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ABSTRACT

The theory of signal detection as applied to the
human observer is reviewed. The theory is then extended to
include the simple case of recognizing a signal as one of a
set of two alternatives, and experiments relating to this case
are reported. The principles upon which the theory can be
extended to cover more complex alternatives are developed.
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A THEORY OF RECOGNITION

1. BACKGROUND FOR THE THEORY

The theory of statistical decision has previously been applied to the
oblem of the sensory detection of signals. In this paper a simple recognition
oblem is analyzed in the framework of statistical decision. The extension of
2 detection theory to include the problem of recognition is the first phase of
general expansion of the theory to encompass the field of perception. To make
is paper self-contained, a brief review of the detection theory, and its corres-
ndence with data presently available, is presented. This presentation is fol-
wed by a development of the recognition theory for the simple case studied here.
nally, certain principles are outlined for the general extension of the theory.
e paper is presented largely in terms of auditory theory, although it is felt

at the theory is applicable to the entire field of human perception.

1 The Detection Theory

The application of the theory of signal detection, or statistical de-
sion theory, depends on three basic assumptions.
1) Sensory systems function primerily as communication channels.
2) Sensory systems are noisy channels.
3) Central mechanisms, where decisions are made, are capable of
approximating optimum use of the information gathered by the

peripheral sensory mechanisms.
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The assumptions are illustrated by the block diagram in Figure 1. Th
physical enviromment, which in the theory discussed below is equivalent to the
signel and noise generators, presents an input to the receptor organ. The func
of this organ is to transform the physical energy into neural activity. The in
mation contained in the neural activity is then transmitted along the sensory
pathways. These pathways are subject to internally generated noise. The infor
tion plus the noise added in transmission, is then presented to, or displayed a
cortical centers. The presentation is here considered as an observation, x, up
which the decision is based. The key points of the theory are that noise is ad:
in the transmission of the information, and that the decision making dévice is
perfect device. A decrement in performance (from that which would be expected
a perfect device were placed at the receptor level) is attributed to the noise
added in sensory transmission.

The fundamental problem in signal detection is the fixed observation
interval problem;. That is, the observer is asked to observe the output of a s
sory system, and is then asked to decide on the basis of his observation, wheth
this output arose from noise alone, or from signal plus noise. In this theory -
signel is known to be from a certain ensemble of signals. This is the criterio
approach. In other words, the observer chooses a set of observations (the cri-
terion A) which he will say representésignal Plus noise; all other observations :
in the complement of the criterion, CA, and he will say that these represent no:
alone. The notation SN denotes signal plus noise, and N denotes noise alone.
there are only a countable number of possible observations, each observation X ]

the probability PSN(x) of occurrence if signal plus noise is presented and the

1. The discussion in Sections 1.1 and 1.2 is based on an unpublished paper by
T. G. Birdsall of the Electronic Defense Group, University of Michigan.
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probability PN(x) of occurrence if noise alone is present. The likelihood ratic

. Psn(x) .
is defined as £(x) = D . Usually there are uncountably meny observation
Py(x
N
points (x is a continuocus varisble), and the probability density functions fgy(s

and fN(x) must be used; the likelihood ratio is then the ratio of these two
quantities.

The evaluation of a criterion is usually in terms of the integrals of
the density functions over the criterion A, since the integral fSN(x) over A is
the conditional probability of detection, Pgy(A), and the integral of fN(x) over

the criterion A is the conditional probability of & false alamm, PN(A).

1.2 Definitions of Optimum

The theory of signal detectability is essentially this: a class of
criteria is defined in terms of likelihood ratio. 8Six slightly different defini
tions of "optimum" are advanced, and under each definition the optimum is found
to be in this class of likelihood-ratio criteria. The notation denoting a cri-
terion in this optimum class is A(B), which means that the criterion contains al
observations with likelihood ratio greater than g, and contains none of those wi
likelihood ratio less than B, (that is, % represents the boundary condition).
Whether or not likelihood ratios equal to B fall in or out of the criterion is
unimportant.

The six definitions of optimum, and their solutions (the exact values
B to be used, called the operating level) are listed below:

1) The Weighted Combination Criterion. This criterion, by definition

maximizes PSN(A) - BPy(A). sSolution: A(B), that is the observer
reports that a signal is present is £(x)>(B), where x is the

stimulus magnitude.
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2)

3)

L)

5)

Seigert's Ideal Observer. The observer employs a criterion that
minimizes total error; this is a special case of the Weighted Combi-
nation Criterion. Solution: A(p) where B = P(N)/P(SN), the ratio
of a priori probabilities.

