
 M T S

 The Michigan Terminal System

 Volume 5: System Services

 May 1983

| Updated September 1985 (Update 1)

 The University of Michigan Computing Center

 Ann Arbor, Michigan

 * *

 * This obsoletes the April 1980 edition. *

 * *

 1

 DISCLAIMER

 The MTS Manual is intended to represent the current state of the

 Michigan Terminal System (MTS), but because the system is constantly

 being developed, extended, and refined, sections of this volume will

 become obsolete. The user should refer to the Computing Center _________ ______

 Newsletter, Computing Center Memos, and future Updates to this volume __________

 for the latest information about changes to MTS.

 Copyright 1983 by the Regents of the University of Michigan. Copying is

 permitted for nonprofit, educational use provided that (1) each repro-

 duction is done without alteration and (2) the volume reference and date

 of publication are included. Permission to republish any portions of

 this manual should be obtained in writing from the Director of the

 University of Michigan Computing Center.

 2

 MTS 5: System Services

 May 1983 Page Revised September 1985

 PREFACE _______

 The software developed by the Computing Center staff for the

 operation of the high-speed processor computer can be described as a

 multiprogramming supervisor that handles a number of resident, reentrant

 programs. Among them is a large subsystem, called MTS (Michigan

 Terminal System), for command interpretation, execution control, file

 management, and accounting maintenance. Most users interact with the

 computer’s resources through MTS.

 The MTS Manual is a series of volumes that describe in detail the

 facilities provided by the Michigan Terminal System. Administrative

 policies of the Computing Center and the physical facilities provided

 are described in a separate publication entitled Introduction to the _____________________

 Computing Center. ________________

 The MTS volumes now in print are listed below. The date indicates

 the most recent edition of each volume; however, since volumes are

 updated by means of CCMemos, users should check the Memo List, copy the

 files *CCMEMOS or *CCPUBLICATIONS, or watch for announcements in the

 Computing Center Newsletter, to ensure that their MTS volumes are fully ____________________________

 up to date.

| Volume 1: The Michigan Terminal System, January 1984 ____________________________

| Volume 2: Public File Descriptions, April 1982 ________________________

| Volume 3: System Subroutine Descriptions, April 1981 ______________________________

| Volume 4: Terminals and Networks in MTS, March 1984 _____________________________

| Volume 5: System Services, May 1983 _______________

| Volume 6: FORTRAN in MTS, October 1983 ______________

| Volume 7: PL/I in MTS, September 1982 ___________

| Volume 8: LISP and SLIP in MTS, June 1976 ____________________

| Volume 9: SNOBOL4 in MTS, September 1975 ______________

| Volume 10: BASIC in MTS, December 1980 ____________

| Volume 11: Plot Description System, August 1978 _______________________

| Volume 12: PIL/2 in MTS, December 1974 ____________

| Volume 13: The Symbolic Debugging System, September 1985 _____________________________

| Volume 14: 360/370 Assemblers in MTS, May 1983 _________________________

| Volume 15: FORMAT and TEXT360, April 1977 __________________

| Volume 16: ALGOL W in MTS, September 1980 ______________

| Volume 17: Integrated Graphics System, December 1980 __________________________

| Volume 18: The MTS File Editor, August 1985 ___________________

| Volume 19: Tapes and Floppy Disks, February 1983 ______________________

 Other volumes are in preparation. The numerical order of the volumes

 does not necessarily reflect the chronological order of their

 appearance; however, in general, the higher the number, the more

 specialized the volume. Volume 1, for example, introduces the user to

 3

 MTS 5: System Services

 Page Revised September 1985 May 1983

 MTS and describes in general the MTS operating system, while Volume 10

 deals exclusively with BASIC.

 The attempt to make each volume complete in itself and reasonably

 independent of others in the series naturally results in a certain

 amount of repetition. Public file descriptions, for example, may appear

 in more than one volume. However, this arrangement permits the user to

 buy only those volumes that serve his or her immediate needs.

 Richard A. Salisbury

 General Editor

 4

 MTS 5: System Services

 May 1983

 PREFACE TO REVISED VOLUME 5 _________________________ _

 The May 1983 revision reflects the changes that have been made to MTS

 since the April 1980 edition.

 The sections "IOH," "Extensions to the Amdahl 470 Operations," and

 "Extensions to the System/360 Model 67 Operations" have been moved into

 MTS Volume 14, 360/370 Assemblers in MTS. _________________________

 Acknowledgments for the descriptions and programs contained in this

 volume are as follows:

 The SORT program was developed by Douglas Burr Smith to test several

 concepts relating to sorting algorithms and page faults in a large

 virtual memory environment. Additional development of both the program

 and the description in this volume has been done by Charles F. Engle.

 The dynamic loader program and its description were originally

 produced by Ronald J. Srodawa. Recent additions to the program and

 description were made by Kenneth DeJong and Pat Sherry.

 The linkage editor program and its description were produced by

 Kenneth DeJong, James Henriksen, and Pat Sherry.

 The object-file editor program and its description were produced by

 Pat Sherry.

 The ACCOUNTING command mode was originally developed as the program

 *PROJECTACCOUNT by Charles F. Engle. His continuing development of the

 program has led to the present version of ACCOUNTING which is described

 in this volume.

 The remainder of the descriptions in this volume were either produced

 by or heavily modified from other documentation by the editorial staff.

 5

 MTS 5: System Services

 May 1983

 6

 MTS 5: System Services

 May 1983

 Contents ________

 Preface 3 The SORT Subroutine 57

 Introduction 57

 Preface to Revised Volume 5 . . 5 Return Codes 57

 The Entry Point SORT . . . 57

 The SORT Utility Program . . . 11 The Entry Point SORT2 . . . 62

 Simple Character Sorts . . . 13 The Entry Point SORT3 . . . 65

 Elementary Sorting of The Entry Point SORT4 . . . 67

 FORTRAN Output 15 Bibliography 71

 Notation 16 Appendix A: Collating Fields 72

 The Control Statement 17 Appendix B: Record

 The Mode’s Description . . 18 Structures 77

 The Collating Sequence’s Appendix C: Summary of the

 Description 18 Control Statement 81

 The Defined Sequences’

 Descriptions 20 The Dynamic Loader 83

 The Data Sets’ Elementary Loader Topics . . 83

 Descriptions 21 Introduction 83

 The END Parameter 25 Overview of the Loading

 Additional Parameters . . . 25 Process 83

 Restricted Parameters . . . 29 Structure of

 Optional Exits 29 Compiler-Generated Object

 Exit SORTE0 30 Modules 85

 Exit SORTE1 31 Processing an Object

 Exit SORTE2 33 Module 87

 Exit SORTE3 35 Storage Allocation During

 Exit SORTE4 36 the Loading Process 88

 Exit SORTE5 37 Advanced Loader Topics . . . 88

 Exit SORTE6 39 Modifying Programs in

 Exit SORTE7 40 Object-Module Form 88

 Exit SORTE8 40 Common-Section Processing . 93

 Exit SORTE9 41 Pseudo-Register Processing 93

 Optional Entrance 41 Merging External Symbols . 94

 Entrance SORTEA 41 Library Processing 95

 Sort Timing Estimates 42 Dynamic Loading 98

 Sort Optimization 48 Initial ESD Lists and

 Number and Types of Low-Core Symbol Tables . .100

 Collating Fields 48 Appendix A: Entry Point

 Distribution of the Determination104

 Source Data 48 Appendix B: Loader Error

 Blocking Factors of Data Messages 105

 Sets 49 Appendix C: Sample Loader

 Number, Type, and Map110

 Efficiency of Exits 49 Appendix D: Loader Record

 System Load 49 Format 113

 Processing Magnetic Tapes . 50 Translator-Generated Load

 Statistics and Diagnostics . 51 Records113

 Sort Examples 52

 7

 MTS 5: System Services

 May 1983

 User-Generated Load LENGTH 184

 Records137 MISCSAVE 184

 Library Control Records . .143 MSGSAVE185

 NAME 185

 Virtual Memory Management . . .147 NV 185

 OM 185

 The Linkage Editor 159 ORL186

 Linkage Editor Command SLI186

 Language 162 SORT 186

 General Syntax 162 SYMSAVE187

 Linkage Editor Commands . .164 TERSE187

 ADD165 TYPE 187

 ALIAS165 V188

 ATTRIBUTE165 VERBOSE188

 BLAST166 WXTOER 188

 CLEAR166 Linkage Editor Example . . .189

 COMBINE167 Principles of Operation . . .192

 COMMENT167 Optimization of Object

 COPY 168 Modules193

 CSECT168 Optimizations

 DELETE 168 Automatically Performed . .193

 DISPLAY169 Optimizations Performed

 DUMP 170 by the COMBINE Command . .195

 INCLUDE170 Optimizations Performed

 LIST 170 by the PURGE Command . . .196

 MAP172 Optimizations Obtained by

 MCMD 172 the SLI Modifier 197

 MODIFY 172 Optimizations Obtained by

 MTS174 the BC Modifier197

 PUNCH174 Processing Special Records .197

 PURGE174 Attention-Interrupt

 RENAME 175 Processing 199

 REPLACE175 Input Conversion 200

 RETURN 176 Output Conversion204

 SCAN 176 Object-Module Naming

 SET177 Conventions205

 STOP 178

 UNLINK 178 The Object-File Editor 207

 UPDATE 179 Object-File Editor Command

 XREF 179 Language 212

 Command Modifiers180 Object-File Editor

 A180 Commands 215

 BC 181 ADD215

 CHECK181 CLEAR215

 COMSAVE181 CLOSE215

 CSECT182 COMMENT216

 CSECT= 182 CREATE 216

 EMPTY182 CSECT217

 ENTRY= 182 DELETE 217

 ENTRY183 DISPLAY217

 FULL 183 EDIT 218

 GAPSIZE183 EMPTY219

 GENSAVE184 EXPLAIN219

 8

 MTS 5: System Services

 May 1983 Page Revised September 1985

 HELP 220 The ACCOUNTING MANAGEMENT

 INCLUDE220 System 241

 LIST 220 The Commands 242

 MAP222 Adding Money to a Signon

 MCMD 222 ID 243

 MODIFY 222 Subtracting Money from a

 MTS223 Signon ID243

 PATCH224 Modifying Money for a

 PUNCH225 Signon ID244

 RENAME 225 Equalizing Money for a

 REPLACE225 Signon ID244

 RETURN 226 Expiring a Signon ID . . .244

 SCAN 226 Deleting a Signon ID . . .245

 SET227 Displaying a Signon ID . .246

 SNIFF228 Continuing with a

 STOP 228 Different Signon ID246

 UPDATE 229 Other Signon Ranges248

 XREF 229 Blocks 248

 Command Modifiers230 ENTIRE 248

 BREAK230 Signon-Range Groups249

 COMGEN 230 Defined Signon-ID Ranges .249

 COMSAVE230 PROJECT250

 DEF230 The Keywords 252

 DEFSAVE231 Changing Maximum Charge . .252

 DIRECTORY231 Changing Maximum Disk

 DLR231 Space252

 DMD231 Changing Expiration Time .252

 EMPTY231 Changing Maximum

 FULL 232 Concurrent Signons 254

 GAPSIZE232 Changing Maximum Terminal

 LENGTH 232 Time 255

 LIBRARY232 Changing Maximum Plotting

 MISCSAVE 233 Time 256

 MSGSAVE233 Filtering Signon IDs

 OPTIMIZE 233 within a Signon Range . . .257

 ORL233 Changing NOCHANGE257

 REPGEN 233 Changing Normal Priority

 REPSAVE234 Access 259

 SLOTS234 Changing Low Priority

 SORT 234 Access 260

 SYMSAVE234 Specifying a Project

 TERSE235 Signon File260

 TYPE 235 Inhibiting Project Signon

 UNDEF236 File Attentions261

 VERBOSE236 Resetting Passwords262

 VERIFY 236 Controlling the Listing . .263

 Object-File Editor Example .237 Producing Headings 264

 Other Commands 265

 ACCOUNTING 239 The SET Command265

 Introduction 239 Temporarily Returning to

 Displaying Status MTS265

 Information about an Terminating ACCOUNTING

 Individual Signon ID 239 MANAGEMENT 266

 9

 MTS 5: System Services

 Page Revised September 1985 May 1983

 Miscellaneous266 EQUALIZE 282

 Initialization File268 EXPIRE 283

 Batch Input to Produce HELP 284

 Examples 269 MODIFY 284.1

 Accounting Management MTS, MCMD285

 Commands 270 RETURN 286

 Summary of Accounting SET287

 Management Command STOP 289

 Prototypes 271 SUBTRACT 290

 ADD273 Appendix A: Display Status

 CONTINUE 279 Information291

 DELETE 280 Appendix B: Multilevel

 DISPLAY281 Accounting 294

 Index295

 10

 MTS 5: System Services

 May 1983

 THE SORT UTILITY PROGRAM ________________________

 This section is designed to guide users of the Michigan Terminal

 System (MTS) in the use of the SORT utility program. It contains

 sufficient information to introduce a user to the relevant concepts and

 to allow him to utilize the program’s various options. All descriptions

 and examples are couched in terms of the environment provided by MTS and

 users are expected to be cognizant of this environment.

 SORT is a versatile program capable of ordering and structuring data

 sets. Sorting and merging facilities are provided to allow the user to

 arrange data according to a collating sequence he has described.

 Blocking and deblocking facilities, capable of processing data sets of

 types U, F, V, VS, FB, VB, VBS, and FBS, may be used alone or in

 conjunction with the sorting and merging options. Source (input) and

 sink (output) data sets may reside on any medium, e.g., cards, tapes,

 direct access devices, or virtual memory.

 Subroutines, written by the user, can gain control from the SORT

 program at several points in the processing of the data: permitting the

 generation, modification, deletion, and comparison of the data. Users’

 subroutines may also rectify I/O errors and process program interrupts.

 The SORT program may be invoked via the RUN command or may be called

 as a subroutine. The subroutines’ linkage and idiosyncrasies are

 discussed in a latter portion of this guide.

 There exists no limit to the volume of data that may be merged or

 copied; however, the available disk space as well as virtual memory

 space limits the volume of data that may be sorted. This limit is in

 excess of 50,000,000 bytes at the University of Michigan, and additional

 facilities are provided to sort an amount of data up to the equivalent

 of a full magnetic tape.

 The SORT Utility Program 11

 MTS 5: System Services

 May 1983

 The following descriptions may be useful:

 blocking - a process of juxtaposing data records, forming a block of ________

 records to be written as a unit by an I/O device

 byte - a unit of data consisting of eight contiguous bits - each ____

 EBCDIC character occupies one byte in the IBM 360, IBM 370, Amdahl 470,

 and Amdahl 5860 computers

 collating field - contiguous bytes within each record whose attri- ________________

 butes are used to order the records

 collating sequence - a succession of records ordered by attributes of __________________

 the data within each record

 deblocking - a process of decomposing a group of contiguous data __________

 records read as a unit by an I/O device

 halfword - a unit of data consisting of two consecutive bytes ________

 merge - a process of arranging records from two or more previously _____

 sorted data sets to form a data set ordered on the same attributes as

 the source data

 record - contiguous bytes that form a logical group of data to be ______

 processed as a unit by the SORT program

 sort - a process of arranging records from one or more data sets to ____

 form a data set ordered on one or more attributes of the data

 word - a unit of data consisting of four consecutive bytes ____

 12 The SORT Utility Program

 MTS 5: System Services

 May 1983

 SIMPLE CHARACTER SORTS ______________________

 This section is designed to familiarize users with certain aspects of

 the control statement and to enable them to run simple sorts using the

 most common type of ordering: character, or alphabetized, collation.

 It is not intended to describe all, or even the best, ways to do simple

 character sorts. Rather, it will describe one way which produces the

 desired results. Complete descriptions of all aspects of the control

 statement, including the information presented in this section, appear

 later.

 The sort program is invoked by entering a $RUN *SORT command. The

 control statement, which describes the processing of the data, is placed

 in the PAR field of the $RUN command. This control statement defines

 how the output is to be ordered and the locations of the input and

 output data. The following paragraphs describe a control statement for

 a simple character sort on quantities of data up to at least the lesser

 of 225,000 records and 18,000,000 characters.

 The first parameter to be specified in the PAR field is the keyword

 "SORT=" (or "S="). It is then necessary to specify the criteria for

 ordering the data. This is done by following "SORT=" with the

 positional parameters "CH,A,". The "CH" means that the ordering is to

 be based on character data, that is, data composed of alphanumeric

 characters or numbers in character form. Character data are produced,

 for example, by keypunches, terminals, and formatted output from

 FORTRAN. The "A" means that the output is to be in ascending order,

 e.g., the characters in the string " abzAZ019" are ascending. The $RUN

 command should now look like this:

 $RUN *SORT PAR=SORT=CH,A,

 Note that a blank must not immediately precede any equal sign or comma

 in the control statement.

 The location of the characters which are to determine the ordering of

 the records must now be supplied. Suppose that the field on which the

 sort is to be based starts in position, or column, 15 and ends in

 position 20 in each record. This is indicated to SORT as shown in the

 example below. The "A," in the control statement is followed by the

 starting position, "15" in this case, and the number of characters, or

 length, of the field, "6" in this case. The two values are separated by

 a comma. The $RUN command is now

 $RUN *SORT PAR=SORT=CH,A,15,6

 If the designated fields (positions 15-20 in the example) of two

 records are compared and found to be identical, it may be desired to

 compare a second field in each record to determine which record should

 precede the other. This is accomplished by appending a comma and

 another CH,A,starting-position,number-of-characters combination to the

 The SORT Utility Program 13

 MTS 5: System Services

 May 1983

 first description. Suppose that the second field occupies positions

 79-80 of the records. The $RUN command would then be

 $RUN *SORT PAR=SORT=CH,A,15,6,CH,A,79,2

 Additional fields for the resolution of identical comparisons may be

 added in the same manner.

 The next step is to specify where the input is to be found. This is

 done with the keyword "INPUT=" (or "I=") followed by a file or

 pseudodevice name, e.g., IN(5,99)@-TRIM or *I*. The $RUN command might

 now be

 $RUN *SORT PAR=SORT=CH,A,15,6,CH,A,79,2 INPUT=IN(5,99)@-TRIM

 (In the case of blocked magnetic tapes, this is neither the most

 efficient nor the recommended method of completely specifying the input

 data set to SORT; but if tape blocking is left on, which is the default,

 it does work. It should also be noted that SORT does not reposition

 tapes either before or after using them nor does it write end-of-file

 marks.)

 Finally, the place where SORT is to write the sorted output must be

 designated. The keyword "OUTPUT=" (or "O=") followed by a file or

 pseudodevice name accomplishes this. If the output is to be written to

 a tape with the pseudodevice name *O*, the completed $RUN command would

 be

 $RUN *SORT PAR=SORT=CH,A,15,6,CH,A,79,2 I=IN(5,99)@-TRIM O=*O*

 (The comments regarding magnetic input tapes also apply to tapes used

 for output.) The use of the same data set for both input and output

 should not even be considered unless the data would be easily recover-

 able if it were damaged and unless the user is knowledgeable about both

 SORT and the characteristics of the data set.

 An alternate way of specifying the input and output data sets is to

 assign the input data set to SCARDS and the output data set to SPUNCH.

 Using this alternative, the $RUN command for the same sort as above

 would look like:

 $R *SORT SCARDS=IN(5,99)@-TRIM SPUNCH=*O* PAR=S=CH,A,15,6,CH,A,79,2

 When SORT finishes, it prints two statistics separated by a slash.

 The first of these is the number of records read by SORT. The second,

 which may normally be ignored, is the number of scratch files used by

 SORT.

 14 The SORT Utility Program

 MTS 5: System Services

 May 1983

 ELEMENTARY SORTING OF FORTRAN OUTPUT ____________________________________

 Since FORTRAN is the most commonly used programming language, an

 introductory discussion of the sorting of data produced by programs

 written in FORTRAN is appropriate. If the input to SORT is the output

 from a FORTRAN program using formatted write statements, then the data

 are in character form and the control statement described in the

 previous section may be used. If the input to SORT was produced by

 unformatted write statements in a FORTRAN program, then it is generally

 necessary to modify the description of the fields to be compared; and

 additional information must be given to describe SORT’s input and

 output.

 In the preceding section, each field to be compared was described by

 a CH,A,starting-position,length combination. Since unformatted writes

 do not convert numeric data to character form, it is necessary to

 substitute the appropriate type code for the characters "CH". The

 following table indicates the type codes and lengths which should be

 used to sort FORTRAN variables.

 FORTRAN TYPE | CODE | LENGTH

 ──────────────────┼──────┼────────
 INTEGER | FI | 4

 INTEGER*n | FI | n

 REAL | FL | 4

 REAL*n | FL | n

 DOUBLE PRECISION | FL | 8

 LOGICAL | BI¹ | 4
 LOGICAL*n | BI¹ | n

 Thus, to sort on an INTEGER*2 field starting in position 37 of each

 unformatted record, the SORT= portion of the control statement would be

 SORT=FI,A,37,2

 Additional fields may be added as indicated in the preceding section.

 Because of the form in which FORTRAN programs write unformatted

 output, it is necessary to follow the input file or pseudodevice name

 with ",VS," which specifies the physical form of the records, and the

 maximum input record length. If the longest logical record in the file

 UNFORMAT is 300 bytes in length, then the INPUT= portion of the control

 statement would look like

 INPUT=UNFORMAT,VS,300

 ¹.TRUE. will follow .FALSE. in an ascending sequence.

 The SORT Utility Program 15

 MTS 5: System Services

 May 1983

 Assuming that the output records from the sort are to be read by a
 FORTRAN unformatted read statement and, therefore, must have the same
 form as the input to SORT, it is necessary to follow the output file or
 pseudodevice name with a comma and the characters "VS".

 Using the sort field and input file in the above examples and wanting

 to place the output in a file named OUT, the $RUN command for SORT is

 $RUN *SORT PAR=SORT=FI,A,37,2 INPUT=UNFORMAT,VS,300 OUTPUT=OUT,VS

 NOTATION ________

 The following notation encodes the prototypes occurring in this section:

 A uppercase letters denote parameters which must appear as printed

 a lowercase letters denote generic parameters which must be

 replaced by an appropriate substitute

 =, the equal sign and comma are used as stylistic delimiters in the

 prototypes; however, the equal sign and comma may be used

 interchangeably as delimiters

 ■ denotes a single blank or space

 ... denotes zero or more repetitions of the preceding letters,

 words, or parameters

 | denotes a choice of options, e.g., x|y means choose x or y

 {|} denotes a choice of required alternatives, e.g., {REC|MNR} means

 either REC or MNR is required

 [] denotes optional parameters, e.g., [structure] indicates that

 this parameter is optional

 ___ denotes a minimum abbreviation for a parameter, e.g., INPUT _

 indicates that I is the minimum abbreviation for input

 X’y’ denotes the hexadecimal value y

 16 The SORT Utility Program

 MTS 5: System Services

 May 1983

 THE CONTROL STATEMENT _____________________

 The information needed by the SORT program to process the user’s data
 is conveyed by a control statement. The control statement describes the
 mode of data processing, the collating sequence, if any, the structure
 of the source and sink data sets, the anticipated volume of the data,
 and the optional facilities to be utilized.

 The control statement is read via GUSER if it is not passed as a
 parameter, i.e., "$RUN *SORT PAR=control statement". If read, it may

 extend over any number of records and each record’s length may range

 from 1 to 255 bytes.

 Within any record of the control statement, consecutive keywords must

 be separated by at least one blank or space, e.g., "COPY■INPUT=...".

 The control statement may be broken for continuation between parame-

 ters, immediately following a delimiter, except that a DS parameter must

 be completely contained in one record.

 The control statement may be terminated by one of three methods: by

 an end-of-file sent via GUSER; by the END parameter; and by the end of

 the string of passed parameters.

 Numeric values in the control statement must not exceed 15 digits,

 including leading zeros.

 All parameters that are not defined in the control statement assume

 their default values.

 A prototype of the control statement follows:

 [COPY|[[SORT|MERGE][=[[type],[aspect],[location],[length],]... _ _ _

 [type][,[aspect][,[location][,[length]]]]]]]

 [[DS=delimiter[string]delimiter■]...DS=delimiter[string]delimiter] _ _

 [INPUT[=[[name],[structure],[record length],[block length],]... _

 [name][,[structure][,[record length][,[block length]]]]]]

 [OUTPUT[=[[name],[structure],[record length],[block length],]... _

 [name][,[structure][,[record length][,[block length]]]]]]

 [additional parameter]...

 [END] _

 The SORT Utility Program 17

 MTS 5: System Services

 May 1983

 The Mode’s Description ______________________

 The SORT program can operate in any of three modes: copying,
 sorting, or merging.

 COPY indicates that the data should be copied from the source data _
 set to the sink data set - being blocked or deblocked according to the
 specifications set forth in the source and sink data sets’ descriptions.

 SORT indicates that the data should be sorted. A collating sequence _
 must be defined, if only implicitly. Deblocking and blocking of the
 source and sink data sets conforms to the user’s specifications
 delineated in the descriptions of those data sets.

 MERGE indicates that the source data sets should be merged. A _
 collating sequence must be defined, perhaps implicitly. Deblocking and
 blocking of the source and sink data sets conforms to the user’s
 specifications delineated in the descriptions of those data sets.

 If no mode is specified by the user, SORT is assumed.

 The Collating Sequence’s Description ____________________________________

 The SORT and MERGE modes require the definition of a collating
 sequence. The sequence is delineated through the description of
 collating fields. The order in which the collating fields are described
 (coded in the control statement) determines their precedence. The
 initial field is of primary importance, the second is of secondary
 importance, etc. The collating fields may overlap and may extend beyond
 the ends of records that vary in length, but cannot extend beyond the
 greatest implicit or declared record length.

 The description of each collating field is formed from four parame-
 ters: the type of data contained in the field, the aspect of the
 field’s sequence, the location of the field in a data record, and the
 length of the data within the field.

 The relevant portion of the control statement’s prototype is

 [[SORT|MERGE][=[[type],[aspect],[location],[length],]... _ _

 [type][,[aspect][,[location][,[length]]]]]]

 For a single collating field, this may be simplified to

 [SORT|MERGE]=type,aspect,location,length

 18 The SORT Utility Program

 MTS 5: System Services

 May 1983

 The following substitutions are necessary: ___

 Replace "type" by the 1-character or 2-character code that describes ______________

 the structure of the data contained in the field. Permissible codes are

 summarized below and are described in Appendix A. The default data type

 is character, CH.

 TYPE | CODE | SIGN PRESENT | FIELD LENGTH (BYTES)

 ──────────────────────┼───────┼──────────────┼──────────────────────────
 | | |

 alignment | AL | no | 1 - 4095 _

 binary | BI | no | 1 - 256 _

 bit | BT | no | 1 - 255 (mask)

 call | CA | - | 1 - 4095

 character | CH | no | 1 - 256 _

 defined sequence | DS(i) | no | 1 - 256 _ ___

 fixed-point | FI | yes | 1 - 260 _

 floating-point | FL | yes | 2 - 16

 length | LE | - | - _

 packed decimal | PD | yes | 1 - 16 _

 sequence | SE | - | -

 signed decimal | SD | yes | 1 - 17 _

 zoned decimal | ZD | yes | 1 - 16 _

 Replace "i" by the single-character delimiter used with the DS ____________

 keyword parameter which specifies the collating sequence for the defined

 sequence collating field.

 Replace "aspect" by A or D denoting an ascending or descending ________________

 collating sequence, respectively. The ascending sequence, A, is assumed

 if the aspect is not specified.

 Replace "location" by the position in the record of the first byte, ___________________

 or character, of the collating field. The initial byte of a record is

 at location 1. If type V, VS, VB, or VBS records are processed,

 location 1 specifies the first byte of text in the record and not the

 record descriptor. The value of the location may range between 1 and

 4092 with the exception of type FI fields with lengths greater than 4.

 In this latter case, the value of the location must be less than or

 equal to 4088. The default location is 1.

 Replace "length" by the number of bytes of data in the collating ________________

 field. Restrictions on the length of a field are dependent on its type

 and are noted in the table summarizing the type codes. The default

 length, regardless of the field type, is 80 bytes.

 Examples of correct descriptions of the mode and collating sequence

 follow.

 The SORT Utility Program 19

 MTS 5: System Services

 May 1983

 COPY indicates that the data should be copied
 or C directly from the source data set to the
 sink data set

 SORT=CH,A,1,80 indicates an ascending character sort on
 or S the first 80 bytes of each record
 or end-of-file

 MERGE=CH,D,1,80 indicates a descending character merge on
 or M=,D the first 80 bytes of each record
 or M,=D

 SORT=SD,D,50,8,F,A,1,4,CH,A,10,1
 or S,S,D,50,8,F,,,4,,,10,1 indicates a sort on the following fields
 of each record: a descending signed deci-
 mal field in the 50th through the 57th
 bytes, an ascending fixed-point field in
 the 1st through the 4th bytes, and an
 ascending character field in the 10th byte

 SORT=AL,A,8,4,CH,A,8,4,CA,A,1
 or S=A,,8,4,,,8,4,CA indicates a sort on the following fields
 or S=A,,8,4,,,8, of each record: an ascending alignment
 4,CA field in the 8th through the 11th bytes, a
 character field in the 8th through the
 11th bytes, and a field defined by the
 user via exit SORTE5

 The Defined Sequences’ Descriptions ___________________________________

 Each different collating sequence for defined sequence collating
 fields must be specified in the control statement. These sequences are
 defined using the DS keyword.

 The relevant portion of the control statement’s prototype is

 [[DS=delimiter[string]delimiter■]...DS=delimiter[string]delimiter] _ _

 This may be simplified to

 [DS=delimiter string delimiter■]...

 The following substitutions are necessary: ___

 Replace "delimiter" by a single character (which may be a blank) ____________________

 which does not occur in "string" immediately preceding a blank. The

 delimiters for each DS keyword must be unique with respect to the

 delimiters used with any other DS keyword in the same control statement.

 The delimiter after "string" must be the same as the character before

 "string" and it must either be followed by a blank, be at the end of a

 record, or be at the end of the string of passed parameters.

 20 The SORT Utility Program

 MTS 5: System Services

 May 1983

 Replace "string" by a string of characters representing an ascending ________________

 collating sequence such that the first character in the string will

 precede the second character in the string, etc., in an ascending sort

 or merge. Any of the 256 bit combinations or characters may be used in

 the string. This includes the delimiter, provided that it is not

 immediately followed by a blank. If a character occurs in the string

 more than once, then all characters between the two occurrences of the

 repeated character will compare equal to the repeated character.

 The sequence definition for a particular collating field is identi-

 fied by placing the delimiter for the DS keyword in parentheses after

 the collating field type code DS in the collating sequence’s

 description.

 A DS keyword parameter may not be broken across records when the

 control statement is read via GUSER.

 Examples of correct mode, collating sequence, and defined sequence

 descriptions follow.

 S=DS(@),A,10,8,DS(@),A,20,8 DS=@0123456789ABCDEF@

 or S=D(@),,10,8,D(@),,20,8 D=@0123456789@

 indicates a sort on two fields having

 character representations of hexadecimal

 digits; that is, the ascending sequence is

 "0123456789ABCDEF" - it is not necessary

 to include "ABCDEF" in the sequence defin-

 ition since any characters not included

 follow the defined sequence in their nor-

 mal character collating relationship to

 each other

 S=D(:),,10,8,D(:),,20,8 D=:0123456789AaABbBCcCDdDEeEFfF:

 indicates the same sort as above except

 that the capital and lowercase representa-

 tions of the letters may be used inter-

 changeably so that capital and lowercase A

 precede capital and lowercase B, which

 precede capital and lowercase C, etc.

 The Data Sets’ Descriptions ___________________________

 Each source and sink data set to be used must be described in the

 control statement. Source data set descriptions should follow the INPUT

 keyword while sink data set descriptions should follow the OUTPUT

 keyword. Data sets are read in the order in which their descriptions

 appear unless the function is MERGE, in which case the data sets are

 processed simultaneously. Data sets are written in the order in which

 their descriptions appear, each being "filled" before the next is used.

 The SORT Utility Program 21

 MTS 5: System Services

 May 1983

 Though data sets are not positioned, rewound, emptied, or terminated
 prior to or after processing,¹ certain data sets, e.g., those residing
 in line files with only consecutive, integral line numbers, may be used
 both as the data’s source and sink when sorting. However, this _______
 duplicate assignment of data sets is not generally recommended because
 of decreased efficiency and the possibility of the data being damaged if
 the sort is not completed.

