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Summary. Data analysis for randomized trials including multitreatment arms is often compli-
cated by subjects who do not comply with their treatment assignment.We discuss here methods
of estimating treatment efficacy for randomized trials involving multitreatment arms subject to
non-compliance. One treatment effect of interest in the presence of non-compliance is the
complier average causal effect, which is defined as the treatment effect for subjects who would
comply regardless of the treatment assigned. Following the idea of principal stratification, we
define principal compliance in trials with three treatment arms, extend the complier average
causal effect and define causal estimands of interest in this setting. In addition, we discuss
structural assumptions that are needed for estimation of causal effects and the identifiability
problem that is inherent in this setting from both a Bayesian and a classical statistical perspective.
We propose a likelihood-based framework that models potential outcomes in this setting and a
Bayes procedure for statistical inference. We compare our method with a method-of-moments
approach that was proposed by Cheng and Small in 2006 by using a hypothetical data set, and
we further illustrate our approach with an application to a behavioural intervention study.
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1. Introduction

1.1. Non-compliance in trials involving multitreatment arms
Data analysis for randomized controlled trials is often complicated by subjects who do not
comply with their treatment assignment. Non-compliance in two-arm trials has been extensively
studied (Angrist et al., 1996; Imbens and Rubin, 1997a, b; Little and Yau, 1998; Peng et al., 2004;
Robins, 1994). However, there has been limited research on how to address non-compliance for
trials involving two or more active treatments.

For two-arm randomized intervention trials, Angrist et al. (1996) proposed the complier aver-
age causal effect (CACE) as a valid estimand for treatment efficacy and discussed instrumental
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variable methods of estimation. The basic idea is to classify participants as one of compliers,
defiers, never takers and always takers according to their potential compliance status on expo-
sure to an active treatment and a control treatment. The CACE is defined as the average treatment
effect for the subpopulation of compliers. More recently, Frangakis and Rubin (2002) introduced
the idea of principal stratification to adjust treatment comparisons for post-treatment variables,
including treatment compliance. Any treatment effect defined within one principal stratum or
combined principal strata is a valid causal estimand. However, methods for two-arm trials are
not directly applicable to trials involving more than two treatments, since the usual identifying
assumptions for two-arm trials are not sufficient to point-identify the CACE and other causal
estimands (Cheng and Small, 2006).

Given this lack of identifiability, some have sought upper and lower bounds of the iden-
tification region of the parameters (Joffe, 2001; Manski, 2003; Shafer, 1982; Walley, 1991).
Cheng and Small (2006) proposed bounds on causal effects in three-arm trials subject to non-
compliance, using method-of-moments estimates. To account for sampling uncertainty, they
followed Horowitz and Manski (2000) and Beran (1988) and constructed confidence intervals
to cover the identification regions of the parameters of interest with fixed probability. This
method seems to be restricted to outcomes with finite support, since useful bounds are not
available for unbounded outcomes. In addition, it is not trivial to extend their method to more
complicated designs, e.g. a four-arm trial.

In a seminal paper, Rubin (1978) elucidated the role of randomization in the search for
effective treatments and proposed a general Bayesian framework for estimating causal effects.
It made clear the role of mechanisms for sampling trial subjects, assigning treatments and
modelling missing data. Imbens and Rubin (1997a) applied this framework to the problem of
non-compliance in randomized trials, specifically two-arm randomized trials. Their approach
clarified the role that is played by the treatment assignment mechanism and more importantly
the complications that arise from the selective receipt of treatment due to possible non-
compliance. For trials involving two treatment arms subject to non-compliance, Imbens and
Rubin (1997a) also discussed situations where relaxing assumptions such as the exclusion
restriction and monotonicity (Angrist et al., 1996) leads to causal estimands that are not fully
identified. They showed that the issues of identification are quite different from the Bayesian
and the classical statistical perspectives, in that, with proper prior distributions, posterior
distributions are always proper even when the parameters of interest are only partially
identifiable in a classical statistical sense. Imbens and Rubin (1997a) also discussed what could
be learned in this case by using the proposed Bayesian framework. When trials involving
multiple treatment arms are subject to non-compliance, we encounter similar yet more complex
identifiability problems.

1.2. A motivating example
The paper is motivated by the ‘Women take pride’ (WTP) study (Janevic et al., 2003). The WTP
study involved women aged 60 years and older with diagnosed cardiac disease, who were treated
with daily heart medication. This study was conducted to evaluate behavioural intervention
programmes that were aimed at enhancing the women’s ability to manage their disease. In
addition to a usual care control treatment, two formats of a behavioural intervention were
compared in this study: a group format, where 6–8 women meet for 2–2.5 h in a group setting,
and a self-directed format where the participant studies at home following an initial orientation
session. Both formats consisted of six weekly units. The same material was presented in the
two versions of interventions and only their formats differed. The WTP study utilized a doubly
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randomized preference trial design (Long et al., 2008), where some participants are randomized
to a treatment in a random arm and some are allowed to choose their treatments in a choice
arm. The design is discussed in detail by Long et al. (2008). The random arm is a typical three-arm
randomized trial and is the primary motivation for our work. The women in the random arm
were randomized to three groups: control, the group treatment and the self-directed treatment.
The WTP study was subject to non-compliance. In this paper, compliance was defined as whether
a woman completed at least 1 unit of materials, and it was shown that the compliance rates were
76% for both treatments in the random arm and 100% for the control. Previous analysis has
followed the intent-to-treat paradigm, and investigators have been interested in estimating the
treatment efficacy after accounting for non-compliance.

In this paper, we propose a Bayesian approach in the spirit of Rubin (1978) and Imbens
and Rubin (1997a) to estimate causal effects in trials with more than one active treatment
that are subject to non-compliance, such as the random arm in the WTP study. Roy et al.
(2008) recently introduced another useful approach to adjust for non-compliance in trials with
two active treatments, where a Bayes procedure was also used for inference. They proposed
to model directly marginal distributions of the compliance status under each treatment on the
basis of observed data. The marginal models are then used to construct a model for principal
compliance (Little et al., 2009), after incorporating a parameter that captures the association
between the marginal distributions and is implicitly assumed to be independent of covariates.
Our approach has several key differences. First, we model principal compliance directly and
treat the principal compliance status as missing data in the analysis, avoiding the implicit
assumption that the association parameter is independent of covariates. Although concep-
tually the approach in Roy et al. (2008) can be extended to trials with more treatment arms,
modelling the distribution of principal compliance indirectly through association parameters
becomes considerably more complicated and requires more implicit assumptions that the asso-
ciation parameters are independent of covariates. Also, Roy et al. (2008) limited their discussion
to binary outcomes, whereas our approach is developed for general outcomes, continuous or
discrete.

In this paper, we focus on a comparison with the method that was proposed in Cheng and
Small (2006) and attempt to clarify the differences between a Bayesian approach and a classical
frequentist approach in the setting of interest. The rest of the paper is organized as follows.
In Section 2, we introduce principal stratification of a population of interest on the basis of
principal compliance status (Little et al., 2009) and define causal estimands of interest; we
further discuss structural assumptions and issues that are related to the identifiability of causal
estimands of interest, and we contrast our Bayesian approach with classical statistical
approaches. In Section 3, we propose a likelihood-based framework that models potential
outcomes in a trial and discuss a Bayes inference approach which uses a data augmentation
(DA) algorithm (Tanner and Wong, 1987) to simulate the posterior distributions of causal
parameters. We compare our approach with the method-of-moments approach that was
proposed in Cheng and Small (2006) by using a hypothetical data set. In Section 4, we illustrate
our approach by using the WTP study (Janevic et al., 2003). We make some concluding remarks
in Section 5.

