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CHAPTER I

Introduction

The concept of a population, composed of potentially interbreeding individuals,

plays a central role in the pursuit to understand the distribution of genetic variation

in time and space. Population genetics theory often begins with the idealized notion

of panmixia in a population, which means that individuals choose mates at random,

and that all potential mates have an equal probability of being chosen. Early in the

twentieth century, Hardy, Weinberg, and others, showed that panmixia distributes

alleles into diploid genotypes independently, and genotypes independently between

unrelated individuals. Human mate choices approximate panmixia in many local-

ities, but panmixia typically falls apart at the level of large regions, or ethnically

and religiously diverse communities. Generally, individuals fall into approximately

panmictic clusters in the space of mating probability, and this clustering creates

non-random distributions of allele frequencies and DNA sequence variations.

It is difficult to know for any set of two or more humans whether or not they belong

to the same panmictic population. Geography alone is not a sufficient condition, as

people who belong to different populations because of religious or ethnic reasons

may live in close proximity to each other. Neither is the act of mating a sufficient

criterion, because most members of the same population will not mate randomly
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with each other, and there are occasional matings between people born into different

populations.

In human genetics research it is often necessary that the samples of individuals

represent the same population. Operational definitions are used as proxies for a pan-

mictic population. However, given that geography or mating alone are not sufficient

conditions for determining whether two individuals represent a population, it is chal-

lenging to test whether or not a sample represents a single population. Perhaps, the

best way to find out if people belong to the same population is to test for non-random

association of alleles into diploid genotypes.

This dissertation attempts to question how genetic samples in a collected sample

relate to each other, and how we examine the collected sample’s history and con-

text. I begin by building on basic theory taken from Mendelian genetics and Hardy

Weinberg Equilibrium (HWE) about a single random mating population. I use a

simple measure of genotypic identity for a Mendelian population, homozygosity, and

then devise a test for whether two individuals share more homozygosity than would

be expected for a single random mating population. By observing either the ge-

netic identity or the test statistic between all members of a sample, inferences about

the relationships between any a priori population categories and the genetic data,

relationships between individuals in the genetic data itself, or even more ‘useful’

categories may be drawn. It is easy to understand that any modifications at the

data collection level (e.g. ascertainment, a priori population categories) alters the

population of inference including its history and context, perhaps unbeknownst to

the investigators.

In the second part of this thesis, I devise a method for simulating data that allows

for population history and genetic marker ascertainment. I then use this method to
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study how population history and ascertainment both may alter the sampled popu-

lation, through a number of methods designed to investigate population structure.

Ultimately, as data has become more abundant, a better knowledge about where the

boundaries are placed for population designation and whether the sample meets the

investigators’ criterion for the sampled population, is necessary to give us enough

precision to make coherent inferences about genes and populations.

1.1 Hardy Weinberg Equilibrium

For a randomly mating (panmictic) population the genotype frequencies at a locus

are easily computed from the allele frequencies. Let us assume that the population

is of infinite size and is panmictic, there is no mutation, no migration, and no nat-

ural selection. According to the Hardy-Weinberg law, a population with genotypes

P (AA), P (AB), and P (BB) reaches equilibrium in one generation of panmixia, with

genotype frequencies p2, 2pq, and q2, respectively, where p = 1
2
P (AB) + P (AA) is

the allele frequency for ‘A’ , and q = 1
2
P (AB) + P (BB) is the allele frequency for

‘B’. This simple yet powerful law demonstrates that panmixia does not change allele

frequencies from one generation to the next, and that genotype frequencies come to

equilibrium in only one generation (Table 1.1). As a corollary, the law tells us that

panmixia alone neither increases nor decreases variation in a population.

If there is mating between relatives, allele frequencies alone cannot predict geno-

type frequencies in the offspring. We must consider shared ancestors and paths

of descent in the calculation of genotype probabilities. To facilitate the study of

inbreeding, we denote the identity between two alleles as either identical by state

(IBS), that is, identical in their DNA sequence or phenotype, or else identical by

descent (IBD), identical in their DNA sequence through common descent from a
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recent ancestral sequence. Further, let allozygous denote that two alleles in a geno-

type are IBS but not IBD, and autozygous denote that two alleles in a genotype

are IBD. We can then calculate genotype frequencies for offspring of relatives by

summing the probabilities of allozygosity and autozygosity for a genotype. Let, F ,

be the probability of IBD (Weir & Cockerham, 1984) so that the probability of the

genotypes are P (AA) = pF + p2(1 − F ) = p2 + pqF , P (AB) = 2pq(1 − F ), and

P (BB) = qF + q2(1−F ) = q2 + pqF . These genotype frequencies demonstrate that

inbreeding caused by mating between relatives causes an increase in homozygotes

relative to the homozygosity in a HWE population. If F is zero, then the frequencies

reduce to HWE portions. If we let Hrel be the homozygosity for relatives, then for

family members Hrel = p2+2pqF+q2 reflects the increase in homozygosity due to rel-

ative mating compared to the panmictic frequency for homozygosity: Hpan = p2 +q2.

1.2 Genetic drift

In a finite population allele frequencies change by chance alone. Such change is

known as random drift, and results in the complete fixation of alleles over time. The

rate of allele frequency change is inversely proportional to the size of the population.

The dynamics of drift were studied extensively by R.A. Fisher and S. Wright using

the following simplified model for sampling (Fisher, 1930; Wright, 1931). Let us

say we have N individuals who produce an infinite pool of gametes, from which we

sample N pairs at random to form the next generation. The probability of an allele is

then dependent on the frequencies in the parent generation. The number of copies of

a particular allelic type in the next generation is a binomial random variable. More

formally, let X(t) represent the number of copies of allele ‘A’ at time, t. If X(t) = i,

the probability that X(t+ 1) = j is given by,
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(1.1) pij =

(
2N

j

)(
i

2N

)j (
1− i

2N

)2N−j

.

Basic probability shows that with the Wright-Fisher model (eq. 1.1) the expected

allele frequency change is directionless. Assuming a panmictic finite population with

no migration, no selection and no recombination, eventually fixation: X(·) = 0 or

X(·) = 2N will be reached. At this time all variation is lost.

A related consequence of finite population size is that it creates inbreeding. The

probability of identity by descent from a previous generation (t − 1) for two alleles

chosen at random in generation t from a population of size N is ( 1
2N

)2(2N) = 1
2N

.

That the two randomly chosen alleles were not identical in generation t−1 is 1− 1
2N

,

but these alleles may actually be identical (autozygous) from former generations

with probability F measured at time t− 1. Thus the total probability of identity by

descent in generation t is ( 1
2N

+ (1− 1
2N

))Ft−1. We can write,

(1.2) ft = 1− (1− F0)(1− 1

2N
)t.

This equation (eq. 1.2) is the probability of IBD from previous generations, but

if we let F0 be balanced by the effect of mutation, µ, we have one of the most well

know equations in population genetics: F = 1
1+4Neµ

.

A diffusion model of genetic variation

The Wright-Fisher model (eq. 1.1) was the basis for understanding the mean and

variance of the allele frequency distribution and developing the concept of effective

population size, but the exact mathematical results for the theory could only be

obtained for small populations. Developments in probability and stochastic processes

in the mid-twentieth century by Kolomogorov, Malécot, and Goldberg, and others
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aided in the development of an approximation of the Wright-Fisher model for drift

in a large population (Kimura, 1955). To characterize changes in a small population,

the binomial probability above was used to calculate the probability for the change

in state between all possible allelic types. This discrete treatment of change occurs

as a Markov chain, where the probability distribution at time t depends only on

the previous generation. However, for large populations, the chain becomes large

and computationally difficult. To deal with this problem, a continuous model was

used to approximate the Markov chain (Wright, 1929; Fisher, 1930; Wright, 1931).

This model, the Diffusion Approximation (also known as the Kolomogorov forward

equation), describes the distribution of the probability density of an allele π at a

locus at time t such that,

(1.3)
δρ (π, t)

δt
= − δ

δπ

[
M (π) ρ (π, t)− 1

2

δ

δπ
V (π) ρ (π, t)

]
,

where, M(π) is the first moment and thus the average of the random variable

ρ(π, t), and V (π) is the second moment or variance of the random variable ρ(π, t).

M(π), the parameter to describe drift, and V (π), the parameter to describe dif-

fusion, were held constant by Wright (1937) to find the stationary or equilibrium

distribution. The stationary distribution for the diffusion equation is given by

(1.4) ρ (π) =
c

V (π)
exp

[
2

∫
M (π)

V (π)
dπ

]
(Wright, 1937). Work was still needed to understand the distribution of unfixed

allele frequencies through time and space. Kimura (Kimura, 1955, 1957) solved the

diffusion equation (eq. 1.3) for the probability of fixation at zero and one. The

density of a ’drifted’ allele frequency, p, that is, unfixed classes, as a function of
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the initial allele frequency, π, time, effective population size, N , and where F is the

hypergeometric function, is

φ (π, p, t) =
∞∑
j=1

π (1− π) j (2j + 1) (1 + j)F (1− j, j + 2, 2, π)

F (1− j, j + 2, 2, p) e
−j(j+1)t

4N .(1.5)

Thus, given the initial allele frequency and t/2N it is possible to determine the

allele frequency distribution for the unfixed classes. Figure 1.3 illustrates this for a

range of t values.

1.3 Population structure

Large populations are rarely in panmixia. The isolation of local populations oc-

curs spatially and by other means, e.g., cultural, linguistic, and geographic forces.

Individuals within subpopulations are more likely to mate with each other. This and

any other departure from panmixia is population structure. The structure of a large

population is often organized into primary subdivisions, which may be split into a

number of secondary subdivisions, and so on, until the groups are nearly panmictic.

Thus, in a subdivided population, individuals chosen at random from the same sub-

population will have a higher probability of being more related and thus share more

of the same alleles than we would expect if the population was in panmixia. Pop-

ulation structure plays a crucial role favoring adaptation to local niches, increasing

variation in genotype fitness in different locations, and favoring an increase in new

combinations of alleles (Cavalli-Sforza & Bodmer, 1971).

Walhund (1928) examined genetic variation in a subdivided population. Assum-

ing that there is random mating within each subpopulation, he demonstrated that



8

homozygosity increased with allele frequency variation among subpopulations, as

compared with the homozygosity in the total population (Walhund’s effect). Let

us assume there are k subpopulations each with their own allele frequencies, pk

and qk = 1 − pk. The genotype frequencies are given by HWE: P (AA) = p2
k,

P (AB) = 2pkqk, and P (BB) = q2
k. In the total population, the alleles’ frequen-

cies are:

(1.6) p̄ =
1

k

j∑
j=1

pj,

and the average frequency of homozygous genotypes is:

(1.7) p2 =
1

k

j∑
j=1

p2
j .

HWE alone is insufficient to calculate the genotype frequencies because we can-

not take the allele frequencies from the subpopulations to calculate the genotype

frequencies in the total population as p̄2 6= p̄2. We can, however, relate the average

allele frequencies p̄ to the frequency of the homozygotes in the total population p̄2,

by the variance:

(1.8) σ2 =
1

k

k∑
k=1

(p̄k − p̄)2,

so that,

(1.9) p2 = p̄2 + σ2.

A simple rearrangement gives p2 = p̄2
k − σ2. From relating the average genotype

frequencies in the total population to the genotype frequencies in the subpopulations

we have,
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(1.10) θ =
σ2

p̄q̄
,

(Wright, 1951; Weir & Cockerham, 1984). θ is the increase in homozygosity in the

total population that accompanies subdivision. The expected genotype frequencies

in the total population are calculated by P (AA) = pkθ + p2
k(1 − θ) = p2

k + pkqkθ,

P (AB) = 2pkqk(1 − θ), and P (BB) = qkθ + q2
k(1 − θ) = q2

k + pkqkθ. If we take two

individuals from different subpopulations, the genotype frequencies of their offspring

are in HWE. In the subpopulation, the frequency of homozygous genotypes is then

equal to the frequency in the total population as long as θ = 0 in the subpopulation,

however if θ > 0 the frequency of homozygotes in the subpopulation relative to the

total population is decreased. Letting Hsub be the homozygosity of the population

with substructure, then Hsub = p2
k +2pkqkθ+ q2

k reflects the increase in homozygosity

due to substructure compared to the panmictic frequency for homozygosity: Hpan =

p2
k + q2

k.

Models of population structure

One of the simplest models of population structure is the island model. The model

captures the probability of genotypes when the total population is no longer pan-

mictic, but subdivided into subpopulations which are themselves panmictic (Wright,

1940, 1943). The model assumes that migration occurs at random to any of the sub-

populations from a larger population of infinite size, or equivalently that migration

between any two between subpopulations is equally likely. Figure 1.1 illustrates the

island model.

In human populations immigrants come largely from neighboring groups, caus-

ing a relationship between genes and distance. Individuals spatially near each other

have a higher probability of mating. This means that there is a decrease in IBD
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with geographic distance for which Wright (1943) coined the phrase “isolation by

distance” to describe. Wright (1943), along with Malécot (1945), produced a con-

tinuous model to describe this phenomenon in which the density of individuals is

clustered at nodes and frequency distribution of distance between the birth places of

a parent and child describes the migration. A discrete circular version of this model

was termed “the stepping stone model” (Kimura, 1953; Malecot, 1959; Kimura &

Weiss, 1964). In the one-dimensional version, an infinite set of supopulations of size

N are arranged linearly. Let m be the frequency of migrants per generation. From

each subpopulation, m
2

migrate to the nearest left neighbor and m
2

migrate to the

nearest right neighbor, thus 1 −m of the subpopulation contributes to itself in the

next generation. Figure 1.2 illustrates the stepping stone model. Migration is ‘lo-

cal’ in that subpopulations exchange mates only with their nearest neighbor. Using

this model, both Malécot (1959) and Kimura and Weiss (1964), demonstrated that

genetic similarity, as given by F , decays exponentially as the geographic distance

increases between subpopulations.