 The description of each data set is formed from four parameters: the
 data set’s name, the structure of its records, the maximum length of its
 records, and the maximum length of its physical records or blocks. The
 characteristics, i.e., structure, record length, and block length, of
 all sink data sets must be alike.

 The relevant portions of the control statement’s prototype are

 [INPUT[=[[name],[structure],[record length],[block length],]... _
 [name][,[structure][,[record length][,[block length]]]]]]
 [OUTPUT[=[[name],[structure],[record length],[block length],]... _
 [name][,[structure][,[record length][,[block length]]]]]]

 For single source and sink data sets, these may be simplified to

 INPUT=name,structure,record length,block length
 OUTPUT=name,structure,record length,block length

 The following substitutions are necessary: ___

 Replace "name" by the file or pseudodevice name of the data set. _______________

 Modifiers and line number ranges may be appended to the name. If the

 name of the source data set is omitted, data will be read from the data

 set assigned to SCARDS, e.g., "$RUN *SORT SCARDS=source". If the name

 of the sink data set is omitted, data will be written into the data set

 assigned to SPUNCH, e.g., "$RUN *SORT SPUNCH=sink".

 Replace "structure" by one of the record structure codes appearing in ___________________

 the table below.² If the structure’s code is omitted, the "U" structure
 is assumed for source data sets and for sink data sets unless a

 structure code is specified for another sink data set, in which case the

 specified structure is assumed. Appendix B and OS/VS2 MVS Data _________________

 Management Services Guide, IBM publication GC26-3875, contain descrip- ___________________________

 tions of the structures.

 ¹See, however, the description of the TPS parameter in the section
 entitled "Additional Parameters."

 ²See also the section entitled "Processing Magnetic Tapes."

 22 The SORT Utility Program

 MTS 5: System Services

 May 1983

 CODE | RECORD STRUCTURE
 ───────┼─────────────────────────────────────
 U | undefined length
 F | fixed length
 V | variable length
 VS | variable length; spanned
 FB | fixed length; blocked
 VB | variable length; blocked
 VBS | variable length; blocked; spanned
 FBS | fixed length; blocked; standard

 Replace "record length" by the byte length of the longest record _______________________

 occurring in the data set. The record length must be greater than 0 and

 less than 32760. If the record length is not specified, a default

 length is assumed as described below.

 Replace "block length" by the byte length of the longest block ______________________

 occurring in the data set. The block length must be greater than 0 and

 less than 32768; for type FB blocks, it must be less than 32764. The

 block length defaults as described below.

 Computation of default record and block lengths involves the maximum

 data set block length (MDSBL). This is defined for each input data set

 as the maximum input length for the data set, which is returned by the

 subroutine GDINFO.¹ The maximum input length returned by GDINFO is
 sufficiently large enough for all blocks which may be read from the data

 set. The MDSBL for each output data set is defined as the smallest of

 all the maximum output lengths which are returned by the subroutine

 GDINFO for the output data sets. This is the length of the longest

 block which may be written into all the output data sets without

 truncation. If GDINFO cannot return a length, such as for data sets

 which are not specified or do not exist at the time of the invocation of

 SORT, then the maximum length is assumed to be 80. The MDSBL is always

 based on the first element of an explicit or implicit concatenation; and

 hence may not produce the desired default in the case of concatenated

 data sets.

 The default record and block lengths are indicated in the following

 table.

 ¹See the description of the GDINFO subroutine in MTS Volume 3, System ______

 Subroutine Descriptions. _______________________

 The SORT Utility Program 23

 MTS 5: System Services

 May 1983

 Record | U | FB | | | |
 Structure | F | FBS | V | VB | VS | VBS
 ──────────────┼─────────────────────┼─────────────────────────────────── ┌ ┘ ┘ ┘ ┘
 | Record | |
 | Length | max(MDSBL, 80) | max(MDSBL-8, 80)
 In |────────┼─────────────────────┼─────────────────────────────────── ┌ ┌ ┌ ┌ ┌
 | Block | | MDSBL-1+RL-rem | RL | max(RL+8, | min(RL+8, |
 | Length | RL | ((MDSBL-1)/RL) | +8 | MDSBL) | MDSBL) | MDSBL
 ─────┼────────┼─── ┘ ┘ ┘ ┘ ┘
 | Record |
 | Length | largest input record length
 Out* |────────┼─── ┌ ┌ ┌ ┌ ┌ ┌
 | Block | | max(RL, MDSBL- | RL | max(RL+8, | min(RL+8, |
 | Length | RL | rem(MDSBL/RL)) | +8 | MDSBL) | MDSBL) | MDSBL

 MDSBL = maximum input length returned by GDINFO for input; smallest
 maximum output length returned by GDINFO for output; (80 assumed
 for undefined maximum lengths)

 RL = source data set record length for input; sink data set record
 length for output

 MDSBL-1+RL-rem((MDSBL-1)/RL) = the smallest integral multiple of the
 data set record length which is greater than or equal to the MDSBL

 MDSBL-rem(MDSBL/RL) = the largest integral multiple of the data set
 record length which is less than or equal to the MDSBL

 * If the record or block length is specified for any sink data set,
 then that length is used as the respective default record or block
 length for all sink data sets.

 The default input record length may be greater than the length of the
 longest actual record in the data set. In this case, specifying a
 record length equal to the length of the longest record will produce
 greater efficiency. The default block lengths are defined so as to
 provide maximum blocking for the record structure, record length, and
 data set being used.

 The user should be aware of the implicit "trimming" of blanks in MTS.

 The SORT program does not set the ¬TRIM modifier when reading or writing

 data sets.

 Examples of correct data set descriptions follow.

 INPUT=FILE1,U,80,80 indicates that the data should be read

 or I=FILE1,,80 from a file named FILE1 - the records are

 of structure U and have a maximum length

 of 80 bytes

 24 The SORT Utility Program

 MTS 5: System Services

 May 1983 Page Revised September 1985

 OUTPUT=OUT,F,255,255 indicates that the data should be written
 or O,OUT,F,255 into a file named OUT - the records are of
 structure F and all have a length of 255
 bytes

 INPUT=X,U,80,80,Y,U,80,80 indicates that the data should be read
 or I=X,,80,,Y,,80 from files X and Y - both files’ records
 are of structure U with a maximum length
 of 80 bytes

 INPUT=FILE1(1,100)@¬TRIM,U,80,80,FILE2,FB,40,400
 or I,FILE1(1,100)@¬TRIM,,80,,FILE2,FB,40,400
 indicates that the data should be read
 from two files - FILE1’s records are of
 structure U and have a maximum length of
 80 bytes; FILE2’s records are of structure
 FB and have a record length of 40 bytes
 and a block length of 400 bytes

 OUTPUT=*Y*,VB,800,32767 INPUT=*X*,U,800,800
 or O=*Y*,VB,,32767 I=*X*,,800
 or I=*X*,,800 indicates that the data should be read
 O=*Y*,VB,,32767 from a pseudodevice named *X* and written
 onto a pseudodevice named *Y* - the source
 records are of structure U with a maximum
 length of 800 bytes - these records are to
 be restructured to type VB output records
 with a maximum record length of 800 bytes
 and a maximum block length of 32,767 bytes

 The END Parameter _________________

 The END parameter may be used to terminate the control statement.
 The relevant portion of the control statement’s prototype is

 [END] _

 Users of the SORT subroutine must use this parameter to indicate the end
 of the control statement.

 Additional Parameters _____________________

 Any or all of the following parameters may appear in the control
 statement.

 The relevant portion of the control statement’s prototype is

 The SORT Utility Program 25

 MTS 5: System Services

 Page Revised September 1985 May 1983

 [additional parameter]...

 CHK (exit check facility) __

 The check facility may be used to assist one in testing the
 subroutines used in exits SORTE1 through SORTE5. It should be used
 only when processing a limited quantity of data.

 When the check facility is active, every call from an enabled exit
 to a user’s subroutine is noted on SERCOM as is the subroutine’s
 return to SORT. Relevant parameters are checked for accuracy and
 passed to SERCOM for display.

 DEC (delete comments) __

 The DEC parameter may be included to suppress the printing of the
 statistics and diagnostics that are normally generated by the SORT
 program. Diagnostics resulting from errors detected while proces-
 sing the control statement will not be suppressed unless the DEC
 parameter is processed before the error is detected.

 DEL=x[,x]... (delete output records)

 The DEL parameter may be used with either the SORT or MERGE modes
 to specify that certain classes of output records are to be
 discarded before writing the sink data set. This deletion is based
 on whether or not two consecutive output records are duplicates,
 that is, whether or not they are equivalent according to the
 description of the collating sequence. For the purpose of the DEL
 parameter, two records are always considered to be duplicates
 whenever it is necessary to use the SE collating type to differen-
 tiate between them.

 Replace "x" by one of the parameter values in the following table.

 VALUE | RECORDS DELETED FROM EACH GROUP OF DUPLICATES

 ────────┼───
 DUP | all _

 FIRST | the first _

 LAST | the last __

 LEAD | all except the last _

 SINGLE | none; all nonduplicate records are deleted _

 TRAIL | all except the first _

 Multiple specification of DEL parameter values produces cumulative

 effects; for example, DEL=FIRST,TRAIL is the same as DEL=DUP.

| HELP [topic] _

|

| The HELP parameter provides on-line assistance for the use of the

| program. If no parameter is specified, general assistance is

| provided; otherwise, assistance on a specific "topic" is provided.

| The remainder of the line is taken as the topic.

 26 The SORT Utility Program

 MTS 5: System Services

 May 1983

 LIO (list data set characteristics) _

 The LIO parameter may be included to produce a listing on SERCOM of
 the record structure, record length, block length, and name, if
 known, for each data set.

 {REC|MNR}=x (number of records) _ __

 The efficient allocation of resources during a sort necessitates ____
 that an estimate of the number of data records be included in the
 control statement. Though the estimate may be omitted, its
 inclusion is strongly recommended.

 Replace "x" by an estimate of the maximum number of records

 contained in the source data set(s). The estimate of the number of

 records must be greater than 0 and less than 2147483648. If no

 estimate is included, a quantity of 5000 records is assumed.

 Note that the inclusion of this parameter does not limit the number ___

 of records read.

 RES=x (restart)

 The restart facility may be used to restart a sort that terminated ____

 prematurely due to an error detected while writing a data set or

 that resulted in faulty output due to the characteristics of the

 sink data set. It may be used if the following criteria are met:

 i. the error occurred during a terminal session

 ii. the terminal session is still active

 iii. a warning or error message was issued

 iv. the sort indicated that one or more intermediate files

 were used to process the data (see the section entitled

 "Statistics and Diagnostics")

 v. no sort creating or using intermediate files has been

 invoked during the interim

 vi. the TPS parameter was not used

 vii. the source of the error has been corrected, e.g.,

 replacing a faulty tape, creating a larger output data

 set, or respecifying the blocking or length parameters to

 the MTS tape routines

 The control statement for the restarted sort should be identical to

 that of the initial sort save for the addition of RES=x, "x" being

 the number of intermediate files that the initial sort used.

 SIG (sign off on error) __

 The SIG parameter may be used to produce a signoff if SORT detects

 an error. An error detected while processing the control statement

 will produce a signoff only if the SIG parameter is processed

 before the error is detected.

 The SORT Utility Program 27

 MTS 5: System Services

 May 1983

 TPS[={x|name,name[,name]...}] (tape-merge sort facility) _

 Disk files are normally used for intermediate data sets. However,
 if there is insufficient disk space or virtual memory space for the
 volume of data to be sorted, the TPS parameter may be used to
 designate that the intermediate data sets are to be tapes. This
 facility should be used only in the case of the above conditions
 since the merge portion of the sort is considerably less efficient
 than in the case of intermediate disk files.

 Replace "x" with the number of tapes to be used for the merge phase

 of the sort. If "x" is omitted, the minimum value, 3, is assumed.

 A value of "x" greater than 3 increases the efficiency of the

 merge. For x=4, the theoretical decrease in merge time over x=3 is

 approximately 33%. For x=5, the theoretical reduction over x=4 is

 approximately 15%. For larger values of "x", the percentage

 decrease for x+1 over x is only a little over half the reduction

 for x over x-1. The merge order is x-1 and the total number of

 tape drives required for the sort is i+o-1+x, where "i" is the

 number of source data sets which are tapes and "o" is the number of

 sink data sets which are tapes. The x-1 intermediate tapes are

 mounted and dismounted automatically.

 As an alternative, replace "name" with the pseudodevice name of a

 tape which may be used for an intermediate data set. With this

 option, at least two tapes must be specified. The merge order is

 the same as the number of specified tapes; i.e., specifying three

 tapes is equivalent to specifying x=4. The enablement of blocking,

 the block size, the expiration date, and the mode for each of the

 tapes specified in this manner may be changed and will not be

 restored. If "name" is omitted, an intermediate tape will be

 mounted and dismounted automatically.

 The first sink data set must be a tape, and it is assumed that this

 tape may be used for intermediate results. Consequently, the ___

 sorted output will be written from the beginning of the first data ___

 set. Generally, the first sink data set cannot also be a source ___

 data set.

 The maximum volume of data which may be sorted at one time using a

 tape-merge is approximately the capacity of one maximum density

 tape. If more than this amount is to be sorted, each tape should

 be sorted separately and the sorted output should then be merged.

 If the TPS parameter is used, the MERGE and COPY keywords should

 not appear in the control statement. The data type SE and the RES

 parameter cannot be used. The parameters REC, MNR, and PGS are

 ignored.

 28 The SORT Utility Program

 MTS 5: System Services

 May 1983

 Restricted Parameters _____________________

 The parameters described in this section are additional and have
 limited application. They should not be included in the control
 statement without consulting a member of the Computing Center staff.

 ARL=x (average record length)

 If the average record length is significantly less than the maximum
 record length, this parameter may reduce the number of intermediate
 files required by a sort. If "x" is omitted, a length of one-half ____

 the maximum record length will be assumed. It is suggested that

 the use of this parameter be considered only if "x" is less than

 one-half the maximum record length, as its use may actually

 increase the number of intermediate files.

 DIO (I/O error trap)

 This parameter disables the I/O error trap normally set by the SORT

 program.

 DPI (program interrupt trap)

 This parameter disables the program interrupt trap normally set by

 the SORT program.

 MBY=x (number of bytes)

 This parameter limits the amount of storage that may be used for an

 internal sort. It is suggested that "x" be greater than 10⁴ bytes
 and less than 10⁶ bytes.

 PGS=x (pages)

 This parameter limits the anticipated maximum size and the number

 of pages requested whenever an intermediate file is created by the

 SORT program. It is suggested that "x" be greater than 25 pages

 and less than 500 pages.

 OPTIONAL EXITS ______________

 The SORT program can pass control to users’ subroutines at any of ten

 points or exits. These exits permit the user to mold the SORT program

 to his requirements: his subroutines could generate, modify, delete, or

 compare records, or could recover from I/O errors or program interrupts.

 An exit may exist in either of two states, enabled or disabled.

 Whenever an exit is enabled, the SORT program relinquishes control to

 the appropriate subroutine during the data’s processing. Whenever an

 The SORT Utility Program 29

 MTS 5: System Services

 May 1983

 exit is disabled, the SORT program retains control during the data’s
 processing. All exits are assumed disabled unless explicitly enabled.

 There are two methods to enable an exit and one method to dynamically
 disable an exit. An exit is enabled if the exit’s name, e.g., SORTE2 or
 SORTE4, is encountered as an external symbol during the loading of the
 SORT program: thus the user’s subroutine should bear the name of the
 exit it is to enable and should be loaded along with the SORT program.
 An exit is enabled or disabled if the entrance SORTEA is called and
 given appropriate parameters.

 All subroutine calls are made via a standard OS linkage, type (I) S.
 Upon entry, general register 1 will point to a parameter list, a vector
 of address constants, register 13 will point to a "save area", register

 14 will contain the return address, and register 15 will contain the

 subroutine’s entry point. MTS Volume 3, System Subroutine Descriptions, ______________________________

 contains an explanation of the type (I) S linkage.

 All subroutines should return control to the SORT program via the

 standard OS (I) S return. Upon return, the contents of general

 registers 2 through 13 must be identical to their contents when the

 subroutine was called. The significance of a subroutine’s return code,

 the contents of general register 15 when the subroutine returns to the

 SORT program, is discussed in the descriptions of the exits. FORTRAN

 subroutines produce a return code of "n" by using a "RETURN i"

 statement, where "i" has the value n/4.

 Exit subroutines may change the I/O error trap exit (SETIOERR or

 CUINFO subroutines), the program interrupt trap exit (PGNTTRP, SPIE, or

 CUINFO subroutines), or the program mask (SPIE subroutine or SPM machine

 instruction). Before returning to SORT, if any of these have been

 changed, they must be restored to the condition at the time the exit

 subroutine was called.¹ Normally the SORT program processes all I/O
 errors and program interrupts; however, the exits SORTE6, SORTE7, and

 SORTE8 permit the user to acquire control in such circumstances.

 Exit SORTE0 ___________

 If this exit is enabled, it is taken immediately after the SORT

 program gains control from the operating system or its calling program.

 The user’s subroutine is called before the control statement is

 decomposed, hence prior to the processing of the data. The subroutine

 could enable other exits, initialize parameters, or initialize data

 sets.

 ¹See the descriptions of the GUINFO and SPIE subroutines in MTS Volume
 3, System Subroutine Descriptions, and the descriptions of the BALR and ______________________________

 BAL machine instructions.

 30 The SORT Utility Program

 MTS 5: System Services

 May 1983

 The sole entry in the parameter list points to the text passed to the
 SORT program by its calling program or the operating system. If the
 SORT program is invoked by the RUN command, the text is preceded by a
 halfword containing the length of the text. If the SORT program is
 called as a subroutine, the parameter points directly to the text.

 The subroutine’s return code is significant. A return code of 0
 indicates that SORT should initiate processing of the data while a
 return code greater than 3 indicates that SORT should terminate
 processing. In the second case, a return code of 4 is passed to the
 program that called SORT or to the operating system.

 The following FORTRAN subroutine exemplifies the use of the exit
 SORTE0. It rewinds logical I/O units 5 and 7.

 SUBROUTINE SORTE0
 REWIND 5
 REWIND 7
 RETURN
 END

 Exit SORTE1 ___________

 If this exit is enabled, it is taken to acquire a block (or unblocked
 record) for processing. Calls to the user’s subroutine replace the
 calls that would normally be made to the READ subroutine.

 A block may be moved into the region addressed by the first word of __________
 the parameter list, and the length of the block should be placed in the
 halfword addressed by the second word of the parameter list. The fifth
 word of the parameter list points to either the FDUB or the eight-
 character, left-justified, logical unit name of the current source data
 set specified in the control statement. Both the region and length are
 aligned on halfword boundaries. A block whose returned length is zero
 or less is discarded, i.e., ignored: no error results and SORTE1 is
 called again for another block.

 If this exit is enabled, a dummy data set, e.g., named *DUMMY*, must
 be specified for each source data set defined in the control statement.
 If the data sets are to be merged, the specified data set names should
 be either the actual names of the data sets or other nondefault names so
 that the FDUB¹ pointed to by the fifth word of the parameter list may be
 utilized to determine the data set from which a block is to be acquired.
 The data set’s parameters should describe the records to be passed to
 the SORT program by the user’s subroutine. The deblocking facilities
 may be used to decompose blocks passed by the subroutine.

 ¹See the descriptions of the READ and GDINFO subroutines in MTS Volume
 3, System Subroutine Descriptions. ______________________________

 The SORT Utility Program 31

 MTS 5: System Services

 May 1983

 The return codes passed from the user’s subroutine to the SORT
 program are pertinent. A code of 0 indicates that a block was returned
 and that processing should continue. A code of 4 indicates that no
 block was returned, that this data set has been exhausted, and that
 processing should continue with the next source data set to be defined
 in the control statement. If another data set does not exist,
 processing continues to its logical conclusion. A return code greater
 than 7 indicates that processing should be discontinued. In this case,
 SORT returns a code of 4 to its calling program or produces a signoff if
 the control statement contains the SIG parameter.

 The subroutine appearing on the next page and the eighth example in
 the section entitled "Sort Examples" exemplify the use of exit SORTE1.

 The following FORTRAN subroutine and the one which appears in the

 section describing the exit SORTE4 illustrate one method to maintain the

 continuity of consecutive data records that are to be processed as a

 group.

 For example, assume that information pertaining to a single family

 has been coded on two 80-byte cards. The first record of each pair

 contains information specific to the family, e.g., number of children,

 while the second contains information about their dwelling. A list of

 the data, ordered by number of children, is desired; however, the

 original pairing must be retained.

 The following FORTRAN subroutine combines, blocks, two 80-byte

 records to form a single record to be processed by the SORT program.

 The data set’s description could be "I=*DUMMY*,F,160,160".

 A companion subroutine, SORTE4, should be used in conjunction with

 this subroutine. It will separate the juxtaposed records.

 SUBROUTINE SORTE1(REGION,LENGTH,*,*)

 LOGICAL*1 REGION(160)

 INTEGER*2 LENGTH

 READ (5,END=4) (REGION(I),I=1,80)

 READ (5,END=8) (REGION(I),I=81,160)

 LENGTH=160

 RETURN

 4 RETURN 1

 8 RETURN 2

 END

 32 The SORT Utility Program

 MTS 5: System Services

 May 1983

 Exit SORTE2 ___________

 If this exit is enabled, it is taken immediately after a record has
 been acquired for processing, following deblocking, if any. The user’s
 subroutine may delete or modify the record before it is subsequently
 processed.

 The first word of the parameter list will point to the record; the
 second, to its halfword length plus 4. The record and its length are
 aligned on halfword boundaries.

 If a record’s length is altered by the subroutine, the new length
 plus 4, must replace that passed to the subroutine. If the new record
 length is greater than the original length, a record length at least as
 large must have been specified for at least one of the input or output
 data sets. For structure F, FB, and FBS records, this may mean that a
 dummy input data set must be specified, e.g., *DUMMY*,U,new-record-
 length. If a length of zero is returned, the record is discarded: this
 implies that the length must be set to 0 and not 4.

 The return codes passed from the user’s subroutine to the SORT
 program are significant. A code of 0 indicates that a record was
 returned and that processing should continue. A code of 4 indicates
 that no record was returned and that processing should continue with the
 next source data set to be defined in the control statement. If another
 data set does not exist, processing continues to its logical conclusion.
 A return code greater than 7 indicates that processing should terminate.
 In this case, SORT returns a code of 4 to its calling program or
 produces a signoff if the control statement contains the SIG parameter.

 The following FORTRAN subroutine exemplifies the use of the exit
 SORTE2. It deletes records having blanks in columns 3 and 4, terminates
 the reading of a data set if columns 3 and 4 contain ’09’, and returns
 an error code of 8 if columns 5 and 6 contain ’09’.

 SUBROUTINE SORTE2(REGION,LENGTH,*,*)
 INTEGER*2 REGION(40),BLANK/’ ’/,NINE/’09’/,LENGTH
 IF (REGION(2).EQ.BLANK) GO TO 100
 IF (REGION(2).EQ.NINE) GO TO 200
 IF (REGION(3).EQ.NINE) GO TO 300
 RETURN
 100 PRINT 900, (REGION(I), I=1,40)
 900 FORMAT(’ RECORD DISCARDED:’,40A2)
 LENGTH = 0
 RETURN
 200 RETURN 1
 300 RETURN 2
 END

 The following example and the corresponding one appearing in the
 section describing SORTE3 illustrate one method of redefining the normal

 The SORT Utility Program 33

 MTS 5: System Services

 May 1983

 character collating sequence. A translation scheme similar to this is
 usually more efficient than using a defined sequence (DS) collating
 field or performing the collation through exit SORTE5.

 Assume that the following collating sequence were desired:

 ■¢.<(+|&!$*);¬-/,%_>?:#@’="0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ

 Note that this sequence is identical to the existing character

 sequence except that the digits precede the letters. Further assume

 that only these graphics will appear in the data, e.g., that X’B0’,

 X’B1’,...,X’B9’ will not appear.

 The following subroutine translates all the digits appearing in the

 data, X’F0’,X’F1’,...,X’F9’, into the characters X’B0’,X’B1’,...X’B9’,

 respectively. An indication of how to write the equivalent subroutine

 in FORTRAN is shown in the examples of the section describing SORTE3.

 When used in conjunction with SORTE3’s example and a character collating

 sequence, e.g., "C,A,5,17", it will produce the desired sequence.

 SORTE2 CSECT

 USING *,R15

 LM R0,R1,0(R1) **LOAD PARAMETERS

 LH R1,0(0,R1) LOAD RECORD LENGTH

 S R1,=F’5’ DECREMENT RECORD LENGTH

 BM RTRN LENGTH < 0

 STC R1,*+7 SET LENGTH IN "TR"

 LR R1,R0

 TR 0(0,R1),TTAB TRANSLATE

 RTRN SR R15,R15 RETURN CODE

 BR R14 RETURN

 TTAB DC XL(4*16)’00’

 DC X’404142434445464748494A4B4C4D4E4F’

 DC X’505152535455565758595A5B5C5D5E5F’

 DC X’606162636465666768696A6B6C6D6E6F’

 DC X’707172737475767778797A7B7C7D7E7F’

 DC XL(4*16)’00’

 DC X’C0C1C2C3C4C5C6C7C8C9CACBCCCDCECF’

 DC X’D0D1D2D3D4D5D6D7D8D9DADBDCDDDEDF’

 DC X’E0D1E2E3E4E5E6E7E8E9EAEBECEDEEEF’

 DC X’B0B1B2B3B4B5B6B7B8B9FAFBFCFDFEFF’

 **EQUIVALENCES

 R0 EQU 0

 R1 EQU 1

 R14 EQU 14

 R15 EQU 15

 END

 34 The SORT Utility Program

 MTS 5: System Services

 May 1983

 Exit SORTE3 ___________

 If this exit is enabled, it is taken after a record has been
 processed and immediately prior to blocking, if any. The user’s
 subroutine may delete or modify the record before it is subsequently
 written.

 The first word of the parameter list will point to the record; the
 second, to its halfword length plus 4. The record and its length are
 aligned on halfword boundaries.

 If a record’s length is altered by the subroutine, the new length,
 plus 4, must replace that passed to the subroutine. If the new record
 length is greater than the original length, a record length at least as
 large must have been specified for at least one of the input or output
 data sets. For structure F, FB, and FBS records, this may mean that a
 dummy input data set must be specified, e.g., *DUMMY*,U,new-record-
 length. If a length of zero is returned, the record is discarded: this
 implies that the length must be set to 0 and not 4.

 A return code of 0 indicates that processing should continue. A
 return code of 4 indicates that processing should continue, that the
 current sink data set should be closed, and that the next data set to be
 defined in the control statement, if any, should be opened and filled.
 If another data set is not defined in the control statement, processing
 terminates with an error comment. A return code greater than 7
 indicates that an error occurred and that processing should terminate
 immediately. In this case, a return code of 4 is passed to SORT’s
 calling program or to the operating system unless the control statement
 contains the SIG parameter, in which case a signoff is produced.

 The following FORTRAN subroutine deletes the second and subsequent
 occurrences of identical records.

 SUBROUTINE SORTE3(R1,L1)
 INTEGER*2 R1(128),R2(128),L1,L2/0/
 LX = L1 - 4
 IF (L1.NE.L2) GO TO 2
 I = ICLC(LX,R1,0,R2,0)
 IF (I.NE.0) GO TO 4
 L1 = 0
 RETURN
 2 L2 = L1
 4 CALL IMVC(LX,R2,0,R1,0)
 RETURN
 END

 The following subroutine is a companion to that discussed in the
 section describing the exit SORTE2. It translates X’B0’,X’B1’,...,X’B9’
 to the digits X’F0’,X’F1’,...,X’F9’.

 The SORT Utility Program 35

 MTS 5: System Services

 May 1983

 SORTE3 CSECT
 USING *,R15
 LM R0,R1,0(R1) **LOAD PARAMETERS
 LH R1,0(0,R1) LOAD RECORD LENGTH
 S R1,=F’5’ DECREMENT RECORD LENGTH
 BM RTRN LENGTH < 0
 STC R1,*+7 SET LENGTH IN "TR"

 LR R1,R0

 TR 0(0,R1),TTAB TRANSLATE

 RTRN SR R15,R15 RETURN CODE

 BR R14 RETURN

 TTAB DC XL(4*16)’00’

 DC X’404142434445464748494A4B4C4D4E4F’

 DC X’505152535455565758595A5B5C5D5E5F’

 DC X’606162636465666768696A6B6C6D6E6F’

 DC X’707172737475767778797A7B7C7D7E7F’

 DC XL(3*16)’00’

 DC X’F0F1F2F3F4F5F6F7F8F9BABBBCBDBEBF’

 DC X’C0C1C2C3C4C5C6C7C8C9CACBCCCDCECF’

 DC X’D0D1D2D3D4D5D6D7D8D9DADBDCDDDEDF’

 DC X’E0D1E2E3E4E5E6E7E8E9EAEBECEDEEEF’

 DC X’F0F1F2F3F4F5F6F7F8F9FAFBFCFDFEFF’

 **EQUIVALENCES

 R0 EQU 0

 R1 EQU 1

 R14 EQU 14

 R15 EQU 15

 END

 The following program is the equivalent FORTRAN subroutine.

 SUBROUTINE SORTE3(/REGION/,LENGTH)

 INTEGER*2 LENGTH

 REAL TRANS(3)/ZB0B1B2B3,ZB4B5B6B7,ZB8B90000/

 CALL TRNC(LENGTH - 4,REGION,TRANS,’0123456789’,10)

 RETURN

 END

 Exit SORTE4 ___________

 If this exit is enabled, it is taken to dispose of a processed block

 (or unblocked record). Calls to the user’s subroutine replace the calls

 that would normally be made to the WRITE subroutine.

 The first word of the parameter list will contain the address of the

 current output block, and the second word will contain the address of

 the halfword length of the block. The fifth word of the parameter list

 points to either the FDUB or the eight-character, left-justified,

 logical unit name of the current sink data set specified in the control

 36 The SORT Utility Program

 MTS 5: System Services

 May 1983

 statement. Both the block and its length are aligned on halfword
 boundaries.

 If this exit is enabled, a dummy data set, e.g., named *DUMMY*, must
 be specified for each sink data set defined in the control statement.
 The data set’s parameters should describe the records to be passed to
 the user’s subroutine. The blocking facilities may be used.

 The subroutine’s return code is immaterial.

 The following FORTRAN subroutine is a companion to that discussed in
 the section describing the exit SORTE1. It decomposes a 160-byte record
 into two 80-byte records.

 The data set’s description could be "O=*DUMMY*,F,160,160".

 SUBROUTINE SORTE4(REGION)

 LOGICAL*1 REGION(160)

 WRITE (7) (REGION(I),I=1,80)

 WRITE (7) (REGION(I),I=81,160)

 RETURN

 END

 Exit SORTE5 ___________

 If this exit is enabled, it is taken to compare two records. Calls

 to the user’s subroutine replace the comparisons normally made by the

 SORT program. The user’s subroutine is expected to return the result of

 the comparison to SORT.

 The user’s subroutine is entered whenever the CALL option is

 encountered in the description of the collating sequence. Were the mode

 definition "S=CA,A,1,4", the user’s subroutine would be entered every

 time two records were to be compared. Were the mode definition

 "S=S,D,12,4,CA,D,1,2,F,A,59,4,CA,A,4,6", the user’s subroutine would be

 entered once, for every two records being compared, if the first field,

 "S,D,12,4", failed to order the records and once if both the first CALL

 and subsequent "F,A,59,4" fields failed to order the records. In this

 case, the subroutine may be called from zero to two times during the

 comparison of any two records.

 The parameter list passed to the user’s subroutine differs from that

 of the preceding exits. The first word of the parameter list points to

 a two-word array with the first word containing the "location" and the

 second word containing the "length" coded in the collating field’s

 description. The second and third words of the list point to two

 halfword-aligned regions containing the records for comparison. The

 first halfword of each region contains a value of 4 plus the length of

 the text in that region. The text begins at an address 4 bytes higher

 than that of the region.

 The SORT Utility Program 37

 MTS 5: System Services

 May 1983

 The subroutine’s return code indicates the result of the records’
 comparison. The interpretation of the code depends on the aspect
 specified in the definition of the CALL collating field.