2. The problem

2.1. Principal compliance and stratification
For simplicity and illustrative purposes, we present our framework by using a randomized trial
involving two active treatment arms (1 and 2) and one control arm (0). Later, we briefly discuss
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extensions to trials with more than two active treatments. Let R denote the random treatment
assignment (R=0, 1, 2) and T.r/ denote the treatment actually received when assigned treatment
R= r. In full generality, there are 27 principal strata (Frangakis and Rubin, 2002) defined by the
set of 33 possible combinations (T.0/, T.1/, T.2/); all individuals in the population are assumed
to belong to one of these strata. All that is observed about the principal strata is the value of T.r/

corresponding to the treatment r that is actually assigned, for each individual in the sample. We
thus have a major identifiability problem. We first make some assumptions to reduce the scale
of this problem.

Assumption 1. Subjects have no access to an active treatment if not assigned to that treatment.

This is a monotonicity assumption in the sense of Angrist et al. (1996) and implies that

(a) subjects assigned to the control always take the control and
(b) subjects assigned one of the active treatments either take that treatment or, if they fail to

comply, take the control treatment.

Hence we know that T.0/ = 0, T.1/ = 1 or T.1/ = 0, and T.2/ = 2 or T.2/ = 0. This reduces the
number of principal compliance strata from 27 to 4, on the basis of subjects’ potential compli-
ance status under both active treatments. Following Little et al. (2009), we define a principal
compliance variable C for these strata, with values C = 3 for always compliers who comply
with both treatments (T.0/ = 0, T.1/ = 1 and T.2/ = 2/, C = 2 for 2-only compliers (those who
comply when assigned to treatment 2 but do not comply when assigned to treatment 1; T.0/=0,
T.1/ = 0 and T.2/ = 2/, C = 1 for 1-only compliers, who comply when assigned to treatment 1
but do not comply when assigned to treatment 2 (T.0/=0, T.1/=1 and T.2/=0/, and C =0 for
non-compliers, who do not comply with either active treatment (Tr =0 for r =0, 1, 2/. Principal
compliance is unobserved in practice and differs from observed compliance under the assigned
treatment. For example, observed compliers in the treatment 1 arm are a mixture of always
compliers (C =3) and 1-only compliers (C =1). Let ρc =Prob.C = c/ denote the proportion of
the population in principal compliance stratum c.

Consider a study with n subjects. For each subject i, let Yi.R, T/ denote the potential responses
under randomization R and treatment receipt T , where R and T are the randomization assign-
ment and treatment received for all subjects. We also let μc,r,t denote the expected value of Y in
principal compliance stratum c when treatment R= r is assigned and treatment T = t is received
(Table 1).

Table 1. Expected outcome μc,r,t for principal compliance stratum
C D c when assigned to treatment R D r and actually receiving
treatment T D t , under assumptions 1 and 2

Subpopulation Population Outcomes for the
defined by C proportion following values of R:

0 1 2

3 ρ3 μ3,0,0 μ3,1,1 μ3,2,2
2 ρ2 μ2,0,0 μ2,1,0 μ2,2,2
1 ρ1 μ1,0,0 μ1,1,1 μ1,2,0
0 ρ0 μ0,0,0 μ0,1,0 μ0,2,0
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2.2. Structural assumptions and causal estimands
In addition to assumption 1, we consider several other structural assumptions.

Assumption 2 (stable unit treatment value assumption; Rubin (1978)). The treatment receipt
T.r/ and the outcome Y for subject i are not affected by the treatment assignments for other
subjects.

Given the stable unit treatment value assumption, Yi.R, T/ can be written as Yi.Ri, Ti/.

Assumption 3 (exclusion restriction; Angrist et al. (1996)). The effect of treatment assignment
R on the outcome Y is entirely through the effect of treatment receipt T on Y.

Given the stable unit treatment value and exclusion restriction assumptions, we have Yi.r, t/=
Yi.r

′, t/, and

{μ0,0,0 =μ0,1,0 =μ0,2,0,
μ2,0,0 =μ2,1,0,
μ1,0,0 =μ1,2,0:

Hence, we can write μc,t instead of μc,r,t and Yi.Ti/ instead of Yi.Ri, Ti/, and Table 1 reduces to
Table 2.

Following Angrist et al. (1996), we consider a comparison of mean outcomes to be causal
if it compares means in the same population or subpopulation. A direct comparison of mean
outcomes for observed compliers in treatment arm 1 and in treatment arm 2 is not causal with-
out assumptions, because the observed compliers in each treatment arm are a mixture of two
different principal compliance strata and hence are not from the same subpopulation. In con-
trast, CACEs compare mean outcomes under two different treatments within a same principal
compliance stratum and hence are causal. In the setting of one treatment arm and one control
arm, the CACE is uniquely defined as the difference in means between the active treatment and
control in the population of principal compliers.

In our setting, some interesting CACEs can be defined. Three of particular interest are

(a) CACE12 =μ3,1 −μ3,2, the CACE for comparing treatment 1 with treatment 2 for always
compliers .C =3/;

(b) CACE1 = .ρ3μ3,1 + ρ1μ1,1/=.ρ3 + ρ1/ − .ρ3μ3,0 + ρ1μ1,0/=.ρ3 + ρ1/, the CACE for com-
paring treatment 1 with control for always compliers .C=3/ and 1-only compliers .C=1/;

Table 2. Expected outcome μc,t for principal compliance stratum
C D c when actually receiving treatment T D t under assumption 3 (the
exclusion restriction) in addition to assumptions 1 and 2

Subpopulation Population Outcomes for the
defined by C proportion following values of R:

0 1 2

3 ρ3 μ3,0 μ3,1 μ3,2
2 ρ2 μ2,0 μ2,0 μ2,2
1 ρ1 μ1,0 μ1,1 μ1,0
0 ρ0 μ0,0 μ0,0 μ0,0
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(c) CACE2 = .ρ3μ3,2 + ρ2μ2,2/=.ρ3 + ρ2/ − .ρ3μ3,0 + ρ2μ2,0/=.ρ3 + ρ2/, the CACE for com-
paring treatment 2 with control for always compliers .C = 3/ and 2-only compliers
.C =2/.

CACE1 and CACE2 are equivalent to those defined in Angrist et al. (1996) for comparing
treatment 1 versus control and treatment 2 versus control respectively. CACE12, however, is a
new causal estimand. A simple approach to the three-arm problem is to estimate CACE1 and
CACE2 by using previously developed methods for comparing an active treatment with the
control, and then to compare CACE1 and CACE2. However, that comparison is not causal
without assumptions, because CACE1 and CACE2 refer to different subpopulations. Methods
for estimating CACE12 are more complex, but arguably CACE12 is the appropriate causal
estimand, since a causal comparison of efficacy is only possible on the subpopulation of indi-
viduals who comply with both treatments. We note that Cheng and Small (2006) provided
some discussion of the use of CACE12. Other causal treatment effects can also be defined, e.g.
μ3,2 −μ3,0, μ3,1 −μ3,0, μ1,1 −μ1,0 and μ2,2 −μ2,0, but we view these as of secondary interest.

