODIPY-GD1a in the Rab7-containing vesicle is shown. Scale bar, 1 um. (D) 
Cells expressing CFP-HO2 were incubated first with BODIPY-GD1a at 4°C for 15 min and then 
with labeled Py at 37°C for 4.5 hrs. A representative image of Py co-localizing with BODIPY-
GD1a in the ER is shown.  Scale bar, 1 um. (E) Quantification of the extent of co-localization 
between labeled Py and BODIPY-GD1a in the indicated membrane from at least 3 cells. Data are 
the mean +/- SD. 
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Figure 3.3. Ligand-induced retrograde transport of gangliosides to the ER. 
(A) A1-1 cells expressing CFP-HO2 were incubated first with BODIPY-GD1a at 4°C for 15 min 
and then either with or without Py at 37°C for 4.5 hrs, or with or without CTB at 37°C for 1 hrs. 
The picture shown is a representative image of BODIPY-GD1a co-localizing with the ER. Scale 
bar, 1 um. Left graph, quantification of the extent of co-localization between BODIPY-GD1a and 
the ER from at least 3 control or Py-supplemented cells. Right graph, quantification of the extent 
of co-localization between BODIPY-GD1a and the ER from at least 3 control or CTB-
supplemented cells. Data are the mean +/- SD. (B) NIH 3T3 cells expressing CFP-HO2 were 
incubated first with BODIPY-GM1 at 4°C for 15 min and then either with or without CTB at 37°C 
for 1 hr, or with or without Py at 37°C for 4.5 hr. The picture shown is a representative image of 
BODIPY-GM1 co-localizing with the ER. Scale bar, 1 um. Left graph, quantification of the extent 
of co-localization between BODIPY-GM1 and the ER from at least 3 control or CTB-
supplemented cells. Right graph, quantification of the extent of co-localization between BODIPY-
GM1 and the ER from at least 3 control or Py-supplemented cells. Data are the mean +/- SD.                       
 
 

 
 
 
 
 
 
 
 
 
 



