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SUMMARY

In this paper, we generalize the Boltzmann—Hamel equations for nonholonomic mechanics to a form suited
for the kinematic or dynamic optimal control of mechanical systems subject to nonholonomic constraints.
In solving these equations one is able to eliminate the controls and compute the optimal trajectory from a
set of coupled first-order differential equations with boundary values. By using an appropriate choice of
quasi-velocities, one is able to reduce the required number of differential equations by m and 3m for the
kinematic and dynamic optimal control problems, respectively, where m is the number of nonholonomic
constraints. In particular we derive a set of differential equations that yields the optimal reorientation path
of a free rigid body. In the special case of a sphere, we show that the optimal trajectory coincides with
the cubic splines on SO(3). Copyright © 2010 John Wiley & Sons, Ltd.
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1. INTRODUCTION

In this paper, we extend the classical Boltzmann—Hamel equations to kinematic and dynamic
optimal control problems, the latter formalism being a fourth-order generalization of these equa-
tions. In the analysis of nonholonomic systems, a number of different formalisms have emerged
based on a set of quantities known as quasi-velocities, see for example [1-3]; and, for a more
geometric treatment, [4, 5]. For an n degree of freedom system with m <n nonholonomic constraints,
one defines m quasi-velocities u’, s=n—m+1, ..., n, in such a way that they span the constraint
distribution. In this way the constraints reduce to the relations #” =0 and one only need to solve
for the remaining n —m independent quasi-velocities. In addition, the » kinematic relations which
define the constraints can be numerically integrated to produce the curve of motion. One requires in
total 2n —m differential equations of motion, as opposed to the 2n +m equations initially necessary
using the Lagrange—D’ Alembert equations [1, 6]. In practice, however, one must often differentiate
the constraint equations, yielding a coupled system of n+m second-order differential equations.
Numerical instabilities often arise when numerically integrating these equations of motion [1].
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374 J. M. MARUSKIN AND A. M. BLOCH

These numerical instabilities do not exist when utilizing quasi-velocity techniques by virtue of the
fact that the coordinates choosen for the velocities automatically satisfy the constraints by virtue
of their geometry. In addition to there being fewer equations of motion, if one makes a judicious
choice of quasi-velocities, these equations of motion are oftentimes simpler than the equations of
motion that arise using the fundamental nonholonomic form of Lagrange’s equations. In nonholo-
nomic mechanics, there is no set procedure for choosing the free quasi-velocities; normally they
are chosen to be as simple as possible. In extending these techniques to kinematic and dynamic
optimal control problems, however, a full set of quasi-velocities will be prescribed based on the
control vector fields, as we shall discuss in this paper.

Given a mechanical system with nonholonomic constraints, one may reexpress the Lagrangian
in terms of the generalized coordinates and the quasi-velocities. This new Lagrangian will not, in
general, satisfy the Euler—Lagrange equations. Instead it satisfies a similar set of equations known
as the Boltzmann—Hamel equations.

The Boltzmann—Hamel equations have also been used for the analysis of unconstrained systems
with symmetry. For instance, in rigid body mechanics the body-axis components of the angular
velocity constitute a set of quasi-velocities. The Boltzmann—Hamel equations for this set of quasi-
velocities produce Euler’s equations for rigid body dynamics [1]. As a generalization of Euler’s
equations, the Euler—Poincaré equations are a set of dynamical equations of motion for mechanical
systems with symmetry, i.e. systems whose underlying configuration manifold is a Lie group [7, 8].
It was shown in [9] that the Euler—Poincaré equations are a special case of the Boltzmann—Hamel
equations, under the conditions that (i) the underlying configuration manifold is a Lie group,
(i) the quasi-velocities are taken to be the pullback of the velocity vector to the Lie algebra by the
left translation map, and (iii) the Lagrangian is left-invariant. The Euler—Poincaré equations have
been generalized to a set of Euler—Poincaré optimal control equations, see for instance [10—12]. In
this way, the Boltzmann—Hamel optimal control equations presented here can be thought of as a
generalization of the Euler—Poincaré optimal control equations to systems in which the Lagrangian
is not left-invariant or to systems without symmetry.

In the optimal control problem one has a cost function that one seeks to minimize, usually taken
to be a line integral over the curve of motion. In kinematic or dynamic optimal control, the path itself
is subject to a certain set of kinematic or dynamic equations of motion, respectively. If one uses
Pontryagin’s Maximum Principle, each of these equations is enforced by a corresponding Lagrange
multiplier [13—15]. The formalism we present here has the additional feature that it circumvents
the necessity of this set of Lagrange multipliers. m Lagrange multipliers are still required to
enforce the nonholonomic constraints, an inescapable feature of the vakonomic problem, e.g. see
[1-3,5, 14, 16, 17]. In the kinematic optimal control problem, the set of n differential equations for
the Lagrange multipliers used to enforce the kinematic equations of motion are replaced with n —m
differential equations for the quasi-velocities. In the dynamic optimal control problem, the set of
differential equations for the 2n Lagrange multipliers used to enforce the dynamical equations of
motion are replaced with 2n — 2m differential equations for the independent quasi-accelerations and
quasi-jerks; the n differential equations for the velocities are further replaced by n —m differential
equations for the quasi-velocities.

