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[Abstract] 

Cardiac patients are more likely to suffer from depression, and depression itself predicts increased 
morbidity among patients with cardiovascular disease. As research uncovers more and more 
information about the link between depression and cardiovascular disease (CVD), an increasing 
number of candidate genes which play some role in the association are also being uncovered. Here we 
chose to study the Serotonin Transporter Length Polymorphism (5-HTTLPR) in the Serotonin 
Transporter gene (SLC6A4) and Tryptophan Hydroxylase-2 (TPH2). Both genes are in the Serotonin (5-
HT) pathway. Subjects for the study are drawn from the Cardiac Rehabilitation Center here at U of M 
Preventive Cardiology Services under the direction of Dr. Melvyn Rubenfire, and genotyping of the 5-
HTTLPR is combined with extensive clinical information collected at the hospital in an attempt to 
create a model that accurately characterizes the role of 5-HTTLPR and TPH2 in depression 
cardiovascular disease. 
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1. INTRODUCTION 

1.1 Background 

This project emerges from a long history of research about the relationship between depression 

and cardiovascular disease (CVD), for which there is a well-established comorbidity, meaning 

that the two diseases often occur at the same time. Depression is a known risk factor for 

coronary heart disease (Rugulies 2002), conferring at least two times the risk for developing 

CVD (Halaris 2009). Likewise, depressive symptoms are present in about 30- 45% of cardiac 

patients (Schleifer, Macari-Hinson et al. 1989), which is substantial compared to the 7-18% 

prevalence in the general population. In fact “clinically diagnosed major depression 

[contributed an increased] risk for the development of CVD… equal [to] the risk of smoking and 

diabetes” (Van der Kooy, van Hout et al. 2007). But even if depression comes after CVD, it 

makes this chronic disease worse: patients who have a myocardial infarction (heart attack) and 

then develop depression have higher mortality rates. Overwhelming data such as these have 

lead to the exploration of the various ways depression and CVD might lead to and interact with 

each other. 

It is not difficult to imagine how typical symptoms of depression might lead to CVD. Low 

mood, insomnia, lost of interest in activities, low self-esteem, and feelings of self-worthlessness 

render an individual less likely to take care of themselves, including through exercise. According 

to obesity research for example, it is “Consciousness of weight stigma, regardless of objective 

weight status, [that] may negatively affect individuals' willingness to participate in physical 
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activity”(Schmalz 2010). Similarly, depressed patients with comorbid CVD are less likely to 

adhere with their medication or treatment regimen. A meta-analysis of literature from 1968 to 

1998 looking at depression and anxiety’s impact on non-adherence to treatment looked at 12 

articles on depression and 13 on anxiety. Interestingly, anxiety did not have decisive impact on 

compliance scores. But depression and noncompliance yielded a very significant odds ratio of 

3.03 (95% Confidence Interval: 1.96-4.89), meaning that having depression specifically leaves 

patients three times more likely to have trouble complying to treatment (DiMatteo, Lepper et 

al. 2000).  Surely this loss of interest or ability in self-care can account for a portion of the 

explanation for why individuals with depression are twice as likely to develop CVD. How CVD 

might influence depression purely due to the psychological burden is likewise easy to imagine. 

Chronic illness such as CVD places a great deal of psychological burden on an individual, as we 

can imagine. Even so, the chronic illness becomes worse when one has depression, as one 

analysis of 31 published studies including 16,922 patients describes. “Patients with chronic 

medical illness and comorbid depression or anxiety compared to those with chronic medical 

illness alone reported significantly higher numbers of medical symptoms when controlling for 

severity of medical disorder” (Katon, Lin et al. 2007). 

 So what is going on here? Researchers have for years now been researching and 

proposing common underlying mechanisms which may lead to both diseases, as opposed to 

merely exploring the ways that one might worsen the other.  Several biological mechanisms are 

explored in section 1.3 of this paper, including platelet activation, cytokines, and the body’s 

own stress response. Another portion of the explanation for this relationship could be common 

genetic risk factors, two of which we explore in this paper.  
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 Even without looking at specific genes and mechanisms, association studies established 

that there are common genetic risk factors underlying depression and cardiovascular disease. 

An association study of 2,731 complete pairs of male-male twins which looked at the common 

genetic and environmental risk factors for depression, heart disease, and hypertension 

confirmed the co-occurrence of depression and cardiovascular disease, and found a significant 

genetic correlation between both depressive symptoms and hypertension (r=0.19) and also 

between depression and heart disease (r=0.42) (Scherrer, Xian et al. 2003). 

 From there, the scramble to identify which specific genetic polymorphisms is part of this 

shared genetic risk has uncovered numerous candidate genes for study. The two genes we 

chose to study are the Serotonin Transporter Length Polymorphism (5-HTTLPR) and two Single 

Nucleotide Polymorphisms (SNPs) on Tryptophan Hydroxylase -2 (TPH2). The Serotonin 

Transporter gene has a SNP of interest in addition to the length polymorphism noted above. As 

will be described in detail, one allele of 5-HTTLPR has been shown to predispose individuals to 

depression given environmental exposure to stressful live events (Caspi, Sugden et al. 2003). 

Similarly, variations in TPH2 account for a subgroup of depressed patients who are more likely 

to develop a disorder called Metabolic Syndrome (MetS), which is a cluster of cardiac risk 

factors (Deen 2004; Kloiber, Kohli et al. 2009). 

 Our study uses clinical data and DNA from cardiac rehabilitation patients at the 

University of Michigan to examine the following relationships: 
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1. Analyzing how 5-HTTLPR and TPH2’s role in mediate standardized mood scores pre and 

post-cardiac rehabilitation. 

2. Verifying the relationship between depression symptoms and compliance  in our sample 

Depression         ?   Compliance 

 

2.1. Then introducing the 5-HTTLPR and TPH2 factors to see whether the genetic risk factors 

mediate depression’s impact on compliance.  

Depression      Compliance 

    ? 

      Genetics 

 

  

                          5-HTTLPR     TPH2 

 

3. Verifying TPH2’s link to Metabolic Syndrome (MetS) in our sample 

TPH2      MetS 
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1.2 Genetic epidemiology:  The genetics of complex traits 

In order to understand this study, background knowledge of genetic epidemiology is essential. 

Complex traits are called so because they are more complicated than phenotypes driven by a 

single gene or by genes with a larger effect. Because of this, they are much harder to study. In 

complex traits, there can be many genes involved and the resulting trait can also be influenced 

or triggered by environmental factors. As a result, studying complex traits in genetics involves 

careful analysis and extensive knowledge of statistics in order to identify relationships that 

actually exist and separate out confounding factors that may actually not be strictly associated. 

There are several ways to study complex traits and their genetic components, but one basic 

way to start such an inquiry is with association studies. 

Given that two individuals have mostly the same genes, they will, of course, differ in the 

specific versions (alleles) they have for many of those genes. Identifying candidate genes that 

might contribute to a complex trait can often start with association studies linking specific 

alleles of a gene to aspects of complex traits and diseases like depression or CVD. Once 

associations have been found, researchers aim to clarify the contribution that each allele may 

have to the disease. For complexes diseases or traits, this might mean confirming that a specific 

allele modifies a normal physical or mental response, making the individual more vulnerable to 

a disease if they are exposed to enough environmental stimuli. For example, an allele that 

seems to cause an increased stress response in individuals exposed to stressful life situations 

may predispose those individuals to develop more complicated diseases like depression later in 

life. The allele itself does not “cause” depression, but may in conjunction with other factors 
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increase that individual’s risk of developing it. The basis for such inquiries, however, often must 

start from a statistically sound association study. 

Association Studies 

Association studies which correlate a specific genotype with a phenotype are performed 

differently depending on whether the phenotype is categorized as binary, or continuous. 

If we start with a binary trait for which individuals can be classified as either having the 

trait or not having the trait, then a Case-Control design study is a good way to test for 

association. In a Case-Control study, the frequency of any particular allele is compared between 

a group of subjects who have the trait of interest (cases) and a group selected from the 

population but matched for age, gender, and race as much as possible (controls). To compare 

the groups, we would use a chi-square test which will determine whether the difference we 

observe in the data is just a matter of chance, or if it is statistically significant.  