 67

Figure 3.4. GD1a must be added before, but not after, incubation of cells with Py to 
stimulate infection. 
(A) A1-1 cells were treated with 80 uM GD1a at the indicated time points with respect to addition 
of cells with Py. 48 hrs after incubation of cells with Py, cells were subjected to 
immunofluorescence with an antibody against the large T antigen. Data represent the mean +/- 
SD for at least 2 independent experiments. 3/4004 cells expressed T antigen in the control cells. 
(B) A1-1 cells expressing CFP-Rab7 were incubated first with BODIPY-GD1a at 4°C for 15 min 
and then with labeled Py at 37°C for 3 hrs. 80 uM GD1a was added pre- or post-infection. The 
extent of co-localization between labeled Py and BODIPY-GD1a in the CFP-Rab7 late 
endosomes was quantified from at least 3 cells. Data are the mean +/- SD. (C) As in (A) except 
NIH 3T3 cells were used. 78/1006 cells expressed T antigen in the control cells. 
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Figure 3.5. Removing plasma membrane glycoproteins stimulates Py infection and ER 
transport. 
(A) NIH 3T3 cells were treated with or without 4 ug/ml proteinase K at 4°C for 1 hr. Contents in 
the media from these cells were precipitated and subjected to SDS-PAGE analysis followed by 
Coomassie staining. (B) Cells were treated with or without 4 ug/ml proteinase K at 4°C for 1 hr. 
Cell lysates were subjected to SDS-PAGE followed by immunblotting with antibodies against the 
EGFR, TfR, and Derlin-1. (C) Quantification of the number of Py particles bound to the plasma 
membrane in control and proteinase K treated cells. At least 3 cells in each group were analyzed. 
Data are the mean +/- SD. (D) Large T antigen expression in control and proteinase K treated 
cells were analyzed as in Figure 3.1D. Data represent the mean +/- SD from at least 3 
independent experiments. 81/5404 cells expressed large T antigen in control cells. (E) 
Quantification of the number of Q-dot (GD1a Ab) bound to the cell surface of control and 
proteinase K-treated cells. (F) Quantification of Py and BODIPY-GD1a co-localization on the 
plasma membrane of control and proteinase K-treated A1-1 cells. Data were analyzed as in FIG 
3.2. (G) Py-ER co-localization in control and proteinase K treated cells were analyzed by 
immunofluorescence staining. Top panel, representative images. Arrowhead, Py that co-localized 
with the ER. Arrow, Py that did not co-localize with the ER. Scale bar, 1 um. Bottom panel, 
quantification of Py co-localizing with the ER from at least 3 cells. Data are the mean +/- SD. (H) 
Cells were treated with or without PNGase F at 37°C for 1 hr. Cell lysates were subjected to SDS-
PAGE followed by immunblotting with antibodies against the EGFR and Ribo I. (I) Large T 
antigen expression in control and PNGase F treated cells were analyzed as in FIG 3.1D. Data 
represent the mean +/- SD from at least 2 independent experiments. 27/1232 cells expressed 
large T antigen in control cells. 
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Figure 3.6. Over-expression of the model glycoprotein EGFR decreases Py infection and 
ER transport. 
(A) NIH 3T3 cells were incubated with Py at 4°C for 1 hr, washed to remove the unbound virus, 
and the resulting cell pellet was incubated with the crosslinker DSP at 4°C for 1 hr. Cells were 
lysed and the resulting lysate was subjected to immunoprecipitation using either a control Ribo I 
or EGFR-specific antibody. The precipitated sample was subjected to SDS-PAGE followed by 
immunoblotting with antibodies against Py VP1 and EGFR. (B) Cells were transfected with either 
the control GFP construct or with a combination of GFP and EGFR constructs. Cell lysates were 
subjected to SDS-PAGE followed by immunblotting with antibodies against the EGFR and Ribo I. 
(C) Quantification of the number of Py particles bound to the plasma membrane in cells 
transfected with either the control GFP construct or with a combination of GFP and EGFR 
constructs. At least 3 cells that expressed GFP in each group were analyzed. Data are the mean 
+/- SD. (D) Large T antigen expression in cells transfected with either the control GFP construct 
or with a combination of GFP and EGFR constructs were analyzed as in FIG 3.1D. Only those 
cells that expressed GFP were counted. Data represent the mean +/- SD for at least 3 
independent experiments. 23/342 cells expressed large T antigen in control cells. (E) 
Quantification of Py and BODIPY-GD1a co-localization on the plasma membrane of A1-1 cells 
transfected with CFP or with a combination of CFP and EGFR. Only those cells expressing CFP 
were counted. Data were analyzed as in FIG 3.2. (F) Quantification of the Py-ER co-localization 
in cells transfected with either the control CFP-HO2 construct or with a combination of CFP-HO2 
and EGFR constructs. At least 3 cells in each group were analyzed. Data are the mean +/- SD. 
(G) Quantification of Py-late endosome co-localization in cells transfected with either the control 
YFP-Rab7 construct or with a combination of YFP-Rab7 and EGFR constructs. At least 3 cells in 
each group were analyzed. Data are the mean +/- SD. (H) Large T antigen expression in control 
NIH 3T3 cells or NIH 3T3 cells stably over-expressing the IGF-1R were analyzed as in FIG 3.1D. 
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Figure 3.7. Lipids and proteins play opposing roles in mediating murine polyomavirus 
infection. 
Py that binds to the glycolipid ganglioside receptors are targeted down the infectious route. In this 
pathway, gangliosides first target Py to the endolysosomes, and then sort the virus to the ER 
where the virus then penetrates the ER membrane to reach the cytosol. From the cytosol, Py is 
transported further to the nucleus to initiate infection. By contrast, Py that interacts with 
glycoproteins such as the EGFR commits to a non-productive route. After engaging glycoproteins, 
the virus is taken up to endolysosomes and sequestered in this compartment. Because these 
viruses do not bind to glycolipids, they are not sorted to the ER and consequently do not cause 
infection. 
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Figure 3.8. Proteinase K treatment does not degrade integrin efficiently. 
NIH 3T3 cells were treated with or without 4ug/ml proteinase K at 4°C for 1hr, and washed to 
remove proteinase K. The amount of alphaV integrin on the cell surface was assessed by 
Fluorescence-Activated Cell Sorting (FACS).  
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Chapter 4 

