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SUMMARY

Trichomes are specialized epidermal cells that generally play a role in reducing transpiration and act as a

deterrent to herbivory. In a screen of activation-tagged Populus tremula · Populus alba 717-1B4 trees, we

identified a mutant line, fuzzy, with increased foliar trichome density. This mutant also had a 35% increase in

growth rate and a 200% increase in the rate of photosynthesis as compared with wild-type poplar. The fuzzy

mutant had significant resistance to feeding by larvae of the white-spotted tussock moth (Orgyia leucostigma),

a generalist insect pest of poplar trees. The fuzzy trichome phenotype is attributable to activation tagging and

increased expression of the gene encoding PtaMYB186, which is related to Arabidopsis thaliana MYB106, a

known regulator of trichome initiation. The fuzzy phenotype can be recapitulated by overexpressing

PtaMYB186 in poplar. PtaMYB186 overexpression results in reconfiguration of the poplar transcriptome, with

changes in the transcript abundance of suites of genes that are related to trichome differentiation. It is notable

that a plant with misexpression of a gene responsible for trichome development also had altered traits related

to growth rate and pest resistance, suggesting that non-intuitive facets of plant development might be useful

targets for plant improvement.
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INTRODUCTION

Trichomes are enlarged, modified epidermal cells that grow

perpendicular to the leaf surface. As their density increases,

trichomes can decrease transpiration rates (Choinski and

Wise, 1999; Perez-Estrada et al., 2000) and increase defence

against herbivores and parasites (Neal et al., 1989;

Bodnaryk, 1996). On the other hand, trichomes may also

have a negative impact on plant growth and vigour, as they

are costly to produce. Trichomes can decrease the absorp-

tion of sunlight, impede transpiration and decrease the rate

of carbon dioxide diffusion, thereby interfering with the rate

of photosynthesis (Billings and Morris, 1951; Pearman, 1966;

Sinclair and Thomas, 1970; Ehleringer et al., 1976; Eller and

Willi, 1977), although this is not always the case (Shull, 1929;

Gausman and Cardenas, 1969, 1973; Wuenscher, 1970).

Trichome initiation has been well characterized in Arabid-

opsis thaliana, and, to a lesser extent, in other model plant

systems. Of the genes that control trichome development, a

number have been found to be members of the MYB family

of transcription factors (Avila et al., 1993; Noda et al., 1994;

Kirik et al., 2001; Ishida et al., 2008; Jakoby et al., 2008;

Shangguan et al., 2008). Two notable MYBs that control

trichome development are GLABRA1 (GL1; Oppenheimer

et al., 1991) and TRYPTICHON (TRY; Schellmann et al.,

2002), which competitively initiate or inhibit trichome

formation, respectively (Ishida et al., 2008). Other MYB

proteins that affect trichome development in both Arabid-

opsis and other species are MYB23 (Kirik et al., 2001), MIXTA

(Noda et al., 1994), PhMYB1 (Avila et al., 1993), GaMYB2 and
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GaMYB25 (Jakoby et al., 2008; Shangguan et al., 2008).

NOECK (NOK) is involved in negatively regulating branching

through the repression of ANGUSTIFOLIA in A. thaliana

trichomes, as loss-of-function mutations to this gene result

in trichomes with increased branching (Folkers et al., 1997).

Recently, NOK was identified as MYB106, a MIXTA-like

transcription factor (Jakoby et al., 2008).

Like the trichomes of A. thaliana, poplar trichomes are

uni-nucleate, uni-cellular modified epidermal cells. Unlike

A. thaliana, the trichome density of which is tied to leaf

position and plant developmental stage, poplar trichome

production does not vary significantly in leaves along a

particular shoot axis both when grown in culture or in soil.

Little is known about the genetic basis controlling poplar

trichome differentiation and development, although homo-

logues of trichome regulatory genes have been identified

(Wilkins et al., 2009a,b). It is likely, based on a preliminary

examination of the poplar genome, that there are homolo-

gous genes between poplar and A. thaliana that have

different roles in poplar trichome morphogenesis. For

example, despite the fact that poplar encodes numerous

homologues to genes known to control trichome branching

in A. thaliana (e.g. PtaMYB186), poplar trichomes never

undergo branching. Therefore, it is necessary to functionally

characterize these genes in poplar, as trichomes are closely

tied to deciduous tree defence (Ågren and Schemske, 1993;

Mauricio, 1998; Gruber et al., 2006; Kivimäki et al., 2007),

transpiration (Benzing, 1976; Martin and Schmitt, 1989;

Smith and McClean, 1989; Espigares and Peco, 1995) and

photosynthesis (Benzing and Renfrow, 1971; Benzing et al.,

1976). Moreover, the pleiotropic impact of the investment

in trichome development on aspects of plant growth and

development, including growth rate, have not been exten-

sively investigated in tree species. Such impacts could be

significant as long-lived arboreal species, like poplar trees,

are frequently exposed to multiple challenges by pests and

pathogens over their lifetimes, and must balance resource

investment into defences such as trichomes against

resource availability over the long term.

In an effort to identify new genes involved in the regula-

tion of many facets of growth and development in poplar, a

population of 1800 activation-tagged poplars was pheno-

typed (Harrison et al., 2007). Here, we detail the character-

ization of one mutant line, fuzzy, which had an increase in

trichome density. We found that overexpression of the gene

PtaMYB186, a close homologue of the A. thaliana MYB106

gene, accounted for increased trichome density in the fuzzy

mutant. Consistent with this, we found that overexpression

of PtaMYB186 resulted in changes in transcript abundance

of suites of genes involved in trichome formation. To

characterize the pleiotropic effects of increased trichome

density, fuzzy mutants were compared with wild-type poplar

plants for differences in transpiration, photosynthesis,

growth rate, and resistance to a poplar herbivore, the

white-marked tussock moth (Orgyia leucostigma). This

study provides insights into the mechanisms underpinning

trichome development in a woody perennial plant, and

suggests that increased trichome density may aid

plant growth while concurrently increasing resistance to

herbivory.

RESULTS

In a screen for visible phenotypes in activation-tagged

mutant poplars, the fuzzy mutant was identified on the basis

of an increase in leaf trichome density (Figure 1). Fully

expanded wild-type leaves had 41 trichomes cm)2 on the

adaxial surface, whereas fuzzy had 7509 trichomes cm)2

(Table 1). On the abaxial side of the leaf, wild-type leaves

had 5688 trichomes cm)2 compared with 40 015 tric-

homes cm)2 on fuzzy (Table 1). Abaxial stomata and epi-

dermal cell densities were not significantly different

between wild-type and the fuzzy mutant, therefore the

observed increase in trichome density is not the result of

altered pavement cell expansion or division (Table 1). Also,

there was no significant difference in the length of trichomes

on wild-type and fuzzy leaves. Freeze-fracture microscopy

of fuzzy leaves revealed that the increased number of

trichomes produced a thicker, taller trichome canopy on the

abaxial side of the leaf (Figure 1d,f).