Alternatively with a quantitative phenotype, every subject’s phenotype is on a 

continuous scale. There are no cases or controls, just a pool of subjects. The genotypes of 

interest would be plotted along with a measure of the trait, and correlation established using a 

regression analysis. It is in this step that one can assess significant covariates for the model in 

question, and choose the best model to fit the data. Covariates for a trait like height, for 

example, might include nutritional background or gender of the individual. Height is a classic 

example of a continuous trait controlled in part by genetics, but which also varies a great deal 

with the level of nutrition an individual has while growing. Through logistic regression analysis 
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we sought to develop a model that most accurately describes the relationship between our 

outcome variable and the genetic predictor variables as well as appropriate covariates.  

Regression models identify statistically significant variables and covariates, but there are 

often common errors in these studies which could lead to erroneous or misleading associations 

(Cardon and Bell 2001). A few such problems are summarized in Figure 1. And even assuming 

none of these errors are committed, statistical analysis at its best is still a calculation of 

probabilities. Sometimes chance alone can lead to a false positive. 

  

In fact, finding positive association can arise from one of at least three possible 

situations (Lander and Schork 1994). The first possibility, that allele A actually causes the 

phenotype, is of course the finding that such studies are hypothesizing and are designed for. 

The second possibility is that allele A is in linkage disequilibrium with allele B which actually 

Study Design 
Errors

Small 
sample size

Poorly 
matched 
control 
group

Analysis Errors

multiple 
testing

subgroup 
analsyis

Interpretation 
Error

positive 
publication 

bias

Figure 1. Common Errors in 
Association Studies. Adapted 
from Concepts of Association 
Studies, Cardon and Bell, 2001. 
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causes the phenotype, meaning that Allele A is found along with Allele B (the phenotype-

causing allele) more often than would be expected by chance.  

The third possibility is that the association found is actually a product of population 

admixture. In the same paper, they explain: “In a mixed population, any trait present at a higher 

frequency in an ethnic group will show positive association with any allele that also happens to 

be more common in that group.” (Lander and Schork 1994). The authors provide a theoretical 

example of a researcher studying a population in San Francisco who finds a certain allele of the 

HLA complex (HLA-A1) is associated with the ability to eat with chopsticks…which is simply 

because that allele is more common in Asians than Caucasians. The allele itself has absolutely 

nothing to do with the chopsticks ability trait, but is found to be associated based on population 

admixture.  

The problems of population admixture do present themselves in real-life studies as well, 

and the authors note an example in Pima Amerindians. Researchers found an association 

between the Gm locus and type II diabetes. The version of the allele they found to be protective 

happened to be the one more frequent in Caucasians, and it turned out that Pima who had this 

allele also tended to have more Caucasian ancestry in general. Combine this knowledge with 

the fact that the Pima are more susceptible to type II diabetes in general, and we can see that 

the “protective” effects of the allele were much more likely found because of the protective 

effects of Caucasian ancestry, and not the allele itself (Lander and Schork 1994). Even among 

Caucasians, stratification based on ancestry could lead to false positive associations. One study 

demonstrated this for example when they found an association between the Lactase gene LCT 
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and height in a European American sample (p<106). However in this case again, the association 

was due to stratification: when they matched individuals based on specific European ancestry 

the association was greatly reduced, and entirely disappeared in Polish and Scandinavian 

individuals (Campbell, Ogburn et al. 2005). These real-life examples are much more subtle than 

the chopsticks example, and a fair warning to avoid population admixture in association studies 

whenever possible. If this step is not taken, then the results can often be misleading.   

Heritability 

Heritability (h2) measures how much phenotypic variance is influenced by genotype. It is based 

on a simple model where Phenotype (P) is based on two basic variables: Genotype (G) and 

Environment (E). So while an association can be very useful in establishing which genotypes are 

related to any given phenotype, h2 addresses how much of that phenotype’s variance is 

explained by the variance in genes alone, excluding environmental factors. Basically:  

  Phenotype:   P  =  Genotype (G) + Environment (E) 

  Heritability:   h2  = Var (G) / Var (P) 

For example, speaking Serbian may run in a family but no one would suggest that there is a 

“speaking Serbian” gene.  The phenotype of speaking Serbian would mainly be attributed to 

environment, and the heritability would be low. The heritability measure is crucial in separating 

out instances like these, of “traits” that simply run in families, from traits that are actually 

passed through families genetically.  

In genetics, h2 is calculated by looking at differences in the correlation of phenotype 

traits between monozygotic (identical) and dizygotic (fraternal) twins. The basic logic is that if 
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monozygotic twins are more similar than dizygotic twins, then the trait is considered heritable. 

For example, one calculates the correlation among monozygotic twins for a trait like height, and 

calculates another correlation among dizygotic twins. The difference between these 

correlations is doubled to account for the fact that monozygotic twins share 100% of their 

genes and dizygotic only 50%.  

h2 = 2(monozygotic correlation – dizygotic correlation) 

The logic is simple: dizygotic twins’ phenotypes differ based on both genes AND environment, 

while two monozygotic twins will differ from each other based on environmental influence 

alone. So the difference between them (doubled) should represent how much the phenotype is 

driven by purely genetics.  

Complex traits like depression and CVD have been widely studied and are considered 

heritable in both men (Lyons, Eisen et al. 1998),(Friedlander, Siscovick et al. 1998)  and women 

(Kendler, Neale et al. 1992), (Austin, King et al. 1987). In men, heritability was found to be 

h2=0.36 using DSM-III-R criteria for diagnosing major depression (Lyons, Eisen et al. 1998). 

Another twin study sought to find a genetic explanation for the higher incidence of depression 

among women than men, but concluded that h2 is the same for men and women and equal to 

0.39 (Kendler and Prescott 1999). 

 Researchers have also established that many traits which are themselves risk factors for 

CVD have high heritability (Austin, King et al. 1987). Those traits whose heritability was 

significant in Austin’s 1987 analysis included HDL levels, LDL levels, triglyceride levels, and 

relative weight. More recent research has accepted that systolic and diastolic blood pressure 
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also show high rates of h2 (0.52-0.66 for systolic and 0.44-0.66 for diastolic) (Evans, Van Baal et 

al. 2003). Such studies strongly suggest evidence for a genetic component to depression, and a 

genetic component to CVD.  

Statistics of complex traits 

Studying complex traits in humans through a genetic lens has become an increasingly statistical 

process. Statistical significance and the type of statistical modeling relevant to our study are 

described below. 

  Significance  

Every scientific inquiry that seeks concrete results is based on a hypothesis. One might, for 

example, have a hypothesis that Allele Y is associated with depression. To test this statistically, 

we frame this hypothesis in terms of a “null” hypothesis (H0) and “alternative” hypothesis: 

 Null hypothesis:  H0 = Allele Y is not associated with depression  (no effect) 

 Alternative:  HA = Allele Y is associated with depression   

The null hypothesis, as noted above, implies that we are not seeing any effect. This is assumed 

to be true. In hypothesis testing, we test the likelihood of that our data could occur given that 

the null hypothesis is true. If we find that our result is very highly unlikely under the H0 

assumption, then we reject the null hypothesis and accept the alternate hypothesis. For 

example if Allele Y occurs with depression in 97% of our patients, we would be likely to reject 

the null hypothesis (given the study is large enough and the sample homogeneous enough). 
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Such a result, one that allows us to reject the null hypothesis, is said to be significant. 

The significance cut-off is usually at a “p-value” of 0.05. This means that we can expect our data 

to occur (given the null is true) only 5% of the time, purely by chance. Any p-value of 0.05 or 

lower is generally considered significant enough to reject the null hypothesis. 