 

Conclusion 

 

Polyomaviruses, as non-enveloped DNA tumor viruses, invade host cells and 

hijack cellular machineries to cause different diseases, such as human skin 

cancer (Feng et al., 2008; Tsai and Qian, 2010). They bind to cell surface 

receptors to enter cells, and hijack cellular machineries to cause lytic infection or 

cell transformation. Therefore, assessing the relationship between 

polyomaviruses and their host cells will lead to a better understanding of the 

cellular machineries mediating the infection process and human diseases.  

 

Cellular entry of polyomaviruses 
In general viruses need to transport their genomes to the cytosol or nucleus of 

host cells to cause infection. Different strategies and cellular pathways are used 

by viruses to deliver their genomes into the host. The cellular entry and 

membrane penetration mechanism of enveloped viruses have been studied for a 

long time. For these viruses, fusion of viral and cellular membranes allows the 

nucleoprotein complex to be delivered across the cellular membrane to the 

cytosol or nucleus. For example, the influenza virus is endocytosed and 

transported to the endosomes, where the low pH triggers a conformational 

change that initiate the fusion of viral and endosomal membranes. As a 

consequence, the viral nucleocapsid is delivered to the cytosol (Skehel and Wiley, 

2000). However, membrane penetration of non-enveloped viruses is a more 

complicated and less understood process. As a non-enveloped virus, 

polyomavirus has been reported to be transported to the ER where it penetrates 

the ER membrane to enter the cytosol. Multiple ER-resident proteins and viral 

conformational changes are involved in this membrane penetration event (Tsai 
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and Qian, 2010). Transport of polyomaviruses to the ER is an essential step for 

virus infection. My thesis is focused on studying how Py is transported from the 

plasma membrane to the ER. 

 

Viruses enter cells through different endocytosis mechanisms, such as clathrin-

mediated endocytosis, macropinocytosis, and caveolar/raft-mediated 

internalization (Mercer et al., 2010). SV40 and BK virus are endocytosed into 

cells via a caveolar/raft-mediated pathway (Pelkmans et al., 2004; Eash et al., 

2004), while JC virus is encodytosed into cells via a clathrin-dependent pathway 

(Pho et al., 2000). The endocytosis pathway of Py is not clearly understood, and 

it appears to be cell dependent. For example, Py enters mouse NIH 3T3 cells or 

BMK cells via a clathrin independent and caveolin-1 independent pathway 

(Gilbert and Benjamin, 2000), but it enters rat glioma C6 cells via a caveolin-1 

dependent pathway (Gilbert and Benjamin, 2004). In our study, we did not detect 

significant co-localization between Py and caveolin-1 in NIH 3T3 cells (Figure 

2.9), consistent with a previous report (Gilbert and Benjamin, 2000). It is not clear 

why polyomaviruses use different endocytic pathways to enter cells. As different 

endocytic pathways may crosstalk with each other inside cells, it remains 

possible that polyomaviruses are able to take multiple endocytic pathways to 

enter cells initially, and then hijack intracellular transport systems to reach the ER 

to cause productive infection. 

