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ABSTRACT: 

 Enhancer of Zeste Homolog 2 (EZH2) is a protein which over the years has come to be 

recognized as a bona fide oncogene.  Originally discovered to be overexpressed in prostate 

cancer, my research has focused on the role of EZH2 in breast cancer.  Preliminary data showed 

that increased EZH2 expression is associated with higher tumor malignancy and increased 

invasiveness in the estrogen receptor (ER) negative sub-type of breast cancer.  My research 

initially probed possibilities for EZH2 overexpression in this type of breast cancer.  Associated 

with my work, our lab published data showing that EZH2 overexpression leads to increased 

proliferation in breast cancer cells, and that this effect is mediated through the tumor suppressor 

BRCA1.  Our studies then moved to further explore the relation between EZH2 and BRCA1 

proteins.  We show that increased EZH2 expression causes breast cells to sequester BRCA1 in 

the cytosol, and that this localization is mediated through the phophatidylinositol 3-kinase/AKT 

(PI3/AKT) pathway.  My research specifically showed that increased EZH2 expression leads to 

an increase in aneuploidy in CAL51 breast cancer cells and in MCF10A benign breast cells, and 

that in the presence of AKT pathway inhibitors aneuploidy rates return to wild-type levels.  Our 

work in elucidating the mechanisms of EZH2-driven oncogenesis is intimately related to many 

of the current debates surrounding cancerous transformation as a more general phenomenon.  In 

this thesis, I will highlight my work investigating the relation between EZH2 and genomic 

stability in the context of our lab‟s work in investigating the role of EZH2 in breast cancer cells.  

I shall end with a discussion of the implications of cancer stem cell theory and aneuploidy-driven 

tumorigenesis theory as possible models of how EZH2 may lead to cancer, as well as the 

therapeutic implications.   
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INTRODUCTION: 

Breast cancer is the most common cancer among women and is a leading cause of cancer 

death in the United States and worldwide (1-2).  The term “breast cancer” refers to a malignant 

tumor that has developed from cells in the breast.  Breast cancer may occur in both men and 

women, although male breast cancer is rare (3). Usually breast cancer either begins in the epithelial 

cells of the lobules and ducts, which are the milk-producing glands and the passages that drain milk from 

the lobules to the nipple, respectively. Less commonly breast cancer can begin in the stromal tissues, 

which include the fatty and fibrous connective tissues of the breast.    Over time, cancer cells can 

invade nearby healthy breast tissue and make their way into the underarm lymph nodes, small 

organs that filter out foreign substances in the body (4). If cancer cells get into the lymph nodes, 

they then have a pathway into other parts of the body.  The cancer cells may attach to other 

tissues and grow to form new tumors that may damage those tissues.  The spread of cancer is 

called metastasis. For breast cancer, the most common sites for metastatic tumors are the bones, 

liver, lungs, and brain (5). 

Based on rates from 2004-2006, 1 in 8 women will be diagnosed with cancer of the breast 

during their lifetime.  It is estimated that 192,370 women will be diagnosed with and 40,170 

women will die of cancer of the breast in 2009 (6).  Despite advances in breast cancer treatment, 

once metastases develop there is no cure (7).  This provides great incentive for the discovery of 

biomarkers of breast cancer risk and prognosis that have potential clinical utility.    

With the advent and popularization of the DNA microarray in the late 1990‟s and early 

2000‟s, this process of searching for prognostic biomarkers in cancer was greatly accelerated due 

to the ability to compare expression levels of a large number of genes between normal and 

cancerous cells.  In 2002, Varambally et al (as part of the Chinnaiyan research group at the 
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University of Michigan‟s Comprehensive Cancer Center) used microarray analysis to compare 

gene expression between localized and metastatic prostate cancer.  At the top of the “list” of 

genes upregulated in prostatic cancer was the protein EZH2 (Enhancer of Zeste, Homolog 2) 

(Figure 1), a polycomb group protein (PcG) (8). Polycomb group proteins, along with the 

trithorax (trxG) group proteins, were known to be implicated in maintaining homeotic gene 

expression (genes determining cellular identity) (9-10).  Knowing that a lack of cell 

differentiation is a hallmark of cancer, it was hypothesized that EZH2 may contribute to the 

lethal progression of prostate cancer through dysregulating the transcriptional memory 

machinery.  It was found that a decrease in EZH2 expression led to a significant (≈80%) growth 

inhibition in these cells as compared to the control cells. The work from this paper provided the 

first line of evidence that the protein EZH2 mediates cell proliferation and transcriptional 

repression in prostate cancer cells, as well as that EZH2 mis-expression is a key alteration in 

malignancies of epithelial origin (10).   

Collaborating with the authors of the previous study, in 2003 Kleer et al. took a similar 

approach towards the investigation of EZH2 expression in relation to breast cancer phenotype 

(11).  Comparing past gene expression sets between neoplastic and normal breast tissue, as well 

as investigating EZH2 expression in new breast tissue samples, showed that EZH2 protein levels 

are elevated in the more advanced phases of breast cancer as compared to earlier benign-

epithelium.  Also a strong association was found between EZH2 levels and patient outcome, with 

higher EZH2 levels being associated with lower overall survival and a high probability of disease 

specific death (the ten year survival rates for patients with high and low EZH2 expressing tumors 

was 24.76% and 58.92%, respectively).  Overexpressing EZH2 in normal breast cells was found 

to promote anchorage independent growth and cell invasion, both mechanisms associated with 
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Figure 1 

 

 

 

 

aggressive cancers.  This study thoroughly established EZH2 as an independent predictor 

of survival of women with breast cancer and a functionally important protein in tumorigenesis 

(11).  Subsequent investigations have confirmed these findings on the prognostic value of EZH2 

in breast cancer (12-14).  Taken together, these data strongly suggest that EZH2 has a pivotal 

role in the tumorigenic process in multiple organs and tissues.   

These two papers have laid the foundation for our laboratory‟s ongoing research.  In the 

years since, research has grown exponentially on EZH2, leading to further illustration of its 

cellular functions, as well as demonstrating its role in tumorigenesis in an assortment of other 

human malignancies including transitional cell carcinoma of the bladder (15-16), aggressive and 

Figure 1:  Major proteins of concern. 
(A) Part of EZH2 (red), bound to 
binding partner EED (green) as part of 
its functional complex  in the cell.  
EZH2 contains a SET domain 
responsible for its methyltranserase 
activity, as well as two closely spaced 
SANT domains which are often found 
in chromatin remodeling enzymes. 
(73) 

(B)  BRCA1 (magenta) in complex with 
BARD1 (teal), forming the 
heterodimer  observed in its main 
cellular function.   BRCA1 forms its 
heterdimer through its RING domain.  
It also contains a BRCT domain which 
binds phosphorylated proteins, and is 
present in many DNA-damage 
response proteins. (74) 

A 

B 
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invasive urothelial carcinomas (17), endometrial cancer (18), Wilms tumor (19), and 

heptocellular carcinoma (20).   

To understand the mechanism of EZH2 function in breast carcinogenesis, it is important 

to first understand how EZH2 functions in development.  EZH2 is a polycomb group protein.  

PcG proteins, along with the Trithorax group (TrxG) proteins, are involved with maintaining 

“cellular memory” and are intimately involved in the cellular development process. (21)  That is 

to say, these proteins are involved in creating and maintaining the DNA transcriptions patterns 

that are unique to different cell types.  In general, PcG proteins maintain gene silencing while 

trxG proteins maintain active states.  Expression of the PcG proteins is high during embryonic 

development, where most of the biological mass is made of undifferentiated stem cells.  The high 

expression of these proteins represses the expression of genes related to cell differentiation, 

giving stem cells their characteristic plasticity.  As the organism develops, inherited methylation 

patterns will appear on genes selected for repression, concomitant with the declining expression 

of the PcG proteins.  This process effects terminal cell differentiation through differential gene 

expression and methlyation patterns capable of being passed on to daughter cells (21).    

PcG proteins effect this chromatin remodeling through two complexes referred to as 

polycomb repressor complexes 1 and 2 (PRCs) (17, 21).   PRC1 includes BMI1, HPC proteins, 

and RING proteins, whereas the PRC2 complex comprises EZH2, EED, and SUZ 12 (22).  

EZH2 contains a SET domain, a highly conserved domain found in many proteins with histone 

methyltransferase (HMT) activity. Functionally, EZH2 is the catalytically active component of 

PRC2 and is capable of methylating lysine 9 (H3K9) and lysine 27 (H3K27) of histone H3 (24).
 