As reported previously (Harrison et al., 2007), the fuzzy

mutant had only one insertion event of the activation tag

T-DNA. The insertion site was mapped to chromosome 8 at

position 553 000 using a modified thermal asymmetric

interlaced polymerase chain reaction (TAIL-PCR) strategy.

Predicted gene models within 10 kb upstream and down-

stream of the insertion site included PtaMYB186, a putative

E3 ubiquitin ligase (protein ID 765763) and a putative ATP/

GTP-binding protein (protein ID 765765).

To identify the activated gene(s) in the vicinity of the

T-DNA insertion, we measured transcript abundance in the

shoot apex using real-time quantitative PCR, as the cellular

mechanisms responsible for trichome initiation are most

active in the young developing leaves. In the shoot apices of

fuzzy mutants PtaMYB186 had eightfold greater transcript

abundance compared with the same tissue in wild-type

trees, whereas transcripts for the other two genes were

below the limit of detection (Figure 2a). The increased

transcript abundance of PtaMYB186 in fuzzy mutants rela-

tive to wild-type poplar was also confirmed using micro-

array-based whole transcriptome analysis on the same

tissue. Transcript levels in different aerial tissues of wild-

type poplar clone 717-1B4 indicates that PtaMYB186 is

normally expressed in the shoot apex and the epidermis of

young stems, whereas transcript levels were below the

detection limit in mature leaves and other tissues of the stem

(data not shown).

To determine if ectopic overexpression of PtaMYB186

was responsible for the fuzzy phenotype, the gene was
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introduced into wild-type clone 717-1B4 Populus tremu-

la · Populus alba under the control of the 35S CaMV

promoter. The young leaves of wild-type poplars grown in

tissue culture have very few abaxial trichomes (Figure 2b),

whereas fuzzy plants have a much denser array of trichomes

(Figure 2c). Compared with other poplar transformation

experiments that we have carried out, the frequency of

transformed plants was much lower with this particular

construct, and multiple transformation experiments were

required to produce the transformed lines described here

(data not shown), plus several of the putative lines were not

viable out of tissue culture. In our experience, this suggests

that activation of this gene with the 35S promoter is

unfavourable to plant regeneration.

Of the six lines recovered from the transformation of

35S::PtaMYB186 into wild-type poplar, two lines had more

trichomes than either the wild type or fuzzy (Figure 2d,e),

three lines had trichome densities similar to fuzzy (Fig-

ure 2f–h) and one 35S::PtaMYB186 line had wild-type

levels of trichome initiation in tissue culture (Figure 2i).

Of the six lines recovered by transformation, four of the

lines were not able to be successfully transferred to soil. Of

the two lines that were transferred to soil (lines 1 and 3),

both had increased trichome initiation on leaves (Fig-

ure 2l,m) and a fourfold and 39-fold greater transcript

abundance of PtaMYB186 in comparison with the wild

type, respectively. Taken together, these findings support

the hypothesis that ectopic overexpression of PtaMYB186

Table 1 Physiological characteristics of
wild-type and fuzzy poplar lines 717 n fuzzy n

Adaxial trichomes (Trichome cm)2) 41 � 16 16 750* � 160 15
Adaxial trichome length (lm) 390 � 17 30 424 � 30 30
Abaxial trichomes (Trichome cm)2) 5688 � 2183 30 40 015* � 9731 28
Abaxial stomates (Stomates cm)2) 31 238 � 5926 30 31 004 � 5111 28
Abaxial epidermal cells (Cell cm)2) 241 179 � 4315 19 250 640 � 4482 15
Leaf area (cm)2) 153 � 28 30 183* � 20 31
Leaf dry weight (%) 47 � 5 31 34 � 1.4 30
Internode length (cm) 30.6 � 1.3 10 32.6 � 1.3 10
Transpiration Rate (mol m)2 s)1) 0.001 � 0.0007 20 0.002* � 0.0002 22
CO2 exchange rate (lmol m)2 s)1) 3.84 � 1.2 20 8.23* � 2 22
Total conductance to H2O (mol m)2 s)1) 0.06 � 0.02 20 0.11* � 0.02 22
Total resistance to H2O (m2 s mol)1) 18.8 � 4.7 20 9.35* � 1.15 22
Total conductance to CO2 (mol m)2 s)1) 0.04 � 0.01 20 0.07* � 0.01 22
Total resistance to CO2 (m2 s mol)1) 30.4 � 7.6 20 15.05* � 1.9 22
Water use efficiency 3.98 � 1.00 20 3.43 � 1.39 22

(a) (b)

(d)(c) (f)(e)

(h)(g)

Figure 1. fuzzy mutant shows increased density

of trichomes on leaf surfaces. Wild-type (a) and

fuzzy (b) shoot apex. Abaxial side of a fully

expanded wild-type (c) and fuzzy (e) leaf; scale

bars = 4 cm. Scanning electron microscopy

image of abaxial side of fully expanded wild-

type leaf (d) and fuzzy (f) leaf; scale bars = 40 lm.

Freeze fractured leaf cross section of wild type (g)

and fuzzy (h) showing the trichome canopy

extending downwards from the abaxial side of

the leaf; scale bars = 100 lm.
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increased trichome initiation and probably accounted for

the fuzzy phenotype.

Transcriptome analysis of the shoot apices of fuzzy and

wild-type plants was undertaken to examine the molecular

underpinnings of the fuzzy phenotype. This analysis found

that the PtaMYB186 transcript (PtpAffx.85736.1.S1) was at

significantly higher levels in the shoot apices of fuzzy than in

the apices of wild-type plants (log2FC = 0.95, one-sided

Student’s t-test, t = )5.8, d.f. = 4, P = 0.002). Additionally, a

further 753 genes were identified that were characterized by

either higher or lower levels of transcript accumulation in

fuzzy compared with wild-type plants (Figure S1; Tables S1

and S2). The 35 genes with the largest differences in

transcript abundance between fuzzy and wild-type plants

are listed in Tables 2 and 3. Strikingly, of the 753 genes with

significant differences in transcript abundance, the majority

(716) had lower transcript abundance in fuzzy mutants in

comparison with wild type (Figure S1; Tables S1 and S2).

A comparison of the GOslim annotations of the genes

with differences in transcript abundance between fuzzy and

wild-type shoots is presented in Figure 3. Notably, the

poplar homologues of genes implicated in trichome devel-

opment in A. thaliana, including KAKTUS, TRANSPARENT

TESTA GLABRA 2, CALOSE SYNTHASE 1 and CYCLIN

DEPENDENT KINASE C1, were prominent amongst the

genes with decreased transcript abundance in fuzzy mutants

relative to wild-type plants. There were also a number of

different gene families that were over-represented amongst

the genes with decreased transcript abundance. These

included genes implicated in reproduction or circadian

rhythm (i.e. FY, LHY), defence-related compounds (i.e. TT7,

PRL1), cell wall biosynthesis and cell division (i.e. CYC3B,

MRH5), chloroplast/photosynthetic genes (i.e. AtGLDP2,

SIGB) and hormone signalling (i.e. EIN3, ERS1; Figure 3).