  

Regardless of the endocytic pathways, many members of the polyomavirus 

family are transported through the acidic endolysosomal system. It has been 

reported that low pH is required for BK virus infection (Eash et al., 2004), and JC 

virus is transported through the endosomes (Querbes et al., 2006). Although 

SV40 has been originally reported to traffic to a pH-neutral compartment called 

the caveosome (Pelkmans et al., 2004), a recent report indicates that in most cell 

types the caveosomes correspond to modified late endosomes or 

endolysosomes (Mercer et al., 2010). Py has been reported to be transported via 

the early endosomes (Liebl et al., 2006). However, there is a discrepancy 
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regarding whether the low pH environment of the endolysosomes regulates Py 

infection (Liebl et al., 2006; Gilbert and Benjamin, 2000). Although the reason for 

this discrepancy is not clear, the very high infection level might render Py 

resistance to NH4Cl treatment in Gilbert’s paper. In our study, we found that Py 

is transported via the endolysosomal system, and elevating pH in the 

endolysosomes with either bafilomycin A1 or NH4Cl treatment significantly 

inhibited Py infection (Chapter 2). Hence we conclude that Py is transported 

through the acidic endolysosomal system.     

 

The endolysosomal pathway seems to be a common pathway used by members 

of the polyomavirus family. It is interesting to ask why these polyomaviruses 

prefer to take this pathway. In the case of Py, our data demonstrate that the low 

pH environment in the endolysosomes triggers a conformational change in Py 

(Figure 2.3), facilitating the subsequent conformational change the virus 

experiences in the ER that initiates ER-to-cytosol penetration (Magnuson et al., 

2005). Therefore, the low pH environment in the endolysosomes seems to 

destabilize Py, and primes the virus for further conformational change in the ER. 

Whether this is a common mechanism for other polyomaviruses requires further 

studies.  

 

Several steps of conformational changes have been reported during Py entry and 

intracellular trafficking. The conformational changes of Py VP1 proteins can take 

place on the plasma membrane when the virus binds to a sialic acid (Cavaldesi 

et al., 2004), in the endolysosome when Py encounters the low pH environment 

(Qian et al., 2009), and in the ER when Py interacts with ER-resident factors 

such as ERp29 (Magnuson et al., 2005). Given that Py with its relatively big size 

(approximately 40~50 nm in diameter) must penetrate the ER membrane and 

likely the nuclear pore complex (NPC, only approximately 26 nm in diameter) 

(Otis et al., 2006; Yang et al., 2004) to cause infection, it is not surprising that the 

viral particle undergoes dramatic conformational changes. The timing of the 

series of conformational changes may also be important for infection. For 
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instance, these sequential remodeling reactions may prevent Py from targeting to 

specific organelles prematurely or be detected by cellular defense mechanisms. 

A systematic study of the conformational changes experienced by Py inside the 

cells will provide critical insights into how Py successfully transport its DNA into 

the nucleus for infection. For example, proteinase K or trypsin digestion assay 

could be applied to Py extracted from different organelles at different time points 

post infection to assess the conformational changes of Py. Structure analysis 

(such as electron microscopy or X-ray crystallography) of Py capsid proteins at 

different stages of infection will also help to access the series of Py 

conformational changes. 

 

Roles of lipid and protein receptors 
Viruses usually need to engage specific receptors on the plasma membrane to 

initiate infection. The studies of the roles of cell surface receptors are critical for 

understanding how viruses invade host cells, as well as how they protect host 

from virus infection.  

 

Ganglioside GD1a was identified as Py’s functional receptor (Tsai et al., 2003; 

Smith et al., 2003; Gilbert and Benjamin, 2004). However, the mechanism by 

which GD1a stimulates Py infection is not clear during these initial reports. Our 

data demonstrate that GD1a functions as Py’s entry receptor -- this lipid receptor 

must engage Py on the cell surface to promote Py infection (Chapter 3). The 

timing of interacting between Py and GD1a is critical, and dictates Py’s ability to 

cause infection. If Py does not interact with GD1a on the cell surface, it may be 

endocytosed by binding to other receptors. However, once inside the cells, Py 

can not bind to GD1a even though the concentration of ganglioside is high in the 

endolysosomes. This observation indicates that the initial binding event on the 

cell surface is essential for Py infection. Whether other factors such as integrin 

on the cell surface help Py to engage GD1a requires further studies.  
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Our findings demonstrate that GD1a engages Py on the cell surface and traffics 

with Py as a complex from the plasma membrane to the ER (Figure 3.2). In this 

role, GD1a is able to guide intracellular trafficking of Py and lead the virus to the 

infectious pathway. It is not clear when GD1a is released from Py. A better live 

cell tracking system and fluorophores that are more resistant to photobleaching 

will help to answer this question. For example, if co-localization of labeled Py and 