Methods for determining population structure in a sample

Many methods have been designed to evaluate population structure (Beerli &

Felsenstein, 1999, 2001; J. Pritchard, Stephens, & Donnelly, 2000; Patterson, Price,

& Reich, 2006; Long, 2007; Alexander, Novembre, & Lange, 2009; Zhang, Niyogi, &

McPeek, 2009). One popular method uses Bayesian clustering to infer membership

of individuals into one of K hypothesized clusters. The program STRUCTURE

employs this method (J. K. Pritchard & Rosenberg, 1999; J. Pritchard et al., 2000).

STRUCTURE uses a Markov Chain Monte Carlo to approximate the allele frequency

distribution and then infer the population of origin for the genotypes. Within each

subpopulation, allele frequencies are assumed to be in HWE, and loci are assumed
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independent and unlinked. The goal, to evaluate relationships among individuals

and in turn the the maximal number of clusters, or K, in a sample, is determined

from the posterior probability distribution of the set of K tested, where, X is the

sampled genotypes:

(1.11) Pr (X|Ki) ≈
explnPr(X|Ki)

I∑
explnPr(X|Ki)

.

Pritchard et al. (2000) stress that this equation is at best an approximate value

for the posterior distribution of K, and is an ad hoc method for supporting a K that

is most consistent to the data. Support for a more appropriate K can also be given

if the likelihood of the data fails to increase with a larger K, or no new clusters are

produced with a larger K. Because Bayesian clustering methods classify individu-

als into discrete populations, the method depends on the ability of the researcher

to choose the ‘correct’ value for K. Additionally, even with a number of modifi-

cations to the underlying computational algorithm to decrease computation time

(Hubisz, Falush, Stephens, & Pritchard, 2009), the computation time is still rather

long for large data sets. Other modifications to the Bayesian clustering implemented

in STRUCTURE include a model for admixture (Falush, Stephens, & Pritchard,

2003). A number of other methods are also based on Bayesian clustering including

PARTITION (Dawson & Belkhir, 2001), TESS (Chen, Durand, & Francois, 2007),

and others (Franois, Ancelet, & Guillot, 2006).

Principal components methods were recently revived in a statistical test for pop-

ulation structure (Menozzi, Piazza, & Cavalli-Sforza, 1978; Price et al., 2006). For

each variance component, a matrix of the number of alleles at each SNP (e.g. 0,1, or

2) is corrected by the mean of the genotype distribution of the sample. Then a vari-
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ance/covariance matrix from the adjusted matrix and eigenvector with the largest

eigenvalue is calculated. Each successive component is independent of any previous

component. Representing the data by the first few components of the data reduces

the dimensionality of the data, at the cost of losing some information. Each coor-

dinate of the eigenvector denotes the covariance between an individual with others

in the data set for that component. The largest eigenvector for each component

approximately follows a Tracy-Widom distribution. From this convenient property,

Price et al. (2006), formulate estimators for the number of components, variance

and covariance of the eigenvalues, and a test statistic to determine whether popula-

tion structure exists. Because this method applies a general linear model, there are

many sample assumptions, including: linear relationships between variables, lack of

multi-collinearity, multivariate normality for the variable distribution, and others.

These assumptions may be met with large amounts of genetic data typed from each

individual and many individuals used (a large N). The method is also relatively

fast even for very large data sets. However, underlying cryptic relationships between

individuals in the genetic data may make it difficult for the investigator to interpret

results (Novembre et al., 2008).

Generalized hierarchial modeling is a simple but powerful method that relies on

estimating gene identity (Nei, 1987) and testing a hierarchial model’s fit to the data

(Cavalli-Sforza & Piazza, 1975). Gene identity is the probability that two randomly

chosen copies of a locus are identical in state. An unbiased estimate of gene identity

from an individual is the proportion of homozygous loci in their genome and an

estimate of gene identity between two diploid individuals is the probability of a

homozygous “offspring”. A matrix is made from all possible pairwise estimates of

gene identity, with estimates from within individuals on the diagonal and estimates
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between individuals on the off-diagonal. The gene identity matrix is then treated as a

variance-covariance matrix, and a likelihood ratio test is used to statistically test the

fit of an a a priori model to the sample variance/covariance matrix (Cavalli-Sforza

& Piazza, 1975; Long & Kittles, 2003). A disadvantage to this method is that some

structure must exist within the data to test the fit of a particular model. One could

not use this method to test for presence or absence of population structure. However,

in order to find evidence for how the population structure exists in the data, two (or

more) a priori models of population “treeness” would need to be tested, one with no

structure- that is, one which is star-like, e.g. the null model, and some other model

of hierarchial relationships. The likelihood ratio statistics between models can be

compared to infer a better fit of the model to the data. Steps for testing hierarchial

models are elaborated in Generalized Hierarchical Modeling (GHM) (Long, 2007).

1.4 The statistical test that two individuals are from the same panmictic
population

Much of the work in this dissertation is based on HWE. I begin by building on

basic theory taken from Mendelian genetics and HWE about a single random mating

population. As explained above in “Hardy Weinberg Equilibrium” we can see that

after one generation of random mating we have HWE. Choosing an allele frequency

at random from a random locus allows us to calculate the homozygosity (or inversely,

the heterozygosity) at a locus for the population. If we take the average homozygosity

over all loci in the population, we then have the proportion of homozygosity for an

individual chosen from the population. Further, as long as two unrelated individuals

are chosen from the same panmictic subpopulation or population, as demonstrated

above, their homozygosity can be calculated using HWE.

Using these premises, I use a simple measure of gene identity for a panmictic
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Mendelian population- homozygosity, and then devise a test for whether two indi-

viduals’ estimates of homozygosity are not statistically different. As explained above,

each individual should be an estimate of the population homozygosity. If they are

members of the same population, any estimate of homozygosity from their geno-

types or between them (an “offspring”) should be the estimate of homozygosity of

the population from which they come.

However, if we reject the null hypothesis that the two individuals are not random

individuals from the same panmictic population, then we can explore the way in

which they differ. If they share more homozygosity than would be expected for a

panmictic population, that is, Hrel > Hpan (where, Hrel and Hpan are defined above

in “Hardy Weinberg Equilibrium” ), then they are relatives. In particular, if two

individuals have a higher than expected homozygosity in an expected offspring, then

they are related individuals. If they share less homozygosity between them than

would be expected for a panmictic population, that is, Hsub > Hpan (where, and

Hsub and Hpan are defined in “Population Structure” above), then they are not from

the same panmictic population. In particular, if two individuals have a lower than

expected homozygosity in an expected offspring, then they are either from different

populations or inbred individuals. The method is presented in Chapter two of this

dissertation.

1.5 A method for simulating genotypes from different with population
history

I present a forward-in-time method for simulating genotypes from different pop-

ulations that draws on diffusion theory in Chapter three. I model the ancestral

population forward in time undergoing neutral processes and then ascertain allele

frequencies in the descendent population. More specifically, I first take a sample
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of loci from a chosen ancestral allele frequency distribution and allow them to drift

using Kimura’s equation for the probability density of the distribution of allele fre-

quencies under neutral processes (φ) given in equation 1.5 (Kimura, 1955). The

only parameters needed are the the time to the ancestor and the effective population

size of the descendent population. Descendent allele frequencies can be ascertained

according to the user and used as desired.

1.6 Assessing ancestry and ascertainment on methods to detect popula-
tion structure

In Chapter three of this thesis, I use the forward-in-time simulation method in-

troduced above to simulate two underlying phylogenetic trees of data: one divergent

and one less divergent. How the data is simulated can have an impact on the meth-

ods used to assess population structure. Therefore, I take concern in the simulation

method I use because I want to realistically model data. Previous efforts to look

at the impact of methods to assess population structure did not employ methods

that may realistically represent the data (Latch, Dharmarajan, Glaubitz, & Rhodes,

2006; Schwartz & McKelvey, 2009). The simulation method presented here not only

uses a population-genetic model, but affords us the opportunity to ascertain the data

using different strategies because we simulate allele frequencies. This way, I can more

accurately assess how the methods are affected by ascertainment and the underlying

tree.
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Mating Mating frequency Offspring frequencies
Individual 1 Individual 2 Pr (genotype pair) AA AB BB

AA x2 1 0 0

AA AB 2xy 1
2

1
2 0

BB 2xz 0 1 0

AB AB y2 1
4

1
2

1
4

BB 2yz 0 1
2

1
2

BB BB z2 0 0 1

Table 1.1: Frequencies of genotypes in a panmictic population.

Let a population with genotypes P (AA), P (AB), and P (BB), have genotype frequencies x, y, and z,
respectively, where x+y+z = 1. The frequency of allele A is then p = 1

2y+x, and the frequency of B
is then q = 1

2y+z. For the next generation, the frequency of the mating is multiplied by the offspring
frequency for each offspring type. In one generation of random mating the genotype frequencies
come to equilibrium with frequencies, P (AA) = p2 = x′, P (AB) = 2pq = y′ and P (AA) = q2 = z′.
The frequency of the A allele among the offspring is p = P (AA) + 1

2P (AB) = p2 + pq, and the
frequency of B is q = P (BB) + 1

2P (AB) = q2 + pq.
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Figure 1.1: Illustration of the Island Model.

Migration into the subpopulations comes from an infinite genetic reservoir (or ‘mainland’), at m
migrants per generation. 1 −m migrants come from each subpopulation itself, and contributes to
the next generation for that subpopulation.
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Figure 1.2: Illustration of the Stepping Stone model.

Migration into a subpopulation comes from each nearest neighboring population at m
2 migrants

per generation. 1 −m migrants come from each subpopulation itself, and contributes to the next
generation for that subpopulation.
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Figure 1.3: Stationary distribution for the probability density of unfixed classes for an initial allele
frequency of 0.5 and various t/2N generated from φ (eq. 1.5).



CHAPTER II

A test that two individuals are from the same Hardy
Weinberg Equilibrium (HWE) population

2.1 Abstract

Here we demonstrate a method to test the homogeneity of three estimates of

population homozygosity made from two individuals. We make the three estimates:

(1) the proportion of homozygous loci from the first individual and (2) the proportion

of homozygous loci from the second individual, and (3) the expected proportion of

homozygous loci if the pair was to produce an offspring. If the two individuals

are unrelated members of the same population, the three homozygosity estimates

are all unbiased estimates of the same population parameters. By contrast, if the

two individuals are family members, are from different populations, or are inbred,

the estimates will differ in expected ways. We compare the three estimates in a chi-

square test statistic with two degrees of freedom, and distinguish between alternative

hypotheses using orthogonal contrasts of the three estimates. Using simulated data,

we show that our test has the correct Type I error, and demonstrate its power

under various alternative hypotheses. We apply our test to HapMap SNP data,

and demonstrate its ability to identify pairs that are unlikely to belong to the same

population. Significantly, our test does not require any prior information about allele

frequency or populations to which the samples may belong. Potential applications

20
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include (1) identifying population heterogeneity in association studies, (2) gaining

insight into forensic cases in which only molecular data are available, (3) informing

breeding programs for endangered species, and (4) examining population structure

in genetics.

2.2 Introduction

Unknown to the research investigator, genetic samples collected from the same

population may contain individuals that are non-members or cryptically related.

Such samples can obscure or skew any analysis based on these data. In this pa-

per, we introduce a statistical test between pairs of individuals using only DNA

sequence typing information. We test the hypothesis that a pair of individuals are

unrelated members of the same randomly mating population. To perform this test,

we devise estimators of homozygosity for within and between individuals. We base

our estimators on simple expectations for a large randomly mating population is in

Hardy Weinberg Equilibrium (HWE). Our first estimator is simply the proportion

of homozygous loci from an individual. Thus from two individuals, we take one es-

timate from the first individual, and one estimate from the second individual. From

HWE we also know that neither homozygosity for a locus, nor the proportion of

homozygosity in an individual’s genome changes from one generation to the next.

These principles motivate an estimator of population homozygosity between a pair

of individuals. Our second estimator is the probability of a homozygous genotype

when a randomly chosen allele from the locus of the first individual is identical in

state with a randomly chosen allele from the locus of the second individual. This

second estimator could also be interpreted as the expected homozygosity if the two

individuals were to produce an offspring. For multiple loci, we take an average of
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this estimator across loci.

From the pair of individuals and two ways to estimate homozygosity we have three

estimates: one homozygosity estimate from the first individual, one homozygosity

estimate from the second individual, and one homozygosity estimate between the

pair of individuals. To compare the three estimates, we construct a chi-square test

statistic with two degrees of freedom. If we reject the null hypothesis, we distinguish

between alternative hypotheses by constructing orthogonal contrasts of the three

estimates. In this manner we can test for a directionality of the estimates and the

alternative hypotheses that (A) individuals are related, or (B) that individuals are

from different populations or are inbred. If the two individuals are unrelated members

of the same population, the three homozygosity estimates are all unbiased estimates

of the same population homozygosity. By contrast, if the two individuals are family

members, the homozygosity estimates from each individual are unbiased estimates of

population homozygosity, while the homozygosity between the two will be in excess.

If the two individuals are from different populations, the homozygosity estimates from

each individual are unbiased estimates of the population homozygosity to which they

belong, while the homozygosity between the two individuals will be less than at least

one of the individual estimates.

In this paper, we give the details of this method for sequence data from two

individuals. We also demonstrate the validity and utility of the method on HapMap

data (The International HapMapConsortium, 2007). The significance of this novel

method is that the homogeneity test uses only genotype data from two individuals

and does not require any knowledge about allele frequencies, linkage disequilibrium,

or population membership.
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2.3 Methods

In deriving our estimators we will assume that there is random mating within

a population, the loci are autosomal, bi-allelic, statistically independent, selectively

neutral, and have the same mutation rate, and that the individuals are diploid, e.g.

Hardy Weinberg Equilibrium (HWE). We begin by letting the average population

homozygosity, H, represent a population, such that,

(2.1) H =

1∫
1
2

hϕ (h) dh,

where ϕ (h) is the genome wide probability density of homozygosity. In terms of

allele frequency p, let h be the probability of homozygosity or h = p2 + q2, where

q = 1 − p is the frequency of the other allele. It is possible to estimate H (eq.

2.1) using a randomly chosen single locus or randomly chosen multiple loci from a

single individual. In an individual i (where i is either 1 or 2 for the pair) if a single

locus, k, is homozygous let ŵik = 1, and if otherwise let ŵik = 0. The estimator

of genome-wide homozygosity for an individual is the proportion of homozygous loci:

(2.2) ˆ̄wi =
1

L

L∑
k=1

ŵik,

where L is the number of loci in the random set chosen for analysis.