 If an ascending collating sequence, A, is specified, the return codes
 have the following meaning. A return code of 8 indicates that the
 record appearing in the first region, i.e., the region addressed by the
 second parameter, should precede the record appearing in the second
 region. A return code of 4 indicates that either record may precede the
 other. A return code of 0 indicates that the second region’s record
 should precede the first region’s record.

 If a descending sequence, D, is specified, the return codes have the
 following meaning: a code of 0 indicates that the first region’s record
 should precede the second region’s record, a code of 4 indicates that
 either record may precede the other, and a code of 8 indicates that the
 second region’s record should precede the first region’s record.

 The following subroutine compares the lengths of the two records
 passed as parameters. The record with the longer length is defined to
 be the predecessor if an ascending collating sequence is specified,
 e.g., "CA,A".

 SORTE5 CSECT

 L R15,8(0,R1) **LOAD PARAMETERS

 L R1,4(0,R1)

 CLC 0(2,R15),0(R1) COMPARE RECORD LENGTHS

 LA R15,8 RETURN CODE = 8

 BHR R14

 LA R15,4 RETURN CODE = 4

 BER R14

 SR R15,R15 RETURN CODE = 0

 BR R14

 **EQUIVALENCES

 R1 EQU 1

 R14 EQU 14

 R15 EQU 15

 END

 The following FORTRAN program is functionally the same as the above

 subroutine.

 SUBROUTINE SORTE5(LOC,REC1,REC2,*,*)

 INTEGER*2 REC1,REC2

 IF (REC1 - REC2) 10,20,30

 10 RETURN

 20 RETURN 1

 30 RETURN 2

 END

 38 The SORT Utility Program

 MTS 5: System Services

 May 1983

 In ordering the records according to the character collating se-
 quence, the following FORTRAN subroutine ignores the first character in
 the collating field if that character is an asterisk.

 SUBROUTINE SORTE5(FIELD,REC1,REC2,*,*)
 INTEGER FIELD(2),SW
 LOGICAL*1 REC1(1),REC2(1),EQUC*4
 LOC=FIELD(1)+4
 SW=0
 IF (EQUC(REC1(LOC),’*’)) SW=1
 IF (EQUC(REC2(LOC),’*’)) SW=SW-1
 SW=1-(LCOMC(FIELD(2)-IABS(SW), REC1(LOC+(1+SW)/2),
 C REC2(LOC+(1-SW)/2)))
 RETURN SW
 END

 Exit SORTE6 ___________

 If this exit is enabled, it is taken whenever an error is detected
 while acquiring a record for processing, i.e., through a call to the
 READ subroutine. Normally the SORT program terminates in such circum-
 stances; however, if this exit is enabled, the user’s subroutine may
 attempt to rectify the error and resume processing.

 The parameter list is identical to that passed to READ: the first
 word of the list points to a region to receive the next record, the
 second word points to a halfword to receive the next record’s length,
 the third word points to a word containing modifiers, the fourth word is
 irrelevant, and the last word of the parameter list points to either the
 FDUB or the eight-character, left-justified, logical unit name of the
 current source data set.

 The subroutine’s return codes are pertinent. A return code of 0
 indicates that processing should continue with the current source data
 set. A return code of 4 indicates that processing of the current source
 data set should terminate and resume with the next source data set to be
 defined in the control statement, if any. In either event, any record
 which was actually acquired when the error occurred will be ignored. A
 return code greater than 7 indicates that processing should terminate
 because of the error. In this case, a return code of 4 is passed to
 SORT’s calling program or to the operating system unless the control
 statement contains the SIG parameter, in which case a signoff is
 produced.

 The SORT Utility Program 39

 MTS 5: System Services

 May 1983

 Exit SORTE7 ___________

 If this exit is enabled, it is taken whenever an error is encountered
 while disposing of a processed record, i.e., through calls to the WRITE
 subroutine. Normally the SORT program terminates in such circumstances;
 however, if this exit is enabled, the user’s subroutine may attempt to
 rectify the error and resume processing.

 The parameter list is identical to that passed to WRITE: the first
 word of the list points to a record to be written, the second word
 points to a halfword containing the record’s length, the third word
 points to a word containing modifiers, the fourth word is irrelevant,
 and the last word of the parameter list points to either the FDUB or the
 eight-character, left-justified, logical unit name of the current sink
 data set.

 The subroutine’s return codes are relevant. A return code of 0
 indicates that processing should continue with the current sink data
 set. A return code of 4 indicates that processing of the current sink
 data set should terminate and resume with the next sink data set to be
 defined in the control statement, if any. In either event, the record
 which was being disposed of when the error occurred will be reprocessed.
 A return code greater than 7 indicates that processing should terminate
 because of the error. In this case, a return code of 4 is passed to
 SORT’s calling program or to the operating system unless the control
 statement contains the SIG parameter, in which case a signoff is
 produced.

 Exit SORTE8 ___________

 If this exit is enabled, it is taken whenever a program interrupt
 occurs due to a data exception within SORT. The data exception may be
 induced by an incorrect digit or sign in a packed decimal, signed
 decimal, or zoned decimal collating field. Normally the SORT program
 terminates in such circumstances; however, if this exit is enabled, the
 user’s subroutine may attempt to rectify the error and resume
 processing.

 The parameter list contains the addresses of two regions containing
 the records that were being compared when the exception occurred. The
 first halfword of each region contains a value of 4 plus the length of
 the text in that region. The text begins at an address 4 bytes higher
 than that of the region. The regions are aligned on a halfword
 boundary.

 Either or both of the records may contain incorrect data. It is the
 user’s responsibility to discover and correct the erroneous information.
 Note that corrections must be made to the erroneous data in the regions
 passed to the subroutine. Note too that the lengths of the records may
 not be altered.

 40 The SORT Utility Program

 MTS 5: System Services

 May 1983

 The subroutine’s return code is significant. If the code 0 is
 returned, processing will resume and the records’ comparison will be
 attempted again. If a code greater than 3 is returned, processing
 terminates and a return code of 4 is passed to the program that called
 SORT or a signoff is produced if the control statement contains the SIG
 parameter.

 Exit SORTE9 ___________

 If this exit is enabled, it is taken just prior to SORT’s return to
 its calling program or the operating system.

 There are two parameters passed to the user’s subroutine. The first
 word of the parameter list points to a two-word array containing the
 number of records processed and the number of output records. The
 second word of the parameter list points to a halfword containing the
 return code that the SORT program would pass to its calling program.

 The subroutine’s return code is passed to SORT’s calling program or
 if the return code is greater than zero and the control statement
 contains the SIG parameter, a signoff is produced.

 OPTIONAL ENTRANCE _________________

 The SORT program can be entered at one point other than its normal
 entry point. This entrance, SORTEA, permits the user to dynamically
 enable or disable the exits SORTE0 through SORTE9.

 The optional entrance may be called at any time via the OS type (I) S
 linkage.

 The SORT program will return control to the calling program via the
 OS (I) S return.

 Entrance SORTEA _______________

 The entrance expects its parameter list to contain two pointers. The
 first word of the list should point to a word containing the integer
 number of the exit to be enabled or disabled, e.g., X’00000009’ for
 SORTE9. The second word of the list should point to a word containing
 either 0 or the address of the subroutine that is to be called at the
 time of the exit: 0 indicates that the exit should be disabled. Both
 the exit’s number and address should be aligned on fullword boundaries.

 The SORT Utility Program 41

 MTS 5: System Services

 May 1983

 The return code from SORTEA is meaningful. A return code of 0
 indicates that the specified exit has been enabled or disabled. A
 return code of 4 indicates that a parameter is invalid.

 The following FORTRAN subroutine, SORTE2, deletes all records preced-
 ing a record containing the characters "9999" in columns 1 through 4.

 It then calls SORTEA to disable itself.

 SUBROUTINE SORTE2(REGION,LENGTH,*,*)

 INTEGER*2 REGION(40),NN/’99’/,LENGTH

 IF (REGION(1).NE.NN) GO TO 2

 IF (REGION(2).NE.NN) GO TO 2

 CALL SORTEA(2,0,&8)

 RETURN

 2 LENGTH = 0

 RETURN

 8 RETURN 2

 END

 SORT TIMING ESTIMATES _____________________

 The following graphs depict several statistics of sampled sorts on

 the Amdahl 470V/8 computer. Each graph pertains to a specific logical

 record length and delineates the CPU time and the CPU storage virtual

 memory integral (VMI) as a function of the number of logical records

 sorted. Specifically, the abscissa denotes the number of logical

 records and the ordinate the CPU time in seconds and the CPU storage VMI

 in page-seconds. The upper, middle, and lower solid lines represent the

 CPU time for unblocked records and block sizes equal to the record

 length times four and 32,000 bytes, respectively; while the upper,

 middle, and lower dashed lines represent the CPU storage VMI for

 unblocked records and block sizes equal to the record length times four

 and 32,000 bytes, respectively.

 Each of the sampled sorts ordered a data set on 20 contiguous bytes

 in each record, specifically "B,A,1,20". The data within the collating

 fields were generated via a method that did not bias the timing

 estimates.

 Each of the sampled sorts read a single data set from a tape and

 produced a single data set on a tape. Both data sets were recorded at

 6250 bpi. The formats of the data sets were type F for unblocked

 records and type FB for blocked records. The record length was 20, 80,

 320, or 1280 bytes, and records were unblocked or blocked with a block

 length equal to the record length times four or 32,000 bytes. Blocking

 and deblocking occurred in the sort program and not in the magnetic tape

 device support routines. The control statement specified the exact

 record and block lengths and the exact number of records to be sorted.

 42 The SORT Utility Program

 MTS 5: System Services

 May 1983

 Though the majority of sorting statistics should fall within the
 depicted range, deviations may occur. Any of the following factors can
 adversely affect the sort’s performance. These factors, as listed, are
 ordered by increasing magnitude of the degradation to be expected.

 bit, fixed-point, floating-point, or zoned decimal collation
 sequence collation with more than one intermediate file, ARL
 reverse collation
 defined sequence collation
 signed decimal collation
 alignment collation
 multiple fields
 using exit SORTE1 or SORTE4
 using exit SORTE2 or SORTE3
 using exit SORTE5

 (It should be noted, however, that the performance produced by multiple
 fields involving the more efficient collating types or by some efficient
 exit subroutines may actually be better than the performance of the less
 efficient collating types.)

 The SORT Utility Program 43

 MTS 5: System Services

 May 1983

 ┌ ┐

 └ ┘

 44 The SORT Utility Program

 MTS 5: System Services

 May 1983

 ┌ ┐

 └ ┘

 The SORT Utility Program 45

 MTS 5: System Services

 May 1983

 ┌ ┐

 └ ┘

 46 The SORT Utility Program

 MTS 5: System Services

 May 1983

 ┌ ┐

 └ ┘

 The SORT Utility Program 47

 MTS 5: System Services

 May 1983

 SORT OPTIMIZATION _________________

 Among the variables that may affect the performance of a sort are the
 number and type of collating fields defined, the original distribution
 of the source data, the blocking factors of the source and sink data
 sets, the number, type, and efficiency of the exits employed, and the
 load upon the system.

 Number and Types of Collating Fields ____________________________________

 The mean time expended in the comparison of two records is dependent
 on the number and types of collating fields defined. Consequently it is
 advantageous to minimize the number of collating fields and to use the
 more efficient types of collating fields whenever possible.

 Following is a list of collating field types ordered by decreasing
 efficiency. Those fields appearing on the same line have similar
 characteristics.

 binary, character, packed decimal, sequence, or length
 bit, fixed-point, floating-point, or zoned decimal
 sequence with more than one intermediate file
 defined sequence
 signed decimal
 alignment
 call

 Following is a list of equivalent collating field definitions. In
 each case the second definition (that following ::=) is superior.

 C,A,3,1,C,A,4,5,C,A,9,2 ::= C,A,3,8
 S,A,4,5 (and data are all >= 0) ::= B,A,4,5
 Z,A,3,5 (and data are all >= 0) ::= B,A,3,5
 P,A,100,8 (and data are all >= 0) ::= B,A,100,8
 F,D,7,10 (and data are all >= 0) ::= B,D,7,10
 FL,A,13,9 ::= FL,A,13,8

 Distribution of the Source Data _______________________________

 The algorithms used in the sort are slightly sensitive to the
 distribution of the source data. A slight degradation in performance
 may be experienced during the reverse collation of large data sets.

 48 The SORT Utility Program

 MTS 5: System Services

 May 1983

 Blocking Factors of Data Sets _____________________________

 Perhaps the easiest and most effective method to increase the
 performance of a sort is to increase the blocking factors of the source
 and sink data sets. For voluminous sorts, sequential files with block
 lengths approaching 32,767 bytes are effective.

 Depending on the record length, statistics indicate that the mean,
 total CPU time expended while processing data sets with only four
 records per block may be as small as one-third the time expended while
 processing the equivalent unblocked data sets. Reductions of CPU time
 to as little as one-tenth of the time required for unblocked data sets
 may be accomplished by maximum blocking. Commensurate savings occur in
 both the CPU storage VMI and the elapsed time.

 Number, Type, and Efficiency of Exits _____________________________________

 The degradation induced by enabled exits is usually proportional to
 the number of times the user’s subroutines are called and to the CPU
 time expended by the subroutines.

 The degradation induced by exits SORTE0 and SORTE6 through SORTE9 is
 negligible since each exit is taken but a few times during the course of
 the data’s processing.

 The degradation induced by exits SORTE1 through SORTE4 can be
 significant. SORTE1 and SORTE4 are taken for each block of data that is
 read or written while SORTE2 and SORTE3 are taken for each record that
 is read or written.

 The degradation induced by exit SORTE5 is significant. SORTE5 can be
 called at least once for every comparison between two records. If
 SORTE5 were called once for every comparison, it would be called
 approximately n(log(base 2) n) times, n being the number of records
 processed.

 The performance of all subroutines can be improved by assuring that
 they do not call the subroutines GETSPACE or FREESPAC whenever they are
 entered. Note that the ENTER and EXIT macros may generate calls to
 GETSPACE and FREESPAC.

 System Load ___________

 The time elapsed between the initiation and termination of a sort is
 dependent on the load supported by the system. Since terminal and tape
 users are charged for real time, they may wish to avoid initiating large
 sorts during the day on weekdays.

 The SORT Utility Program 49

 MTS 5: System Services

 May 1983

 PROCESSING MAGNETIC TAPES _________________________

 The processing of magnetic tapes warrants discussion for two reasons:
 first, because of the confusion created by the existence of blocking
 facilities in both the SORT program and the system magnetic tape device
 support routines; and second, because the majority of large data sets
 reside on magnetic tape.

 Both the SORT program and the MTS tape routines possess blocking and
 deblocking facilities. The facilities are alike save for SORT’s
 inability to process records longer than 32,759 bytes and type FB blocks
 longer than 32,763 bytes.

 Blocking or deblocking should occur but once while processing any
 record, hence the blocking facilities of either the MTS tape routines or __
 the SORT program should be disabled. It is generally recommended that ___________________________________
 blocking be disabled in the MTS tape routines. In this case, the SORT
 program can perform the blocking (or deblocking) at a considerable
 saving in CPU time because a call to the MTS I/O routines is required
 only once per block instead of once per record.

 Blocking can be disabled in the MTS tape routines by specifying
 BLOCKING=OFF via either the MOUNT command or the CONTROL command.¹ If a
 tape is labeled, the FORMAT, LRECL, and SIZE parameters given to the
 MOUNT command should parallel those describing the data set in the SORT
 program.

 Blocking may be disabled in the SORT program by referring to records
 as structure U with appropriate record and block lengths: the record
 and block lengths pertain to the length of the deblocked record.

 If, after a sort is completed, it is discovered that the output was
 damaged because the MTS tape routines truncated, lost, or reblocked the
 output, it may be possible to restart the sort using the RES parameter,
 which is described in the section entitled "Additional Parameters."

 The SORT program neither positions or rewinds a tape before

 processing² nor does it rewind a tape or write an end-of-file after
 processing. Consequently, it is the responsibility of the user to

 explicitly perform these functions whenever they become necessary.

 ¹See the descriptions of the MOUNT and CONTROL commands in MTS Volume 1,
 The Michigan Terminal System. ____________________________

 ²See, however, the description of the TPS parameter in the section
 entitled "Additional Parameters."

 50 The SORT Utility Program

 MTS 5: System Services

 May 1983

 STATISTICS AND DIAGNOSTICS __________________________

 Statistics __________

 The SORT program prints the following statistics after processing the
 data unless the control statement contains the DEC parameter:

 i. the number of logical records (not blocks) read and not
 deleted in the exit SORTE2 - The number of records read and
 written will be equal unless records are removed as a result
 of the DEL parameter or in the exits SORTE3 or SORTE4.
 ii. the number of intermediate data sets used to process the
 data - Certain sorts require the support of files for
 temporary data storage. The existence of these files is
 managed dynamically by the SORT program and the user need
 not concern himself with them. The presence of an asterisk
 indicates that files were created but not used.
 iii. the number of logical records (not blocks) written and not
 deleted as a result of the DEL parameter or in the exit
 SORTE3, if this number is different from the number of
 records read - The number of records written includes
 records removed in the exit SORTE4.
 iv. the average length of the input records, if the ARL
 parameter is specified - This is the average length required
 within the SORT program for each data record and may be
 greater than the actual average length of these records.

 Diagnostics ___________

 The SORT program will issue diagnostics whenever it encounters an
 error in a control statement, in a data set, in a collating field, or
 from a user’s subroutine. Any of the following may be the source of an
 error:

 i. an incorrect parameter in the control statement, e.g., HI= __
 or S=Q or I=,,.2 or I=X,U,80,90 or O=Y,U,100,100,Z,F,100,100 _ _ __ _
 ii. a collating field which extends beyond the greatest record
 length specified in the control statement
 iii. incorrect data in a packed decimal, zoned decimal, or signed
 decimal collating field
 iv. a record whose length exceeds its declared length
 v. an incorrectly structured type V, VB, VS, or VBS record
 vi. an error detected while reading or writing a data set - The
 error could be induced by the data’s storage medium, e.g., a
 faulty magnetic tape; by insufficient space allocated to a
 sink data set; or by the device processing the data set.
 vii. the end of the output description is reached and another
 sink data set is needed - This may be caused by a nonzero
 return code from WRITE or a return code of 4 from the user’s
 subroutine SORTE3.
 viii. insufficient disk space to process the data - This error

 The SORT Utility Program 51

 MTS 5: System Services

 May 1983

 occurs only in the sort mode.
 ix. an incorrect parameter list passed to the SORT subroutine
 x. an out-of-sequence record in a merge data set
 xi. an error return from a user’s subroutine
 xii. an attempt to continue after certain program interrupts or
 input/output errors which occur outside of the SORT program
 and for which an appropriate exit was enabled before entry
 to the SORT program

 SORT EXAMPLES _____________

 Example 1: Assume that 1000 cards form a data set. Each card bears the _________
 name of a city and state left-justified in columns 1 - 50 and the city’s
 population right-justified in columns 65 - 75.

 Typical data records are

 CORPUS CHRISTI, TEX. 167690
 NEW YORK, N.Y. 7781984

 An alphabetized list of cities is needed.

 $RUN *SORT GUSER=*SOURCE*

 SORT=CH,A,1,50 INPUT=*SOURCE*,U,80,80

 OUTPUT=*SINK*,U,80,80 REC=1000 END

 data

 ...

 $ENDFILE

 or $RUN *SORT SCARDS=*SOURCE* SPUNCH=*SINK* PAR=■
 data

 ...

 $ENDFILE

 or $RUN *SORT GUSER=*SOURCE* SPUNCH=*SINK*

 $ENDFILE

 data

 ...

 $ENDFILE

 Example 2: Assume that the same data reside in a sequential file named _________

 SIN.

 $RUN *SORT SCARDS=SIN SPUNCH=*SINK* PAR=E

 Example 3: A list of cities is needed. The cities should be ordered by _________

 decreasing population, and where equal populations occur, the cities

 should be ordered alphabetically. Two tapes are mounted with the

 pseudodevice names *DATA* and *BYPOP*. *DATA*’s records contain addi-

 52 The SORT Utility Program

 MTS 5: System Services

 May 1983

 tional information to be included in the list. Its records have the
 format of SIN’s but are blocked ten to the block - a total of
 approximately 2000 records. *BYPOP* will contain the sorted list. Its
 records should be type VB, a maximum of 10,000 bytes per block.

 $MOUNT

 C9991 ON 9TP *DATA* BLK=OFF SIZE=800 ’SORT INPUT’

 C9992 ON 9TP *BYPOP* RING=IN BLK=OFF SIZE=10000 ’SORT OUTPUT’

 $ENDFILE

 $RUN *SORT GUSER=*SOURCE*

 S=C,D,65,11,,,,50 I=SIN,F,,,*DATA*,FB,80

 O=*BYPOP*,VB,80,10000 R=3500 E

 Example 4: Assume that a printed list of *BYPOP*’s contents is needed. _________

 $MOUNT C9992 ON 9TP *BYPOP* BLK=OFF SIZE=10000 ’SORT OUTPUT’

 $RUN *SORT GUSER=*SOURCE* SCARDS=*BYPOP* SPUNCH=*SINK*

 C I=,VB,80,10000 END

 or $MOUNT C9992 ON 9TP *BYPOP* BLK=OFF SIZE=10000 ’SORT OUTPUT’

 $RUN *SORT SCARDS=*BYPOP* SPUNCH=*SINK* PAR=C I=,VB,80

 Example 5: A tape, mounted with the pseudodevice name *BYPOP2*, _________

 contains data similar to that appearing in *BYPOP*. *BYPOP2*’s records

 are ordered on the same fields as *BYPOP*’s records and are blocked -

 100 records to the block.

 A unified list of cities ordered by decreasing population is desired.

 If two cities have equal populations, then the following rules apply.

 a) If the two records containing the cities’ data were read from

 different data sets, then the record read from *BYPOP* should precede

 that read from *BYPOP2*. b) If the two records containing the cities’

 data were read from the same data set, they should be alphabetized by

 name.

 $MOUNT

 C9992 ON 9TP *BYPOP* BLK=OFF SIZE=10000 ’SORT OUTPUT’

 C9993 ON 9TP *BYPOP2* BLK=OFF SIZE=8000 ’SORT OUTPUT #2’

 $ENDFILE

 $RUN *SORT GUSER=*SOURCE*

 O=*SINK* I=*BYPOP*,VB,80,10000,*BYPOP2*,

 FB,80,8000 M=,D,65,11,

 SE,A

 $ENDFILE

 Example 6: Suppose that a file named SIN2 contains data akin to that in _________

 SIN. The 5000 records in SIN2 contain city and state names left-

 justified in bytes 1 - 50 and the cities’ populations left-justified in ______________

 columns 65 - 75.

 Typical data records in SIN2 are

 The SORT Utility Program 53

 MTS 5: System Services

 May 1983

 WATERBURY, CONN. 107130
 LOS ANGELES, CALIF. 2479015

 A list of cities arranged by decreasing population is needed.

 $RUN *SORT GUSER=*SOURCE*

 S=AL,D,65,11,CH,D,65,11 I=SIN2 O=*SINK* R=5000 E

 Example 7: Assume that 2000 cards form a data set. The first card of _________

 each pair of cards is identical to those described in example 1. The

 second card of each pair contains the city’s area in columns 10 - 15.

 Typical data records are

 CORPUS CHRISTI, TEX. 167690

 37

 NEW YORK, N.Y. 7781984

 300

 An alphabetized list of cities is needed; however, the pairing of the

 cards must be preserved.

 $CRE -T1 SIZE=5000

 $CRE -T2 SIZE=5000

 $RUN *SORT GUSER=*SOURCE* SPUNCH=-T1@¬TRIM

 C I=,F O=,FB,80,160

 $ENDFILE

 data

 ...

 $ENDFILE

 $RUN *SORT GUSER=*SOURCE*

 I=-T1@¬TRIM,F,160

 O=-T2@¬TRIM,F,160 R=1000 E

 $RUN *SORT GUSER=*SOURCE* SPUNCH=*SINK*

 C I=-T2@¬TRIM,FB,80,160

 $ENDFILE

 Example 8: An alternate method to achieve the preceding results employs _________

 the exits SORTE1 and SORTE4.

 Suppose the FORTRAN subroutines illustrated in the sections describ-

 ing the exits SORTE1 and SORTE4 are compiled, and that the object

 modules reside in files named E1OBJ and E4OBJ. Assume that these

 subroutines are to be tested on a restricted data set.

 $RUN *SORT+E1OBJ+E4OBJ GUSER=*SOURCE* 5=*SOURCE* 7=*SINK*

 I=*DUMMY*,F,160

 O=*DUMMY*,F,160

 R=1000 CHK E

 data

 ...

 $ENDFILE

 54 The SORT Utility Program

 MTS 5: System Services

 May 1983

 Example 9: Suppose that the data derived from a survey of magazine _________
 subscribers are encoded in a set of 20-byte records residing in a file
 named Q. Each of the 2000 records pertains to a single subscriber.

 The subscriber’s sex is encoded in the 4th bit of the 6th byte of
 each record (0 indicates a male and 1 a female), and his preference for
 Saturday Review is encoded in the 0th bit of the 7th byte of each record _______________
 (1 indicates that he subscribes to the magazine and 0 indicates that he
 does not subscribe). A male subscriber might be encoded as X’87AF’.

 A list of subscribers is needed. Those subscribing to Saturday ________
 Review should precede the nonsubscribers and males should precede ______
 females.

 $RUN *SORT GUSER=*SOURCE*

 S,BT,D,7,128,BT,A,6,8 I=Q,,20

 O=*SINK*,,20 R=2000 E

 Example 10: Assume the data records described in example 1 contain __________

 additional data in columns 55 - 60: the net change in population during

 the last year. The direction of the change is indicated by a sign which

 precedes the right-justified magnitude of the change.

 Typical data records are

 CORPUS CHRISTI, TEX. +4976 167690

 NEW YORK, N.Y. -12856 7781984

 A list of cities arranged by increasing growth is desired.

 $RUN *SORT SPUNCH=*SINK* PAR=S=SD,A,55,6 R=1000

 data

 ...

 $ENDFILE

 Example 11: Assume that a set of records has identifying numbers __________

 left-justified in columns 1 - 10. The numbers consist of one or more

 digits followed by a suffix of zero or more alphabetic characters. It

 is desired to list the records such that 1 precedes 1A, which precedes

 1AA, which precedes 1AB; 1Z precedes 2; 9ZZ precedes 10; etc.

 $RUN *SORT GUSER=*SOURCE* SPUNCH=*SINK*@¬CC

 S=DS(X),,,10,CH,,,10

 DS=XABCDEFGHIJKLMNOPQRSTUVWXYZ A01234567890X

 $ENDFILE

 data

 ...

 $ENDFILE

 Example 12: Suppose that it is desired to list 1000 records with __________

 columns 5 - 21 in the ascending sequence illustrated by the second

 examples in the sections describing the exits SORTE2 and SORTE3. A less

 efficient method than using the exits is to utilize a defined sequence.

 The SORT Utility Program 55

 MTS 5: System Services

 May 1983

 Assume, also, that a listing on SERCOM of the structures, record
 lengths, block lengths, and names of the source and sink data sets is
 desired.

 $RUN *SORT GUSER=*SOURCE* SPUNCH=*SINK*

 S=D("),,5,17 D="■¢.<(+|&!$*);¬-/,%_>?:#@’="0123456789" R=1000 L E
 data

 ...

 $ENDFILE

 Example 13: A file named STAT contains unblocked records which are __________

 supposed to be alphabetized according to the data in columns 1 - 32. It

 is desired to verify that the records are indeed alphabetized.

 $RUN *SORT PAR=MERGE=CH,A,1,32 I=STAT DEL=DUP,SINGLE

 If any records are out of order, an error message will be produced.

 (The use of DEL=DUP,SINGLE is to improve efficiency by discarding all

 output records.)

 Example 14: Assume that it is also desired to list the first record of __________

 each group of records having the same data in columns 1 - 32.

 $RUN *SORT PAR=M=,,,32 I=STAT O=*SINK*@NOCC DEL=T,S

 Example 15: A listing of the ordering of a set of 121 characters __________

 according to the ascending, character collating sequence is needed. The

 list is to contain 41 characters per line. (Note that the ordering of

 the special characters depends on the hexadecimal representation of the

 particular character set used by the input or output device.¹)

 $RUN *SORT PAR=S=C,,,1 I=*SOURCE*,FB,1 O=*SINK*@NOCC,FB,,41 R=121

 ■±•┼≥≤└┘─≠┐┌¤°¹²³⁴⁵⁶⁷⁸⁹⁰⁻⁺⁽⁾
 |@#$%¬&*()_+QWERTYUIOP!]

 ASDFGHJKL:"}>ZXCVBNM?

 1234567890-=qwertyuiop¢[

 asdfghjkl;’{<zxcvbnm,./

 $ENDFILE

 yields

 ¢.<(+|&!$*);¬-/,%_>?:#@’="abcdefghi{≤⁽⁺┼
 jklmnopqr}¤⁾±■⁻°stuvwxyz└┌[≥•⁰¹²³⁴⁵⁶⁷⁸⁹┘┐
]≠─ABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789

 ¹See the descriptions of the ASCEBC and EBCASC subroutines in MTS Volume
 3, System Subroutine Descriptions, and the appropriate appendices in ______________________________

 MTS Volume 1, The Michigan Terminal System, and MTS Volume 4, Terminals ____________________________ _________

 and Tapes. _________

 56 The SORT Utility Program

 MTS 5: System Services

 May 1983

 THE SORT SUBROUTINE ___________________

 Introduction ____________

 The SORT subroutine has four entry points, SORT, SORT2, SORT3, and
 SORT4. Each entry point was designed to fulfill a unique set of
 requisites: the SORT entry point duplicates the capabilities of the
 SORT program; the SORT2 entry point sorts data sets that reside in _____
 virtual memory (virtual data sets); the SORT3 entry point sorts virtual _____
 data sets in conjunction with a "tag" virtual data set;¹ and the SORT4
 entry point sorts virtual data sets of 4-byte addresses according to _____

 attributes of the data referenced by the addresses.

 Return Codes ____________

 The SORT subroutine’s return code should be interrogated by the

 calling program. A return code of 0 indicates that processing was

 successful and a return code of 4 indicates that an error was detected.

 The Entry Point SORT ____________________

 When entered at SORT, the subroutine’s capabilities and restrictions

 parallel those of the SORT program. The only notable exceptions involve

 the manner in which the control statement is passed to the subroutine

 and the subroutine’s ability to process data sets that reside in virtual

 memory (virtual data sets).

 Calling Convention

 The subroutine may be called from any program written in a language

 utilizing the OS type (I) S linkage, e.g., FORTRAN; or may be called

 through an appropriate interface in other cases, e.g., PLCALL.

 Prototype calling sequences follow:

 Assembly - CALL SORT,(cstmt[,{unit|vds|num}]...)

 FORTRAN - CALL SORT(cstmt[,{unit|vds|num}]...[,&err])

 ¹A description of a tag data set follows the section titled "The Entry
 Point SORT3."

 The SORT Utility Program 57

 MTS 5: System Services

 May 1983

 PL/I - CALL PLCALL(SORT,n,cstmt
 [,ADDR({unit|vds|num})]...);¹

 The parameter list passed to the subroutine contains a pointer to the
 control statement; an optional list of file/device usage blocks, logical
 unit numbers, and/or virtual data sets; and an optional error exit.

 The following substitutions are necessary: ___

 Replace "cstmt" by the location of the control statement. The entire _______________

 control statement must be passed as a parameter since it is never read

 via GUSER.

 The control statement must be terminated by the END parameter

 followed by a blank or space, e.g., "END■".

 Replace "unit" by the location of a pointer to a file/device usage _______________

 block (FDUB) or the location of a fullword integer logical unit number.

 This parameter is an alternate means of identifying a data set to the

 SORT subroutine. If a data set’s name is included in the control

 statement, its "unit" should be omitted from the parameter list.

 If a "unit" is passed as a parameter, the data set’s attributes must

 be defined in the control statement. If a data set is to be the source

 of data, its description should follow the INPUT keyword; otherwise, its

 description should follow the OUTPUT keyword.

 The order in which the data sets are described in the control

 statement should correspond to the order in which the corresponding

 "units" appear in the parameter list. Thus the "unit" for the first

 data set to be described in the control statement should be the second

 entry of the parameter list, and the "unit" for the second data set

 should be the third entry in the parameter list.