GD1a can be tracked for a longer time, Py release from GD1a might be observed 

in a specific organelle such as in the ER, cytosol, or nucleus using live cell 

imaging. The resolution of microscopy is also important for the live cell tracking 

technique. Recently several super-resolution imaging approaches such as 

stochastic optical reconstruction microscopy (STORM) or photoactivation 

localization microscopy (PALM) have been developed (Zhuang, 2009), allowing 

live cell imaging to be performed with higher resolution.     

 

In addition to acting as the entry receptor (Chapter 3), our data also show that 

GD1a behaves as an intracellular sorter, guiding Py from the endolysosomes to 

the ER (Chapter 2). Since a single Py virion is able to cluster multiple GD1a, 

GD1a clustering is likely to be the mechanism of targeting Py to the ER (Figure 

2.5, 2.6). There are two possibilities to explain how the clustering of ganglisodes 

sorts its ligand to the ER. One possibility is that clustering of gangliosides 

induces a hydrophobic platform in the endolysosomal membrane and stimulates 

transmembrane signaling to recruit cytoplasmic factors. These cytoplasmic 

factors may be able to facilitate the budding of Py-containing vesicles from the 

endolysosomal membrane. Alternatively, GD1a clustering might alter the physical 

properties of the endolysosomal membrane attached to the virus, inducing 

membrane invagination and budding of Py-containing vesicles from the 

endolysosomes. This concept has been reported in the case of shiga toxin, 

where its binding to the glycolipid GB3 receptor promotes membrane 

invaginations and stimulates its uptake into cells (Romer et al., 2007). In addition, 

the interaction of SV40 with ganglioside GM1 receptor also induces membrane 

invagination in giant unilamellar vesicles (Ewers et al., 2010). To elucidate 



 79

whether ganglisode clustering is a general mechanism for ER targeting, an 

experiment assessing whether GM1 could target SV40 or Q-dot coated with GM1 

antibody to the ER will help. Future studies are required to delineate these two 

possibilities, and to identify the cytoplasmic factors involved in this sorting event.  

 

ER targeting of ligands via ganglioside binding is not virus specific, as an artificial 

particle that binds to GD1a can also be targeted to the ER. During the normal 

fate of gangliosides, these lipids are endocytosed into cells and transported 

through the endolysosomes to the lysosomes for degradation. If gangliosides are 

not properly degraded by enzymes in the lysosome, it results in lipid storage 

diseases. Although gangliosides can be transported back to the Golgi complex 

(Schwarzmann, 2010), their retrograde transport to the ER is not a common 

pathway. Our studies show that ligand interaction induces the retrograde 

transport of gangliosides to the ER (Figure 3.3), indicating that clustering 

gangliosides by ligand binding can induce their transport to the ER. In addition, it 

has been reported that lipid storage diseases may involve ER stress (Vitner et al., 

2010; Brunetti-Pierri and Scaglia, 2008). Therefore, it is possible that this 

endolysosome-to-ER trafficking pathway for gangliosides normally exists at a low 

efficiency, but is increased by ganglioside clustering.    

 

The previously unappreciated transport pathway between the endolysosome and 

the ER has been recently described in several papers. For example, under 

pathological conditions where gangliosides accumulate in the lysosomes as 

these lipids can not be degraded, a fraction of the gangliosides can be targeted 

to the ER (Tessitore et al., 2004). ER-to-endolysosome transport pathway, the 

reverse of the endolysosome-to-ER pathway used by Py, was observed in toll-

like receptors (Kim et al., 2008). These examples further demonstrate the 

existence of a communication route between the endolysosome and the ER.  