Many researchers conduct more than one hypothesis test in a single study. In these 

cases where multiple testing occurs, more stringent p-values must be used to ensure that each 

hypothesis is truly accurately accepted or rejected. If, for example, we were to conduct 100 

hypothesis tests in a single study, one would expect that 5 of them would come up significant 

based on pure chance. Thus a study that includes multiple testing or multiple comparisons must 

apply some kind of correction to adjust the p-value that will be considered significant for each 

individual test. One of the most commonly used adjustments is called the Bonferroni 

Correction: divide the original p-value (α) by the number of test (n):  

 Bonferroni Correction:  α / n 

  For example, if we conducted 100 tests, our new p-value should be 0.0005.  

Modeling 

Human geneticists use statistical modeling in order to describe the variation in a phenotype 

based on variables like genotype, environment, and interaction between the two, often with 

regression analysis. Because traits like depression and CVD are influenced by a constellation of 

genetic and environmental factors, we must be especially careful in making sure to include 

relevant covariates or identify confounding variables.  
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Confounders occur for example when a previously established association is later 

discovered to be almost entirely attributable to another variable altogether, previously 

overlooked, and when that variable is instead used as a covariate all of the significance found in 

the first association disappears. In this case, the second variable (a confounding variable) is said 

to have been “driving” the initial association. Besides confounding variables, interactions 

between variables themselves must also be considered. An example from genetics is the “Gene 

by Environment” (G X E) interaction. We know now that both genes and environment are 

important in determining traits and behaviors, and what is more, that they can interact in ways 

that produce different results than can be explained by the presence of either alone. One of the 

main candidate genes involved in our study is a perfect example of the G X E interaction. In a 

longitudinal study of a birth cohort of 1037 children (52% male), Caspi found that one allele 

(the S version of the well studied 5-HTTLPR) predicted higher rates of depression, but only in 

the presence of stressful life events (Figure 2). Without the environmental factor included, 

there seemed to be no contribution of the allele to higher rates of depression (Caspi, Sugden et 

al. 2003). 

 

Figure 2. The S allele interacts with 
increasing instances of stressful life 

events, in this case childhood 
maltreatment, to increase the 

probability of developing major 
depression in those individuals. 

Caspi et. al., Science 2003.
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As complex traits, studying depression and CVD brings forth similar complications, and 

as will be clear in the following section, there are many hypotheses linking the two diseases and 

predictions about the underlying biological mechanisms behind these links. 
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1.3  Depression and Cardiovascular Disease Interaction 

The study of depression and CVD proves challenging especially because the interactions 

between the two are almost impossible to tease apart. Does the instance of myocardial 

infarction spurn depressive moods and, in a way, lead to depression? And what about 

depression’s role in developing CVD? A proposed set of mechanisms by which depression might 

lead to cardiac events is shown in Figure 3 (adapted from a table in (Whooley 2006). But other 

studies show cardiac risk factors leading to depression as well! Metabolic Syndrome (MetS) is a 

good example of this type of link, since it is roughly defined as a cluster of risk factors for CVD 

and yet having the syndrome seems to predispose people for developing depression (Koponen, 

Jokelainen et al. 2008). 

 

Potential  Biological Mechanisms

•alterations in cardiac autonomic tone

• common genetic vulnerability
•enhanced activity of hypothalamic-
pituitary-axis

•greater platelet activation

•increased catecholamine levels

•increased whole blood serotonin

•inflammatory processes

•lower omega-3 fatty acid levels
•toxicity of tricyclic antidepressants

•mental-stress induced ischemia

Potential  Behavioral Mechanisms

•dietary factors

•lack of exercise

• medication nonadherence
•poor social support

•unhealthy lifestyle 

Figure 3. Mechanisms by which Depression may lead to Cardiac Events. Adapted 
directly from Whooley, 2006. 



20 | P a g e  
 

 

MetS has been “variously defined, but generally consists of 3 or more of the following 

components: hyperglycemia, hypertension, hypertriglyceridemia, low HDL, and increased 

abdominal circumference and/or BMI at >30”(Sutherland, McKinley et al. 2004).  

Similar to its contribution to developing depression, there seem to be psychological 

traits that increase likelihood of MetS, such as depression, hostility, and anger (Goldbacher and 

Matthews 2007).  This is why researchers interested in the biology of depression and CVD are 

interested in finding common mechanisms that might lead to both diseases. One of these 

proposed mechanisms involves an immune response mechanism involving platelet activation, 

cytokines, and the body’s stress response. 

 Platelet Activation, Cytokines, and the Stress Response 

Depressed patients are shown to have higher rates of platelet activation than controls 

(Nemeroff, Musselman et al. 1998) and similarly, depressive symptoms have been shown to 

predate and to worsen inflammation which is a risk factor for coronary artery disease(Stewart, 

Rand et al. 2009). Platelets (also called thrombocytes), are the essential factors for functional 

blood clotting, and while low levels of platelets can lead to excessive bleeding, heightened 

platelet activation and reactivity can cause blood clots and heart attacks. Platelets in turn can 

interact with leukocytes (white blood cells) and release factors such as cytokines, which are 

crucial in regulation of the body’s inflammatory response. Both inflammation itself and higher 

platelet levels, then, can contribute to CVD risk. Research has verified this relationship, 

including one paper which reviewed the evidence for cytokines in acute heart failure, and noted 
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that higher pro-inflammatory cytokine levels definitely correlated with more severe symptoms 

of chronic heart failure and had more negative clinical outcomes (Chen, Assad-Kottner et al. 

2008).  

 The neurotransmitter serotonin (5HT) is also involved in the cardio-depression link. Its 

link to depression is well known, and it is likely that even most non-scientists have seen 

advertisements for the popular pharmaceutical depression treatments called Selective 

Serotonin Reuptake Inhibitors (SSRIs), which directly block the Serotonin Transporter (5-HTT) 

from reabsorbing 5HT released at the synapse (the gap between two neurons). But 5HT has 

many roles, and researchers have yet to fully elucidate how they interact. However it is 

noteworthy to mention that “it has been clearly established that serotonin plays a significant 

role…in chronotropic and ionotropic effects in the cardiovascular system, and in platelet 

aggregation in the circulatory system” (Jonnakuty and Gragnoli 2008). Platelets, in fact, provide 

storage for circulating 5HT. When platelets interact with damaged tissue or several 5HT 

receptor agonists, they actually release 5HT and contribute part of the platelet aggregation 

response (Maurer-Spurej, Pittendreigh et al. 2004). 

An environmental disruptor of pathways which normally attempt to maintain homeostasis and 

is involved in these two diseases is chronic stress. The normal stress response functions on a 

negative feedback system. Under the normal immune response, or during stress, cytokines act 

on receptors in the brain to cause cortisol release from the adrenal gland, which in turn 

suppresses cytokine release. In chronic stress situations this balance is tipped, and cortisol no 

longer acts to suppress cytokine release –leading to excess levels of cortisol and cytokines, and 
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eventually chronic inflammation: which also has been associated with MetS (Sutherland, 

McKinley et al. 2004). In this way, environmental stress interacts with the brain and body to 

increase risk for both depression and CVD (Mosovich, Boone et al. 2008).  

Clinical Implications and Research 

One reason to study the genetics of the two diseases is precisely because of mixed clinical 

results about treating depression to improve cardiovascular outcomes (both with medication 

and therapy). Two studies into this matter are the Sertraline AntiDepressant Heart Attack Trial 

(SADHART) and the Enhancing Recovery in Coronary Heart Disease (ENRICHD) trial.  

SADHART focused on the Sertraline antidepressant (trade names are Zoloft, Lustral), 

which is a Selective Serotonin Reuptake Inhibitor (SSRI).  The study confirmed that Sertraline 

was in fact a safe and effective antidepressant for cardiac patients with ischemic heart disease, 

but the study lacked the statistical power to detect any improvement in mortality rates. The 

ENRICHD trial, which assessed Cognitive-Behavioral Therapy (CBT), confirmed CBT as an 

effective depression treatment which improved quality of life but again did not find that it 

improved morbidity or mortality rates (Joynt and O'Connor 2005).  Another study compared 

results of another SSRI called citalopram (trade names Celexa, Cipramil) and Interpersonal 

Psychotherapy (IPT) to reduce depressive symptoms in cardiac patients with major depression. 