Of the 35 genes with increased transcript abundance in

fuzzy mutants relative to wild-type plants, 16 encoded

proteins with predicted roles in protein turnover, including

a number of heat-shock proteins (Table S2). Recent evi-

dence suggests that protein turnover is a feature of trichome

differentiation, as these same genes have been found to

have increased transcript abundance in developing Arabid-

opsis trichomes (Jakoby et al., 2008; Lieckfeldt et al., 2008;

Marks et al., 2009). Additional genes also implicated in

trichome development that also had significant increases in

transcript abundance included PtaMYB186, and the genes

homologous to Arabidopsis MYB4 and SHINE3 (SHN3).

To determine if the increase in trichome density on the

adaxial surface of the leaf affected light absorbance, and

thus by extension photosynthetic potential, leaf plastochron

index 12–42 on fuzzy and wild-type trees were analysed

using the normalized difference vegetation index (NDVI)

(Figure 4). Healthy leaves absorbing normal levels of light

have an NDVI value of 0.8–0.9. Conversely, foliage that does

not absorb an optimal level of light (e.g. as a result of
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Figure 2. PtaMYB186 is overexpressed in the fuzzy mutant and is responsible

for the trichome phenotype. (a) Overexpression of PtaMYB186 was detected

using real-time PCR in the shoot apex of fuzzy lines, relative to transcript levels

in wild-type shoot apex. �Expression of two other genes near the insertion site

of the activation tagging T-DNA were below detection levels in both wild-type

and fuzzy lines. Abaxial side of a newly produced wild-type leaf grown in tissue

culture (b), of fuzzy (c) and of the six independent transformants of

35S::PtaMYB186 recovered (lines 1–6; d–i). Shoot apices of soil-grown wild-

type poplar (j), fuzzy (k), 35S::PtaMYB186 line 1 (l) and 35S::PtaMYB186 line 3

(m). Scale bars for b–i = 3 mm.
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barriers such as trichomes) will have a much lower NDVI

value (Sellers, 1985; Myneni et al., 1995). NDVI values for

both the fuzzy mutant and the wild type were not signifi-

cantly different for the young, photosynthetically active

leaves (12–32). Leaves 33–42 of the wild type, however, had

significantly lower NDVI values (P < 0.05). Taken together,

these data indicated that the increases in trichome density

on the adaxial surface of fuzzy leaves do not significantly

decrease the quantity of light absorbed by fuzzy leaves, and

would thus suggest that fuzzy trichome density is not

hindering photosynthesis. Additionally, it is interesting to

note that the older leaves of fuzzy (leaves 33–42) absorb light

more optimally than do wild-type plants, although this small

difference is unlikely to have a significant impact on

photosynthesis because of the position of these leaves on

the stem.

To evaluate whether the increase in trichomes was

correlated with a change in the growth rate of the tree, fuzzy

and wild-type growth were compared in the glasshouse

under natural light conditions (Figure 5a–c). Although the

initial growth rate of the mutant after bud break was not

significantly different from that of the wild type, the mutant

line attained a height of 1.5 m 22 days faster than the wild

type (Figure 5b). There was no difference in the internode

length between the wild type and fuzzy (data not shown).

Stem girth also increased faster in the mutant as compared

with the wild type (Figure 5c). As increased growth would

place an increased demand on the photosynthetic capacity

of the tree, we tested the rate of transpiration and photo-

synthesis of the mutant and the wild type. The mutant had

significantly higher rates of transpiration and photosynthe-

sis, although the efficiency of water use in the mutant was

Table 2 Thirty five differentially expressed genes with the greatest increase in abundance in wild-type shoot apices relative to the apices of
fuzzy mutant with GOslim annotation

Poplar gene model
Fold change
(Log2) AGI homologue Arabidopsis thaliana homologue annotation P

fgenesh4_pg.C_LG_XVI000099 8.97 AT4G01985 Unknown protein 0.00012
gw1.I.3053.1 8.30 ATCG00270 Unknown protein 0.00000
estExt_fgenesh4_pg.C_1520062 8.09 AT1G15690 AVP1 (vacuolar-type H+-pumping

pyrophosphatase 1)
0.00277

fgenesh4_pm.C_scaffold_376000002 7.88 ATCG00270 Unknown protein 0.00000
fgenesh4_pg.C_LG_I002818 7.83 AT1G21680 Unknown protein 0.00000
gw1.44.412.1 7.60 ATCG00680 Unknown protein 0.00170
estExt_fgenesh4_pg.C_LG_I0019 7.58 AT3G13460 ECT2 0.00032
gw1.422.10.1 7.55 ATCG00280 Unknown protein 0.00006
grail3.0376000701 7.46 ATCG00680 Unknown protein 0.00000
eugene3.00181092 7.37 AT1G15690 AVP1 (vacuolar-type H+-pumping pyrophosphatase 1) 0.00261
grail3.0074003701 7.09 AT5G65970 MLO10 (MILDEW RESISTANCE LOCUS O 10) 0.00000
grail3.0074003801 7.09 AT3G51950 Zinc finger (CCCH-type) family protein 0.00000
grail3.0220000401 7.09 AT5G12440 Zinc finger (CCCH-type) family protein 0.00000
gw1.II.3698.1 6.98 ATCG00670 Unknown protein 0.00056
estExt_fgenesh4_pg.C_LG_II2062 6.95 AT2G05710 Aconitate hydratase 0.00000
fgenesh4_pg.C_scaffold_15705000001 6.91 AT4G24690 Ubiquitin-associated (UBA)/TS-N