 The description of each data set for which a "unit" appears in the

 parameter list should conform to the specifications set forth earlier

 subject to the following amendment:

 i. Replace "name" by *, e.g., I=*,VB,120,32767 ______________

 Replace "vds" by the location of the 1st byte of the 1st record of _____________

 the virtual data set to be processed by the subroutine. Note that each

 virtual data set must contain one contiguous block of type FB,² VB, or
 VBS records. If no virtual data set(s) exist, the parameter(s) should

 be omitted.

 ¹See the description of the subroutine PLCALL in MTS Volume 7, PL/I in ________

 MTS. ___

 ²Because a considerable gain in efficiency may be realized, the entry
 point SORT2 should be used in preference to the entry point SORT if

 there are no other determining factors.

 58 The SORT Utility Program

 MTS 5: System Services

 May 1983

 Each virtual data set to be processed must also be described in the
 control statement. The order in which the data sets are described in
 the control statement should correspond to the order in which their
 addresses appear in the parameter list. The description of each virtual
 data set should conform to the specifications set forth earlier subject
 to the following amendments:

 i. Replace "name" by **, e.g., I=**,FB,4,400. ______________

 ii. Replace "structure" by FB, VB, or VBS. Records residing in a ___________________

 virtual data set must form a contiguous block of fixed or

 variable length records. Appendix B contains descriptions of

 these record structures. Note that no virtual data set’s

 length may exceed 32,767 bytes.

 iii. If the record length is not specified, a length of 80 bytes is

 assumed.

 iv. The block length defaults to the record length of type FB

 records and to the record length plus 8 of type VB and VBS

 records.

 Replace "num" by the location of a positive, nonzero, fullword _____________

 integer. This parameter is an alternate way of specifying a numeric

 value in the control statement to the SORT subroutine. If all numeric

 values are specified directly in the control statement or by default,

 the "num" parameter(s) should be omitted.

 If a numeric value is passed as a parameter, its meaning must be

 indicated in the control statement by an asterisk. The value of the

 parameter is in effect substituted for the asterisk. The order in which

 the parameters are passed should correspond to the order in which the

 values would have appeared in the control statement. The ordering of

 the aggregate set of "unit," virtual data set, and numeric value

 parameters should correspond to the order in which they are referenced

 in the control statement.

 The control statement should conform to the specifications set forth

 earlier subject to the following amendment:

 i. Replace the numeric value in the control statement by *, e.g., __

 S=CH,A,*,4

 Replace "&err" by the location (statement number or label) to receive ______________

 control if an error is detected by the SORT subroutine. If no error

 return exists, then this parameter should be omitted.

 Replace "n" by the number of arguments to be passed to the SORT ___________

 subroutine. The number must possess the attributes FIXED BINARY(31).

 Restrictions

 i. The entire control statement must be passed as a parameter.

 ii. The control statement must be terminated by the END parameter

 followed by a blank or space, e.g., "END■".

 The SORT Utility Program 59

 MTS 5: System Services

 May 1983

 Timing Estimates

 The subroutine’s CPU time and CPU storage VMI statistics for the
 entry point SORT are equivalent to those of the SORT program if the
 former are normalized by the time and storage used by the program
 calling the subroutine.

 Examples

 Example 1: A file named X contains 1900 80-byte records. The records _________
 will be alphabetized by the characters appearing in columns 10 through
 29. File Y will receive the sorted data. A FORTRAN program follows:

 ...
 CALL SORT(’S=,,10,20 I=X O=Y R=2000 E ’,&88)

 ...

 88 STOP

 ...

 Example 2: This FORTRAN example is similar to the preceding example _________

 except that the control statement is passed as a parameter to the

 subroutine.

 SUBROUTINE BAH(CSTMT)

 INTEGER*2 CSTMT(40)

 ...

 CALL SORT(CSTMT(2),&88)

 ...

 88 CALL SYSTEM

 END

 Assuming that BAH’s object module resides in a file named BAH.O, the

 RUN command would be

 $RUN BAH.O PAR=S=,,10,20 I=X O=Y R=2000 E■

 Example 3: This FORTRAN example is the same as example 1 except that _________

 the records will be read from logical unit 1 and written to logical unit

 3.

 ...

 CALL SORT(’S=,,10,20 I=* O=* R=2000 E ’,1,3,&88)

 ...

 88 STOP

 ...

 Example 4: Assume that the following PL/I program creates a data set in _________

 a temporary file named -A. The records of this data set are to be

 ordered by an ascending character field in columns 12 through 17 and an

 ascending character field in columns 2 through 3. A temporary file

 named -B will receive the sorted data.

 60 The SORT Utility Program

 MTS 5: System Services

 May 1983

 ...
 DCL
 SORT ENTRY,
 PL1RC RETURNS (FIXED BIN(31)),
 F1 FIXED BIN(31) INIT(1) STATIC,
 1 CSTMT STATIC,
 2 A CHAR(24) INIT(’S=,,12,6,,,2,2 I=-A,,46 ’),
 2 B CHAR(11) INIT(’O=-B,,46 R=’),
 2 C PIC ’(6)9’,
 2 D CHAR(5) INIT(’ END ’);
 ...
 /*SET NUMBER OF RECORDS IN THE CONTROL STATEMENT*/
 CSTMT.C=X;
 /*CALL SORT*/
 CALL PLCALL(SORT,F1,CSTMT);
 IF PL1RC¬=0 THEN DO;
 PUT FILE(SERCOM) LIST(’**ERROR RETURN FROM SORT’);
 RETURN;
 END;
 ...

 Example 5: In the following FORTRAN program the 4-byte integers _________
 residing in a 50x100 matrix, TAM, will be ordered into a descending
 sequence.

 ...
 CALL SORT(’S=FI,D,,4 I=**,FB,4,20000 O=**,FB,4,20000
 C R=5000 E ’,TAM,TAM,&88)

 ...

 88 STOP

 ...

 Note that the elements of a FORTRAN matrix may be accessed in their

 sorted order only if they are addressed by iterating on their row index

 before their column index.

 Example 6: The 4-byte integers contained in a 100x100 matrix, X, and a _________

 100 record file Y (record structure = FB, record length = 4, block

 length = 40) will be sorted into a file named Z (record structure = F).

 ...

 CALL SORT(’S=FI,,,4 I=**,FB,4,20000,**,FB,4,20000,Y,FB,4,40

 C O=Z,F,4,4 R=11000 E ’,X(1,1),X(1,51),&88)

 ...

 88 STOP

 ...

 Note that the 32,767-byte length restriction on virtual data sets

 forces X to be referenced as two data sets.

 The SORT Utility Program 61

 MTS 5: System Services

 May 1983

 Example 7: The NRELT, 4-byte integers in the array TBA are to be sorted _________
 and then written to logical unit 7.

 ...
 CALL SORT(’S=F,,,4 I=**,FB,4,* O=*,F R=* E ’,TBA,NRELT*4,
 C 7,NRELT,&73)

 ...

 73 STOP

 ...

 The Entry Point SORT2 _____________________

 When entered at SORT2, the SORT subroutine is able to order an array

 of data elements, i.e., to sort a virtual data set onto itself. The

 subroutine is unable to read or write data sets resident on direct

 access devices, tapes, or other external media.

 Calling Conventions

 The subroutine may be called from any program written in a language

 utilizing the OS type (I) S linkage, e.g., FORTRAN; or may be called

 through an appropriate interface in other cases, e.g., PLCALL.

 Prototype calling sequences follow:

 Assembly - CALL SORT2,(cstmt,loc1,loc2,len[,num]...)

 FORTRAN - CALL SORT2(cstmt,loc1,loc2,len[,num]...[,&err])

 PL/I - CALL PLCALL(SORT2,n,cstmt,ADDR(loc1),ADDR(loc2),

 ADDR(len)[,ADDR(num)]...);¹

 The parameter list passed to the subroutine contains a pointer to the

 control statement, a description of an array to be sorted, and an

 optional error exit.

 The following substitutions are necessary: ___

 Replace "cstmt" by the location of the control statement. Only a ________________

 description of the collating sequence, relevant additional parameters,

 and the END parameter should be included in the control statement.

 The control statement must be terminated by the END parameter

 followed by a blank or space, e.g., "S=FI,D,1,4,CH,A,5,2 END■".

 ¹See the description of the subroutine PLCALL in MTS Volume 7, PL/I in _______

 MTS. ___

 62 The SORT Utility Program

 MTS 5: System Services

 May 1983

 Replace "loc1" by the location of the first element of the data set ______________

 or array to be sorted.

 Replace "loc2" by the location of the last element of the data set or ______________

 array to be sorted.

 Replace "len" by the location of the fullword integer length of each ______________

 element in the data set to be sorted. The value of the length may range

 between 1 and 256 bytes.

 Replace "num" by the location of a positive, nonzero, fullword _____________

 integer. This parameter is an alternate way of specifying a numeric

 value in the control statement to the SORT subroutine. If all numeric

 values are specified directly in the control statement or by default,

 the "num" parameter(s) should be omitted.

 If a numeric value is passed as a parameter, its meaning must be

 indicated in the control statement by an asterisk. The value of the

 parameter is in effect substituted for the asterisk. The order in which

 the parameters are passed should correspond to the order in which the

 values would have appeared in the control statement. The control

 statement should conform to the specifications set forth earlier and the

 restrictions below subject to the following amendment:

 i. Replace the numeric value in the control statement by *, e.g., __

 S=CH,A,*,4

 Replace "&err" by the location (statement number or label) to receive ______________

 control if an error is detected by the subroutine. If no error return

 exists, then this parameter should be omitted.

 Replace "n" by the number of arguments to be passed to the SORT ____________

 subroutine. The number must possess the attributes FIXED BINARY(31).

 Restrictions

 i. Only a description of the collating sequence, relevant addi-

 tional parameters, and the END parameter may be included in

 the control statement. Descriptions of the source and sink

 data sets and an estimate of the number of records to be

 sorted should not be included, i.e., the REC, MNR, INPUT, and

 OUTPUT keywords should not appear in the control statement.

 The mode must be SORT. The data types LE and SE and the

 parameters CHK, DEL, LIO, RES, SIG, TPS, ARL, DIO, MBY, and

 PGS cannot be used.

 ii. Only the exits SORTE5 and SORTE8 may be enabled. Note that

 the exits’ parameter lists differ from the normal: the

 regions addressed contain only the records’ text, i.e., they

 do not contain a 4-byte header.

 iii. The entry point SORTEA may not be called.

 The SORT Utility Program 63

 MTS 5: System Services

 May 1983

 Timing Estimates

 Sample character sorts of up to one segment (1,048,576 bytes) of
 uniformly distributed, random data on the Amdahl 470V/8 indicate that
 the CPU times required by the subroutine for the entry point SORT2 range
 from approximately 12 microseconds to approximately 63 microseconds per
 array element depending on the number of elements and their length.

 Examples

 Example 1: In the following FORTRAN program the 4-byte integers _________
 residing in a 2x100 array, X, will be ordered into a descending
 sequence.

 ...
 INTEGER*4 X(2,100),F4/4/
 ...
 CALL SORT2(’S=FI,D,,4 END ’,X(1,1),X(2,100),F4,&88)

 ...

 88 STOP

 ...

 Note that the elements of a FORTRAN array may be accessed in their

 sorted order only if they are addressed by iterating on their row index

 before their column index.

 Example 2: The following PL/I program is analogous to that in example _________

 1.

 ...

 DCL

 SORT2 ENTRY,

 PL1RC RETURNS (FIXED BIN(31)),

 F4 FIXED BIN(31) INIT(4) STATIC,

 X(2,100) FIXED BIN(31) STATIC,

 CSTMT STATIC CHAR(14) INIT(’S=FI,D,,4 END ’);

 ...

 /*CALL SORT2*/

 CALL PLCALL(SORT2,F4,CSTMT,ADDR(X(1,1)),ADDR(X(2,100)),

 ADDR(F4));

 IF PL1RC¬=0 THEN DO;

 PUT FILE(SERCOM) LIST(’**ERROR RETURN FROM SORT2’);

 RETURN;

 END;

 ...

 64 The SORT Utility Program

 MTS 5: System Services

 May 1983

 The Entry Point SORT3 _____________________

 When entered at SORT3, the SORT subroutine’s capabilities are similar
 to those it possesses when entered at SORT2; however, it has the
 additional capability of permuting a "tag" virtual data set. The order

 induced on the elements of the tag data set is analogous to that induced

 on the elements of the source/sink data set: if the 10th element of the

 source data set became the 1st element of the sorted data set, then the

 10th element of the tag data set would appear as its 1st element after

 the sort.

 Calling Conventions

 The subroutine may be called from any program written in a language

 utilizing the OS type (I) S linkage, e.g., FORTRAN; or may be called

 through an appropriate interface in other cases, e.g., PLCALL.

 Prototype calling sequences follow:

 Assembly - CALL SORT3,(cstmt,loc1,loc2,len1,loc3,len2[,num]...)

 FORTRAN - CALL SORT3(cstmt,loc1,loc2,len1,loc3,len2[,num]...

 [,&err])

 PL/I - CALL PLCALL(SORT3,n,cstmt,ADDR(loc1),ADDR(loc2),

 ADDR(len1),ADDR(loc3),ADDR(len2)

 [,ADDR(num)]...);¹

 The parameter list passed to the subroutine contains a pointer to the

 control statement, a description of an array to be sorted, a description

 of a tag array, and an optional error exit.

 The following substitutions are necessary: ___

 Replace "cstmt" by the location of the control statement. Only a _______________

 description of the collating sequence, relevant additional parameters,

 and the END parameter should be included in the control statement.

 The control statement must be terminated by the END parameter

 followed by a blank or space, e.g., "S=FL,,,8 END■".

 Replace "loc1" by the location of the first element of the data set _______________

 or array to be sorted.

 Replace "loc2" by the location of the last element of the data set or ______________

 array to be sorted.

 ¹See the description of the subroutine PLCALL in MTS Volume 7, PL/I in _______

 MTS. ___

 The SORT Utility Program 65

 MTS 5: System Services

 May 1983

 Replace "len1" by the location of the fullword integer length of each ______________

 element in the data set to be sorted. The value of the length may range

 between 1 and 256 bytes.

 Replace "loc3" by the location of the first element in the tag data ______________

 set or array.

 Replace "len2" by the location of the fullword integer length of each ______________

 element of the tag data set. The value of the length may range between

 1 and 256 bytes.

 Replace "num" by the location of a positive, nonzero, fullword _____________

 integer. This parameter is an alternate way of specifying a numeric

 value in the control statement to the SORT subroutine. If all numeric

 values are specified directly in the control statement or by default,

 the "num" parameter(s) should be omitted.

 If a numeric value is passed as a parameter, its meaning must be

 indicated in the control statement by an asterisk. The value of the

 parameter is in effect substituted for the asterisk. The order in which

 the parameters are passed should correspond to the order in which the

 values would have appeared in the control statement. The control

 statement should conform to the specifications set forth earlier and the

 restrictions below subject to the following amendment:

 i. Replace the numeric value in the control statement by *, e.g., __

 S=CH,A,*,4

 Replace "&err" by the location (statement number or label) to receive ______________

 control if an error is detected by the subroutine. If no error return

 exists, then this parameter should be omitted.

 Replace "n" by the number of arguments to be passed to the SORT ____________

 subroutine. The number must possess the attributes FIXED BINARY(31).

 Restrictions

 i. Only a description of the collating sequence, relevant addi-

 tional parameters, and the END parameter may be included in

 the control statement. Descriptions of the source and sink

 data sets and an estimate of the number of records to be

 sorted should not be included, i.e., the REC, MNR, INPUT, and

 OUTPUT keywords should not appear in the control statement.

 The mode must be SORT. The data types LE and SE and the

 parameters CHK, DEL, LIO, RES, SIG, TPS, ARL, DIO, MBY, and

 PGS cannot be used.

 ii. Only the exits SORTE5 and SORTE8 may be enabled. Note that

 the exits’ parameter lists differ from the normal: the

 regions addressed contain only the records’ text, i.e., they

 do not contain a 4-byte header.

 iii. The entry point SORTEA may not be called.

 66 The SORT Utility Program

 MTS 5: System Services

 May 1983

 Timing Estimates

 Sample character sorts of up to one segment (1,048,576 bytes) of
 uniformly distributed, random data on the Amdahl 470V/8 indicate that
 the CPU times required by the subroutine for the entry point SORT3 range
 from approximately 18 microseconds to approximately 119 microseconds per
 array element depending on the number of elements and their lengths.

 Example

 Example 1: In the following FORTRAN program the 8-byte REAL numbers _________
 residing in a 1x500 array, X, will be ordered into an ascending
 sequence. The tag array, Y, consists of 500 4-byte integers.

 ...
 REAL*8 X(500)
 INTEGER*4 Y(500),F4/4/,F8/8/
 ...
 CALL SORT3(’S=FL,,,8 END ’,X(1),X(500),F8,Y(1),F4,&88)

 ...

 88 STOP

 ...

 The Entry Point SORT4 _____________________

 When entered at SORT4, the SORT subroutine is able to order an array

 of 4-byte addresses, or pointers, according to attributes of the data

 elements to which the addresses point. The data elements themselves are

 not reordered or otherwise changed. The order induced on the elements

 of the address array is such that if the data elements were substituted

 for their respective addresses, they would form the collating sequence

 defined by the control statement. The subroutine is unable to read or

 write data sets resident on direct access devices, tapes, or other

 external media.

 Calling Conventions

 The subroutine may be called from any program written in a language

 utilizing the OS type (I) S linkage, e.g., FORTRAN; or may be called

 through an appropriate interface in other cases, e.g., PLCALL.

 Prototype calling sequences follow:

 Assembly - CALL SORT4,(cstmt,loc1,loc2[,num]...)

 FORTRAN - CALL SORT4(cstmt,loc1,loc2[,num]...[,&err])

 The SORT Utility Program 67

 MTS 5: System Services

 May 1983

 PL/I - CALL PLCALL(SORT4,n,cstmt,ADDR(loc1),ADDR(loc2)
 [,ADDR(num)]...);¹

 The parameter list passed to the subroutine contains a pointer to the
 control statement, a description of an array of 4-byte addresses to be
 sorted, and an optional error exit.

 The following substitutions are necessary: ___

 Replace "cstmt" by the location of the control statement. Only a _______________

 description of the collating sequence, relevant additional parameters,

 and the END parameter should be included in the control statement. The

 description of the collating sequence refers to the data addressed by

 the elements of the array to be sorted.

 The control statement must be terminated by the END parameter

 followed by a blank or space, e.g., "=,,,16 E■".

 Replace "loc1" by the location of the first element of the fullword- _______________

 aligned array of 4-byte addresses to be sorted. The data elements

 referenced by the addresses need not be contiguous to each other, and

 more than one element of the address array may reference the same data

 element.

 Replace "loc2" by the location of the last element of the fullword- _______________

 aligned array of 4-byte addresses to be sorted.

 Replace "num" by the location of a positive, nonzero, fullword _____________

 integer. This parameter is an alternate way of specifying a numeric

 value in the control statement to the SORT subroutine. If all numeric

 values are specified directly in the control statement or by default,

 the "num" parameter(s) should be omitted.

 If a numeric value is passed as a parameter, its meaning must be

 indicated in the control statement by an asterisk. The value of the

 parameter is in effect substituted for the asterisk. The order in which

 the parameters are passed should correspond to the order in which the

 values would have appeared in the control statement. The control

 statement should conform to the specifications set forth earlier and the

 restrictions below subject to the following amendment:

 i. Replace the numeric value in the control statement by *, e.g., __

 S=CH,A,*,4

 Replace "&err" by the location (statement number or label) to receive ______________

 control if an error is detected by the subroutine. If no error return

 exists, then this parameter should be omitted.

 ¹See the description of the subroutine PLCALL in MTS Volume 7, PL/I in ________

 MTS. ___

 68 The SORT Utility Program

 MTS 5: System Services

 May 1983

 Replace "n" by the number of arguments to be passed to the SORT ____________

 subroutine. The number must possess the attributes FIXED BINARY(31).

 Restrictions

 i. Only a description of the collating sequence, relevant addi-

 tional parameters, and the END parameter may be included in

 the control statement. Descriptions of the source and sink

 data sets and an estimate of the number of records to be

 sorted should not be included, i.e., the REC, MNR, INPUT, and

 OUTPUT keywords should not appear in the control statement.

 The mode must be SORT. The data types LE and SE and the

 parameters CHK, DEL, LIO, RES, SIG, TPS, ARL, DIO, MBY, and

 PGS cannot be used.

 ii. Only the exits SORTE5 and SORTE8 may be enabled. Note that

 the exits’ parameter lists differ from the normal: the

 regions addressed contain the data, not the addresses being

 sorted, and they contain only the text, i.e., they do not

 contain a 4-byte header.

 iii. The entry point SORTEA may not be called.

 Timing Estimates

 Sample character sorts of up to one segment of addresses (262,144),

 which reference uniformly distributed, random data, on the Amdahl 470V/8

 indicate that the CPU times required by the subroutine for the entry

 point SORT4 range from approximately 14 microseconds to approximately 45

 microseconds per array element depending on the number of elements.

 Examples

 Example 1: The array LISTPTR contains up to 100 addresses which point _________

 to the noncontiguous elements of a list. Each of the N elements of the

 list contains a positive, fixed-point number in positions 21-24.

 LISTPTR is to be sorted so that when it is used to indirectly access the

 list elements, these numbers will be in ascending order.

 The SORT Utility Program 69

 MTS 5: System Services

 May 1983

 ...
 L 1,N
 BCTR 1,0
 SLA 1,2 (N-1)*4=DISPLACEMENT OF LAST ELEMENT
 LA 1,LISTPTR(1) ADDRESS OF LAST ELEMENT
 ST 1,SRT4PAR+8 SAVE IT IN PARAMETER LIST
 LA 1,SRT4PAR ADDRESS OF PARAMETER LIST
 CALL SORT4 SORT LISTPTR
 LTR 15,15 CHECK RETURN CODE
 BNZ ERRRTN ERROR IF RETURN CODE IS NOT ZERO
 ...
 ERRRTN CALL ERROR
 ...
 LISTPTR DS 100A
 N DS F
 SRT4PAR DC A(SRT4CS,LISTPTR,0)
 SRT4CS DC C’S=B,A,21,4 E ’

 Example 2: In the following FORTRAN program the array NAMES contains N _________
 columns of 20-character names. The address of each column is placed in
 the array INDEX; the addresses are sorted and then converted to column
 indexes; and an alphabetical listing of the names is written.

 ...
 INTEGER ADROF, BASE, INDEX(256), NAMES(5,256)
 ...
 DO 1010 I=1,N
 1010 INDEX(I)=ADROF(NAMES(1,I))
 BASE=INDEX(1)
 CALL SORT4(’SORT=CH,A,1,20 END ’,INDEX(1),INDEX(N),&9999)

 DO 1020 I=1,N

 C

 C IN THE FOLLOWING CALCULATION, 20=THE NUMBER OF BYTES IN A

 C COLUMN=ADROF(NAMES(1,2))-ADROF(NAMES(1,1)).

 C

 C IN GENERAL, IF THE DIMENSIONS OF A FORTRAN ARRAY ARE

 C DECLARED TO BE (D[1],D[2],...,D[N]) AND THE SUBSCRIPTS ARE

 C (S[1],S[2],...,S[N]), THEN THE VALUE OF S[I] CAN BE

 C CALCULATED FROM AN ADDRESS, ADR, BY THE FORMULA

 C

 C S[I]=MOD((ADR-BASE)/(D[0]*D[1]*...*D[I-1]), D[I])+1

 C

 C WHERE BASE=THE ADDRESS OF THE ELEMENT WITH ALL SUBSCRIPTS

 C EQUAL TO 1, D[0]=THE LENGTH OF EACH ELEMENT OF THE ARRAY,

 C AND ALL VARIABLES AND CONSTANTS ARE INTEGER.

 C

 1020 INDEX(I)=(INDEX(I)-BASE)/20+1

 WRITE (6,2000) ((NAMES(I,INDEX(J)), I=1,5), J=1,N)

 ...

 2000 FORMAT(1X,5A4)

 ...

 9999 STOP

 70 The SORT Utility Program

 MTS 5: System Services

 May 1983

 BIBLIOGRAPHY ____________

 Beus, H.L. "The Use of Information in Sorting." JACM 17(1970):482-95. ____

 Black, N.A. "Optimum Merging from Mass Storage." CACM 13(1970):745-49. ____

 Brawn, B.S., Gustavson, E.S., Mankin, E.S. Sorting Performance in a ________________________

 Paged Virtual Memory, Report RC2435. Yorktown Heights, New York: ___________________________________

 IBM T.J. Watson Research Center, 1969.

 Ford, L.R., Johnson, S.M. "A Tournament Problem." Amer. Math. Monthly ___________________

 66(1959):387.

 Friend, E.H. "Sorting on Electronic Computer Systems." JACM ____

 3(1956):134-68.

 Gassner, B.J. "Sorting by Replacement Selection." CACM 10(1967):89-93. ____

 Gotlieb, C.C. "Sorting on Computers." CACM 6(1963):194-201. ____

 IBM. OS Sort/Merge Program, Form GC28-6543. White Plains, New York: _______________________

 IBM Data Processing Division, 1973.

 IBM. OS/VS2 MVS Data Management Services Guide, Form GC26-3875. White ___

 Plains, New York: IBM Data Processing Division, 1976.

 Knuth, D.E. "Length of Strings for a Merge Set." CACM 6(1963):685-88. ____

 Knuth, D.E. "Three Letters on Merging." CACM 6(1963):585. ____

 Malcolm, Jr., W.D. "String Distribution for the Polyphase Sort." CACM ____

 6(1963):217-20.

 Shell, D.L. "Optimizing the Polyphase Sort." CACM 14(1971):713-19, ____

 15(1972):28.

 Stafel, L.E. "Tree Structures for Optimal Searching." JACM ____

 17(1970):508-17.

 Woodrum, L.J. "Internal Sorting with Minimal Comparing." IBM Systems ___________

 Journal 8(1969):189-203. _______

 The SORT Utility Program 71

 MTS 5: System Services

 May 1983

 APPENDIX A: COLLATING FIELDS _____________________________

 The SORT program can order records by any of several schemes. A
 sequence can be based on attributes of the data contained in the
 records, on an attribute of the records, on an attribute of the data set
 in which the records reside, or on some combination of these attributes.

 Any of the following operands are accommodated by the SORT program
 and can be used to induce the desired order.

 Alignment fields (AL) _____________________

 Alignment fields are composed of 1 to 4095 bytes or characters. All
 bit permutations within a field are permitted.

 In the alignment sequence, fields are ordered by the number of
 trailing blanks that occur in each field. If "x" represents any

 character and "y" represents any character other than a blank, then the

 ascending alignment collating sequence is

 ■...■ y■...■ xy■...■ ... x...xy■...■ ... x...xy■ x...xy

 See example 6 in the section entitled "Sort Examples."

 Binary and character fields (BI & CH) _____________________________________

 The binary or character field is the most common of all collating

 fields.

 Binary, or character, fields are composed of 1 to 256 8-bit bytes or

 characters. All bit permutations within a field are permitted.

 In the ascending binary, or character, collating sequence, fields are

 ordered by increasing binary value. The more common graphics are

 ordered

 ■¢.<(+|&!$*);¬-/,%_>?:#@’="
 abcdefghijklmnopqrstuvwxyz

 ABCDEFGHIJKLMNOPQRSTUVWXYZ

 0123456789

 See examples 1, 2, 3, 7, 11, 13, 14, and 15 in the section entitled

 "Sort Examples."

 Bit fields (BT) _______________

 Bit fields are composed of the 8 bits of a single byte. All bit

 permutations within a field are permitted.

 72 The SORT Utility Program

 MTS 5: System Services

 May 1983

 The length specified in the field’s description is used as a mask.
 The logical product, AND, of a record’s bit field and the mask is used
 in the records’ comparison. For a specific mask, the collating sequence
 is identical to the binary sequence.

 See example 9 in the section entitled "Sort Examples."

 CALL fields (CA) ________________

 Call fields are defined by the user and are used in conjunction with

 exit SORTE5. If the comparison of two records reaches the level at

 which CA is encoded, the user’s subroutine, SORTE5, is entered. The

 subroutine’s return code indicates the result of the records’ compari-

 son. If the return code implies equivalent collation, comparisons

 defined subsequent to CA are made as necessary.

 See the description of the exit SORTE5 for further information about

 the CALL field.

 Defined sequence fields (DS(i)) _______________________________

 Defined sequence fields are similar to binary and character fields

 except that the user defines the collating order.

 Defined sequence fields are composed of 1 to 256 8-bit bytes or

 characters. All bit permutations within a field are permitted.

 The collating sequence for a defined sequence field is defined by the

 DS keyword parameter that uses the same character for a delimiter as

 that which appears in the parentheses after the collating field type

 "DS". Each defined sequence field may use a separate collating

 definition, or several fields may share the same definition. If "s"

 represents the collating sequence defined by the string in the DS

 keyword parameter (with possibly some bit combinations defined to

 compare equal), X’00’ is not in "s", and "r" represents the remaining

 bit combinations in their normal character, or binary, collating

 relationship to each other, then the full ascending collating sequence

 is

 X’00’sr

 If X’00’ is in "s", then the ascending collating sequence is

 sr

 In this case, if the field extends beyond the end of a record, the

 resulting order may not be as expected because short records are padded

 with hexadecimal zeros (X’00’).

 See examples 11 and 12 in the section entitled "Sort Examples."

 The SORT Utility Program 73

 MTS 5: System Services

 May 1983

 Fixed-point fields (FI) _______________________

 Fixed-point fields are composed of a sign and an integer. They may
 range from 1 to 260 bytes in length and may be aligned on any byte
 boundary within a record.

 Positive numbers are represented by a sign bit of zero followed by a
 binary integer.

 Negative numbers are represented by a sign bit of one followed by a
 complemented binary integer. The complemented integer is formed by
 inverting each bit in the integer and adding 1 to the result.

 The halfword, fixed-point representations of 2 and -3 are X’0002’ and
 X’FFFD’.

 The ascending fixed-point collating sequence is

 X’8000...00’ ... X’7FFF...FF’

 See examples 5, 6, and 7 in the section entitled "The Entry Point

 SORT" and the examples in the section entitled "The Entry Point SORT2."

 Floating-point fields (FL) __________________________

 Floating-point fields are composed of a sign, a characteristic, and a

 fraction. They may range from 2 to 16 bytes in length and may be

 aligned on any byte boundary within a record.

 Positive numbers are represented by a sign bit of zero followed by a

 7-bit binary characteristic and a 1 to 15 byte hexadecimal fraction.

 The number is formed from the product of a power-of-16 and the fraction.

 The power to which 16 is raised is calculated by subtracting 64 from the

 characteristic. The fraction consists of a series of hexadecimal digits

 with an assumed radix point to the left of the high-order digit. If the

 fraction is 8 to 15 bytes in length, the eighth byte (ninth byte of the __________________________________

 field) is ignored. Consequently, the fraction is treated as though its _________________

 ninth byte immediately followed its seventh byte.

 Negative numbers are identical to their equivalent positive numbers

 save for a sign bit of one.

 The 4-byte floating-point representations of 8 and -12 are

 X’41800000’ and X’C1C00000’.

 If "x" represents any hexadecimal digit, then the ascending floating-

 point collating sequence is

 X’FFFFFFFFFFFFFFFFxxFFFFFFFFFFFFFF’...

 X’7FFFFFFFFFFFFFFFxxFFFFFFFFFFFFFF’

 74 The SORT Utility Program

 MTS 5: System Services

 May 1983

 See example 1 in the section entitled "The Entry Point SORT3."

 Length fields (LE) __________________

 Length fields are composed of a halfword record length generated by

 the SORT program.

 In the ascending length sequence, records are arranged by increasing

 record length.

 Packed decimal fields (PD) __________________________

 Packed decimal fields are composed of 1 to 31 digits and a sign.

 Each digit occupies 4 bits of a byte, i.e., two digits per byte.

 The low-order 4 bits of the last byte specify the sign of the field:

 X’D’ denotes a negative field while X’C’ denotes a positive field.

 -20 and 9 may be represented as X’020D’ and X’9C’, respectively.

 The ascending packed decimal collating sequence is

 X’9999999999999999999999999999999D’...

 X’9999999999999999999999999999999C’

 Sequence fields (SE) ____________________

 The SE parameter may be used to maintain the existing order of

 records that collate equivalently. When sorting, ascending sequence

 "collating" orders the records in the same order in which they are read

 from the source data sets. When merging, ascending sequence "collating"

 orders equivalent records in the order in which their data sets are

 described in the control statement. When equivalent merge records are

 read from the same source data set, they are ordered, for both ascending

 and descending sequence "collating," in the same relationship as they

 are read.