In addition to the SET domain, EZH2 contains two closely spaced SANT domains, which are 

often found in chromatin remodeling enzymes (23).  Repression is mediated when PRC2 is 
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recruited to chromatin, where the methyltransferase EZH2 catalyzes H3 trimethylation of lysine 

27 (triMeK27-H3) (24).  This histone mark then provides a platform to recruit PRC1 (24) which 

aids in PcG-mediated repression either by chromatin compaction or by interfering with the 

transcription machinery (21,26,27). Working together, PRC1 and PRC2 are responsible for 

creating and maintaining gene expression patterns specific to different types of differentiated 

cells, and their proper function is required to correctly pass these methylation patterns on to 

daughter cells.   Without EZH2 activity, PRC1 cannot be recruited to chromatin, and PcG-

mediated repression is not established (24,28).    

Non-canonical roles for EZH2 have also been discovered.  Shi et al. have reported that 

EZH2 was able to activate gene transcription through mechanisms that do not involve histone 

methylation (29). It has also been reported that EZH2 can function by forming transcriptional 

complexes independent of its methyltransferase activity (30).  In addition, cytosolic EZH2 

complexes have been found to control cellular signaling via actin polymerization in various cell 

types (31).  With such duplicity in functional roles, it has been difficult to elucidate precise 

mechanisms through which EZH2 influences breast cancer progression.   

Breast and ovarian cancer type 1 susceptibility protein (BRCA1) is a tumor suppressor 

involved in DNA damage repair, activation of cell cycle checkpoints and maintenance of 

chromosome stability (32). The BRCA1 gene mutation was one of the first deregulations 

correlated with breast cancer occurrence, and accounts for most familial cases of breast and 

ovarian cancer (33). Heterozygous germ-line mutations in the BRCA1 gene predispose women 

to breast and ovarian cancer with a lifetime risk of breast cancer up to 80% (34).  Although 

somatic mutations of BRCA1 are not common, expression of its messenger RNA and protein are 

reduced in approximately 40% of sporadic breast carcinomas (35-37). The vast majority of breast 
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tumors in these patients display a basal-like phenotype, and BRCA1 dysfunction by 

downregulation, mutation or other mechanisms has been suggested to have an etiological role in 

the development of this aggressive breast cancer subtype (38-39). 

It has been found that BRCA1 plays a major role in maintaining genome integrity 

through its ability to form various distinct protein complexes, each of which is dedicated to a 

specific cellular function in the DNA damage response pathway.  To date at least three distinct 

BRCA1-containing protein complexes have been emerged, identified as BRCA1A, BRCA1B, 

and BRCA1C.  BRCA1A functions to target BRCA1 to double strand breaks in DNA for repair, 

and also to transiently inhibit entry into mitosis in the presence of DNA damage to avoid 

aberrant chromosome segregation (40). BRCA1B is serves to inhibit DNA synthesis if DNA 

damage is present, thereby avoiding the stalling or collapsing of replication forks during the S-

phase (41).  BRCA1C functions in damage signaling and homologous recombination repair of 

double strand DNA breaks.  BRCA1 has emerged as a master regulator of genome integrity 

through these diverse protein associations involved in somewhat redundant yet important cellular 

processes ensuring genomic stability and promoting cell survival.  

Our lab‟s research aim is to evaluate the oncogenic function of EZH2 in the breast and 

elucidate the relevant mechanisms of this process.  This knowledge may be applied to the clinical 

field as inhibition of EZH2 may halt or prevent cancer progression.  

Estrogen receptor (ER) negative breast cancer cell lines exhibit high EZH2 protein 

expression.  Our initial studies involved knocking down EZH2 expression in CAL51 and MDA-

MB-231 breast cancer cells using lentivirus-mediated short-hairpin RNA (shRNA) and 

comparing phenotypes between these cells and control cancer cells.  The results of our 

experiments showed that EZH2 knockdown decreases proliferation of ER-negative breast cancer 
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cells and causes a delay in the G2-M transition of the cell cycle.  Our data revealed that EZH2 

modulates BRCA1 protein levels, as well as its phosphorylation at serine 1423, an important 

modification in the regulation of the G2-M transition.  We also show that BRCA1 is required for 

the proliferative and G2-M effects of EZH2.  We then highlighted the relevance of our in vitro 

and animal findings by demonstrating that ER-negative invasive carcinomas have high levels of 

EZH2 and concomitant low levels of BRCA1 protein.  These initial studies provided the first 

published functional link between EZH2 and BRCA1 proteins in breast cancer cells, and further 

proposed that EZH2 knockdown in BRCA1 deficient cancer cells could possibly restore BRCA1 

levels and function, as well as providing novel insight as to ER-negative breast cancer tumor 

treatment.   

Our research next aimed to investigate this newly found relationship between EZH2 and 

BRCA1, as well as its implications in EZH2-mediated tumorigenesis. To do this, we created an 

inducible expression system in MCF10A normal breast cells, which would overexpress EZH2 

protein in the presence of Doxycylcline in the cell media.  To complement these studies, we also 

used the CAL51 cancer cell shRNA system previously described. 

In investigating the link between these two proteins, we discovered that EZH2 regulates 

the intracellular localization of BRCA1 protein in benign breast cells and in breast cancer cells 

during cell cycle progression.  Increased EZH2 expression leads to increased nuclear export of 

BRCA1 in both MCF10A and CAL51 cell lines, and this is sufficient to trigger aberrant mitosis 

with extra centrosomes and aneuploidy.  EZH2 inhibition in tetraploid CAL51 breast cancer cells 

induces BRCA1 nuclear accumulation and rescues defects in ploidy and mitosis.  

Mechanistically, this data shows that EZH2-induced BRCA1 nuclear export, mitotic defects, and 

aneuploidy require activation of the PI3/Akt signaling pathway. 
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In all, my research in the Kleer lab has followed the long of this story, beginning in 2007 

through the present day.  Although beginning with more modest projects, my data now 

represents significant contributions to our lab‟s research aim, to illustrate the role of EZH2 in 

breast cancer and breast cancer transformation.  The experiments I have performed are part of 

two research manuscripts, one published, and the other one in preparation.  In this thesis I will 

highlight the data I personally gathered (while giving credit to collaborating faculty for 

corroborating data) in the context of our lab‟s larger story, and through this I will incorporate the 

future directions and current debate at the cutting edge of breast cancer research.       
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RESULTS: 

 

EZH2 expression is increased and deregulated in breast cancer cells in the absence of EZH2 

gene mutation 

 A panel of breast cancer cell lines was investigated for EZH2 expression.  These cells 

include the nontumorigenic line MCF10A and breast cancer cells MDA-MB-231, SUM149, 

CAL51, and MCF7.  Western Blot analysis shows that breast cancer cells have higher EZH2 

expression than the benign breast cells. (Figure 2)  

Figure 2 

 

Figure 2: EZH2 is upregulated and deregulated in breast cancer cells. (a) Immunoblot for EZH2 in a panel of breast 

cells shows that EZH2 protein is elevated in breast cancer cells when compared with the nontumorigenic MCF10A 

cell line. (b) EZH2 is deregulated in breast cancer cell lines compared with MCF10A cells. Data from M.E.G. 

 

EZH2 expression has been observed to be cell cycle regulated in diploid fibroblasts, and 

so our lab sought to determine whether EZH2 expression exhibited a similar pattern of regulated 

expression in both normal and cancerous breast cells (42).  To this end, benign and cancerous 

breast cells were subjected to double thymidine block and subsequently restimulated by their 

medium to enter the cycle.  Figure 2 shows that EZH2 protein expression is cell growth regulated 
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and accumulates at the G1/S transition in benign MCF10A cells, similar to the expression seen in 

fibroblasts (42).  This regulation of EZH2 expression is lost in cancer, as seen in the four breast 

cancer lines studied which exhibit unregulated, high expression of EZH2. 

To determine whether this deregulation of EZH2 expression in breast cancer cells was 

due to an activating mutation in the EZH2 locus, I sequenced the locus for MCF10A and CAL51 

cell lines by direct sequencing. The EZH2 locus contains 2,695 base pairs, so sequencing 

involved designing numerous forward and reverse primers to cover this length.  After obtaining 

the data, the experimentally determined sequences were then compared to that of the normal 

sequence found in the NCBI database, checking for any possible mutations between the cell lines.    