Expected Value Observer. The observer employs a criterion that

maximizes the total expected value, where the individual values

are:
VSN-A = value of detection
VN.cp = Velue of a correct "no signal present”

KSN°CA = cost of a miss
Kﬁ-A = cost of a false alarm

This is a further refinement beyond Seigert's Ideal Observer.

Solution: A(B) where
8 = P(N) (Vy.ca * ISI-A)

P(sN) (VSN-A + KSN-CA)

The Neyman-Pearson Observer. The observwer employs a criterion such
that Py(A) = k, with Pgy(a) & meximm overall criteria.

Solution: A(B), where PN[A(B)] = k.

A Posteriori Probability Observer. Here the observer does not

actually employ a criterion, he makes the best estimate of the
probability that signal-plus-noise was the input leading to obser=-

vation x = x(t)

L (x)P(SN)

L(x)P(SN) + 1 - P(SN)

P.(SN) =
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6) Information Observer. This criterion maximizes the reduction in 1
certainty, in the Shannon sense (Ref. 2), as to whether or not a

signal was sent. Solution: A(B) where B is the solution to

B = P(N) l°gPB(s) (N) - log Pa(B) (v)

P(sN) logPp(p) (SN) - log Pg(gy (SN)

1.3 Forced-Choice Optimization

A somewhat different optimization is that involved in the forced-choic
psychophysical experiment. In the forced-choice experiment a signal is presente
in one of n intervals either in time or space, and the observer's task is to ste
in which interval the signal occurred. Optimum behavior requires making an obse

vation, x, in each interval, and choosing the interval for which the likelihood
fon(x)

Iyn(x)
criterion approgch, as is the a posteriori observer.

ratio, £(x) = , is greatest. The situation is somewhat different from tk

1.4 The Application of the Theory to Human Behavior

A series of papers previously have dealt with experiments designed to
test the applicability of the theory of ‘statistical decision to signal detection
by the human observer. The conclusions drawn from the experiments are the fol-
lowing:

1) A subject can observe well into noise. The observation variable,
x, is indeed continuous (Refs. 4, 5, 6, 7, 8, 9).

2) The observer can act to optimize expected values in the fixed-
observation interval experiment. This is shown to be true for both vision
(Refs. 4, 6) and audition (Ref. 9).

3) The observer can act as a Neyman-Pearson observer (Ref. 4).

4) The observer can act as an a posteriori observer (Ref. 4).

6
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5) The observer can optimize in the forced-choice experiment, as indi-
ted by the predictability from forced-choice to yes-no experiments. The order-
y extends beyond the first choice, as indicated by the second-choice and fourth-
bice experiments (Refs. 4, 9).

6) Within limits the observer can optimize the use of knowledge of sig-
l parameters. He can tune to a narrow band of frequencies in auditory experi-
1ts, and can,within limits, adjust his auditory bandwidth to knowledge of sig-

. duration.

7) At any instant in time the observer is tuned to exactly one band of

2quencies. To act as a wide band receiver is a process requiring time. (Refs.
9).

8) When the observer is listening for a signal known to be at one of
> frequencies, detection performance decreases as a function of the separation
the frequencies (See Section 2.2). This performance suggests a scanning-type
chanism (Refs. 5, 9).

These conclusions furnish the background for the recognition theory.

2. RECOGNITION FOR THE CASE OF TWO SIMPLE ALTERNATIVES

Recognition, by definition, is the process of classifying a signal as
sarticular one of a set. The fundamental problem treated here is the case of a
t with two members, each a signal of a specified frequency, fl or f2. Through
e experimental design, the a priori probabilities of the two signals P(SlN) +
52N) = 1.00. The observation xy is now associated with two probability density
stributions, fSlN(xy) and fSQN(xy). The decision is again based on likelihood

tio as is shown in Equation 1.
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fo n(xy)
txy) = (1)

5 n ()
If the decision function can be defined along an axis, the problem is similar to
the detection problem with one of the probability distribution functions
£
( S

N(x) or £ (x)) substituted for fN(x) of the detection problem.

1 SoN

2.1 The Decision Axis for Two Signals

The problem is illustrated in Figure 21. The axis,OX,represents the
decision axis for the detection case where the signal is known to be at fl. The
axis, OY,represents the decision axis for the detection case where the frequency

is known to be at f2.