Their findings suggest that citalopram did significantly improve depressive symptoms but IPT 

did not add any value to the clinical treatment (Lesperance, Frasure-Smith et al. 2007). It is 

difficult to draw any definite conclusions from the mixed results, and this has been our 

motivation to study the genetic predispositions which might potentially influence how patients 
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respond to therapy (or adhere to it) in order to better understand the cardio-depression 

interplay.  

Perhaps some of the difficulty of studying these outcomes is due to individual 

differences in alleles for the 5-HT. As we saw in the Caspi paper noted above, there is individual 

variation for the transporter at which these antidepressants act, 5-HTTLPR.  Another study on 

the same gene found that among patients who had had one acute myocardial infarction (heart 

attack), the S allele indeed predicted for future cardiac events (but only in the presence of 

depressive symptoms) (Nakatani, Sato et al. 2005). This may be partially explained by recent 

findings of “The Heart and Soul Study”, which found that “among patients with chronic illness, 

carriers of the S allele of 5-HTTLPR are more vulnerable to depression, perceived stress, and 

high norepinephrine secretion, *which+ may contribute to worse cardiovascular outcomes” 

(Otte, McCaffery et al. 2007). The basic difference, then, may very well come down to how 

individuals with the S allele react to environmental stressors. The following describes both the 

5-HTTLPR and TPH2 genes in detail.  
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1.4   Candidate Genes in the Cardio-Depression Link 

While many different genes are being studied in the link between Depression and CVD, our 

focus in this project so far has been on the Serotonin Transporter Length Polymorphism (5-

HTTLPR) and on the Tryptophan Hydroxylase-2 (TPH2). Both of these genes involved in the 5-HT 

pathway in our brains, which we have already learned is a good pathway to study for our 

purposes based on its role in depression and platelet activation. In fact 5-HT’s role in the body 

extends to the regulation of other functions as well, such as temperature regulation, memory, 

sleep, appetite, emotions and wakefulness (Jacobs and Azmitia 1992). 

 Serotonin Transporter Length Polymorphism (5-HTTLPR) 

Serotonin transmission occurs when 5-HT is released from a presynaptic neuron to a 

postsynaptic neuron across a gap called a synapse. Once the 5-HT molecules cross the synapse 

they bind at the postsynaptic neuron on 5-HT receptors, completing the signal between those 

two neurons. The 5-HT Transporter (5-HTT) is actually a transporter present on the presynaptic 

neuron which functions to reuptake 5-HT that has already been released. It serves a necessary 

function, which is clearing the synapse of 5-HT so that the postsynaptic receptors are not 

flooded constantly with released 5-HT (and the presynaptic neuron can soon fire another batch 

of 5-HT), thus allowing the nervous system better control of the neurotransmitter signaling 

process. It also serves to reuptake 5-HT molecules so they can be recycled or broken down and 

reused by the presynaptic neuron.    
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5-HTT-gene-linked-polymorphic region is on the 5-HTT (SLC6A4) gene on Chromosome 17 

with two major alleles: Short (S) and Long (L). The length variation in these alleles is an example 

of a Variable Number Tandem Repeat (VNTR), where a sequence of nucleotides is repeated in a 

single allele of a gene.  The L allele has 16 repeats (each 20-23 bp long) while the S allele has 14. 

The polymorphism in the promoter region of SLC6A4. The S allele results in less mRNA 

transcript and ultimately in fewer 5-HTT molecules present on that individual’s neurons 

compared to the L allele (Canli and Lesch 2007), originally described in (Lesch, Bengel et al. 

1996). This image from the Canli paper summarized 5-HTTLPR and its effects (Figure 4).   

 

Figure 4.  5-HTTLPR. 
Shown here: location of the polymorphism and that the S allele ends up 
leading to lower levels of mRNA than does the L allele. Ultimately, this 

translates to less 5-HTT protein on the presynapticneuron in the case of 
the S allele as well.

From  Canliand Lesch 2007.
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 In addition to the length polymorphism, the 5-HTTLPR also contains a Single Nucleotide 

Polymorphism (SNP) on each version of the polymorphism. In this SNP, an AG substitution 

creates a binding site for the Activator Protein-2 (AP2) transcription factor which actually 

suppresses transcription of the 5-HTT. Thus an L allele with the AG SNP (denoted LG from now 

on, as opposed to LA) will actually lead to transcription levels comparable to the S allele. Less is 

known about the transcription levels of the SG version of the allele, though it is suspected that if 

anything it leads to even lower transcription levels than the SA allele. Figure 5 details the SNP’s 

location on each allele.  

 

 

Figure 5.  A G SNP on SCL6A4
In the presence of the G nucleotide, an AP2 binding site is created, 

which suppresses transcription of the SCL6A4gene downstream of this 
promoter region.
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Tryptophan Hydroxylase-2 [TPH2] Polymorphisms 

This gene was chosen in part because of its central role in the pathway of Serotonin synthesis, 

and also for seeming connections between depression and CVD or CVD-like diseases. TPH2 is 

the brain specific version of TPH and is the enzyme that facilitates the rate-limiting step in 

converting Tryptophan to Serotonin in brain. More importantly, “TPH2 polymorphisms 

characterize a subgroup of depressed patients who are especially prone to develop metabolic 

disorders induced by genotype-dependent impairment of serotonergic transmission” (Kloiber, 

Kohli et al. 2009). The Metabolic Syndrome mentioned above (MetS), is actually a cluster of five 

risk factors closely tied to CVD: central obesity, high blood pressure, high triglycerides, low HDL-

cholesterol, and insulin resistance. An individual who has three or more of the factors is said to 

have MetS. The syndrome itself is a risk factor for CVD and in fact “Because the U.S. population 

is aging, and because more than one half of adults are overweight or obese, it has been 

estimated that metabolic syndrome soon will overtake cigarette smoking as the primary risk 

factor for cardiovascular disease”(Deen 2004).  

There are many SNPs on the TPH2 gene, and they have been linked to various 

components of mental health such as suicidality, affective disorders, amygdala activation, and 

executive control.  The Kloiber paper from 2009 finds the G allele of the rs17110690 SNP to be 

associated with MetS among depressed patients.  Thus we were interested in adding analysis of 

this TPH2 SNP to our study, especially given TPH2’s role in 5-HT synthesis. Fortunately we 

already had data about MetS diagnosis and diabetes diagnosis in our clinical data collected 

from our subjects.  
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1.5  Molecular Genetics Tools 

While details can be found in Methods, I would like to outline the workflow of how subjects are 

genotyped as it is essential to this thesis. Blood or saliva samples collected from patients were 

brought to the lab at which point DNA extraction and genotyping took place depending on the 

gene in question.  

 5-HTTLPR Genotyping: PCR, Electrophoresis, and Digestion 

Genotyping of the Serotonin Transporter polymorphisms was optimized in the Burmeister Lab. 

After extraction of DNA from the blood or saliva samples and dilution to an appropriate 

concentration, the DNA is amplified via Polymerase Chain Reaction (PCR). 

 PCR is a method of amplifying DNA via thermal cycling. As double stranded DNA is 

heated, the two strands denature (or separate), exposing the “sticky” single nucleotides of each 

to the reaction mixture. In the reaction mixture specific primers, a DNA polymerase enzyme, 

and additional deoxynucleoside triphosphates (dNTPs) are added. The primers are short chains 

of DNA sequence that will anneal to specific segments of the genome as the temperature in the 

reaction chamber cools. They are designed to flank the 5’ and 3’ end of the region which we 

wish to amplify. These primers allow the DNA polymerase enzyme (in our case Taq polymerase) 

to bind and to start attaching additional dNTPs to the exposed nucleotides from the original 

DNA strand. In the first cycle, one double stranded DNA segment is replicated. The cycle is 

repeated over and over again, with the end result being many many copies of our genetic 

region of interest. A simple diagram of this process can be seen in Figure 6. 
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Once the 5-HTTLPR region has been amplified, we can now exploit the size difference 

between the L and S allele and the charged nature of DNA molecules to visualize which alleles 

any given individual has. An electrophoresis gel (solid but porous) is created using agarose, a 

gelatin-like substance, and DNA mixed with a dye is placed inside pre-formed wells in the gel. 

