Supporting Online Information Supporting Figures

Figure S1: Comparison of soil bacterial community diversity in remediated and reference sites

Figure S1: Comparison of soil bacterial community diversity in remediated and reference sites

Diversity indices calculated from frequency of occurrence data for OTUs at each % SIL used in this study (80 – 90 % SIL) are shown. Means from soil collected in remediated and reference sites are included. Diversity indices are A) Alpha Diversity B) Species Evenness C) Shannon Diversity D) Inverse of Simpson's Dominance E) Species Richness and F) Simpson's Dominance. Standard deviations are indicated with error bars.

Figure S2: Comparison of soil bacterial community diversity in riparian and upland sites

Figure S2: Comparison of soil bacterial community diversity in riparian and upland sites Diversity indices calculated from frequency of occurrence data for OTUs at each % SIL used in this study (80 - 90 % SIL) are shown. Means from soil collected in riparian and upland sites are included. Diversity indices are A) Alpha Diversity B) Species Evenness C) Shannon Diversity D) Inverse of Simpson's Dominance E) Species Richness and F) Simpson's Dominance. Standard deviations are indicated with error bars.

Supporting Tables

Table S1. Primers for barcoded massively parallel sequencing (bMPS) were produced by

adding unique barcode sequences (underlined) between the "A" sequencing primer of

Margulies et al. (2005) and the reverse 16S primer U529R (bold) of Watanabe et al.

(2001). As sequencing was done in only the reverse direction, no barcode was necessary

within the "B" construct.

U341F-FC-B GCCTTGCCAGCCCGCTCAGCCTACGGGRSGCAGCAG

U529R-FC-A3	GCCTCCCTCGCGCCATCAGACTCAACCGCGGCKGCTGGC
U529R-FC-A9	GCCTCCCTCGCGCCATCAGAGCAGACCGCGGCKGCTGGC
U529R-FC-A11	GCCTCCCTCGCGCCATCAGTATCAACCGCGGCKGCTGGC
U529R-FC-A14	GCCTCCCTCGCGCCATCAGAGTATACCGCGGCKGCTGGC
U529R-FC-A16	GCCTCCCTCGCGCCATCAGCTACGACCGCGGCKGCTGGC
U529R-FC-A20	GCCTCCCTCGCGCCATCAGTCTCTACCGCGGCKGCTGGC
U529R-FC-A22	GCCTCCCTCGCGCCATCAGACTCGACCGCGGCKGCTGGC
U529R-FC-A24	GCCTCCCTCGCGCCATCAGACTCTACCGCGGCKGCTGGC
U529R-FC-A25	GCCTCCCTCGCGCCATCAGTGTCAACCGCGGCKGCTGGC
U529R-FC-A27	GCCTCCCTCGCGCCATCAGCTACTACCGCGGCKGCTGGC
U529R-FC-A29	GCCTCCCTCGCGCCATCAGAGCTGACCGCGGCKGCTGGC
U529R-FC-A33	GCCTCCCTCGCGCCATCAGTGATGACCGCGGCKGCTGGC
U529R-FC-A35	GCCTCCCTCGCGCCATCAGAGCGCACCGCGGCKGCTGGC
U529R-FC-A40	GCCTCCCTCGCGCCATCAGTCACTACCGCGGCKGCTGGC
U529R-FC-A42	GCCTCCCTCGCGCCATCAGTGTGCACCGCGGCKGCTGGC
U529R-FC-A46	GCCTCCCTCGCGCCATCAGTACTAACCGCGGCKGCTGGC
U529R-FC-A49	GCCTCCCTCGCGCCATCAGAGATGACCGCGGCKGCTGGC
U529R-FC-A53	GCCTCCCTCGCGCCATCAGCGATGACCGCGGCKGCTGGC
U529R-FC-A57	GCCTCCCTCGCGCCATCAGCTAGTACCGCGGCKGCTGGC
U529R-FC-A64	GCCTCCCTCGCGCCATCAGTACGTACCGCGGCKGCTGGC
U529R-FC-A66	GCCTCCCTCGCGCCATCAGTGTAGACCGCGGCKGCTGGC
U529R-FC-A75	GCCTCCCTCGCGCCATCAGATATGACCGCGGCKGCTGGC
U529R-FC-A76	GCCTCCCTCGCGCCATCAGTCACAACCGCGGCKGCTGGC
U529R-FC-A86	GCCTCCCTCGCGCCATCAGTACAGACCGCGGCKGCTGGC
U529R-FC-A88	GCCTCCCTCGCGCCATCAGTACGAACCGCGGCKGCTGGC
U529R-FC-A89	GCCTCCCTCGCGCCATCAGTGTACACCGCGGCKGCTGGC
U529R-FC-A90	GCCTCCCTCGCGCCATCAGATACGACCGCGGCKGCTGGC
U529R-FC-A94	GCCTCCCTCGCGCCATCAGACTGAACCGCGGCKGCTGGC
U529R-FC-A95	GCCTCCCTCGCGCCATCAGTGTGTACCGCGGCKGCTGGC
U529R-FC-A96	GCCTCCCTCGCGCCATCAGATCTGACCGCGGCKGCTGGC