As a final example we consider the optimal control of the free rigid body, given a set of control
torques placed along the axes of the body-fixed frame. When using the body-axis components of the
angular velocity as quasi-velocities, the classical Boltzmann—Hamel equations for nonholonomic
mechanics produce Euler’s equations for rigid body dynamics. By applying the dynamical optimal
control Boltzmann-Hamel equations to this set of quasi-velocities, we derive a fourth-order version
of Euler’s equations whose solution coincides with the optimal reorientation problem. The problem
of finding the optimal reorientation of a free rigid body gained some publicity in recent years; as
NASA used pseudospectral optimal control theory to reorient the International Space Station using
onboard control moment gyros, see [18—21]. As a special case of the fourth-order Euler equations,
we consider the optimal reorientation of a free rigid sphere, showing that the equations defining
the optimal trajectory coincide with the differential equations that define cubic splines on SO(3),
a set of equations first derived in [22].
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THE BOLTZMANN-HAMEL EQUATIONS 375

Table I. Summation convention.

Letter type Indices Summation over Summation over
Capital 1,J,K 1,....,n—m Unconstrained dimensions
Greek 0,7 n—m+1,....n Constrained dimensions
Lower case a,b,i, j, k 1,...,n All dimensions

A preliminary version of this paper was published in The Conference Proceedings of the 46th
IEEE Conference on Decision and Control [23].

1.1. Summation convention

To aid in notation, we will invoke the summation convention throughout this paper for an n degree
of freedom system with m <n nonholonomic constraints. The capital letters /, J, and K run over
the unconstrained dimensions 1, ...,n—m. The Greek letters ¢ and 7 run over the constrained
dimensions n —m+1, ..., n. Finally, the lower case letters a, b, i, j, and k run over all dimensions
1,...,n (Table I).

2. QUASI-VELOCITIES AND VARIATIONS

In this section, we will present the basic background on nonholonomic constraints and quasi-
velocities. We will discuss the basic properties of this connection and derive the transpositional
relations [1-3]. We will follow the notation for the geometric formalism laid out in [5].

2.1. Nonholonomic constraints and quasi-velocities

Let O be the n-dimensional, smooth configuration manifold of our system, L:TQ — R a
Lagrangian for the system, where the 2n-dimensional manifold 7 Q is the tangent bundle of Q,
and D is a smooth, (n —m)-dimensional, nonintegrable distribution, which may be described as
the null space of a set of constraint one-forms w° as follows:

P={(q,v)eTQ:0°(v)=0}.

The Lagrangian is typically given by the kinetic minus potential energy of the system. A velocity
vector g at g is said to be kinematically admissible if g€ %, CT,Q. In local coordinates, the
constraint one-forms are expressed as w’ =a; dq', so that the velocity of a curve in the distribution
9 satisfies the nonholonomic constraints

af(q)qg' =0 (1

for c=n—m+1,...,n. Given a manifold with a constraint distribution, one defines the quasi-
velocities as follows.

Definition 1

Given a closed curve c:[#1,t2]— Q and an open set U C Q containing ¢, define the vector fields
&={Ey, ..., E,} such that, at each g €U, the vectors Ey, ..., E, €T, Q are linearly independent
and thus form a basis of 7, Q. Then the quasi-velocities of the curve ¢ with respect to the basis
& are the n scalar functions u’ :[t{, ;] — R defined such that ¢(t)=u'(t)E;(c(t)), i.e. they are the
components of the velocity ¢ with respect to the moving frame &.

LetE!, ..., E"¢e Tq* O be the basis dual to the vectors Eq, ..., E, € T, Q at q. In practice, the vector

fields & are chosen so that, at each g € U, the dual one-forms E 1 E™e Tq* Q coincide with the
constraint one-forms; i.e., E=w’ for c=n—m+1,...,n. _
Let ‘P’j be the matrix whose rows are the one-forms E!, ..., E" and let <D’j be the matrix whose

columns are the vectors Eq, ..., E,; ie. Ei =‘I‘3»dqj and E; =(I)§.8/6qi. The matrices ‘I”J and d)i-
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376 J. M. MARUSKIN AND A. M. BLOCH

are therefore inverses of each other. One uses these matrices to convert back and forth from the
coordinate to quasi-velocities via the relations

W'=Wig/ and ¢ =0,

Notice that, by construction, the last m rows of the transformation matrix ‘Pz- must coincide with the
constraint matrix, i.e. ¥ (g) =a!(q). Therefore, in terms of the quasi-velocities, the nonholonomic
constraints are u’ =0, for co=n—m-+1, ..., n.