The distance, OX,divided by the standard deviation of the noise distrib

tion, fﬁ(x), is called d!, the d' for detection of frequency fl. The distance,O

divided by the standard deviation of fN(y) is dé, the 4' for detection of freque:

f2. The 4' for recognition of frequency when the signal is known to be either f

. : ' . . . .
or f, is designated 4; .. The distributions fN(x), fN(y), fSlN(x) and fS2N(y) :
all assumed to have equal variance.

The problem considered is again the fixed observation interval problem
An observation, xy, a function of time for T seconds, is the datum upon which th

decision is based. The signal is known to be either f. or f,, but not both. T

1l

f (xy) is the joint probability density function f_, _(x) and fN(y), while
SN SN
ngN(xy) is the joint probability density functions fSQN(y) and fN(x), assuming :

and y are independent.

1. As the development is suggestive of Thurstone's law of comparative Jjudgment,
the similarities and differences between this theory and that law are discus:
in Appendix II.
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THE RECOGNITION SPACE FOR A SIGNAL KNOWN TO BE

ONE OF TWO FREQUENGIES.

FIG. 2 .
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2
(x - &) 13
£ o2 ( 1T 2 . 2
I S1N XY) =—é— e (2)
(y - ay)® 2
2 X
and £_ _(xy) - 2 2
SQny = o5t e € (3)
then, from Eq. 1,
2 2 2 2 2 2
X (ay) (at
log 2(x) = — + x4! - - — g - yd! +
g ( ) > 1 > 5 + 5 b ot 5 5
2 2
d.) (a}
= xdi -1 _ya s ) (%)
2 2 2
| R ] ! -
If dl = d2 and d' = O, then
log 2(x)
Y =X = —— (5)
ar \

Thus, if £(x) is held constant, this is the equation for a straight 1i

log 2(x
with slope 1.00, and intercept ——%ETQ-Z . This line passes through the origin

when £(x) = 1.00.

By equation 5 each value of £(x) is represented by a line of slope 1
which intersects the line connecting di X and: dé = y at right angles. From th
it follows that the decision axis for the recognition problem can be mapped on t
line, with S

1
Part of Figure 2 has been reproduced as Figure 3(a) to illustrate this

normelly distributed (x, 1) and §, normally distributed (y, 1).

point more simply. The dotted lines on this figure are lines of constant likeli
hood ratio. The slope of the line X y is -1 while the slope of the lines of con
stant likelihood ratio are +1 (by Eq. 5). Therefore, these lines intersect at
right angles. If the value of y is held constant, say at y = O, then the values
of x are normally distributed along the x axis, indicating the normality of the

mapping along the X y axis.
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The assumption of independence implies that the angle 6(X0Y) = 90

o
erefore
2 2 2
a! = (4! a' 6
(@) )% = @) + (@) (6)
di # dé, then Equation 5 becomes
a! lo z(x)+(d')2 (d')2
s 1/ - s
Y 3 (7)
1
2 d;

1 it can be shown that f(x) constant is represented by a line which intersects

= line X ¥ at right angles, the line f£(x) = 1.00 intersecting at the mid-point.

us, equation 6 also applies to this case.

Again, part of Figure 2 has been reproduced as Figure 3(b). The line
dl
nnecting X y is at slope - 2

: while the lines of constant likelihood ratio are
d: 1

slope + — , and again the two lines intersect at right angles.
dl

In the figure,
e distance“x y 3v/{di)2 + (dé)2 . Solving for the intersection of the line

x) = 1.00 and the line X y:

dl
cos A = _l_
X7y
cos A = 2 ¥) = 2adi(§ y)
a1 (q1y2 12 12
(@) - (@) - () (@)% + (a3)
24!
1l
uating: _
d1 2adl (xy)

X5 @+ (@R

11
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(@))% + ()
nce (x §)2 = (d.:'L)2 + (dé)e , &= % and thus, if £(x) = 1.00, the line X y is
1tersected at the midpoint.