 See example 5 in the section entitled "Sort Examples."

 Signed decimal fields (SD) __________________________

 The signed decimal field is probably the second most prevalent field.

 Signed decimal fields are composed of an optional sign and 1 to 16

 digits or blanks. The digits must be right-justified in the field and

 the sign, which may be "+" or "-", may occupy any location of the field

 which is to the left of the digits. If no sign is present, a "+" is

 assumed.

 The SORT Utility Program 75

 MTS 5: System Services

 May 1983

 The ascending signed decimal sequence is

 -9999999999999999 ... +9999999999999999

 See example 10 in the section entitled "Sort Examples."

 Zoned decimal fields (ZD) _________________________

 Zoned decimal fields are composed of 1 to 16 digits and a sign. Each

 digit, except the last, occupies 1 byte and may be depicted as X’Fx’,

 "x" having a value from X’0’ to X’9’.

 The high-order 4 bits of the last digit specify the sign of the

 field: X’D’ denotes a negative field while X’C’ and X’F’ denote

 positive fields.

 -20 and 9 may be represented as X’F2D0’ and X’C9’, respectively.

 The ascending zoned decimal collating sequence is

 X’F9F9F9F9F9F9F9F9F9F9F9F9F9F9F9D9’...

 X’F9F9F9F9F9F9F9F9F9F9F9F9F9F9F9C9’

 76 The SORT Utility Program

 MTS 5: System Services

 May 1983

 APPENDIX B: RECORD STRUCTURES ______________________________

 The SORT program can process data sets containing records structured
 by any of eight methods. The following symbols usually represent the
 structures: U, F, V, VS, FB, VB, VBS, and FBS.

 The name associated with each structure alludes to characteristics of
 the structure’s record length and blocking scheme. U, F, and V denote
 length attributes, while B and S specify blocking attributes.

 Undefined length (U) ____________________

 The U structure is the most common of all record structures.

 Type U records are of variable length and are not blocked. Each
 block of data transmitted by the device support routine associated with
 a data set is treated as a record.

 The declared record and block lengths of type U records must be
 equal. For a source data set, the declared lengths designate the length
 of the longest record in the data set. For a sink data set, the
 declared lengths indicate the length of the longest record to be
 written. Truncation of output records occurs if the actual record
 length exceeds the declared length.

 Fixed length (F) ________________

 The F structure is probably the second most common record structure.

 Type F records are of fixed length and are not blocked. They are
 similar to type U records save for an assumption implicit in their
 length specifications.

 The declared record and block lengths of type F records must be
 equal. For a source data set, the declared lengths specify the length
 of each record existing in the data set. Extension (padding with
 blanks) of input records occurs if the actual record length is less than
 the declared length. For a sink data set, the declared lengths indicate
 the length of each record to be written. Truncation or extension of
 output records occurs if the actual record length is not equal to the
 declared length. Note that input records are never truncated.

 Fixed length; blocked (FB) __________________________

 Type FB records are of fixed length and are blocked. Each block is
 composed of several concatenated type F records.

 In a source data set’s declaration, the record length denotes the
 length of each record in the data set. If the actual length of the last

 The SORT Utility Program 77

 MTS 5: System Services

 May 1983

 record in an input block is less than the declared length, extension
 occurs. The block length indicates the length of the longest block in
 the data set and must be an integral multiple of the record length.

 In a sink data set’s declaration, the record length specifies the
 length of each record to be written. If the actual length of an output
 record is not equal to the declared length, truncation or extension
 occurs. The declared block length must be an integral multiple of the
 record length.

 Fixed length; blocked; standard (FBS) _____________________________________

 The specifications of type FBS and FB records are identical except
 for the rules pertaining to block formation. The actual length of each
 block of an FBS data set, except the last, must be equal to the declared
 block length. Both FB and FBS records are treated identically by SORT.

 Variable length (V) ___________________

 The V structure occurs infrequently and is often mistaken as a
 substitute for the U structure.

 Type V records are of variable length and are not blocked. The text
 of each record is prefaced by a 4-byte record descriptor (RD) and a
 4-byte block descriptor (BD). Thus each block looks like this

 BD | RD | TEXT ______________

 The first two bytes of the block descriptor contain the fixed-point,
 byte length of the block, including the block-descriptor length. The
 third and fourth bytes of the block descriptor contain zero. The first
 two bytes of the record descriptor contain the fixed-point sum of the
 byte lengths of the text and the record descriptor, i.e., the text
 length plus 4. The third and fourth bytes of the record descriptor
 contain zero.

 The declared block length of type V records must be 8 bytes greater
 than the declared record length. For source data sets the declared
 record length specifies the length of the longest record in the data
 set. For sink data sets the declared record length establishes the
 length of the longest record to be written. If the actual length of an
 output record exceeds the declared length, the record is truncated.

 Note that the type V record length does not include the length of the
 record descriptor as it does in IBM’s Operating System.

 Variable length; blocked (VB) _____________________________

 Type VB records are of variable length and are blocked. Their
 structure is similar to that of type V records.

 78 The SORT Utility Program

 MTS 5: System Services

 May 1983

 The text of each record is prefaced by a 4-byte record descriptor,
 and each block is prefaced by a 4-byte block descriptor. The block and
 record descriptors are the same as for type V records. Each block
 resembles the following:

 BD | RD1 | TEXT1 | RD2 | TEXT2 | ... ____________________________________

 In a source data set’s declaration, the record length indicates the
 length of the longest record occurring in the data set, and the block
 length indicates the length of the longest block in the data set. The
 block length must be at least 8 bytes longer than the record length.

 In a sink data set’s declaration, the record length indicates the
 length of the longest record to be written into the data set, while the
 block length indicates the length of the longest block to be formed.
 The block length must be at least 8 bytes longer than the record length.
 If the actual record length of an output record exceeds its declared
 length, the record will be truncated.

 Variable length; spanned (VS) _____________________________

 The VS structure, although relatively uncommon, does occur when
 unformatted output is written by a FORTRAN program.

 Type VS records are of variable length and may occupy more than one
 block. Each block contains a record segment, which may be all or part
 of a record; and the segments are not blocked. The text of each segment
 is prefaced by a 4-byte segment descriptor (SD) and a 4-byte block
 descriptor. Each record resembles the following:

 BD1 | SD1 | TEXT-SEG1 _____________________

 BD2 | SD2 | TEXT-SEG2 _____________________

 BD3 | SD3 | TEXT-SEG3 _____________________

 ...

 The block descriptor is the same as for type V records. The first
 two bytes of the segment descriptor contain the fixed-point sum of the
 byte lengths of the segment text and the segment descriptor, i.e., the
 segment text length plus 4. The third and fourth bytes of the segment
 descriptor contain zero except for the seventh and eighth bits of the
 third byte. If the seventh bit, X’02’, of the third byte is a one, a
 segment of the record precedes this segment. If the eighth bit, X’01’,
 of the third byte is a one, a segment of the record follows this
 segment.

 The declared block length of type VS records must be greater than 8
 bytes and may be less than the declared record length. For source data
 sets the declared record length specifies the length of the longest
 record in the data set. For sink data sets the declared record length

 The SORT Utility Program 79

 MTS 5: System Services

 May 1983

 establishes the length of the longest record to be written. If the
 actual length of an output record exceeds the declared length, the
 record is truncated.

 Note that the type VS record length does not include the length of
 the segment descriptor as it does in IBM’s Operating System.

 Variable length; blocked; spanned (VBS) _______________________________________

 Type VBS records are of variable length; they may occupy more than
 one block; and the segments are blocked. Their structure is similar to
 that of type VS records.

 The text of each segment is prefaced by a 4-byte segment descriptor,
 and each block is prefaced by a 4-byte block descriptor. The block
 descriptor is the same as for type V records; the segment descriptor is
 the same as for type VS records. Thus blocks resemble this

 BD1 | SD1 | TEXT1 | SD2 | TEXT2-SEG1 ___

 BD2 | SD3 | TEXT2-SEG2 ___

 BD3 | SD4 | TEXT2-SEG3 | SD5 | TEXT3 | SD6 | TEXT4 | SD7 | TEXT5-SEG1 ___

 ...

 In a source data set’s declaration, the record length indicates the
 length of the longest record occurring in the data set, and the block
 length indicates the length of the longest block in the data set. The
 block length must be greater than 8 bytes and may be less than the
 record length.

 In a sink data set’s declaration, the record length indicates the
 length of the longest record to be written into the data set, while the
 block length indicates the length of the longest block to be formed.
 The block length must be greater than 8 bytes and may be less than the
 record length. If the actual record length of an output record exceeds
 its declared length, the record will be truncated.

 80 The SORT Utility Program

 MTS 5: System Services

 May 1983

 APPENDIX C: SUMMARY OF THE CONTROL STATEMENT ___

 Prototype:
 [COPY|[[SORT|MERGE][=[[type],[aspect],[location],[length],]... _ _ _
 [type][,[aspect][,[location][,[length]]]]]]]
 [[DS=delimiter[string]delimiter■]...DS=delimiter[string]delimiter] _ _
 [INPUT[=[[name],[structure],[record length],[block length],]... _
 [name][,[structure][,[record length][,[block length]]]]]]
 [OUTPUT[=[[name],[structure],[record length],[block length],]... _
 [name][,[structure][,[record length][,[block length]]]]]]
 [additional parameter]...
 [END] _

 Collating fields:
 TYPE | CODE | SIGN PRESENT | FIELD LENGTH (BYTES)
 ──────────────────────┼───────┼──────────────┼──────────────────────────
 | | |
 alignment | AL | no | 1 - 4095 _
 binary | BI | no | 1 - 256 _
 bit | BT | no | 1 - 255 (mask)
 call | CA | - | 1 - 4095
 character | CH | no | 1 - 256 _
 defined sequence | DS(i) | no | 1 - 256 _ ___
 fixed-point | FI | yes | 1 - 260 _
 floating-point | FL | yes | 2 - 16
 length | LE | - | - _
 packed decimal | PD | yes | 1 - 16 _
 sequence | SE | - | -
 signed decimal | SD | yes | 1 - 17 _
 zoned decimal | ZD | yes | 1 - 16 _

 Record structures:
 CODE | RECORD STRUCTURE
 ───────┼─────────────────────────────────────
 U | undefined length
 F | fixed length
 V | variable length
 VS | variable length; spanned
 FB | fixed length; blocked
 VB | variable length; blocked
 VBS | variable length; blocked; spanned
 FBS | fixed length; blocked; standard

 Additional parameters:
 CHK (exit check facility) __
 DEC (delete comments) __
 DEL=x[,x]... (delete output records)
 LIO (list data set characteristics) _
 {REC|MNR}=x (number of records) _ __
 RES=x (restart)
 SIG (sign off on error) __
 TPS[={x|name,name[,name]...}] (tape-merge sort facility) _

 The SORT Utility Program 81

 MTS 5: System Services

 May 1983

 82 The SORT Utility Program

 MTS 5: System Services

 May 1983

 THE DYNAMIC LOADER __________________

 ELEMENTARY LOADER TOPICS ________________________

 Introduction ____________

 Programs written in languages other than machine language must be
 translated into machine language and loaded into main memory before they
 can be executed. While a program is being debugged, it is useful to
 have language processors like *WATFIV and *SNOBOL4 that can translate a
 program, load it into main memory, and monitor its execution. However,
 once a program is debugged, it is useful to save it in translated form
 so that it need not be translated each time it is used.

 If the translation process is separated from the loading process,
 certain information about the translated program must be retained
 besides the machine language instructions (e.g., the names of subrou-
 tines it calls, the location-dependent parts of the program, etc.). For
 uniformity, a data structure called an object module is defined for this
 purpose and a single system program called the dynamic loader is used to
 load programs in object-module form into main memory in executable form.
 This enables language processors like *FTN and *ASMH to translate
 programs into object-module form and save them on auxiliary storage.
 Subsequently, the object program can be loaded into main memory by the
 system loader and executed without invoking a language processor.

 This section describes the facilities that are provided by the system
 loader in MTS. The loader provides only primitive facilities for
 editing programs in object-module form. Additional facilities in MTS
 are provided by the object-file editor and the linkage editor which are
 described in the sections "The Object-File Editor" and "The Linkage

 Editor."

 Overview of the Loading Process _______________________________

 The loader can be invoked at the MTS command language level in

 several different ways:

 $RUN FDname

 $RERUN FDname

 $LOAD FDname

 $DEBUG FDname

 The Dynamic Loader 83

 MTS 5: System Services

 May 1983

 Invocation by a $RUN or $RERUN command:

 (1) Memory, files, and devices acquired by previous commands and all

 of their consequences are released.

 (2) Devices required for execution of the program are acquired.

 (3) The program is loaded and a map is produced if the MAP parameter

 was specified.

 (4) The registers are set up for a normal subroutine call.

 (5) The system transfers to the program at the entry point.

 (6) The program can return to the system via normal subroutine

 return conventions or by calling the system subroutines SYSTEM

 or ERROR.

 Invocation by a $LOAD command:

 This is processed exactly as a $RUN command, except that the loaded

 program is not executed; instead, the system remains in MTS command

 mode. Execution of the program may be started via the $START or

 $RESTART command. This allows the user to display and alter sections

 of the loaded program before execution begins.

 Invocation by a $DEBUG command:

 This is processed exactly like the $LOAD command except that debug

 command mode is entered and Symbolic Debugging System symbol tables

 are constructed using the information provided by the object program.

 The loader can also be invoked dynamically during execution via calls to

 the subroutines LINK, LOAD, and XCTL (see the subsection "Dynamic

 Loading"). In each case, the loader processes one or more object

 modules contained in one or more files. The files to be accessed may be

 specified both explicitly and implicitly. For example,

 $RUN MAIN+SUBR+*PL1LIB

 In this case, the loader processes each object module in the files MAIN

 and SUBR. It selectively processes only required object modules from

 the library file *PL1LIB. If, after processing the explicitly named

 files, there are still unresolved external symbols (normally subroutine

 calls), the loader will implicitly search any private user files

 specified previously by the $SET LIBSRCH=FDname command. If there are

 still unresolved symbols, the loader will implicitly search the system

 library file *LIBRARY and the resident system symbol table. If there

 are still unresolved symbols, the loader will prompt conversational

 users for more input; batch users will get an error message from the

 loader and the loading process will be aborted.

 During the loading process, several different types of output will be

 produced by the loader:

 (1) An image of the program is constructed in executable form in the

 user’s virtual memory.

 (2) A unique entry point is determined that is the address of the

 84 The Dynamic Loader

 MTS 5: System Services

 May 1983

 first instruction to be executed in the loaded program (see
 Appendix A of this section for the specific algorithm used).
 (3) Error messages may be produced if unusual conditions are
 detected (see Appendix B for a list of error messages).
 (4) A map is produced on request specifying the entry point of the
 program and where each independent section was loaded (see
 Appendix C for a sample map).
 (5) A cross-reference listing is produced on request specifying
 where in the loaded program each external symbol was referenced.

 If there remain undefined external symbols after processing all explic-
 itly and implicitly specified files, the conversational user is prompted
 with the message

 Enter location of more loader input, "CANCEL", "IGNORE", "USMSG",

 "UXREF", or "MAP":

 ?

 The responses can be:

 (1) An FDname, which specifies a file or device from which more

 loader input can be read.

 (2) CANCEL, in which case a return is made to MTS command mode. All

 programs loaded thus far are in the user’s virtual memory and

 can be executed, if desired, with the $START command unless the

 loader was invoked via the subroutines LINK or XCTL.

 (3) IGNORE, in which case the loading process is completed without

 defining the specified undefined symbols.

 (4) USMSG, in which case the list of undefined symbols that caused

 the prompting is printed on the logical I/O unit SERCOM and the

 user is again prompted.

 (5) UXREF, in which case a list of the locations of each reference

 to the undefined symbols that caused the prompting is printed on

 SERCOM and the user is again prompted.

 (6) MAP, in which case a map of the current loading process is

 printed on SERCOM and the user is again prompted.

 If, during the loading process, an illegal loader record is encountered,

 the erroneous record is printed out and is treated as an end-of-file.

 Structure of Compiler-Generated Object Modules __

 From the loader’s point of view, an object program consists of a

 series of object modules contained in one or more files. The object

 modules describe the logical structure of the program to be loaded;

 namely, the name, the origin, and the length of each independent

 component, the external subroutines that are called, the actual machine

 instructions and constants, and a description of the location-dependent

 parts within the program. An object module has no name or length

 associated with it. Each object module defines one or more components,

 The Dynamic Loader 85

 MTS 5: System Services

 May 1983

 each of which is independent in the sense that there is no fixed
 relationship between where it and any other program components are
 loaded. These independent components are called control sections
 (csects) and have a name, an origin, and a length associated with them.
 Items within a control section must always be loaded a fixed distance
 apart as specified by the compiler. Hence, a control section is the
 smallest relocatable unit in an object program.

 Each language processor has its own algorithm for translating source
 programs into object programs. *FTN produces one object module for each
 main program and subprogram encountered; each object module defines
 exactly one control section whose name and length are the same as the
 translated source program. *PL1 produces one object module for each
 external procedure encountered; each object module defines many control
 sections of different lengths whose names are generated from related
 items in the source programs.

 Physically, an object program consists of a sequence of loader
 records contained in one or more files. Each compiler-generated object
 module consists of sequence of loader records of the following types:

 SYM records: Symbolic Debugging System information
 ESD records: external symbol dictionary
 TXT records: machine text and constants
 RLD records: relocation dictionary
 END records: object module terminator

 SYM records are produced by *ASMG, *ASMH, *ASMT, *FTN, *PL1, and
 *PL360 when the TEST option is specified. The information contained on
 these records is used by SDS (the Symbolic Debugging System) to
 construct symbol tables internal to SDS for debugging and is completely
 ignored by the loader.

 ESD records contain the description of each control section in the
 module (name, origin, and length), a description of alternate entry
 points within the module, a description of the common sections and
 pseudo-registers required by the module, and the names of external
 subroutines called by the control sections in this module.

 TXT records contain the actual machine instructions and constants to
 be inserted in the control sections in the module.

 RLD records contain information about which parts of the control
 sections in this module have location-dependent items which must be
 modified during loading.

 END records serve as object module terminators and can optionally
 specify the program entry point (see Appendix A on entry point
 determination).

 The ordering restrictions on the loader records in an object module
 are minimal.

 86 The Dynamic Loader

 MTS 5: System Services

 May 1983

 (1) All SYM records (if any) must come first.
 (2) The ESD record defining a control section must come before the
 associated TXT and RLD records.
 (3) The TXT record for a location-dependent item must come before
 the associated RLD record.
 (4) The END record terminates the current object module.

 Hence, an object module is roughly characterized as beginning with
 either a SYM or ESD record and terminating with an END record. In
 between, there can be any convenient combination of record types which
 satisfy the above restrictions.

 Three system utility programs are available for scanning object
 programs--*OBJSCAN, *OBJLIST, and *OBJUTIL. *OBJSCAN gives the order of
 the loader records in an object file. *OBJLIST interprets the informa-
 tion on each loader record in an object file. See MTS Volume 2, Public ______
 File Descriptions, for the complete descriptions of *OBJSCAN and __________________
 *OBJLIST. *OBJUTIL is a general-purpose object-file utility program
 that provides similar capabilities through its command language. *OBJU-
 TIL is described in the section "The Object File Editor" in this volume.

 Processing an Object Module ___________________________

 The loader constructs a loader symbol table of the names of all

 control sections encountered during the loading process. ESD records

 are the main source of such names. They contain the names, origins, and

 lengths of control sections defined in the current module and the names

 of control sections that are referenced by the current module but

 defined elsewhere. If a control section definition is encountered, the

 length is used to allocate space for it in the user’s virtual memory and

 an entry is made in the symbol table with its corresponding virtual

 memory address and length. If a control section reference is encoun-

 tered and that control section has not been defined by a previous

 module, an entry is made in the symbol table with the unresolved flag

 set. All symbols on ESD records are given an external symbol identifi-

 cation number (ESID) by the compiler (1, 2, 3, etc.) that will be used

 on subsequent TXT and RLD records to indicate which control sections are

 involved. These ESIDs are unique only within an object module and need

 not start with 1 or be sequential.

 TXT records contain the text to be inserted in a control section.

 The ESID of the appropriate control section and the displacement within

 the control section is taken from the TXT record to compute the virtual

 memory address at which the text should be inserted.

 RLD records specify those text items that are location-dependent and

 must be modified. Each item on an RLD record specifies the ESID of the

 control section containing the location-dependent data, its displacement

 within the control section, its length and alignment, and finally the

 ESID of the control section on whose location the data item is

 The Dynamic Loader 87

 MTS 5: System Services

 May 1983

 dependent. Each item of this type is modified by the loader using this
 information and the symbol table.

 The END record terminates processing of the current object module.

 Note that while already complex, this is a greatly simplified view of
 object-module processing. In particular, the discussion of the follow-
 ing topics are deferred for later subsections:

 - multiply-defined control sections
 - common and pseudo-register processing
 - block data subprograms
 - external references
 - initial ESD lists and low-core symbol tables

 Storage Allocation During the Loading Process ___

 The loader allocates storage in user virtual memory for each control
 section and common section encountered during the loading process. This
 storage is allocated via separate calls to the GETSPACE subroutine for
 each control section and common section. Hence, no assumptions should
 be made as to where a particular section will be loaded in user virtual
 memory. The loader also builds dynamic tables in system virtual memory.
 The loader table storage is released before execution begins if the
 SYMTAB option of the $SET command is OFF; the default is ON, in which

 case the tables are not released and information about the loaded

 program is available during execution for use by SDS, the loader, MTS,

 and user programs via the subroutine LOADINFO. All storage allocated

 during loading is released when the program terminates normally (i.e.,

 stops with the EXECUTION TERMINATED message). Otherwise, the storage is

 not released until the $UNLOAD command or another $RUN, $RERUN, $LOAD,

 or $DEBUG command is specified.

 ADVANCED LOADER TOPICS ______________________

 Modifying Programs in Object-Module Form __

 There are currently three methods for modifying object programs.

 The least recommended method is the use of the MTS file editor

 ($EDIT) when an object program is in a file. In this case, one can scan

 for certain strings and replace them. Care must be taken to make

 one-for-one replacements since loader records have fixed-length fields.

 It may also happen that the string scanned for is broken across two

 loader records and not found. The editor is best used to change the

 names contained on ESD records.

 88 The Dynamic Loader

 MTS 5: System Services

 May 1983

 The least error-prone method is to use the facilities of the MTS
 linkage editor or object file editor which are described in the sections
 "The Linkage Editor" and "The Object File Editor" in this volume.

 A less expensive, but more error-prone, method involves inserting

 user-generated records into the object file in appropriate places to

 modify the loading process. This usually requires the object program to

 be in a line file since records are generally inserted into rather than

 added to the end of a module. It also requires knowledge of object

 module itself via *OBJSCAN and *OBJLIST. A brief description of the

 user-generated records follows. The physical format of these records is

 specified in the appendices.

 ALI Record (Alias) ___

 The ALI record may be used to specify symbols that are to be

 treated identically, i.e., as synonyms, during the loading process.

 The record may be inserted anywhere within an object module with

 the only restriction that both symbols on the ALI record may not be

 previously defined (although either one may be). A symbol may have

 any number of aliases but only one alias may be defined per ALI

 record.

 COM Record (Comment) ___

 The COM record is completely ignored by the loader. It can be used

 to insert a comment anywhere in an object program.

 DEF Record (Define) ___

 The DEF record can be used to define an external symbol currently

 undefined in the object program. A symbol can be defined in two

 ways: an absolute definition or a relative definition. An

 absolute DEF record is independent of any other symbols defined in

 the object program and can be inserted anywhere. The value of the

 symbol is its actual virtual memory address. A relative DEF record

 defines a symbol relative to an existing control section in the

 object program. Relative DEF records must appear in the module

 which defines the associated control section. In this case, the

 value is specified by giving the ESID of the associated control

 section and a relative address within it.

 ENT Record (Entry) ___

 An ENT record may be used to specify the entry point of the object

 program. The record contains the external name of the first

 instruction to be executed and may be inserted anywhere in the

 object program. See Appendix A for a complete description of entry

 point determination.

 The Dynamic Loader 89

 MTS 5: System Services

 May 1983

 LCS Record (Low Core Symbol) _ _ _

 An LCS record may be inserted before or after an object module to
 force the loader to scan a low-core symbol table (previously
 defined) for definitions or unresolved symbols. See the section
 describing initial ESD lists and low-core symbol tables.

 LDT Record (Load Terminate) _ _ _

 An LDT record can be used as a pseudo-end-of-file for the loader.
 The loader will never read past an LDT record; hence, it is useful
 if other information besides an object program is to be stored in a
 file. It can also be used to specify the object program entry
 point.

 MDL Record (Multiple Definition Loading) _ _ _

 The MDL record controls the handling of multiply-defined control
 sections and must be inserted before or after object modules.
 Normally, all occurrences of a control section except the first are
 ignored. The MDL ON record specifies that subsequent occurrences
 of a control section are to be overlayed on the first. This
 requires that subsequent definitions of a control section be no
 longer than the first and that address constants be defined by only
 one occurrence of the control section or else be defined the same
 in all occurrences; otherwise, unpredictable results may occur.

 MSG Record (Message) _ _ _

 The MSG record may be used to produce a message on the map file or
 device (defaults to *SINK*) at the point at which the MSG record is
 encountered by the loader.

 NCA Record (No Care) _ __

 The NCA record may be used to specify that the user does not care
 if a symbol is undefined. The NCA record has effect only if it
 precedes all references to the symbol specified. Any symbol left
 undefined by an NCA record has the value zero; hence, a program can
 test whether a symbol is undefined. If an NCA record is the first
 reference to a symbol, it has the following effects:

 (1) The loader makes no attempt to resolve the symbol when
 searching libraries and low-core symbol tables.
 (2) The loader does not consider the symbol undefined if it has
 not been defined by the end of the loading process.

 OPT Record (Options) ___

 The OPT record may be used to control various options during the
 loading process. Currently, the following options are allowed:

 90 The Dynamic Loader

 MTS 5: System Services

 May 1983 Page Revised September 1985

 (1) MDL={ON|OFF}

 The MDL option is equivalent to the MDL loader record function
 described above.

 (2) WARN={ON|OFF}

 Nonfatal loader error messages are printed if WARN is set to
 ON (the default); otherwise, these error messages are
 suppressed.

 (3) NULMSG={ON|OFF}

 The NULMSG option controls the action of the loader when an
 attempt is made to load a null program. If NULMSG is ON (the
 default), the loader prints an error message and, if in
 conversational mode, prompts the user for more loader input;
 for batch mode, the loading operation is aborted. If NULMSG
 is OFF, the error message is suppressed and the user is not
 prompted for more input, i.e., the loading operation is
 aborted (this is the same as if the user had entered "CANCEL"

 in response to a request for more loader input).

 (4) NCALCS={ON|OFF}

 If the NCALCS option is ON, the loader will attempt to resolve

 symbols defined by NCA records when searching the low-core

 symbol tables. If NCALCS is OFF (the default), no attempt is

 made to resolve these symbols.

 (5) PUSH

 The PUSH option saves the current status of the OPT record

 options.

 (6) POP

 The POP option restores the OPT record options to the previous

 PUSH status.

 (7) FILL={xx|OFF}

 If "xx" is specified, the loader will preset the storage

 allocated for each control section to the fill string "xx",

 before any associated text is processed. "xx" may be from 2

 to 16 hexadecimal digits of appropriate length, i.e., byte,

 halfword, fullword, or doubleword. If OFF is specified, the

 loader will not fill memory (the default).

 (8) SAVESD={ON|OFF}

 By default, the loader will purge any symbols from its symbol

 tables that have not been referenced by any RLD (relocation

 The Dynamic Loader 91

 MTS 5: System Services

 Page Revised September 1985 May 1983

 dictionary) items or RIP records. This action corresponds to
 the option SAVESD=OFF. If SAVESD=ON is specified, all exter-
 nal symbols will be marked as referenced, forcing the loader
 to attempt to resolve these "unreferenced" symbols.

 (9) WXLCS={ON|OFF}

 If the WXLCS option is ON, the loader will attempt to resolve

 symbols of type WX (weak external reference) when searching

 the low-core symbol tables. If WXLCS is OFF (the default) no

 attempt is made to resolve these symbols.

 (10) BTCRPL={ON|OFF} ___

 The BTCRPL (branch-type constant replace) option controls the

 loader relocation of branch-type address constants (V-adcon)

 when RLD records are processed. If BTCRPL=OFF is specified

 (the default), the loader adds the value of the V-adcon to the

 contents of the location specified by the RLD item address.

 If BTCRPL=ON is specified, the loader replaces the contents of

 the location specified by the corresponding RLD item with the

 V-adcon. This option is normally not required since most MTS

 compilers produce TXT or CSI records that have zero values in

 the locations that have branch-type adcon contants.

| (11) DEFPRV

|

| The DEFPRV option forces the loader to resolve all pseudo-

| register references that have been encountered up to this

| point in the load. Any currently undefined pseudo-register

| references are defined, any undefined CXDs are set to the

| current cumulative PRV length, and the cumulative PRV length

| is reset to 0. Subsequent pseudo-register references are

| resolved as follows:

|

| (a) if the pseudo-register name is the same as a previously

| resolved pseudo-register, the offset for the new pseudo-

| register is made the same as the previous occurrence of

| that pseudo-register.

| (b) if this portion of the load refers to any pseudo-registers

| which were previously resolved, any new pseudo-registers ___

| will be given offsets greater than any previously defined

| pseudo-registers. Otherwise, the offsets for any new

| pseudo-registers begin at 0.

 Any number of options may be specified on the OPT record. Each

 option must be separated by a comma. The processing of the option

 string is terminated by the first blank or by a syntax error.

 REP Records (Replace) ___

 The REP record can be used to correct erroneous text in a control

 section by overlaying the original text. This means a REP record

 92 The Dynamic Loader

 MTS 5: System Services

 May 1983 Page Revised September 1985

 must be inserted into an object module after the compiler-generated
 TXT record containing the original text and must be a one-for-one
 replacement. If it corrects a location-dependent item, it must be
 inserted before the compiler-generated RLD record specifying that
 item. In all cases, REP records must be inserted before the module
 END record. The replacement text is a variable-length sequence of
 pairs of hexadecimal numbers which can be separated by commas for
 readability, and which is terminated by a blank. The text being
 replaced can begin on any byte boundary.

 RIP Record (Reference If Present) _ _ _

 The RIP record has two uses. The primary use is in object module
 libraries (see the subsection "Library Processing"). It can also

 be used to generate an unconditional reference to a symbol which

 specifies to the loader that the symbol in question must be defined

 before the loading process terminates. This is a convenient way to

 force a symbol to be defined during loading even though there are

 no compiler-generated references to the symbol (see, for example,

 the use of unconditional RIP records in the subsection "Initial

 The Dynamic Loader 92.1

 MTS 5: System Services

 Page Revised September 1985 May 1983

 92.2 The Dynamic Loader

 MTS 5: System Services

 May 1983

 ESD-Lists and Low-Core Symbol Tables). RIP records must be
 inserted before or after object modules.

 Common-Section Processing _________________________

 In addition to defining control sections, an object module may define
 common sections. Common sections are similar to control sections in
 that both have names, origins, and lengths associated with them. Common
 sections differ from control sections in that they may have no text
 associated with them (and hence no RLD items) and any object module in
 an object program may redefine a common section with a different origin
 and length. It is the job of the loader to collect these various
 definitions, allocate storage for it using the longest length encoun-
 tered, and resolve individual object module references to the common
 sections using the appropriate origin. This means that storage alloca-
 tion for common sections is deferred until all object modules have been
 processed.

 Since no text may be associated with common sections, the problem of
 preinitializing common sections arises. To solve this problem, control
 sections having the same name as common sections are merged. Since
 control sections can have text in them, overlaying a control section on
 a common section has the effect of initializing it. This is how the
 FORTRAN BLOCK DATA subprogram works. It should be noted however that
 when a control section of this type is encountered, the loader must
 allocate storage for the common area at that time since text may now be
 inserted. This means that the control section must specify the longest
 length required for the common area or that the longest length has
 already been encountered.