Given a curve c:[t;, ] — Q with local coordinates qi(t), the velocity ¢:[ty, 2] — T Q can be
represented equivalently in any of the following ways:

ukEk.

é:qi%:qfw’;cb;;aai —
q q

2.2. Variations

Definition 2
Consider a curve c:[t1,]— Q. A variation of ¢ is a smooth function ¢:[—¢, ] x [t1,t2]— O
that satisfies the following conditions:

(1) 90,t)=c(t), Vte[t1, 1]
(1) 9(s,t1)=c(t1) and I(s, ) =c(rr), Vs €[—¢, €].

Definition 3
The infinitesimal variation dc:[ty,t2]— T Q corresponding to the variation ¢ is the vector field
defined along ¢ by dc(t)= %ls:o.

We will denote the components of dc with respect to the coordinate basis {J/ dq'} as dq', so
that oc =d0q'0/0q". With respect to the basis & we have.

Definition 4 .
The quasi-infinitesimal variations (' with respect to the basis & are a set of n scalar functions
{': [, 2] — R defined such that oc(r) = (1) E; (c(2)).

_ Notice that to compute the quasi-infinitesimal variations one can use the transformation relations
C’(t):‘P’j(c(t))éqf (t). The quasi-infinitesimal variations are scalar functions defined along the

curve ¢, therefore their time derivatives (' are also defined. The velocity of the system is likewise
only defined along the curve ¢, and therefore a ‘variation in the velocity’ is meaningless without
further definition. This was first noted in [2,24], and discussed in [1, 3]. To make this rigorous,
let us define the following.

Definition 5
Given a curve c:[t;,t]— Q and a variation ¥:[—¢&, e] x [t1, 2] — O, a vector field V :[—¢, g] X
[a,b]— T Q is an extended velocity field on ¥ if each of the following conditions hold:

1. V(0,t)=¢(t), for all r €[11, 12],

2. V(s,t1)=V(s,1n)=0, for all s €[—e, ], and

3. mp(image(V))=image(c) C Q, where g :T Q — Q is the projection operator.

Definition 6
The infinitesimal variation of the extended velocity field V is a vector field 6V :[t;,]—TQ
defined along the curve ¢ so that

oV(s,1)

s=0

ovV(t)=
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From now on, we will take the quasi-velocities u' to be the quasi-velocities of the extended
velocity field V, i.e. V =u'E;. The following set of transpositional relations then hold, regardless
of the choice of extended velocity field.

Theorem 1 (First transpositional relations)
Let c:[t1,5]— Q be a curve, ¥:[—e¢, g] X [t1, 5] — Q a variation of ¢, V:[—¢,e] x [t1, ] > T Q
an extended velocity field on ¢, and u':[—¢, €] X [t1, 2] — R the quasi-velocities associated with

V. Then
ddg) o N\wi (4C) N e
( ar —oV \Plj: T—ébi] +V2bulc s (2)
where yﬁb are the Hamel coefficients
A 2R TR
J _ k i gk
V= (—aqi - ) o @k 3)

For a proof of this theorem, see [1, 2, 24]. A new and more geometric proof that uses the theory
of nonholonomic connection is discussed in [5].

The definition of an extended velocity field is an important one, as there are actually an
innumerable set of ways in which one can extend the velocity of the curve to the variation [2].
However, two leading ways have dominated the literature. These are referred to as the transitivity
choice of Hamel and the transitivity choice of Suslov. For an exposition on the difference between
these two choices, see [3, 5]. The transitivity choice of Suslov is used both in the context of Suslov’s
principle [1] as well as the context of a fiber bundle approach to nonholonomic mechanics [25].
When considering the Boltzmann—Hamel equations, however, one uses the transitivity choice of
Hamel, which we will use throughout the remainder of this paper:

Definition 7
Let ¢ be a curve and 4 its variation. Then the transitivity choice of Hamel is to define the extended
velocity field as the tangents to the varied paths, i.e.

0V(s, t
Vs, n=2000
ot
Owing to the continuity of the variation ¥ it immediately follows that, for the transitivity choice
of Hamel, 0V =d(dc)/dt. The transpositional relations then reduce to the equations

dul =8 497w, (4)

When using the transitivity choice of Hamel, one cannot have both Su’ =0 and é] =0. One must
choose between one or the other. The correct dynamical equations of motion are obtained if one
chooses the variations so that they satisfy the Lagrange—D’Alembert principle, i.e. so that {° =0.
If one, on the other hand, chooses the variations to satisfy du? =0, one would obtain trajectories
that satisfy Hamilton’s principle. Such trajectories are referred to as the vakonomic motion of the
system (motion of the variational axiomatic kind), a term introduced in [16].