The gel is then placed in a gel box filled with buffer and through which electricity runs from one 

end of the gel to the other. The DNA fragments will flow with the electric charge towards the 

positive end of the gel box because the sugar-phosphate DNA backbone naturally renders them 

negatively charged. Since the S allele is smaller, it will migrate down the gel faster than the L 

allele. After sufficient time for separation of the various DNA strands, the gel can be visualized 

under UV light due to the ethidium bromide added to the gel. The ethidium bromide is an 



30 | P a g e  
 

intercalating agent (it inserts itself among the bases in DNA) with fluorescent properties, which 

is why it is useful for visualization.  Distinction between L and S alleles is clearly visible and can 

be compared to a “DNA ladder” which has fragments of set base pair intervals: 100, 200, 300, 

400, 500, etc.  

After we have characterized whether each individual has the LL, LS, or SS genotype we 

must further characterize their genotype for the 5-HTTLPR SNP. This is done using a digestion of 

the amplified DNA using a restriction enzyme. These enzymes, derived from bacteria where 

they are useful to recognize and cut foreign DNA, will recognize a specific sequence of 

nucleotides and perform a “cut” of the double stranded DNA, yielding two smaller pieces. In 

our study we chose the enzyme HpaII which will specifically cut the L and S allele but only in the 

presence of the G allele of the rs25531 SNP (Figure 7). Because the cut produces different 

lengths of DNA segments, running an electrophoresis gel again after the product has been 

digested will allow us to easily determine the full genotype of an individual (LGSA for example).  

However, it is necessary to genotype for the length polymorphism only and then for the SNP in 

two separate steps because the LG and SG alleles are the same length. 
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The TPH2 Genotyping: rs17110690 with Taqman Assays 

Quicker genotyping method developed by Applied Biosystems Inc [Foster City, CA] involves 

using chemical fluorescence to accurately quantify and characterize the genotype of a PCR 

product in a real-time PCR reaction. In addition to all the standard PCR reagents, two types of 

Taqman probe are added which correspond to each allele of the SNP. Each subject’s sample, 

therefore, will have the potential to bind one, the other, or both probes depending on if that 

person’s genotype is AA, GG, or AG for rs17110690. The probes themselves are composed of a 
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reporter fluorophore on the 5’ end, and a quencher fluorophore on the 3’ end (see Figure 8). 

The reporter fluorophore cannot fluoresce while it is still attached on the probe to its quencher 

fluorophore. However, during the PCR reaction when Taq polymerase encounters the probe, it 

will detach the reporter fluorophore from the probe. At this point, the reporter can fluoresce 

and be detected. As the reaction proceeds and PCR product is exponentially increasing, a 

machine such as the ABI PRIZM 7900HT Sequence Analyzer automatically detects the presence 

and amount of each fluorophore (VIC or FAM, corresponding to each allele) and generally 

makes a “call” for that individual’s genotype: VIC, FAM, or BOTH.  

 The Taqman method is much faster (and costlier) than the PCR and electrophoresis 

method. Taqman can genotype hundreds of samples simultaneously in one cycle lasting about 4 

hours. However it is currently used for SNPs and not repeats, which is why it was used for TPH2 

genotyping but not 5-HTTLPR. 
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Figure 8.  Taqman genotyping method 
The Taqman method (named after the game “Pacman”) relies on the 
basic principles of PCR with the addition of fluorescent probes. Each 

probe will attach to only one type of our alleles, and will only fluoresce 
when separated from the quencher fluorophore by the Taq

polymerase molecule as it extends the complimentary DNA’s strand. 
(Image from Koch, 2004. )
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Other Data: Clinical Data and Surveys 

In addition to the molecular data, clinical data and surveys are used. Details can be 

found in Methods, but the main surveys used are the Short Form 36 (SF-36) and Brief Symptom 

Inventory (BSI). Each of these surveys gives us a breadth of data from which we can 

characterize various phenotypes and endophenotypes. Endophenotypes are usually a more 

stable, measurable, and have a direct genetic association. For this reason, surveys collected are 

very detailed and in general do not simply ask “yes or no” questions about our complicated 

phenotypes like depression or CVD. Rather, we have data about various risk factors and 

components of each condition. This allows for much greater flexibility in our statistical analysis 

and generally much more reliable results.  

In addition to the primary scales used  mentioned above, other clinical questionnaires 

and health history data were collected as part of the cardiac rehabilitation program, much of 

which were pertinent to our study as well as potential confounders or co-variants. We had 

access to extensive information about factors like gender, race, and education level for 

example. Details about heart-disease related medications were taken, as well as past surgeries 

and injuries. Significant past and current medical problems were noted in the following 

categories: General Conditions, Heart/Circulation, Endocrine, Pulmonary, Gastrointestinal, 

Genitourinary, Bone and Joint, Neuropsychiatric, Hematologic, and Other. Gynecological (if 

female) and Family History was taken. Tobacco and Alcohol use was assessed (including 

questioning about types of tobacco, and attempts to quit or intentions to quit). Body weight 

and nutrition information was taken as well as extensive questioning about physical activity 
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habits and opinions. Information about “Well-being, Stress, and Emotional Factors” was taken 

primarily via the SF-36 and BSI questions described above, which were integrated within an 

overall questionnaire for the subject participants.  

 The program staff also measured participants’ health status via a number of clinical 

measures. These included data on resting pulse, resting blood pressure, fasting blood test 

results (choclesterol, triglycerides, LDL, HDL, glucose, hemoglobin A1c, homocysteine, and ALT), 

diagnosis status of various disorders such as Diabetes or Metabolic Syndrome, and the results 

of a Graded Exercise Test (GXT).  
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2 METHODS 

2.1 Subjects 

Subjects from our study were drawn from patients who participated in the cardiac 

rehabilitation program through University of Michigan Preventive Cardiology at the 

Cardiovascular Center, under the direction of Dr. Melvyn Rubenfire. Patients who were eligible 

had coronary heart disease (CAD) but not heart attack, coronary heart failure, or valvular heart 

disease. Informed consent was given and our study was approved by the University of Michigan 

Medical School Institutional Review Board. In addition to the clinical and psychological data 

collected for the cardiac center, data was collected using the surveys mentioned previously (the 

SF-36 and the BSI).  Blood or saliva collection was also added as part of our study for extraction 

of DNA. The sample analyzed here includes clinical data from 245 subjects, though the study is 

ongoing.   

 2.2   DNA Extraction  

DNA was extracted from blood samples using the Puregene protocol for extraction from whole 

blood (produced by Qiagen). For saliva samples, the Oragene® protocol for extraction from 

saliva was used (produced by DNA Genotek). At the end of DNA extraction, the concentration of 

DNA was measured (ng/μl) in each sample using the Nanodrop (ND-1000) Spectrophotometer.  
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2.3   5-HTTLPR Genotyping  

We used PCR amplification followed by Electrophoresis and enzymatic digestion with HpaII to 

characterize the 5-HTTLPR alleles and the rs25531 SNP. After measuring DNA concentration, 

each DNA sample was diluted to a concentration of 20 ng/ ng/μl. PCR was performed in a PTC 

100 thermal cycler in a total volume of 30 μl for every sample: 60 ng (3 μl) of template DNA, 3 

μl 10X SCB Buffer, 1.2 μl of 50 mM MgCl, 1.5 μl 1M Betaine, 1.5 μl DMSO, 0.3 μl Taq 

Polymerase, 3 μl of 2.5 mM dNPTs, 1.5 μl each of 5 mM primers HTT-R (5’-TGG GGG TTG CAG 

GGG AGA TCC TG -3’) and HTT-F (5’-TCC TCC GCT TTG GCG CCT CTT CC -3’), and 13.5 μl of H20.  