 Pseudo-Register Processing __________________________

 In addition to defining control sections and common sections, an
 object module may define pseudo-register areas. The name pseudo-
 register comes from a particular application of this facility in PL/I
 object programs. The concept itself is better described in assembler
 language terms as a global or external dsect (external dummy control
 section). It is a dsect in the sense that no storage is allocated for
 it by the loader. It is the program’s responsibility to allocate
 storage and establish addressability. It is external or global in the
 sense that there can be only one external dsect. It has no name;
 however, the name of each element in it is an external symbol. Object
 modules define elements in the external dsect (pseudo-register area) by
 specifying a name, length, and alignment attribute. The loader collects
 requests for such elements during the loading process. If more than one
 specification for a particular element is encountered, the longest
 length and strictest alignment are retained. Finally, when all object

 The Dynamic Loader 93

 MTS 5: System Services

 May 1983

 modules have been processed, the loader assigns to each item a
 displacement within the external dsect according to the accumulated
 length and alignment attributes (just like the assembler does for
 internal dsects). The value of symbols in the external dsect area will
 be their offset within the area. The loader also computes the
 cumulative length of the area. The total length can be accessed by the
 object program via a special RLD item and used to allocate the storage
 for the pseudo-register area at execution time.

 Merging External Symbols ________________________

 During the loading process the loader builds a table of the external
 symbols encountered. External symbols are by definition 8 characters
 long, padded on the right with blanks if necessary. External symbols
 can be the names of control sections, common sections, pseudo-register
 area items, entry points within control sections, predefined symbols, or
 references to external symbols defined elsewhere. The loader must
 integrate these external symbols as they are encountered during the
 loading process in order to resolve symbolic references between various
 components of the object program. The conventions that are used have
 evolved over the years to accommodate the various language processors.

 (1) Control sections with the same name are considered multiply-
 defined. All occurrences except the first are ignored unless
 MDL is ON (see the discussion of the MDL record).
 (2) Common sections with the same name are identical and are
 overlayed with control sections of the same name.
 (3) There is a special type of control section called a private
 control section (psect) which has no name (8 blanks). Each
 occurrence of a psect is unique and independent of any others.
 Moreover, psects do not merge with blank-named common sections.
 This is why no block-data subprograms are allowed for blank-
 named common sections.
 (4) Pseudo-register area items with the same name are identical.
 Such items can have the same name as control sections and common
 sections, but are considered unique and independent.

 The following table summarizes the action taken by the loader when it
 encounters a symbol in the input stream which is already in the loader
 table:

 94 The Dynamic Loader

 MTS 5: System Services

 May 1983

 Symbol Type in Loader Tables

 Entry Pre- External
 CSECT COMMON PR PSECT Point Defined Ref.
 ┌───┐ ┌ ┌ ┌ ┌ ┌ ┌
 CSECT| MD | ME | UN | - | MD | MD | ME |
 |───────┼───────┼───────┼───────┼───────┼───────┼───────| ┌ ┘
 Symbol COMMON| ME | ME | UN | UN | ME | ME | ME |
 |───────┼───────┼───────┼───────┼───────┼───────┼───────| ┌ ┘
 Type in PR| UN | UN | ME | UN | UN | UN | UN |
 |───────┼───────┼───────┼───────┼───────┼───────┼───────| ┌ ┘
 Input PSECT| - | UN | UN | UN | - | UN | - |
 |───────┼───────┼───────┼───────┼───────┼───────┼───────| ┌ ┘
 Stream Entry| MD | ME | UN | - | MD | MD | ME |
 |───────┼───────┼───────┼───────┼───────┼───────┼───────| ┌ ┘
 Pre-def| MD | ME | UN | UN | MD | MD | ME |
 |───────┼───────┼───────┼───────┼───────┼───────┼───────| ┌ ┘
 Ex. Ref| ME | ME | UN | - | ME | ME | ME |
 └───┘ ┘ ┘ ┘ ┘ ┘ ┘

 -: match is not possible
 MD: considered a multiple-definition; no new entry is made
 ME: considered identical and merged
 UN: considered unique; an independent entry is maintained for both

 Library Processing __________________

 A library of object modules is structured so that the loader can
 selectively load only those modules that are needed to define undefined
 symbols. A symbol is considered undefined by the loader if it has been
 referenced but not defined by the modules already loaded before an NCA ______
 record for that symbol was encountered. The basic idea is to abstract
 from each module in the library a brief description of what symbols each
 module defines. A library structure consists of additional loader
 records that contain the library module descriptions. The loader looks
 at these records, and processes the associated module only if it
 resolves an outstanding reference. Currently, there are three types of
 library control records:

 LIB Record (Library) ___

 The LIB record immediately precedes the first record of its
 associated object module. It contains the name of the first
 nonblank control section or entry point in the associated object
 module and may optionally contain a pointer to the next item in the
 library. The loader processes the LIB record by checking the name
 on the LIB record. If the name matches an undefined symbol in the
 loader tables, the module is processed. If not, the module is
 ignored by using the pointer to the next library item (if
 available) or by reading and ignoring each record in the module to
 be skipped.

 The Dynamic Loader 95

 MTS 5: System Services

 May 1983

 RIP record (Reference If Present) _ _ _

 The RIP record is used in conjunction with LIB records to solve two
 problems: multiple entry point library modules and multiple passes
 over the library. RIP records force the loader to put additional
 undefined symbols in the loader table conditional upon which
 symbols are currently undefined. They take the form

 RIP SYM1 SYM2

 and specify that if SYM2 is currently undefined, then, if SYM1 is
 not already defined, it should be inserted in the loader tables as
 undefined.

 The multiple entry point problem arises when a library module
 defines more than one symbol. Since its LIB record can contain
 only one symbol, some provision must be made for references to the
 other entry points. This is solved by preceding the LIB record
 with one RIP record for each alternate entry point in the module as
 follows:

 RIP M1 A1
 RIP M1 A2
 .
 .
 .
 LIB M1
 ┌────────────────────────┐
 | |
 | Module defining |
 | M1, A1, A2, ... |
 | |
 └────────────────────────┘

 Any unresolved references to the alternate entry points A1, A2, ...
 will force an unresolved reference to M1 (unless already present)
 and hence the module defining M1, A1, A2, ... will be processed
 when the LIB record is encountered.

 The problem of multiple library scans arises when modules in a
 library reference each other. In general, it is impossible to
 order the modules so that there are no back references to preceding
 modules. Hence, the loader may ignore library module A because
 there were no unresolved references to A when it was encountered
 even thought a subsequent library module required loading and
 references A. Since it would be expensive and inefficient to
 rescan the library until all undefined symbols have been resolved,
 the problem of back references is solved by beginning the library
 with a sequence of RIP records, one for each back reference as
 follows:

 96 The Dynamic Loader

 MTS 5: System Services

 May 1983

 RIP A B
 .
 .
 .
 ┌────────────────────────┐
 | |
 | Module defining A |
 | |
 └────────────────────────┘
 .
 .
 .
 ┌────────────────────────┐
 | |
 | Module defining B |
 | which references A |
 | |
 └────────────────────────┘

 In this case an unresolved reference to B will force an unresolved
 reference to A (unless already present). Consequently, both A and
 B will be loaded in one pass.

 DIR Record (Directory) ___

 The DIR record is used to collect the entry point information for
 all modules in the library into one large directory at the
 beginning of the library. The DIR record contains the size of the
 directory and a pointer to the end of the library. The directory
 itself is the very next record after the DIR record. It contains
 one entry for each symbol defined in the library and a correspond-
 ing pointer to the module which defines that symbol. The loader
 scans the directory for matches to undefined symbols and uses the
 associated pointer to process the defining module. When a complete
 pass over the directory is made with no matches, the loader skips
 over the library using the end-of-library pointer.

 Libraries are generated in MTS via the program *OBJUTIL. *OBJUTIL
 currently generates DIR-type libraries although there are three other
 types of libraries: sequential, line, and POINT.

 Sequential Libraries

 Sequential libraries are the most primitive and inefficient form of
 library available. They consist of a sequence of modules preceded
 by their library control records. No information is retained which
 allows the loader to efficiently skip a module not required. A
 sequential library can be stored in either a line file or a
 sequential file.

 The Dynamic Loader 97

 MTS 5: System Services

 May 1983

 Line Libraries

 A more efficient library format can be obtained in a line file by
 separating the modules from their library control records. Since,
 by default, reading begins a line 1, the modules are stored in the
 negative line number range and the control records in the positive
 range. In this case, the control records contain the (negative)
 line number of the associated modules which the loader uses if the
 module is required. Otherwise, the module is skipped by reading
 the next control record. The line library is reasonably efficient
 and is the easiest type to edit using the MTS file editor.

 POINT Libraries

 A similar improvement in efficiency can be obtained in sequential
 files by using the POINT format. In this case, the library
 consists of a sequence of modules together with their library
 control records. However, NOTE-POINT information is contained in
 the control records which allows the loader to skip over modules
 which are not required. A POINT library is difficult to edit
 because it must be in a sequential file.

 DIR Libraries

 The most efficient library structure is obtained in line or
 sequential files by using the DIR format. In this case, all
 library control information is contained in one directory at the
 beginning of the file. The loader uses the directory information
 to process the required modules. The efficiency of the DIR format
 stems from the minimal number of I/O operations required. *LIBRARY
 is an example of a DIR library.

 When generating a library, the recommended approach is to use the DIR
 format in a line file initially to allow easy editing via *OBJUTIL.
 When the library modules stabilize, they should be optimized via
 *LINKEDIT or *OBJUTIL and included in a DIR library for maximum loading
 efficiency.

 Dynamic Loading _______________

 The ability to dynamically load, execute, and unload programs during
 execution is provided by the subroutines LINK, LOAD, XCTL, and UNLOAD.
 Because of the rate structure used in MTS, the cost of running large
 programs over a period of time can be reduced by minimizing the storage
 integral via the dynamic loading and unloading of program segments.
 This cost reduction must be balanced against the additional cost
 incurred by the increased number of files that must be opened and closed
 and the increased number of library searches required. In general, the
 net savings warrants dynamic loading only if the storage integral can be
 substantially reduced.

 98 The Dynamic Loader

 MTS 5: System Services

 May 1983

 A routine can be dynamically loaded by calling one of three
 subroutines: LINK, LOAD, or XCTL. Each one provides a unique control
 facility as described below:

 Dynamic loading via the subroutine LINK:

 (1) The program is loaded and a map is produced if the MAP parameter
 was specified on the initial $RUN, $RERUN, $DEBUG, or $LOAD

 command.

 (2) The registers are set up to make the call upon the LINK

 subroutine transparent.

 (3) The system transfers to the program at the entry point.

 (4) If the program returns as a normal subroutine, all storage

 acquired to load it plus all further storage acquired by it at

 its storage level and at higher levels is released.

 (5) The system returns to the program that called LINK.

 Dynamic loading via the subroutine LOAD:

 (1) The program is loaded and a map is produced if the MAP parameter

 was specified on the initial $RUN, $RERUN, $DEBUG, or $LOAD

 command.

 (2) The external symbol table and entry point of the loaded program

 are made available to the program that called LOAD.

 (3) The system returns to the program that called LOAD.

 Note that the program loaded is in the user’s virtual memory and is

 ready to use. All storage acquired during the loading operation is

 catalogued under a unique storage index number. This storage can

 later be released by calling the subroutine UNLOAD.

 Dynamic loading via the subroutine XCTL:

 (1) The storage having the current storage index number is released.

 This presumably is the program which is calling XCTL.

 (2) The program is loaded and a map is produced if the MAP parameter

 was specified on the initial $RUN, $RERUN, $DEBUG, or $LOAD

 command.

 (3) The registers are set up to make the call upon the XCTL

 subroutine transparent. It is necessary that the program

 calling XCTL restore the general registers, including the save

 area register (13), to what they were at the time it was called

 (presumably due to a $RUN, $RERUN, $DEBUG, or $LOAD command or a

 call on LINK or XCTL). The user may have XCTL perform this

 function by specifying the appropriate option when calling XCTL.

 (4) The system transfers to the program at the entry point.

 (5) If the program returns as a normal subroutine, the action taken

 is the same as that which would have occurred if the program

 that called XCTL had returned instead.

 How the program being dynamically loaded interacts with the currently

 loaded programs depends on several things. If SYMTAB is OFF, no

 information about the currently loaded programs is available during

 The Dynamic Loader 99

 MTS 5: System Services

 May 1983

 execution. Hence, the dynamically loaded program is loaded independent-
 ly of the currently loaded programs unless special features like initial
 ESD lists or low-core symbol tables are used (see the following
 subsection). Consequently, more than one occurrence of a library
 subroutine may be loaded. If, however, SYMTAB is ON, information about
 the currently loaded programs is available during execution and can be
 used to merge the program being loaded with the currently loaded
 programs. This is controlled by the MERGE bit which must be specified
 when calling LINK, LOAD, or XCTL.

 The merging process occurs in both directions. Undefined symbols
 from previous loads are resolved if possible by the program being
 currently loaded and undefined symbols in the program being loaded are
 resolved if possible by programs already loaded. Common sections and
 block data subprograms are also merged with those previously loaded if
 the merge bit is set.

 Each time LINK, LOAD, or XCTL is invoked, a unique storage index
 number is defined and associated with the storage allocated during the
 loading process (see the section "Virtual Memory Management" in this

 volume). This storage index number is used by the loader to distinguish

 which symbols were defined during a particular loading process. Hence,

 it is permissible to "multiply define" a symbol during dynamic loading

 which was defined during a previous loading process. Thus, for example,

 a routine named A can dynamically load itself or any other routine named

 A. Note, however, that it is still not permissible to load two

 definitions of A during the same loading process.

 The storage acquired during dynamic loading is automatically released

 when the loaded program returns to LINK or XCTL. It is the caller’s

 responsibility, however, to release storage acquired via a call to LOAD.

 This is accomplished by calling the UNLOAD subroutine. Only routines

 dynamically loaded via the LOAD subroutine may be unloaded in this

 fashion. Moreover, it is not possible to unload only part of a

 dynamically loaded program; all storage acquired during a particular

 call to LOAD is released by UNLOAD. An exception to this rule can occur

 if LOAD has been called several times when SYMTAB is ON and the merge

 bit is set. For example, suppose on the first call to LOAD, a FORTRAN

 routine is loaded which causes FREAD to be loaded from *LIBRARY.

 Suppose a second call to LOAD loads another FORTRAN routine which

 references FREAD. If SYMTAB is ON and the merge bit is set, a second

 copy of FREAD will not be loaded. If UNLOAD is now called to release ___

 the first routine, FREAD will not be released even though it was loaded

 at the same time. Rather, it will be unloaded when the last routine

 referencing it is unloaded.

 Initial ESD Lists and Low-Core Symbol Tables __

 The dynamic loader allows external symbols to be predefined at the

 beginning of the loading process. It will also search an "external

 100 The Dynamic Loader

 MTS 5: System Services

 May 1983

 symbol dictionary" for the definitions of external symbols which have

 been referred to, but not yet defined, whenever an LCS record is

 encountered. Both of these facilities are available through the LINK,

 LOAD, and XCTL subroutines. They are a convenient way to allow the

 programs loaded via LINK, LOAD, and XCTL to refer to routines or data

 items that are already loaded when the SYMTAB option is OFF.

 Both the predefined symbol and "low-core symbol" capabilities require

 tables called external symbol dictionaries. An external symbol dic-

 tionary consists of (12*n+4) bytes, where "n" is the number of external

 symbols in the dictionary. The dictionary must begin on a fullword

 boundary. The first word of the dictionary contains "n", the integer

 number of symbols entered in the dictionary. The rest of the table

 consists of external symbol entries, each being twelve bytes long. The

 first eight bytes of a symbol entry contain the EBCDIC name of the

 symbol, left-justified with trailing blanks. The last four bytes of the

 entry contain the value of the symbol as a fullword integer. If the

 value field is zero, the entry is interpreted as a reference to that

 symbol rather than a definition.

 ┌─────────────┐
 0 | No. Entries |

 |──┐ ┌ ┘ ┌
 4 | 8-character name | Address |

 |───────────────────────┼────────────────| ┌ ┘
 16 | 8-character name | Address |

 └──┘ ┘
 •

 •

 As an example, suppose that a language scanner is to be broken into

 an overlay structure consisting of a scanner which links to a different

 module for each type of statement. Each statement module may in turn

 refer to the subroutines EXP, PUNT, GEN, and NXTCHAR to scan the next

 expression, print on error message, generate output, and acquire the

 next character, respectively. An external symbol dictionary to define

 these symbols might be:

 MYEXTSYM DC F’5’ Five Entries

 DC CL8’EXP’ Defines EXP

 DC A(EXPRTN) Internal, different name

 DC CL8’PUNT’ Define PUNT

 DC A(PUNT) Internal, same name

 DC CL8’GEN’ Define GEN

 DC V(GENRTN) External, different name

 DC CL8’NCTCHAR’ Define NCTCHAR

 DC V(NXTCHAR) External, same name

 DC CL8’PLOT1’ Reference PLOT1 so

 DC A(0) it will be loaded.

 Notice that it matters not whether the symbol is external or internal in

 the routines already loaded. It may even have a different name in the

 program already loaded.

 The Dynamic Loader 101

 MTS 5: System Services

 May 1983

 Now these symbols and the definitions given above might be used as an
 initial ESD list when calling LINK, LOAD, or XCTL. The symbols in the
 above table would then be appended to the symbol which MTS normally
 predefines (LCSYMBOL) and would become defined (or referenced) during
 the initialization of the loader. These symbols can then be referred to
 by the object modules being loaded. No object module can redefine any
 predefined symbols, however. So these external symbols are reserved
 symbols to the program being loaded.

 The external symbol table constructed above (with the last entry
 deleted) could alternatively be used as a "low-core" symbol dictionary.

 The loader would search the external symbol dictionary for the defini-

 tions of external symbols which have been referred to, but not yet

 defined, whenever an LCS record referring to the low-core symbol

 dictionary was encountered. The advantage of this method is that the

 program being loaded can define its own symbols with the same names as

 some of the symbols in the low-core symbol dictionary without conflict;

 the program’s own definition will be preferred.

 In order to refer to the low-core symbol dictionary, the loader must

 have an external symbol defined that is the base of the table. This can

 be accomplished by making the name of the table a predefined external

 symbol. For instance, in our example above we might call LINK, LOAD, or

 XCTL with the following initial ESD list:

 PREDEF DC F’1’ One entry

 DC CL8’MYEXTSYM’ Define MYEXTSYM

 DC A(MYEXTSYM)

 Then the occurrence of an LCS record referring to the symbol MYEXTSYM

 will cause each symbol contained in that external symbol dictionary to

 be defined with the value given in the dictionary if it has been

 referred to, but not defined, by the object modules loaded thus far. If

 the object modules loaded define any of the symbols in the table, the

 definition given by the modules will override the dictionary definition.

 Pseudo-register areas may be defined via low-core symbol tables that

 have a slightly different structure:

 ┌─────────────┐
 0 | No. Entries |

 |─────────────| ┌ ┘
 4 | Cum. Length |

 |───┐ ┌ ┘ ┌ ┌ ┌
 8 | 8-character name | Address | A | Length |

 |───────────────────────┼────────────────┼───┼──────────| ┌ ┘
 24 | 8-character name | Address | A | Length |

 └───┘ ┘ ┘ ┘
 •

 •

 The first 8 bytes give the number of entries and the cumulative length

 for the pseudo-register area. The entries for the pseudo-register areas

 102 The Dynamic Loader

 MTS 5: System Services

 May 1983

 follow. Each entry is 16 bytes long rather than 12 bytes and specifies
 both length and alignment of each area. The address entry is 4 bytes.
 The length entry is 3 bytes and the length is given in bytes. The
 alignment entry is 1 byte and the alignment codes are

 X’00’: byte alignment
 X’01’: halfword alignment
 X’03’: fullword alignment
 X’07’: doubleword alignment

 Low-core pseudo-register tables are distinguished by the characters PR
 occurring on all LCS records which refer to them (see Appendix D for the
 exact LCS record format).

 It should be pointed out that the symbols defined as predefined
 symbols or in low-core symbol dictionaries may have as their values the
 addresses of any items in the loaded program that the user wants to
 refer to in the program to be loaded. For instance, the address of a
 subroutine, a common section, or a variable might be passed on.
 Furthermore, the address given as the definition of an external symbol
 need not have the same name or even any name in the already loaded
 program. It is just an address which is associated with EBCDIC
 characters in the table to form an external symbol definition for the
 program to be loaded.

 There are currently four low-core symbol tables that define user
 entry points into the resident system: LCSYMBOL, <EFL>, <FIX>, and
 PL1SYM. LCSYMBOL is always predefined. Hence, the record

 LCS LCSYMBOL

 can be inserted into an object file whenever desired. However, in order
 to reference <EFL>, <FIX>, or PL1SYM, they must first be defined for the
 loader. Their definitions are entries in LCSYMBOL and can be extracted
 as follows:

 RIP <EFL>
 RIP <FIX>
 RIP PL1SYM
 LCS LCSYMBOL
 LCS <EFL>
 LCS <FIX>
 LCS PL1SYM

 The Dynamic Loader 103

 MTS 5: System Services

 May 1983

 APPENDIX A: ENTRY POINT DETERMINATION ______________________________________

 The entry point of a program is the point within the program where
 execution will begin if the program is executed. That is, it is the
 location of the first instruction within the program to be executed.
 This location is determined by the loader as it processes the object
 modules in the object program. The following algorithm is used to
 determine the entry point:

 (1) If one or more entry (ENT) records have been encountered, the
 entry point is the value of the external symbol referred to on
 the first such ENT record.
 (2) Otherwise, if the processing of input from the user-specified
 source was terminated by a load-terminate (LDT) record and that
 record referred to an external symbol, the entry point is the
 value of that external symbol.
 (3) Otherwise, if one or more object module end (END) records
 contain an entry point address or external symbol, the entry _______
 point is the value of the entry point address or the address of
 the external symbol from the first such END record.
 (4) Otherwise, if at least one control section has been encountered,
 the entry point is the address of the first byte of the first
 control section encountered.
 (5) Otherwise, the entry point is zero (undefined).

 Note: The 360/370-assembler puts an entry address on the END record
 if one was given on the END statement by the programmer. FORTRAN puts
 an entry address on the END record for main programs but not for
 subroutines. PL/I puts an entry address on the END record of each
 program.

 104 The Dynamic Loader

 MTS 5: System Services

 May 1983

 APPENDIX B: LOADER ERROR MESSAGES __________________________________

 As the loader is processing its input, it checks the input for
 errors. An error message is printed for each error detected and the
 action taken next depends upon the severity of the error. If the error
 is a nonrecoverable error, loading is terminated immediately and
 execution of the program is aborted. If the error is is a fatal error,
 loading is continued but the execution of the program is still aborted.
 Finally, if the error is a nonfatal error, loading continues as normal.
 A list showing each message, its severity, and likely causes for the
 message is given below:

 ABNORMAL LOADER INPUT ORDERING. (xxx-yyy)

 Nonfatal. The loader input record type "xxx" is followed by the

 loader input record type "yyy" which is considered abnormal. The

 loader will attempt to process the records in this order, but

 further error comments may appear if this is not possible. This

 error usually is caused by failure to empty an object file before

 recompiling a program.

 ADDRESS OUTSIDE OF CONTROL SECTION xxxxxxxx BOUNDS.

 Nonfatal. Some reference to an address within a control section

 is made with a relocatable address which does not fall within the

 address range of the control section (the starting address to the

 starting address plus the length). The data which was to be

 moved to that address or the relocation which was to be performed

 at that address is ignored. The usual reasons for this error are

 an incorrect REP record or the second occurrence of a control

 section which is longer than the first.

 AN OCCURRENCE OF xxxxxxxx LONGER THAN FIRST.

 Nonfatal. A subsequent occurrence of control section "xxxxxxxx"

 is longer than the first. Subsequent occurrences are ignored

 completely in loading unless an MDL ON record is in effect.

 AT LINE xxxxx.xxx

 This message is printed out in conjunction with other error

 messages to help locate the error. The "xxxxx.xxx" is the line

 number of the current input record.

 BOTH xxxxxxxx AND yyyyyyyy ARE ALREADY DEFINED. ALI CARD IGNORED.

 Nonfatal. Both symbols specified on an ALI record have been

 previously defined. The ALI record is ignored.

 The Dynamic Loader 105

 MTS 5: System Services

 May 1983

 CARD NOT A LOAD CARD, END-OF-FILE ASSUMED.

 Nonfatal. An input record which did not have a legal loader
 record type in columns 2-4 was read. The contents of the record
 are printed, and are lost for further processing. The loader
 continues as if this had been an end-of-file.

 ERROR WHILE PROCESSING LIBRARY DIRECTORY.

 Fatal. The DIR record and its associated directory are unable to
 be processed.

 ERROR: THE LOW CORE AND MODULES SPECS CONFLICT FOR PR xxxxxxxx.

 Nonfatal. A module reference to a pseudo-register area, which
 has previously been defined in a low-core symbol table, specifies
 a longer length or a stricter alignment.

 ESID xxxx RELOCATION FACTOR UNDEFINED.

 Fatal. Information on an ESD, TXT, REP, DEF, RLD, or END record
 is to be relocated relative to the symbol which has the specified
 ESID. However, either no symbol has that ESID, or the symbol
 which does have that ESID is not the name of a control section
 and hence does not have a relocation factor assigned with it.
 Common causes of this error are

 (a) Mixing up the order of the object module records.
 (b) Leaving object module records in a file which contains a
 newer, but shorter object module so that the loader attempts
 to process these old, obsolete records.

 ESID xxxx UNDEFINED.

 Fatal. An address constant or channel command word refers to the
 symbol with the specified ESID within its expression. However,
 no external symbol has been given this ESID in the object module
 being processed. This message is caused by the same errors as
 listed in the error message above.

 FORWARD REFERENCING ENTRY POINTS ARE UNDEFINED.

 Nonfatal. The control section required to define one or more
 entry points was not found. The entry points are ignored and
 processing continues. This is usually caused by a scrambled
 object file.

 GETSPACE UNABLE TO OBTAIN SPACE.

 Fatal. The GETSPACE subroutine returned a nonzero return code
 when called by the loader to allocate storage for a control
 section or common definition. This error may be caused by an
 invalid ESD record, or a control section or common definition

 106 The Dynamic Loader

 MTS 5: System Services

 May 1983

 that requires more than one segment of storage (e.g., a FORTRAN
 array that was declared larger than 1,048,576 bytes). This error
 also may be result of attempting to load a program that requires
 more storage than is available for user programs.

 ILLEGAL HEX CHARACTER DETECTED.

 Nonfatal. An illegal hex character was detected on a user-
 generated REP or DEF record. The record is ignored and proces-
 sing continues.

 ILLEGAL OPTION OR SYNTAX ERROR ON "OPT" CARD.

 Nonfatal. An illegal option or syntax error was encountered on

 an OPT record.

 ILLEGAL TEXT CARD LENGTH DETECTED.

 Nonfatal. A text record was encountered with a nonpositive

 length. The text record is ignored and processing continues.

 IN THE MODULE WHICH DEFINES nnnnnnnn.

 This message is printed out in conjunction with other error

 messages to help locate the error. "nnnnnnnn" is the name of one

 of the control sections in the current object module.

 INPUT RECORD LONGER THAN 256 CHARS.

 Fatal. An input record was read which was longer than 256

 characters.

 LOADING ERRORS ABOVE ARE NON-RECOVERABLE.

 This message should never appear, except perhaps when trying to

 force a map.

 MISSING END CARD DETECTED.

 Nonfatal. An end-of-file was encountered while processing an

 object module before the associated END record was processed.

 This is usually caused by specifying parts of object programs

 with erroneous line number ranges.

 NON-ZERO RETURN CODE FROM ’POINT’.

 Nonfatal. The POINT subroutine was called by the loader to skip

 over an unwanted object module in a library. POINT returned a

 nonzero return code.

 The Dynamic Loader 107

 MTS 5: System Services

 May 1983

 THERE ARE nnn UNDEFINED SYMBOLS.

 Fatal. The specified number of symbols have been referred to by
 at least one of the object modules loaded, but have not been
 defined. In conversational mode, MTS will prompt the user for
 more loader input if this is the only fatal error occurring.

 THE SYMBOL xxxxxxxx HAS AN ILLEGAL ESD TYPE.

 Nonfatal. An item on an ESD record specifies an illegal type.
 The item is ignored by the loader and processing continues. This
 error is usually caused by modifying an ESD record with the
 context editor and not making a one-for-one replacement.

 TOO MANY PUSHES OR POPS ON "OPT" CARD.

 Nonfatal. More POP options than PUSH options or more than five

 PUSH options without an intervening POP option were encountered.

 UNRESOLVABLE REFERENCE TO xxxxxxxx AT LOCATION nnnnnn BY CSECT

 yyyyyyyy.

 Nonfatal. An RLD item in the module defining csect "yyyyyyyy"

 could not be processed because the referenced symbol "xxxxxxxx"

 did not have a relocation factor. This is usually caused by a

 scrambled object file.

 WARNING: A TRUNCATED CSI RECORD DETECTED.

 Nonfatal. This is printed when the actual length of the CSI text

 is shorter than specified and the last character of the text is

 nonblank. If the last character is a blank, the text is assumed

 to have been trimmed and is padded with the appropriate number of

 blanks.

 WARNING: CSI RECORD IGNORED.

 Nonfatal. The text associated with a CSI record was not loaded.

 This occurs when the address specified on the CSI record is

 outside the control section bounds, or when there is not enough

 space remaining in the control section to hold the associated

 text.

 WARNING: CSI TEXT OVERFLOW DETECTED.

 Nonfatal. The actual length of CSI text read was longer than the

 specified length on the CSI record.

 WARNING: LOW CORE SYMBOL TABLE xxxxxxxx HAS AN INVALID ENTRY POINT.

 Nonfatal. The first word of the low-core symbol table given in

 an LCS record is negative or large enough to cause an addressing

 exception if the table were searched. The LCS record is ignored.

 108 The Dynamic Loader

 MTS 5: System Services

 May 1983

 This error usually is caused by specifying a symbol on an LCS
 record that is not a valid low-core symbol table (e.g., a section
 definition).

 WARNING: LOW CORE SYMBOL TABLE xxxxxxxx IS UNDEFINED.

 Nonfatal. The symbol given in an LCS record is currently
 undefined so that the associated low-core symbol table cannot be
 referenced.

 xxxxxxxx IS MULTIPLY DEFINED. FIRST DEFINITION USED.

 Nonfatal. Two object modules containing the definition of the
 given external symbol have been loaded. The first definition of
 the symbol is the one actually used in all references to the
 symbol. The second definition is ignored entirely in loading.

 The Dynamic Loader 109

 MTS 5: System Services

 May 1983

 APPENDIX C: SAMPLE LOADER MAP ______________________________

 A loader map can be generated in several different situations. An
 explicit request for a map can be made on the $RUN, $RERUN, $LOAD, or

 $DEBUG commands, e.g.,

 $RUN MYPROG MAP=-M SCARDS=DATA

 $LOAD MYPROG MAP

 In this situation, a map is printed on the device specified (default is

 SINK) during the loading of MYPROG. If MYPROG performs any dynamic

 loading, a map is also produced on the same device for each call to

 LINK, LOAD, or XCTL.

 If SYMTAB is ON, a map of the currently loaded program can be

 produced at any time. It can be generated during execution via a call

 to the subroutine LODMAP. It can be generated when a program terminates

 abnormally and no map was initially requested on the $RUN, $RERUN,

 $DEBUG, or $LOAD command (see the MTS command $SET ERRMAP={ON|OFF}).

 Finally, a map can be generated at the MTS command language level via

 $DISPLAY [ON FDname] MAP

 A loader map consists of the following items:

 Map Delimiters

 A map begins and ends with a dotted line delimiter. The

 printing of the delimiters may be controlled by the MTS command

 $SET MAPDOTS={ON|OFF} (default is ON).

 Entry Point

 The address of the first instruction to be executed as computed

 by the loader is printed in every map.

 Size

 The amount of virtual memory (in bytes) allocated for control

 sections and common sections during a particular loading process

 is printed in every map.

 Pseudo-Register Map

 The displacement assigned by the loader to each external symbol

 in the pseudo-register area is printed along with the length and

 storage index number (SI#) associated with each symbol. The

 printing of this section may be controlled by the MTS command

 $SET PRMAP={ON|OFF} (default is OFF).