The relevance of a causal treatment effect in principal stratum C = c increases with the
proportion of the whole population that belongs to this principal stratum, i.e. ρc. In particular,
when ρc is close to 0, the causal effect relates to a small part of the population and may not
be considered of much interest. In some circumstances, we may be able to conjecture that a
particular ρc is close to 0 and therefore negligible; for example, if treatment 1 has less significant
side-effects than treatment 2 and the side-effects are the sole reason for non-compliance, then
the following assumption may be valid.

Assumption 4. ρ2 =0, i.e. subjects who would comply with treatment 2 would always comply
with treatment 1.

This assumption is also a type of monotonicity assumption in the sense of Angrist et al. (1996).
We shall see that, when one or more principal stratum proportions are close to 0, estimation
of valid causal effects is simplified and more informative results may be obtained. Hence, in
practice it is important to identify situations where particular population proportions may be
assumed negligible. In the WTP study, it is unclear whether assumption 4 holds; therefore we
shall conduct a sensitivity analysis for the WTP study with or without assumption 4.

2.3. Identifiability of causal estimands
We first define the point identifiability or lack thereof in a classical statistical sense, i.e. param-
eter(s) are not point identifiable if Fθ1 = Fθ2 where Fθ is the probability distribution of the
observables indexed by θ, and θ1 and θ2 are two different values of θ. It has been long recognized
in many settings that classical statistical methods may have difficulties dealing with non-
identifiable or partially identifiable parameters (Balke and Pearl, 1997; Cheng and Small, 2006;
Manski, 2003; Neath and Samaniego, 1997). In particular, Cheng and Small (2006) studied a
similar design to ours, and they showed that the treatment effects within basic principal strata
are only partially identified under certain assumptions, which means that, given an unlimited
number of observations, one could only place the parameter of interest in a set-valued identifi-
cation region, where the values within this set (region) cannot be distinguished on the basis of
the observables and the set is a strict subset of the parameter space. Specifically, in our setting,
under assumptions 1–3, there are eight marginal means that are of interest (Table 2), and none
of which is point identifiable; hence, all causal treatment effects that were discussed in Section
2.2 are only partially identifiable. For example, multiple values of CACE12 may lead to the same
maximized observed data likelihood (Long, 2005) or solve the same set of estimating functions
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(equations (1)–(4) in Cheng and Small (2006)) and usually these values form a set-valued
interval. Under assumptions 1–4, μ22 and μ20 are no longer applicable; hence the number of
marginal means in Table 2 is reduced to 6. It can also be shown that in this case μ32 −μ30 becomes
point identifiable and the rest of causal estimands of interest remain not point identifiable.

Following Shafer (1982), Walley (1991) and Horowitz and Manski (2000), Cheng and Small
(2006) argued that, when a causal parameter of interest is partially identifiable, the identifi-
cation region can be used as a way to conduct inference, and they also provided confidence
intervals that cover the entire identification region with fixed probability. Alternatively, Imbens
and Manski (2004) developed methods to construct confidence intervals that asymptotically
cover the true value of the parameter with fixed probability and showed that the confidence
intervals for the identification region are wider than the confidence intervals for the true value
of the parameter. Hence, the confidence intervals for the identification region, when used as the
confidence intervals for the true value of the parameter, are likely to be conservative compared
with the nominal level of coverage. However, Imbens and Manski (2004) did so in a considerably
simpler setting and it is not trivial to extend their methods to our setting (Cheng and Small,
2006).

In the above settings with non-identifiable or partially identifiable parameters, often iden-
tifiability is a less serious issue with a Bayesian framework; we can still make interpretable
inference by using a Bayesian approach (Gustafson, 2005; Imbens and Rubin, 1997a; Lindley,
1971; Neath and Samaniego, 1997). In general, if the posterior distributions are proper, the
usual Bayesian framework is valid and its credible intervals still bear their usual interpretation.
Trials with multiple treatment arms are one of these settings. Hence, in this setting, a Bayesian
approach has the potential to provide narrower intervals and to achieve more power, which
makes a Bayesian approach attractive. Even in the presence of potential improper posterior
distributions, it is still possible to obtain meaningful results by using a Bayesian approach
(Gelfand and Sahu, 1999).

We note another important difference between classical statistical methods such as maxi-
mum likelihood (ML) and a Bayesian approach in multiple-parameter settings. When there are
multiple parameters, the ML estimate(s) of one parameter are the value(s) that maximize the
observed data likelihood jointly with ML estimates of the other parameters, whereas the mar-
ginal posterior distribution of one parameter is obtained by integrating out the other parameters.
In other words, if we assume that L.θ1, θ2|data/ is the observed data likelihood with θ1 denoting
the parameter of interest and θ2 denoting the other parameters, then the ML estimate of θ1
maximizes the profile likelihood L{θ1, θ̂2.θ1/|data} and the marginal posterior distribution of
θ1 with a prior p.θ1, θ2/ is proportional to∫

L.θ1, θ2|data/p.θ1, θ2/dθ2:

Hence, the mode (or a region of modes) of the posterior distribution of one parameter (say,
θ1) does not necessarily correspond to its ML estimate (or a region of ML estimates), even if
flat priors are used. Its 95% Bayesian credible interval can be quite different from its 95% ML
confidence interval. Although this is unlikely to happen when all parameters are point identi-
fiable, this can happen when some parameters are only partially identifiable. When parameters
are partially identifiable, there is usually a ridge or a plateau in the observed data likelihood
surface (joint likelihood), which, however, may disappear after marginalizing the likelihood
with respect to a subset of the parameters. In other words, in the presence of non-identifiability
a simple step of marginalizing in a Bayesian analysis may have a more profound influence on the
statistical inference than it initially appears. We suspect that this marginalization step also helps
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to produce narrower credible intervals compared with confidence intervals for the identification
regions from a classical frequentist approach. It is not obvious how to marginalize in a sensible
way within the classical statistical framework.

3. Bayesian framework

In this section, we present a Bayesian framework for estimating causal parameters of interest
such as CACE12, for randomized trials involving two active treatment arms and one control
arm. Throughout this section, we make assumptions 1–3. We first introduce some additional
notation.

3.1. Notation
Following previous notation, for subject i, let Ri denote the random treatment assignment
(2/1/0), Ci denote the true principal compliance stratum, with value 0 for non-compliers, 1 for
1-only compliers, 2 for 2-only compliers and 3 for always compliers. Let Ti denote the treatment
that is actually received, which is uniquely determined by Ci and Ri, i.e. Ti.Ci, Ri/. Let Yi denote
the observed outcome for subject i, and .Yi.2/, Yi.1/, Yi.0// denote the potential outcome when
the actual treatment received is 2, 1 and 0 respectively. We also let Xi denote a set of covariates
that may be associated with the potential outcomes or the principal compliance status.

In a real trial, for each subject i (i=1, . . . , n), we observe only the treatment assignment (Ri)
and the treatment receipt given that particular treatment assignment Ti, one potential outcome
(Yi =Y.Ti/) and Xi. When subject i is not assigned to a specific active treatment, then compliance
to that treatment is not observed. Hence we do not observe the principal compliance status Ci;
in other words, C is a latent classification variable and is always missing in our setting. We note
that Ci is observable in some other settings, e.g. in a two-arm trial (Little et al., 2009). However,
since Ti is uniquely determined by Ri and Ci, the observed values of Ri and Ti may limit the
feasible values of Ci, and we denote this set of feasible values by Cobs,i. For example, subjects
with R=1 and T =1 can only belong to either C =1 or C =3 principal strata but not to C =2
or C = 0 principal strata, and then Cobs,i ={1, 3}. Also, if subject i does not actually receive a
treatment, then its potential outcome given that treatment is not observed. We note that i is
sometimes suppressed in our notation when this does not lead to confusion.