The results of this sequencing showed that there were no mutations in the CAL51 EZH2 locus 

(Figure), ruling out the possibility of an activating mutation in the EZH2 reading frame being the 

cause of its deregulated expression in breast cancer. 

 

Increased EZH2 levels increase cyclin transcription levels and proliferation rates in breast 

cancer cells     

 To study the effects of EZH2 expression on cell proliferation, we used shRNA 

interference to stably knockdown EZH2 in breast cancer cells.  EZH2 knockdown in MDA-MB-

231 and CAL51 cells significantly decreased proliferation (Figure 4).  In searching to determine 

how EZH2 increases proliferation in cells, we hypothesized that it may be due to upregulating 

the expression of key cell cycle proteins, such as members of the cyclin family.  Cyclins are 

proteins which are expressed at varying levels during the cell cycle, and their association with 

Cyclin dependent kinases (Cdks) is what drives cells through mitosis.  To investigate if EZH2 
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expression regulated mRNA levels of key cyclins, I performed Real time PCR (RT-PCR) in 

CAL51 shVector and shEZH2 cell lines.  My results show that EZH2 increases the mRNA 

expression of these key cyclins, therefore consistent with the observed increased proliferative 

phenotype of EZH2 overexpressing cells (Figure 4). 

This data was supported by other techniques performed in our lab.  We found that EZH2 

knockdown significantly increased the number of cells at the G2-M transition, while also 

decreasing the phosphorylation of many key proteins necessary for entry into mitosis.  Using 

flow cytometry, we found that EZH2 knockdown caused over a 50% reduction in the percentage 

of breast cancer cells undergoing mitosis.  Collectively, these data show that EZH2 is important 

in the regulation of the G2-M transition and the number of cells undergoing mitosis, which have 

major influence in tumor growth.  Our lab complemented these studies with in vivo experiments, 

where MDA-MB-231 breast cancer cells (both shEZH2 and shVector) were injected into 

immunocompromised mice and tumor growth was examined.  We found that EZH2 knockdown 

mice had decreased tumor growth rate, decreased tumor size, and better survival rates when 

compared to control mice.  It was also observed that mitotic activity also significantly decreased 

in shEZH2 tumors as compared to control. 
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Figure 4 

 

 

 

 

 

Figure 4: EZH2 inhibition decreases proliferation of breast cancer cells (a) Increased EZH2 expression is associated 

with increased cyclin mRNA levels, providing link to its observed effect on breast cell proliferation.  Quantitative 

real-time PCR (qRT-PCR) measured the mRNA levels of cyclins A, B, and D in both CAL51 vector cells and EZH2 

knockdown cells.  Cyclin A expression is reduced by half, cylin B is reduced by a fifth, and cyclin D expression is 

reduced by a third in CAL51 shEZH2 as compared to shVector cells. This data provides a possible functional insight 

into how EZH2 overexpression in breast cancer cells increases proliferation EZH2 inhibition decreases proliferation 

of breast cancer cells. (b) Time course of proliferation determined using the Wst-1 assay. shEZH2 in CAL51 and 

MDA-MB-231 cells significantly decreases their doubling time when compared with vector control-transduced cells 

(Student's t-test, P<0.001 for both cell lines). Proliferation data from M.E.G. 
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EZH2’s influence on proliferation is mediated through BRCA1 

The rest of our first paper gave first light to the relation between EZH2 and BRCA1 

proteins.  Although I did not contribute to this section of our paper, I will summarize our 

findings to illustrate the scope and significance of our findings.  Studies have demonstrated that 

EZH2 overexpression in human breast carcinomas is associated with the ER-negative basal-like 

phenotype, characterized by low BRCA1 protein expression (11,14).  From this, it was 

hypothesized that EZH2 may promote breast tumorigenesis by regulating BRCA1 in this subtype 

of breast cancer.  Studies in ER-negative breast cancer cells showed that EZH2 downregulation 

increased the protein levels of total BRCA1 and BRCA1 phosphorylated at serine 1423 in the 

nuclei.  Consistantly, overexpression of EZH2 in nontumorigenic MCF10A cells resulted in a 75% 

decrease in nuclear BRCA1 protein and a 67% decrease in nuclear pBRCA1 s1423. 

To investigate whether the effects of EZH2 expression on cell proliferation and transition 

from the G2 phase to mitosis requires BRCA1 protein, the expression of EZH2 and BRCA1 were 

both knocked down using shRNA in CAL51 breast cancer cells.  We observed that BRCA1 

knockdown in shEZH2 CAL51 cells was sufficient to completely rescue the reduction in 

proliferation and the G2-M cell cycle arrest caused by EZH2 downregulation.  Inhibition of 

BRCA1 alone in CAL51 cells had no effect on proliferative activity.  We also found that BRCA1 

knockdown abolished the effect of EZH2 inhibition on important mitotic proteins.  Taken 

together, these data provide strong evidence supporting the hypothesis that the decrease in cell 

proliferation and prolongation of G2 caused by EZH2 knockdown is mediated through BRCA1. 

 To investigate the relevance of these previous in vitro and in vivo studies, a large 

sampling of invasive breast carcinoma tissue was probed for EZH2 and pBRCA1 expression and 
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possible correlation.  It was found that in 76% of ER-negative tumors (associated with high 

EZH2 expression) were negative for pBRCA1 s1423, further strengthening this link between 

EZH2 and BRCA1. 

The functional connection between EZH2 and BRCA1 proteins was our next area of 

investigation. 

 

Inducible EZH2-expressing MCF10A System Engineered  

To further our investigation into the effect of EZH2 on cell proliferation and 

tumorigenesis, as well as the relationship between EZH2 and BRCA1, we wanted to create a 

cell-line system in which we could overexpress EZH2 in benign breast cell.  I was put in charge 

of the project to engineer this system which would overexpress EZH2 in the presence of 

Doxycycline in the cell media.  Greater detail as to how this system works and how it was 

engineered to express our protein is found in the methods section.  MCF10A cells naturally 

express very low concentrations of EZH2, and Western blot analysis confirmed that EZH2 

concentrations significantly increased in the cell when exposed to Dox.    

 

EZH2 regulates the nuclear-cytoplasmic shuttling of BRCA1 in benign and in breast cancer cells. 

 EZH2 upregulation in the MCF10A cells resulted in nuclear export of BRCA1 protein 

and increased BRCA1 cytoplasmic concentrations, as evinced by both Western blot and 

immunofluorescence analysis (Figure 5).  Similar results were found in CAL51 shVector and 

shEZH2 cells, which showed that CAL51 breast cancer cells exhibit predominantly cytoplasmic 
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and perinuclear BRCA1 protein whereas CAL51 shEZH2 cells had accumulation of BRCA1 in 

the nucleus.  This data reveals that EZH2 influences the intracellular localization of BRCA1 

protein in non-tumorigenic breast cells and in breast cancer cells. 

Figure 5 
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Figure 5:  EZH2 regulates 

nuclear/cytoplasmic shuttling of 

BRCA1.  DAPI is a fluorescent stain 

which strongly binds DNA, identifying 

the nucleus.  The top picture shows 

fluorescence data gathered from the Tet-

On EZH2 overexpressing MCF10A cell 

line.  BRCA1 and DAPI are 

independently detected in the first two 

columns, and the images are merged in 

the third column.  The MCF10A data 

shows that there is increased cytosolic 

BRCA1 concentration with increasing 

EZH2 concentration.  The bottom 

pictures show similar data for CAL51 

breast cancer cells.  In vector CAL51 

cells (with high EZH2 expression), there 

is observed a high cytosolic BRCA1 

concentration.  Knocking down EZH2 

expression using shRNA shows 

increased nuclear BRCA1 

concentrations.  Together this shows 

that EZH2 plays a significant role in 

BRCA1 subcellular localization.  

Pictures from M.E.G. 
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Overexpression of EZH2 protein induces centrosome amplification and abnormal mitosis 

 Most malignant tumor cells have been found to have an abnormal number of 

chromosomes, or aneuploidy, and frequently contain multiple centrosomes, which are the 

microtubule-organizing centers required for proper chromosome segregation (43).  Seeing as 

EZH2 expression is elevated in many ER-negative invasive breast carcinomas, which display 

many of these malignant characteristics, we hypothesized that EZH2 overexpression may induce 

alterations in mitosis and centrosome number.  Immunofluorescence analysis of mitotic nuclei 

with α-tubulin and p-H3 (SER10) antibodies revealed that doxycycline-induced EZH2 

upregulation in MCF10A cells led to mitotic defects characterized by the presence of multiple 

mitotic spindles and extra centrosomes (Figure 6A).  This contrasted with the absence of mitotic 

defects in control MCF10A cells.   