 110 The Dynamic Loader

 MTS 5: System Services

 May 1983 Page Revised September 1985

 Predefined Map

 The values of each external symbol defined via an initial ESD
 list, a low-core symbol table, or an absolute DEF record is
 printed along with the associated storage index numbers. The
 printing of this section may be controlled by the MTS command
 $SET PDMAP={ON|OFF} (default is OFF).

| Section Map

|

| The name of each common section, control section, and entry

| point within each control section is printed along with the

| associated address (value) and storage index number; the reloca-

| tion factor and lengths are also printed for each common and

| control section. In addition, a flag field and a type field are

| printed.

|

| The storage index numbers associated with each symbol in the map

| are of interest only when the dynamic loading features are being

| used.

|

| The relocation factor associated with each common and control

| section in the map is generally of use only to assembly language

| programmers. The relocation factor is that virtual memory

| address which must be added to the translator-assigned address

| of an item in a common or control section in order to obtain the

| actual virtual memory address at which the item was loaded. The

| relocation factor can be used to facilitate the debugging of

| assembly language programs both in MTS command mode and in MTS

| debug mode as follows:

|

| By issuing the MTS or debug command $SET RF=nnnnnn, where

| "nnnnnn" is the loader-assigned relocation factor of a common or

| control section, items within that section may be displayed via

| their translator-assigned address rather than their virtual

| memory address. For example, $DISPLAY 30 is equivalent to

| $DISPLAY 803030 if the command $SET RF=803000 has been issued.

|

| The relocation factor is obtained by subtracting the translator-

| assigned origin of a section from its loader-assigned virtual

| memory address. Hence, the relocation factor will differ from

| the value only if the section has a nonzero origin. The

| algorithm for assigning section origins is translator-dependent.

| *FTN, for example, assigns a zero origin to every section, while

| *ASMH assigns origins as if each section were to be loaded

| contiguously beginning at a user-specified origin.

|

| The flag (F) value associated with each common and control

| section is a collection of bit flags that describe the address-

| ing and relocation modes of the section. The following values

| are ORed together to produce the flag field:

 The Dynamic Loader 111

 MTS 5: System Services

 Page Revised September 1985 May 1983

| X’08’ - Read-only csect (RSECT) attribute
| X’04’ - Resident-mode csect attribute
| (0=RMODE 24, 1=RMODE ANY)
| X’03’ - Addressing-mode attribute (2 bits)
| B’00’ - AMODE 24
| B’01’ - AMODE 24
| B’10’ - AMODE 31
| B’11’ - AMODE ANY
|
| The codes for the type (T) field are as follows:
|
| (blank) - Control section loaded from a normal object file
| L - Control section loaded from a library file
| E - Entry point within a control section
| C - Common section

 The following example illustrates both a PL/I and FORTRAN object
 program map as produced by the loader:

 112 The Dynamic Loader

 MTS 5: System Services

 May 1983 Page Revised September 1985

 The Dynamic Loader 112.1

 MTS 5: System Services

 Page Revised September 1985 May 1983

 112.2 The Dynamic Loader

 MTS 5: System Services

 May 1983 Page Revised September 1985

 APPENDIX D: LOADER RECORD FORMAT _________________________________

 The following are the card image formats for the dynamic loader. The
 loader will accept variable-length input up to 256 bytes long, but card
 images are the most common and hence are shown here. The record
 following a CSI or DIR record may be up to 32767 bytes long.

 Translator-Generated Load Records _________________________________

 ESD Input Record (Card Image) _____________________________

 ┌──┐ ┌ ┌ ┌ ┌ ┌ ┌ ┌
 |1|2-4| 5-10 |11-12|13-14|15-16| 17-72 | 73-80 |
 └──┘ ┌┘ ┌ ┘ ┌ ┘┌ ┘┌ ┘┌ ┘ ┌ ┘ ┌
 | | | | | | | |
 | | | | | | └─ESD DATA--see below └─Not ________
 | | | | | | used
 | | | | | └─Blank if all ESD items are LD _____
 | | | | | └─ESD IDENTIFIER of first ESD item ______________
 | | | | | (other than LD)
 | | | | └─Blank _____
 | | | |
 | | | └─Number of bytes of ESD data ______
 | | |
 | | └─Blank _____
 | |
 | └─ESD ___
 |
 └─Not used

 The Dynamic Loader 113

 MTS 5: System Services

 Page Revised September 1985 May 1983

| ESD Data Item _____________
|
| ┌────────────────────────────┐ ┌ ┌ ┌ ┌
| | 1-8 |9|10-12|13| 14-16 |
| └────────────────────────────┘ ┌ ┘┌┘┌ ┘┌ ┘ ┌
| | | | | |
| | | | | └─Length of control section, if type is SD, ______
| | | | | | PC, or CM
| | | | | └─Identifier of SD entry containing the entry __________
| | | | | | point, if type is LD, or LR
| | | | | └─Blank if type is ER _____
| | | | | └─Length of pseudo-register, if type is PR ______
| | | | |
| | | | └─Blank-alignment factor for type PR: _____
| | | | 00=byte, 01=halfword, 03=fullword,
| | | | 07=doubleword alignment
| | | |
| | | | Low-order 4 bits indicate section
| | | | attributes for types SD, PC, or CM
| | | |
| | | | X’08’ - Read-only csect (RSECT) attribute
| | | | X’04’ - Resident-mode csect attribute
| | | | (0=RMODE 24, 1=RMODE ANY)
| | | | X’03’ - Addressing-mode csect attribute
| | | | B’00’ - AMODE 24
| | | | B’01’ - AMODE 24
| | | | B’10’ - AMODE 31
| | | | B’11’ - AMODE ANY
| | | |
| | | └─24-bit assigned address of the SD, PC, CM, LD, or LR item ________ _______
| | |
| | └─Type-Hex (00=SD,01=LD,02=ER,03=LR,04=PC,05=CM,06=PR,0A=WX) ____
| |
| └─Name--when type is SD,LD,LR,ER,CM,PR ____
| └─Blank--when type is PC or blank CM. _____
|
|
| Mnemonic Codes:
|
| SD Name of a control section
| LD Name of an entry point within a control section
| ER Name of an external symbol
| LR Name of an entry point within a control section
| PC Private(blank-name)control section
| CM Name of a program common area
| PR Name of a pseudo-register area
| WX Name of an external symbol weakly referenced

 114 The Dynamic Loader

 MTS 5: System Services

 May 1983

 Text Input Record (Card Image) ______________________________

 ┌───┐ ┌ ┌ ┌ ┌ ┌ ┌ ┌ ┌ ┌
 |1|2-4|5|6-8|9-10|11-12|13-14|15-16| 17-72 | 73-80 |
 └───┘ ┌┘┌ ┘┌┘┌ ┘┌ ┘┌ ┘┌ ┘┌ ┘┌ ┘ ┌
 | | | | | | | | | |
 | | | | | | | | | └─Not used
 | | | | | | | | |
 | | | | | | | | └─Text Data (machine ____ ____
 | | | | | | | | language code)
 | | | | | | | |
 | | | | | | | └─SD Identifier of _____________
 | | | | | | | the control section
 | | | | | | | containing this text
 | | | | | | |
 | | | | | | └─Blank _____
 | | | | | |
 | | | | | └─Number of bytes of text data ______
 | | | | |
 | | | | └─Blank _____
 | | | |
 | | | └─24-bit address of first byte of text data _______
 | | |
 | | └─Blank _____
 | |
 | └─TXT ___
 |
 └─Not used

 The Dynamic Loader 115

 MTS 5: System Services

 May 1983

 CSI Input Record (Card Image) _____________________________

 ┌───┐ ┌ ┌ ┌ ┌ ┌ ┌ ┌ ┌
 |1|2-4|5|6-8|9-10|11-12|13-14|15-16| 17-80 |
 └───┘ ┌┘┌ ┘┌┘┌ ┘┌ ┘┌ ┘┌ ┘┌ ┘┌
 | | | | | | | | |
 | | | | | | | | └─Not used
 | | | | | | | |
 | | | | | | | └─SD Identifier of _____________
 | | | | | | | the control section
 | | | | | | | containing this text
 | | | | | | |
 | | | | | | └─Blank _____
 | | | | | |
 | | | | | └─Number of bytes of text data ______
 | | | | |
 | | | | └─Blank _____
 | | | |
 | | | └─24-bit address of first byte of text data _______
 | | |
 | | └─Blank _____
 | |
 | └─CSI ___
 |
 └─Not used

 Note: The record following the CSI record consists entirely of text
 data, the length of which is given on the CSI record. This
 record may be up to 32767 bytes long.

 116 The Dynamic Loader

 MTS 5: System Services

 May 1983

 RLD Input Record (Card Image) _____________________________

 ┌───┐ ┌ ┌ ┌ ┌ ┌ ┌
 |1|2-4|5-10|11-12|13-16| 17-72 | 73-80 |
 └───┘ ┌┘┌ ┘┌ ┘┌ ┘┌ ┘ ┌ ┘┌
 | | | | | | |
 | | | | | | └─Not
 | | | | | └─RLD data-see below used ________
 | | | | |
 | | | | └─Blank _____
 | | | |
 | | | └─Number of bytes of RLD data ______
 | | └─Blank _____
 | └─RLD ___
 └─Not used

 RLD Data Item _____________

 ┌────────────────┐ ┌ ┌ ┌
 |1-2|3-4|5| 6-8 |
 └────────────────┘ ┌ ┘┌ ┘┌┘┌
 | | | |
 | | | └─Assigned address of address constant ________________
 | | |
 | | └─Flag field--(TTTTLLST) ____
 | | TTTT=type S=Direction of relocation _________ _________________________
 | | 0000=non-branch(A adcon) 0=positive (+)
 | | 0001=branch(V adcon) 1=negative (-)
 | | 0010=pseudo-register
 | | 0011=cumulative length T=type of next RLD item _______________________
 | | 0=next RLD item has a
 | | different R or P pointer
 | | LL=length of address They are present in the ____________________
 | | constant next item. ________
 | | 01=2 bytes 1=next RLD item has the
 | | 10=3 bytes same R and P pointers,
 | | 11=4 bytes hence they are omitted.
 | |
 | └─Position pointer (P)-ESDID of ________________
 | the control section that contains
 | the address constant
 |
 └─Relocation pointer (R)-ESDID of __________________
 the the symbol being referred to. Zero (00)
 if type=PR cumulative length

 The Dynamic Loader 117

 MTS 5: System Services

 May 1983

 END Input Record (Card Image) _____________________________

 ┌───┐ ┌ ┌ ┌ ┌ ┌ ┌ ┌ ┌ ┌ ┌
 |1|2-4|5|6-8|9-14|15-16|17-24|25-28|29-32| 33-72 | 73-80 |
 └───┘ ┌┘┌ ┘┌┘┌ ┘┌ ┘┌ ┘┌ ┘┌ ┘┌ ┘┌ ┘┌
 | | | | | | | | | | |
 | | | | | | | | | | └─Not used
 | | | | | | | | | |
 | | | | | | | | | └─(optional) Date
 | | | | | | | | |
 | | | | | | | | └─(optional) Length of the first
 | | | | | | | | csect specified on one of the
 | | | | | | | | preceding ESD records.
 | | | | | | | |
 | | | | | | | └─Not used
 | | | | | | |
 | | | | | | └─(optional) 8-character symbol entry point
 | | | | | | name if 24-bit address is not specified.
 | | | | | |
 | | | | | └─ESDID if SD item for the section that _____
 | | | | | | contains the address specified in bytes 6-8.
 | | | | | └─Blank if no address was specified. _____
 | | | | |
 | | | | └─Blank _____
 | | | |
 | | | └─(optional) 24-bit address of entry point _______
 | | |
 | | └─Blank _____
 | |
 | └─END ___
 |
 └─Not used

 118 The Dynamic Loader

 MTS 5: System Services

 May 1983

 SYM Input Record (Card Image) _____________________________

 ┌───┐ ┌ ┌ ┌ ┌ ┌ ┌
 | 1 | 2-4 | 5-10| 11-12| 13-16| 17-72 | 73-80 |
 └───┘ ┌ ┘┌ ┘┌ ┘┌ ┘┌ ┘┌ ┘ ┌
 | | | | | | |
 | | | | | | └─Not used
 | | | | | |
 | | | | | └─Symbolic Debugging System data
 | | | | |
 | | | | └─Not used
 | | | |
 | | | └─Number of bytes of symbolic
 | | | debugging package data
 | | |
 | | └─Language processor code
 | | AG1 - 360/370 Assembler (G)
 | | AG2 - 360/370 Assembler (G)
 | | AH1 - 360/370 Assembler (H)
 | | AT1 - 360/370 Assembler (TSS)
 | | FG1 - FORTRAN (G) and FORTRAN (H)
 | | PL1 - PL/I (F)
 | | PL3 - PL360
 | | Blank - 360/370 Assembler (G)
 | |
 | └─SYM ___
 |
 └─Not used

 The Dynamic Loader 119

 MTS 5: System Services

 May 1983

 Symbolic Debugging System Data Item (AG1 and AT1) ___________________________________

 ┌──┐ ┌ ┌ ┌ ┌ ┌ ┌
 | OR | AA | SYM | F | LD | M | S |
 └──┘ ┘ ┘ ┘ ┘ ┘ ┘

 Only the OR and AA fields are required for each entry. The presence of
 the remaining fields is indicated by the OR field.

 OR (1 byte) Organization Byte

 Bit 0 - If 0, Not data type. Bits 1-3 indicate the following: ____

 Bits 1-3 000 Space (next byte contains the length of the
 space)
 001 Control Section
 010 Dummy Control Section
 011 Common Section
 100 Instruction
 101 Channel Command Word
 110 Not Used
 111 Not Used

 - If 1, Data type (indicates presence of F and LD fields). ____
 Bits 1-3 indicate the following:

 Bit 1 If 0, no duplication factor present
 If 1, duplication factor present (indicates
 presence of M field)

 Bit 2 If bit 1=0
 0 entry is not a cluster¹ subfield
 1 entry is a cluster subfield
 If bit 1=1
 0 entry is not a cluster header
 1 entry is a cluster header

 Bit 3 If 0, no scale factor present
 If 1, scale factor present (indicates presence
 of S field)

 Bit 4 If 0, symbol present (indicates presence of SYM field)
 If 1, symbol not present

 Bits 5-7 Length of symbol (length of SYM field) minus one

 AA (3 bytes) Displacement from Base of Control Section

 SYM (1-8 bytes) Symbol

 120 The Dynamic Loader

 MTS 5: System Services

 May 1983

 F (1 byte) Format

 00 Character (C)
 04 Hexadecimal (X)
 08 Binary (B)
 0C Extended floating-point (L)
 10 Fixed-point (F)
 14 Fixed-point (H)
 18 Floating-point (E)
 1C Floating-point (D)
 20 Address constant (A)
 24 Address constant (Y)
 28 Address constant (S)
 2C Address constant (V)
 30 Packed Decimal (P)
 34 Zoned Decimal (Z)
 38 Not Used
 3C Not Used
 40 Not Used
 44 Not Used
 48 Relocatable EQU
 01 Bit length flag
 02 Explicit length flag

 The bit length and explicit length flags are ORed into the
 format field.

 LD (1 or 2 bytes) Data Length (actual length minus one)

 If the format of the data is character, hexadecimal, or binary, the
 LD field is two bytes.

 M (3 bytes) Duplication Factor

 S (2 bytes) Scale Factor

 ¹A cluster is defined as a multiple constant of variable-length entries
 in the format

 name DC m{C|X|P|Z}’n1,n2,...’

 The cluster header entry specifies the symbol "name", the duplication

 factor "m", and the length of the entire data entry. The cluster

 subfield entries specify the data format (either C, X, P, or Z) and the

 length of each element in the data entry.

 The Dynamic Loader 121

 MTS 5: System Services

 May 1983

 Symbolic Debugging System Data Item (AG2) ___________________________________

 ┌──┐ ┌ ┌ ┌ ┌ ┌ ┌
 | OR | AA | SYM | F | LD | M | S |
 └──┘ ┘ ┘ ┘ ┘ ┘ ┘

 Only the OR and AA fields are required for each entry. The presence of
 the remaining fields is indicated by the OR field.

 OR (1 byte) Organization Byte

 Bit 0 - If 0, Not data type. Bits 1-3 indicate the following: ____

 Bits 1-3 000 Space (next byte contains the length of the
 space)
 001 Control Section
 010 Dummy Control Section
 011 Common Section
 100 Instruction
 101 Channel Command Word
 110 EQU, LTORG, CNOP, ORG (indicates presence
 of F and LD fields)
 111 Not Used

 - If 1, Data type (indicates presence of F and LD fields). ____
 Bits 1-3 indicate the following:

 Bit 1 If 0, no duplication factor present
 If 1, duplication factor present (indicates
 presence of M field)

 Bit 2 If bit 1=0
 0 entry is not a cluster¹ subfield
 1 entry is a cluster subfield
 If bit 1=1
 0 entry is not a cluster header
 1 entry is a cluster header

 Bit 3 If 0, no scale factor present
 If 1, scale factor present (indicates presence
 of S field)

 Bit 4 If 0, symbol present (indicates presence of SYM field)
 If 1, symbol not present

 Bits 5-7 Length of symbol (length of SYM field) minus one

 AA (3 bytes) Displacement from Base of Control Section

 SYM (1-8 bytes) Symbol

 122 The Dynamic Loader

 MTS 5: System Services

 May 1983

 F (1 byte) Format

 00 Character (C)
 04 Hexadecimal (X)
 08 Binary (B)
 0C Not Used
 10 Fixed-point (F)
 14 Fixed-point (H)
 18 Floating-point (E)
 1C Floating-point (D)
 20 Address constant (A)
 24 Address constant (Y)
 28 Address constant (S)
 2C Address constant (V)
 30 Packed Decimal (P)
 34 Zoned Decimal (Z)
 38 Extended floating-point (L)
 3C Not Used
 40 Not Used
 44 Not Used
 48 Not Used
 01 Bit length flag
 02 Explicit length flag
 xx User-supplied EQU value if bits 0-3 of OR are 0110
 (xx is 00 if user-supplied value is not given)

 The bit length and explicit length flags are ORed into the
 format field.

 LD (1 or 2 bytes) Data Length (actual length minus one)

 If the format of the data is character, hexadecimal, binary, or
 if bits 0-3 of OR are 0110, the LD field is two bytes. If the
 data length is bit length, the length is given in bits; otherwise,
 it is given in bytes.

 M (3 bytes) Duplication Factor

 S (2 bytes) Scale Factor

 ¹A cluster is defined as a multiple constant of variable-length entries
 in the format

 name DC m{P|Z}’n1,n2,...’

 The cluster header entry specifies the symbol "name", the duplication

 factor "m", and the length of the entire data entry. The cluster

 subfield entries specify the data format (either P or Z) and the length

 of each element in the data entry.

 The Dynamic Loader 123

 MTS 5: System Services

 May 1983

 Symbolic Debugging System Data Item (AH1) ___________________________________

 ┌──┐ ┌ ┌ ┌ ┌ ┌ ┌ ┌
 | OR | AA | LN | SYM | F | LD | M | S |
 └──┘ ┘ ┘ ┘ ┘ ┘ ┘ ┘

 Only the OR and AA fields are required for each entry. The presence of
 the remaining fields is indicated by the OR field.

 OR (1 byte) Organization Byte

 Bit 0 - If 0, Not data type. Bits 1-3 indicate the following: ____

 Bits 1-3 000 Space (next byte contains the length of the
 space)
 001 Control Section
 010 Dummy Control Section
 011 Common Section
 100 Instruction
 101 Channel Command Word
 110 EQU, LTORG, CNOP, ORG (indicates presence
 of F and LD fields)
 111 Not Used

 - If 1, Data type (indicates presence of F and LD fields). ____
 Bits 1-3 indicate the following:

 Bit 1 If 0, no duplication factor present
 If 1, duplication factor present (indicates
 presence of M field)

 Bit 2 If bit 1=0
 0 entry is not a cluster¹ subfield
 1 entry is a cluster subfield
 If bit 1=1
 0 entry is not a cluster header
 1 entry is a cluster header

 Bit 3 If 0, no scale factor present
 If 1, scale factor present (indicates presence
 of S field)

 Bit 4 If 0, symbol present (indicates presence of LN and SYM
 fields)
 If 1, symbol not present

 Bits 5-7 Bit offset

 AA (3 bytes) Displacement from Base of Control Section

 LN (1 byte) Length of Symbol (actual length minus one)

 124 The Dynamic Loader

 MTS 5: System Services

 May 1983

 SYM (1-63 bytes) Symbol

 F (1 byte) Format

 00 Character (C)
 04 Hexadecimal (X)
 08 Binary (B)
 0C Not Used
 10 Fixed-point (F)
 14 Fixed-point (H)
 18 Floating-point (E)
 1C Floating-point (D)
 20 Address constant (A)
 24 Address constant (Y)
 28 Address constant (S)
 2C Address constant (V)
 30 Packed Decimal (P)
 34 Zoned Decimal (Z)
 38 Extended floating-point (L)
 3C Not Used
 40 Not Used
 44 Not Used
 48 Not Used
 01 Bit length flag
 02 Explicit length flag
 xx User-supplied EQU value if bits 0-3 of OR are 0110
 (xx is 00 if user-supplied value is not given)

 The bit length and explicit length flags are ORed into the
 format field.

 LD (1 or 2 bytes) Data Length (actual length minus one)

 If the format of the data is character, hexadecimal, binary, or
 if bits 0-3 of OR are 0110, the LD field is two bytes. If the
 data length is bit length, the length is given in bits; otherwise,
 it is given in bytes.

 M (3 bytes) Duplication Factor

 S (2 bytes) Scale Factor

 ¹A cluster is defined as a multiple constant of variable-length entries
 in the format

 name DC m{P|Z}’n1,n2,...’

 The cluster header entry specifies the symbol "name", the duplication

 factor "m", and the length of the entire data entry. The cluster

 subfield entries specify the data format (either P or Z) and the length

 of each element in the data entry.

 The Dynamic Loader 125

 MTS 5: System Services

 May 1983

 Symbolic Debugging System Data Item (PL3) ___________________________________

 ┌──┐ ┌ ┌ ┌ ┌ ┌
 | OR | AA | SYM | F | LD | M |
 └──┘ ┘ ┘ ┘ ┘ ┘

 Only the OR and AA fields are required for each entry. The presence of
 the remaining fields is indicated by the OR field.

 OR (1 byte) Organization Byte

 Bit 0 - If 0, Not data type. Bits 1-3 indicate the following: ____

 Bits 1-3 000 Not Used
 001 Control Section
 010 Dummy Control Section
 011 Common Section
 100 Instruction
 101 Not Used
 110 Not Used
 111 Not Used

 - If 1, Data type (indicates presence of F and LD fields). ____
 Bits 1-3 indicate the following:

 Bit 1 If 0, no duplication factor present
 If 1, duplication factor present (indicates
 presence of M field)

 Bit 2 Not Used

 Bit 3 Not Used

 Bits 4-7 Length of symbol (length of SYM field)

 AA (3 bytes) Displacement from Base of Control Section

 SYM (1-15 bytes) Symbol

 F (1 byte) Format

 00 Not Used
 04 Hexadecimal
 08 Not Used
 0C Not Used
 10 Fixed-point (Fullword)
 14 Fixed-point (Halfword)
 18 Floating-point (Short)
 1C Floating-point (Long)

 126 The Dynamic Loader

 MTS 5: System Services

 May 1983

 LD (1 or 2 bytes) Data Length (actual length minus one)

 If the format of the data is hexadecimal, the LD field is two
 bytes.

 M (3 bytes) Duplication Factor

 The Dynamic Loader 127

 MTS 5: System Services

 May 1983

 Symbolic Debugging System Data Item (FG1) ___________________________________

 ┌──┐ ┌ ┌ ┌ ┌ ┌
 | OR | AA | SYM | F | LD | AR |
 └──┘ ┘ ┘ ┘ ┘ ┘
 ┌──┐ ┌ ┌
 | MUL | MUL | MUL |
 └──┘ ┘ ┘
 ┌──┐ ┌ ┌
 | MUL | MUL | MUL |
 └──┘ ┘ ┘
 ┌──────────────────┐
 | MUL |
 └──────────────────┘

 Only the OR and AA fields are required for each entry. The presence of
 the remaining fields is indicated by the OR field.

 OR (1 byte) Organization Byte

 Bit 0 - If 0, Not data type. Bits 1-3 indicate the following: ____

 Bits 1-3 000 Not Used
 001 Control Section
 AA field contains the length of the TEMP &

 CONSTANT pool in the FORTRAN object module

 (required for object time dimensions)

 010 Not Used

 011 Common Section

 100 Not Used

 101 Not Used

 110 Internal Statement Number (source listing)

 111 External Statement Number (statement label)

 - If 1, Data type (indicates presence of F and LD fields). ____

 Bits 1-3 indicate the following:

 Bit 1 Not Used

 Bit 2 If 0, entry is not an array

 If 1, entry is an array (indicates presence of

 AR and MUL fields)

 Bit 3 If 0, entry is not a call by name dummy argument

 If 1, entry is a call by name dummy argument in

 a FORTRAN subprogram. AA field gives the

 displacement to a pointer to the argument

 location in the FORTRAN calling program.

 Bit 4 If 0, symbol present (indicates presence of SYM field)

 If 1, symbol not present

 128 The Dynamic Loader

 MTS 5: System Services

 May 1983

 Bits 5-7 Length of symbol (length of SYM field) minus one

 AA (3 bytes) Displacement from Base of Control Section

 SYM (1-6 bytes) Symbol

 F (1 byte) Format

 04 Hexadecimal
 10 Integer (Fullword)
 14 Integer (Halfword)
 18 Real (Short)
 1C Real (Long)
 38 Complex (Short)
 3C Complex (Long)
 40 Logical (Fullword)
 44 Logical (Byte)

 LD (1 byte) Data Length (actual length minus one)

 If the format of the data is hexadecimal, the LD field is two
 bytes.

 AR (1 byte) Dimension Size (number of subscripts)

 The dimension size indicates number of MUL fields (1 - 7)

 MUL (4 bytes) Multiplier for Array Subscript

 Bit 0 - If 0, MUL field (bits 1-31) contains the actual multiplier
 used to calculate array subscripts
 If 1, MUL field (bits 1-31) contains the displacement
 to a pointer in the TEMP & CONSTANT pool in the

 FORTRAN oject module. This is used for object time

 dimensions.

 The Dynamic Loader 129

 MTS 5: System Services

 May 1983

 Symbolic Debugging System Data Item (PL1) ___________________________________

 ┌───┐ ┌ ┌ ┌ ┌
 | OR | LI | INFO | LN | NAME |
 └───┘ ┘ ┘ ┘ ┘

 There are 13 types of data items for PL1 SYM records. The general for-
 mat is given above. Only the OR and LI fields are required; the INFO,
 LN, and NAME fields are only present for certain types.

 OR (1 byte) Organization byte

 00 Control section
 01 Pseudo-register
 03 Statement (labeled)
 05 Entry or procedure label
 x7 Label variable
 08 File
 xF Data variable
 80 Procedure or ON-unit
 81 Begin statement
 82 Entry statement
 83 Statement (unlabeled)
 84 Iterative DO statement
 85 End statement

 LI (1 byte) Length of INFO field
 INFO (n bytes) Information field (present if LI≠0), n=LI bytes
 LN (1 byte) Length of NAME field minus one
 NAME (n bytes) Symbolic name, n=LN+1 bytes

 The format for each type is given below:

 00 Control section

 ┌─────────────────────────────┐ ┌ ┌ ┌
 | OR | LI | LN | NAME |
 └─────────────────────────────┘ ┘ ┘ ┘

 OR (1 byte) Organization byte (hex 00)
 LI (1 byte) Length of INFO (hex 00)
 LN (1 byte) Length of NAME minus one
 NAME (n bytes) Control section name, n=LN+1

 01 Pseudo-register

 ┌───────────────────────────────────────┐ ┌ ┌ ┌ ┌
 | OR | LI | RCNT | LN | NAME |
 └───────────────────────────────────────┘ ┘ ┘ ┘ ┘

 OR (1 byte) Organization (hex 01)
 LI (1 byte) Length of INFO (hex 02)
 RCNT (2 bytes) Reference count

 130 The Dynamic Loader

 MTS 5: System Services

 May 1983

 LN (1 byte) Length of NAME minus one
 NAME (n bytes) Pseudo-register name, n=LN+1

 03 Statement (labeled)

 ┌───┐ ┌ ┌ ┌ ┌ ┌ ┌
 | OR | LI | BC | STA# | ADDR | LN | NAME |

 └───┘ ┘ ┘ ┘ ┘ ┘ ┘

 OR (1 byte) Organization byte (hex 03)

 LI (1 byte) Length of INFO (hex 06)

 BC (1 byte) Block count

 STA# (2 bytes) Statement number

 ADDR (3 bytes) Displacement in program control section

 LN (1 byte) Length of statement label minus one

 NAME (n bytes) Statement label name, n=LN+1

 05 Entry or procedure label

 ┌───┐ ┌ ┌ ┌ ┌ ┌ ┌
 | OR | LI | BC | STA# | ADDR | DED | LN |

 └───┘ ┘ ┘ ┘ ┘ ┘ ┘

 ┌──────────────┐
 | NAME |

 └──────────────┘

 OR (1 byte) Organization byte (hex 05)

 LI (1 byte) Length of INFO (hex 09)

 BC (1 byte) Block count

 STA# (2 bytes) Statement number

 ADDR (3 bytes) Displacement in program control section

 DED (3 bytes) Data element descriptor

 LN (1 byte) Length of entry or procedure label minus one

 NAME (n bytes) Entry or procedure label name, n=LN+1

 x7 Label variable

 ┌───┐ ┌ ┌ ┌ ┌ ┌ ┌
 | OR | LI | BC | RCNT | STA# | ADDR | DF |

 └───┘ ┘ ┘ ┘ ┘ ┘ ┘

 ┌───┐ ┌ ┌ ┌ ┌
 | DM | DVA | LN | NAME | DTAB |

 └───┘ ┘ ┘ ┘ ┘

 OR (1 byte) Organization byte (hex x7) (see OR field for

 data variable entry)

 LI (1 byte) Length of INFO (hex 0B or 0E)

 BC (1 byte) Block count

 RCNT (2 bytes) Reference count

 STA# (2 bytes) Statement number

 ADDR (4 bytes) Displacement of variable

 The Dynamic Loader 131

 MTS 5: System Services

 May 1983

 DF (1 byte) Data flag (see DF field of data variable entry)
 DM (1 byte) Dimensionality
 DVA (3 bytes) Dope vector address (optional--present if bit
 7 of DF is 1)
 LN (1 byte) Length of name minus one
 NAME (n bytes) Label variable name, n=LN+1
 DTAB (n bytes) Dimension table (optional--present if variable
 is dimensioned and bit 7 of DF is 0 - see DTAB
 field of data variable entry), n=8*DM+4

 08 File

 ┌───┐ ┌ ┌ ┌ ┌ ┌
 | OR | LI | RCNT | STA# | ADDR | LN |

 └───┘ ┘ ┘ ┘ ┘ ┘

 ┌──────────────┐
 | NAME |

 └──────────────┘

 OR (1 byte) Organization byte (hex 08)

 LI (1 byte) Length of INFO (hex 07)

 RCNT (2 bytes) Reference count

 STA# (2 bytes) Statement number

 ADDR (3 bytes) Displacement of DCLCB in program control

 section. If zero, file is external and refers

 to last control section.