We define the complete data as .Yi, Ci, Ri, Ti, Xi/ with i=1, . . . , n, which under assumption 2
(the stable unit treatment value assumption) constitute an independent and identically distrib-
uted sample. Then the observed data can be represented as .Yi, Cobs,i, Ri, Ti, Xi/. Our objective
is to relate the distribution of first the complete data .Yi, Ci, Ri, Ti, Xi/ and then the observed
data .Yi, Cobs,i, Ri, Ti, Xi/ to the distribution of the potential outcomes .Yi.2/, Yi.1/, Yi.0//. Thus,
using the observed data, we can estimate the parameters that are associated with the distribution
of the potential outcomes .Yi.2/, Yi.1/, Yi.0//, which have causal interpretations.

3.2. Likelihood of the data
For subject i, the distribution function of the complete data is

f.Yi, Ci, Ri, Ti|Xi/=f.Yi, Ci, Ti|Ri, Xi/f.Ri|Xi/:

Since f.Ri|Xi/ is the treatment assignment model and is known from the design, we can ignore
the treatment assignment model and just focus on f.Yi, Ci, Ti|Ri, Xi/ in the statistical inference.
Furthermore, we have
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f.Yi, Ci, Ti|Ri, Xi/=f.Yi|Ci, Ti, Ri, Xi/f.Ti|Ci, Ri, Xi/f.Ci|Ri, Xi/:

Since Ti is uniquely determined by Ci and Ri, f{Ti.Ci, Ri/|Ci, Ri, Xi}=1. Owing to the exclusion
restriction assumption and the random treatment assignment,

f.Yi|Ci, Ti, Ri, Xi/=f{Yi|Ci, Ti.Ci, Ri/, Xi}=f{Y.Ti/=Yi|Ci, Xi},

which indicates that f.Yi|Ci, Ri, Xi/ is determined by a model for the potential outcome Y.Ti/.
Let α denote the set of parameters that are associated with the potential outcome model,
i.e. f{Y.Ti/=Yi|Ci, Xi, α}. Also the random treatment assignment implies that f.Ci|Ri, Xi/=
f.Ci|Xi, β/, where β denotes the set of parameters that are associated with the model for C.
Assume that α and β are distinct, and let θ = .α, β/. Given exchangeability and independence
among subjects, the complete-data likelihood can be written as

n∏
i

f{Y.Ti/=Yi|Ci, Xi, α}f.Ci|Xi, β/ .1/

where the first part models the potential outcomes Y.t/ and the second part models the principal
compliance C. The observed data likelihood can be written as

L.α, β/=
n∏
i

Li.α, β|Yi, Ti, Cobs,i, Xi/: .2/

We now examine Li, the contribution to the observed data likelihood from subject i. On the
basis of our previous discussion for Cobs,i, it is straightforward to show that, for subject i, the
observed data .Yi, Ti, Cobs,i, Xi/ follow a mixture distribution and the observed data likelihood
is

Li.α, β|Yi, Ti, Cobs,i, Xi/= ∑
c∈Cobs, i

f{Y.Ti/=Yi|Ci = c, Xi, α}f.c|Cobs,i, Xi, β/:

Hence, the observed data likelihood (2) is a product of different mixture distributions and
depends only on the conditional distributions of potential outcomes Y.t/, f{Y.t/|C, X, α} (t =
1, 2, 3), rather than the joint conditional distribution of .Y.2/, Y.1/, Y.0//. We shall see that the
causal estimands of interest are related only to the parameters that are associated with these
marginal distributions.

Let fct.Y |X, αct/ denote f{Y.t/ = Y |C = c, X, αct}, i.e. the conditional distribution of the
potential outcome Y.t/ for subjects in principal compliance stratum C = c, where αct denotes
a set of parameters that are associated with this distribution and α is then the collection of all
αct that can be estimated from the data. Under assumptions 1–3, we know from Table 2 that
α= .α30, α31, α32, α22, α20, α11, α10, α00/ and the rest of αcts are not applicable. The conditional
distributions in expression (2) can be replaced by fct.Yi|Xi, αct/. In addition, for each subject i,
let ρi,c =f.Ci = c|Xi, β/ and fi,ct =fct.Yi|Xi, αct/, and denote by S.r, t/ the set of subjects with
R= r and T = t. Under assumptions 1–3, Table 3 summarizes the structure of the observed data
likelihood. The row totals are proportional to the contribution of subject i to the observed data
likelihood, which accounts for all feasible values in Cobs,i given the observed T and Ri and hence
are from different mixture distributions. Given the observed data for subject i, each cell value
represents the probability of the observed data .Yi, Xi, Ti, Ri/ when Ci is known. A value of 0 in
a cell indicates that the corresponding value of Ci is not feasible on the basis of the combination
of observed Ri- and Ti-values. For example, when R=1 and T =1, the probability of C =2 or
C =0 is 0. Then, the observed data likelihood (2) can be rewritten as
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Table 3. Structure of the observed data likelihood for subject i for
all possible combinations of Ri and Ti under assumptions 1–3†

Ri Ti Results for the following Row
principal compliances Ci: total

3 2 1 0

0 0 ρi
3f i

30 ρi
2f i

20 ρi
1f i

10 ρi
0f i

00 ρi
3f i

30 +ρi
2f i

20
+ρi

1f i
10 +ρi

0f i
00

1 1 ρi
3f i

31 0 ρi
1f i

11 0 ρi
3f i

31 +ρi
1f i

11
0 0 ρi

2f i
20 0 ρi

0f i
00 ρi

2f i
20 +ρi

0f i
00

2 2 ρi
3f i

32 ρi
2f i

22 0 0 ρi
3f i

32 +ρi
2f i

22
0 0 0 ρi

1f i
10 ρi

0f i
00 ρi

1f i
10 +ρi

0f i
00

†Each cell value represents the probability of the observed data
.Yi, Xi, Ri, Ti/ if the value of Ci were known, and the conditional
probability of Ci given the observed data is computed as the ratio of
each cell entry to its row total.

L.β, α/= ∏
i∈S.1,1/

ρi,3fi,31 +ρi,1fi,11

ρi,3 +ρi,1
× ∏

i∈S.1,0/

ρi,2fi,21 +ρi,0fi,01

ρi,2 +ρi,0
× ∏

i∈S.2,2/

ρi,3fi,32 +ρi,2fi,22

ρi,3 +ρi,2

× ∏
i∈S.2,0/

ρi,1fi,12 +ρi,0fi,02

ρi,1 +ρi,0
× ∏

i∈S.0,0/

ρi,3fi,30 +ρi,2fi,20 +ρi,1fi,10 +ρi,0fi,00

ρi,3 +ρi,2 +ρi,1 +ρi,0
:

.3/

Let p.θ/ denote the prior distribution of θ = .α, β/, and then the posterior distribution of θ
given the observed data is

f.θ|R, T , Y , Cobs,i, X/∝p.θ/
∏

i∈S.1,1/

ρi,3fi,31 +ρi,1fi,11

ρi,3 +ρi,1
× ∏

i∈S.1,0/

ρi,2fi,21 +ρi,0fi,01

ρi,2 +ρi,0

× ∏
i∈S.2,2/

ρi,3fi,32 +ρi,2fi,22

ρi,3 +ρi,2
× ∏

i∈S.2,0/

ρi,1fi,12 +ρi,0fi,02

ρi,1 +ρi,0

× ∏
i∈S.0,0/

ρi,3fi,30 +ρi,2fi,20 +ρi,1fi,10 +ρi,0fi,00

ρi,3 +ρi,2 +ρi,1 +ρi,0
: .4/

It is obvious that the posterior distributions in expression (4) are proper. If we make assumption
4 in addition to assumptions 1–3, then the observed data likelihood can be further simplified.
Specifically, we can remove the column for Ci =2 in Table 3 and the distribution of the observed
data for a subject i is no longer a mixture distribution when R=1 and T =0, or when R=2 and
T = 2. In other words, we can change Table 3 and hence the observed data likelihood (2) and
(3) accordingly when more or fewer assumptions are made.