 

The observation that a receptor mediates virus entry and undergoes intracellular 

trafficking as a complex with virus is not without precedent. For example, the 
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entry of Moloney murine leukemia virus (MoMuLV) is mediated by its receptor 

murine cationic amino acid transporter (MCAT-1), and this virus remains in 

contact with the receptor when trafficking inside the cell for an extended time 

(Lee et al., 1999). However, to our best knowledge, GD1a-mediated sorting of Py 

to the ER is the first report that a cell surface receptor functions as an 

intracellular sorter to regulate the intracellular trafficking of a virus. Future studies 

of intracellular transport of other virus-receptor complex may reveal more cases 

of receptor-mediated intracellular virus trafficking. Receptor-mediated 

intracellular sorting may also regulate toxin trafficking, such as in the case of 

GM1’s potential role in targeting CT to the ER (Fujinaga et al, 2003). 

 

Ganglioside GD1a is not the only receptor that Py binds to on the cell surface. 

Glycoproteins, which contain sialic acid-galactose motif, can also bind to Py and 

serve as cell surface receptors. Our finding shows that glycoprotein receptors 

normally act as decoy receptors, which compete with the functional receptor 

GD1a for Py binding (Chapter 3). Therefore, although Py develops the simple 

strategy of interacting with the sialic acid-galactose moiety in GD1a to gain entry 

into cells to cause infection, the fact that a large number of glycoproteins also 

contain sialic acid-galactose moiety in turn limits Py’s infection as a trade-off. 

Because one Py that arrives in the nucleus successfully is sufficient to cause 

infection (Diacumakos and Gershey, 1977), Py seems to choose simplicity rather 

than specificity for receptor binding strategy. The binding efficiency of Py to 

GD1a versus glycoproteins requires further studies. In addition, not all 

glycoproteins serve as decoy receptors for Py. For example, α4β1 serves as a 

postattachment receptor for Py and facilitates virus infection (Caruso et al., 2003). 

Therefore, future studies should focus on pinpointing the unique features of α4β1 

that enables it to promote Py infection.   

 

In sum, our data demonstrate the opposite manners by which lipids and proteins 

regulate Py infection (Figure 4.1). The glycolipid ganglioside GD1a plays a role 

as the functional entry receptor. It must engage Py on the cell surface, and guide 
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the virus down the infectious pathway by sorting Py out of the endolysosomes to 

the ER. In contrast, glycoproteins in general function as decoy receptors. They 

compete with GD1a on the cell surface for Py binding. In turn, Py that bind to 

glycoproteins are trapped in the endolysosomes, and as a consequence, 

targeted down the non-infectious pathway. Although our data show that transport 

through the endolysosomes is part of the Py infectious pathway, Py in this 

compartment must be sorted out of the endolysosomes and into the ER. 

Otherwise, it would become trapped in this compartment, effectively blocking 

infection. In conclusion, our findings demonstrate the trafficking pathway of Py 

from the plasma membrane to the ER, and the opposing roles of two types of cell 

surface receptors in regulating Py infection.  
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Figure 4.1. Roles of glycolipids and glycoproteins in regulating polyomavirus infection. 
In step 1, glycolipid GD1a acts as the entry receptor for Py, while glycoproteins compete with 
glycolipids for virus binding. Upon entry, Py is initially targeted to the endolysosomes, regardless 
of the nature of the receptor that engages the virus on the cell surface. However, Py is only 
sorted out of the endolysosomes en route to the ER if it engages glycolipids (step 2). Transport to 
the ER constitute the infectious route. By contrast, if Py is transported to the endolysosomes by 
glycoproteins, it fails to sort further to the ER and remains trapped in the endolysosomes. This 
pathway represents the non-productive route. 
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