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Estimates of the timing of divergence are central to testing the underlying causes of speciation. Relaxed molecular clocks and

fossil calibration have improved these estimates; however, these advances are implemented in the context of gene trees, which

can overestimate divergence times. Here we couple recent innovations for dating speciation events with the analytical power

of species trees, where multilocus data are considered in a coalescent context. Divergence times are estimated in the bird genus

Aphelocoma to test whether speciation in these jays coincided with mountain uplift or glacial cycles. Gene trees and species trees

show general agreement that diversification began in the Miocene amid mountain uplift. However, dates from the multilocus

species tree are more recent, occurring predominately in the Pleistocene, consistent with theory that divergence times can be

significantly overestimated with gene-tree based approaches that do not correct for genetic divergence that predates speciation.

In addition to coalescent stochasticity, Haldane’s rule could account for some differences in timing estimates between mitochondrial

DNA and nuclear genes. By incorporating a fossil calibration applied to the species tree, in addition to the process of gene lineage

coalescence, the present approach provides a more biologically realistic framework for dating speciation events, and hence for

testing the links between diversification and specific biogeographic and geologic events.

KEY WORDS: Aphelocoma, BEAST, divergence times, fossil calibration, gene tree, glaciations, mountain uplift, Pleistocene, species

tree.

The timing of speciation events holds special significance for

addressing questions in evolutionary biogeography (e.g., Brown

et al. 2008), yet obtaining accurate estimates for divergence times

on phylogenies is notoriously difficult and fraught with potential

sources of error (Arbogast et al. 2002; Grauer and Martin 2004).

Recent analytical advances in relaxed phylogenetics (Thorne and

Kishino 2002; Sanderson 2003; Drummond and Rambaut 2007)

have addressed many of these difficulties, for instance by allow-

ing for molecular rate heterogeneity among lineages (reviewed in

Brown and van Tuinen in press). Timing estimates have also been

made more accurate with the inclusion of fossil calibrations (Yang

and Rannala 2006) and informative priors on substitution rates
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(e.g., Weir and Schluter 2008). However, these advances have

thus far been limited to gene-tree or concatenation approaches,

where divergence times are estimated under the assumption that

all gene trees share the same topology and branch lengths. Yet

research shows that topological discord among genes is common-

place (Knowles and Carstens 2007; Cranston et al. 2009), and

although multiple potential sources for gene-tree heterogeneity

exist (Maddison 1997; Degnan and Rosenberg 2009), a universal

source of discord arises from the random coalescence of gene

lineages (Kingman 1982). Compared to concatenation, the multi-

locus coalescent allows for much more accurate estimation of the

divergence history (i.e., the pattern of species splitting) (Maddison

and Knowles 2006; Edwards et al. 2007; Kubatko and Degnan

2007; Heled and Drummond 2010). Moreover, because the tim-

ing of gene divergences necessarily predates the actual speciation

event (unless gene flow accompanies species divergence), con-

clusions based on gene trees will always overestimate divergence

times in contrast to multilocus coalescent approaches (Edwards

and Beerli 2000; Carstens and Knowles 2007b). In light of these

issues, the unification of species-tree methods (which are based

on the multilocus coalescent; Knowles 2009) with relaxed phylo-

genetics provides a next step in the progress toward a precise and

accurate understanding of the timing of species diversification.

Accurate estimation of divergence times is especially criti-

cal when testing diversification hypotheses that involve adjacent,

nonoverlapping time intervals. In North America, mountain for-

mation and glacial cycles were two largely discrete Earth history

events that radically reshaped landscapes (Axelrod 1979; Webb

and Bartlein 1992; Hewitt 2004), affecting both the timing and

tempo of speciation of plants and animals (e.g., Knowles 2000;

Lessa et al. 2003; Smith and Farrell 2005). Peaking during the

Miocene, mountain uplift fragmented species’ ranges and created

high-elevation habitats for colonization (Van Devender 2002).

Despite the general consensus that these events promoted di-

versification (Badgley, in review), few detailed genetic studies

have linked speciation events to this time period (but see Riddle

1995, 1996; Jaeger et al. 2005). More emphasis has been placed

on Pleistocene glacial cycles, which are thought to have pro-

moted divergence either directly through ice sheet advance (Weir

and Schluter 2004) or indirectly by fragmenting habitats (Hewitt

1996; Knowles 2001; Knowles et al. 2007; Muster et al. 2009).

The signal of Pleistocene divergence is expected to be particularly

evident in the last 0.7 million years (Ma), when glacial cycles be-

came more intense (Webb and Bartlein 1992). In birds, the bulk of

evidence appears to support a prominent role for glacial cycles in

diversification (Avise and Walker 1998; Weir and Schluter 2004;

Cicero and Johnson 2006), although some evidence based on

fixed-rate molecular clocks points to pre-Pleistocene divergence

(Klicka and Zink 1997, 1999; Lovette and Bermingham 1999).

The importance of glacial cycles (Weir and Schluter 2007) and

other major biogeographic events (e.g., land bridge completion

between North and South America; Weir et al. 2010) to speciation

has begun to be addressed with relaxed phylogenetics, but how

conclusions might differ if analyses were conducted at the level

of the species tree—the appropriate level for such analyses—is

unknown.

We test the relative roles of mountain uplift and glacial cy-

cles on diversification in jays (genus Aphelocoma) by calibrating

divergence times on a species tree, an analysis made possible

by recent modifications to the program BEAST (Drummond and

Rambaut 2007) that allow for joint estimation of the species tree

and divergence times (∗BEAST; Heled and Drummond 2010). In

this framework, fossil calibrations are applied appropriately to the

species tree, whereas priors on substitution rates are applied to

individual gene trees. We compare species-tree divergence dates

to those estimated from more traditional analyses, including a

single mitochondrial DNA (mtDNA) gene tree and concatenated

data from one mtDNA gene and two nuclear introns.