In Section 4 during our discussion of dynamic nonholonomic control problems, we shall further
require the use of quasi-accelerations and quasi-jerks, defined as the time derivatives of the quasi-
velocities and quasi-accelerations, respectively; i.e. a' =u', j'=a'. One can easily show that, if
one chooses an extended velocity field consistent with the transitivity choice of Hamel, it follows.

Theorem 2 (Second transpositional relation)

Given a curve ¢, a variation ¢, and an extended velocity field V that is consistent with the transitivity
choice of Hamel (Definition 7), let u’ be a set of quasi-velocities of V with respect to some basis
&. Then &(du’ /dt)=d(du')/dt. Equivalently, da’' =d(Su')/dt.

Copyright © 2010 John Wiley & Sons, Ltd. Int. J. Robust. Nonlinear Control 2011; 21:373-386
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In the next two sections we will show how quasi-velocity techniques may be applied to kinematic
and dynamic optimal control problems. Kinematic problems are ones in which one has direct
control over an admissible set of velocities. In dynamic problems, one has control over a set of
generalized control forces which act on the system.

3. KINEMATIC OPTIMAL CONTROL

In this section, we present a quasi-velocity-based method for kinematic optimal control problems,
where one has direct controls over the velocities. We begin by defining constrained affine kinematic
control systems (e.g. [15, 26, 27]).

Definition 8

A constrained affine kinematic control system is a triple (Q, 2, %), where Q is a configuration
manifold, & is a smooth, (n —m)-dimensional, nonintegrable distribution, and Z' = {X 1}'[’;’1" is a
set of (n—m) independent and kinematically admissible vector fields, called the control vector

fields, that span the distribution &.

Given a constrained affine kinematic control system, the controls are a set of (n—m) scalar

functions w! :[t1,5]— R (I =1, ...,n—m). Given a set of controls and an initial condition gg € Q,
the resultant trajectory is a curve c:[t], 2] — Q that satisfies the differential equations
§' =X} qw' ), q'0)=g). )

where X ’I is the ith component of the /th control vector field.

Definition 9
Given a constrained affine kinematic control system (Q, %, %), two fixed endpoints ¢, g2 € O,
and a cost functional

[5)
I[c] =/ glc(®), w(r))de, (6)
1

where g: Q0 xR"™™ — R is a smooth function, then the associated kinematic optimal control
problem is to determine the control functions w! :[t1, 2] — R such that the resultant trajectory c,
i.e. the solution of (5), and the controls w, minimize the functional (6) among all kinematically
admissible curves.

The idea is to choose the controls as the remaining n —m quasi-velocities. In general, it is always
possible to invert the system (5) to solve for the controls as a function of the coordinates and
velocities. Though this inversion is not unique, it is typically motivated by the physical system.
One can define an (n —m) X n matrix bi] such that bl.’ X’J is the (n —m) x (n —m) identity matrix.
Define functions @’ : T Q — R such that

o (q,9)=b! (¢)¢".

The significance of these functions is as follows. Suppose the curve ¢=g¢'(r) is a solution of the
Equation (5). Then the controls which generate that curve are given by

w! (O =a! (q(1), §(1)=b! (q(t)¢' ).

The @!, when evaluated along a kinematically admissible curve, are literally the controls which
generate that curve. They also constitute a set of n —m quasi-velocities that are linearly independent
from the quasi-velocities which arise due to the constraints. We take as quasi-velocities the following
set:

1 1 -0 1 .
u =bj(q)q'=w'(q,9), (7)
u® =af(g)q' =0. ®)
Copyright © 2010 John Wiley & Sons, Ltd. Int. J. Robust. Nonlinear Control 2011; 21:373-386
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Notice that the matrix W will consist of the matrix bl.’ stacked on top of the matrix af, and that
the first n —m columns of ® will coincide with the control vector fields.
We may now rewrite the integrand of the cost function (6) in terms of the quasi-velocities as

C(q,u")=g(q,a").
1 1

Notice that C(g,u’) only depends on the (n —m) unconstrained quasi-velocities u! =w/.

We wish to minimize the cost functional (6) out of the class of kinematically admissible curves.
To do so we add Lagrange multipliers to enforce the nonholonomic constraints before taking the
variations. Consider now the functional

I[C]=/ (C(q,u)+puu’)de.
n

The addition of the multipliers enforces the constraints and the variations can now be taken to be
independent. Taking the variation of this function yields

153 a . )
51:/ ( C@;Curﬁau’waam) dr. ©)
f 6qs oul

Using the transpositional relations (4) and integrating by parts yields

Lrroc oC ;d oC
ol = O+ —olu’ Tus ) (= — — (=i, | dt.
/[‘] |:<6q5 l+5u1 }}Slu +lu“0"yjlu )C dt aulc luﬂ'éli|