It is straightforward to show that the marginal means that are defined in Table 2, and hence
causal estimands of interest discussed in Section 2.2, can be expressed in terms of the parameters
{αct}. For example,

μ32 =
∫ ∫

Y f32.Y |X, α32/dν.X/dY ,

μ31 =
∫ ∫

Y f31.Y |X, α31/dν.X/dY
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and

CACE12 =
∫ ∫

Y f32.Y |X, α32/dν.X/dY −
∫ ∫

Yf31.Y |X, α31/dν.X/dY

where ν.X/ is a probability measure on X. Hence we need to make inference about {αct}.

3.3. Estimation and inference
The posterior distribution of θ in expression (4) is mathematically quite simple, but its com-
putation is complicated because it involves mixture distributions. If C were observed, then the
observed data likelihood would no longer involve mixture distributions and could be easily
simulated. This leads us to employ a DA algorithm (Tanner and Wong, 1987) to simulate the
posterior distributions in expression (4) treating C as missing data. This DA algorithm is itera-
tive and alternates between two steps, the I-step and the P-step, where ‘I’ stands for imputation
and ‘P’ stands for drawing from the posterior distribution. The DA algorithm can be outlined
as follows.

(a) I-step: for each subject i, impute Ci for the ‘complete data’ .Ci, Ri, Ti, Yi, Xi/ by using a
draw. Specifically, given .Cobs,i, Ri, Ti, Yi, Xi/ and θ drawn from the current approximation
to its posterior distribution, Ci is drawn from a multinomial distribution with sample size
equal to 1 on the basis of the conditional probabilities, f.C|Cobs,i, Ri, Ti, Yi, Xi/. These
conditional probabilities can be computed from Table 3 by using the ratio of each cell
probability to its row total.

(b) P-step: given the imputed complete data .Ci, Ri, Ti, Yi, Xi/, the posterior distribution be-
comes

f.θ|Ci, Ri, Ti, Yi, Xi/∝p.θ/
∏

t=0,1,2

∏
c=.0,1,2,3/

( ∏
Ci=c,Tobs, i=t

ρi,cfi,ct

)
: .5/

If we assume that α are independent of β, then we have

f.β|Ci, Ri, Ti, Yi, Xi/∝p.β/
∏

c=.0,1,2,3/

( ∏
Ci=c

ρi,c

)
, .6/

and

f.αct|Ci, Ri, Ti, Yi, Xi/∝p.αct/
∏

Ci=c,Ti=t

fi,ct .7/

for all feasible values of c and t with c=0, 1, 2, 3 and t =0, 1, 2, 3.

To implement this algorithm, we need to specify a prior distribution p.θ/ for θ. We propose
to choose p.θ/ to be non-informative but proper, and conjugate to the likelihood in the P-step
when possible. The P-step can then be implemented by using a Gibbs sampler. The examples
of these priors in some special cases can be found in the next two sections. To draw from the
posterior distributions, we iterate between the I-step and P-step until the algorithm converges.

In the case of no covariates, ρi,c =ρc, and β in the likelihood (3) and (4) can be replaced with
ρ= .ρ1, ρ2, ρ3, ρ4/. Then p.θ/ is the prior distribution of θ= .α, ρ/. Whereas the I-step in the DA
algorithm does not change, the posterior distributions (5)–(7) in the P-step simplify to

f.θ|Ci, Ri, Ti, Yi, Xi/∝p.θ/
∏

t=0,1,2

∏
c=.0,1,2,3/

( ∏
Ci=c,Tobs, i=t

ρcfi,ct

)

and
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f.ρ|Ci, Ri, Ti, Yi, Xi/∝p.ρ/
∏

c=0,1,2,3
ρNc

c ,

where Nc is the number of the subjects in principal stratum C = c.
The approach proposed relies on the structural assumptions and the specification of the

prior distribution. One can incorporate prior experience or preliminary results to determine the
selection of the assumptions and the choice of priors whenever this information is available.
When no prior information is available, we propose to conduct an additional sensitivity analysis
to examine the influence of assumptions and the choice of prior distribution. First, we can
conduct inference under different combinations of assumptions and examine how the causal
estimands of interest vary. For example, we can consider the inclusion or exclusion of assump-
tion 4 and its variants for other principal compliance strata such as ρ1 =0 or ρ0 =0. In this case,
the comparison should be focused on the causal estimands that remain applicable under these
assumptions, such as CACE12. Second, we can conduct inference under different specifications
of the prior distribution. One could stay with conjugate priors in the P-step and compare the
results by using different parameter values.

It is straightforward to extend the proposed framework to the estimation of causal estimands,
in particular, CACE12, for trials with multitreatment arms. One can introduce more principal
compliance strata and marginal means to Table 2 and 3, and define causal estimands of interest
similar to those in Section 2.2. The observed data likelihood is similar to expressions (2) and
(3), and Bayesian inference can then be constructed along the lines that have been discussed in
this section.

3.4. Hypothetical example
We now compare our approach with a method-of-moments approach in Cheng and Small (2006)
by using a hypothetical example that was analysed in Cheng and Small (2006). We shall see that
the results suggest that our proposed method can obtain meaningful inference even when the
treatment effects are only partially identifiable in a classical statistical sense. The data structure
was detailed in Table 2 in Cheng and Small (2006). Suppose that we have a three-arm trial with a
sample size of n=400 in each arm, the control treatment denoted by 0 and two active treatments
denoted by A and B, with a binary outcome Y , and Y = 1 for a successful outcome and Y = 0
for a failure. Participants who are assigned to the control arm actually take the control, among
which 45% have successful outcomes (Y =1). For those who are assigned to treatment A, 95% of
the subjects actually take treatment 1, of which 95% have successful outcomes, and 5% actually
take the control, of which 20% have successful outcomes. For those assigned to treatment B,
80% of the subjects actually take treatment B, of which 70% have successful outcomes, and
20% actually take the control, of which 25% have successful outcomes. To make the notation
consistent, we use 1 for A and 2 for B in our illustration.

We used the model that was described in Section 3 without covariate adjustment. Since the
outcomes were binary, we assumed, for subjects in principal stratum C=c and treatment receipt
T = t, the outcome success rate Y and principal compliance C

Y |C = c, T = t;αct ∼Bernoulli.αct/,

C|ρ∼multinomial.ρ0, ρ1, ρ2, ρ3/

where αct represents the probability of success for subjects in principal compliance stratum
C =c when taking treatment T = t. We assume the conjugate prior distributions αct ∼beta.a, b/

and ρ= .ρ0, ρ1, ρ2, ρ3/∼Dirichlet.b0, b1, b2, b3/ in our Bayesian inference, where values of .a, b/

and .b0, b1, b2, b3/ determine how informative these priors are. For this data analysis, we also
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conducted a sensitivity analysis using different parameter values for these conjugate priors.
Specifically, let a = b = b0 = b1 = b2 = b3 = λ, where λ may take different values. When λ = 1,
uninformative flat prior distributions are assumed for all parameters. Given the model specifi-
cation, causal estimands of interest are then functions of μct , e.g. CACE12 =μ32 −μ31. The DA
algorithm can be described as follows.