The bird genus Aphelocoma provides an excellent study sys-

tem with which to test the relative influence of Pleistocene glacial

cycles and Miocene mountain uplift in North America in a species-

tree framework. With a nearly continent-wide distribution (Fig. 1),

Aphelocoma is part of a larger radiation of jays that occurs in the

Figure 1. Geographic distributions of Aphelocoma jays. The three

major species groups (i.e., Mexican Jays, Scrub-Jays, and Unicol-

ored Jays) are indicated with colored outlines and all the species

lineages discussed in text are labeled. See Methods for details

about species designations and Appendix 1 for comparison with

existing taxonomy.
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New World (Bonaccorso and Peterson 2007). Aphelocoma species

occupy regions of both high and low elevation in many ecolog-

ical contexts (Pitelka 1951; Peterson and Vargas-Barajas 1993;

McCormack and Smith 2008), making diversification hypotheses

invoking both mountain uplift and glacial cycles plausible. Our

time-calibrated phylogenies include a fossil calibration point for

the genus, as well as a new fossil-calibrated mtDNA substitution

rate (with error) for birds specifically (Weir and Schluter 2008).

Bird fossils do not preserve well, and it is especially difficult to

find pre-Pleistocene fossils that can be attributed with high confi-

dence to a specific living species or ancestor. Setting Aphelocoma

apart is the existence of a relatively old (1.98–2.01 Ma) fossil of

the Florida Scrub-Jay (A. coerulescens), complete with synapo-

morphic bill traits (Emslie 1996). This fossil allows for a minimum

age estimate on a node placed away from the tips of the phylogeny,

where calibration points are most informative (Drummond et al.

2006). Additionally, although a modern phylogenetic analysis

of the genus is largely lacking, geographic distributions (Pitelka

1951; Peterson 1991b) and phenotypic (Pitelka 1951; Peterson

1991a; McCormack et al. 2008b) and genetic diversity (Peterson

1992; Rice et al. 2003; Bhagabati et al. 2004; Delaney et al. 2008;

McCormack et al. 2008a) in Aphelocoma are well described, pro-

viding a framework for a comprehensive systematic study in-

cluding representatives from all known repositories of diversity

(although the necessity of using ancient DNA limited the collec-

tion of nuclear data for some lineages). A pair of recent studies

also suggests that Aphelocoma is older and more phylogeneti-

cally diverse than previously recognized (Delaney et al. 2008;

McCormack et al. 2008b), distinctions that are not reflected in

their current taxonomy (Watson 2005). A better understanding

of the speciational history of Aphelocoma is important given the

group’s status as a classic study system for the evolution of coop-

erative breeding (Woolfenden and Fitzpatrick 1985; Peterson and

Burt 1992; Brown and Li 1995) and the ecological niche (Peterson

and Holt 2003; Rice et al. 2003; McCormack et al. 2010).

Methods
STUDY SYSTEM

Until the elevation of the Florida Scrub-Jay (A. coerulescens) and

Island Scrub-Jay (A. insularis) to full species status separate from

Western Scrub-Jays (A. californica) (American Ornithologists’

Union 1998), Aphelocoma was split into three species that cor-

responded to the major morphological and plumage types: Scrub

Jays, Mexican Jays, and Unicolored Jays (Fig. 1). Single-species

studies since that time have revealed considerable phylogenetic

and morphological diversity within Western Scrub-Jays (Delaney

et al. 2008) and Mexican Jays (McCormack et al. 2008b) that ap-

proaches species-level distinctiveness in the genus. Phylogenetic

diversity within Unicolored Jays is less well known, owing to a

lack of modern sampling south of the Isthmus of Tehuantepec

in Mexico. Due to the uncertainty surrounding current species

limits (Watson 2005), and because species-tree methods are most

useful when each genetically isolated group is considered a sep-

arate taxon, we refer to the major lineages of Aphelocoma as full

species (see Fig. 1 for geographic range of all lineages discussed

hereafter). We acknowledge the possibility that some of these

lineages might not merit elevation to full species status upon de-

tailed study; however, they are included here to provide a more

comprehensive view on the timing of the divergence history.

An important assumption of species-tree methods is a lack of

gene flow among lineages. In empirical studies, this assumption is

often violated to some extent. However, compared to many other

relatively recently evolved bird groups, gene flow among Aphelo-

coma lineages is limited; detailed studies have only documented

likely cases of gene flow among two pairs of lineages (see Dis-

cussion for details). In neither case are these lineages sister taxa

and in both cases gene flow is evident in nuclear markers whereas

mtDNA show reciprocal monophyly. Although there are methods

that model gene flow as well as the coalescent (i.e., the isolation-

with-migration model; Hey and Nielsen 2004), the approaches

based on the Isolation-with-Migration model are inappropriate if

gene flow is not between sister taxa, and they require a species-

tree as input (i.e., they do not provide an estimate of a species tree

under a model of divergence with gene flow).

SAMPLE COLLECTION AND DNA EXTRACTION

Molecular analyses were based on 80 frozen tissue or blood sam-

ples from individuals from across the full extent of geographic,

morphological, and taxonomic diversity currently known in Aph-

elocoma (Appendix 1). Genomic DNA was extracted from blood

and tissue using a DNeasyTM Tissue Kit (Qiagen, Valencia, CA)

following manufacturer’s protocols. For DNA extraction from toe

pads of museum specimens of three Unicolored Jay lineages, for

which fresh blood or tissue was not available, a similar protocol

was used, except that the toe pads were washed in ethanol for

several days prior to DNA extraction, special care was given to

ensure sterile conditions, digestion time was extended for up to

72 h, and DNA was eluted with larger volume to increase yield

and later vacuum-centrifuged to increase DNA concentrations.

MITOCHONDRIAL DNA SEQUENCES

A 636-bp fragment of the NADH dehydrogenase subunit 2 (ND2)

was amplified using primers H-6313 and L-5216 and an 820-bp

fragment of the cytochrome b (cyt b) gene was amplified using

primers H-16065 and L-14990. PCR conditions were the same for

both genes and follow procedures described in McCormack et al.