The PCR reaction started with a 94°C for 5 minutes, then 40 cycles of: 30 seconds at 94°C, 

60.2°C for 90 seconds, and 72°C for 1 minute. PCR cycling ended with 72°C step for 10 minutes 

and remained at 15°C until removal from thermal cycler. Samples were then run on a 3% 

agarose gel with 5  μl of ethidium bromide added. Visualization on the gel of the bands of L and 

S alleles was done by mixing 10 μl of the PCR product with a loading dye, under UV light.  

 Digestion of the rs25531 SNP was performed using HpaII enzyme from New England 

BioLabs. Only samples that successfully amplified with PCR were digested. HpaII cleaves at the 

recognition site 5’-C^CGG-3’, which only occurs in the presence of the AG SNP (otherwise the 

sequence remains 5’-CCAG-3’). As seen in Figure 7 above, the presence of the G SNP allows for 

cleavage of the L allele (originally 512 bp long) into a 402 bp visible fragment (and 110 bp 

byproduct). Only the 402 bp segment is big enough to be characterized in our gel procedure. 

The S allele (originally 469 bp) is reduced to a 402 bp fragment (and 110 bp byproduct). 

Samples were digested in a total volume of 20 μl containing: 10 μl of DNA product from PCR, 2 
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μl of NEB 1 Buffer, 0.4 μl  of HpaII enzyme, and 7.6 μl H20. The reaction was performed in the 

same thermal cycler under the following conditions: 37°C for 4 hours, 65°C (enzyme 

deactivation) for 20 minutes, and 15°C until removal from thermal cycler. 

 2.4 TPH2 Genotyping 

Genotyping of TPH2 SNP rs17110690 was performed according to the Taqman method (Applied 

Biosystems, Inc [Foster City, CA]) described above and shown in Figure 8. The specific Taqman 

assay for our SNP (C_ _33094005 on ABI website) was used, along with a standard universal PCR 

master mix (also from ABI). The reactions were run in a 5 μl total volume per sample, which 

included 2.5 μl of 10X PCR master mix, 0.125 μl of a 40X  primers and probes specific to our 

SNP, and about 40 ng of genomic DNA. PCR cycling and the fluorescence read was conducted in 

an ABI PRIZM 7900HT Sequence Analyzer under the following conditions: 95°C for 10 minutes, 

and 40 cycles consisting of 92°C for 15 seconds followed by 60°C for 1 minute.   We used the 

program SDS 2.1 (ABI) for allelic determination, which included manual calls when clustering 

was hard to determine automatically . 

2.5 Clinical Data and Surveys Collected  

Subjects are from the University of Michigan Cardiac Rehabilitation Program at 

Preventive Cardiology Services at the Medical School, and are under the direction of Dr. Melvyn 

Rubenfire. Patients undergo 6-8 weeks of rehabilitation geared towards increasing their 

physical health via supervised exercise and helping them integrate exercise at home. Education 

is also provided about healthy eating, cardiac signs, and stress management. If the patients 
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have given consent to our part of the study, DNA is collected by blood sample or saliva sample 

at the end of their rehab. In addition, subjects participate in some additional surveys to give us 

observable data about mood, comorbid conditions, medications, and other variables that will 

be essential in our analysis.  

Clinical data was taken from subjects upon admission to rehab, completion of rehab, 

and at 6 months and 12 months after that in the case of part of the surveys. Two questionnaires 

of clinical data are collected from the patients that are of specific interest in our study: the 

Short Form 36 (SF-36) and the Brief Symptom Inventory BSI (a subset of questions from the 

Symptom Checklist 90, SCL-90). The SF-36 was part of the follow-up surveys, but the BSI was 

only included in the initial baseline collection of clinical data. Our analysis includes SF-36 

assessments primarily. 

 

 Short Form 36 (SF-36):  Quality of Life Assessment, Our Depression Measure 

The SF-36 is a quality of life assessment which asks questions about patients’ emotions and 

health states over the past 4 weeks, and contains 36 questions broadly grouped into as 

pertaining to physical or mental well being, and into four categories within each for 8 total 

scales. The scales within Physical Health (Dimension A), are: (1) Physical Functioning –PF, (2) 

Role-Physical –RP, (3) Bodily Pain –BP, (4) General Health. Mental Health (Dimension B) 

Categories are: (5) Vitality – VT, (6) Social Functioning – SF, (7) Role-Emotional – RE, and (8) 

Mental-Health –MH. In fact ,scales 4 and 5 (General Health and Vitality respectively) are 

considered to overlap between the Physical and Mental Health dimensions.  We have focused 

most on the Mental Health (MH) index, a subset of five questions about mental well being. 
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Patients report their feelings of Happiness, Nervousness, Downheartedness, Down-in-the-

Dumps-ness, and Calmness. Questions are presented in the general format of: “How much of 

the time during the PAST FOUR WEEKS have you felt…..” and a subject would circle from a 

range of: (1) All of the time (2) Most of the time (3) A good bit of the time (4) Some of the time 

(5) A little of the time and (6) None of the time. However, scores are inverted between 

emotions considered “negative”such as Nervousness so that in all cases, the highest score is 

considered the most desirable state for that particular mood score. Therefore in the case of 

nervousness for example a score of 6 would actually be least nervous. Because of this, we can 

average the 5 scores into a single variable Mental Health which we will use often in the 

analysis, and higher scores of Mental Health are consistent with averaging in the more 

desirable ranges for each mood score.  

The Brief Symptom Index (BSI): Depression, Hostility, and Anxiety 

During the baseline clinical evaluation subjects also answer a number of questions drawn from 

the BSI, which is a subset of questions the Symptom-Checklist-90 SCL-90 (a 90 question survey). 

The BSI in total consists of 53 self-reported questions that cover a range of 9 scales 

(Somatization, Obsessive-Compulsive, Interpersonal Sensitivity, Depression, Anxiety, Hostility, 

Phobic Anxiety, Paranoid Ideation, and Psychoticism) and ask the subject “How much has that 

problem distressed you during the PAST SEVEN DAYS including today”. Subjects respond by 

circling a number from 0 to 4 (“Not at all” to “Extremely”). From here we are primarily 

interested in data about the patients’ levels of Hostility, Depression, and Anxiety. However we 

chose not to use this in our analysis due to not having enough clinical data from these variables 

yet. It will probably be used in future analysis with this dataset.  
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Compliance Data 

An initial evaluation included questions about difficulty taking prescribed medications. Follow-

up health questionnaires included an entire section of questions labeled “Behavior 

Modification/Program Compliance Problems” which asked “Since your previous evaluation, 

have you experienced problems with any of the following:” 

(1) Taking medications  

(2) Exercise  

(3) Quitting smoking  

(4) Eating healthy  

(5) Weight control 

(6) Drinking alcohol  

(7) Coping with stress 

For consistency, compliance values from the first follow-up available for each subject were used 

due to high variability for the number and frequency of follow-ups at this point of the study. 

Compliance was converted into 1 binary score for each individual (0 = total compliance, 1 = at 

least one compliance issue).  

2.6 Statistical Analysis 

All statistical analysis was performed using SPSS 17.0.0 software package (released August 23, 

2008). General trends were observed using plots of mean values and error bars representing +/- 

1 standard error of the mean. 
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 Relationship between Mental Health and Compliance were analyzed using Binary 

Logistic Regression with binary Compliance scores as the outcome variable. Tests assessing 

whether genetics had any influence on the change in mental health scores between initial 

baseline scores and follow-up scores were conducting using a general linear model for repeated 

measures with 2 levels (baseline and follow-up scores of mental health, happiness, or calm) and 

based on the 5-HTTLPR values or the SNP on SCL6A4. Covariates in the analysis were Gender, 

Ethnicity, and Antiplatelet medication use. The relationship between TPH2 SNPs and MetS was 

analyzed using a Chi-Square test.  