domain-containing protein
0.00075

estExt_fgenesh4_pm.C_880008 6.87 AT4G13930 SHM4 (SERINE HYDROXYMETHYLTRANSFERASE 4) 0.00190
estExt_fgenesh4_pg.C_LG_XVIII0149 6.85 AT2G25970 KH domain-containing protein 0.00038
estExt_Genewise1_v1.C_LG_XIII1701 6.82 AT3G04470 Unknown protein 0.00102
estExt_fgenesh4_pm.C_LG_XIV0527 6.65 AT1G05160 CYP88A3 (ENT-KAURENOIC ACID HYDROXYLASE 1) 0.00000
gw1.131.1.1 6.61 AT5G26742 EMB1138 (EMBRYO DEFECTIVE 1138) 0.00190
gw1.VIII.2633.1 6.61 AT4G37930 SHM1 (SERINE HYDROXYMETHYLTRANSFERASE 1) 0.00211
eugene3.00051523 6.59 AT1G76160 SKS5 (SKU5 Similar 5) 0.00136
eugene3.10060002 6.47 AT1G30330 ARF6 (AUXIN RESPONSE FACTOR 6) 0.00000
gw1.XIII.3135.1 6.39 AT1G33470 RNA recognition motif (RRM)-containing protein 0.00236
gw1.XIV.449.1 6.37 AT5G65620 peptidase M3 family protein 0.00006
eugene3.30290001 6.28 ATCG00170 Unknown protein 0.00043
eugene3.00190393 6.27 AT1G55500 ECT4 0.00022
estExt_Genewise1_v1.C_LG_XIV1619 6.26 AT4G01070 GT72B1 0.00245
eugene3.01180054 6.24 AT4G18030 Dehydration-responsive family protein 0.00186
estExt_fgenesh4_pm.C_LG_XVIII0347 6.21 AT5G57940 ATCNGC5 (CYCLIC NUCLEOTIDE GATED CHANNEL 5) 0.00002
estExt_fgenesh4_pg.C_1470038 6.20 AT2G24520 AHA5 (ARABIDOPSIS H(+)-ATPASE 5) 0.00000
grail3.0013021201 6.18 AT2G25970 KH domain-containing protein 0.00002
grail3.0050011001 6.18 AT3G62360 Carbohydrate binding 0.00002
eugene3.30290002 6.17 ATCG00190 Unknown protein 0.00000
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not significantly different from that of the wild type (Table 1;

P < 0.05).

An increased density of trichomes has been associated

with decreased herbivory in different plant models (Ågren

and Schemske, 1993; Mauricio, 1998; Gruber et al., 2006;

Kivimäki et al., 2007). We conducted both insect develop-

ment and feeding bioassays to determine if fuzzy was more

resistant to white-marked tussock moth larvae, a generalist

defoliator of several hardwood species, including poplar. In

the first bioassay, we monitored larval development using

recently hatched first-instar larvae that were fed leaf discs

from either wild-type or fuzzy trees for 2 weeks, after which

their development and gain in mass was assayed

(Figure 6A,B).

It was hypothesized that increased trichome number

would deter feeding on fuzzy, and that the larvae would

develop more slowly and generally be smaller in size. Larvae

raised on wild-type leaf discs in Petri dishes developed

through to fourth or fifth instar and gained, on average,

20.9 mg in fresh weight. Conversely, larvae reared on a diet

of fuzzy leaf discs only developed to the third or fourth larval

instar, and gained only 5.8 mg, a significant reduction

(Figure 6b; P < 0.05). In a second test of larval development,

second-instar larvae were caged on either wild-type or fuzzy

trees for 14 days, after which their development and weight

gain was assessed (Figure 6b). Similar to the first tests,

larvae raised on wild-type trees grew significantly bigger

(Figure 6B; P < 0.05). Finally, choice of feeding bioassays

Table 3 Thirty-two differentially expressed genes with the greatest reduction in abundance in the shoot apices of wild-type plants as compared
with the apices of fuzzy mutants classified According to GOslim annotation

Poplar gene model
Fold
change (Log2)

AGI
homologue Arabidopsis thaliana homologue annotation P

estExt_fgenesh4_pg.C_LG_X1023 )4.50 AT1G56300 DNAJ heat-shock protein 0.00000
eugene3.00131208 )4.33 AT5G60490 FLA12 (fasciclin-like arabinogalactan-protein 12) 0.00003
grail3.0001103101 )3.98 AT2G29500 17.6-kDa class-I small heat-shock protein (HSP17.6B-CI) 0.00003
eugene3.00031372 )3.57 AT1G12060 ATBAG5 (ARABIDOPSIS THALIANA BCL-2-ASSOCIATED

ATHANOGENE 5)
0.00004

fgenesh4_pg.C_LG_II001519 )3.49 AT2G46130 WRKY43 (WRKY DNA-binding protein 43) 0.00141
fgenesh4_pg.C_LG_V001233 )3.22 AT2G30766 Unknown protein 0.00000
estExt_Genewise1_v1.C_LG_IX3637 )2.95 AT2G29500 17.6-kDa class-I small heat-shock protein (HSP17.6B-CI) 0.00147
gw1.V.991.1 )2.94 AT3G22830 AT-HSFA6B (Arabidopsis thaliana heat-shock

transcription factor A6B)
0.00009

estExt_Genewise1_v1.C_LG_IX0700 )2.86 AT2G29500 17.6-kDa class-I small heat-shock protein (HSP17.6B-CI) 0.00055
gw1.II.950.1 )2.85 AT4G00880 Auxin-responsive family protein 0.00138
grail3.0204000201 )2.83 AT4G18170 WRKY28 (WRKY DNA-binding protein 28) 0.00250
gw1.XVIII.1599.1 )2.82 AT5G11190 SHN3 (SHINE3) 0.00098
estExt_Genewise1_v1.C_LG_X0543 )2.81 AT3G16920 Chitinase 0.00071
grail3.0017034001 )2.75 AT5G56030 HSP81-2 (EARLY-RESPONSIVE TO DEHYDRATION 8) 0.00006
estExt_Genewise1_v1.C_LG_IX0700 )2.72 AT2G29500 17.6-kDa class-I small heat-shock protein (HSP17.6B-CI) 0.00014
eugene3.00190185 )2.67 AT3G04530 PPCK2 (PHOSPHOENOLPYRUVATE

CARBOXYLASE KINASE 2)
0.00166

estExt_fgenesh4_pg.C_LG_XIV0888 )2.60 AT5G48570 Peptidyl-prolyl cis-trans isomerase 0.00008
estExt_fgenesh4_pm.C_LG_VIII0711 )2.51 AT3G23410 Alcohol oxidase-related 0.00014
eugene3.00150664 )2.51 AT5G50260 Cysteine proteinase 0.00104
gw1.VIII.1750.1 )2.49 AT1G14870 Unknown protein 0.00222
estExt_Genewise1_v1.C_570289 )2.42 AT1G15380 Lactoylglutathione lyase family

protein/glyoxalase I family protein
0.00145

eugene3.00010940 )2.38 AT4G11660 AT-HSFB2B (Arabidopsis thaliana heat-shock
transcription factor B2B)