We also estimate H using a pair of individuals. From alleles between two individ-

uals at a locus k, let b̂k be the estimator of homozygosity if the pair was to produce

a child. The probability of homozygosity from the same locus in a sample of two

different individuals is derived explicitly in Table 2.1. The estimator of genome-wide
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homozygosity between the pair is the expected proportion of homozygous loci if the

pair was to produce a child:

(2.3) ˆ̄b =
1

L

L∑
k=1

b̂k.

We use these three estimates calculated from two individuals, ˆ̄w1 and ˆ̄w2 from each

individual, and ˆ̄b between the two individuals in a homogeneity test statistic.

We first define the vector X̂ =
[
( ˆ̄w1 − ˆ̄w2), (ˆ̄b− ˆ̄w)

]
, where ˆ̄w = ˆ̄w1+ ˆ̄w2

2
. From first

principles for the variance of the linear combination of two random variables, let

(2.4) v̂ar
(

ˆ̄w1 − ˆ̄w2

)
=

1

L (L− 1)
ω,

and

(2.5) v̂ar
(

ˆ̄b− ˆ̄w
)

=
1

L (L− 1)

[
L∑
k=1

(
b̂k − ˆ̄b

)2

+
1

4
ω − η1 − η2

]
,

where

(2.6) ω =
L∑
k=1

[(
ŵ1k − ˆ̄w1

)2
+
(
ŵ2k − ˆ̄w2

)2
]
,
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and

(2.7) ηi =
L∑
k=1

[(
b̂k − ˆ̄b

) (
ŵik − ˆ̄wi

)]
.

We define the homogeneity test statistic as,

(2.8) T = X̂Σ̂−1X̂,

where,

(2.9) Σ̂ =

 v̂ar
(

ˆ̄w1 − ˆ̄w2

)
0

0 v̂ar
(

ˆ̄b− ˆ̄w
)
 .

From Normal Distribution theory, under the null hypothesis T is distributed as

χ2
2. We reject the null at α level of significance if T is greater than the 1−α quantile

of χ2
2.

Planned comparisons of alternative hypotheses

In the event that we reject the null hypothesis, we propose a method to reveal

the relationship between the pair. We test two different alternative hypotheses: (A)

the pair are relatives, or (B), the pair are from different populations or inbred mem-

bers from the same population. To do this, we first test the null hypothesis: ˆ̄w1 = ˆ̄w2,

(2.10) MH01
=

ˆ̄w1 − ˆ̄w2√
σ̂( ˆ̄w1− ˆ̄w2)

.
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This hypothesis tests if two individuals are randomly chosen from the same panmictic

population. Under HWE we expect that estimates from randomly chosen individuals

from the same panmictic population should be similar. If this is not the case then

the two are either from different populations or are inbred. Otherwise, if we fail to

reject ˆ̄w1 = ˆ̄w2, then the two individuals may be either from the same population

(this case would have been caught by the global test statistic T , eq. 2.8, explained

above), or have similar values of homozygosity but are from different populations

(or are inbred from the same population). In this case we further test ˆ̄b = ˆ̄w, by

(2.11) MH02
=

ˆ̄b− ˆ̄w√
σ̂

(ˆ̄b− ˆ̄w)

.

If ˆ̄w < ˆ̄b then we find support for the alternative hypothesis (A), the pair are relatives.

Otherwise, if ˆ̄w > ˆ̄b we find support for the alternative (B), the pair are either from

different populations or are both inbred from the same population.

Moments and distributions under the null hypothesis

Both estimators converge in probability (pr) to H (eq. 2.1), that is ˆ̄wi = 1
L

L∑
k=1

ŵik
pr−→

H and ˆ̄b = 1
L

L∑
k=1

b̂k
pr−→ H. The estimators are also unbiased as: E [ŵik] = E [E [ŵik|p]] =

E
[

ˆ̄wi
]

= H, and E
[
b̂k

]
= E

[
E
[
b̂k|p

]]
= E

[
ˆ̄b
]

= H, while the E
[
X̂
]

= [0, 0].

From above we see that ˆ̄wi is the sum of the identical, independently distributed

binomial random variables, or 1
L

L∑
k=1

ŵik (eq. 2.2), thus each ŵik has E[ŵik] = H and

(2.12) σŵik
= pk(1− pk).

Thus, by the Central Limit Theorem (CLT) (Casella & Berger, 2002), for a large
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L, ˆ̄wi −→
CLT

N
(
H, σ2

ˆ̄wi

)
, where

(2.13) σ ˆ̄wi
=

√√√√√ L∑
k=1

E [h2
k]− (E [hk])

2

L
.

Analogously, since ˆ̄b is the average of identical independently distributed random

variables, ˆ̄b = 1
L

L∑
k=1

b̂k (eq. 2.3), each with expectation equal to H (eq. 2.1) and

(2.14) σb̂k =
1

2
h(1− h)− 1

4
(1− h)2,

where h = p2 + q2 as above, then by the CLT ˆ̄b −→
CLT

N
(
H, σ2

ˆ̄b

)
where,

(2.15) σˆ̄b
=

√
1
2
σ ˆ̄wi
− 1

4
E
[
(1− hk)2]

L
.

It then follows that ( ˆ̄w1 − ˆ̄w2) and (ˆ̄b − ˆ̄w) are also distributed normally, each with

expectation equal to zero and σw̄1−w̄2 = σw̄1 + σ ˆ̄w1
, and σb̄−w̄ = σb̄ + 1

4
σw̄1 + 1

4
σw̄1 .

By the Multivariate Central Limit Theorem (MCLT), the vector X̂ −→
MCLT

Bivariate

Normal ([0, 0] ,
∑

), where, Σ̂ converges asymptotically to:

(2.16) Σ =

 σw̄1−w̄2 0

0 σb̄−w̄


(Rencher, 2002). Conveniently, the covariance of X1 and X2 in the matrix Σ is

zero.
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Further, because of the asymptotically normality of the individual and between

homozygosity estimators, we can take advantage of the properties of normally dis-

tributed random variables. The sum of squared normal random variables follows a

chi-square distribution. Likewise, as we defined our test statistic, it is the sum of

squared normal random variables and thus follows a chi-square distribution. This is

also analytically proven using Slutsky’s theorem (Casella & Berger, 2002). Since ˆ̄wi

and ˆ̄b converge in probability to H, and since they are asymptotically equivalent, as

vectors of X̂, the sum of the squared vectors will both converge in distribution to

the χ2
2 under the null hypothesis, or T

d−→ χ2
2. Under the alternative, however, the

vectors of X̂ are no longer asymptotically equivalent, then f(X̂1, X̂2)
d−→ f(X1, X2),

where d denotes convergence in distribution .

For the contrast statistics, M , we can see that ˆ̄w1 − ˆ̄w2 and ˆ̄b− ˆ̄w are distributed

normally, then by the Central Limit theorem, Mi −→
CLT

N (0, 1). By Fisher’s least

significant difference (LSD) we do not need to correct for multiple tests. LSD states

that when only significant cases are tested in further statistical tests, those additional

tests will have an α < 0.05 ((Casella & Berger, 2002)). Likewise here, we do not

need to correct for multiple tests because only pairs that have a significant global

homogeneity test and thus an α < 0.05 are then tested through the two planned

comparisons of alternative hypotheses, thus guaranteeing a Type I error rate of less

than α.

Simulations of multi-locus SNP genotypes

To test the validity and power of the homogeneity statistic under the null hy-

pothesis and different alternatives, we simulate population genetic SNP data. Our

simulations are based on drawing multi-locus SNP genotypes for a pair of individu-

als from an allele frequency distribution that is chosen to represent a population. A



29

summary of the methods are given in Figure 2.1.

Under the null hypothesis: We let a beta distribution represent a distribution of

allele frequencies across loci for a population with drift and mutation, in the absence

of selection (Wright, 1931). The parameters for the beta are 4Nv and 4Nu, where

N is the effective population size, v is the mutation rate, and u is the reversion rate.

Here we choose to use estimates of 10,000 for N, 1.2×10−8 for v, and 0.8×10−8 for

u. From this distribution, we take a sample of L loci and let pk and qk = 1 − pk,

be the allele frequencies at the kth locus. Only pk between 5% and 95% are used.

We generate the genotype for the first individual, using p2
k, 2pkqk, and q2

k. We then

repeat this for each k = 1 . . . L from the sample of L loci. The genotype of the second

individual is then generated similarly from the sample of L loci.

Under alternative H01 - relative pairs from the same populations: Again we take

a sample of L loci from a beta distribution to generate the genotype of the first

individual. We then generate the multi-locus genotype of their relative at each locus

as below.

A) For a parent-offspring pair, we let the first individual be the parent. For the

offspring (the second individual) at each locus, we take one allele randomly from the

parent and one allele from the population. We do this for the sample of all L loci.

B) For a full-sibling pair, we let the first individual be a sibling. For the second

sibling at each locus with Pr
(

1
4

)
we take the genotype from the population (the

pair share no alleles), with Pr
(

1
2

)
we follow the parent-offspring pair above (the pair

share 1 allele), and with Pr
(

1
4

)
we use the genotype from the first sibling (the pair

share 2 alleles). This is repeated for the sample of all L loci.

C) For general unilineal relatives, let φ be the kinship coefficient of the desired

relative pair. For the other relative (second individual) at each locus with Pr(φ) we
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follow the parent-offspring pair above and with Pr(1− φ) we take both alleles from

the population. This is again repeated for the sample of all L loci.

Under H02 - pairs from different populations: For pairs from different popula-

tions, we simulate descendent SNP allele frequencies based on a forward-time model

whereby a sample of ancestral allele frequencies drift according to the time to the

ancestor from the descendant and the effective population size of the descendent

population. This method has been described in detail elsewhere (in Chapter three

of this thesis). For the ancestral distribution we again use a beta distribution with

the parameters as above. The time to the ancestor and effective population size

parameters were garnered from STR data (Hunley, Jie, Lewis, Malhi, & Long, n.d.)

to create ‘European’, ‘Chinese’, and ‘Japanese’ distributions of allele frequencies.

SNPs were ascertained if polymorphic in both populations and genotypes were then

generated assuming HWE.

Simulations using empirical allele frequencies. As an alternative to using

a beta distribution to represent a population, and then taking a sample of L loci

from that distribution to be the allele frequencies, we use extant empirical allele

frequencies calculated from HapMap. For simulations under the null hypothesis, we

take the sample of L loci allele frequencies calculated from the HapMap populations.

We then generate the genotypes using p2
k, 2pkqk, and q2

k, repeating this for each

k = 1 . . . L from the sample of L loci.

HapMap Data. We used the International HapMap Project (The International

HapMap Consortium 2003) data release #23 in which samples were typed using the

Affymetrix 500k chip. The 270 samples included in the project are 30 trios of Yoruba

from Ibadan, Nigeria (YRI), 45 unrelated Japanese from Tokyo, Japan (JPT), 45

unrelated Han Chinese from Beijing, China (CHB), and 30 trios from the CEPH,
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Utah residents with ancestry from northern and western Europe (CEU). The data

are completely de-identified. Our inclusion criteria for SNPs included: a minor allele

frequency greater than 5% across all populations, a chi-squared test for HWE within

each population with a p-value of greater than 10−6, and no more than 20% missing

data across all populations. From these SNP data, we calculated the empirical allele

frequencies for the Han Chinese and Japanese populations. For the application of the

method, we chose approximately 100,000 equidistantly spaced SNPs. The data from

the HapMap project are an ideal public data set to explore our method, because it

contains population samples of unrelated individuals and trios of related individuals.

2.4 Results

We can obtain unbiased estimates of homozygosity and standard errors of our

estimates of H (eq. 2.1) from genotypes without any knowledge of allele frequencies.

The variances of the estimators, for a single locus across a range of allele frequencies,

are shown in Figure 2.2. The between homozygosity estimator variance (eq. 2.14)

has a local minimum at the allele frequency 0.5 due to the increased probability

of at least one of the pair being heterozygous. It might seem more intuitive to

average the individual estimators to create a shared estimator for homozygosity.

However, the small variance of our homozygosity estimator between the individuals

demonstrates that averaging the two individual estimates (ŵ2 and ŵ2) would have

a larger variance across a range of allele frequencies. The shape of the variance

of the estimator between the individuals (eq. 2.14) and the covariance at a single

locus (or cov(ŵik, b̂k)) is due to the quartic nature of the functions. As is seen from

both the standard deviation and covariance of the estimators, the performance of the

estimators and test statistic depends on the probability density of the homozygosity
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integrated across all allele frequencies or ϕ (h), which is unknown.

We show the distribution of the estimates ˆ̄wi and ˆ̄b calculated from simulated

data in Figure 2.3. The simulated estimates approximate a normal distribution even

if the estimates are calculated from as few as 100 loci (Figure 2.3). The estimates

are also normally distributed when genotypes are simulated under a wide range of

underlying allelic site-frequency distributions (data not shown). As we expect, the

T statistic (eq. 2.8) follows a χ2
2 as demonstrated in Figure 2.4.

Power of the test statistics

The power of the homogeneity test statistic is demonstrated in Table 2.2. Im-

portantly, pairs simulated under the null hypothesis, have a very low Type I error

(where α0.05) for both the underlying beta distribution and the empirical allele fre-

quencies. As might be expected, the simulations of relative pairs reflecting closer

genetic relationships, such as parent-child or full-siblings, enable us to detect a dif-

ference between the individuals even for a small number of loci (Table 2.2). For

more distantly related pairs, such as second cousins, as many as 100K loci may be

required. This power, however, is dependent on the underlying allele frequency dis-

tribution from which the alleles for relative pairs are chosen. For pairs simulated

from different populations, the power to reject the null hypothesis increases for more

distantly related populations.

The contrast test statistics, MH01
and MH02

(eqs. 2.10 and 2.11) have high power

even for a small number of loci. Further, by the time the number of loci is increased

to achieve appropriate power for the homogeneity test there is full power for the

contrast test statistics.