(a) I-step: given a draw of ρ, and α from their current approximate distribution and observed
data, draw Ci for each i from a multinomial distribution with sample size equal to 1 with
conditional probabilities computed using a simplified version of Table 3.

(b) P-step: given observed data and current Ci drawn from the I-step,

ρ|observed data, C ∼Dirichlet.n0 +b0, n1 +b1, n2 +b2, n3 +b3/,

αct ∼beta.mct +a, nct −mct +b/

where nc is the number of subjects in stratum C = c, nct is the number of subjects with
C = c and T = t, and mct is the number of successes with C = c and T = t.

We used the DA algorithm to approximate the posterior distributions of the causal parameters
for the hypothetical data. The approximate posterior distributions were obtained by using
12 000 iterations from each of 20 independent runs of the DA algorithm with different ini-
tial values drawn from uniform distributions over the range of the parameters. The first 10 000
iterations from each run were discarded. This scheme was used for all data analyses that are
discussed in this paper. The 95% credible intervals were constructed from the marginal posterior
distributions of parameters of interest.

We considered inference under two settings: one with assumptions 1–3 and the other with
assumptions 1–4. As discussed previously, given assumptions 1–3, none of the causal treat-
ment effects are point identifiable in the classical statistical sense; after adding assumption 4
(ρ2 = 0), only μ32 −μ30 is point identifiable in the classical statistical sense and μ22 −μ20 is no
longer applicable. The results from our analysis are summarized in Table 4 for various prior
specifications and two sets of assumptions.

Cheng and Small (2006) analysed this hypothetical data set by using a method-of-moments
approach and presented the results in their Table 4. This hypothetical data set was also analysed
by using an ML inference approach in Long (2005), where the identification regions were
obtained and their confidence intervals were constructed on the basis of 5000 bootstrap samples
(Horowitz and Manski, 2000). The identification regions by using the ML approach were
similar to those in Cheng and Small (2006) and their confidence intervals were constructed
to cover the identification regions with fixed probability in the spirit of Horowitz and Man-
ski (2000) and Cheng and Small (2006). The results that are found in Long (2005) were very
close to those found in Cheng and Small (2006). Their results show that in general the addition
of assumption 4 shortens the identification regions as well as their confidence intervals; how-
ever, the improvement is small. Under assumptions 1–3, the identification region for μ31 −μ30
is (0.41,0.51) with a confidence interval of (0.34,0.58); under assumptions 1–4, the identifica-
tion region changes to (0.44, 0.50) with a confidence interval of (0.37,0.57). Under assumptions
1–3, the identification region for μ11 −μ10 is (0.39,0.79) with a confidence interval of (0.22,0.96);
under assumptions 1–4, the identification region changes to (0.42, 0.73) with a confidence interval
of (0.23,0.92). More importantly, under assumptions 1–3, the identification region for μ32 −μ10
is (0.16,0.23) with a confidence interval of (0.06,0.32); under assumptions 1–4, μ32 −μ30 becomes
point identifiable with an estimate of 0.20 and a confidence interval of (0.11,0.29). Our proposed
Bayesian analysis shows similar trends, and our results also show that, in terms of estimating
μ32 −μ30, our analysis without assumption 4 is just as informative as with assumption 4.
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Table 4. Bayesian analysis of the hypothetical data by using different prior specifications
under two sets of assumptions†

Causal effects Results with assumptions 1–3 Results with assumptions 1–4

Mean SD CI Mean SD CI

Prior distributions with λ= 1
μ32 −μ31 −0.26 0.04 .−0:33, −0:19/ −0.27 0.03 .−0:33, −0:20/
μ32 −μ30 0.20 0.05 (0.11, 0.29) 0.20 0.04 (0.12, 0.28)
μ31 −μ30 0.46 0.04 (0.37, 0.54) 0.47 0.04 (0.39, 0.54)
μ22 −μ20 0.17 0.38 .−0:62, 0:83/ NA NA NA
μ11 −μ10 0.58 0.12 (0.31, 0.79) 0.56 0.14 (0.26, 0.79)

Prior distributions with λ= 0.5
μ32 −μ31 −0.26 0.04 .−0:33, −0:18/ −0.27 0.03 .−0:34, −0:20/
μ32 −μ30 0.20 0.05 (0.11, 0.29) 0.20 0.04 (0.12, 0.28)
μ31 −μ30 0.46 0.04 (0.37, 0.54) 0.47 0.04 (0.39, 0.55)
μ22 −μ20 0.14 0.47 .−0:85, 0:93/ NA NA NA
μ11 −μ10 0.59 0.14 (0.28, 0.82) 0.55 0.16 (0.21, 0.82)

Prior distributions with λ= 10
μ32 −μ31 −0.24 0.04 .−0:30, −0:18/ −0.25 0.03 .−0:31, −0:19/
μ32 −μ30 0.20 0.05 (0.12, 0.29) 0.20 0.04 (0.12, 0.28)
μ31 −μ30 0.45 0.04 (0.37, 0.52) 0.45 0.04 (0.38, 0.52)
μ22 −μ20 0.11 0.15 .−0:19, 0:39/ NA NA NA
μ11 −μ10 0.48 0.08 (0.28, 0.63) 0.43 0.10 (0.21, 0.61)

†Mean is the mean of the Bayesian posterior distribution, SD the standard deviation of the
posterior distribution, CI the 95% Bayesian credible interval and NA denotes that an estimand
is not applicable. λ represents different conjugate prior specifications and λ=1 corresponds
to the uninformative flat priors.

Compared with the results that were obtained by using the flat priors (λ=1), our sensitivity
analysis shows that different prior specifications have minimal effect on the causal estimands
defined in the principal compliance stratum C =3, i.e. μ32 −μ31, μ32 −μ30 and μ31 −μ30. How-
ever, the specification of priors has various degrees of impact on the causal estimands defined
in the principal stratum C = 2 and C = 1. The prior that is close to the flat prior (λ= 0:5) has
less effect than the priors that are strongly informative (λ=10). The standard deviation of the
posterior distribution and the width of credible intervals decrease considerably as a result of
strong informative priors; hence the power of the analysis improves. Since the rate of compliance
is high in this study, the proportion of always compliers (C =3) is likely to be high whereas the
proportion of other principal strata is likely to be low. In the stratum where the number of
subjects is low, strong priors may dominate the observed data and have a substantial effect on
the causal estimands, in this case, those for C = 1 and C = 2, which is consistent with what we
observed in this data analysis.

In general, when causal estimands are partially identifiable, our Bayesian 95% credible
intervals under both sets of assumptions and different prior specifications are considerably
narrower than the corresponding 95% confidence intervals for identification regions that were
found in Cheng and Small (2006). These findings are consistent with our discussion in Section
2.3. The one exception is for μ̂32 − μ̂30 under assumptions 1–4. Using our approach, μ̂32 − μ̂30
is 0.20 with a 95% credible interval around (0.11, 0.29) for different prior specifications, which
is similar to those found in Cheng and Small (2006). Since μ32 −μ30 is point identifiable in this
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case, this result suggests that our approach and the approach that was proposed by Cheng and
Small (2006) lead to comparable results when a parameter is point identifiable.