0.00008

estExt_Genewise1_v1.C_LG_III1704 )2.31 AT1G54050 17.4-kDa class-III heat-shock protein (HSP17.4-CIII) 0.00009
gw1.XI.3394.1 )2.29 AT2G31090 Unknown protein 0.00293
eugene3.01240087 )2.25 AT2G20560 DNAJ heat-shock family protein 0.00113
fgenesh4_pm.C_scaffold_187000008 )2.24 AT5G54010 Glycosyltransferase family protein 0.00141
fgenesh4_pg.C_LG_VI001544 )2.17 AT2G26150 ATHSFA2 (Arabidopsis thaliana

heat-shock transcription factor A2)
0.00035

estExt_fgenesh4_pg.C_LG_IV1453 )2.15 AT4G38620 MYB4 (myb domain protein 4) 0.00110
fgenesh4_pm.C_LG_IX000642 )2.10 AT2G18370 Protease inhibitor/lipid transfer

protein (LTP) family protein
0.00306

eugene3.00640219 )2.02 AT2G20560 DNAJ heat-shock family protein 0.00041
eugene3.00440247 )1.88 AT5G52640 HSP81-1 (HEAT-SHOCK PROTEIN 81-1) 0.00299
eugene3.00002208 )1.79 AT4G02890 UBQ14 (ubiquitin 14) 0.00237
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were conducted to measure leaf consumption after 24 h by

third- and fourth-instar larvae reared in Petri dishes when

given the choice of eating either wild-type or fuzzy leaf discs

(Figure 6C,D). Leaves with more damage indicate a feeding

preference for that genotype. The larvae fed significantly less

on fuzzy compared with wild-type leaf discs (P < 0.05). Data

from these three bioassays combined demonstrate that the

larvae of the tussock moth not only prefer consuming wild-

type leaves over fuzzy leaves, but also that larvae feeding on

fuzzy trees display substantial developmental retardation.

DISCUSSION

Under field conditions plants are threatened with multiple,

often simultaneous, biotic and abiotic stressors that impact

their growth. One line of defence in many plants is the

development of trichomes on the leaf surface (Levin, 1973;

Ågren and Schemske, 1993). Although trichomes can be a

selective advantage during periods of stress, trichomes are

considered to be energetically ‘costly’ to produce (Ågren and

Schemske, 1993; Mauricio, 1998), and increases in trichome

density have been correlated with reduced growth rate

(Gruber et al., 2006). Trichomes have also been shown to

decrease the level of incident light reaching the leaf surface

(Benzing and Renfrow, 1971; Benzing et al., 1976), reduce

transpiration through maintenance of a boundary layer of air

next to the leaf surface (Benzing, 1976; Martin and Schmitt,

1989; Smith and McClean, 1989; Espigares and Peco, 1995)

and decrease pest foraging (Levin, 1973; Skaltsa et al., 1994;

Fordyce and Agrawal, 2001). Therefore, our identification of

a poplar mutant with an increase in trichome density that
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Figure 3. GOslim classification of genes with

differential transcript accumulation in the fuzzy

mutant relative to wild-type plants. Arabidopsis

thaliana homologues of poplar genes with

altered transcript abundance in fuzzy mutants

relative to wild-type plants were identified

(Tables S1 and S2), and GOslim classification of

the Populus genes was based on the functional

categorization of the A. thaliana homologues

(homologues were identified by POPGENIE, Sjodin

et al., 2009; GO classification by TAIR, Rhee

et al., 2003). For each GOslim ontology (e.g.

Cellular Component), the number of annotations

to terms in a given GOslim category (e.g. Chlo-

roplast) divided by the total number of annota-

tions to any GOslim term in this ontology was

determined; this value is expressed as a percent-

age. GOslim classification included 41 probe sets

with higher levels of transcript accumulation in

fuzzy than in wild type (dark-grey bars), and 766

probe sets with higher levels of transcript accu-

mulation in wild type than in fuzzy (light-grey

bars). Full GO classification data is available in

Tables S3 and S4.
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also had an increased photosynthetic capacity, elevated rate

of transpiration and enhanced growth rate is surprising. The

application of a tree with such phenotypes in forestry could

be an interesting direction for future research.

The poplar gene PtaMYB186 is responsible for the fuzzy

phenotype

The misregulated gene that gave rise to the fuzzy phenotype

was PtaMYB186, a close homologue of other R2R3 MYB

transcription factors known to affect trichome morphogen-

esis. Three classes of MYB transcription factors (R1R2R3,

R2R3 and R3) are grouped according to the presence of a

highly conserved N-terminal DNA binding domain, whereas

their C-terminal domains vary widely based on their role in

transcriptional regulation (Kranz et al., 1998; Jin and Martin,

1999; Meissner et al., 1999). The R2R3s comprise the largest

family of transcription factors in plants (Riechmann et al.,

2000), and have a number of members that control trichome

morphogenesis (Oppenheimer et al., 1991; Noda et al.,

1994; Kirik et al., 2001; 2005). A recent annotation of the

R2R3-MYB family in Populus trichocarpa identified 193

members, more than any other plant with a sequenced

genome to date (Wilkins et al., 2009a).

The PtaMYB186 gene misregulated in the fuzzy mutant

bears closest sequence homology with the Arabidopsis

AtMYB106, a repressor of trichome outgrowth and branch-

ing (Jakoby et al., 2008). As overexpression of PtaMYB186

recapitulated the increased trichome phenotype of the fuzzy

mutant, this would suggest that the PtaMYB186 protein

functions more like AmMIXTA, a close homologue of

AtMYB106, which has been shown to promote trichome

differentiation (Glover et al., 1998). A cotton homologue of

PtaMYB186 (GhMYB25) also promoted trichome initiation

(Wu et al., 2006). Similarly, enhanced MYB expression

induced trichome differentiation in some species, but not

in others (Payne et al., 1999; Gruber et al., 2006).

PtaMYB186 is a member of the Populus R2R3-MYB

clade 15 (Wilkins et al., 2009a). In addition to PtrMYB186,

clade 15 includes four Populus R2R3-MYB genes

(PtrMYB039, PtrMYB083, PtrMYB089 and PtrMYB138), two

A. thaliana genes (AtMYB16 and AtMYB106), two Vitis

vinifera genes (Vv14g18963442 and Vv17g7086341) and

one Petunia hybrida gene (PhMYB1) (Figure 7). Strikingly,

the PtaMYB186 subgroup is expanded in poplar relative to

both A. thaliana and grapevine. The expansion of this

subgroup in poplar suggests that there is either functional

redundancy in poplar, or that the poplar family members

have assumed diverse functions in poplar growth and

development. The potential for redundancy emphasizes

the value of activation tagging as a gene discovery

approach, as the role of PtaMYB186 might not have been

uncovered in a loss-of-function approach, where other

members in the clade might compensate for the absence

of PtaMYB186 activity.

Potential functional redundancy in the PtaMYB186 sub-

group during the development of emerging leaves is sug-

gested by transcript abundance data from the

PopGenExpress data set (Wilkins et al., 2008), where the

highest transcript abundance occurs in this organ relative to

other tissues/conditions for both PtrMYB186 paralogues

(probe set: PtpAffx.85736.1.S1_at) and PtrMYB083 (probe

set: PtpAffx.28813.1.S1_at) (Figures S2 and S3; Table S5).