 Aurora A is a key protein involved in centrosome maturation, separation, and spindle 

formation.  We hypothesized that the defective mitotic spindles observed upon EZH2 

overexpression in MCF10A cells resulted from centrosome abnormality.  We found that Aurora 

A properly localizes to the centrosome during metaphase, as evidenced by the two distinct foci 

that colocalized to the spindle poles and MCF10A control cells had two Aurora A foci.  However, 

although Aurora A was properly localized, EZH2 overexpression caused a greater than 6 fold 

increase in the percentage of mitotic cells with more than two Aurora A foci, indicating 

increased Aurora A expression and suggesting centrosome amplification.  These cells contained 

either a single giant nucleus or multiple multilobed nuclei.  EZH2-induced extra centrosomes 

were associated with multipolar mitosis (more than three and up to six spindle poles) as 

compared with control MCF10A cells (example pictures given in Figure 6). 
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 We next investigated the effect of EZH2 downregulation on mitotic spindle formation 

and Aurora A containing centrosomes in CAL51 breast cancer cells (Figure 6B).  CAL51 breast 

cancer cells are diploid but contain a tetraploid population with centrosome amplification, 

multiple mitotic spindles, and aberrant mitoses.  Thus, they constitute a good model to test the 

effect of EZH2 knockdown on the number of centrosomes, mitotic spindle formation, and 

mitotic defects.  13.6% of CAL51 cells transduced with scrambled shRNAs have aberrant 

mitoses characterized by increased number of centrosomes.  In contrast, CAL51 shEZH2 cells 

exhibit a 5-fold reduction in the number of cells with aberrant mitoses and supernumerary 

centrosomes.  Collectively, these data show that EZH2 may play a role in mitosis by regulating 

the number of centrosomes in benign and breast cancer cells. 

 Further data our lab collected also showed that EZH2 expression is correlated with the 

protein kinases Aurora A and B expression, suggesting further that EZH2 may mediate its 

influence on mitosis through the regulation of these proteins. 
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Figure 6 

A. MCF10A  

 

 

 

B. CAL51 

 

 

 
 

 

    DAPI                  α-tubulin            Aurora A             Merge 

    DAPI                    α-tubulin              Aurora A               Merge 

      DAPI                   α-tubulin            p-H3 (SER10)          Merge 

  D
o

x 
   

   
 N

o
 D

o
x 

  D
o

x 
   

   
 N

o
 D

o
x 

Figure 6:  EZH2 overexpression 

increases frequency of mitotic 

aberrations.  Confocal fluorescence 

imaging was used to visualize the 

localization of mitotic machinery in high 

and low concentrations of EZH2 in 

MCF10A and CAL51 cells.  DAPI stains 

the nucleus, α-tubulin is involved in the 

mitotic spindle connecting centrosomes 

and chromosomes, p-H3 is a histone 

indicative of chromosomal alignment, and 

Aurora-A is involved and localizes on the 

centrosome structures. (A) shows the 

experiments for the MCF10 Tet-On 

System.  With no dox added,  the normal 

bipolar mitotic alignment can be seen 

(two spindle poles with actin extending 

from poles and connecting to the 

chromosomes, which are a linearly 

aligned in middle).  The merge in the top 

section shows this proper alignment.  

With dox added, mitotic aberrations are 

more frequently observed.  In this 

example, actin can be seen to come from 

many directions, and the chromosomes 

are much more disorganized.  Also seen is 

an increase in Aurora A foci observed, 

indicative of centrosome amplification, 

known to cause aberrant mitosis.  (B) 

shows complementary data in the CAL51 

system.  In control cells the mitotic 

spindle is more frequently disorganized, 

although knocking down EZH2 

expression decreases mitotic aberrations 

in these cells.  Pictures from M.E.G. 
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EZH2 overexpression causes genomic instability  

Because errors in mitosis can lead to genomic instability and the development of cancer, 

we next investigated whether EZH2 exerts a role in the maintenance of genomic integrity.  To 

investigate aneuploidy in our target cell lines I used a metaphase spread technique, a method 

which fixes cells on a microscope slide and with the proper staining renders the chromosomes of 

each individual cell visible and quantifiable (Figure 7A). EZH2 expression was found to be 

correlated with increased prevalence of aneuploidy (Figure 7B).  Tet-On MCF10A cells were 

exposed to Dox for 1, 3, and 5 days before performing the metaphase spread technique.  

Significant increases in aneuploidy were not observed until the third day of EZH2 

overexpression.  Giemsa stained metaphase spreads revealed that while 95% of untreated 

MCF10A controls are diploid, 19.2% of cells became aneuploid after 72 hours of exposure to 

Dox.  We did not observe structural chromosomal abnormalities.  Since CAL51 cells are diploid 

with a tetraploid population, we reasoned that they constitute a good model to test if EZH2 can 

rescue ploidy abnormalities.  Giemsa stained metaphase spreads showed that EZH2 knockdown 

decreased the percentage of tetraploid CAL51 cells from 23.2% to 9.2%, indicating that EZH2 

downregulation can revert tetraploidy (Figure 7C).  Taken together, this data reveals that besides 

its ability to regulate the number of centrosomes and mitotic spindle formation, EZH2 plays a 

role in the maintenance of genomic stability. 
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Figure 7 
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Figure 7:  High EZH2 expression 

associated with increased aneuploidy.  

The metaphase spread technique allows 

for the visualization of the chromosome 

count of individual cells. Around 25 cells 

were counted on each slide, and three 

slides were counted for each cell line.   

(A)  An example of what is visualized 

with this technique.  The top picture 

shows a normal cell, while the bottom 

picture displays an aneuploid cell (84 

chromosomes).  (B) The percentages of 

anueploidy counted in MCF10A cells for 

3 days and 5 dayls with added Dox.  

Aneuploidy significantly increases upon 

increase in EZH2 expression.  When Dox 

is added aneuploidy jumps from 3% to 

19%(C) The rates of aneuploidy were 

counted for these four CAL51 cell lines.    

It can be seen that when EZH2 expression 

is decreased using shRNA in CAL51 

cells, aneuploidy levels drop significantly 

from 23% to 9%.  Also interestingly, 

when BRCA1 expression is abrogated as 

well as EZH2 using shRNA, aneuploid 

levels almost revert back to the normal 

phenotype, suggesting that BRCA1 may 

be responsible for the EZH2‟s effect on 

genomic stability.        
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EZH2-induced BRCA1 nuclear export, mitotic defects, and aneuploidy require activation of 

PI3K/Akt  

   Although the mechanism that regulate the intracellular localization of BRCA1 protein 

are not fully elucidated, recent studies suggest that the membrane serine/threonine protein kinase 

Bα (AKT1) may play a role.  In 2008 Plo et al. reported that AKT1 activation by 

phosphorylation of serine 473 results in cytoplasmic localization of BRCA1 (44).  This led us to 

hypothesize that EZH2 may regulate the intracellular distribution of BRCA1 in normal breast 

cells and in breast cancer cells through the PI3/AKT1 pathway. 

Our laboratory shows that overexpression of EZH2 in MCF10A cells increases AKT and 

AKT phosphorylation at serine 473, which is required to promote its maximal activation.  The 

levels of total and phosphorylated at SER473 AKT1 were also upregulated when EZH2 was 

overexpressed.  These results were similarly observed in CAL51 breast cancer cells.  CAL51 

EZH2 knockdown cells exhibited a drastic decrease in both AKT and AKT1 phosphorylation at 

serine 473.   

The significance of the PI3K/AKT pathway for BRCA1 intracellular localization in 

EZH2 overexpressing MCF10A cells was next evaluated in a series of time course experiments.  

BRCA1 protein was detected by immunofluorescence and by Western blot in the nuclear and 

cytoplasmic-enriched fractions in the presence or absence of the PI3K inhibitor LY294002 or 

Dox (Figure 8A).  In the absence of the PI3K inhibitor, induction of EZH2 overexpression with 

Dox led to high levels of pAkt SER473 and pAkt1 SER 473.  Following LY294002 treatment, 

pAKT and pAKT1expression dropped to almost undetectable levels.  While Dox-induced EZH2 

upregulation decreased BRCA1 and pBRCA1 proteins in the nuclei of MCF10A cells, inhibition 
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of PI3/AKT with LY294002 rescued BRCA1 and pBRCA1 nuclear expression.  Similar results 

were observed using Wortmannin to inhibit PI3K/AKT pathway.  Immunofluoresence analysis 

supported the immunoblot results as LY294002 or Wortmannin increased the expression of 

BRCA1 in the nuclei reverting EZH2-induced nuclear export of BRCA1 (Figure 8A). 