For the partially identifiable estimands in this hypothetical study, the improvement of
efficiency by using our approach does not lead to different conclusions regarding the causal
estimands of interest for these hypothetical data. Under both sets of assumptions, our analysis
shows that the 95% credible interval of CACE12 excludes 0, indicating a significant treatment
effect between active treatment 1 and 2 among always compliers. Our results also show a
significant treatment effect for always compliers when comparing treatment 2 versus control
and treatment 1 versus control, and for the 1-only-compliers subpopulation when comparing
treatment 1 versus control. However, the comparison between treatment 2 and control in the
2-only-compliers subpopulation is inconclusive.

In summary, given these hypothetical data, we can obtain informative results. Specifically,
under two sets of assumptions, treatment 1 is better than treatment 2 for always compliers,
and both are better than the control for always compliers and 1-only compliers, whenever the
comparisons are applicable. These findings are consistent with those in Cheng and Small (2006),
but with improved precision.

4. Application to the women take pride data

In this section, we illustrate the proposed method with an application to the behavioural
intervention study, the WTP study (Janevic et al., 2003). We denote the three treatment groups
by 0 for the usual care control treatment, 1 for the group treatment and 2 for the self-directed
treatment. The outcome of interest in this data analysis is the common cardiac bothersome score
(Janevic et al., 2003) measured at month 18. The common cardiac bothersome score ranges from
0 to 25 with higher scores indicating greater symptom effects. We created a binary outcome Y
by comparing the measurement at month 18 with that at baseline, such that Y = 1 if the score
does not increase, i.e. symptoms do not worsen, and Y = 0 if otherwise. The compliance was
defined as whether a woman completed at least 1 unit of materials. The primary objective of
this data analysis was to estimate the effect of intervention programmes after adjusting for
non-compliance. For this study, assumptions 1 and 3 hold, since patients did not have access to
the alternative programme if they were not assigned to that programme. However, assumption
2 may be questionable, since the interaction between patients in the group format may have an
influence on the outcomes. For the purpose of exposition, we still make assumption 2 in the data
analysis. In addition, it is not clear whether assumption 4 holds and we conduct a sensitivity
analysis with or without assumption 4.

We analysed the WTP data by using the model that was described in Section 3.4 with the same
conjugate prior distributions. We conducted our analysis under assumptions 1–3 with possible
addition of assumption 4 and its variations. As with the hypothetical data analysis, no causal
treatment effect is point identifiable under assumptions 1–3 when using the method-of-moments
method that was proposed by Cheng and Small (2006) and the ML analysis in Long (2005).

We conducted a sensitivity analysis using prior specifications as in Section 3.4, and the con-
clusions were similar. Therefore only results by using flat priors are reported, and Table 5
summarizes these results under four different sets of assumptions:

(a) assumptions 1–3;
(b) assumptions 1–3 and assumption 4, i.e. 2-only compliers (C =2) do not exist;
(c) assumptions 1–3 and ρ1 =0, i.e. 1-only compliers (C =1) do not exist;
(d) assumptions 1–3 and ρ0 =0, i.e. always non-compliers (C =0) do not exist.
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Table 5. Bayesian analysis for the outcome of interest (common cardiac symptom
bothersome score at month 18) in the WTP study under different sets of assumptions
by using flat priors (λD1)†

Causal effects Mean SD CI Mean SD CI

Assumptions 1–3 Assumptions 1–3 and ρ2 =0
μ32 −μ31 0.08 0.10 .−0:15, 0:28/ 0.07 0.05 .−0:03, 0:17/
μ32 −μ30 0.19 0.10 (0.02, 0.41) 0.12 0.06 (0.01, 0.23)
μ31 −μ30 0.12 0.12 .−0:07, 0:40/ 0.05 0.06 .−0:07, 0:18/
μ22 −μ20 −0.16 0.34 .−0:77, 0:60/ NA NA NA
μ11 −μ10 −0.33 0.35 (−0.90, 0.42) −0.18 0.39 .−0:86, 0:65/

Assumptions 1–3 and ρ1 = 0 Assumptions 1–3 and ρ0 = 0
μ32 −μ31 0.09 0.05 .−0:01, 0:20/ 0.05 0.15 .−0:23, 0:35/
μ32 −μ30 0.13 0.06 (0.02, 0.25) 0.26 0.12 (0.04, 0.49)
μ31 −μ30 0.04 0.06 .−0:08, 0:15/ 0.21 0.14 .−0:06, 0:47/
μ22 −μ20 0.00 0.39 .−0:74, 0:76/ −0.17 0.20 .−0:59, 0:16/
μ11 −μ10 NA NA NA −0.36 0.26 .−0:84, 0:06/

†Mean is the mean of the Bayesian posterior distribution, SD the standard deviation of
the posterior distribution, CI the 95% Bayesian credible interval and NA denotes that
an estimand is not applicable.

Under these assumptions, some causal estimands may not be applicable (Table 5). This study
was also analysed in Long (2005) by using ML. As we discussed previously, Long (2005) showed
that ML would lead to similar results to those of the method by Cheng and Small (2006) in this
type of setting; therefore we compare our results only with those from the ML analysis.

We first focus on the results that were obtained under assumptions 1–3. The ML identification
region of CACE12 (=μ32 −μ31) is .−0:26, 0:39/ and its bootstrap 95% confidence interval is
.−0:37, 0:50/ (Long, 2005). A Bayesian analysis using flat priors shows that the mean of its
posterior distribution is 0.08 and its 95% credible interval is (−0:15, 0.28), which is considerably
narrower than the 95% confidence interval for the identification region. However, since it still
includes 0, there is no strong evidence indicating that either treatment is better than the other
for the always compliers (C = 3). For estimating μ32 − μ30, the 95% confidence interval for
its ML identification region is .−0:04, 0:57/, which includes 0, and its 95% Bayesian credible
interval is (0.02,0.41), which excludes 0. Hence, on the basis of this Bayesian analysis, there
is some evidence indicating that the standard deviation format (2) is better than the control
for always compliers in terms of improving the outcome. Similarly to the arguments that were
made in Section 4.4, owing to the high compliance rates across treatment arms, there is little
information about the treatment effects for the other two principal compliance strata (1-only
compliers and 2-only compliers). This is reflected by the wide ranges of 95% credible intervals
for μ22 −μ20 and μ11 −μ10, even though their widths are shorter than 95% confidence intervals
for the identification regions.

Our results in Table 5 show that the causal effect μ32 − μ30 remains significant under four
different sets of structural assumptions. Additional assumptions reduce the number of param-
eters and hence may improve efficiency. Furthermore, the addition of assumption ρ2 = 0 or
ρ1 = 0 leads to the point identifiability of μ32 −μ30 and μ31 −μ30 respectively. Specifically, the
addition of assumption ρ2 = 0 or ρ1 = 0 shortens the Bayesian credible intervals for all causal
effects defined in the principal stratum C = 3 and makes the estimates of μ32 − μ31 close to
significant. The effect of assumption ρ0 = 0 is relatively small owing to the high compliance
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rates. In practice, caution needs to be exercised when adding structural assumptions, since these
assumptions may lead to biased estimates when they do not hold.

In summary, the results from our data analysis show that the self-directed treatment was
better than the control for always compliers and the other causal comparisons were not statisti-
cally significant. In the settings that we studied, our results also seem to indicate that Bayesian
inference can potentially achieve greater power in detecting significant treatment effects
compared with the method of moments (Cheng and Small, 2006) or the ML approach (Long,
2005), which use the confidence intervals for the identification regions.