(2008b). Several different pairs of internal primers were used to

obtain ancient DNA. PCR products were sequenced using an au-

tomated ABI 3730 XL capillary sequencer (Applied Biosystems,
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Foster City, CA). All sequences were aligned with SEQUENCHER

4.1.4 (Gene Codes Corporation, Ann Arbor, MI).

NUCLEAR INTRON DNA SEQUENCES

We screened a panel of 10 nuclear introns and chose two that

amplified well across Aphelocoma taxa and were variable.

We amplified a 527-bp portion of ornithine decarboxylase,

introns 6 & 7 (OD) using primers OD.6F 5′-GATGAYTCCAAA

GCAGTYTGTCGNCTCAG-3′ and OD.8R 5′-CCAGGRAA

GCCACCACCAATRTC-3′ (Harrigan et al. 2008). We also

amplified a 689-bp fragment of rhodopsin, intron 1 (Rho) using

a specially designed forward primer Rhod.1Fjay 5′-GAGCCA

CCTGCTCAGTATCC-3′ and Rhod.1R 5′-CCCATGATG

GCGTGGTTCTCCCC-3′ (Kimball et al. 2009). PCR reactions

were carried out using the following conditions: 3 min at 92◦C,

35 cycles of 1 min at 92◦C, 30 s at 60◦C, and 30 s at 72◦C,

and a final extension of 5 min at 72◦C. Sequences were aligned

with SEQUENCHER. Individuals with multiple heterozygous sites

were phased probabilistically using the program PHASE (Stephens

et al. 2001), accepting results with a probability >90%, using a

burn-in of 10,000 iterations and a run length of 10,000 iterations.

Haplotypes for remaining individuals were determined by

cloning. Haplotypes for individuals heterozygous for indels were

determined using the web-based program INDELLIGENT version

1.2 (Dmitriev and Rakitov 2008) or by cloning. TOPALi version 2

(Milne et al. 2004) was used to test for recombination in nuclear

loci using the difference of sums of squares (DSS) method with

a sliding window of 100-bp and 10-bp step size.

SINGLE GENE-TREE ANALYSES

Phylogenies for mtDNA data and nuclear introns were recon-

structed using maximum likelihood (ML) and Bayesian analysis.

Because there were several indels in the OD gene that appeared

to be phylogenetically informative, Maximum Parsimony (MP)

was also implemented with a heuristic search in PAUP∗ version

4.0b (Swofford 2000) with single and contiguous-base indels

treated as a single event and included in the analysis. Prior to

ML and Bayesian analysis, we selected a best-fit model of nu-

cleotide substitution for each of the three genes (including by

codon position for mtDNA only) using MRMODELTEST version 2.3

(Nylander 2004) under the Akaike information criterion (AIC).

Data were partitioned into codon positions for mtDNA because

different substitution models were indicated for each position (see

Results).

ML trees were estimated using GARLI, version 0.951 (Zwickl

2006) using best-fit nucleotide-substitution models, with parame-

ter values estimated from the data and gamma-rate categories set

to four. Bootstrap support for the mtDNA gene tree was assessed

via 500 pseudoreplicates. Bayesian analysis on gene trees was

performed using MRBAYES version 3.1.2 (Ronquist and Huelsen-

beck 2003) as opposed to BEAST because multiple chains can

be implemented more easily in the former, allowing for better

exploration of parameter space. For mtDNA, we partitioned data

by codon position, assigning to each partition its best-fit model

family of nucleotide substitution, with all parameters unlinked

between partitions except topology and branch lengths. We ran

two independent analyses for 5 × 106 generations using four

Markov chains and default heating values. Parameter values were

estimated from the data using uniform priors. Trees were sam-

pled every 1000 generations, resulting in 5000 trees for each run.

A majority-rule consensus tree was created from the final 10,000

trees. For each analysis, burn-in times were determined by eye us-

ing Tracer version 1.5 and convergence was assessed with AWTY

(Nylander et al. 2008) to confirm that the standard deviation of

split frequencies approached zero.

Phylogenies were rooted with sequences from close relatives

of Aphelocoma as determined from a recent phylogeny of New

World jays (Bonaccorso and Peterson 2007). For mtDNA, trees

were rooted using DNA sequence from a Steller’s jay (Cyanocitta

stelleri) and a pinyon jay (Gymnorhinus cyanocephalus). For nu-

clear introns, trees were rooted using C. stelleri.

DIVERGENCE DATING OF GENE TREES

For comparison to species-tree based estimates, divergence dates

were estimated under a gene-tree framework from the mtDNA

data alone and from concatenated data (i.e., the mtDNA and the

two nuclear genes combined to estimate a single gene tree). Di-

vergence times of the major lineages were estimated with the

coalescence-based program BEAST version 1.4.8 (Drummond and

Rambaut 2006). Desirable features of BEAST from the standpoint

of this study include the ability to (1) calibrate the phylogeny us-

ing fossil data for certain nodes, (2) allow substitution rates to vary

among branches, and (3) input a prior on the global substitution

rate for mtDNA, incorporating error (Drummond et al. 2006). For

both the mtDNA and concatenated gene analysis, we chose a Yule

tree prior under the assumption that the gene tree is the species

tree. As is customary for such analyses, we used a phylogeny

pruned arbitrarily to include one representative from each of the

major lineages uncovered with the mtDNA gene tree analysis.

This method excludes closely related terminal taxa because the

Yule tree prior does not include a model of coalescence, which

can complicate rate estimation for closely related sequences (Ho

2005). For the mtDNA analysis, we used 17 Aphelocoma lin-

eages (plus two outgroups). For the concatenated analysis, we

used 14 Aphelocoma lineages plus one outgroup because nuclear

data could not be obtained from the three Unicolored Jay lineages

for which ancient DNA was used.

For the mtDNA analysis, we used BEAST to estimate substitu-

tion models for each codon position, assuming uncorrelated rates.