Nevertheless, functional divergence is also suggested by the

transcript abundance data, as PtrMYB186 (probe set:

PtpAffx.85736.1.S1_at) also shows a high level of transcript

abundance in male catkins relative to other tissues (except

young leaves), in contrast to PtrMYB083 (probe set:

PtpAffx.28813.1.S1_at), which does not show appreciable

transcript accumulation in this tissue (Figures S2 and S3;

Table S5). Notably, transcript accumulation at the

PtpAffx.85736.1.S1_at probe set was significantly higher in

the shoot apices of fuzzy than in the apices of wild-type

plants (log2FC = 0.95, one-sided Student’s t-test, t = )5.8,

d.f. = 4, P = 0.002). PtaMYB083 (PtpAffx.28813.1.S1_at),

which is distinguishable from PtaMYB186 using the Affyme-

trix GeneChip, was expressed at significantly lower levels in

fuzzy than in wild-type plants (log2FC = 1.19, two-sided

Student’s t-test, t = )2.9, d.f. = 4, P = 0.05).

PtaMYB186 misexpression alters transcript abundance

in shoot apices

Whole-transcriptome microarray analysis of genes with

significant differences in transcript abundance in fuzzy

mutants relative to wild-type plants revealed some genes in
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Figure 4. Normalized difference of vegetation index (NDVI) comparison

between wild-type and fuzzy leaves. NDVI values for wild-type leaves (black

diamonds) compared with fuzzy leaf NDVI values (black squares) show no

significant difference in the light absorbance by young leaves of fuzzy and

wild-type plants (leaves 12–32), but demonstrate a significantly higher

absorbance of light by fuzzy leaves 33–42 as compared with wild-type

(P < 0.05). Error � SD.
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which function correlates well with the fuzzy phenotype. For

example, a suite of genes encoding heat-shock proteins

were prominent amongst the genes with increased tran-

script abundance in the fuzzy mutant. Consistent with this,

genes encoding heat-shock proteins have been previously

implicated in trichome differentiation (Jakoby et al., 2008;
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Figure 5. The fuzzy mutant exhibits an increased

growth rate.

(a) Mutant line to left of the image shown after

80 days of growth, as compared with the wild

type on the right.

(b) Growth rate of tree height of mutant (black

squares) compared with wild-type poplar (black

diamonds) from bud break to 1.59 m.
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squares) versus wild-type poplar (black dia-
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Figure 6. fuzzy exhibits increased resistance to tussock moth larvae feeding.

(a) Larvae reared from first instar for 14 days on either detached wild-type poplar leaves (top row) or fuzzy leaves (bottom row).

(b) Gain in fresh weight of larvae reared from hatching for 14 days on detached leaf discs of wild-type leaves (black bar) versus fuzzy leaf discs (white bar) (plate trial),

or raised from second-instar larvae for 14 days caged on wild-type or fuzzy trees (tree trial).

(c) Representative examples of leaf disc damage 24 h after the initiation of feeding in choice assays between wild-type (top row) and fuzzy (bottom row) leaf discs.

(d) Average percentage leaf area consumed for wild-type (black bar) and fuzzy (white bar) leaf discs in choice feeding assays. *Statistically significant difference from

wild type (P < 0.05, Student’s t-test). Error � SE.
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Marks et al., 2009). Similarly, several regulatory genes pre-

viously implicated in the control of A. thaliana trichome

formation, including KAKTUS and AtMYB4, also had

increased transcript abundance in the fuzzy mutant. In

A. thaliana, these genes are typically associated with the

control of trichome branching and morphology, as opposed

to strictly trichome patterning (Perazza et al., 1999; Downes

et al., 2003; El Refy et al., 2004). As poplar trichomes are not

branched, the increased transcript abundance of KAKTUS

and AtMYB4 in fuzzy mutants suggests that these genes may

have been adopted for a different function in trichome

development in poplar. Our findings therefore emphasize

the need for functional characterization of genes implicated

in trichome formation in several plant systems, rather than

relying on simple homology searches.

Analysis of transcriptome remodelling in shoot apices of

the fuzzy mutant relative to wild-type poplar shoot apices

suggested that the transcript abundance of genes involved

in the regulation and perception of hormones differed

between the two genotypes. In fuzzy, the transcript abun-

dance of genes associated with auxin flow and breakdown

was lower than that in wild type, as was the transcript

abundance for ethylene response genes and a gene encod-

ing the ethylene receptor ETHYLENE RESPONSE SENSOR 1.

Jakoby et al. (2008) found that ethylene-responsive genes

were differentially regulated in trichomes relative to epider-

mal pavement cells, and others have found that ethylene

affected trichome spacing (Kazama et al., 2004) and tri-

chome branching (Plett et al., 2009). Taken together, it is

possible that ethylene might be involved in regulating

trichome development in poplar.

The fuzzy mutant exhibits increased photosynthesis and

growth rate

Despite the increased carbon allocation resulting from a

higher density of trichomes it was observed that the fuzzy

mutant also had increases in growth rate and in the rate of

photosynthesis. Whole-transcriptome analysis to identify

genes with altered transcript abundance in fuzzy relative to

wild-type poplar indicated that genes typically associated

with increased growth (i.e. cell wall synthesis, cell cycling

genes) or photosynthesis were either unaffected or had a

reduction in transcript abundance in the fuzzy mutant.

Although there is still the possibility that one of the other

genes with increased transcript abundance in fuzzy mutants

would result in an increase in growth rate, an alternative

hypothesis would be that trichome density may indirectly

affect growth rate. Modelling and experimental techniques

have demonstrated that trichomes can increase transpira-

tion rate and CO2 availability in plants by altering leaf

boundary layers (Schreuder et al., 2001; Benz and Martin,

2006). Thus, the increased availability of CO2 in fuzzy,

resulting from a decrease in the resistance to CO2 (Table 1),

could lead to a higher rate of photosynthesis, as has been

previously demonstrated (Brewer and Smith, 1994; Drake

et al., 1997; Norby et al., 1999; Nowak et al., 2004; Ainsworth

and Long, 2005; Liberloo et al., 2006; Pereira de Souza et al.,

2008). As higher ambient CO2 concentrations result in

increases in poplar growth (Liberloo et al., 2006), it is

possible that the altered growth observed in fuzzy trees is a

physiological product of the increased gas exchange caused

by altered trichome canopy height and density. Although we

are unable to prove this link, further testing will be required

to determine if the altered trichome profile in fuzzy affects

the boundary layer around the leaf surface and growth rate.

It must be stressed, as well, that these growth trials were

performed under ideal conditions, and it is unknown whe-

ther this increased growth rate would occur under field

conditions and be maintained over several years of growth.

This is currently being studied in a long-term field trial.