The variations (' are now independent. Since the solution of the optimal control problem is
obtained by setting the variation 6/ =0, one obtains a set of differential equations for the optimal
path by equating the coefficients of (' to zero. We have therefore proved:

Theorem 3

Let (Q,{w°},{X;}) and the cost functional I[c] defined in (6) be a kinematic optimal control
problem. Let b’ be a set of one-forms dual to the control vector fields, so that @/ (g, c})zbi] (@)
Let a be the coefficients of the constraint matrix, so that w’=a; dqi and let ¥: 0 — R"™" be
defined by P7 =a and W] =b!. Let ®(q) =¥~ (), u' =¥,4/, C(q,u)=g(q", ¥}¢’), and let 7',
be the Hamel coefficients defined in (3). Then the Boltzmann—Hamel equations for the kinematic
optimal control problem are

d oC oC _; 0oC
EW_&]—J ;_aM_JV[J(I”K::“tV}(I”K for I=1,....,n—m, (10)

-0y —— uKz—ﬂa—}—,uTy}(JuK foro=n—m+1,...,n, (11)

§' = uf fori=1,...,n. (12)

The solution to these equations is the resultant trajectory of the optimal control problem, and the
controls that produce the optimal trajectory is given by

w! (=o' (qt),§)=T! (q)§'(t), i=1,...,n.

These represent a minimal set of 2n first-order differential equations: the n —m Equations (10)
for the unconstrained u’’s, the m Equations (11) for the multipliers x,’s, and n kinematic relations
(12) for the ¢'’s.

As an interesting aside, if the cost function integrand C(g,u), when expressed in terms of
the quasi-velocities, is identical to the constrained Lagrangian, then these equations produce the
vakonomic motion associated with the system. See [17] for additional discussion on the coincidence
of the vakonomic motion (Lagrange’s problem) and the optimal control problem.

Copyright © 2010 John Wiley & Sons, Ltd. Int. J. Robust. Nonlinear Control 2011; 21:373-386
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4. DYNAMIC OPTIMAL CONTROL

In this section, we will derive a set of Boltzmann—Hamel equations for the dynamic optimal control
problem, which is normally a fourth-order system. We will present a minimal set of 4n—2m
first-order differential equations that produces the optimal control. Examples will be discussed in
Section 5.

Definition 10

A constrained affine dynamic control system is a quadruple (Q, &, %, L), where Q is a configuration
manifold, & is a smooth, (n —m)-dimensional, nonintegrable distribution, Z = {X ! }’1’;’1" is a set of
(n —m) independent covector fields, called the control covector fields, that span the entire cotangent
space T*Q when concatenated with the constraint one-forms, and L is a Lagrangian.

Given a constrained affine kinematic control system, the controls are a set of (n—m) scalar
functions wy : [#1, 1] = R. Given a set of controls and an initial condition (g1, ¢1) € T Q, the resultant
trajectory is a curve c:[t, 1] — Q that satisfies the second-order differential equations

d 0L 0L , ‘ o y
5@—a—¢=ﬂuga?+xi’(q<z»w1<r>, i€2, q' (=4, §¢'t)=4i, (13)

where X l’ is the ith component of the /th control covector field.

Definition 11
Given a constrained affine dynamic control system (Q,%,Z, L), two fixed endpoints (g1, q1),
(g2,92)€T Q, and a cost functional

I[c] =/ ge(t), c(t), w(r))dr, (14)
n

where ¢g:TQ xR"™™ — R is a smooth function, then the associated dynamic optimal control
problem is to determine the control functions wy :[#1, 2] — R such that the resultant trajectory c,
i.e. the solution of (13), and the controls w, minimize the functional (14) among all kinematically
admissible curves.

In order to cast this problem in terms of quasi-velocities, we should like to use the classical
Boltzmann—Hamel equations, given below, in lieu of (13).

Theorem 4 (The Boltzmann—Hamel equations)
Let #(q,u)=L(q,q(q,u)) be the unconstrained Lagrangian of an n degree of freedom mechanical
system subject to m nonholonomic constraints, re-expressed in terms of the quasi-velocities u.
Suppose the system is also subjected to the applied force F jdqj , and let W[:d){ F; be the
components of the applied force expressed with respect to the basis { £;}. Then the curve of motion
satisfies the differential equations

do¥ 0% _; 0< ;

— — — — —— J: = -
&t oul  ag7 7 aujy”u W; forl=1,....,n—m, (15)

qizd)ijuj fori=1,...,n. (16)

For a proof of these equations, we refer the reader to [1,2]. Notice that Equations (13) are
a set of n second-order differential equations coupled with m constraint equations, whereas the
Boltzmann—Hamel equations (15)-(16) are a set of (2n—m) first-order differential equations in
which the constraints are enforced trivially by setting u° =0. The quasi-velocities should then be
taken so that the first (n —m) rows of the matrix W coincide with the control covector fields:

I __wl,i__ vyl
u' =Wlq'=x/q", an
o ol ol
u’=%¥q"'=a’q' =0. (18)
Copyright © 2010 John Wiley & Sons, Ltd. Int. J. Robust. Nonlinear Control 2011; 21:373-386
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With this choice, the control forces are F; =‘P§w ; and the forces with respect to the basis {E;}

are simply W; =d)f ‘Pj wy=w; and W;=0. Therefore, the controls are precisely identified with
the n —m time-varying force functions Wj(¢) on the right-hand side of (15).