If the two signals are not independent, or, in other words, if there is
common factor in the observations x and y, then the signal spaces x and y are
rrelated. The degree of correlation is defined by the cosine of the angle 9.
v this case
)2

2
(@5 00 = (@) + (1) - 2 cos 0 0 & (®)

2

Equation 8 is the general form. For the orthogonal or independent case,
>s 8 = 0 and Equation 8 is identical with Equation 6. For the perfectly correla-
:d case, such as two signals of the same frequency differing only in d' as a
>sult of different intensity, cos 6 = 1.00 and

di,2=‘di~dé| (9)

Thus, in each case, the decision function has been defined along an axis,
1owing that each recognition case is essentiglly the same as the detection case.
This discussion furnishes the basis for the development of the theory.
> far it is based on the assumption that the process of observing one frequency
>es not interfere with the process of observing at other frequencies. That this
3 not a valid assumption is indicated by the seventh and eighth conclusions in

aetion 1.4,

13
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2.2 Modification to Allow for Observation at Both Frequencies

The experimentsvupon which the 7th and 8th conclusions of Sec. 1.4 are
based suggest that for a signal 0.1 second in duration at a frequency of either
900 cycles or 1000 cycles, the detection rate is as if both frequencies can be ob
served simultaneously. When the frequencies are separated by more than 100 cycle
the detection performance is lower until the separation reaches 300 cycles
(£, = 700 and f, = 1000), at which point the performance is such that only one

frequency can be observed during the duration of the signal. The results first
reported by Tanner and Norman (Ref. 5) are illustrated in Figures 4 through 7,

because they relate closely to the data to be reported below. The curve above
the other two is the forced-choice curve for a signal of known frequency. The
middle curve is for a signal known to be at one of two frequencies when it is
possible to observe at both frequencies simultaneously. The bottom curve is for
signal known to be at one of two frequencies, when it is possible to observe at
only one frequency. Thus, if the observer happens to be observing at the wrong

frequency he is forced to make his choice without relevant information.

The data are placed on the graph as follows. First the 4' is determine
for the signals when the frequency is known exactly, and then the percentage cor-
rect for the experiment in which the signal is known to be at one of two fre-
quencies is entered for that d'. Two durations are represented, with the results
virtually the same. It should be noted that it is likely that both of the dura-
tions are within the range for matching of bandwidth to duration (Section 1.%4,
Conclusion 6), and the results for the durations should not be markedly different

Thus, for a signal 0.1 second in duration, the signal space is expected
to show the angle of correlation, 8, increasing until the frequencies are separat

by 100 cycles (900 or 1000 cycles) at which point a maximum of 6 = 90° is expecte
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or frequencies further separated, the calculations in 6 (Section 2.3) are expected
0 yield a decrease in @ until at a separation of 300 cycles 6 should appear to be
0°. An apparent 60° can be achieved if the observer attends to one frequency,
ffectively performing a yes-no experiment. If he accepts & signal at that fre-
uency, he states so. If he does not, then he indicates that the signal was at

he other frequency. After the maximum is reached, the decrease in 6 does not
epresent correlation, but rather a loss due to the observer's inability to ob-
erve by x and y. If the signal is sufficiently long in duration the observer
hould be able to observe both x and y regardless of the separation, so that once

reaches 90o it should stay there for frequencies of wider separation.

.3 Experimental Design

The experimental design involved first a two-choice, forced-choice
xperiment at each of the frequencies, until epproximately equal d's are deter-
ined. Then a signal known to be at either one of the two frequencies is presented
t a specified time, the observer's task being to state whether the signal is f

1

r f2. The two-choice, forced-choice experiment is actually the choice of one of

wo signals orthogonal in time. The di and dé are determined in the following
anner, The percentage correct is used as an estimate of the probability of cor-
ect. This figure is used to enter normal tables, and the corresponding % is
etermined. This value is multiplied by*Jé giving the equivalent yes-no d'. For
he recognition experiment, the same procedure is used, except in this case the
alue of % is multiplied by 2.

From a rearrangement of Equation 8 the d's are then used to find 6.

2 2 2
(ar ar) - (a!
cos 6 = 1)+ (@) - (4 )

(10)

24'a!
12

ws 6 is shown as a function of frequency separation.

19



TABLE I

RESULTS OF THE EXPERIMENTSL

N, = 52.3 db re .0002 dyne/cu?