For this and all other BEAST analyses, we applied a lower bound
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of 1.87 Ma on the date of the split between A. coerulescens and

other Scrub-Jays based on a fossil bearing synapomorphies in bill

morphology unique to A. coerulescens (Emslie 1996). Not only

is taxonomic error minimized when fossils are assigned to extant

species, but the fact that the geographic range of A. coerulescens

is far removed from other living congeners makes confusion with

similar species less likely. Further details on identifying extant

North America birds from bill fossil data can be found in Emslie

(2007).

The fossil A. coerulescens was dated to 1.87–2.01 Ma based

on its occurrence in the Inglis 1A local fauna and reference to a de-

tailed biochronology of Florida’s fauna (Morgan 2005). Potential

error toward older dates was considered through the highly con-

servative application of a uniform prior to all dates from 1.87 Ma

back to 100 Ma. Although a lognormal shape has been suggested

for priors based on fossil data (Ho 2007), we had no information

about the possible shape of the distribution (i.e., location of its

peak and 95 HPD). To address potential error toward younger

dates, we reran our analyses using 1.5 Ma as the lower bound.

Results were qualitatively similar with mean divergence dates for

all nodes differing on average 5% between the two analyses, well

within the 95HPDs. BEAST requires a fossil calibration date on

the root node or, if this is not available, a prior on the global

substitution rate (Drummond et al. 2006). A middle Miocene fos-

sil bearing similarities to Aphelocoma exists (Brodkorb 1972).

However, given that the fossil is fragmentary and taxonomic as-

signment equivocal, we chose not to use this fossil to inform a

prior on the root node as incorrect taxonomic assignment can in-

troduce a large source of error into estimates of divergence times

(Ho 2007). Instead, we applied a prior on the global mtDNA sub-

stitution rate (mean = 0.0105 substitutions/my ± 0.001 95% CI)

based on new fossil calibrations of coding mtDNA substitution

rates in birds (Weir and Schluter 2008). We allowed this rate to

vary among branches in accordance with a lognormal distribution

with uncorrelated rates. Some studies have found mutation rates to

be much higher over recent timescales (Subramanian et al. 2009),

suggesting time dependency of mutation rates; given that our

study investigated speciation over several million years, we used

a substitution rate calibration that corresponded to this timescale.

In general, our priors were not expected to have an undue in-

fluence on the posterior age estimates because of the unrestrictive

nature of our fossil prior (i.e., a flat prior). However, to examine

whether this fossil prior was having a strong effect on our poste-

rior divergence estimates, we ran an empty alignment (generated

by Beauti) for the mtDNA data. Although similar analyses were

not possible for all analyses (because of limitations arising from

generating empty alignments from hand-edited XML files), we

expect results of the empty alignment for the mtDNA gene tree

to be generally representative because the same fossil prior was

used in all analyses.

For the concatenated analysis, we specified appropriate sub-

stitution models for the different data partitions. Data were con-

catenated by matching the mtDNA to one of the phased nuclear

gene copies chosen at random for each individual to generate

one concatenated sequence per individual. Preliminary analysis

revealed that nuclear genes were evolving at rates similar to one

another, but different from the mtDNA rate, so the XML file for

analysis in BEAST was edited by hand to allow two molecular

clocks, one for mtDNA and one for nuclear genes. The fossil

prior and prior on the mtDNA substitution rate were the same as

above.

Chain lengths were 107 with parameters sampled every 103

for the mtDNA analysis because preliminary runs indicated that

this analysis converged relatively quickly and remained stable. For

the concatenated analysis, chain lengths were increased to 108.

Convergence statistics were monitored by effective samples sizes

(ESS), monitoring the run in Tracer version1.5, and with AWTY.

A consensus tree with divergence times was obtained from the

10,000 or 100,000 trees after discarding the first 10% as burn-in,

which was quite conservative.

DIVERGENCE DATING OF THE SPECIES TREE

Simulation studies have shown that three loci combined with

multiple (3–9) gene copies per lineage is sufficient for recovering

species trees with high accuracy for divergences much younger

than that expected in our study (Maddison and Knowles 2006;

McCormack et al. 2009; Heled and Drummond 2010; Knowles

2010). The species-tree analysis employed three genes and the

number of gene copies per lineage ranged from 2 to 31 (aver-

age = 6.9 gene copies per lineage) across all loci. Species-tree

analyses were implemented in ∗BEAST, part of the BEAST version

1.5.3 package. ∗BEAST infers species trees from multilocus data

and shows advantages in computational speed and accuracy over

other similar methods (Heled and Drummond 2010). ∗BEAST uses

the multispecies coalescent, an extension of the coalescent prior

designed to handle multiple species. Each gene tree is embedded

inside the species tree and follows the coalescent in each extant

and ancestral species. For this reason, and because ∗BEAST can

handle different numbers of gene copies for each taxon, we used

the full dataset representing all individuals from each Aphelocoma

lineage (plus one outgroup) for which both mtDNA and nuclear

data were collected. In addition to divergence times, ∗BEAST also

incorporates an estimate of population sizes for each branch into

species-tree estimation. Because our goals concerned the tim-

ing of diversification, we have focused only on divergence times

here. The analysis used a Yule prior for the species tree. The

fossil prior on the divergence of A. coerulescens was applied to

the species tree, whereas the prior for the mtDNA substitution

rate (see above) was applied to that gene tree only. Specifically,

the XML was hand-edited to include a prior on the species tree
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such that only topologies with C. stelleri as the outgroup were

considered, and a uniform prior of 1.87–100 Ma was applied to

the stem group (see Fig. 4) of A. coerulescens. The XML file

with embedded instructions for hand-editing is included as Sup-

porting information, and automation of XML file generation for

this method with Beauti is planned for inclusion in the upcoming

BEAST 1.6 package. The mtDNA data were partitioned into three

codon positions, and a relaxed uncorrelated lognormal clock was

applied to this gene tree. A strict clock was used for the nuclear

genes following preliminary runs, which established no signifi-

cant deviations from a strict clock in that, for these genes, the

95HPD of the posterior distribution of the standard deviation of

the substitution rate included zero. Results for the ∗BEAST anal-

yses were obtained by combining posterior samples from four

independent chains of length 5 × 107 each. Again, convergence

was assessed with ESS values, Tracer, and AWTY; a conservative

cutoff of 10% was used for the burn-in.