Increased trichome density reduces insect herbivory

Natural plant defences against insect herbivory typically

involves the production of physical barriers to feeding, such

as trichomes, or the production of bitter or toxic secondary

metabolites. Whereas the decreased foraging by white-

marked tussock moth larvae could result from the increase

in trichome density on fuzzy, as has been found in other

pubescent plants (Skaltsa et al., 1994; Espigares and Peco,

1995), this preference could also result from an increased

production of secondary metabolites (e.g. phenolic gluco-

sides) or proteins (e.g. Kunitz protease inhibitors) that deter

insect feeding, and/or delay development through reduced

nutrition from leaves. Expression analysis of fuzzy shoot tips

demonstrated that a number of genes associated with

defence signalling, phenylpropanoid pathways and wax

production were repressed in developing leaves (e.g. LOX2,

PRL1; Table 2; Table S1). This may result, in part, from the

overexpression of the Arabidopsis MYB4 poplar homo-

logue, which, other than being known as a homologue of

0.5 substitutions
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AtMYB106

PtrMYB138
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Figure 7. fuzzy (PtrMYB186) is part of PtrR2R3-MYB clade 15. Clade 15

includes closely related R2R3-MYB transcription factors from the genomes

of Arabidopsis thaliana (At), Populus trichocarpa (Ptr), Vitis vinifera (Vv) and

Petunia · hybrida (Ph). The phylogeny is modified from Wilkins et al. 2008.

Scale bar = 0.5 substitutions per site.
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GL1, is a transcriptional repressor that modulates the

expression of genes involved in phenylpropanoid biosyn-

thesis (Jin et al., 2000). Furthermore, genes associated with

induced defences against feeding insects are not among the

list of genes with increased transcript abundance in the fuzzy

mutants. These data combined suggest that decreased

feeding on fuzzy leaves by white-marked tussock moth lar-

vae is probably the result of an increased density of tric-

homes acting as a physical deterrent, and not the result of an

increase in the production of defensive metabolites or

proteins.

CONCLUSION

Here, using an a priori screen of an activation-tagged poplar

mutant population, we have identified a trichome regulatory

gene (PtaMYB186) that, when activated, causes an increase

in trichome density. These mutants also demonstrate

increased transpiration, photosynthetic capacity, growth

rate and insect resistance relative to wild-type plants. The

closest homologue of this gene in A. thaliana, AtMYB106,

has been characterized as a negative regulator of trichome

branching. This work has emphasized the critical need for

gene characterization within different model plant systems,

as the pleiotropic impact of PtaMYB186 on plant develop-

ment would not have been predicted based on Arabidopsis

research.

EXPERIMENTAL PROCEDURES

All plant material used for phenotypic characterization was grown
under glasshouse conditions at Queen’s University in Kingston, ON,
Canada. The fuzzy mutant was generated as described in Harrison
et al. (2007) in a P. tremula · P. alba clone 717-1B4 background,
and all comparisons of fuzzy were made with this hybrid.

Identification and evaluation of the trichome phenotype

Leaf pubescence was compared among the activation-tagged pop-
ulation by an initial visual screen of trichome density, and was
subsequently analyzed using cryo-scanning electron microscopy
(SEM), as described in Harrison et al. (2007). Adaxial trichomes
were counted from SEM images of fully expanded leaves. To
determine the number of trichomes on the abaxial side of wild-type
and fuzzy leaves, trichomes were removed from fully expanded
leaves using adhesive tape, and impressions of the epidermis were
taken using clear nail polish (Boeger et al., 2004). Trichome stumps
left within these impressions as well as stomates were counted
using a Carl Zeiss Axioplan microscope (Carl Zeiss, http://www.
zeiss.com), and were reported as number of trichomes or stomates
per cm2 (n = 30 leaves for wild type; n = 28 leaves for fuzzy).
Because of the very high number of trichomes on poplar, and the
difficulty that ensued for counting their density, we compared the
density of stomates and epidermal cells between the wild type and
fuzzy with values reported for other poplar species to gain confi-
dence in our scoring. As the removal process damages the leaf
surface, especially the contours of the epidermal cells, we only
counted the replicates in which we could obtain accurate estimates
of all cell types. As our data for stomatal density was well within the
range reported for different clones of poplar (Ferris et al., 2002;
Dillen et al., 2008; Woo, 2010), we are confident that this method of

density analysis is accurate. For each of the 35S::PtaMYB186 lines at
least three leaves of the same size were compared for trichome
density to determine if trichome density was increased.

Identification of the gene responsible for the trichome

phenotype

The single insertion site was determined by a modified TAIL PCR
technique using the Genome Walker kit (Clontech, http://
www.clontech.com) according to the manufacturer’s instructions.
The expression levels of three genes 10 kb upstream or down-
stream of the insertion site were tested in the shoot apex using the
quantitative PCR ABI SYBR Green system, following the manufac-
turers instructions (ABI, http://www.appliedbiosystems.com) using
a Cepheid SmartCycler (Cepheid, http://www.cepheid.com). Prim-
ers used for the analyses were as follows: PtaMYB186 forward,
5¢-CTGCCTGCCAAGCTGGAC-3¢; PtaMYB186 reverse, 5¢-GCAATG-
GCTGACCACCTG-3¢; putative E3 ligase, forward, 5¢-GAGTGGTG-
CTCAACAGGAG-3¢; putative E3 ligase reverse, 5¢-CCTCCCTTAC-
TATTAGC-3¢; putative ATP/GTP binding protein forward, 5¢-GAG-
TGGTGCTCAACAGGG-3¢; putative ATP/GTP binding protein
reverse, 5¢-CATTAGGACATTTAACCTC-3¢; UBQ forward, 5¢-TCCA-
AGACAAGGAAGGCATCC; UBQ reverse, AGCACCAAGTGAAGGG-
TTGACTC-3¢. All primers were designed to span an intron–exon
barrier to avoid amplification of genomic DNA contamination, and
were only found to amplify from a cDNA template. The ubiquitin
gene used as a reference was tested under experimental conditions
and was found to be stably expressed. All primers showed a linear
response to template concentration. All experiments were per-
formed on three biological replicates.

The full-length sequence of the MYB186 gene was determined
using a Clontech Marathon cDNA kit according to the manufac-
turer’s instructions (Clontech). PtaMYB186 was cloned into pCAM-
BIA1305.1 and transformed into wild-type 717 poplar as described
by Harrison et al. (2007). Six lines were recovered from the
transformation of 400 explants, and the trichome initiation in young
leaves was compared with wild-type lines to determine if the
phenotype was recapitulated. Images of representative leaves for
each 35S::PtaMYB186 line were taken using a Carl Zeiss Stemi 2000-
C dissecting microscope (Carl Zeiss).

RNA extraction and microarray hybridization

RNA extraction and transcript abundance analysis using the
Affymetrix Poplar GeneChip were essentially as described previ-
ously (Wilkins et al., 2009a,b). Briefly, plant material was ground to
a fine powder under liquid nitrogen, and total RNA was extracted
from each sample using the Trizol method (Invitrogen, http://
www.invitrogen.com). RNA quality was determined electrophoret-
ically. For each sample, 5 lg of total RNA was reverse transcribed
(SuperScript II; Invitrogen), labelled and hybridized to the Poplar
Genome Array according to the manufacturer’s protocols (Affyme-
trix, http://www.affymetrix.com) at the Centre for the Analysis of
Genome Evolution & Function at the University of Toronto. For each
genotype, RNA was extracted from three replicate biological sam-
ples. Each sample included two shoot apices collected from the
primary stem, and each sample was hybridized to an Affymetrix
Poplar GeneChip.