Application of the method to HapMap data

Figure 2.5 shows the homozygosity estimates for the HapMap individuals for
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100,000 SNPs. Along the diagonal are the homozygosity estimates for each individ-

ual, while the off-diagonals are homozygosity estimates between pairs of individuals.

Just off-diagonal in pink are the estimates between parent and offspring pairs from

the trios in the CEU and YRI populations. Homogeneity test statistics from the

data set are located in Figure 2.6. On the diagonal, statistics are set to zero, as no

statistic was calculated, and on the off-diagonals are the test statistics calculated

from pairs of individuals. The CEU and YRI populations contain trios. For pairs

of these related individuals, we reject the global homogeneity test statistic. The

identification of the related individuals in the trios demonstrates the validity and

utility of the test. The homogeneity test also identifies a number of outliers in this

data set (Figures 2.7- 2.16. The trios are further identified using the contrast tests

in the CEU (Figure 2.7) and YRI populations (Figure 2.16). The contrast tests also

identifies a number of outliers in the data set (for example, Figure 2.14 for JPT/JPT

outliers).

2.5 Discussion

We have devised a method to evaluate the null hypothesis that two individuals

are randomly drawn from the same population. To do this, we derived two unbiased

estimators for homozygosity. The resulting estimates are precise, valid, and normally

distributed. From these estimates, we construct a statistical test of homogeneity, in

which the statistic is distributed as a chi-square with two degrees of freedom. If the

null hypothesis is rejected, we then test for either (A) that the pair are relatives

or (B) that they are from different populations or are both inbred from the same

population.

This method, based on population-genetic theory and principles, evaluates the
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relationship between a pair of individuals. Since our method only requires sequence

data and does not require prior knowledge about the allele frequencies or population

from which the two samples came, it is will be especially useful in the context of

identification in forensics, paternity, and relatedness. Given an unknown forensic

DNA sample, the test could be reliably used to include or exclude potential suspects

or to determine parent-offspring or other relative pairs. In cases of paternity, the

pairwise test has particularly high power (Table 2.2) to detect closely related pairs.

A number of methods currently exist to identify pairs of familial related individuals

(Thompson, 1975; Queller & Goodnight, 1989; Ritland, 1996; Weir, Anderson, &

Hepler, 2006; J. Pritchard et al., 2000; Lynch, 1988; Lynch & Ritland, 1999; Epstein,

Duren, & Boehnke, 2000). Our method is computationally simple, easy to interpret,

and only requires two genetic samples. This makes our method advantageous in

certain circumstances where an exact relationship is not needed, only the knowledge

that a familial relationship exists. We demonstrated the ability to pick out pairs

of related individuals using the method on HapMap data. We were clearly able to

discern the trios with very few loci, and we were even able to find more distantly

familial-related individuals between trios in the HapMap data.

Not only is it useful to understand the relationship between a pair of individuals,

but it is also useful to understand the genetic relationship between individuals com-

posing a sample. Perhaps the investigator wants to know if a set of genetic samples

from individuals meets the expectations for the population that was intended to be

collected, e.g., that were was no population structure or relatedness in the sample.

This is important when analyses are dependent on assumptions of panmixia in a

sample. Population structure caused by deviations from panmixia creates groups of

individuals within a sample that are more related to each other, meaning that the
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presence or absence of certain alleles in a sample may actually be due to fact that

certain individuals are more ancestrally related to each other, rather than the dif-

ference being due to a disease or trait. Thus, cryptic and fine-scale departures from

panmixia can cause spurious findings in association analyses for traits. As genetic

data sets become larger, differences of this type become more crucial to find the true

associations.

To deal with this problem investigators have employed principal components anal-

ysis (PCA) methods to parse individuals into groups without having to create a

priori boundaries on the clusters. However, the axes of variation for PCA are in-

scrutable. Biological inferences are not easily made. Other investigators have used

Bayesian clustering methods to determine the number of genetic clusters in the data

with some success (Rosenberg et al., 2002; Rosenberg, Li, Ward, & Pritchard, 2003;

Parra et al., 2003; Tero, Aspi, Siikamki, Jklniemi, & Tuomi, 2003; Falush, Stephens,

& Pritchard, 2003; Barr et al., 2008; A.C. et al., 2008; Milot, Weimerskirch, &

Bernatchez, 2008; Shtir et al., 2009). But a priori information is necessary for this

method, and recapitulating the number of population categories designated a priori

may not be useful in a data set that actually contains cryptic structure.

Our method also has a broader use when it is applied to all pairs of individuals

in a data set. This biologically coherent method offers a way to explore the data

without having to place boundaries on the data a priori. To do this, we simply apply

the test to all pairs in a data set. Looking at homogeneity estimates (Figure 2.5)

and test statistics (Figure 2.6) from all pairs of individuals and in this manner, the

method identifies outliers. We can start to make inferences about individual and

population relationships within the sample. Further, we can also test for whether

the collected sample is a panmictic representative sample of the population. We can
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also test for cryptic relatedness and structure in the sample which may or may not

be desired in the sample by the research investigators. Interestingly, the method

also demonstrates that HapMap populations do not represent natural populations

very well. There are related individuals between trios in the CEPH and Yoruba

populations. There are a number of very significant outliers in the data set as well.

Conclusion

We have presented a valid method for investigating relationships between a single

pair of individuals or a sample of individuals. Since our method relies on popula-

tion genetics principles and bases population membership on the underlying allele

frequency distribution, it offers a new way to investigate population structure in a

biological context. From genetic information from only two individuals we can test

whether the samples are randomly chosen from the same panmictic population. It is

also possible to understand more about these outliers by clustering similar homozy-

gosity estimates and/or test statistics. Thus, applying the method across a data

set can aid in identifying cryptically related individuals and investigating popula-

tion structure. Inbreeding, subject misidentification, or loss of heterozygosity can

create outliers. This method is an unbiased way to investigate structure and pop-

ulation membership, without a priori information from the genetic samples. The

understanding of genetic relationships in a sample of individuals is motivated by

their use in linkage studies, conservation genetics, forensics, studies of selection, and

population structure.

Using the method on HapMap data demonstrates that although the homozygos-

ity estimates, homogeneity test statistics, and contrast statistics exhibit clusters of

individuals that tend to fall along the a priori designated population categories, the

clusters are not strict and are in some cases somewhat continuous. Socially con-
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structed population categories do not perfectly fully reflect the complexity of the

underlying genetic relationships.
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Genotype Pair
Individual 1 Individual 2 Pr (genotype pair) ˆ̄w1k ˆ̄w2k

ˆ̄bk

AA p4 1 1 1

AA Aa 2p3q 1 0 1
2

aa p2q2 1 0 0

AA 2p3q 0 1 1
2

Aa Aa 4p2q2 0 0 1
2

aa 2pq3 0 1 1
2

AA p2q2 1 1 0

aa Aa 2pq3 1 0 1
2

aa q4 1 1 1

Table 2.1: Probability estimates for the homozygosity estimators for one locus.

Here, p and q are the allele frequencies at the locus. ˆ̄w1k is the genome-wide homozygosity estimate
for the first individual, and ˆ̄w2k is the genome-wide homozygosity estimate for the second individual.
ˆ̄bk is the genome-wide homozygosity estimate from between the two individuals.
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allele frequency distribution

(beta distribution- Wright 1931)
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Figure 2.1: Overview of the muti-locus genotype simulations.
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Figure 2.2: Variance and covariance of the estimators. Here wik is the homozygosity for individual

i, at the kth locus. bk is the homozygosity from between the two individuals at the kth
locus. These variances are a function of the allele frequency, as given in 2.12 and 2.14.
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Loci need to achieve power of:
Simulated Pair Type 80% 100%

Parent offspring ≤ 1, 000 ≤ 1, 000

Full-sibling pair ≤ 1, 000 ≤ 1, 000

First-cousin pair 10,000 20,000

Second-cousin pair 100,000 125,000

CEU-CHB like a ≤ 1, 000 ≤ 1, 000

CEU-JPT like a ≤ 1, 000 ≤ 1, 000

CEU-YRI like a ≤ 1, 000 ≤ 1, 000

CHB-JPT like a 90,000 125,000

CHB-YRI like a ≤ 1, 000 ≤ 1, 000

JPT-YRI like a ≤ 1, 000 ≤ 1, 000

CEU-CHB empirical b ≤ 1, 000 ≤ 1, 000

CEU-JPT empirical b ≤ 1, 000 ≤ 1, 000

CEU-YRI empirical b ≤ 1, 000 ≤ 1, 000

CHB-JPT empirical b 25,000 35,000

CHB-YRI empirical b ≤ 1, 000 ≤ 1, 000

JPT-YRI empirical b ≤ 1, 000 ≤ 1, 000

a Simulated as demonstrated in Chapter four:
4Nu and 4Nv for the ancestral distribution were 0.00048 and 0.00082, respectively.

b Simulated from empirical HapMap frequencies.

Table 2.2: Power of the homogeneity test calculated from simulated data.
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Figure 2.3: Histogram of the simulated homozygosity estimates.

We simulated genotypes at 100 loci for 1000 individuals from an equilibrium allele frequency dis-
tribution where 4Nu=0.00048, and then estimated homozygosity for each individual ( ˆ̄wik) and
homozygosity between each pair of individuals ˆ̄bk. The two statistics follow the normal distribution
(non significant Kolmogorov-Smirnov test). We obtained similar results for a wide range of 4Nu.
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T follows a chi-square distribution with two degrees of freedom, as predicted. The homogene-
ity statistic is calculated from individuals simulated from an equilibrium allele distribution with
4Nu=0.00048.
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Figure 2.5: Homozygosity estimates calculated from 100,000 SNPS from all pairs of HapMap indi-
viduals.

Homozygosity estimates from within (diagonal) individuals and between pairs of individuals (off-
diagonal) are demonstrated for 100k loci from the HapMap data. The matrix shown is symmetrical.
The populations included here are the Yoruba from Ibadan, Nigeria (YRI), 45 unrelated Japanese
from Tokyo, Japan (JPT), 45 unrelated Han Chinese from Beijing, China (CHB), and the CEPH,
Utah residents with ancestry from northern and western Europe (CEU). These estimates clearly
identify mother-father-offspring trios (pink dots). Note that the JPT and CHB populations are
more closely-related to each other than they are other populations included in the sample (blue
block of the between homozygosity estimates as compared with green blocks of comparisons between
either one of the Asian populations, JPT or CHB, and the CEU or YRI ). Additionally, there are
several outlier individuals in each population (dots of very different colors located within the blocks
of the between homozygosity estimates from the same population).
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Figure 2.6: Homozygosity test statistics (T ) taken from 100,000 SNPS from all pairs of HapMap
individuals.

Colors represent p-values of the test statistics. Again the matrix is symmetrical. The SNP data
is from HapMap; Yoruba from Ibadan, Nigeria (YRI), 45 unrelated Japanese from Tokyo, Japan
(JPT), 45 unrelated Han Chinese from Beijing, China (CHB), and the CEPH, Utah residents
with ancestry from northern and western Europe (CEU). Test statistics from pairs from the same
population tend to be non-significant, whereas test statistics from pairs of different populations are
significant. However, test statistics calculated from between the JPT and CHB pairs often fail to
reject the test. The test statistic also accurately identifies known relatives with the CEU and YRI
populations. A number of outliers appear in each population as blue dots within the red blocks.
Inbreeding, subject misidentification, or loss of heterozygosity can create outliers.
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Figure 2.7: Contrast test statistics from CEPH European (CEU/CEU) pairs.

Contrast test statistics for the pairs from the HapMap. Grey vertical lines represent the critical
values (±1.96) for H01 : ˆ̄w1 = ˆ̄w2, while the lower light grey line horizontal line is the critical value
(-1.645) for the one sided test ˆ̄b < ˆ̄w (different populations or inbred from the same populations)
and the upper light grey line horizontal line is the critical value (1.645) for the one sided test ˆ̄b > ˆ̄w
(the pair are related). Test statistics from CEU/CEU pairs show two clusters of related individuals
(the top of the graph). The contrasts statistics easily distinguish the trios in the CEPH European
HapMap data (red arrow points to the two clusters). There are also a number of outliers in the
data set (blue arrow).
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Figure 2.8: Contrast test statistics from CEPH European and Han Chinese (CEU/CHB) pairs.

Contrast test statistics for the pairs from the HapMap. Grey vertical lines represent the critical
values (±1.96) for H01 : ˆ̄w1 = ˆ̄w2. Test statistics from CEU/CHB pairs distinguish between
populations.
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Figure 2.9: Contrast test statistics from CEPH European and Japanese (CEU/JPT) pairs.

Contrast test statistics for the pairs from the HapMap. Grey vertical lines represent the critical
values (±1.96) for H01 : ˆ̄w1 = ˆ̄w2. Test statistics from CEU/JPT pairs distinguish between the
populations, as the statistics are all well below the critical value of 1.645 for b̄ < w̄. There are
several groups of outlier statistics from pairs of individuals. Given the outliers in each of these
populations separately, we might conclude that once these individuals are paired their statistics
might be larger giving the clusters of outlier statistics.
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Figure 2.10: Contrast test statistics from CEPH European and Yoruba (CEU/YRI) pairs.

Contrast test statistics for the pairs from the HapMap. Grey vertical lines represent the critical
values (±1.96) for H01 : ˆ̄w1 = ˆ̄w2. For test statistics from CEU/YRI pairs, we find that one sided
test b̄ < w̄ are all significant, so that all the statistics are far below the critical value of -1.645.
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Figure 2.11: Contrast test statistics from Han Chinese (CHB/CHB) pairs.

Contrast test statistics for the pairs from the HapMap. Grey vertical lines represent the critical
values (±1.96) for H01 : ˆ̄w1 = ˆ̄w2, while the lower light grey line horizontal line is the critical value
(-1.645) for the one sided test ˆ̄b < ˆ̄w (different populations or inbred from the same populations)
and the upper light grey line horizontal line is the critical value (1.645) for the one sided test ˆ̄b > ˆ̄w
(the pair are related). For test statistics from the CHB/CHB pairs, we find that we fail to reject
either hypothesis for many of the pairs (the middle box).
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Figure 2.12: Contrast test statistics from Han Chinese and Japanese (CHB/JPT) pairs.