Frequency EE} 2E2

Separation £, 9] N, -ﬁ; Ny N, Nl,2
Duration .05 seconds

25 cps 975 cps 1000 cps 3.16 3.16 198 198 198
50 950 1000 3.16 3.16 198 198 197
100 900 1000 3.10 3.16 197 198 198
200 800 1000 3.05 3.16 198 198 198
300 T00 1000 3.02 3.16 198 198 198
400 T00 1100 3.02 3.25 198 198 198
500 700 1200 3.02 3.42 198 198 197
600 T00 1300 3.02 3.h42 198 198 198

Duration .10 seconds

25 975 1000 3. 44 3.44 197 196 196
50 950 1000 3.4k 3.4k 197 196 197
100 900 1000 3.43 3.4k 191 196 292
200 800 1000 3.36 3.4k 197 196 198
300 700 1000 3.23 3.4k 197 196 194
400 700 1100 3.23 3.60 197 198 198
500 700 1200 3.23 3.67 197 194 196
600 700 1300 3.23 3.67 197 195 195
Durstion .5 seconds

25 975 1000 5.37 5.37 197 198 197
50 950 1000 5.37 5.37 197 198 197
100 900 1000 5.1k4 5.37 197 198 296
200 800 1000 4,93 5.37 197 198 197
300 700 1000 4,60 5.37 197 198

400 700 1100 4,60 5.37 197 197 207
500 700 1200 4,60 5.90 197 196 197
600 700 1300 k.60 5.90 197 197 197

Duration 1.0 seconds

25 975 1000 5.81 5.85 198 198 198

50 950 1000 5.76 5.85 197 198 198
100 900 1000 5.63 5.85 197 198 198
200 800 1000 5.06 5.85 198 198 198
300 700 1000 .93 5.85 198 198 196
400 T00 1100 4,93 5.99 198 196 197
500 700 1200 4,93 6.38 198 198 198
600 700 1300 4,93 6.38 198 197 198

lFor an explanation of the term_x//gif , see Appendix I.
o
20
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2.4 The Experiments

Four durations, .05, .1, .5, and 1.0 seconds were studied for frequenc)
separations of 25, 50, 100, 200, 300, 40O, 500, and 600 cycles. Two observers
served for the entire set of experiments. The experiments were conducted by the
N. P. Psytar programing system, described elsewhere (Refs. 2, 9). Approximately
200 observations are contained in each determination of d'. The results are tabu
lated in Table I, and are presented graphically in Figures 8 through 15. No effc
has been made to fit curves to data, so that the reader can have an unbiased look
at the data.

Occasionally the results show 6's greater than 900. In all except one
case there is the impression that the deviation is within the range of sampling
error. The one case of serious deviation can be accounted for largely on the
basis of a single run of 100 in which one observer dropped appreciaebly in the de-
tection experiment from the other run of 100 at that frequency. The result is an
indeterminate 6, explaining the absence of a data point for a frequency separatio

of 400 cycles in Figure 15. Aside from this, the data conform roughly with

predictions.

2.5 Generality of the Theory

In the introduction, it is suggested that while the study is in auditio
the application extends generally to human information-collecting systems. In
order to illustrate the anticipated generality the following discussion is pre-
sented on the problem of color vision in terms of experimental design and data
interpretation. Suppose that instead of presenting two frequencies two mono-
chromatic light signals are studied in an experiment. Exactly the same procedure

is to be followed, ending with a determination of cos 6.
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In Section 2.1, cos 6 is represented as a correlation term. According
5> the theory, if there is no common veriance and the signals are transmitted to
he central mechanism over independent channels, then for these monochromatic light
ignals, 6 is 90o (cos 8 = 0). This example is used because it does not depend on
presumed equivalence between wavelength of light and frequency of sound. This
heoretical framework offers a method of psychological determination of the number
f independent systems involved in color vision or the number of different types
f color receptors. There are many other problems to which such a theoretical

ramework may be useful.

3. EXPANSION OF THE THEORY

So far the program described in the series of papers dealing with detec-
ion and recognition problems, as treated in terms of statistical decision theory,
as dealt largely with simple cases readily amenable to study through experimenta-
ion. The theory has implications for complex signal structures such that there
ow appears to be a basis for a more general theory. This section attempts to

resent a basis for that development.