To investigate if EZH2 requires activation of the PI3/AKT pathway to trigger mitotic 

defects and aneuploidy, I analyzed chromosome numbers and mitotic aberrations utilizing 

metaphase spreads and immunofluorescence in the absence and presence of doxycylcline and the 

PI3K/AKT inhibitors, LY294002 or Wortmannin (Figure 8B).  As shown previously, 

doxycycline-induced EZH2 overexpression causes aneuploidy in MCF10A cells after 72 hours.  

LY294002 or Wortmannin treatment rescues EZH2-induced aneuploidy (figure).  It was also 

found that LY294002 or Wortmannin treatment also reverted the percentage of cells with extra 

centrosomes back to near wild-type levels.  Altogether, these results demonstrate that EZH2 

upregulation increases AKT and AKT1 phosphorylation at serine 473 and that activation of the 

PI3K/AKT is essential in the EZH2-induced BRCA1 nuclear export, aneuploidy, and mitotic 

defects. 
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Figure 8 
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Figure 8:  EZH2 mediates BRCA1 localization and effects on mitosis through PI3K/AKT pathway.  (A)  

Fluroescence data of MCF10A Tet-On cells.  With low EZH2 (no dox) BRCA1 is found predominantly in the 

nucleas.  With the addition of dox, EZH2 protein levels increase and BRCA1becomes predominantly found in 

cytosol.  Adding the AKT inhibitors LY and Wortmannin abrogates the cytosolic shuttling of BRCA1.  

Pictures from M.E.G.  (B) Aneuploidy counting from MCF10A cell line again, this time in presence of AKT 

inhibitors.  Adding Akt inhibitor decreases aneuploidy to near wild-type levels in these cell lines.  This graph 

shows that the addition of the PI3/Akt pathway inhibitors LY and Wortmannin decrease the prevalence of 

aneuploidy in MCF10A cells. 
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DISCUSSION:  

 Our research significantly contributes to our modern understanding of the function of 

EZH2 in breast cancer.  We have first shown that EZH2 overexpression in ER-negative breast 

cells increases cell proliferation and tumor growth both in vitro and in vivo.  Next we have 

shown that EZH2 plays a role in regulating the sub-cellular localization of BRCA1 through the 

PI3K/AKT pathway.  Finally, we have shown that EZH2 overexpression increases the frequency 

of mitotic aberrations and aneuploidy in breast cells.  This brings us to the pertinent question of 

if and how these newfound functions of EZH2 contribute to breast cancer initiation or 

predisposition.  I will discuss the implications and interpretation of our data in the context of 

current cancer models later in the discussion.  The bottom line of our research is that in providing 

a greater illustration of how EZH2 functions in ER-negative breast cancers, we are providing 

essential information for the guidance of novel treatments and cures that could target EZH2 and 

mitigate its tumorigenic effects.     

EZH2 has been found to be significantly overexpressed in certain subtypes of breast 

cancer (basal-type tumors, characterized by estrogen receptor (ER), progesterone receptor (PR) 

and Her-2/neu negative status as well as low levels of BRCA1 protein) (14), and is associated 

with larger tumor development, increased tumor proliferation rates, increased invasiveness, and 

worse prognosis in patients (11).  While EZH2 overexpression leads to this litany of negative 

tumor phenotypes, knowledge of this fact has allowed EZH2 to become an independent marker 

of prognosis, recurrence and metastasis in women with breast cancer (11).  My first research 

project delved into investigating potential mechanisms of EZH2 overexpression in breast cancer.  

My data showed that the deregulated expression is not due to genetic mutations, and other groups 

have come to show other possible mechanisms of EZH2 deregulation independent of mutation.  
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Varambally et al. has shown that microRNA-101 regulates EZH2 expression levels in prostate 

cancer cells by binding to the 3‟ untranslated region of its mRNA (45).  Bracken et al. 2003 have 

shown that the EZH2 promoter is a target of E2F transcription factors (42), and that EZH2 

expression is therefore regulated through the pRb-E2F pathway.  Other groups have traced back 

EZH2 regulation to p53 control (46). 

 EZH2‟s effect on proliferation has also been well documented in the past, and my data 

has helped shed more light on the mechanisms through which EZH2 influences proliferation in 

breast cancer cells.  I found that increased EZH2 expression is associated with an increase in 

cyclin levels, while others in our lab have found that increased activation levels of other essential 

cell-cycle proteins are also associated with higher EZH2 expression.  Another major novel 

finding presented in our first paper was that EZH2 downregulation in aggressive ER-negative 

breast cancer cells greatly decreases their proliferative capacity and rate of progression through 

the cell cycle, causing a prolonged doubling time of ER-negative breast cancer cells and caused 

an arrest at the G2/M transition of the cell cycle.  These studies were then complimented with 

previously unexplored in vivo experiments; targeted downregulation of EZH2 in aggressive ER-

negative breast cancer cells resulted in significant reduction of mammary tumor size as well as 

improved survival.    

 One of the most important conclusions of our first paper was to show that EZH2 mediates 

its proliferative effects through BRCA1.  BRCA1 is known to play a significant role in breast 

cancer, and in addition to its function in hereditary breast cancer, BRCA1 expression is reduced 

in up to 40% of sporadic breast carcinomas (Wilson, Yoshikawa, Turner).   Although BRCA1 

promoter methylation is responsible for 10-15% of sporadic breast carcinomas, it does not 

explain BRCA1 deficiency in the remainder of the tumors, leaving the door open to other 
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possible alternatives of BRCA1 modulation. We demonstrate that EZH2 knockdown in ER-

negative breast cancer cell lines causes upregulation of BRCA1 protein levels with a 

concomitant increase in pBRCA1 s1423, the total amount of the latter being crucial for G2/M 

arrest (47-48). Consistantly, ectopic overexpression of EZH2 in benign breast cells decreases 

nuclear BRCA1 and pBRCA1 s1423 protein levels.  Our data demonstrate that the observed 

effects of EZH2 downregulation on breast cancer proliferation and G2/M transition require 

BRCA1, as BRCA1 inhibition was sufficient to completely rescue the decrease in cell 

proliferation and the delay in G2 caused by EZH2 downregulation. 

 Our experiments show that EZH2 knockdown is sufficient to increase BRCA1 levels in 

breast cancer cells. We propose that EZH2 knockdown in breast cancer cells reduces their 

growth by enhancing the cell-cycle regulatory effects of BRCA1, slowing the transition from G2 

to M phases, and allowing more time for DNA repair to occur.  This hypothesis is supported by 

our experiments showing that breast cancer cells with EZH2 knockdown have increased levels of 

pBRCA1 s1423 protein, which is essential for G2/M arrest and is activated during the DNA 

damage response (48).  EZH2 knockdown had no significant effect on BRCA1 messenger RNA.  

We have no evidence by co-immunoprecipitation of a direct interaction between EZH2 and 

BRCA1 proteins.   

The relevance of the association between EZH2 and BRCA1 proteins to human breast 

cancer is highlighted by the finding that 76% of ER-negative invasive carcinomas overexpress 

EZH2 and are negative for pBRCA1 s1423.  Our work demonstrated a previously undescribed 

function of EZH2 during ER-negative breast cancer progression by showing that EZH2 

knockdown decreases tumor proliferation and growth in vivo and in vitro, and influences the 

transition from G2 phase to mitosis.  Our first paper revealed the first link between EZH2 and 
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BRCA1 proteins and showed that EZH2 knockdown depends on BRCA1 upregulation to 

decrease breast cancer proliferation and progression through G2.  We could hypothesize that 

restoration of BRCA1 function by EZH2 knockdown may effectively decrease tumor 

progression enabled by BRCA1 deficiency, informing future strategies tailored to restore 

BRCA1 levels and function, and for possibly aiding in the treatement of ER-negative breast 

cancer tumors. 

Continuing, our research ventured further into investigating the functional connection 

between EZH2 and BRCA1 proteins.  Engineering the inducible expression system in MCF10A 

benign breast cell line was essential to our continued investigation into this relation, providing a 

stably overexpressing system with which to complement our studies in the CAL51 breast cancer 

cell line.  It was from investigations in both these cells lines that most of our data was obtained.   