Because the mtDNA data were suspected to support a dif-

ferent topology than the nuclear data for reasons other than the

stochasticity of the coalescent process (see Discussion), we also

analyzed the mtDNA data separately. Although species-tree anal-

yses are typically carried out using multilocus data, inference from

a single locus is possible (see details in Heled and Drummond

2010), and preferable for estimating divergence times because

they explicitly take into account the gene divergence within the

ancestral population as opposed to analyses based directly on a

gene tree, which do not take into account gene divergence that

predates species divergence (see Edwards and Beerli 2000). Un-

like the gene-tree analysis from above, all individuals were used,

and as in the multilocus analysis, the fossil prior was applied to

the species tree, whereas the mutation rate prior was applied to

the gene tree. Chain lengths were 108 with parameters sampled

every 103. For all analyses using *BEAST, a consensus tree with

divergence times was obtained from the 100,000 trees after dis-

carding the first 10% as burn-in. A cloudogram of the species tree

was created from the posterior distribution of species trees with

DensiTree (Bouckaert 2010).

Results
DNA SEQUENCE CHARACTERISTICS AND GENE TREE

ANALYSIS

Final mtDNA sequences were 820 bp for cyt b and 636 bp for

ND2 with no premature stop codons. The two fragments were

concatenated and treated as a single locus for further analysis. Of

the total 1456 bp of mtDNA, 393 sites (27%) were variable. The

OD nuclear intron was 527 bp with 24 (4.6%) variable sites. OD

also had eight indels, some of which were fixed among lineages.

Two deletions were found in a heterozygous state. An interest-

ing insertion–deletion pattern was observed in some Scrub-Jays

in which a suite of five substitutions occurred over a 15-bp re-

gion flanked on either end by a single-bp insertion and deletion.

Twelve Scrub-Jays were detected with this substitution pattern in

a heterozygous state and were readily observed by a characteristic

15-bp segment of nonaligning DNA. This portion was excised for

ML and Bayesian analysis and coded as a single mutation event

for MP. The Rho intron consisted of 689 bp total and had 30 vari-

able sites (4.4%). No significant recombination was detected in

the nuclear loci.

For mtDNA data, MRMODELTEST identified a GTR + I + G

as the best model for the locus, and HKY + I, GTR + I, and

HKY + I + G for first, second, and third mtDNA codon po-

sitions, respectively. ML and Bayesian analysis of mtDNA data

produced concordant trees with considerable phylogenetic struc-

ture (Fig. 2). Uncorrected sequence divergence among the major

species groups (i.e., the Mexican Jays, Scrub-Jays, and Unicol-

ored Jays) ranged from 9.9% to 10.3%. The Mexican Jay lineage

from the Transvolcanic Belt, A. ultramarina, was also highly di-

vergent (9.0% divergence from other Mexican Jays), as was the

Florida Scrub-Jay, A. coerulescens (8.0% divergence from other

Scrub-Jays). Bootstrap support and posterior probabilities were

high for all branches except for the node uniting Mexican Jays

and Scrub-Jays (Fig. 2).

For the nuclear genes, best-fit models were HKY for OD

and HKY + I for Rho. ML and Bayesian analyses were largely

congruent in showing moderate levels of incomplete lineage sort-

ing. (Fig. 3). Lineages observed in the mtDNA phylogeny often

grouped together in the nuclear gene phylogenies, but others were

paraphyletic. Two major mtDNA clades that were also mono-

phyletic in both nuclear intron phylogenies were Unicolored Jays

and A. ultramarina.

PHYLOGENETIC DATING AND DIVERGENCE TIMES

High effective sample sizes were observed for all parameters in

all BEAST analyses (posterior ESS values >4000 for all four anal-

yses) and assessment of convergence statistics in Tracer and AWTY

indicated that all analyses had converged. Maximum clade cred-

ibility trees for the mtDNA and concatenated data (Figs. 4A, B)

were identical in topology to those produced by Bayesian and

ML analysis of the mtDNA tree. Divergence times for these two

calibrated gene-tree based approaches were similar and supported

initial Miocene diversification of the three major species groups

(i.e., the Mexican Jays, Scrub-Jays, and Unicolored Jays), with

divergence within these species groups occurring throughout the

Miocene, Pliocene, and early Pleistocene (Fig. 4 and S1). Al-

though the 95HPD for many nodes overlapped the Pleistocene,

relatively few divergence events dated to the period of intense

glacial cycles 0.7 Ma to present (Fig. 4).

Analysis of the mtDNA within the calibrated species-tree

approach (Fig. 4C), which used data from all individuals to inform
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Figure 2. ML estimate of the phylogeny of Aphelocoma from mtDNA. The three major species groups in Aphelocoma are color coded

(as with the map in Fig. 1). There is high support for all relationships except for the branch uniting Mexican Jays and Scrub-Jays where

Bayesian posterior probability (above) and ML bootstrap score (below) are shown. See Appendix 1 for locality information for terminal

taxa.

divergence estimates, produced divergence-time estimates similar

to those from the gene-tree based analyses. For all nodes, the

95HPDs for the species tree estimated from mtDNA overlapped

with those estimated directly from the mtDNA gene tree, although

the mean of estimates derived from the species-tree analysis of

mtDNA were more recent (Fig. S1). In contrast, divergence time

estimates derived from the multilocus calibrated species tree were

considerably closer to the present (Fig. 4D), with a much higher

proportion of divergences falling within periods of glacial cycling,

particularly within Mexican Jay and Scrub-Jay species groups

(nodes labeled 1 and 2; Fig. 4). Recent and older divergences

were both shifted toward the present in the multilocus calibrated

species tree compared to the those estimated directly from gene

trees (Fig. 5), and the 95HPD for many divergence events did not

overlap with those estimated either directly from the gene tree or

the species tree based on just the mtDNA. The evidence for more

recent divergences on the species tree is robust to the taxa missing

from the multilocus species-tree analysis because the additional

taxa in the Unicolored Jay clade would fall within the glacial

period (i.e., they are more derived, or at the tips, of nodes that

occur within glacial periods).