.1 Requirement of a Set of Alternatives

A decision actually is a choice of one from a set of alternatives. Up
o the present time, the theory has dealt with cases involving decisions in favor

f one of a set of two alternatives. Implicit in the theory is the fact that for

1 alternative to have associated with it an a posteriori probability greater than

2ro, it must also have an a priori probability greater than zero. This is a con-
aquence of Bayes' Theorem. Thus, whenever an observer is placed in a recognition

ituation his choice is one from a set of alternative signals each of which has

n a priori probability greater than zero.
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It is further a requirement that the sum of these a priori probabilitie
be one. This requirement, along with the requirement expressed in the previous

paragraph, states that an observer, placed in a recognition situation, assumes ar

ensemble of alternative stimuli, Ay (RS — i emm———— n) which has the followir
properties.
For every i 0<P(i)< 1.00
(11)
n
and z p(i) = 1.00
i1

where P(i) is the a priori probability of the ith alternative. It is important t
note that all of the experiments so far reported in support of this theory are
designed to specify the conditions of Equation (11) for the observer.

The a priori probabilities are not necessarily the true a priori
probabilities. It is worth repeating the statement that these are probabilities
that the observer assumes. They are, in fact, the observer's beliefs. Before tk

Observer can state an a posteriori probability of an alternative existence, he mu

first admit the possibility of its a priori occurrence., Otherwise he would never
consider the occurrence, The mere fact that he considers the alternatives implie
that the a priori probability is greater than zero.

The a priori probabilities, assigned to the alternatives, depend on the
observers past experience, immediate and distant. In an experimental situation %
immediate past experience may consist of the experimental instructions and the
results of the trials as the experiment progresses, while the more distant past
experience may consist of his trust in the experimenter and his idea of the purpo
of psychological experiments. The assumed probebilities may or may not approxima
the true probabilities, If they fail to approximate the true probabilities there

may be adjustments as experience accumulates. The important fact is that the
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robabilities assumed by the observer are those which are more likely to determine

12 behavior than are the true probabilities of the form of the signal.

2 The Existence of Hypotheses

By definition, an hypothesis is a probability distribution function. By
le noise assumption of detection theory, for each signal alternative there exists
1 hypothesis, fi(x), the probability density that if the ith alternative exists
1e observation x results. Further, by the noise assumption, for every i,

l(x) # 0, although for many of the alternatives it may be very close to zero.

,3 The Entropy of the Alternative Ensemble

The alternative ensemble has been defined so that it is equivalent to
1 message ensemble of Shannon's communication theory (Ref. 3). Thus, an entropy

i be assigned to the alternative ensemble, which is:
H(x) = - £ P(1) log, P(i) (12)

This entropy is the uncertainty of the set, and defines the amount of
iformation necessary to resolve the uncertainty. It is necessary to appreciate
sre that Shannon deals with averages, such that no single trial can describe the
rocess. This means that if the observer is placed in exactly the same situation
large number of times, such that each alternative actually exists according to
ts associated probability, then, on the average, H(x) bits of information are
aquired to resolve the uncertainty.

Equation 12 is based on the observers assumed probabilities, and ex-
resses the amount of information required by him to resolve an assumed uncer-
ainty. How a discrepancy between the observers assumed ensemble and the true

asemble enters will be discussed in the following sections.
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3.4 The Equivocation

According to Shannon, the equivocation is the uncertainty remaining
after the transmission of information. Here it is the uncertainty remaining afte
the observation x. For each alternative in the ensemble there is the associated

probability P,(i) not equal to zero or one, and EPx(i) = 1.00. The equivocation

B, (x) = Z P(1) £;(x) P, (1) log, P (1) (13)

where P(i) and fi(x) are not dependent on the observers assumed probabilities,
while Px(i) is dependent on these assumed probabilities. A discrepancy between

the observers assumption of entropy increases Hy(x).

;,5 Optimum Behavior Criteria

In Section 1.2 six different definitions of optimum criteria are ad-
vanced. The one of particular interest here is the expected value optimum. This
interest is based on & simple fact: as far as reducing entropy is concerned it i
never optimum to make a decision if one can legitimately avoid making a decision.
It is always better to store likelihood ratio, or some monotone function of likel

hood ratio such as & posteriori probability; this has been demonstrated by Woodwa

and Davies (Ref. 12). It is therefore postulated that, wherever possible, the
observer stores the observations, making decisions only when advisable. The de-
cision is for the purpose of determining action, not for maximizing information.
If the observer feels that the conditions are such that the expected value of an
action based on information available at some time t is greater than the expected
value of any action which is based on additional information, then a decision is
made at time t. If he feels that the additional information is likely to increas

the expected value of the action, the decision is delayed. Thus, at any time
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wring the information collecting process the observer is faced with a choice of
1@ of n decisions, one of which is to collect further information. To each de-
ision there is attached an expected value. The decision that is associated with
1e greatest expected value is the observers choice.