Microarray analysis

GeneChip data analysis was performed using the BioConductor
suite (Gentleman et al., 2004) in R (R: A language and environment
for statistical computing; http://www.R-project.org) (R Development
Core Team, 2009) using the AFFY package (Gautier et al., 2004). All
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six microarrays were pre-processed together using GC-robust
multi-array analysis (GCRMA) (Wu et al., 2004). Expression data
were filtered to remove probe sets reporting low transcript abun-
dance and low variance across all arrays (Gentleman et al., 2009)
(minimum intensity of 100 on a minimum of two arrays, minimum
interquartile range of 0.5 on the log2-scale).

The pre-processed data were analysed using the TREAT (Stu-
dent’s t-test relative to a threshold (McCarthy and Smyth, 2009);
function in LIMMA (Linear Models for Microarrays package (Smyth,
2005); in R (R Development Core Team, 2009). The linear model was
parameterized by group means with a manually defined sum-to-
zero contrast matrix to test directly for genes that had different
levels of transcript accumulation between the two genotypes.
TREAT tests whether the true differential expression for a given
probe set is greater than a given threshold value or fold change. In
this instance, differentially expressed genes were identified for
which there was a minimum twofold difference for the transcript
levels in wild type and fuzzy with a false discovery rate (Benjamini
and Hochberg, 1995) of <0.05. All CEL files have been uploaded to
GEO. Data, description of experimental design, and experimental
methods are available for download, under GEO accession number
GSE21061.

Growth comparison on wild-type and fuzzy trees

Two separate growth trials were performed in early and mid-sum-
mer of 2007 in a glasshouse at Queen’s University (44.23�N, 76.5�W)
under natural day length. The average daily ambient air tempera-
ture for the first growth trial was 23.5 � 2.0�C, whereas for the
second growth trial the average daily air temperature was
24.5 � 2.9�C. Ventilator fans were used to maintain an even tem-
perature within the glasshouse at both the soil level and at the tree
canopy level. Trees were watered daily and fertilized once a week
with 20:20:20 (N : P : K) fertilizer (Plant Products Inc., http://
www.plantprod.com). Stem cuttings of the same diameter and
length of wild type (n = 19) and fuzzy (n = 23) were rooted by
inserting a toothpick soaked in indole-3-butyric acid through the
bottom of each cutting and grown in a 50:50 mix of sand and soil for
1 month. Once roots were established the cuttings were transferred
to individual pots and shoots were reduced to one shoot per cutting.
Once shoots reached 30 cm in height, the growth trial was initiated
and the time for each tree to grow an additional 15 cm was recorded
until trees reached a height of 150 cm. Tree trunk girth was mea-
sured 30 cm from the base of the growing stem, beginning when
each tree was 45 cm in height until the end of the growth trial.

Photosynthesis and NDVI measurements

Rates of photosynthesis and respiration were analysed on the first
fully expanded leaf of wild-type and fuzzy trees with the Qubit CO2

analysis system (Qubit, http://www.qubitsystems.com) using an
artificial light source and air containing 400 ppm CO2, at a constant
airflow of 0.5 L min)1, and with the leaf temperature maintained at
24.8�C. Calculations were performed according to the manufac-
turer’s instructions. The efficiency of water use was measured as the
ratio of CO2 exchange rate to the transpiration rate, as described by
Kenzo et al. (2008). NDVI was performed using a handheld
PLANTPEN (Qubit), according to the manufacturer’s instructions.

Tussock moth developmental and feeding bioassays

Tussock moth egg masses were obtained from the Canadian For-
estry Service and hatched in sterile Petri dishes. Newly emerged
larvae were transferred to plastic rearing cups with General Purpose
Lepidopteran diet media (BioServ, http://www.bio-serv.com), and
left to feed until the larvae were at the desired larval instar. For

larvae developmental assays, six newly hatched larvae were placed
in a Petri dish with four leaf discs of either fuzzy or wild type trees
(n = 8 for wild-type; n = 12 for fuzzy). These leaf discs were replaced
every 2–4 days to maintain a fresh supply of leaf matter and to
maintain an excess of food for the larvae. After 14 days the larval
instar and gain in fresh weight were recorded for each test. For the
development of the larvae on trees, net cages were set up around 10
leaves of the same plastichron index on each fuzzy or wild type tree
(n = 6 for wild type; n = 7 for fuzzy). Ten second-instar larvae were
transferred into each cage and left to develop for 14 days. At the end
of the trial larval instar and gain in fresh weight were analysed. For
feeding preference tests, four-fourth-instar larvae that had been
starved for 24 h were placed in a large Petri dish with four leaf discs
of fuzzy trees and four leaf discs of wild-type trees, and left to feed
for 24 h (n = 5). The remains of leaf discs were scanned and anal-
ysed for remaining leaf area using a custom-modified image pro-
cessing program [GNU Image Manipulation Program (GIMP) v2.4.6;
http://www.gimp.org).

Statistical analysis

A Student’s t-test was performed to determine the significance of
the results for comparison of fuzzy and wild-type physiological
parameters, and in the analysis of the tussock moth larvae feeding
challenges (P < 0.05). General statistical analyses of the microarray
results were essentially as described previously (Wilkins et al.,
2009a,b), with the specifics pertinent to the analyses reported in the
current work described in detail above.

ACKNOWLEDGEMENTS

Research infrastructure and technical support was generously pro-
vided by the Biology department at Queen’s University, and the
Centre for Analysis of Genome Evolution & Function at University of
Toronto. JMP and OW were supported by a Natural Science and
Engineering Research Council of Canada (NSERC) Graduate Schol-
arships (PGS-D and CGSD, respectively). This work was generously
supported by funding from NSERC, the Canada Foundation for
Innovation (CFI), the Ontario Research Fund (ORF) and the University
of Toronto to MMC, and from NSERC, Genome Canada, CFI, ORF,
and Queen’s University to SR. Funding support to SGR was provided
by a University of North Dakota New Faculty Scholar Award, a North
Dakota EPSCoR Advanced Undergraduate Research Award and
National Science Foundation grant #IOS-0922418. The authors
would like to thank Haylee Dassinger, Diana Bertrand and Ying Chen
for technical assistance, and Dr Robert Guy for his critical reading of
the manuscript. We are also grateful for the highly constructive input
into the manuscript provided by two anonymous reviewers.

SUPPORTING INFORMATION

The following supplementary material is available for this article
online:
Figure S1. Pearson correlation heat map of the fuzzy and wild-type
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set: PtpAffx.85736.1.S1_at) across the PopGenExpress developmen-
tal data set (Wilkins et al., 2009a,b).
Figure S3. Absolute transcript abundance data from Affymetrix
GeneChip microarray analysis for PtrMYB083 (probe set:
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