The relationships among some of the lineages differed in the

multilocus species-tree estimate compared with the other analy-

ses, although such topological differences were not highly sup-

ported in the multilocus species tree (e.g., among the Scrub-Jay

lineages; Fig. 6). A notable exception was the high support for

a contradictory topology in the multilocus species tree in the

placement of A. couchii (Figs. 4 and 6). Similarities between the

multilocus species tree and other analyses include broad support

for a Miocene-early Pliocene divergence of the major species
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Figure 3. Gene trees for nuclear introns with the three species

groups color coded (as in Figs. 1 and 2) showing lack of mono-

phyly. The gray vertical bars mark the phylogenetic distribution of

insertions or deletions.

groups and a late Miocene-Pliocene divergence of A. ultramarina

and A. coerulescens.

Discussion
This study provides the first implementation of calibrated species-

tree divergence time estimates. Comparison of the dated diver-

gences times for gene trees versus species trees showed a general

pattern of more recent divergence times for species trees, regard-

less of node age (Fig. 5). This pattern was especially evident in the

multilocus species tree (Fig. 4D), where many more divergence

dates fell within periods of glacial cycling. Below, we discuss pos-

sible sources of discrepancy between gene-tree and species-tree

results and discuss implications of the findings for biogeography,

taxonomy, and conservation of Aphelocoma.

ESTIMATING DIVERGENCE TIMES WITH GENE TREES

VERSUS SPECIES TREES

Divergence time estimates, even those that incorporate calibra-

tion points and a relaxed molecular clock, are necessarily go-

ing to have limited precision and accuracy if they are based on

gene trees. For example, when dates are derived from estimated

gene trees, whether from a single locus or concatenated datasets,

the timing of gene divergences are not equivalent to speciation

events because gene trees are embedded in species trees, and will

therefore produce overestimates for the divergence dates (unless

there is gene flow, Edwards and Beerli 2000). Moreover, dates

based on a single gene tree are less precise than consideration

of multiple loci because multiple gene trees provide indepen-

dent realizations of the divergence history, and hence account

for mutational and coalescent stochasticity. With divergence-time

estimates derived from a calibrated gene tree, datasets are typi-

cally pruned, based on the reasoning that inclusion of multiple

closely related gene copies biases divergence-time estimates to-

ward the recent (Ho 2005) because the Yule model used in these

approaches does not provide a sufficient representation of the

coalescent process. Not only is the elimination of sequences sub-

jective, especially when genes are incompletely sorted, but it is

also not biologically realistic in that it gives time estimates of

gene lineage divergence, not estimates of species lineage diver-

gence. Thus, to prune or not to prune is not merely a practical

consideration, but a theoretical one as well, bearing strongly on

whether one accepts divergence dates of gene trees as if they

reflect speciation. In contrast, the method presented here uses a

calibrated species-tree for estimating divergence times (using the

newly developed program ∗BEAST; Heled and Drummond 2010)

and dates speciation events using a full probabilistic coalescent

framework with sequence information from all individuals, incor-

porating both fossil priors, as well as priors on substitution rates

for estimation of individual gene trees evolving within the species

tree under a relaxed molecular clock (when deviation from a strict

clock is warranted). This approach will be especially relevant for

the many studies investigating taxonomic groups with poor fossil

representation, especially at the root of the tree where calibration

points are needed. In such cases, what fossil information exists

can be incorporated with additional information on estimates of

molecular substitution rates.

Our results show that application of a gene-tree versus

species-tree framework can have important consequences for es-

timating divergence times. It is noteworthy that some dates in

the literature based on gene trees have reported that bird di-

vergences predate the Pleistocene (cf. Klicka and Zink 1997).

Although our gene-tree results often agreed with this interpreta-

tion (Figs. 4A, B), the multilocus species-tree for Aphelocoma

(Fig. 4D) indicated a much stronger correspondence between

Pleistocene glacial cycles and divergence, especially within the

Mexican Jay and Scrub-Jay species groups (Fig. 4D, nodes 1 and

2). Although some lineages had to be excluded from the calibrated

multilocus species tree analyses because of problems of amplify-

ing nuclear loci from museum specimens, the results pertaining

to the recency of speciation are nonetheless robust to the missing

taxa. For example, if we had data on the three Unicolored Jay

lineages, their inclusion would have added yet more examples of

Pleistocene divergence given they are all derived lineages of a

subclade which is itself estimated to have originated during the

Pleistocene.

That gene divergence will occur prior to species diver-

gence is a biological truism. Consequently, divergence dating

based on gene trees will necessarily overestimate divergence
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Figure 4. Time-calibrated phylogenies for Aphelocoma contrasting the dated divergence events from gene trees (A, B) with species trees

(C, D). Cartoon bones indicate the location of the fossil prior. Node color indicates whether a divergence event falls into the Pleistocene

(<2.58 Ma) with its 95HPD (yellow) and mean (orange), or into the period of intense glacial cycles (0.7 Ma) with its 95HPD (red) and

mean (dark red). Divergence times for species trees are generally more recent than those from gene trees. This is especially evident in the

multilocus species tree (D), where a higher proportion of divergence events overlap periods of glacial cycles (see text boxes). Coalescent

simulations indicate that the branch length differences between the multilocus species tree (D) and mtDNA species tree (C) in Scrub Jays

(node 2) is on the margin of that expected from coalescent stochasticity, implicating differential rates of gene flow between mtDNA and

nuclear markers. Topological discord in Mexican Jays (node 1) might also have resulted from gene flow.

times (Edwards and Beerli 2000), especially for recent diver-

gence events (Carstens and Knowles 2007a). But can this general

principle combined with stochasticity of the coalescent process

entirely account for the differences in the divergence-time esti-

mates derived from the gene-tree versus species-tree approaches

for the jays, or must other processes be invoked? An important

assumption of most species-tree methods is that gene flow is

not responsible for incomplete lineage sorting (Knowles 2009;

McCormack et al. 2009). This assumption is often violated in

nature, especially in birds, where postzygotic isolation can take

millions of years to accrue (Price and Bouvier 2002). Thus, empir-

ical studies employing species-tree methods must consider gene

flow as a possible source of topological and branch length error

(e.g., Brumfield et al. 2008; Eckert and Carstens 2008), especially

if certain genes are expected to diffuse more readily across species

boundaries.