Contrast test statistics for the pairs from the HapMap. Grey vertical lines represent the critical
values (±1.96) for H01 : ˆ̄w1 = ˆ̄w2, while the lower light grey line horizontal line is the critical value
(-1.645) for the one sided test ˆ̄b < ˆ̄w (different populations or inbred from the same populations)
and the upper light grey line horizontal line is the critical value (1.645) for the one sided test ˆ̄b > ˆ̄w
(the pair are related). The test fails to detect differences for many CHB/JPT pairs. CHB /JPT
pairs show a cluster of individuals that would be distinguished as being from different populations.
There are some many clear outlier statistics in the data set showing that some individuals are
outliers in the sample.
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Figure 2.13: Contrast test statistics from Han Chinese and Yoruba (CHB/YRI) pairs.

Contrast test statistics for the pairs from the HapMap. Grey vertical lines represent the critical
values (±1.96) for H01 : ˆ̄w1 = ˆ̄w2. Here we see that the one sided test b̄ < w̄ statistics are all
significant, so that all the statistics are far below the critical value of -1.645. Additionally we
reject ˆ̄w1 = ˆ̄w2 for many of the pairs. The test easily distinguishes between Chinese and Yoruban
individuals.
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Figure 2.14: Contrast test statistics from Japanese (JPT/JPT) pairs.

Contrast test statistics for the pairs from the HapMap. Grey vertical lines represent the critical
values (±1.96) for H01 : ˆ̄w1 = ˆ̄w2, while the lower light grey line horizontal line is the critical value
(-1.645) for the one sided test ˆ̄b < ˆ̄w (different populations or inbred from the same populations)
and the upper light grey line horizontal line is the critical value (1.645) for the one sided test ˆ̄b > ˆ̄w
(the pair are related). Test statistics from JPT/JPT pairs demonstrate outliers in the data set.
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Figure 2.15: Contrast test statistics from Japanese and Yoruba (JPT/YRI) pairs.

Contrast test statistics for the pairs from the HapMap for JPT/YRI pairs. Grey vertical lines
represent the critical values for H01 : ˆ̄w1 = ˆ̄w2. The test statistics are are all much less than the
critical value of 1.645 for the one sided test ˆ̄b < ˆ̄w (different populations or inbred from the same
populations). Test statistics from JPT/YRI pairs demonstrate individuals in the pair are from
different populations or inbred from the same population. We also see outlier statistics.
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Figure 2.16: Contrast test statistics from Yoruba (YRI/YRI) pairs.

Contrast test statistics for the pairs from the HapMap for YRI/YRI pairs. Grey vertical lines
represent the critical values for H01 : ˆ̄w1 = ˆ̄w2. The test statistics are are all much less than the
critical value of -1.645 for the one sided test ˆ̄b < ˆ̄w (different populations or inbred from the same
populations). Test statistics from YRI/YRI pairs demonstrate the relative pairs (the topmost group
of statistics denoted by the red arrow). The contrast

(
ˆ̄b− ˆ̄w

)
easily distinguishes relatives.



CHAPTER III

The effects of ancestry and ascertainment on methods of
assessing population structure

3.1 Abstract

Here using data simulated from a known ancestral tree, we evaluate the effects of

the underlying ancestral relationships, ascertainment of loci, and misspecification of

the models on methods designed to assess population structure. We first present a

novel forward-time strategy for simulating allele frequencies from different popula-

tions using a population genetic model that draws on methods from diffusion theory.

The simulation method uses population genetics theory to model genetic drift on

allele frequencies in a descendent population given an ancestral population. To do

this we first take a sample of loci from a chosen ancestral allele frequency distri-

bution. Then we allow the resulting descendent allele frequencies to drift from the

ancestral sample of loci using Kimura’s equation for the probability density of allele

frequencies under neutral genetic processes (φ) (Kimura, 1955) to make a hierarchi-

cally structured population. We also input estimates of the time in generations to

the ancestor, and the effective population size of the descendent population. After

the hierarchically structured population has been simulated, the resulting descen-

dent allele frequencies can be ascertained according to different schemes that mimic

available genetic data. We then use simulated data sets with a method that tests for

56
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a phylogenetic structure, GHM (generalized hierarchical modeling), and one which

does not test for a phylogenetic structure, but searches for clusters in the data, using

the STRUCTURE program. We also investigate the effects of different methods of

ascertainment on the simulated data.

3.2 Introduction

Genetic variation is shared among all populations in a species. However, geograph-

ical and cultural factors cause non-random mating and in turn create subdivisions

within a species. This phenomenon is known as population structure. Individu-

als chosen from the same subdivision are typically more related to each other and

thus share more of the same alleles than we would expect if we chose individuals

randomly from the population. Population structure creates spurious associations

between genes and phenotypes, because the genetic marker may be marking the fac-

tor that caused the population structure rather than a causitive genetic factor for the

phenotype. Correctly identifying population structure is of interest because it can

help avoid spurious findings in clinical studies, and it may reveal unknown aspects

of evolutionary history.

One such method to examine population structure, is a Bayesian model-based

clustering implemented in the STRUCTURE program (J. Pritchard et al., 2000;

Falush, Stephens, & Pritchard, 2003; Falush, Wirth, et al., 2003; Hubisz et al.,

2009), has become a valuable tool for assessing population structure under a number

of varying modeling conditions and has been used to identify structure in clinical

samples, make inferences about population history, landscape features, and breeding

structure (Seldin et al., 2006; Bauchet et al., 2007; Latch, Scognamillo, Fike, Cham-

berlain, & Rhodes, 2008; Coop et al., 2009; Latch, Heffelfinger, Fike, & Rhodes,



58

2009; Schwartz & McKelvey, 2009; Song et al., 2009). Though this method is statis-

tically model-based, it tests one very simple model, which may or may not represent

the data. That is, it does not test for a particular underlying phylogenetic model of

population relationships.

Another example of a method to assess the ancestry and population structure

underlying a sample is hierarchical modeling. In this method, the data is tested

for fit to an a priori model of population relationships from a user supplied phy-

logenetic model (tree) of the genetic relationships (Cavalli-Sforza & Piazza, 1975).

This method is applied using the Generalized Hierarchical Modeling program (GHM)

(Long, 2007).

There have been a number studies focusing on the effects of migration and spatial

structure on STRUCTURE’s ability to detect population structure (Evanno, Reg-

naut, & Goudet, 2005; Latch et al., 2006; Schwartz & McKelvey, 2009). Using θ,

or the reduction in heterozygosity in the total population due to subdivision (Weir

& Cockerham, 1984) as a measure of population differentiation, Latch et al. (2006)

suggested that STRUCTURE could correctly identify the number of true populations

in a simulated data set with 97% accuracy with θ as low as 0.05 between simulated

populations. The simulation scheme in Latch et al. (2006) consisted of iteratively

drawing founder genotypes from a uniform allele frequency distribution until a partic-

ular θ was reached. Random genotypes were then drawn from each ‘population’ with

a particular θ. Unfortunately, because this method draws its founders from a uniform

distribution and then separately ‘drifts’ each subpopulation, there is no correlation

between the resulting populations. However, in another simulation study, Evanno

et al. (2005) could not easily infer the correct K for simulated data and found it

necessary to devise another method to correctly infer the K clusters. The simulation
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scheme in Evanno et al. (2005) used three models: island, hierarchical, and contact

zone with a K allele model for mutation, resulting in θ between groups from 0.16 to

0.4. Rosenberg et al. (2005) investigated sampling, sample size, and the number of

loci using STRUCTURE on a worldwide genetic short tandem repeat (STR) data

set. Sample size and the number of loci influenced how well STRUCTURE could

fully classify individuals into a cluster. Interestingly, samples taken from differeing

locations seemed to neagtively affect STRUCTURE’s ability to classify individuals

into distinct clusters, yet it was able to recapitulate the population catagories rather

consistently.

In order to better evaluate the effect of population structure in a continuous pop-

ulation and sampling schemes of individuals on STRUCTURE clustering, Schwartz

and McKelvey (2009) used a grid scheme to simulate genotypes. Their results demon-

strated that using STRUCTURE to make inferences about the geographic and land-

scape features of the data may lead to erroneous results. However, their simulations

attempted to create “autocorrelations” in the data by using grid and neighbor mating

over 20 generations to produce substructure and enable different sampling schemes.

The simulations had short ancestral times (rather than deep time) and assumed a

linear relationship between geography and genetic variation. They also used only

15 loci with 7 alleles. Even with the scenarios tested from multiple studies, there

is still a need for more investigations into the number of loci, SNPs, and additional

sampling schemes (Schwartz & McKelvey, 2009).

Generalized hierarchical modeling is a simple but powerful method that relies on

estimating gene identity (Nei, 1987) and testing a hierarchical model’s fit to the

data (Cavalli-Sforza & Piazza, 1975). Gene identity is the probability that two ran-

domly chosen copies of a locus are identical in state. An unbiased estimate of gene
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identity from an individual is the proportion of homozygous loci in their genome

and an estimate of gene identity between two individuals is the probability of a ho-

mozygous “offspring”. A matrix is made from all possible pairwise estimates of gene

identity, with estimates from within individuals on the diagonal and estimates be-

tween individuals on the off-diagonal. The gene identity matrix is then treated as a

variance-covariance matrix, and a likelihood ratio test is used to statistically test the

fit of an a priori model to the data (Cavalli-Sforza & Piazza, 1975; Long & Kittles,

2003). Urbanek et al. (1996) investigated the effect of differeing hiearchial models

and ascertainment on estimated gene diversity using a STR data set from a number

of populations. Their results suggested that ascertainment could affect the relative

genetic differentiation between populations, and thus possibly alter the results from

models that are evaluated. In general as a method to investigate population struc-

ture, GHM only tests the data against a user provided model, and thus is limited

to the models that are supplied. Further, a higher likelihood for a model amongst a

number of other models, does not exclude the possibility of an untested model having

a higher likelihood. Evaluations of the impact of spatial sampling and ascertainment

of loci on the generalized hierarchical model has yet to be accomplished.

In addition to time, spatial structure, and migration as factors that affect the

population structure in empirical data, ascertainment of loci also adds complications

to understanding population structure. Because we define a biological population as

a group of interbreeding individuals that creates an underlying distribution of allele

frequencies, the ascertainment of specific extant loci with biased characteristics may

also be of concern for the analyst of population structure. Ascertainment may skew

the actual distribution of allele frequencies, and thus distort our perception of the re-

lationship between populations. Of course, in using single nucleotide polymorphisms
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(SNPs) from SNP typing, we cannot avoid ascertained loci. As is often the case, the

sites chosen for projects such as HapMap (The International HapMapConsortium,

2007) were based on cost efficiency, technologies, and changed over time (Clark, Hu-

bisz, Bustamante, Williamson, & Nielsen, 2005). Thus, with the complications of

ancestral relationships between individuals and ascertainment in extant samples, our

ability of detect the actual population structure is uncertain.

We use a population-genetic model to simulate data from 1) a high-divergence tree:

patterned after indigenous populations from Africa, Europe, Asia, and the Americas;

and 2) a low-divergence tree: patterned after Europeans, and East Asians. However,

simulating allele frequencies and genotypes from different populations is complicated

by the hierarchical structure of human populations (Figure 3.1). In addition, sim-

ulating SNPs is particularly challenging, because the population structure must be

assumed or inferred.

A number of methods to simulate data with population structure are based on

choosing allele frequencies and then following those allele frequencies forward in

time. The disadvantage to these methods is their slow speed, because all loci are

followed forward in time including those lost or fixed. However, the algorithms tend

to be rather simple- based on the random uniting of gametes, so that the addition

of parameters is easy (FGP, (Hey, 1999), SimuPOP, (Peng & Kimmel, 2005; Peng,

Amos, & Kimmel, 2007)). Some of these methods are based on the K alleles model

for mutation, with mutation and selection (EASYPOP, (Balloux, 2001)). The K

alleles model is a finite mutation model where there are k to k− 1 possible mutation

states for an allele, each with equal probability of occurring (Kimura & Weiss, 1964;

Tajima, 1995). Though these methods are well-suited to simulate alleles at loci, the

simulation of allele frequencies requires an additional step of calculating genotype
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frequencies from a simulated population.

To simulate allele frequencies for simulated populations, other methods begin with

an allele frequency distribution and the probability of identity by descent to calculate

the allele frequency forward in time (Price et al., 2006). For this method the authors

choose ancestral allele frequencies from a uniform distribution and then used a beta

distribution to choose the descendent frequencies (with parameters p(1 − θ1) and

(1 − p)(1 − θ1), where θ1 = 4Nm, N is the effective population size, and m is the

mutation rate) (Balding & Nichols, 1994, 1995). The problem with this relatively

simple method, is that each subpopulation is assumed to be a completely discrete

entity, e.g. the covariance between populations is zero.

A backward-in-time approach to simulating data involves creating a genealogical

tree (topology) and then overlaying the sequence differences (mutations) using coa-

lescent methods (Kingman, 1982; Hudson, 1990; Excoffier, Novembre, & Schneider,

2000; Hudson, 2002). To create the genealogy the coalescent traditionally uses geo-

metrically distributed random variables, so that sets of conditional probabilities up

to k sequences for any sample are computed. An easier method involves approximat-

ing the geometric distribution by an exponential distribution. In this manner, the

geometric random variable X is then exponentially distributed with λ = k(k−1)
4N

. To

simulate the genealogy, a generation back is drawn from an exponential distribution

with expectation of 4N
k(k−1)

. Two randomly chosen sequences are then combined so

that they share a common ancestor sequence. Since on average one coalescence oc-

curs every generation, k is then decreased by one. This logic is repeated until k = 1,

and thus only the founding lineage is left (Hein, Schierup, & Wiuf, 2005).

Mutations in a coalescent simulation are applied to the tree under the constant-

rate neutral model (Watterson, 1975) which supposes that mutations may occur at
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any site along a lineage at a rate that is independent of demographic and selection

pressures. Each mutation has a small probability of occurring in any one lineage,

so that the number of mutations is a Poisson distributed random variable, S, with

λ = θ1
2

. To calculate the number of mutations that are placed on any given tree,

both the expected total time of the tree and mutation rate of the sequence are

utilized. The advantage to coalescent based methods are that simulating alleles at

loci is fast. However if allele frequencies are desired the efficiency is lost because of

the need to simulate a sample of individuals from the population and then calculate

allele frequencies. The coalescent with an additional migration parameter can also

be used to simulate genotypes with population structure (Hudson, 1990; Excoffier et

al., 2000; Excoffier, Laval, & Schneider, 2005; Buendia & Narasimhan, 2006).