5-HTTLPR and the SNP 

5-HTTLPR genotype was recorded first in the 3 categories mentioned before: LL, LS, or SS, and 

for analysis purposes coded as 1, 2, or 3 respectively. In analyzing the effect of the SNP, we 

recoded the full genotypes into three categories based on their functionality as referenced in 

the literature and earlier in this thesis. For example an LG allele was treated as an S allele. 

Therefore Category 1, functionally similar to an LL genotype, included LALA only. Category 2, 

similar to LS, included LALG as well as LASA and LASG. Category 3, similar to SS, would include any 

LGLG, LGSG, LGSA, SASA, SASG, or SGSG genotypes: 

 1  - Equivalent to LL  2 – Equivalent to LS  3- Equivalent to SS 

 LALA    LASA    SASA 
     LASG    SASG 
     LALG    SGSG 
         LGLG 
         LGSG 
         LGSA 
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3   RESULTS 

3.1 Descriptives 

Our subject pool contains 184 (75.1%) male and 61 (24.9%) female subjects. The age 

range of subjects is 34 years old to 94 years old, and age is normally distributed with a mean of 

65.23 (s.d. 10.243, n=245). The predominant ethnicity was Caucasian (229 subjects, 94.6%), 

followed by African American (7 subjects, 2.9%), Asian (4 subjects, 1.7%), and Other (2 subjects, 

0.8%). In the sample, 28 subjects had diagnosed MetS, 131 did not have diagnosed MetS, and 

117 of the subjects had an unknown MetS status.  

Allele Frequencies   

For the 5-HTTLPR, the allele frequency among Caucasians is 0.4 for the L allele and 0.6 

for the S allele according to Hapmap, leading to expected genotype frequencies of: LL 0.36, LS 

0.48, SS 0.16. In our sample among the Caucasian subjects the genotypic frequencies were: LL 

0.325 , LS 0.528 , SS 0.147 (n=163).  For TPH2 rs2171363, the major allele is G with an expected 

frequency of 0.64 and the minor allele A has a 0.36 expected frequency (Hapmap). This would 

lead to expected frequencies of: GG 0.409 , AG 0.461, and AA 0.130. In our sample Caucasians 

have: GG 0.265, AG 0.565, AA 0.170 (n=147). For the TPH2 rs17110690 SNP, allele frequencies 

among Caucasians from Hapmap are 0.8 for the G allele and 0.2 for A. Expected frequencies 

would be: GG 0.64, AG 0.32, and AA 0.04. Actual frequencies for Caucasians were very close: 

GG 0.614, AG 0.368, AA 0.018 (n=171).   
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3.2 Effects of 5-HTTLPR on Mood Scores 

We took a preliminary look at how each score seemed to be affected by genotype based on 

error bar plots and determined that Happy, Calm, and Mental Health were potentially 

interesting to test for significance. A Bonferroni correction of 0.05/6 = 0.0083 was used for the 

new p-value acceptable for significance, given we had 6 SF-36 mood scores to start with.  

 I will start by showing the error bar plots for scores of Mental Health, Happy, and Calm 

at our first follow-up, stratified only by the 5-HTTLPR genotype (Figure 9). Though none of the 

findings are significant, we are seeing some interesting trends. As expected, the LL genotypes 

tend to have the highest scores of Mental Health, Happy, and Calm. P values are: Mental Health 

p=0.291, Happy p=0.139, and Calm p=0.087. 

p = 0.291 p = 0.139 p = 0.087

Figure 9: 5-HTTLPR and Mental Health, Happy, and Calm at Follow-Up
P-values are listed based on linear regression with only HTTLPR genotype as dependent variable: 
Mental Health p=0.291, Happy p=0.139, and Calm p=0.087. Error Bars display mean values +/- 1 

SE of the Mean

Mental Health Happy Calm
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Next we analyzed whether the 5-HTTLPR genotype affected how individuals’ mood 

scores changed over time. We found no significance but we did find trends in the expected 

direction. Interestingly, while most subjects improved mood scores regardless of genotype at 

follow-up versus baseline (due to the positive effect of rehabilitation), those with the LL 

seemed to generally have higher mood scores and this stayed true after rehabilitation.  

A general linear model with repeated measures based on two factors of Mental Health 

(at baseline and follow-up), with either 5-HTTLPR genotype (Figure 10) or the functionally 

equivalent SNP genotype as described in Methods (Figure 11) as the independent variable and 

covariates of Gender and Ethnicity yields an insignificant result (5-HTTLPR p=0.568, SNP 

p=0.791) but an apparent trend if we diagram only Mental Health versus the genotype over 

time. Age and Gender were driving more of the effect in the model (Age p-value: 0.123, 0.127; 

Gender p-value: 0.247, 0.266).  

Figure 10: 5-HTTLPR and Mental Health 
Scores Before and After Rehab

A general linear model with repeated 
measures including covariates of Age, 

Gender, and Ethnicity yielded no significance 
(p=0.568).
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The statistical model verified that in our sample we do not have reason to believe there 

is an effect of the genotype on the changes in Mental Health Scores seen in rehabilitation. 

However in looking at the graphs we can see that there is some trend: individuals with the LL 

genotype, as expected, seem to have slightly higher Mental Health Scores (and perhaps even 

experience more improvement during rehabilitation). A bigger sample size might verify this. 

Also worth noting is that there does not seem to be much of a difference between 

reporting the genotype without taking the SNP into account, and using the functionally 

equivalent SNP genotypes. In fact we often get a slightly clearer effect when we use the 5-

HTTLPR genotype rather than the SNP.  I will continue to report both kinds of results for Happy 

and Calm scores.  

Figure 11: SLC6A4 SNP and Mental Health 
Scores Before and After Rehab

A general linear model with repeated 

measures including covariates of Age, 
Gender, and Ethnicity yielded no significance 

(p=0.791).

1 = equivalent to LL 
2 = equivalent to LS 
3 = equivalent to SS 
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For the same analysis with Happy scores, 5-HTTLPR again was not significant though 

showed a clearer trend (p=0.151), while the functionally equivalent SNP genotype seemed less 

significant (p= 0.510). For Happy however, Age was a significant covariate (p = 0.031, 0.024). 

The graph of Happy scores at baseline and follow up are shown in Figure 12 for 5-HTTLPR and 

Figure 13 for the SNP.  

 

 

 

Figure 12: 5-HTTLPR and Happy Scores 
Before and After Rehab

A general linear model with repeated 

measures including covariates of Age, 
Gender, and Ethnicity yielded no significance 

(p=0.151).
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For Calm scores, the 5-HTTLPR genotype was again not significant (p= 0.530, Figure 14) nor was 

that of the SNP (p=0.521, Figure 15). In this case again, Age was a significant covariate (p=0.007 

and 0.008, respectively).  

Figure 13: SLC6A4 SNP and Happy Scores 
Before and After Rehab

A general linear model with repeated 

measures including covariates of Age, 
Gender, and Ethnicity yielded no significance 

(p=0.510).

Figure 14: 5-HTTLPR and Calm Scores Before 
and After Rehab

A general linear model with repeated 
measures including covariates of Age, 

Gender, and Ethnicity yielded no significance 
(p=0.530).
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3.3 Mood Scores, Compliance, and 5-HTTLPR 

Logistic Regression was performed with Compliance (1=yes, 2=no) as the binary outcome 

variable and scores of Mental Health, Happy, or Calm at follow-up as the independent 

variables, in addition to 5-HTTLPR genotype. Age and Ethnicity were added as independent 

variables we well. At a cut-off of p=0.05, two of our mood scores proved significant and one 

shows a trend: Mental Health p=0.005, Happy p=0.01, and Calm p=0.071. Subjects who were 

complaint showed higher mental health scores. With our Bonferroni-corrected cut-off 0.0083, 

Mental Health score still remains significant. The genotype was not a significant factor in any of 

these. It seems that while Mental Health plays a big role in compliance, the genotype does not. 