Utilizing (15) and (16), we can rewrite the integrand of the cost function as an explicit function
of the coordinates, quasi-velocities, and quasi-accelerations C(q, u,a)=g(q,q(q,u), W(q, u, a)).
Since the Boltzmann—Hamel equations no longer depend on the constrained quasi-velocities and
quasi-accelerations, C(g, u,a) is also independent of u® and a®. Taking variations yields

n/oCc . oC oC
Sl = 5q + —ou’ +—da’ | dt.
/t, <5q’ K +6u1 “ +6a’ a)

Recall that the summation index J runs only over the unconstrained dimensions, J =1, ...,n—m.
Using the second transpositional relations Theorem 2 for da’ and then integrating by parts we

obtain
153 . a
51:/ [a_qéq,+(_C_ia_C)5u,} dr.
n Loq' oul  dt oa’

oC d oC
Kj=— — — ——
T=oud T dr da’

and using the first Transpositional relations (4) we obtain

5] aC . .
51=/t [(W(I),J(—Hc]y]{ku])ﬁ—k](]] dr.
1

These variations are not free, but subject to the nonholonomic constraints a’ ¢'=0. We form the
augmented cost integrand by replacing C(q,u,a) with C(q,u,a)+ u u°. Taking variations, the
ou’ coefficients recover the constraints. Ignoring these terms, we are left with

Defining the parameters

19

eriac - Nk o

51:/{ [(a(l)i—i-myj]-ku/ —I—,uay‘;kuj) ki ! —uaé‘f] dr,
1

where the variations are now taken to be unconstrained. Notice the multipliers u, are not the

mechanical multipliers, but a multiplier on the cost function that enforces Hamilton’s principle.

We thus have the following:

Theorem 5
The solution curve of the dynamic optimal control problem (Definition 11) is generated by the
system of differential equation:

oc i .
—@Cl)f—i-;c]—myquul(:urfnuj for I=1,...,n—m; (20)
0C i J K T o J_
—J(DJ—K”KUM =Uy " — sy foro=n—-m+1,...,n, 21
¢ =du’ fori=1,....n. (22)

These equations are the Boltzmann—Hamel equations for the dynamic optimal control problem.
The generalized control forces F; are then given by evaluating W(g, u, a) given by the Boltzmann—

Hamel equations (15) and using the transformation relation F; :‘P{ W;.

The optimal control system can therefore be given by a minimal set of 4n—2m first-order
differential equations as follows. We have n kinematic relations (22), 2n —2m relations ! =a! and
al = ]1 , n—m equations for jI (20), and, finally, m relations for the multipliers j, (21). Once the

Copyright © 2010 John Wiley & Sons, Ltd. Int. J. Robust. Nonlinear Control 2011; 21:373-386
DOI: 10.1002/rnc



382 J. M. MARUSKIN AND A. M. BLOCH

Figure 1. Geometry of the vertical rolling disc.

resulting optimal control dynamics are determined, the control forces which produce the optimal
trajectory are then given by the n—m algebraic equations (15). The solution is then found by
solving the related boundary value problem, with 4n —2m prescribed boundary conditions: g'(0),
u'(0), ¢ (T), u’ (T).

5. EXAMPLES

In this section, we will apply our approach to the kinematic and dynamic vertical rolling disc
as well as the dynamic optimal reorientation of a free rigid body. For simplicity, we will restrict
our attention to cost functions that minimize the control effort. The procedure, however, can be
extended to more general cost functions, though one will not obtain such a clean result.

5.1. Kinematic optimal control of the vertical rolling disc

The vertical rolling disc is a basic example of a nonholonomic control system. It is similar in nature
to the car-like robot (see [15]), however, the equations work out more cleanly. The generalized
coordinates are given by g =(x, y, 0, ¢), where (x, y) is the contact point of the disc on the x —y
plane, 0 is the angle that a reference point on the disc makes with the vertical, and ¢ is the angle
the disc makes with the x-axis, see Figure 1. The motion is subject to the nonholonomlc constraints
xX— cos(q’))@ Oand y— sm(qﬁ)@ 0. The control velocity field is given by ¢ = Xjw' 4+ X,w?, where
X1 =(cos¢,sin¢, 1,0)T and X, =(0,0,0,1)T. One mlght concelvably have direct control over the
angular rates, so that the control functlons are given by w!=0and w*= q’) The quasi-velocities are

therefore given by u; =0, ur = ¢, uz =x —cos(¢)0, and us = y —sin(¢)0, so that the transformation
matrices ¥ and ® are given by:
00 1 0 cosp 0 1 O
0 0 0 1 sing 0 0 1
V= . = (23)
1 0 —cos¢p O 1 0 0 0
0 1 —sing O 0 1 0 0