Here we present a forward-in-time method using population genetics theory to

model the allele frequencies of populations descended from a single ancestral pop-

ulation undergoing neutral processes. The basic method relies on determining de-

scendent allele frequencies by letting ancestral allele frequencies drift using Kimura’s

continuous approximation to Fisher-Wright sampling, given the ancestral allele fre-

quency, time since divergence from the ancestor, and effective population size (Kimura,

1955). The resulting descendent allele frequencies can be ascertained by flexible

criteria to determine the sensitivity of analytical results to differing ascertainment

schemes. We demonstrate the validity of the method and compare simulated allele

frequencies with parameters estimated from European and Asian data to CEPH and

Asian HapMap samples.

We ascertain the allele frequencies using two methods: A.) where loci are cho-

sen because their allele frequencies are polymorphic across all populations, or B.)

where loci are chosen because their allele frequencies are polymorphic in a particular
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population. Because we know both the ancestry and ascertainment of the simulated

sample, we can examine the outcomes of using STRUCTURE and GHM methods to

detect population structure and ancestry.

3.3 Methods

Simulating populations descended from an ancestral population

The general strategy is take a sample of loci from an ancestral distribution, let

the allele frequencies drift, and then ascertain the loci as the descendent population.

The sampled loci represent the sampling of loci from an entire genome. The simula-

tion method only requires parameters for the time to the common ancestor and the

effective population size of each descendent population. An overview of the method

is demonstrated in Figure 3.2 for two populations.

To begin, let us randomly choose allele frequencies for a set of ancestral loci from

a beta distribution with parameters Nu and Nv, where N is the effective population

size, u is the mutation rate, and v is the reversion rate. Both theory and empirical

data demonstrates the beta distribution to be a good choice for the distribution of

allele frequencies at a locus. The beta distribution is a special case of the diffusion

approximation that specifies the equilibrium allele frequency distribution under only

neutral forces, that is, with mutation, reversion, and drift (Wright, 1931). The

estimates for parameters we use are N = 10, 000 for effective population size, v = 1.2

x 10−8 for the mutation rate, and u = 0.8 x 10−8 for the reversion rate (Figure

3.3). Now, let us assume that all loci we choose from the ancestral population are

independent and identically distributed and that the allele frequencies across loci

follow a beta distribution. We can then take a sample of L polymorphic loci to

represent the ancestral population, letting πk and 1 − πk be the ancestral allele
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frequencies at the kth locus. We let the ancestral allele frequency at each locus drift,

so that in the descendent population it has 1.) a finite probability of fixation at

zero or one, and 2.) a probability density of polymorphism. Let N be the effective

population size of the descendent population, and t be the time to the ancestor. The

probability of fixation is:

(3.1) f (1, t) = πk +
∞∑
j=1

(2j + 1) πk (1− πk) (−1)j F (1− j, j + 2, 2, πk) e
−j(j+1)ti

4N ,

where F is the hypergeometric series (Kimura, 1955). The probability of loss is

f (0, t) and is similar to equation 3.1 above except that πk is substituted by 1− πk

(Kimura, 1955). The probability density of polymorphism for the allele frequency,

p, in the descendent population at the kth locus is:

φ (π, p, t) =
∞∑
j=1

π (1− π) j (2j + 1) (1 + j)F (1− j, j + 2, 2, π)

F (1− j, j + 2, 2, p) e
−j(j+1)t

4N(3.2)

(Kimura, 1955). In practice, equation 3.2 cannot be computed exactly, as it is a

limit of sum of infinite sums, but can be evaluated numerically. To implement this

method we use follow a several steps to simulate an allele frequency at each locus:

1. For allele frequencies in the ancestral population, we take a sample of polymor-

phic loci from a beta distribution with parameters for effective population size,

N , mutation rate, v, and reversion rate, u.

2. Using the ratio of the time from the descendent population back to the ancestor

in generations to the effective population size of a descendent population, or t
2N

,
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we calculate the probability of fixation or loss for each ancestral allele frequency

using f(0, t) and f(1, t). Then using those probabilities, we randomly determine

if each locus is lost, fixed, or polymorphic in the descendent population. If the

allele is fixed or lost, skip step 3), otherwise go to step 4).

3. If the locus remains polymorphic in the descendant, we use rejection sampling

scheme. We choose a random number from the uniform distribution [0, 1] to

evaluate equation 3.2 . If the calculated probability is equal to or less than a

random number from the uniform distribution [0, max ], (where the maximum

is determined by the value of t
2N

), we use the calculated probability as the

descendant allele frequency. Otherwise we choose another random number from

the uniform distribution [0, 1] again and repeat the rejection sampling.

4. Ascertain the allele frequencies.

We follow these steps for a set of L loci in the first population, and then again for

the second population using different values of t
2N

.

With this method we can ascertain SNPs according to a desired strategy. Possible

strategies include: ascertaining polymorphic loci across both descendent populations

or based on polymorphism in one particular population. It is easy to extend this

method to simulate several different populations. In this case, we follow the algorithm

above, except that for each additional descendent population another t
2N

is used.

Validity of the simulation method

We demonstrate our simulation method using parameters garnered from a phylo-

genetic tree constructed from 580 STRs from 16 populations (Hunley, Cabana, Mer-

riwether, & Long, 2007). We simulated allele frequencies for European-like (CEU),

and Asian-like distributions of allele frequencies. For the simulated European popu-
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lation we used an estimate of 0.034 for t
2N

and for the simulated Asian population

we used an estimate of 0.15 for t
2N

. These estimates are garnered from a hierarchical

model fitted to 580 STR loci for 16 populations (figure 3.4) (Hunley et al., 2007).

Simulating populations from a divergent and less divergent tree

To investigate the effect of the underlying phylogenetic tree and ascertainment,

we simulate data under a known phylogenetic tree using the method above. We take

all our parameter estimates from a hierarchical model fitted to 580 STR loci for 16

populations (figure 3.4) (Hunley et al., 2007). For the first tree we simulate diver-

gent world-wide populations. We pattern the tree after indigenous populations from

Africa, Europe, Asia and the Americas with a common ancestor that arose prior

to the Out-of-Africa migration. Figure 3.5A. shows the estimates for t
2N

and an

illustration of the divergent tree. For the second tree, we simulate a low-divergence

tree. We pattern the data after Europeans and a number of East Asian populations

including those of Cambodia, China, and Japan. We estimate from the common

ancestor of the European and Asian divergence where all non-Africans are one popu-

lation for the root node. Figure 3.5B. shows the estimates for t
2N

and the second tree.

The simulated allele frequencies are then: 1.) ascertained as polymorphic across all

populations, 2.) ascertained as polymorphic in the European-like population, or 3.)

not ascertained. From each ascertainment and population simulated, data sets of 50

individuals from each population of 500 and 2000 SNPs were created and prepared

for STRUCTURE and GHM programs.

Methods of determining population structure

The algorithm underlying STRUCTURE, assigns individuals to one of K a-priori

clusters each with a characteristic allele frequency distribution.The maximal value of

K is inferred from the posterior probability of the distribution of K. This means that
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the most appropriate value of K for the data set is supported when the likelihood

of the data fails to increase with a larger K, or no new clusters are produced with

a larger K. Using the STRUCTURE program, each tree and ascertainment was

run using a parameter set with no admixture, correlated allele frequencies between

populations, and a fixed value for lambda. A burn in of 10,000 and 100,000 reps

were used for each (Latch et al., 2006; Schwartz & McKelvey, 2009). The program

was run five times for each K, one through six.

The GHM program works by comparing the estimated variance covariance matrix

of gene identity (Nei, 1987) of the observed data to the expected variance covariance

matrix generated from a specified a priori model. Here we test the fit of the data

to three hierarchical models: a true model, a null (or island model), and a model

in which there is an outgroup. The models are shown in Figure 3.6 and 3.7. The

inability of a particular model to fit the data is measured by the likelihood ratio

statistic Λ = ν(ln |Σ̂0 − lnĴ + trĴΣ̂−1
0 − r), where ν is the number of independent

observations in the data, Σ is the expected gene identity matrix, Ĵ is the observed

gene identity matrix, and r is the number of populations sampled. This likelihood

ratio statistic is distributed as a chi-square statistic with (r(r+1)/2)−s, where, and

s, is the number of parameters in the a priori model tree (Cavalli-Sforza & Piazza,

1975).

HapMap Data

We use the International HapMap Project (The International HapMap Consor-

tium 2003) data release #23 in which samples were typed using the Affymetrix 500k

chip. The project included four geographically distinct populations. To demonstrate

correlations in figure 3.1 we used 45 unrelated Japanese from Tokyo, Japan (JPT), 45

unrelated Han Chinese from Beijing, China (CHB), and 20 unrelated individuals from
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the CEPH, Utah residents with ancestry from northern and western Europe (CEU).

Inclusion criteria for SNPs included here are: a minor allele frequency greater than

5%, a chi-square test for HWE with a p-value of greater than 10−6, and no more

than 20% missing data. From these SNP data, we calculated the empirical allele

frequencies.

3.4 Results and Discussion

Validation of the population-genetic simulation method

For allele frequencies that are polymorphic, our rejection sampling scheme closely

approximates the density of the Kimura probability for a wide range of ancestral allele

frequencies. We show the distribution of sampled allele frequencies for a somewhat

extreme parameter set in Figure 3.8 (non-significant by the KolmogorovSmirnov

goodness-of-fit test). It must be noted that the Kimura equations are in themselves

an approximation of a continuous process, the approximation is not caculatable, that

is, does not converge for ancestral allele frequency values of less than 0.012 or greater

than 0.482 and values of t
2N

> 0.01. If descendent allele frequencies are desired for

ancestral allele frequency values less than 0.012 or greater than 0.482 or t
2N

< 0.01,

two methods can easily be employed, either: 1.) use more polymorphic ancestral

allele frequencies, or 2.) use a normal approximation where pik ∼ N
(
πk, σ

2
pik

)
, with

m = πk and σ2
pik

= πk (1− πk)
[
1− e−ti2Ni

]
. In this normal approximation case, for

pik that are greater than one, we set them to one, and for frequencies less than zero,

we set them to zero.

Our method of simulating allele frequencies from different populations allows for

flexibility in ascertainment. We show simulated allele frequencies ascertained based

on polymorphism in both populations in Figure 3.9 or based on the frequencies in



70

the simulated CEU population Figure 3.10. The correlation coefficient decreases

when loci are ascertained based on polymorphism in the simulated CEU (compare

3.9 with 3.10 , where r= 0.857 and 0.80, respectively). This is because more loci

in the simulated Asian population are more likely to be fixed because of the larger

value of t
2N

, decreasing the correlation. The larger t
2N

reflects the longer time back

to the common ancestor with the CEU indicative of a flatter probability density

of polymorphism and a larger probability of being fixed. Comparing the simulated

allele frequencies to HapMap data, we find that the correlation coefficients from

the simulated data using either ascertainment method is in the range of the values

from HapMap. Given that the ascertainment of HapMap is very complicated with

the scheme changing as the project progressed, it is unlikely that the ascertainment

scheme can be fully reconstructed (for a thorough explanation see Clark et al., 2005).

Because of this, we do not expect our simulated data to match the HapMap allele

frequencies exactly. Nor would we expect our method and underlying model to be

corroborated by the HapMap data exactly. That the simulated frequencies are within

the range that was demonstrated by HapMap does however represent a general proof

of principle of the method.

The gene identity calculated from simulated allele frequencies for each tree and

ascertainment is shown in Table 3.1. The simulated data gene identities are relatively

close to the expected gene identities (Table 3.1).

Effect of the underlying tree and ascertainment on the methods to

evaluate population structure

There are several things of notice from the STRUCTURE results. We first discuss

the trends in the “proportion of membership of each pre-defined population in each

of the K clusters”, illustrated in Tables 3.2 and 3.3 for 2000 loci. These results
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are for the correlated allele frequency model. For the divergent tree, STRUCTURE

always split the Europeans evenly amongst the “Inferred clusters” for each value of

K > 1, for both the ascertainment across all populations and using the Europeans

(Table 3.2A. and B). For the other three simulated populations, Africans, Asians,

and Native Americans, it tended to cluster them together, with an increasingly large

proportion of membership in the other cluster with an increase in K (Table 3.2).

For the data set without ascertainment, the Europeans were clustered as a separate

population (for K > 1, Table 3.2C.), whereas the other three populations had similar

proportions of membership in a second cluster.

For the correlated allele frequency model, the low-divergence tree is approximately

split between the inferred clusters for K > 1 with slightly less membership for one of

the clusters for all ascertainment strategies (Table 3.3). The Asian populations-Han

Chinese, Japanese, and Cambodians demonstrate some shared ancestry with each

other by sharing slightly more in a cluster with each other (Table 3.3), and some

shared ancestry with the Europeans, by sharing a proportion in a cluster with them.

Using STRUCTURE, the results of the likelihood analysis are quite inconclusive.

The largest likelihood values are found for a K = 1 for the ascertainment across

all populations and the ascertainment using the Europeans. For the simulated data

sets with no ascertainment, the likelihood is larger for K = 5. For both scenarios,

the data sets without ascertainment gave huge variances for the log likelihood for

all values of K, on the order of 1011 to 1014. Our problems with STRUCTURE

may reflect the use of a small SNP data set, with a N=500 or 2000 SNPs. Some

previous studies had some success in using STRUCTURE with few loci and shallow

time (Latch et al., 2006), but others did not (Schwartz & McKelvey, 2009), or had

to find new methods to find support for a correct K (Evanno et al., 2005). Based
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on these previous studies, the number of loci used here should have been sufficient

but the combination of closely ancestrally related populations and few loci used in

this study, may have led to a severely underpowered scenario for the correlated allele

frequencies model.