In birds, mtDNA often shows less introgression than nuclear

markers among recently evolved species (Tegelström and Gelter

1990; Saetre et al. 1997; Brumfield et al. 2001; Bensch et al. 2002;

Carling and Brumfield 2008; but see Krosby and Rohwer 2009 for

a notable counterexample). This phenomenon has been attributed

to Haldane’s rule (Haldane 1922), in which the heterogametic sex

is the first to show hybrid sterility, although sex-biased disper-

sal may also be a contributing factor for some species (Petit and

Excoffier 2009). Because female birds are heterogametic, hybrid

sterility is expected to retard introgression of maternally inherited

mtDNA, whereas nuclear alleles are expected to introgress more

readily via male-mediated gene flow. Evidence is accumulating

that female-heterogametic species, such as birds (Tegelström and

Gelter 1990; Bensch et al. 2002; Carling and Brumfield 2008;

McKay and Zink 2010) and butterflies (Dasmahapatra et al.

2002; Cianchi et al. 2003; Kronforst et al. 2006), conform to

this expectation.

Although gene flow among lineages is generally limited in

Aphelocoma compared to many intrageneric bird groups, previ-

ous work has documented patterns suggestive of Haldane’s rule

among two pairs of lineages in the Mexican Jay (McCormack

et al. 2008b) and Scrub-Jay clades (J. McCormack, C. Cicero,
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Figure 5. (A) Bivariate plot showing more recent divergence

dates for species trees versus gene trees. Only nodes present in

both gene trees and species trees are shown. (B) Relationship of

node age and relative discrepancy between divergence times from

gene trees versus species trees. Note that, relative to node age,

the multilocus species tree showed greater discrepancy with the

gene tree than mtDNA data alone.

K. Delaney, unpubl. data). Sex-biased dispersal is an unlikely ex-

planation for these patterns because Aphelocoma species are poor

dispersers in general, with females dispersing only marginally

Figure 6. Species tree with the highest posterior probability

(shown by the thin lines) superimposed upon a cloudogram of

the entire posterior distribution of species trees from the ∗BEAST

analysis. Branch widths represent different species tree topolo-

gies, not population sizes.

farther than males in some species (Woolfenden and Fitzpatrick

1996; Curry et al. 2002), or equal distances in other species

(McCormack and Brown 2008). Consequently, reduced mtDNA

introgression in accordance with Haldane’s rule could explain

why the multilocus species-tree divergence estimates were much

more recent among species lineages within the Mexican Jay and

Scrub-Jay groups (nodes 1 and 2, Fig. 4) compared to other ana-

lyses, including analyses of the mtDNA alone.

To provide some preliminary insight into this hypothesis,

we conducted coalescent simulations to assess whether the dif-

ferences between the divergence times from the mtDNA versus

multilocus species trees exceed the expected variance arising from

the coalescence of gene lineages (see Supporting information for

code used to implement simulations). For each of the 90,000

post-burn-in species trees, an mtDNA gene tree with the same

number of individuals as the real dataset was simulated under

a neutral coalescent model. The most probable divergence-time

estimate based on mtDNA for the root node of Aphelocoma and

for the Mexican Jay clade (node 1) fell well within the expected

range of dates in the simulations (P = 0.63 and P = 0.28, respec-

tively). In contrast, the simulations suggest that the most probable

species divergence time for the Scrub Jay clade (node 2) may be

inconsistent with a divergence without gene flow (the observed

divergence time was on the recent edge of the dates recovered by

coalescent simulations, although it did not deviate significantly

from expectation; P = 0.06). In addition, even though branch-

length differences in Mexican Jays could be accounted for by

coalescent stochasticity, this group also had a major topological

difference between the multilocus species tree and the mtDNA

trees. In the former, A. couchii and A. potosina were strongly

supported as sister taxa (Fig. 6), in contrast to their more dis-

tant relationship in the mtDNA trees (Figs. 2 and 4A, C). These

two lineages show introgression of nuclear markers near zones

of contact, but so far not a single case of mtDNA introgression

has been documented (McCormack et al. 2008b). These prelim-

inary analyses suggest that differential gene flow in accordance

with Haldane’s rule might be the source of some discord among

marker types.

Our results highlight the added insights from using calibrated

species-tree divergence time estimates. Not only does incorporat-

ing a coalescent model improve divergence estimates, but this

framework is also integral to identifying whether processes other

than coalescent stochasticity may impact the estimated dates. In

other words, genealogical discord need not imply that information

from certain markers is necessarily misleading. Indeed, although

divergence histories revealed by mtDNA may not be representa-

tive of the genome as a whole, in female-heterogametic species

the mtDNA might better reflect the history of initial divergence,

given that nuclear genes might be subject to higher rates of gene

flow upon secondary contact.
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BIOGEOGRAPHIC EVENTS IMPORTANT TO

SPECIATION IN APHELOCOMA

Molecular and fossil dating of divergence times indicate that the

diversification of Aphelocoma into three major species groups

began in the middle to late Miocene- Pliocene. Although the con-

fidence intervals are relatively wide for these older divergences,

these dates are generally consistent, irrespective of the method

of analysis. It is worth reiterating that until quite recently these

three species groups (i.e., the Mexican Jays, Scrub-Jays, and Uni-

colored Jays) were considered the only species in Aphelocoma.

The relatively ancient origin of these species groups compared to

other extant bird species is notable and suggests a considerable

amount of cryptic diversity in the genus.