 Knowing that EZH2 and BRCA1 protein expressions were inversely correlated in basal-

like ER-negative breast cancer, and with our previous research showing that EZH2 

overexpression leads to decreases in nuclear BRCA1, our research provided new insight into the 

development of this phenotype.  Using confocal fluorescence microscopy and western blot 

analysis, our lab discovered that EZH2 regulates the distribution of BRCA1 protein between the 

cytoplasm and the nucleus in benign breast cells and in ER negative breast cancer cells.  By 

measuring the nuclear and cytoplasmic expression of BRCA1 protein at different timepoints after 

release from cell cycle synchronization, we concluded that EZH2 overexpression in MCF10A 

induces nuclear export of BRCA1 protein.  Consistent with this observation, BRCA1 protein was 

translocated from the cytoplasm to the nucleus upon EZH2 downregulation in the high-EZH2 

expressing CAL51 breast cancer cells. 
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  To further the links between EZH2, BRCA1, and genomic stability, our studies go on to 

demonstrate that transient EZH2 overexpression in MCF10A cells causes aberrant mitosis with 

extra centrosomes, contrasting with control MCF10A cells showing organized mitotic spindles.  

Further strengthening the function of EZH2 in mitosis, we observed that EZH2 overexpression 

increased the levels of important centrosome protein kinases Aurora A and Aurora B as well as 

dysregulating their expression during cell cycle.  The effect of EZH2 on mitosis was also 

analyzed in CAL51 breast cancer cells.  While CAL51 cells transduced with scrambled shRNAs 

exhibited aberrant mitosis with supernumerary centrosomes and mitotic spindles, EZH2 

knockdown with the proper shRNA mitigated these abnormalities.  EZH2 knockdown also led to 

downregulation of Aurora A and Aurora B kinases.   

 These described effects of EZH2 on centrosome amplification and mitosis underscore a 

very important connection between EZH2 and tumorigenesis.  Regulation of mitosis is a major 

cell cycle control mechanism that guards against production of aneuploid daughter cells and 

tumorigenesis.  We hypothesized that the mitotic defects induced by EZH2 overexpression may 

lead to aneuploidization of MCF10A cells.  These cells constitute a good model to study ploidy 

alterations since they are diploid.  Conditional EZH2 upregulation caused aneuploidy in 

MCF10A cells as early as 72 hours after addition of doxycycline. EZH2 knockdown in CAL51 

cells diminished the number of tetraploid cells compared to scrambled shRNA controls.  

Importantly, we observed that knocking down both EZH2 and BRCA1 expression in CAL51 

cells lead to the reemergence of wild-type aneulploidy levels, giving further credence to the 

conclusion that it is through regulating BRCA1 that EZH2 exerts its effect on genomic stability 

and tumorigenesis.    
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While the mechanism responsible for the nuclear-cytoplasmic shuttling of BRCA1 

protein is not fully elucidated, recent literature suggests that the membrane serine/threonine 

protein kinase B (AKT) plays a role.  Our data provides compelling evidence that the effect of 

EZH2 on BRCA1 intracellular localization requires the activation of PI3K/Akt.  

Pharmocological inhibition of the PI3K/Akt pathway with LY294002 or Wortmannin reverted 

EZH2-induced cytoplasmic retention of BRCA1 and promoted its nuclear translocation.   

The PI3K/Akt pathway has been reported to play a role in the maintenance of genomic 

stablility.  We observed that the effect of EZH2 overexpression on mitotic defects and 

aneuploidy requires activation of PI3K/Akt.  Inhibition of this pathway using LY294002 or 

Wortmannin was sufficient to rescue the increased number of centrosomes, abnormal mitosis, 

and aneuploidy caused by EZH2 overexpression.  Our data not only reveal a novel function of 

EZH2 in maintenance of genomic stability, but strongly suggest that the promotion of aberrant 

mitosis and aneuploidy may be important for the oncogenic role of EZH2 in breast cancer.   

Our results demonstrate a previously undescribed function of EZH2 in breast 

tumorigenesis.  We show that EZH2 overexpression influences BRCA1 nuclear-cytosolic 

shuttling and is sufficient to promote aberrant mitosis and aneuploidy of benign breast cells.  In 

breast cancer cells, EZH2 knockdown induces nuclear localization of BRCA1, decreases mitotic 

aberrations and reverts tetraploidy.  Our results enable us to pinpoint one mechanism by which 

EZH2 controls BRCA1 intracellular localization and genomic stablility, implicating the 

PI3K/Akt-1 pathway.  We show that Akt activation is indispensable for driving EZH2-mediated 

BRCA1 nuclear export, mitotic defects and aneuploidy of mammary epithelial cells.  In view of 

our results and based on the profound effects of EZH2 knockdown to breast cancer cells, we 

propose that modulation of EZH2 expression levels may be a valid strategy to prevent or halt 
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neoplastic progression in the breast.  Our data also provides an answer to observation of why it is 

that although BRCA1 gene mutation is very infrequent in sporadic breast cancer, its expression 

is still found to be dysregulated in many cases.  Whereas mutations in tumor suppressor genes 

such as BRCA1 or p53 can clearly lead to cancer, there do exist examples of tumor suppressor 

inactivation independent of their genetic mutations.  Such an example is seen with p53, where 

wild-type p53 protein is found mislocated in the cytoplasm in breast cancer cells, while mutant 

p53 remains in the nucleus (49).  Our research suggests that this observed BRCA1 dysregulation 

in sporadic cancers may be a result of such a mechanism mediated by EZH2 and AKT1. 

My research, along with that of my colleagues, cuts to the heart of the question 

surrounding the oncogenic mechanism underlying EZH2 overexpression.  Over the course of my 

time in the lab, we have highlighted two novel proteins associated with EZH2, BRCA1 and 

AKT1.  In looking at the large picture again, our data now allows for the more comprehensive 

analysis of the role of EZH2 in breast cancer tumorigenesis. 

The question of the role of EZH2 in breast cancer, and my main research aim in the Kleer 

lab, sits at the crux of two large debates currently taking place in breast cancer research: that of 

the role of aneuploidy in tumorigenesis, and the cancer stem cell theory.  Pursuing future 

directions in our research has led down both of these paths, and these theories play a large role in 

the further interpretation of our data as well as the development of further clinical utility.   

Our data has shown that EZH2 overexpression can cause anueploidy in breast cells, but 

can this aneuploidy leads to tumor formation?  This hypothesis has been debated since it was 

first proposed over one-hundred years ago (50), and research since this time has only revealed 

the intrinsic complexity inherent in tumorigenesis and anuploidy formation.  Aneuploidy is the 
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most common characteristic of human solid tumors, yet it is still unclear whether it is aneuploidy 

is driving tumorigenesis or if it is merely a product of other malignant mutations in the cell (51). 

By investigating in more detail the observed anuploidies in MCF10A and CAL51 cells, we have 

constructed a more detailed image of how EZH2 overexpression may lead to aneuploidy and 

tumorigenesis.  

In performing the metaphase spread technique and counting chromosomes of CAL51 and 

MCF10A cells, I noticed that the aneuploid nuclei I counted tended to display drastic alterations 

in chromosome number (around near triploid or tetraploid karyotype, around 69 and 92 

chromosomes respectively) instead of perhaps more subtle, single chromosome addition or 

subtractions.  Of all the cells I counted, I quantified not just the prevalence of aneuploid and non-

aneuploid cells, but also the total chromosome numbers from each cell.  Figure 9 shows the 

results, supporting my observation that EZH2-driven aneuploid cells tended to have near 

tetraploid chromosome numbers.  This data, along with the known relation between EZH2 and 

BRCA1, provides further insight into possible mechanisms of EZH2-driven aneuploidy and 

tumorigenesis.   
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Figure 9 

 

 

 

 Tetraploidy in cells usually arise from aberrations in mitosis (52).   During mitosis, 

chromosomes attach via their kinetochores (proteinaceous structure on the DNA) to spindle 

microtubules from the centrosomes, with this formation favoring even chromosome segregation 

between the two daughter cells.  Cells have natural checkpoints which delay anaphase until all 

kinetochores are properly attached.  In the presence of a persistant error however, mitotic cells 

can escape the checkpoint arrest and exit mitosis without undergoing anaphase or cytokinesis, 

thereby producing a tetraploid cell with a single nucleus and two centrosomes (53).  Abnormal 
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Figure 9:  Near-tetraploid phenotype is the most commonly observed aneuploidy in the EZH2 

overexpressing MCF10A system.  
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spindle positioning and movements are known to interfere with cytokinesis and lead to the 

accumulation of tetraploid cells (54).  Recalling our earlier work, we have shown that EZH2 

overexpression leads to centrosome amplification and mulitipolar spindle formation, so it is 

likely though these aberrations in mitosis that EZH2 favorably yields more tetraploid cells.   