The results for each given model tested in GHM for the divergent tree are shown in

Table 3.4, and also for the low-divergence tree in Table 3.5. For the divergent tree,

the chi-square statistics from the true and African outgroup models are rejected

less readily, for all ascertainment strategies. Perhaps somewhat troublingly, the

ascertainment for polymorphic loci and the ascertainment using the Europeans, in

the 500 locus data set, make it difficult to discern between models. The R2 values for

the models tested show that the proportion of variation accounted for by the model

being tested is relatively high, except for the 2000 SNP data set. With 2000 SNPs the

R2 values are 0.2 to 0.5 for the ascertainment using the European population data

set and the data set without ascertainment. Even with some low R2 values, there is

still higher values for the true and African outgroup models as compared with the

null model in all ascertainment strategies. The ascertainment using the Europeans

makes results slightly less clear, but generally the trends in the chi-square and R2

are towards supporting the fit of true model for the divergent data. These trends in

the divergent data set are not as clear as in the less divergent data set. Interestingly,

for the low-divergence tree, chi-square statistics from GHM more clearly discern the

true model in the data without ascertainment even for the 500 SNP data set (e.g.

χ2 values are 13.703, 76.266, and 17.846 for the true, null and grouped Asian model,

respectively, Table 3.5). It could even slightly distinguish between the true model

and a model of grouped Asians for the other ascertainment strategies in the low-

divergence simulated data. The R2 values, and in turn, correlation coefficients, also
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lend support for the true model under all the ascertainment strategies even with only

500 SNPs. Ascertainment seems to have less of an effect on the low-divergence data

set. It is interesting that the GHM method finds support for the correct models in the

data set with larger overlap in allele frequencies (low-divergence) than for a data set

with more time to separate lineages from the common ancestor (divergent). Perhaps

this is because the deeper time and larger separation between ancestor populations

could yield plausible support for a number of possible trees. It would be interesting

in the future to test simulated data sets with less time to the common ancestor to

evaluate this claim.

3.5 Conclusions

It might be predicted that STRUCTURE would be better at separating popula-

tions in the divergent data set. Using a correlated allele frequency model, support

for the correct number of populations was unclear. The correlated allele frequen-

cies model is recommended for subtle population structure to investigate popula-

tion structure (Falush, Stephens, & Pritchard, 2003). However, like the results of

Schwartz and McKelvey (2009), we were not able recover the correct value for K us-

ing this model. Additionally, STRUCTURE lacks the ability to test between possible

models. Since there are other models using STRUCTURE that were not tested, such

as the independent allele frequencies model, it is possible that another model may

be more informative than the correlated allele frequencies model used here. Using

other models and parameters in STRUCTURE with this simulated data would be

important for future work.

The hierarchical modeling procedure (GHM) was able to correctly identify the

underlying model for both the divergent and low-divergence data sets. It was even
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able to identify the correct model for the data set in which individuals had a very

close ancestral history with as few as 500 SNPs. However, the number of tree models

for a data set increases factorially with each additional population. Thus, using this

method requires a good deal of a priori knowledge about the populations sampled

to select the most plausible models. Of course, knowledge about the population

structure in empirical samples may be relatively unknown, presenting a dilemma for

investigators.

For both methods to detect the population structure, ascertainment seemed to

affect the divergent data more than the less divergent data. Perhaps, for the diver-

gent tree, since the allele frequency distributions are rather separate, when loci are

ascertained the degree of polymorphism between populations is made less dramatic.

In the low-divergence tree ascertainment is less of an issue because the Europeans

are the obvious outgroup. When the simulated European population is used to as-

certain polymorphic loci in the low-divergence tree, there it is more likely that the

true underlying tree is preserved. Whereas, for the divergent tree the data was fur-

ther distorted by ascertaining loci using the Europeans, which was not the outgroup.

When an empirical sample is collected, the underlying true population relationships

may be unknown and further distorted by ascertainment.

This work demonstrates the importance of background information about possi-

ble hypotheses for testing. For either method, a great deal of a priori knowledge

about the populations sampled, garnered from oral history, the archeological record,

demography etc., would be necessary to formulate any plausible inferences of either

values of K for STRUCTURE or models to test in GHM.

An investigator, must define a priori populations from which to sample, sample

those populations, and then test for population structure. This creates a dilemma:
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in finding population structure, the investigator is merely finding evidence for reca-

pitulating those same population categories rather than the genetic relationships in

the data. Perhaps these categories serve as useful proxies for environmental expo-

sures or epigenetic factors, or perhaps they add uncertainty to the underlying genetic

relationships.
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Figure 3.1: Linear regression of HapMap allele frequencies from 260 loci from each population.

260 randomly chosen loci from unrelated HapMap populations are included in the linear regres-
sions. A.) CEPH (CEU) and Chinese (CHB), B.) CEPH and Japanese (JPT), and C.) Chinese
and Japanese. Chinese and Japanese allele frequencies each display about the same correlation
coefficient,r, with the CEPH population (0.879 and 0.871 respectively). However, the Chinese and
Japanese have a much higher correlation coefficient (r = 0.964), reflecting their close ancestral
relationship, as compared with either population with the CEPH.
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Figure 3.2: Overview of our simulation method using population-genetic theory.
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Figure 3.3: Simulation of the beta distribution.

Simulated minor allele frequencies from the beta distribution with parameters 4Nu = 0.00048 and
4Nv = 0.0008.
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Figure 3.4: Hierarchical model of STR loci from 580 STR loci genotyped in 16 populations.

The best-fit hierarchical model fitted using GHM to 580 STR loci genotyped for 16 populations
taken from (Hunley et al., n.d.). On the x-axis-scale is the effective population size (in thousands of
individuals) at a node and gene identity. On each internal node, a number represents an approximate
date for the split (in thousands of years). The Han Chinese history is divided into five epochs
delimited by dotted vertical lines: (i) prior to Out-of-Africa migration, (ii) the non-Africans are one
population, (iii) the East Asians and Native Americans are one population, (iv) the East Asians
are one population, and (v) the Han Chinese are one population.
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Figure 3.5: Cladograms and values for t/2N used to simulate data.

The cladograms used to simulate data for the divergent and low-divergence trees. A.) The divergent
tree and values for t/2N , and B.) low-divergence tree and values for t/2N .
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Figure 3.6: Cladograms tested in GHM for the divergent tree.

The three models tested in GHM. A.)The ‘true’ tree model, B.) the null model, testing treeness of
the data, and C.) the African population used as an outgroup (African outgroup model).
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Figure 3.7: Cladograms tested in GHM for the low-divergence tree.

The three models tested in GHM. A.)The ‘true’ tree model tested in GHM, B.) the null model,
testing treeness of the data, and C.) the European population used as an outgroup (Grouped Asians
model).
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Tree Ascertainment Population Gene identity from simulated population

European 0.634

Across African 0.605

Asian 0.634

Americas 0.671

European 0.631

Based on CEU African 0.650

Divergent Asian 0.721

Americas 0.917

European 0.852

None African 0.654

Asian 0.876

Americas 0.964

European 0.610

Across Han Chinese 0.636

Japanese 0.632

Cambodian 0.628

European 0.611

Based on CEU Han Chinese 0.827

Low divergence Japanese 0.885

Cambodian 0.787

European 0.636

None Han Chinese 0.833

Japanese 0.889

Cambodian 0.794

Table 3.1: Gene identity calculated from simulated populations and given ascertainment.
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Figure 3.8: Histogram of the simulated data from the rejection sampling scheme compared with
the actual Kimura probability density curve for the same parameters.

If the locus remains polymorphic in the descendant, we use a rejection sampling scheme. We choose
a random number from the uniform distribution [0,1] to evaluate equation 3.2 . If the calculated
probability is equal to or less than a random number from the uniform distribution [0, max ], (where
the maximum is determined by the value of t

2N ), we use the calculated probability as the descendant
allele frequency. Otherwise we choose another random number from the uniform distribution [0,1]
again and repeat the steps. Rejection sampled allele frequencies displayed in the histogram were
simulated with t

2N equal to 0.15 and ancestral allele frequency fixed to 0.1. The fit of the Kimura
probability density with the same parameters is very close (non-significant KolmogorovSmirnov
goodness-of-fit test).
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Figure 3.9: Simulated folded allele frequencies for CEU and Asian like populations ascertained for
polymorphism in both populations.

Simulated folded allele frequencies for the CEU (x-axis) and Asian (y-axis) populations. Param-
eters for the simulation were t

2N = 0.034 and t
2N = 0.15 for the simulated CEU and Asian allele

frequencies, respectively. Loci were then chosen if they were polymorphic in both populations.
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Figure 3.10: Simulated folded allele frequencies for CEU and Asian like populations ascertained by
polymorphism in the simulated CEU allele frequencies.

Simulated folded allele frequencies for the CEU (x-axis) and Asian (y-axis) populations with the
same parameters as Figure 3.9. Loci were chosen based on polymorphism in the CEU. More loci
are fixed in the Asian population by this ascertainment strategy, decreasing the correlation.



87

K
=

1
K

=
2

K
=

3
K

=
4

K
=

5
G

iv
en

po
pu

la
ti

on
1

1
2

1
2

3
1

2
3

4
1

2
3

4
5

E
ur

op
ea

n
1.

0
0.

51
8

0.
48

2
0.

31
3

0.
33

1
0.

35
5

0.
29

3
0.

25
1

0.
21

5
0.

24
1

0.
18

9
0.

22
0

0.
18

1
0.

18
4

0.
22

7
A

.)
A

fr
ic

an
1.

0
0.

62
3

0.
37

7
0.

30
1

0.
32

7
0.

37
2

0.
27

3
0.

25
7

0.
23

0
0.

24
0

0.
16

5
0.

27
3

0.
16

3
0.

17
5

0.
22

4
A

si
an

1.
0

0.
67

4
0.

32
6

0.
30

4
0.

30
7

0.
38

9
0.

29
8

0.
22

5
0.

22
6

0.
25

1
0.

18
7

0.
25

9
0.

17
7

0.
17

4
0.

20
3

A
m

er
ic

as
1.

0
0.

50
1

0.
49

9
0.

30
7

0.
33

5
0.

35
8

0.
27

7
0.

26
7

0.
23

9
0.

21
8

0.
17

0
0.

24
1

0.
15

7
0.

20
4

0.
22

8
E

ur
op

ea
n

1.
0

0.
53

5
0.

46
5

0.
33

8
0.

33
4

0.
32

8
0.

25
2

0.
25

2
0.

24
7

0.
24

9
0.

25
8

0.
20

4
0.

18
5

0.
19

6
0.

15
7

B
.)

A
fr

ic
an

1.
0

0.
58

4
0.

41
6

0.
25

8
0.

34
6

0.
29

6
0.

28
0

0.
24

2
0.

21
3

0.
26

5
0.

20
5

0.
22

1
0.

19
6

0.
22

2
0.

15
6

A
si

an
1.

0
0.

49
2

0.
50

8
0.

33
5

0.
29

9
0.

36
6

0.
23

5
0.

24
8

0.
28

2
02

34
0.

28
3

0.
18

0
0.

18
8

0.
18

0
0.

16
9

A
m

er
ic

as
1.

0
0.

59
4

0.
40

6
0.

35
6

0.
36

3
0.

28
1

0.
23

5
0.

24
5

0.
21

4
0.

30
6

0.
20

3
0.

22
6

0.
19

9
0.

21
2

0.
16

0
E

ur
op

ea
n

1.
0

0.
02

0
0.

98
0

0.
02

1
0.

96
7

0.
01

2
0.

02
0

0.
97

3
0.

00
0

0.
00

7
0.

02
0

0.
00

0
0.

00
0

0.
98

0
0.

00
0

C
.)

A
fr

ic
an

1.
0

0.
50

8
0.

49
2

0.
33

7
0.

33
0

0.
33

3
0.

25
1

0.
24

3
0.

25
9

0.
24

8
0.

21
5

0.
20

2
0.

19
4

0.
19

4
0.

19
6

A
si

an
1.

0
0.

31
7

0.
68

3
0.

23
8

0.
54

9
0.

21
3

0.
18

8
0.

51
1

0.
15

0
0.

15
1

0.
16

5
0.

12
5

0.
12

3
0.

46
2

0.
12

5
A

m
er

ic
as

1.
0

0.
47

5
0.

52
5

0.
33

5
0.

33
0

0.
33

4
0.

25
8

0.
25

3
0.

24
4

0.
24

5
0.

19
7

0.
20

1
0.

20
2

0.
20

5
0.

19
6

T
ab

le
3.

2:
P

ro
po

rt
io

n
of

m
em

be
rs

hi
p

in
th

e
cl

us
te

rs
fo

r
ea

ch
K

fr
om

ST
R

U
C

T
U

R
E

w
it

h
a

co
rr

el
at

ed
al

le
le

fr
eq

ue
nc

y
m

od
el

.

U
si

ng
th

e
ST

R
U

C
T

U
R

E
pr

og
ra

m
th

e
pr

op
or

ti
on

of
m

em
be

rs
hi

p
in

ea
ch

K
cl

us
te

r.
A

.)
T

he
di

ve
rg

en
t

20
00

po
ly

m
or

ph
ic

SN
P

da
ta

se
t,

B
.)

th
e

di
ve

rg
en

t
20

00
SN

P
da

ta
se

t
as

ce
rt

ai
ne

d
in

th
e

E
ur

op
ea

n
da

ta
se

t,
an

d
C

.)
th

e
di

ve
rg

en
t

20
00

SN
P

da
ta

se
t

w
it

ho
ut

an
y

as
ce

rt
ai

nm
en

t.



88

K
=

1
K

=
2

K
=

3
K

=
4

K
=

5
G

iv
en

po
pu

la
ti

on
1

1
2

1
2

3
1

2
3

4
1

2
3

4
5

E
ur

op
ea

n
1.

0
0.

49
8

0.
50

2
0.

33
7

0.
33

8
0.

32
5

0.
25

8
0.

25
0

0.
24

8
0.

24
4

0.
20

9
0.

18
2

0.
20

0
0.

19
8

0.
21

1
A

.)
H

an
C

hi
ne

se
1.

0
0.

49
4

0.
50

6
0.

33
6

0.
33

7
0.

32
7

0.
26

3
0.