Notice that the top two rows of W correspond to the bl.I matrix, which reveal the control functions
w! :bi’ qi, whereas the final two rows of W coincide with the constraint matrix atf’ . The first two
columns of the inverse matrix @ are the control vector fields; hence q'i =(D§-uj =d)’)u1 =X gwl
Finally, we confirm that biI X ’J is the 2 x 2 identity matrix.

We now consider the following optimal control problem. We wish to determine controls which
steer the disc, starting from g1 =¢(#1) and stopping at g2 =¢g(#2), along the path that minimizes
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the cost function: 5 ft'f(wlz-i—w%)dt. The nonzero Hamel coefficients are y3,=sin¢=—73, and
y‘z‘] =cos<f>=—y?2. In terms of the quasi-velocities, the integrand of the cost function becomes

Cq,u)= %u%—i— %u% The Boltzmann—Hamel equations (10)—-(12) then produce the following set
of first-order differential equations:

iy = (ugcosp—pssindua, f13=0, x=cos(Pp)u;, O=uy,

iy = (uzsing—pycospluy, fju=0, y=sin(Pui, P=us.

These equations are further discussed in [14]. The solution to this system of differential equations
yields the optimal dynamic control equations of the vertical rolling disc. It is equivalent to the
following reduced system:

i=cos(¢)), 0=(uycosd—pzsind)e,
y=sin()0, ¢ =~(ussin¢—puycos $)0,

where 5 and 4 are constants.

5.2. Dynamic optimal control of the vertical rolling disc
Consider the vertical rolling disc with Lagrangian
. . "2 22
L=3+y)+ 30" +5¢
and control torques in the 0 and ¢ directions. The dimensions are normalized such that the radius
and mass of the disk are unity. The corresponding dynamical equations of motion (see [14]) are
%é:wh %é:wz, x=0cos¢ and y=0sing.

This is equivalent to a minimal set of six first-order differential equations. Since the control forces
are in the 0 and ¢ directions, we can take the same quasi-velocities obtained using the matrices
(23) used in the kinematic case. Note that the control covector fields are the first two rows of V.

We now wish to choose the control forces so as to minimize the cost function fttf %(wl2 + w%)dt.

Solving for the controls in terms of the quasi-accelerations wi = %é: %a3 and wy = %d) = %ém, this

is equivalent to minimizing the action fttlz(%alz-i— 15a3)dt subject to the nonholonomic constraints.
Using the dynamic optimal control Boltzmann—Hamel equations (20) and (21), coupled with the
dynamical equations of motion above, and eliminating the controls, we have a minimal system of
12 first-order differential equations:

x=cosduy, ji1=73(u3sin¢— pycos Py,
y=sinduy, jo=16(—p3sin¢p+pycosPui,
O=uy, wy=a;, ar=y1, fi3=0,
b=us, wa=ay, a=p, ju=0.

By use of quasi-velocities, quasi-accelerations, and quasi-jerks, we have made the following simpli-
fications: u3 =uq4=a3z=a4= j3= ja =0, thereby eliminating the necessity of 6 of the 18 first-order
differential equations necessary in the standard approach. The solution to this system of differential
equations yields the optimal dynamic control equations of the vertical rolling disc. It is equivalent
to the following reduced system:

)'c:cosqﬁ(), y:sinq’)O
0=4§(uysing—pycosp)d, ¢ =16(—pi3sind+ 1 cos $)0,

where 5 and 4 are constants.
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5.3. Dynamic optimal control of the free rigid body

Consider dynamic control of the free rigid body, where the generalized coordinates are given by
the Type-I (aircraft) Euler angles (, 0, ¢). As quasi-velocities, choose the body-fixed components
of the angular momentum u| =w, =—ysin0+¢, up=w,= YcosOsing+0cos ¢, and uz =, =

xpcos Ocos ¢ — 0sin ¢. The transformation matrices are given as:

—sinf 0 1 0 secfsin¢g secHcos¢
W= cosfsingp cos¢p O and ®=|0 cos ¢ —sin ¢
cosficos¢p —sing 0 1 tanfsin¢g tanfOcos¢

The mechanical Lagrangian is given as g(q,u):%(Ixxu%+lyyu%+lzzu§). The nonzero Hamel
coefficients are V%s =1, y%3 =—1, y?zz 1, yézz—l, 7’%1 =1, and 7’%1 =—1. For notational conve-
nience, define 13, =I,; — Iy, 113 =l — Iz, and 1, = Iy, — Ix,. Then the Boltzmann-Hamel equa-
tions (15) produce the Euler equations