Important in the discussion of aneuploidy and tumorigenesis is also the characterization 

of chromosomal instability (CIN), where cells display an increase in the rate of gain or loss of 

whole chromosomes during cell division, which is not synonymous with aneuploidy (55). 

Tetraploidy has been observed to instigate chromosomal instability (CIN) in yeast and 

mammalian cells (56-57).  Supernumerary centrosomes are proposed to be the major source of 

CIN (58-59). Extra centrosomes can lead to the formation of multiple spindle poles during 

mitosis, resulting in the unequal distribution of chromosomes and the production of aneuploid 

daughter cells.  Multipolar mitoses have been shown to result in high CIN owing to 

unsynchronized sister-chromatid separation, a high frequency of non-disjunction and the 

occurrence of diplochromosomes (60). Our data again suggest that EZH2 may induce CIN 

through its role in centrosome amplification. 

Of greater importance now is asking how these characteristics may lead to tumor 

formation.  It can be reasoned that the appearance of CIN in a diploid cell would quickly lead to 

cell death due to aberrant mitosis, however CIN in tetraploid cells would have a higher chance of 

survival due to greater chromosomal redundancy, hinting at a selection method to pair CIN and 

aneuploidy (52). Pairing CIN and aneuploidy together would lead to the production of progeny 

that may be grossly aneuploid, though viable, and able to acquire further mutations.  Chaotic 

multipolar mitosis may break chromosomes directly, abnormal mitosis and prolonged mitotic 

arrest can lead to the accumulation of DNA breaks, the double amount of DNA leads to twice the 
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amount of spontaneous DNA damage, coupled with the fact that DNA repair is probably much 

less efficient; all of these events may lead to increased genetic mutation and therefore increased 

likeliness for malignant transformation. 

Tetraploidy has been identified in early stages of cancers, in which it precedes the 

development of CIN and aneuploidy (62-64). Overexpression of Aurora A in the mammary 

gland of mice leads to an increase in the generation of tetraploidy, CIN, and the formation of 

mammary tumors, providing a further detailed picture of EZH2‟s possible effects in 

tumorigenesis (65-66).  Although aneuploidy has been shown to lead to tumor formation in some 

studies, others have shown that aneupolidy can also play a neutral and even a tumor-suppressing 

role in cancer (67).  What hinders the hypothesis of aneuploidy-driven tumorigenesis is that to 

date, there has been no found direct correlation between the level of aneuploidy and the 

incidence of spontaneous tumor development.  A comprehensive review on the role of 

aneuploidy across a spectrum of cancers and models has shown that aneuploidy can increase the 

risk of neoplastic transformation in some tissue lines, although a predisposed background or 

some other activating mutation is usually required for tumorigenesis.  The effect of aneuploidy 

might not be driven by a particular combination of chromosomes per se, but rather by the 

specific interaction of the karyotype with the various genetic contexts and microenviroments 

found in different tissues.  In relation to our research, a clear goal for the future could be to 

investigate further whether aneuploidy promotes tumorigenesis specifically in the genetic context 

of ER-negative breast cancers. 

Another interesting model of tumorigenesis to consider in light of our data is the cancer 

stem cell theory of breast cancer.  This model posits that cancers develop from a subset of 

malignant cells that possess stem cell characteristics (called cancer stem cells) and has been 
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proposed to account for the development of a variety of malignancies, including breast cancer.  

These cancer stem cells originate from either mutated stem cells or from the dedifferentiation of 

a lineage committed cell that has acquired stem cell characteristics through mutation.  This 

theory holds special relevance to our work seeing as how striking parallels can be found between 

our studied subset of ER-negative breast cancer cells and stem cells.  As brought up in the 

introduction, EZH2 is an epigenetic repressor found in high concentrations in embryonic stem 

cells to keep them proliferating and in an undifferentiated state.  This is a very similar situation 

as observed in our studied breast cancer cells, where EZH2 overexpression in breast cells is 

associated with both increased proliferation and cell dedifferentiation, both hallmarks of more 

malignant forms of breast cancer.     

This cancer stem cell model of oncogenesis, first proposed for haematopoietic stem cells 

in 2001 (68) and then for breast cancer in 2003 (69) (by the Wicha group at the University of 

Michigan) details, implies a different mechanism of tumor progression and would therefore 

recommend a different type of treatement in patients.  Whereas the anueploidy-driven model 

suggests that tumors become more homogenous masses of aneuploid cells, and so treatement 

would need to be directly targeted against the entire tumor, the cancer stem cell model implies 

that only a small subset of cells within a tumor possess the ability to self-renew and possibly 

metastasize.  This cancer model would then recommend that specifically these stem cells must be 

targeted for treatement, and the rest of the tumor would soon die off  (70). Implicit in designing 

treatement then is identifying these cancer stem cells from the other tumor cells.  In breast cancer, 

cancer stem cells have been found to typically have the CD44+/CD24- phenotype (the CD 

proteins are cell surface proteins), while the presence of ALDH-1 has also been used to 

distinguish breast cancer stem cells.  Our lab investigated into the possible relevance to our 
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cancer model by performing a cDNA microarray to test differential gene expression between 

SUM149 cancer cells, both ALDH + and ALDHA -, as well as having EZH2 expression knocked 

down using shRNA (Figure 10).  The genes assayed in the microarray specifically pertained to 

stem cell development pathway.  Of the many observed difference, of note was the differential 

expression of the Notch signaling proteins, which varied as a function of EZH2 expression 

between the ALDH+ and ALDH-  populations.  Notch signaling plays a role in self renewal in 

both normal and malignant stem cells, and finding differential expression could support the 

theory that it is a small subset of breast cancer stem cells that are responsible for tumor growth 

and invasion (71). This stem cell model would be an interesting model to look into, however its 

restrictions of its applicability have been already heavily decried by critics.  While this model of 

tumorigenesis may explain the observed heterogeneity in tumors, there still has been a marked 

lack of correlation between stem cell marking and cancer severity (72). This model is still 

currently contested, however the great amount of research put into this investigation has left its 

indelible mark on the future of cancer research. 
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Figure 10 
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figures are given as 

illustration as to the 

power of microarray 

analysis for widespread 

gene analysis.  The top 

figure shows the 

differential gene 

expression as observed 

in the differing well 

locations on the 

microarray plate, while 

the bottom scatter plot 

provides another view 

with overexpressed 

genes above the purple 

lines and repressed 

genes below the purple 

line.  
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Both of these models of EZH2 driven tumorigenesis provide interesting yet varying ideas 

as to how best treat these types of breast cancers. In reviewing these hypotheses, I have brought 

us to the forefront not just of our research of EZH2 in breast cancer, but also of the current state 

of cancer research.  While in the end, the data I have collected while part of the Kleer lab has 

helped us form a more comprehensive view of the role of EZH2 in breast cancer tumorigenesis, 

there still remains many more questions and untreaded directions with which to continue our 

research.  We have discovered novel associations between EZH2 and BRCA1 expression in 

breast cancer through AKT.  We have provided potential in targeting any one of these relations 

to increase breast cancer survival in patients.  As quoted from Max Wicha himself, we are within 

five years of being able to sequence patients‟ entire genome to search for the activating 

mutations and genetic relations that we are elucidating today.  The future of breast cancer 

research is evolving through the beautiful amalgamation of advancing technology and intense 

effort.  Older models of breast cancer tumorigenesis are being questioned, and treatment 

advances along with every new development.  Though many questions remain, our work 

continues.   
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MATERIALS AND METHODS: 

Cell Lines 

Breast cancer cell lines and immortalized human mammary epithelial cell lines (MCF10A) were 

obtained from the American Type Culture Collection (ATCC, Manassas, VA, USA) and grown 

under recommended conditions. 

 

DNA Direct Sequencing 

Direct Sequencing performed through the DNA sequencing core at the University of Michigan.  

Primers were designed to cover entire EZH2 locus and ordered through Applied Biosystems.  