It is at this point that the observer first suffers from a discrepancy
>tween his assumed probabilities and the true probabilities, for it is when he
akes & decision to take action that he becomes aware of errors. The values and
>sts are at this point realized, and he finds that he does not realize his ex-

acted values. At this time he may attempt to correct his assumed ensemble.

.6 Complex Alternatives

Up to the present time, only situations where single observations are
2aquired have been considered. By definition, a complex alternative is defined
3 & sequence of simple alternatives. The complex set defines the entropy of the
nsemble. Let AJ represent the jth complex alternative consisting of the sequence

1° a.J2 ceees adi voass a:jn’ then a set of m complex alternatives has the entropy

m n m
H(x) = JEJ. P(AJ) log, P(AJ) = 121 JEI P(a'ji) log, Payy (1)

The complex set may be redundant. Information concerning any simple

lternative in the sequence may furnish sufficient basis for a decision.

.7 Information Basis for & Choice Between Complex Alternatives

In Section 3.5 it is postulated that a decision is made on the basis of
xpected values. Thus, for a set of complex alternatives, each simple alternative
2sults in an observation, x;. The set of observations, X5 is combined into a
ingle output x, such that for each complex alternative there is the probability

ensity function fAJ(x). This function specifies the probability that, if the jth
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complex alternative exists, this particular sequence of observations results. F
each complex alternative a likelihood can now be determined on the basis of the
sequence of observations. The choice is then made on the basis of optimizing
expected value.

The significance of this statement is that it is possible to map the
sequence of outputs into a single output (likelihood) and the problem again re-
solves to the problem of simple alternatives, with the decision again made on the

same basis.

4. CONCLUSIONS

A simple theory of recognition is developed as an extension of the de-
tection theory. Experimental evidence is presented supporting the theory. A
framework is presented for extending the theory to more complex situations, show-
ing how it is possible to map these more complex situations into the same space
that applies to the simple situation.

It remains now to work out cases illustrating the more complex situa-
tions in sufficient detail to permit experimental evaluation. Experimental con-
firmation of the theory developed in Section 3 would provide a basis for the

systematization of recognition data.
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APPENDIX I

OBSERVER EFFICIENCY

Table I is self explanatory except for columns headed b{//%gj.
is column indicates a mathematical upper bound for expected performance. A
rfect detector, operating on the output would be expected to achieve this level
performance. Any detector which achieves this level of performance is using
1l of the available information. This quantity represents a standard which can
used for purposes of evaluation of either an operator or a receiver, or a
mbination of an operator and & receiver. The significance of these columns is

us worth some discussion.

2
2E 2vt
] - P —_— =

ere dé is optimum 4', d is the detection index (Ref. 1), E is the signal energy,

(A.1)

. is the noise power per unit bandwidth, V is the signal voltage, and t is the
lse duration. The right hand member of the equation is that uged for the
lculation of the column hegs//ggj, with the subscript of E refering to the
gnal subscript.
The columns headed d' indicate the value 95//§E?which would be required
lead to the same level of performance as that achieveg if a perfect device were

aced on the output of the system. The observed d' is thus always equal to or
E
No °

e calculated value can be used as an index of the efficiency of the operating

ss than the calculated value of the The ratio of the inferred value to

vice.
The calculations of %E are based on measurements made of the output
o
the earphones used in the experiments. It has thus been possible to calculate

ficiency ratings for the observers performance for the different durations and
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the different frequencies studied in the experiments. These are listed in

TABLE 1II
OBSERVER EFFICIENCY AS A FUNCTION OF PULSE DURATION AND CENTER
FREQUENCY
Observer 1 Observer 2
~ Pulse duration
\\in secs.
.05 .10 .50 1.00 .05 .10 .50 1.00
700 .503 .536  .383 .28 596 .762 .580 456
800 .367 435 341 .306 646 .866 .566 .516
900 274 .385 .358 .218 545 .601 .566 .389
1000 364 .523  .L443 .296 .585 .637 .488 438
1100 .378 469 .322 213 .554 667 495 .376
1200 234 .310 .280 271 .526 .591 410 .376
1300 .376 420 .361 .243 .526 .695 493 .387

the lower frequencies.