24
8

0.
24

8
0.

24
1

0.
23

4
0.

19
3

0.
19

2
0.

17
6

0.
20

6
Ja

pa
ne

se
1.

0
0.

51
1

0.
49

8
0.

35
5

0.
34

2
0.

30
4

0.
26

0
0.

26
0

0.
23

4
0.

24
6

0.
19

1
0.

21
4

0.
21

4
0.

18
5

0.
19

6
C

am
bo

di
an

1.
0

0.
49

4
0.

50
6

0.
32

8
0.

34
4

0.
32

7
0.

27
6

0.
24

2
0.

24
9

0.
23

3
0.

21
4

0.
21

3
0.

18
9

0.
17

8
0.

20
6

E
ur

op
ea

n
1.

0
0.

51
5

0.
48

5
0.

34
2

0.
32

3
0.

33
5

0.
28

5
0.

25
6

0.
21

8
0.

24
0

0.
19

5
0.

18
2

0.
19

9
0.

21
4

0.
21

0
B

.)
H

an
C

hi
ne

se
1.

0
0.

52
7

0.
47

3
0.

36
0

0.
30

4
0.

33
6

0.
28

1
0.

20
9

0.
19

9
0.

31
1

0.
17

6
0.

18
8

0.
21

9
0.

21
7

0.
19

9
Ja

pa
ne

se
1.

0
0.

59
8

0.
40

2
0.

40
9

0.
29

6
0.

29
5

0.
20

8
0.

28
2

0.
22

9
0.

28
1

0.
19

3
0.

18
8

0.
23

1
0.

22
6

0.
16

4
C

am
bo

di
an

1.
0

0.
53

9
0.

46
1

0.
37

4
0.

29
9

0.
32

7
0.

27
7

0.
22

2
0.

20
4

0.
29

7
0.

19
4

0.
18

1
0.

19
7

0.
24

5
0.

18
4

E
ur

op
ea

n
1.

0
0.

47
7

0.
52

3
0.

34
2

0.
33

0
0.

32
8

0.
24

7
0.

26
9

0.
25

2
0.

23
2

0.
22

1
0.

20
6

0.
16

8
0.

19
6

0.
20

9
C

.)
H

an
C

hi
ne

se
1.

0
0.

49
97

0.
50

3
0.

33
7

0.
33

6
0.

32
7

0.
26

1
0.

24
7

0.
23

1
0.

26
1

0.
19

8
0.

20
5

0.
20

1
0.

19
8

0.
19

7
Ja

pa
ne

se
1.

0
0.

50
0

0.
50

0
0.

33
4

0.
33

6
0.

33
1

0.
25

4
0.

24
2

0.
24

2
0.

26
3

0.
20

4
0.

20
3

0.
20

0
0.

20
0

0.
19

3
C

am
bo

di
an

1.
0

0.
49

0
0.

51
0

0.
33

7
0.

33
5

0.
32

8
0.

26
8

0.
24

7
0.

23
8

0.
24

7
0.

19
7

0.
19

8
0.

19
9

0.
20

3
0.

20
3

T
ab

le
3.

3:
P

ro
po

rt
io

n
of

m
em

be
rs

hi
p

in
th

e
cl

us
te

rs
fo

r
ea

ch
K

fr
om

ST
R

U
C

T
U

R
E

w
it

h
a

co
rr

el
at

ed
al

le
le

fr
eq

ue
nc

y
m

od
el

.

U
si

ng
th

e
ST

R
U

C
T

U
R

E
pr

og
ra

m
th

e
pr

op
or

ti
on

of
m

em
be

rs
hi

p
in

ea
ch
K

cl
us

te
r.

A
.)

T
he

lo
w

-d
iv

er
ge

nc
e

20
00

po
ly

m
or

ph
ic

SN
P

da
ta

se
t,

B
.)

th
e

lo
w

-d
iv

er
ge

nc
e

20
00

SN
P

as
ce

rt
ai

ne
d

in
th

e
E

ur
op

ea
n

da
ta

se
t,

an
d

C
.)

th
e

lo
w

-d
iv

er
ge

nc
e

20
00

SN
P

da
ta

se
t

w
it

ho
ut

an
y

as
ce

rt
ai

nm
en

t.



89

Loci Ascertainment Tested Model R2 χ2 p-value
True 0.627 9.228 0.026

Across Null 0.605 9.599 0.087
African outgroup 0.625 9.364 0.053

True 0.880 41.473 < 0.00001
500 Based on CEU Null 0.824 51.497 < 0.00001

African outgroup 0.889 42.749 < 0.00001
True 0.691 34.922 < 0.00001

None Null 0.165 189.603 < 0.00001
African outgroup 0.693 35.032 < 0.00001

True 0.909 11.724 0.0084
Across Null 0.894 23.797 0.002

African outgroup 0.894 13.115 0.0107
True 0.888 157.392 < 0.00001

2000 Based on CEU Null 0.815 227.223 < 0.00001
African outgroup 0.903 175.029 0.001

True 0.771 133.737 < 0.0001
None Null 0.220 857.725 < 0.00001

African outgroup 0.771 133.738 < 0.00001

Table 3.4: Results for the divergent tree for the three models tested using GHM.

For data simulated under the divergent tree, the R2 from the observed vs. expected values, χ2

values, and p-value for each ascertainment and tested model used in GHM are shown with their
corresponding results. The R2 values are calculated from the observed and expected gene identity
matrix, where the expected gene identity matrix is calculated based on the particular model that is
being tested. The ascertainment is accomplished by choosing polymorphic loci across all populations
(polymorphic), choosing polymorphic loci in the CEU population (based on CEU), or choosing a
random set of loci (no ascertainment). The models tested in GHM for the divergent tree are shown
in Figure 3.6.
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Loci Ascertainment Tested Model R2 χ2 p-value
True 0.901 3.906 0.272

Across Null 0.915 13.437 0.019
Grouped Asians .901 3.910 0.418

True 0.918 19.594 0.0002
500 Based on CEU Null 0.668 92.771 < 0.00001

Grouped Asians 0.892 21.842 0.0002
True 0.909 13.703 0.003

None Null 0.657 76.266 < 0.0001
Grouped Asians 0.854 17.846 0.0013

True 0.939 5.341 0.148
Across Null 0.966 13.500 0.019

Grouped Asians 0.930 5.956 0.203
True 0.911 43.014 < 0.00001

2000 Based on CEU Null 0.504 447.607 < 0.00001
Grouped Asians 0.846 59.098 < 0.00001

True 0.907 39.865 < 0.00001
None Null 0.401 421.960 < 0.00001

Grouped Asians 0.838 54.464 < 0.00001

Table 3.5: Results for the low-divergence tree for the three models tested using GHM.

For data simulated under the low-divergence tree, the R2 from the observed vs. expected values,
χ2 values, and p-value for each ascertainment and tested model used in GHM are shown with
their corresponding results. The R2 values are calculated from the observed and expected gene
identity matrix, where expected gene identity matrix is calculated based on the particular model
that is being tested. The ascertainment was accomplished by choosing polymorphic loci across all
populations (polymorphic), choosing polymorphic loci in the CEU population (based on CEU), or
choosing a random set of loci (no ascertainment). The models tested in GHM for the low-divergence
tree are shown in Figure 3.7.



CHAPTER IV

Conclusion

The purpose of this dissertation was twofold: 1) to explore the relationships be-

tween individuals that exist in a collected sample for ancestry or population structure

because we are interested in the structure or and relationships themselves, and 2) to

know if the sample we have collected is a random mating sample of a population of

interest, so that we can apply certain assumptions and in turn methods to the data.

Both of these purposes are interconnected: we cannot understand the relationships

between individuals that exist in a sample if we do not make some assumptions about

a population beforehand, but neither can we understand a population without some

assumptions about the relationships between individuals within it.

The approach to these goals was to begin with a definition of population based

on the probabilities of genotypes calculated from allele frequencies - simply, Hardy

Weinberg Equilibrium. Though the assumptions underlying HWE are rarely strictly

met, HWE gives values for which reasonable expectations of population variation can

be based. HWE demonstrates that the mechanism of inheritance does not decrease

variation in a population over time. Thus, the initial value of an allele frequency

will continue to represent a panmictic population though time and its descendent

progeny. Across loci a single individual is an estimate of homozygosity for their pop-
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ulation. This is somewhat profound. With a single individual we have an estimate

of population homozygosity. However, with two individuals we have a dilemma: we

know that we have a population, but could we have two populations? This problem

continues with more individuals. This dissertation presented a method to statistically

approach this problem and test whether a sample of just two individuals represents

the same single panmictic population. With two data points we can define popula-

tions. By observing the gene identity or the test statistic between all members of a

sample, inferences about the relationships between any a priori population categories

and the genetic data can be drawn and relationships within the genetic sequences

themselves can be examined. I validated the method and demonstrated its power

to detect a difference in homozygosity between pairs of individuals. Moreover, the

method does not need a priori information about an individual’s genetic relationship

with another individual, nor an individual’s genetic identity to a population.

To throughly address both of the goals above, I also needed to further explore

models of the population structure and ancestral population history. The underlying

history due to stochastic and non-stochastic processes creates relationships between

individuals, between sub-populations, and between populations. The relationships

disturb panmixia. This was demonstrated in Chapter two with the statistical test to

determine if two individuals are from the same panmictic population. In particular,

in the assessment of power, the method has a high power to test for relatives; this is

because relatives, though they are from the same population they share more alleles

identical by descent, and are not from a panmictic population. The test has the

highest power to test for more closely related individuals, such as parent-offspring

and full-sibling pairs who on average share the most alleles. I also have high power

to test for individuals that are distantly ancestrally related populations because their
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underlying allele frequency distributions are more different from each other.

To explore population structure- I looked to the history of population genetics and

its simplest models of population structure. Historically, explorations of stochastic

processes in a finite population led to the Wright-Fisher model (Fisher, 1930; Wright,

1931). This model was crucial to understanding the change in the allele frequency

distribution population over time. Without the establishment of HWE and the

Wright-Fisher model, diffusion methods would not have had a theoretical and bi-

ological basis, after all the diffusion approximation is merely an approximation of

a continuous version of the Wright-Fisher model for a large population. Diffusion

methods (Wright, 1929; Fisher, 1930; Wright, 1931; Kimura, 1955) were the basis

for the method of simulating allele frequencies from different populations. I demon-

strated the validity of this method for a range of initial values in Chapter three.

Though it is somewhat time intensive for a forward-in-time simulation method, it

is able to accurately capture population history and the underlying correlated allele

frequencies between populations. For those values that are not calculatable for the

diffusion model, I use a normal approximation. In general, the method is unique,

because it simulates allele frequencies that can be ascertained. This property makes

it convenient for simulating SNPs.

Lastly, my exploration of population structure and ancestry led me to look to

methods that detect and test models of population structure in the data. Evolu-

tionary ancestral history has left a deep indelible structure on genetic data (Cavalli-

Sforza & Piazza, 1975; Cavalli-Sforza, Piazza, Menozzi, & Mountain, 1989; Wang et

al., 2007; Ramachandran et al., 2005; Rosenberg et al., 2005; Hunley & Long, 2005;

Hunley, Healy, & Long, 2009), this process has led to correlations between allele

frequencies (Figure 3.1) which must be considered in simulating genetic data and
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when considering methods to evaluate population structure on sample data. I do

this in simulating allele frequencies through the simulation method above. However,

I am also interested in methods that detect structure in the data. In Chapter three

I looked at the effects of ascertainment and underlying population history on meth-

ods to detect population structure. Interestingly, both STRUCTURE and GHM

are influenced more by the underlying history than the ascertainment. This is per-

haps because the underlying population history creates a correlation between allele

frequencies that is stronger than the ascertainment. Perhaps with more loci, ascer-

tainment might have a stronger effect on the simulated data. Few loci were used in

the evaluation, because many of the previous studies used few loci, and it seemed

to make sense to test the minimum number of loci that could be used to investigate

these models. It would be interesting in the future to use more loci and simulate

some models of more recent admixture and investigate them in STRUCTURE and

GHM.

4.1 Final words

This dissertation work demonstrates the importance of exploring the population(s)

and individuals in a sample, and the method used to make those inferences. This is

not a simple task. Individuals fall into approximately panmictic clusters in the space

of mating probability, and this clustering creates nodes of non-random distributions

of allele frequencies and DNA sequence variations. As the nodes form subpopulations,

their relationships to each other are retained through the structure that random and

non-random processes have shaped.

With the method presented in Chapter two, the identity estimates and test statis-

tics viewed from all pairs offer a way to view the nodes without having to place
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boundaries on the data a priori. The method is biologically coherent. We can start

to make inferences about individual and population relationships within the sample.

Further, we can also test for whether the collected sample is a panmictic representa-

tive sample of the population. We can also test for cryptic relatedness and structure

in the sample, which may or may not be desired in the sample by the research investi-

gators. Interestingly, the method also demonstrates that HapMap populations do not

represent natural populations very well. There are related individuals between trios

in the CEPH and Yoruba populations. There are a number of very significant out-

liers in the data set, as well. Both cryptical relatedness and population structure can

be confounding factors in genetic samples (Voight & Pritchard, 2005). That many

studies have relied upon this data set as representative populations (Mengel-From,

Wong, Morling, Rees, & Jackson, 2009; Makoff et al., 2009; Shyn et al., 2009; Ge,

Budowle, Planz, & Chakraborty, 2009; Shriner et al., 2009) is somewhat alarming

from our results here.

The second project discussed in Chapter three demonstrates that a great deal

of a priori knowledge about the populations sampled is necessary to formulate any

plausible inferences about the sample. However, the investigator must be careful

that the a priori desired sample information is appropriate for the research question

that is being asked. If the a priori boundary for the population is not accurate to the

genetic structure of that population, or representative of the non-genetic factors, the

research question may not be accurately tested. Further, if the study seeks to find

genetic contributions to traits then the investigator must be careful that they are

not merely finding evidence for recapitulating a priori population categories, which

may not represent natural populations. With genetic data becoming more abundant,

more precision in the knowledge about where the boundaries are placed and whether
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the sample meets those criterion for the population of inference, is crucial to make

coherent inferences about genes and populations.
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