Data received from the core was analyzed with FinchTV (Geospiza).  The nucleotide sequences 

were then compared using the NCBI BLAST (Basic Local Alignment Search Tool) 

(http://blast.ncbi.nlm.nih.gov/Blast.cgi) program.  Samples were compared to the NCBI 

reference sequence for the Homo sapiens enhancer of zeste homolog 2 (Drosophila) (EZH2), 

transcript variant 1, mRNA, locus NM_004456.  If a mutation was found in the forward strand, 

then the reverse stand was then consulted.  A mutation would be considered valid if it was found 

in both the forward and reverse strands. 

 

Western immunoblots 

Immunoblot analysis was performed as described in Kleer et al., 2003 using 100 mg of nuclear 

enriched fractions extracted with NE-Per kit (Pierce, Rockford, IL, USA), or whole cell extract 

as indicated in the legends. The following antibodies were used: mouse anti-b-actin (1:10 000), 
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mouse anti-a-tubulin (1:1000), goat anti-rabbit:horseradish peroxidase (HRP) secondary 

antibody (1:10 000) and goat antimouse HRP (also 1:10 000). These antibodies were purchased 

fromSigm a (St Louis, MO, USA). In addition, we used anti-EZH2 (1:1000; BD Biosciences, 

San Jose, CA, USA); anti-BRCA1 (D-9) (1:200; Santa Cruz Biotechnology, Santa Cruz, CA, 

USA); anti-phospho-BRCA1 (Ser1423) (1:1000; Abcam, Cambridge, MA, USA); anti-cdc25C 

(5H9); anti-cdc2; anti-phosphor-cdc2-tyr15, used at 1:1000 dilution, fromCell Signaling 

Technology, Danvers, MA, USA; anti-Cyclin B1 (1:1000 dilution, Calbiochem; EMD Chemicals, 

La Jolla, CA, USA) and anti-phospho-Cyclin B1 (Ser126) (1:1000 dilution; Novus Biologicals, 

Littleton, CO, USA). Control immunoblots using preimmune immunoglobulin G (IgG) 

confirmed the specificity of the antibodies. Semiquantitative protein expression levels were 

determined by densitometry using IMAGE J 1.38x software. 

 

Cell synchronization 

Cells were synchronized with double thymidine block as described previously (Fan et al., 2000). 

Briefly, cells were incubated in medium containing 2mM thymidine for 12 h, released into their 

normal medium for 8–10 h and then incubated for 12 h in medium containing 2mM thymidine 

(see Supplementary methods for details). 

 

Knockdown of shEZH2 and shBRCA1 in breast cancer cells 

To generate stable short-hairpin interfering RNA-EZH2 and RNA-BRCA1 in MDA-MB-231 and 

CAL51 breast cancer cells, cells were transduced with lentivirus and selected for antibiotic 

resistance in ATCC-recommended media with puromycin (100 mg/ml, Sigma), at 37 1C under 
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10% CO2. Lentivirus was purchased fromthe Vector Core, University of Michigan. Background 

vector control was Lenti- PuroEMPTY-VSVG. For targeting EZH2 (NM_152998 

NCBI) and BRCA1 (NM_009764 NCBI), the shRNA oligos ID used were as follows: 

V2LHS_17507 targeting EZH2 and V2LHS_254648 targeting BRCA1, corresponding to these 

catalog numbers RHS4430-99139126 and RHS4430-99157192, respectively, fromOpen 

Biosystems, Huntsville, AL, USA. 

 

Cell proliferation 

Cells were plated at the same density and cultured for 24 h in a 96-well microplate. WST-1 

reagent was added and absorbance at 450nmwas measured after 3 h of incubation, following the 

manufacturer‟s instructions (Roche Molecular Systems, Pleasanton, CA, USA). 

 

Real-time quantitative PCR 

Total RNA was isolated following the manufacturer‟s instructions with the RNeasy kit 

(QIAGEN Inc., Valencia, CA, USA). cDNA samples from breast cancer cells were amplified in 

triplicate from the same starting material of total RNA following the manufacturer‟s instructions 

(High-Capacity cDNA Reverse Transcription Kit; Applied Biosystems, Foster City, CA, USA). 

Samples were amplified using TaqMan MGB FAM dye-labeled probes from Applied 

Biosystems in an ABI7900HT model real-time PCR machine. The following probes were used: 

Hs99999903_m1 (ACTIN), Hs00173233_m1 (BRCA1) and Hs00544830_m1 

(EZH2). 

 

Engineering Tet-On System in MCF10A Cell Line 
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This project was one of my more significant undertakings in the lab, so I will go into a 

little more detail about how the system works and how I created our system.  Our lab purchased 

the Lenti-X
TM 

Tet-On
® 

Advanced Inducible Expression System from Clontech.  This involved a 

system which would overexpress EZH2 when Doxycycline (Dox) was added to the cell culture 

media. The system is derived from E. coli‟s tetracycline operon.  In E. coli, the Tet repressor 

protein (TetR) negatively regulates the genes of the tetracycline-resistance operon.  TetR blocks 

transcription of these genes by binding to the tet operator sequence (tetO) in the absence of 

tetracycline (Tc).  In the presence of Tc, TetR dissociates from tetO and transcription of 

resistance mediating genes begins.  This interaction between TetR and tetO are the basis for this 

inducible system     

The system comes with two elements, the regulator vector (pLVX-Tet-On Advanced) and 

the response vector (pLVX-Tight-Puro).  The pLVX-Tet-On Advanced vector constitutively 

expresses the tetracycline-controlled transactivator, rtTA-Advanced.  This protein consists of a 

mutant TetR (rTetR) that posseses a “reverse” tetO binding phenotype in that this protein will 

bind to tetO sequences in the presence of Dox, rather than its absence. The pLVX-Tight-Puro 

response vector contains Ptight, the inducible promoter that controls the expression of our gene of 

interest EZH2.  Ptight consists of a modified Tet-Responsive Element (TREmod), made up of seven 

direct repeats of an altered tetO sequence, joined to a minimal CMV promoter (PminCMVΔ).  Upon 

induction in the presence of Dox, rtTA-Advanced binds to the PTight promoter on the response 

vector, activating transcription of the downstream gene (see Fig).  These expression vectors 

where introduced into the cell using viral vectors. 

I will outline my strategy to splice the EZH2 locus from our stored plasmid into the PTight 

promoter.  The pLVX tight-puro vector was opened with a double digestion with the restriction 
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enzymes BAMHI and EcoRI.  The EZH2 locus was cut from its vector using the same enzymes, 

typical of this type of procedure, since this will allow for a simple mix and anneal step.  

Complications arise however since EZH2 contains an internal EcoRI cut site, which separates an 

almost 300bp segment from the rest of the gene.  To get around this, I used PCR to magnify and 

isolate the missing 300bp segment, while also engineering complementary cut site so this small 

segment would fit in with the main vector fragment.  After inserting the large part of the EZH2 

locus into the pLVX tight-puro vector, I then double digested the small fragment with EcoRI and 

BAMHI and then inserted and ligated the small segment into the larger vector construct using 

viral T4 DNA ligase.   Calf Intestinal (CIP) Alkaline Phosphatase was used to dephosphorylate 

the 5‟ phosphate groups from the fragments to prevent self annealing. 

The vector was then sequenced to confirm that our intended vector was obtained. 

Western Blot analysis confirmed that EZH2 expression is at normal wild type levels in the 

absence of Dox and that EZH2 expression increases dramatically upon the addition of Dox into 

the media.   

 

Metaphase Spead  

Cells were grown in culture and colecemid added 24 hours before harvesting at around 70% 

confluency.  Colecemid limits microtubule formation and therefore freezes cells in metaphase.  If 

doxycycline was to be added (as in to collect data from the MCF10A inducible expression cell 

line), it would be added to cell culture at around 50% confluency, in order to attain the desired 

70-80% confluency.  This level of confluency is need since colcemid will freeze cells currently 

going through mitosis, however if the cells are already at 100% confluency then the mitotic 
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index will be very low and very few metaphases will be visible on the slide.  Cells were collected 

by trypsinization and resuspended in 0.075 mol/L KCl on ice for 30 min. Cells were fixed in a 

3:1 mixture of methanol and glacial acetic acid with mild vortexing, dropped onto glass slides, 

and stained with 544 Ag/mL Giemsa solution. To determine ploidy, the number of chromosomes 

was counted in at least 25 metaphases for each cell line. 
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