5. Discussion

For multiarm trials subject to non-compliance, we propose a likelihood-based framework and
a Bayesian inference approach. A data augmentation algorithm is used to approximate the
marginal posterior distribution of causal parameters of interest. We also propose sensitivity
analyses to investigate the effect of structural assumptions and priors. The method proposed is
compared with a method-of-moments approach in Cheng and Small (2006) by using a hypo-
thetical data set that was used in Cheng and Small (2006) and the WTP study (Janevic et al.,
2003). Our results show that the 95% Bayesian credible intervals are in general narrower than
the estimated 95% confidence intervals for the identification regions of causal parameters, and
that additional structural assumptions have the potential to improve the power of an analysis,
if they hold.

In settings that were considered in this paper, our proposed method has some attractive
features compared with existing methods that compute the identification regions and their con-
fidence intervals. The framework is conceptually straightforward and is not different from cases
where parameters are point identifiable in the classical statistical sense. It is very flexible and can
be easily applied to model different types of outcomes and extended to accommodate covariate
adjustment, additional structural assumptions and more complex designs such as the doubly
randomized preference trial design in Long et al. (2008), which is a subject for future research.
The method proposed may achieve greater power in terms of detecting significant treatment
effects, especially when existing substantive knowledge can be incorporated in the priors.
Furthermore, the interpretation of the credible intervals remains the same and it is straight-
forward to evaluate the properties of posterior distributions of causal parameters of interest.
However, when using the proposed Bayesian approach in these settings, it is possible that the
marginal posterior distribution of a parameter still concentrates its mass and remains flat over
a part of the parameter space, in which case caution needs to be exercised in constructing 95%
credible intervals. It is of interest to study the properties of Bayesian credible intervals and
frequentist confidence intervals for partially identified parameters in these settings.

In addition to the doubly randomized preferential trial design, our Bayesian approach can
be extended to accommodate other interesting features of the WTP study. First, the WTP study
includes the intervention of a group format, which allows interaction between participants;
consequently, the outcome variable may be correlated between subjects who are assigned to
the same group and assumption 2 is questionable. To address this issue, one can introduce
multivariate distributions for modelling Y for subjects of a same group in the group treatment
arm, and one needs to change the complete-data likelihood (1) and observed data likelihood
(2) accordingly. Second, all participants in the WTP study completed between 0 and 6 weekly
units and hence partial compliance was present. To adjust for partial compliance, one can still
use the principal compliance framework by extending the approach that was proposed in Jin
and Rubin (2008) to the case of multiarm trials.
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The Bayesian approach proposed shares one limitation with existing methods, though to a
lesser degree. For complex designs with more treatment arms, the analysis proposed, although
valid, may not be very informative; for example, it is likely that all credible intervals include 0.
Existing substantive knowledge and strong structural assumptions may be needed to improve
the power of the analysis.

Acknowledgements

We thank Dr Noreen Clark for providing the WTP data, and the Associate Editor and a referee
for their valuable suggestions, which helped to improve the paper considerably. This research
was supported by National Cancer Institute grant R37CA76404.

References

Angrist, J. D., Imbens, G. W. and Rubin, D. B. (1996) Identification of causal effects using instrumental variables.
J. Am. Statist. Ass., 91, 444–455.

Balke, A. and Pearl, J. (1997) Bounds on treatment effects from studies with imperfect compliance. J. Am. Statist.
Ass., 92, 1171–1176.

Beran, R. (1988) Balanced simultaneous confidence sets. J. Am. Statist. Ass., 83, 679–697.
Cheng, J. and Small, D. S. (2006) Bounds on causal effects in three-arm trials with non-compliance. J. R. Statist.

Soc. B, 68, 815–836.
Frangakis, C. E. and Rubin, D. B. (2002) Principal stratification in causal inference. Biometrics, 58, 21–29.
Gelfand, A. E. and Sahu, S. K. (1999) Identifiability, improper priors, and gibbs sampling for generalized linear

models. J. Am. Statist. Ass., 94, 247–253.
Gustafson, P. (2005) On model expansion, model contraction, identifiability and prior information: two illustra-

tive scenarios involving mismeasured variables. Statist. Sci., 20, 111–140.
Horowitz, J. and Manski, C. F. (2000) Nonparametric analysis of randomized experiments with missing covariate

and outcome data. J. Am. Statist. Ass., 95, 77–84.
Imbens, G. W. and Manski, C. F. (2004) Confidence intervals for partially identified parameters. Econometrica,

72, 1845–1857.
Imbens, G. W. and Rubin, D. B. (1997a) Bayesian inference for causal effects in randomized experiments with

noncompliance. Ann. Statist., 25, 305–327.
Imbens, G. W. and Rubin, D. B. (1997b) Estimating outcome distributions for compliers in instrumental variables

models. Rev. Econ. Stud., 64, 555–574.
Janevic, M. R., Janz, N. K., Lin, X., Pan, W., Sinco, B. R. and Clark, N. M. (2003) The role of choice in health

education interventional trials: a review and case study. Socl Sci. Med., 56, 1581–1594.
Jin, H. and Rubin, R. (2008) Principal stratification for causal inference with extended partial compliance. J. Am.

Statist. Ass., 103, 101–111.
Joffe, M. M. (2001) Using information on realized effects to determine prospective causal effects. J. R. Statist.

Soc. B, 63, 759–774.
Lindley, D. V. (1971) Bayesian Statistics: a Review. Philadelphia: Society for Industrial and Applied Mathe-

matics.
Little, R. J. A., Long, Q. and Lin, X. (2009) A comparison of methods for estimating the causal effect of a

treatment in randomized clinical trials subject to noncompliance. Biometrics, 65, 640–649.
Little, R. J. A. and Yau, L. (1998) Statistical techniques for analyzing data from prevention trials: treatment of

no-shows using Rubin’s causal model. Psychol. Meth., 3, 147–159.
Long, Q. (2005) Emerging issues in causal inference for intervention trials. PhD Dissertation. University of Mich-

igan, Ann Arbor.
Long, Q., Little, R. J. A. and Lin, X. (2008) Causal inference in hybrid intervention trials involving treatment

choice. J. Am. Statist. Ass., 103, 474–484.
Manski, C. F. (2003) Partial Identification of Probability Distributions. New York: Springer.
Neath, A. A. and Samaniego, F. J. (1997) On the efficacy of bayesian inference for nonidentifiable models. Am.

Statistn, 51, 225–232.
Peng, Y., Little, R. J. A. and Raghunathan, T. (2004) An extended general location model for causal inferences

from data subject to non-compliance and missing values. Biometrics, 60, 598–607.
Robins, J. M. (1994) Correcting for non-compliance in randomized trials using structural nested mean models.

Communs Statist. Theory Meth., 23, 2379–2412.
Roy, J., Hogan, J. W. and Marcus, B. H. (2008) Principal stratification with predictors of compliance for random-

ized trials with 2 active treatments. Biostatistics, 9, 277–289.



Estimating Causal Effects in Trials Involving Multitreatment Arms 531

Rubin, D. B. (1978) Bayesian inference for causal effects: the role of randomization. Ann. Statist., 6, 34–58.
Shafer, G. (1982) Belief functions and parametric models (with discussion). J. R. Statist. Soc. B, 44, 322–352.
Tanner, M. and Wong, W. (1987) The calculation of posterior distributions by data augmentation. J. Am. Statist.

Ass., 82, 528–550.
Walley, P. (1991) Statistical Reasoning with Imprecise Probabilities. London: Chapman and Hall.