These tables are not intended to represent a complete study. They are suggestiwve

of a method of study to approach most nearly the optimum use of signal energy in

a system involving the human observer. Of the durations studied, the observers :

most efficient at & duration of 0.1 seconds, and tend to be more efficient at

These studies involve one particular noise level, and th

interpretation of the tables should be made with this in mind.
The discussion in this appendix is presented as a contribution for

methodology rather than as a contribution of content.
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APPENDIX II

THURSTONE'S LAW OF COMPARATIVE JUDGMENT

In two papers, Thurstone (Ref's. 10,11) presents and develops the Law
Comparative Judgment. Similarities between Thurstone's subject matter and
at of this paper, and in particular, between the form of Thurstone's equations
d those of this paper, justify a discussion of the content of this paper in
rms of Thurstone's earlier work.
By the expression "comparative judgment", Thurstone describes the
perimental design with which he is concerned. It is an experiment of the type
which the observer is presented first with a signal of frequency f,; and then
th a signal of frequency f,. He is then asked to state whether fa is higher
lower than fl. Another variation of this experiment is where the observer is
esented first with a signal of energy E; and then with an energy E2. He is then
ked to state whether Ey > E; or E; < E;. For the case where either E; or Ep
zero (or noise alone) this is the two-choice, forced-choice experiment
ployed in determining the detection d' used in this paper.
The definition of 4' is Egga;_ﬁg., where Mgy is, in Thurstone's language,

e modal discriminal process for signal plus noise, My is the modal discriminal

ocess for noise alone, and o is a measure of the discriminal dispersions oy,
d ogy (o = ogN). The observations x are assumed in the paper to be a
ntinuous variable corresponding to Thurstone's discriminal processes.

The analysis of forced-choice experiments presented in earlier papers
ef's. 4, 5, 6, 7, 8, 9) can be expressed in terms of comparative judgments.
ppose that a signal of energy E >0 is presented in one of four intervals in

me, while in the other three intervals signals of energy E = O are presented,
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and that the observer is asked to state which interval contained the signal E >0
Obdervations x are made in each of the four intervals. Three comparative judgme:
are required. First a comparative Jjudgment involving the first and second
intervals is made. Whichever is judged greater is compared to the third interva.
and the greater of this comparison is then compared to the fourth interval.

The greater of the last comparison is then judged to be the signal E>O. This i:
equivalent to the analysis presented in the previous papers.

The main interest in the theory developed in this series of papers is
not in comparative judgments, however. It is in detection and recognition. The:
are subjects not discussed by Thurstone, although had he recognized the exisgtenc
of a noise distribution such as the one postulated in the theories of detection
and recognition, it seems likely that he would have developed essentially the
same theory as that developed in the current set of papers,only Thurstone would
have been thirty years earlier. It is essentially the noise assumption, along
with the denial of the fixed threshold, which has led to this development.

The detection and recognition theories developed in these papers involr
experiments in which. the observer has a single observation, x, and is asked to
state which of a set of alternatives existed to lead to the observation x. It i:
not a comparative judgment in the Thurstone or forced-choice sense. Analysis of
this type of experiment led to the interest in & priori probabilities and risk
functions, variables which are not immediately obvious in Thurstone's discussion
of the law of comparative Jjudgments. Thurstone has assumed that, of two
stimuli (S; and Sp) the a priori probabilities [P(Sl>»82 and P(SQ:>Sl)]are
equal, and that type I and type II errors are equally costly. Due reflections ar
experimentation should show that these variables (a priori probabilities and risi

functions) also play & part in comparative judgements. The criterion for Judgmer

Lo
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>S5, may not contain all values Sl-82:>0 or only values Sl-52:>0, but rather
. values S;-Sp>« where ¢ is some function of pas defined in Section 1.2.

One further point requires discussion. Thurstone considers a
‘relation factor which he considers it safe to assume equal to zero. The
sumption, in view of the noise assumption, is satisfactory for comparative
igments. If signals of two frequencies are presented successively in time, the
‘relation is likely to be zero because of the autocorrelation function of the
ise. However, if a single observation is made, and the choice is between two
squencies close together, the presence of a signal at one frequency influences
> observation of the components of the other frequency. In these experiments
is necessary to take into account the correlation factor. It is,in fact, this
rrelation factor which determines the "distance" Thurstone discusses. Equation
>f Section 2.1 is a general equation for Thurstone's "distance", given the
stance of the signals from the noise, and given the correlation bYetween the

tection axes. It is not the same as Thurstone's general equation which looks

ry much like Equation 9.

L1
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