Figure 15: SLC6A4 SNP and Calm scores 
Before and After Rehab

A general linear model with repeated 
measures including covariates of Age, 

Gender, and Ethnicity yielded no significance 
(p=0.521).
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However, we did observe a similar trend as seen below for the Mental Health scores when 

stratified by Compliance score and genotype. It seems having the LL genotype and being 

Compliant is correlated with the Mental Health scores. The LS and SS genotype individuals that 

comply still seem to rank lower on Mental Health Scores. This is a trend worth exploring as well.  

 

 

 

 

3.4  TPH2 rs2171363 and rs17110690 and MetS 

We cannot report significant association between MetS and either of the TPH2 SNPs. 

Admittedly the sample size was small and that only 28 out of 276 subjects had diagnosed MetS. 

For rs2171363, a Chi-Square test for deviation from expected ratios of MetS per genotype 

yielded no significance or trend (p=0.803, n=104). The other SNP, rs17110690, was also not 

significant (p=0.511, n=122). This is why the TPH2 SNPs have not been added in other parts of 

the analysis. 

Figure 16 5-HTTLPR , Mental Health, and 
Compliance Scores after Rehab

Mental Health is significant by logistic 
regression (p=0.005) on Compliance scores. 

This graph shows a definite trend among 
those who are Compliant (1=compliant, 

2=non-compliant) by genotype. However, 
genotype was not significant for compliance. 
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4. DISCUSSION 

Allelic Frequencies and TPH2  

Part of the difficulty of working with this data set has been the small sample size and in 

some cases, especially for the TPH2 SNPS, a low minor allele frequency. Additionally, we have 

had trouble with the Taqman genotyping method failing to characterize all of the TPH2 SNPs. 

Troubleshooting is difficult in this high throughput method, and therefore a number of samples 

have been left undetermined. For the rs2171363 SNP, 117 of our samples were not genotyped 

successfully, which is 42.4 % of those attempted. Similarly though the rs17110690 SNP had 

close to expected frequencies after genotyping, we were unable to genotype 76 samples of the 

attempted samples, which was 27.5% of the total number.  This may be at least a partial 

explanation for why our sample genotypic frequencies differed so much from expected values. 

In the future those samples need to be addressed individually: this would for example involve 

purifying the DNA samples we have that did not amplify properly in Taqman and retrying the 

Taqman again, or perhaps individually genotyping those samples with another method. 

5-HTTLPR, Mental Health, and Compliance 

Although we did not uncover any statistically significant associations between SF-36 scores at 

follow-up and the LL, LS, or SS genotype, we could see that there are some trends emerging. 

Without a larger amount of subjects, we cannot yet say we have verified or disproven the 

expected direction of the effect of genetics, which is that LL individuals would be more likely to 

have higher Mental Health scores in our sample. We do not have the number of subjects 
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needed to reduce the range of the confidence intervals quite yet to ensure that trends we are 

seeing are significant, but it is likely that the trends we are seeing will prove significant when 

more subjects are present in the analysis.  

 Our analysis reveals that people did in fact improve their Mental Health scores with 

rehabilitation (as expected). Unfortunately we could not uncover a true effect by genotype on 

the slope of that improvement. In other words, they all seemed to improve at the same rate, 

even though as we saw by the images in Figure 9 it does seem that those with the LL genotype 

leave rehab with the highest Mental Health scores. Additionally, if we simply observe the 

apparent trends between baseline and follow-up as stratified by depression, there are a few 

cases where it appears the LL genotype has a greater slope of improvement in mood scores 

compared to LS and SS. This would echo previous literature findings such as those of Caspi 

mentioned in the introduction. In that case, he found that those with the S allele had greater 

risk of developing depression after the environmental effect of stressful life events (Caspi, 

Sugden et al. 2003). Here, we are seeing that a similar relationship to positive outcomes is seen 

with the LL individuals: with a positive environmental factor like rehabilitation, they seem to 

increase in mood scores more than the LS or SS individuals. We would hope with more subjects 

to verify the significance of this trend.  

Even assuming the slope of improvement is the same, if LL individuals do in fact start 

and end with higher Mental Health scores as the trends suggest, this implies that even with the 

same rehabilitation treatment, LS or SS individuals do not achieve Mental Health scores as high 

as LL individuals on average. This is important because as noted, Mental Health was significant 
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at p=0.005 as a determinant of Compliance to the rehabilitation, and Compliance to parameters 

such as heart medications, diet, and exercise are  important for cardiac outcomes. It is also 

important to remember the basics of what was mentioned in the introduction: depression itself 

is a risk factor for CVD, and makes the quality of life of those living with CVD worse if present. 

Interestingly, our studies’ finding that Mental Health, Happy, and Calm are some of the most 

noteworthy scores in this analysis is consistent with a current paper that concluded that 

“positive affect was protective against 10-year incidence of [Coronary Heart Disease] CHD, 

suggesting that preventive strategies may be enhanced not only be reducing depressive 

symptoms but also by increasing positive affect” (Davidson, Mostofsky et al. 2010). This is 

consistent with the fact that we did not find Dumps, Nervous, or Downhearted to be of any 

predictive value in our sample.  

Finally, in the general linear model with repeated measures we uncovered a significant 

relationship between Age and Happy, and Age and Calm. In both cases, Age was positively 

correlated with Happy or Calm scores. In other words, it appeared that being older actually 

contributed positively to the slope of improvement in mood scores seen from rehabilitation. 

This was not something we originally expected to have an effect, but is an interesting finding 

and should be taken into consideration by facilities administering rehabilitation programs.  

Future Studies with This Data Set 

In a future analysis of this data, it would be interesting to study the sustained improvements in 

Mental Health over time (or the decay in Mental Health, as the case may be). Genetics might 

have a role in this. On the other hand, perhaps everyone’s Mental Health scores will decline 
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similarly over time after the end of rehabilitation. More likely, Compliance will play a role in 

how peoples’ Mental Health scores decline over time. In our study, we have a high variability in 

amount of Compliance measures per individual. In general those who joined the study much 

earlier have had the chance to provide many more follow-up assessments than those who 

joined later. We chose to use only the first follow-up for each individual at this point, but when 

there is more longitudinal data following subjects after rehabilitation, this will be very 

interesting to explore. 

Genetics may have a part to play in that Mental Health decay and perhaps even 

interacting with Compliance: as we saw there seems to be an interesting trend among 

individuals who show total Compliance and have the LL allele. Those individuals in our sample 

seem to have the highest Mental Health scores, even though across all subjects the genotype 

was not a significant factor.  

Yet another possibility to explore given more longitudinal data from this sample is the 

effect of environmental stressors on mood scores, and possible interaction with genotype. As 

outlined in the introduction, 5-HTTLPR seems to predispose people to have higher rates of 

depression in the presence of stressful live events. There are some data on major health events 

like heart attacks compiled along with the data in our study, and it would be interesting to see if 

we could replicate this effect by monitoring stressful life events in our subjects as well. In our 

case, we would also be able to investigate whether compliance or non-compliance changes the 

effect of genotype for individuals on average. 
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Conclusions 

Our small sample size did not allow us to conclude any significant associations between TPH2 

SNPs and Mets. Similarly we could not conclude with significance that 5-HTTLPR genotype had 

an effect on SF-36 mood scores. However, Mental Health was a significant factor, even in our 

small study, on scores of Compliance. Age proved to be a significant contributor to the degree 

of improvement in mood scores due to rehabilitation. Our general findings that only positive 

affect scores show trends of note are consistent with current research suggesting that positive 

affect may be important in predicting cardiovascular health, and not only negative affect 

(Davidson, Mostofsky et al. 2010). We also saw trends in 5-HTTLPR’s effect on mood scores are 

consistent with other literature such as the Caspi paper showing environmental interaction with 

genotype on mood scores. In previous literature, the SS genotype was observed to increased 

risk for depression in the presence of stressful life events. Similarly in our study, it seems that LL 

increases the improvement in mood scores in the presence of positive life events such as rehab. 

We expect that with an increased sample size we could verify this environmental interaction 

between mood scores and genotype.  
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