Ixxu1+n32u2u3=Mx, Iyyu2+7713u1u3=Mya Izzu3+ﬂ21M1M2=Mz, (24)

where My, My, and M, are the control torques applied about the body-fixed principal axes. The
cost function integrand %(M f +M }2 +M 12), when expressed in terms of quasi-variables, is given by:

= %{Ifxa%—i—lyya%—I—Izza§+21xx1132a1u2u3 +2Lynzurazus
2 2 2.2
202 U1 U3+ 3 UFUS + U US 175 U U3 )
The k’s (19) are given by:
K1 = Ly 3a0u3 + Loy uaaz + 0y us +m3 unus — Lt — Laizpuoas — Lunspazus,  (25)
K2 = Iyzpaiuz+ I 0y u1a3 —Hf]%zuzug —I—n%lu%uz — Ly p—ni3hyyuias —n3lyyajuz,  (26)
K3 = Iyh3pa1u2 +Iyy;713u1a2+n§2u§u3 +n%3u%u3 — I3 =1y Lzuraa —np Izarua.  (27)
The optimal control Boltzmann—Hamel equations (20) then work out to be
K=KXO, (28)

where k= (x1, k2, k3) and o is the angular velocity. These provide three differential equations
for the j’s. Let [ be the moment inertia tensor with respect to the principal axes basis &, €,, €.,
so that, in dyadic notation, | =1I€,€, + I,,€,&,+I.e;e.. Let IT:=[-® be the body axis angular
momentum. Then (25)—(27) can alternatively be re-expressed as:

k=TI x [T+ I x (0 x IT)— I-{20 x H+ o x M+o x (o x D))} 29)

Finally, by defining A(e, @)=k +1II, the dynamic optimal control equations for the free rigid body
can be expressed as:

M=i+Mxo—ixo. 30)

In addition, we have the kinematic relations

W = sec Osin pus +sec O.cos dus, (31)
0= cos ¢uy —sin ¢us, (32)
¢ = u; +tan O'sin pus +tan O cos pus, (33)

as well as the relations u#; =a;, a; =j;. This is a set of 12 first-order differential equations. Once
one solves the corresponding boundary value problem (initial, final Euler angles, angular velocities
specified), the controls are determined by the algebraic relations (24).
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Figure 2. Optimal dynamic control of free sphere: Euler Angles and body-fixed angular
velocity with respect to time.

For the special case when the rigid body is spherical one sees from (29) that k =—IT and A=0.
Then the Boltzmann-Hamel equations for the optimal dynamic control of the free rigid body
(30) reduce to @ =& x w. When coupled with the kinematic relations (31)—(33) and the algebraic
relations (24), the optimal control trajectories of the free rigid sphere are produced. Integrating
once yields the second-order system & =c-+ x w, which coincides with the result of [22, 28].
The optimal solution trajectory of the reorientation of the rigid sphere from q(0)= (0, 0, 0), w(0)=
(0,0,0) to the point q(1)=(n, —n/4, /5), w(1)=(0, 0, 0) is plotted in Figure 2.

6. CONCLUSIONS

In this paper, we showed how one can extend quasi-velocity techniques to kinematic and optimal
control problems for mechanical systems with nonholonomic constraints. Standard Lagrange multi-
plier techniques for kinematical optimal control problems produce a set of 2n+m first-order
differential equations: n for the coordinates ¢, n for the velocities ¢, and m for the multipliers
U,- On the other hand, by generalizing the dynamic Boltzmann—Hamel equations to the kinematic
control setting, we obtain a saving of m first-order differential equations, as one no longer needs
to solve the constrained quasi-velocities. Moreover, the differential equations for the multipliers
(11) are naturally separated from the differential equations for the quasi-velocities (10).

For the dynamic optimal control problem, one typically encounters a fourth-order system, plus
multipliers, which produces a total of 4n +m first-order differential equations, which require further
reduction and elimination. The Boltzmann—-Hamel form of the equations (Theorem 5) gives a
minimal set of 4n —2m equations of motion, as one no longer need integrate the m constrained quasi-
velocities, quasi-accelerations, and quasi-jerks, u? =0, a® =0, j? =0, respectively. This approach
gives us a total saving of 3m first-order differential equations. Initial and final conditions are then
enforced by solving the resulting system of differential equations as a two point boundary value
problem.

As a final example, we showed that Euler’s equations of rigid body dynamics, a special case of
the Boltzmann—Hamel equations, can be generalized to a fourth-order form that yields the optimal
reorientation trajectory given a set of body-axis control torques. This set of equations could feasibly
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be of some benefit to the optimal reorientation problem of the International Space Station, for
example. When one takes the rigid body to be a sphere, these equations reduce to the differential
equations defining cubic splines on SO(3).
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