The Miocene was a time of major tectonic activity and moun-

tain uplift (Van Devender 2002). Final uplift of the Sierra Madre

ranges at 15 Ma, and the formation and gradual uplift of the

Transvolcanic Belt from 23 to 2.5 Ma (Van Devender 2002) cre-

ated the high-elevation regions now occupied by Mexican Jays and

Unicolored Jays, which speciated roughly 3–8.5 Ma (95HPD on

the multilocus species tree; Fig. 4D). Final uplift of the Transvol-

canic Belt between 4 and 6 Ma was also concurrent with the

origin, roughly 2–6 Ma, of the highly divergent Mexican Jay

species lineage, A. ultramarina, that inhabits that mountain range

(Fig. 4D). Detailed taxonomic recommendations resulting from

this study will be made elsewhere, but we note here the strong phy-

logenetic support for elevating A. ultramarina to species status,

including monophyly based on analyses of both mtDNA (Fig. 2)

and nuclear markers (Fig. 3), its long and independent evolution-

ary history supported by gene trees and species trees (Fig. 6), and

species-level phenotypic differences described previously (Pitelka

1951; McCormack et al. 2008b). The Miocene was also a time

of climatic and vegetative change worldwide, especially in North

America (Zachos et al. 2001; Van Devender 2002). Increasing

aridity in the middle Miocene (15–8 Ma; Axelrod 1979) led to the

formation of a distinct desert scrub vegetation now occupied by

Scrub-Jays. As such, it is not just the coincidence of these geo-

logic and climatic events with estimated dates of divergence that

informs our biogeographic hypothesis for the evolution of Aph-

elocoma, but also the fact that the three ecologically divergent

species groups occupy elevations and habitats that apparently did

not exist prior to their diversification in the Miocene.

As for the role of glacial cycles, because nuclear gene flow

may have contributed to the discrepancy in the calibrated species-

tree divergence estimates from the mtDNA versus the multilocus

data for some of the taxa, then the glacial cycles (or at least

the onset of intense glacial cycles in the last 0.7 Ma; Webb and

Bartlein 1992) may not have played as predominant a role in

triggering initial divergence as initially suggested (i.e., gene flow

would make some speciation events appear more recent than they

actually are). Detailed studies of contact zones will be needed to

establish the timing of potential gene flow, in concert with niche

reconstructions of habitat at glacial maxima (e.g., Peterson et al.

2004), to evaluate the possibility that the glacial cycles may have

hindered divergence among some Mexican Jay and Scrub-Jay

species lineages by promoting gene flow through habitat shifts

that brought these incipient species into contact.

IMPLICATIONS FOR COMPARATIVE STUDIES AND

CONSERVATION

With complete taxon sampling for mtDNA trees and the most

sequence data to date, our study uncovered new diversity and

relationships in Aphelocoma with implications for comparative

studies and conservation. Aphelocoma has been a classic system

for the study of the evolution of cooperative breeding (Peterson

and Burt 1992; Brown and Li 1995). The placement of the Florida

Scrub-Jay (A. coerulescens) as the sister taxon to all other Scrub-

Jays has long been suspected based on biogeographic and fossil

evidence (Pitelka 1951) and allozymes (Peterson 1992), yet our

study is the first to confirm this relationship with DNA sequence

data. This is important because this phylogenetic placement sup-

ports the hypothesis that cooperative breeding is an ancestral trait

in A. coerulescens, as opposed to a secondary gain, as suggested by

studies that nested this taxon within Scrub-Jays (Rice et al. 2003).

Additionally, the placement and strong support for A. sumichrasti

as a monophyletic and divergent lineage of Scrub-Jays in the

mtDNA tree (Fig. 2), suggests that this cooperatively breeding

lineage (Burt and Peterson 1993) may have reacquired some level

of cooperation from noncooperative ancestors. These hypotheses

should be tested with a more thorough reconstruction of cooper-

ative breeding traits on the Aphelocoma phylogeny.

This study also provides the first comprehensive assessment

of diversity within the endangered and range-restricted Unicol-

ored Jay complex, including samples from south of the Isthmus of

Tehuantepec which have not been previously available for DNA

sequence analysis. Peterson (1992) described fixed allozyme dif-

ferences between eastern and western populations north of the

Isthmus. Results from mtDNA indicate that the isolated popu-

lations of this species are strongly differentiated, with mtDNA

sequence divergence ranging from 1.7% (A. oaxacae–A. guer-

rerensis) north of the Isthmus to 6.9% across the Isthmus (A. con-

color– A. unicolor). The International Union for Conservation of

Nature (IUCN) considers the Unicolored Jay a species of least

concern (BirdLife International 2009) because of its wide geo-

graphic range and large population size. The Mexican govern-

ment, recognizing differences among the isolated groups, consid-

ers the species threatened (Wells 2007). Our study supports the

latter view. The cloud forest isolates appear to have a long and

independent evolutionary history that merit individual protection.

Greater recognition for these lineages will be especially critical

for preserving geographically restricted Mexican endemics such
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as A. guerrerensis and A. concolor where habitat loss is feared to

be driving rapid declines.
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éx
ic

o
28

.9
3,

−1
02

.6
tis

su
e

73
9,

81
7

90
0-

1
64

9-
50

A
.u

lt
ra

m
ar

in
a

po
to

si
na

A
.p

ot
os

in
a

34
35

49
FM

N
H

Si
er

ra
de

B
le

do
s,

Sa
n

L
ui

s
Po

to
sı́

,M
éx
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éx

ic
o

25
.3

7,
−1

00
.8

7
tis

su
e

77
8,

85
6

96
4-

5
70

5-
6

34
34

88
FM

N
H

B
le

do
s,

Sa
n

L
ui

s
Po

to
sı́

,M
éx
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dá

d
de

la
s

C
as

as
,C

hi
ap

as
,M

éx
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dá

d
de

la
s

C
as

as
,C

hi
ap

as
,M

éx
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Supporting Information
The following supporting information is available for this article:

Figure S1. Absolute dates and 95HPDs for gene trees and species trees.

Supporting Information may be found in the online version of this article.
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