 LN (1 byte) Length of NAME minus one

 NAME (n bytes) File name, n=LN+1

 xF Data variable

 ┌───┐ ┌ ┌ ┌ ┌ ┌ ┌
 | OR | LI | BC | RCNT | STA# | ADDR | DF |

 └───┘ ┘ ┘ ┘ ┘ ┘ ┘

 ┌──┐ ┌ ┌ ┌ ┌
 | DM | DED | NUM| DEDA | DVA |

 └──┘ ┘ ┘ ┘ ┘

 ┌───┐ ┌ ┌ ┌ ┌
 | LN | NAME | LB | BPTR | DTAB |

 └───┘ ┘ ┘ ┘ ┘

 OR (1 byte) Organization byte (hex xF)

 bit 0: 1, if no symbolic name

 1: Unused

 2: Unused

 3: 1, if dimensioned

 LI (1 byte) Length of INFO

 BC (1 byte) Block count

 132 The Dynamic Loader

 MTS 5: System Services

 May 1983

 RCNT (2 bytes) Reference count
 STA# (2 bytes) Statement number

 ADDR (4 bytes) Displacement of variable--first byte gives

 bit offset

 DF (1 byte) Data flag

 bits 0-1: 01, if numeric picture (NUM field

 present)

 10, if DED address present (DEDA

 field present)

 11, if symbol table address present

 (DEDA field present)

 bits 2-3: 00, if based variable

 01, if static variable

 10, if controlled variable

 11, if automatic variable

 bit 4: 1, if parameter variable

 bit 5: 1, if structured variable

 bit 6: 1, if external variable

 bit 7: 1, if dope vector present

 DM (1 byte) Dimensionality

 DED (3 bytes) Data element descriptor

 Special cases: 2Exxxx Area(xxxx)

 CC0000 Pointer variable

 DCxxxx Offset variable

 NUM (1 byte) Numeric field length (optional)

 DEDA (3 bytes) Data element descriptor address or symbol table

 address (optional--present if bit 0 of DF is 1)

 DVA (3 bytes) Dope vector address (optional--present if bit 7

 of DF is 1)

 LN (1 byte) Length of variable name minus one

 NAME (n bytes) Data variable name, n=LN+1

 LB (1 byte) Length of based variable pointer name minus one

 (optional - present if bits 2-3 of DF are 00)

 BPTR (n bytes) Based variable pointer name (optional--present

 if bits 2-3 of DF are 00), n=LB+1

 DTAB (n bytes) Dimension table (optional--present if variable

 is dimensioned and bit 7 of DF is 0), n=8*DM+4

 xxxxxxxx Virtual origin (4 bytes)

 xxxxxxxx Multipliers (4 bytes each, one per

 ... dimension)

 xxxx Upperbound of 1st dimension (2 bytes)

 xxxx Lowerbound of 1st dimension (2 bytes)

 2nd ...

 2nd ...

 The Dynamic Loader 133

 MTS 5: System Services

 May 1983

 80 Procedure or ON-unit

 ┌──┐ ┌ ┌ ┌ ┌ ┌ ┌ ┌
 | OR | LI | BL | BC | CB | STA# | ADDR | P# |

 └──┘ ┘ ┘ ┘ ┘ ┘ ┘ ┘

 ┌───────────────────────────────────────┐ ┌ ┌ ┌
 | LEN | OP | LN1| NAM1 | ...

 └───────────────────────────────────────┘ ┘ ┘ ┘

 OR (1 byte) Organization byte (hex 80)

 LI (1 byte) Length of INFO (hex 0D)

 BL (1 byte) Block level

 BC (1 byte) Block count

 CB (1 byte) Containing block count

 STA# (2 bytes) Statement number

 ADDR (3 bytes) Displacement in program control section

 P# (1 byte) Number of symbolic parameters

 LEN (3 bytes) Length of procedure

 OP (1 byte) Procedure options

 bit 0: 1, if REENTRANT

 1: 1, if ON-UNIT

 2: 1, if MAIN

 3: 1, if TASK

 4: 1, if RECURSIVE

 5: 1, if OPTIONS

 6: 1, if statement RETURN expression

 7: 1, if an argument is ENTRY

 LN1 (1 byte) Length of parameter symbol 1 minus one

 NAM1 (n bytes) Parameter symbol 1, n=LN1+1

 LN2 (1 byte) Length of parameter symbol 2 minus one

 NAM2 (n bytes) Parameter symbol 2, n=LN2+1

 81 Begin statement

 ┌───┐ ┌ ┌ ┌ ┌ ┌ ┌
 | OR | LI | BL | BC | CB | STA# | ADDR |

 └───┘ ┘ ┘ ┘ ┘ ┘ ┘

 OR (1 byte) Organization byte (hex 81)

 LI (1 byte) Length of INFO (hex 08)

 BL (1 byte) Block level

 BC (1 byte) Block count

 CB (1 byte) Containing block count

 STA# (2 bytes) Statement number

 ADDR (3 bytes) Displacement in program control section

 134 The Dynamic Loader

 MTS 5: System Services

 May 1983

 82 Entry statement

 ┌──┐ ┌ ┌ ┌ ┌ ┌ ┌ ┌
 | OR | LI | BL | BC | CB | STA# | ADDR | P# |

 └──┘ ┘ ┘ ┘ ┘ ┘ ┘ ┘

 ┌───────────────────┐ ┌
 | LN1| NAM1 | ...

 └───────────────────┘ ┘

 OR (1 byte) Organization byte (hex 82)

 LI (1 byte) Length of INFO (hex 09)

 BL (1 byte) Block level

 BC (1 byte) Block count

 CB (1 byte) Containing block count

 STA# (2 bytes) Statement number

 ADDR (3 bytes) Displacement in program control section

 P# (1 byte) Number of symbolic parameters

 LN1 (1 byte) Length of parameter symbol 1 minus one

 NAM1 (n bytes) Parameter symbol 1, n=LN1+1

 LN2 (1 byte) Length of parameter symbol 2 minus one

 NAM2 (n bytes) Parameter symbol 2, n=LN2+1

 83 Statement (unlabeled)

 ┌───────────────────────────────────────┐ ┌ ┌ ┌ ┌
 | OR | LI | BC | STA# | ADDR |

 └───────────────────────────────────────┘ ┘ ┘ ┘ ┘

 OR (1 byte) Organization byte (hex 83)

 LI (1 byte) Length of INFO (hex 06)

 BC (1 byte) Block count

 STA# (2 bytes) Statement number

 ADDR (3 bytes) Displacement in program control section

 84 Iterative DO statement

 ┌───────────────────────────────────────┐ ┌ ┌ ┌ ┌
 | OR | LI | BC | STA# | ADDR |

 └───────────────────────────────────────┘ ┘ ┘ ┘ ┘

 OR (1 byte) Organization byte (hex 84)

 LI (1 byte) Length of INFO (hex 06)

 BC (1 byte) Block count

 STA# (2 bytes) Statement number

 ADDR (3 bytes) Displacement in program control section

 The Dynamic Loader 135

 MTS 5: System Services

 May 1983

 85 End statement

 ┌───────────────────────────────────────┐ ┌ ┌ ┌ ┌
 | OR | LI | EC | STA# | ADDR |

 └───────────────────────────────────────┘ ┘ ┘ ┘ ┘

 OR (1 byte) Organization byte (hex 85)

 LI (1 byte) Length of INFO (hex 06)

 EC (1 byte) End code

 00 - end of procedure

 01 - end of BEGIN block

 02 - end of iterative DO section

 STA# (2 bytes) Statement number

 ADDR (3 bytes) Displacement in program control section

 Note: The formats of the declare control block (DCLCB) and the data

 element descriptor (DED) are given in IBM System/360 Operating ________________________

 System PL/I Subroutine Library Program Logic Manual, form ___

 GY28-6801.

 136 The Dynamic Loader

 MTS 5: System Services

 May 1983

 User-Generated Load Records ___________________________

 LDT Input Record (Card Image) _____________________________

 ┌───┐ ┌ ┌ ┌ ┌
 |1|2-4| 5-16 | 17-24 | 25-80 |
 └───┘ ┌┘┌ ┘ ┌ ┘ ┌ ┘ ┌
 | | | | |
 | | | | |
 | | └─Not | └─Not used
 | | used |
 | └─LDT └─8-character entry point ___
 | name (optional)
 └─Not used

 REP Input Record (Card Image) _____________________________

 ┌───┐ ┌ ┌ ┌ ┌ ┌ ┌
 |1|2-4|5-6|7-12|13-14|15-16| 17-80 |
 └───┘ ┌┘┌ ┘┌ ┘┌ ┘┌ ┘┌ ┘┌
 | | | | | | |
 | | | | | | └─An even number of hexadecimal
 | └REP| | | | digits ending with the first ___
 | | | | | blank, which replaces an integer
 └─Not | | | | number of bytes. The digits may
 used| | | | be separated by commas (on byte
 | | | | boundaries only) if desired.
 | | | |
 | | | └─ESD Identifier of the control section ______________
 | | | containing text as two right-justified
 | | | hexadecimal digits.
 | | |
 | | └─Not used
 | |
 | └─Address of first byte of replacement data as six
 | right-justified hexadecimal digits.
 |
 └─Not used

 Example: REP 001A54 01,1A23,47FDA123 Patch to AR 2,3; B LOOP

 The Dynamic Loader 137

 MTS 5: System Services

 May 1983

 DEF Input Record (Card Image) _____________________________

 ┌───┐ ┌ ┌ ┌ ┌ ┌ ┌ ┌
 |1|2-4 |5-6|7-12|13-14|15-16| 17-24 | 25-80 |
 └───┘ ┌┘┌ ┘┌ ┘┌ ┘┌ ┘┌ ┘┌ ┘┌
 | | | | | | | |
 | | | | | | | └─Not used
 | | | | | | |
 | | | | | | └─External symbol which
 | | | | | | is to be defined.
 | | | | | |
 | | | | | └─ESD Identifier of the control section to ______________
 | | | | | contain this external symbol as two right-
 | | | | | justified hexadecimal digits. Zero indicates
 | | | | | an absolute address.
 | | | | |
 | | | | └─Not used
 | | | |
 | | | └─Address of the external symbol as six right-justified
 | | | hexadecimal digits.
 | | |
 | | └─Not used
 | |
 | └─DEF ___
 |
 └─Not used

 ENT Input Record (Card Image) _____________________________

 ┌───┐ ┌ ┌ ┌ ┌
 | 1 | 2-4 | 5-16 | 17-24 | 25-80 |
 └───┘ ┌ ┘┌ ┘┌ ┘┌ ┘┌
 | | | | |
 | | | | |
 | | | | └─Not used
 | | | |
 | | | └─8-character entry
 | | | point name
 | | |
 | | └─Not used
 | |
 | └─ENT ___
 |
 └─Not used

 138 The Dynamic Loader

 MTS 5: System Services

 May 1983

 NCA Input Record (Card Image) _____________________________

 ┌───┐ ┌ ┌ ┌ ┌
 | 1 | 2-4 | 5-16 | 17-24 | 25-80 |
 └───┘ ┌ ┘┌ ┘┌ ┘┌ ┘┌
 | | | | |
 | | | | └─Not used
 | | | |
 | | | └─Name of the external symbol
 | | | which can be left undefined,
 | | | or is to be conditionally loaded.
 | | |
 | | └─Not used
 | |
 | └─NCA ___
 |
 └─Not used

 COM Input Record (Card Image) _____________________________

 ┌───┐ ┌ ┌
 | 1 | 2-4 | 5-80 |
 └───┘ ┌ ┘┌ ┘┌
 | | |
 | | └─Not used
 | |
 | └─COM ___
 |
 └─Not used

 The Dynamic Loader 139

 MTS 5: System Services

 May 1983

 MDL Input Record (Card Image) _____________________________

 ┌───┐ ┌ ┌ ┌ ┌
 | 1 | 2-4 | 5-6 | 7-9 | 10-80 |
 └───┘ ┌ ┘┌ ┘┌ ┘┌ ┘┌
 | | | | |
 | | | | └─Not used
 | | | |
 | | | └─ON - to allow multiple definition of control __
 | | | | sections.
 | | | └─OFF - to revert to the normal state. ___
 | | |
 | | └─Not used
 | |
 | └─MDL ___
 |
 └─Not used

 LCS Input Record (Card Image) _____________________________

 ┌───┐ ┌ ┌ ┌ ┌ ┌
 |1|2-4|5-6|7-16 |17-24| 25-80 |
 └───┘ ┌┘┌ ┘┌ ┘┌ ┘┌ ┘ ┌
 | | | | | |
 | | | | | └─Not used
 | | | | |
 | | | | └─The external symbol whose value is the origin
 | | | | of a low-core symbol dictionary table.
 | | | |
 | | | └─Not used
 | | |
 | | └─Blank - if normal LCS table. _____
 | | └─PR - if a low-core pseudo-register definition table. __
 | |
 | └─LCS ___
 |
 └─Not used

 Note that the system low-core symbol dictionary has the predefined name
 LCSYMBOL. An LCS card referring to that symbol can be placed at the end ________
 of the deck by the user and will reduce the loading time if no
 subroutines are required from *LIBRARY. Such a record is available in
 the public file *LCS.

 140 The Dynamic Loader

 MTS 5: System Services

 May 1983

 MSG Input Record (Card Image) _____________________________

 ┌───┐ ┌ ┌ ┌
 | 1 | 2-4 | 5 | 6-80 |
 └───┘ ┌ ┘┌ ┘┌ ┘ ┌
 | | | |
 | | | └─Message to be printed on the map device when
 | | | MSG record is encountered during loading
 | | |
 | | └─Not used
 | |
 | └─MSG ___
 |
 └─Not used

 The Dynamic Loader 141

 MTS 5: System Services

 May 1983

 OPT Input Record (Card Image) _____________________________

 ┌───┐ ┌ ┌ ┌
 | 1 | 2-4 | 5 | 6-80 |
 └───┘ ┌ ┘┌ ┘┌ ┘ ┌
 | | | |
 | | | └─List of loader options separated by commas
 | | | and terminated by a blank
 | | |
 | | └─Not used
 | |
 | └─OPT ___
 |
 └─Not used

 Note: See the subsection "Modifying Programs in Object Module Form"

 for a description of the loader options available.

 ALI Input Record (Card Image) _____________________________

 ┌───┐ ┌ ┌ ┌ ┌ ┌ ┌
 |1|2-4 |5-6| 7-14 |15-16| 17-24 | 25-80 |

 └───┘ ┌┘┌ ┘┌ ┘┌ ┘┌ ┘┌ ┘┌
 | | | | | | |

 | | | | | | └─Not used
 | | | | | |

 | | | | | └─Symbol to be marked as an alias
 | | | | | (synonym) of the symbol in column 7.

 | | | | |

 | | | | └─Not used
 | | | |

 | | | └─Symbol to be marked as an alias
 | | | (synonym) of the symbol in column 17.

 | | |

 | | └─PR - if the specified symbols are __

 | | | pseudo-registers.

 | | └─Blank - otherwise. _____

 | |

 | └─ALI ___

 |

 └─Not used

 142 The Dynamic Loader

 MTS 5: System Services

 May 1983

 Library Control Records _______________________

 LIB Input Record (Card Image) _____________________________

 ┌───┐ ┌ ┌ ┌ ┌ ┌ ┌ ┌
 |1|2-4|5-8|9-15 |16 |17-24 | 25-40 | 41-80 |
 └───┘ ┌┘┌ ┘┌ ┘┌ ┘┌ ┘┌ ┘┌ ┘┌
 | | | | | | | |
 | | | | | | | └─Not used
 | | | | | | |
 | | | | | | └─(optional) note-point information for the
 | | | | | | first record immediately following the
 | | | | | | object module.
 | | | | | |
 | | | | | └─The module name of
 | | | | | the object module.
 | | | | |
 | | | | └─X if note-point information is included in col. 25-40 _
 | | | | └─Blank if information not included. _____
 | | | |
 | | | └─Not used
 | | |
 | | └─Blank: object module follows. _____
 | | └─Fullword integer number consisting of the line number of the
 | | the first line of the object module multiplied by 1000.
 | |
 | └─LIB ___
 |
 └─Not used

 The Dynamic Loader 143

 MTS 5: System Services

 May 1983

 RIP Input Record (Card Image) _____________________________

 ┌───┐ ┌ ┌ ┌ ┌ ┌ ┌
 |1|2-4 |5-6|7-14|15-16|17-24 | 25-80 |
 └───┘ ┌┘┌ ┘┌ ┘┌ ┘┌ ┘┌ ┘┌
 | | | | | | |
 | | | | | | └─Not used
 | | | | | |
 | | | | | └─External symbol to be tested; otherwise blank.
 | | | | |
 | | | | └─Not used
 | | | |
 | | | └─External symbol to be marked as referred
 | | | to, but not defined, if the symbol
 | | | to be tested is of that class or is
 | | | blank.
 | | |
 | | └─Not used
 | |
 | └─RIP ___
 |
 └─Not used

 144 The Dynamic Loader

 MTS 5: System Services

 May 1983

 DIR Input Record (Card Image) _____________________________

 ┌───┐ ┌ ┌ ┌ ┌ ┌ ┌ ┌ ┌
 |1|2-4 | 5-8 |9 |10| 11-12 | 13-14 | 15-16 | 17-80 |
 └───┘ ┌┘┌ ┘ ┌ ┘┌ ┘┌ ┘┌ ┘┌ ┘┌ ┘┌
 | | | | | | | | |
 | | | | | | | | └─Not used
 | | | | | | | |
 | | | | | | | └─Length of directory entry
 | | | | | | |
 | | | | | | └─Not used
 | | | | | |
 | | | | | └─Length of the actual directory
 | | | | |
 | | | | └─Type of DIR record
 | | | | X’40’ - sequential file library produced by *OBJUTIL
 | | | | X’41’ - line file library produced by *OBJUTIL
 | | | |
 | | | └─Not used
 | | |
 | | └─Continuation pointer - points to next record
 | | to be processed after the directory. POINT
 | | information if sequential file; MTS internal
 | | line number if line file.
 | |
 | └─DIR ___
 |
 └─Not used

 The actual directory is stored as the next record and consists of
 entries, each with the following format:

 Directory Entry _______________

 ┌────────────────────┐ ┌
 | 1-8 | 9-12 |
 └────────────────────┘ ┌ ┘┌
 | |
 | └─Information for POINT if sequential file, or
 | MTS internal line number of first record
 | in module if line file
 |
 └─External symbol

 Note: The directory entry record may be up to 32767 bytes long.

 The Dynamic Loader 145

 MTS 5: System Services

 May 1983

 146 The Dynamic Loader

 MTS 5: System Services

 May 1983

 VIRTUAL MEMORY MANAGEMENT _________________________

 The amount of virtual memory allocatable for each user is currently
 15 segments. Each segment consists of 256 pages of 4096 bytes per page.
 Currently, virtual memory has the following layout:

 Segment 0: reserved for nonrelocatable nonpaged resident system
 routines.
 Segments 1-5: reserved for sharable paged resident system routines.
 Segment 6: unused.
 Segment 7: system allocated storage for user’s task.
 Segments 8-14: available for allocation by user’s task.

 Since the charge for virtual memory is a function of both size and
 time of use, the user may wish to economize on the use of virtual
 memory. Instead of initially allocating all the virtual memory needed
 for a program at the time the program is loaded and retaining it until
 termination, memory can be obtained and released dynamically (during
 execution). This section discusses the various ways of accomplishing
 this.

 Calling the system subroutine GETSPACE is the primary method for
 dynamically allocating virtual memory. This subroutine is called
 implicitly by the $RUN, $RERUN, $DEBUG, and $LOAD commands. These

 commands call on the loader to load one or more object modules; the

 loader in turn calls on GETSPACE to acquire space for the object modules

 being loaded. Object modules consist of control sections each of which

 must occupy a contiguous block of virtual memory. The number of control

 sections in an object module depends on the compiler used. If there is

 more than one control section in a module, the loader only insists that

 each control section get a contiguous section of memory. The loader

 will make a separate call to GETSPACE to acquire memory space for each

 control section. Therefore, each control section may be arbitrarily

 located in virtual memory. Although the module is logically related,

 its control sections may be physically dispersed throughout virtual

 memory. Virtual memory acquired for programs loaded by the $RUN,

 $RERUN, $DEBUG, and $LOAD commands is managed by the system.

 The loader (and therefore GETSPACE) is also called implicitly by the

 system subroutines LINK, LOAD, and XCTL. The subroutine LINK can be

 called to load a program into memory, execute that program, and after

 execution, release the acquired memory and return to the calling

 program. The memory acquired by the LINK subroutine is managed by the

 system. The subroutine LOAD can be called to load an object module into

 that memory without transferring to the entry point. The user has the

 option of managing this memory himself or allowing the system to manage

 it for him. The subroutine XCTL can be called to release the memory of

 the program that called XCTL, load a new program into memory, and

 Virtual Memory Management 147

 MTS 5: System Services

 May 1983

 transfer to the entry point of the new program. This memory is managed
 by the system.

 The subroutine GETSPACE can also be called explicitly by a user’s
 program. Virtual memory acquired explicitly by the user can be managed
 by the user or by the system, at the user’s option. With a call to
 GETSPACE, the user specifies the size of memory desired, the segment
 from which the memory is to be allocated, and the manner in which the
 memory is to be managed. These concepts are explained below.

 There are basically four ways to release virtual memory:

 (1) by the termination of execution of the entire program,
 (2) implicitly, by returning from a program loaded via the
 subroutines LINK or XCTL,
 (3) implicitly, by calling the subroutine XCTL, or
 (4) explicitly, by calling the subroutines FREESPAC or UNLOAD or
 by using the command $UNLOAD.

 Since control sections may be widely dispersed in virtual memory,

 they must be logically connected. The concept of storage index numbers _______ _____ _______

 and link levels serves the purpose of identifying logically connected ____ ______

 control sections. Each area of virtual memory allocated has an

 associated storage index number, ranging from 00 to FF (base 16). All

 logically connected areas (those control sections loaded with one call

 to the loader) are given the same storage index number. Later, when

 memory is released, these numbers serve as identifiers for determining

 which sections of memory are released. The maximum storage index number _______ _______ _____ ______

 is the largest storage index number assigned by the loader to a block of

 memory (that has not yet been released). When a new program is loaded,

 this storage index number is incremented by one to form a new maximum

 storage index number.

 A link level is a group of storage index numbers associated with the

 modules loaded between successive calls on the subroutines LINK or XCTL.

 When a new link level is started, the number assigned as the link level ____ _____

 index is the storage index number of the block of memory being loaded _____

 (the maximum storage index index). This number serves as a base for

 referring to all storage index numbers that belong to that link level.

 All storage index numbers assigned to new blocks of memory loaded until

 a new link level is started belong to this link level. A pushdown table

 is maintained that records all the storage index numbers associated with

 each link level. A call to the subroutine LINK starts a new link level;

 a return from LINK reactivates a previous link level. The current link _______ ____

 level index is the current level in the table (the link level of the _____ _____

 modules currently executing). The top of the current link level is the

 maximum storage index number that has been currently assigned.

 Virtual memory is logically divided into two sections. The highest _______

 storage level section is memory that is available for the entire program _______ _____

 until termination or until explicitly released. This section of memory

 is designed for reference by programs executing at any link level. The

 current storage level section is memory that is available for reference _______ _______ _____

 148 Virtual Memory Management

 MTS 5: System Services

 May 1983

 by a part of the program executing at the corresponding link level.
 Blocks of current storage level memory are released when the link level
 that allocated them returns to a previous level. The storage index
 numbers play a role in the management of these two sections of memory.
 The numbers in the range 00 to 7F (base 16) are the highest storage
 level numbers. They are assigned only to memory acquired through the
 GETSPACE and LOAD subroutines when the option for "highest" is chosen.

 These areas are released only when explicitly requested or when

 execution of the entire program terminates. The storage index numbers

 in the range 80 to FF (base 16) are the current storage level numbers.

 These are assigned via the subroutines GETSPACE and LOAD (with the

 "current" option chosen), LINK, and XCTL. These areas are released

 automatically under conditions discussed below.

 The subroutine LINK can be called explicitly by the user or

 implicitly by the $RUN, $RERUN, $DEBUG, and $LOAD commands. When the

 user calls LINK, the loader is called to load the modules specified and

 then transfer to the entry point for execution. When the $RUN, $RERUN,

 $DEBUG, and $LOAD commands call LINK, the loader is called to load the

 modules specified, but instead of transferring to the entry point

 immediately, control is returned to the command for further processing

 of command options. Execution is started with a special transfer to the

 entry point for the $RUN, $RERUN, and $DEBUG commands or via the $START

 or $RESTART commands when the $LOAD command is used. When LINK is

 called implicitly via the $RUN, $RERUN, $DEBUG, or $LOAD commands, the

 initial maximum storage index number is 80 and the current link level

 index is 80.

 When the subroutine LINK is called by the user’s program, the name of

 a file or device containing the object module(s) to be loaded and linked

 to is given. LINK calls the loader which in turn calls GETSPACE for

 each control section in the module(s), loads the module(s), and

 transfers control to the entry point. The maximum storage index number,

 in the range 80-FF, is incremented by one and the allocated memory is

 assigned this number. This number is now the maximum storage index

 number, as well as the current link level index, marking the start of

 the range of storage index numbers assigned to that link. Any calls to

 the LOAD subroutine which choose the option for the current storage

 level (range 80-FF) and occur before the subroutine LINK returns are

 assigned their own storage index numbers but are considered to be part

 of the current link level. When the linked module terminates execution,

 the subroutine LINK returns to the calling program and all memory

 identified with the current link level is released. Thus, those modules

 loaded via a call to the LOAD subroutine with the "current" option are

 released along with the linked routine. The maximum storage index

 number is then reset to what it was before LINK was called, i.e., to the

 maximum storage index number associated with the previous link level

 index. The current link level index is reset to the storage index

 number assigned to the most recent link that has not yet returned. When

 the linked modules return after execution to the LINK subroutine, all

 memory associated with the modules is released by the LINK subroutine

 and control is returned to the program which called LINK. See the

 example given by Tables 1(a) and 1(b) and Figure 1 below.

 Virtual Memory Management 149

 MTS 5: System Services

 May 1983

 Table 1(a)

 Storage | Time
 Index |
 Number | 0 1 2 3 4 5 6 7 8
 ─────────┼────────────────────────────
 80 | M M M M M M M M M
 81 | A B B B B B
 82 | C D

 Table 1(b)

 | Maximum Current
 | Storage Link
 | Index Level
 Time | Number Index
 ─────────┼────────────────────── ┌
 0 | 80 | 80
 1 | 81 | 81
 2 | 80 | 80
 3 | 81 | 81
 4 | 82 | 82
 5 | 81 | 81
 6 | 82 | 82
 7 | 81 | 81
 8 | 80 | 80

 150 Virtual Memory Management

 MTS 5: System Services

 May 1983

 Figure 1

 MAIN
 ┌──────────────┐
 | |
 | LINK A |─1────────┐ ┌
 | ────── |─2─────┐ | ┌
 | ────── | | | A
 | LINK B |─3──┐ | ┌───────────────┐ ┌ ┘
 | ────── |─┐ | | | | ┌
──────					ENTER
──────	8			──────	
STOP					──────
			└─	RETURN	┘
 └──────────────┘ | | | |
 | | └───────────────┘
 | | B
 | | ┌───────────────┐
 | | | |
 | └────| ENTER | ┘
 | | ────── |
 | | ────── |
 | | LINK C |─4────────┐ ┌
 | | ────── |─5─────┐ | ┌
 | | ────── | | | C
 | | LINK D |─6──┐ | ┌───────────────┐ ┌ ┘
 | | ────── |─┐ | | | | ┌
 | | ────── | | | | | ENTER |
 └───────| RETURN | 7 | | | ────── | ┘
 | | | | | | ────── |
 └───────────────┘ | | | | ────── |
 | | └─| RETURN | ┘
 | | | |
 | | └───────────────┘
 | |
 | | D
 | | ┌───────────────┐
 | | | |
 | └────| ENTER | ┘
 | | ────── |
 | | ────── |
 └───────| RETURN | ┘
 └───────────────┘
 (1) A is loaded and its execution begins.
 (2) A is released and control returns to MAIN.
 (3) B is loaded and its execution begins.
 (4) C is loaded and its execution begins.
 (5) C is released and control returns to B.
 (6) D is loaded and its execution begins.
 (7) D is released and control returns to B.
 (8) B is released and control returns to MAIN.

 Virtual Memory Management 151

 MTS 5: System Services

 May 1983

 The subroutine XCTL performs the same functions as LINK, except that
 it first releases all storage associated with the current link level
 (usually the program calling XCTL) before allocating memory and loading
 the specified module. Instead of incrementing the maximum storage index
 number and current link level index, these numbers are reassigned to the
 new modules loaded since the previous modules associated with them have
 been released. See the example given by Tables 2(a) and 2(b) and Figure
 2 below.

 Table 2(a)

 Storage | Time
 Index |
 Number | 0 1 2 3 4 5 6 7 8
 ─────────┼────────────────────────────
 80 | M M M M M M M M M
 81 | A B B B B B B
 82 | C D E

 Table 2(b)

 | Maximum Current
 | Storage Link
 | Index Level
 Time | Number Index
 ─────────┼────────────────────── ┌
 0 | 80 | 80
 1 | 81 | 81
 2 | 81 | 81
 3 | 82 | 82
 4 | 82 | 82
 5 | 81 | 81
 6 | 82 | 82
 7 | 81 | 81
 8 | 80 | 80

 152 Virtual Memory Management

 MTS 5: System Services

 May 1983

 Figure 2

 MAIN
 ┌────────┐
 | |
 | LINK A |─1──┐ ┌
 | ────── |─┐ | ┌
 | ────── | 8 |
 | STOP | | |
 | | | | A B
 └────────┘ | ┌─────────┐ ┌────────┐ ┘
 | | | | |
 | | ENTER | | ENTER |
 | | ────── | | LINK C |─3────────┐ ┌
 | | ────── | | ────── |─5─────┐ | ┌
 | | XCTL B |─2─| LINK E |─6──┐ | | ┌ ┘ ┌
 | | | | ────── |─┐ | | | ┌
 | └─────────┘ | RETURN | 7 | | | C
 | | | | | | |
 | └────────┘ | | | ┌─────────┐ ┌ ┘
 └───────────────────┘ | | | | |
 | | | | ENTER | D
 | | | | ─────── | ┌────────┐
 | | | | ─────── | | |
 | | | | XCTL D |─4─| ENTER | ┌ ┘
 | | | | | | ────── |
 | | | └─────────┘ | ────── |
 | | └───────────────| RETURN | ┘
 | | E | |
 | | ┌─────────┐ └────────┘
 | | | |
 | └────| ENTER | ┘
 | | ─────── |
 | | ─────── |
 └───────| RETURN | ┘
 | |
 └─────────┘
 (1) A is loaded and its execution begins.
 (2) A is released, B is loaded and its execution begins.
 (3) C is loaded and its execution begins.
 (4) C is released, D is loaded and its execution begins.
 (5) D is released and control returns to B.
 (6) E is loaded and its execution begins.
 (7) E is released and control returns to B.
 (8) B is released and control returns to MAIN.

 Virtual Memory Management 153

 MTS 5: System Services

 May 1983

 The subroutine LOAD also acquires space for each control section and
 loads the specified object module(s). However, it does not transfer
 control to the module it loads. Instead, it returns the entry point of
 the module so that it can be called as a subroutine or referred to by
 another program. By selecting the option "current", the call on LOAD

 can request that memory allocated be considered as part of the current

 link level. This means that when the program returns from the current

 link level, the memory acquired by LOAD is also released. The storage

 index numbers assigned to the blocks of memory allocated by LOAD differ

 from the other storage index numbers of the current link level so that

 these blocks of memory may be released separately by the UNLOAD

 subroutine. However, these loaded modules are nested within the current

 link level and their memory is released when that link level is

 released, if not previously released by UNLOAD. (LOAD may also be

 called with the "highest" option in which case storage is not automati-

 cally released. This option is discussed below.) See the example given

 in Tables 3(a) and 3(b) and Figure 3 below.

 Table 3(a)

 Storage | Time

 Index |

 Number | 0 1 2 3 4 5 6 7 8 9

 ─────────┼────────────────────────────────
 80 | M M M M M M M M M M

 81 | A A A A A A A A

 82 | B B B B B B B

 83 | C C C C C C

 84 | D D F

 85 | E

 Table 3(b)

 | Maximum Current

 | Storage Link

 | Index Level

 Time | Number Index

 ─────────┼────────────────────── ┌
 0 | 80 | 80

 1 | 81 | 81

 2 | 82 | 81

 3 | 83 | 81

 4 | 84 | 84

 5 | 85 | 84

 6 | 83 | 81

 7 | 84 | 84

 8 | 83 | 81

 9 | 80 | 80

 154 Virtual Memory Management

 MTS 5: System Services

 May 1983

 Figure 3

 MAIN
 ┌─────────────┐
 | |
 | LINK A |─1───┐ LOADing a module does not transfer control ┌
 | ─────── |─┐ | to it, so that in this example there would ┌
 | ─────── | 9 | probably be calls to the LOADed modules.
 | ─────── | | | But the calls are irrelevant to this
 | STOP | | | discussion and, therefore, are omitted.
 | | | | A
 └─────────────┘ | ┌─────────────┐ ┘
 | | |
 | | ENTER | B
 | | ─────── | ┌────┐
 | | LOAD B |--2-------| |
 | | ─────── | └────┘
 | | ─────── |
 | | ─────── | C
 | | ─────── | ┌────┐
 | | LOAD C |--3-------| |
 | | ─────── | └────┘
 | | ─────── | D
 | | ─────── | ┌─────────────┐
 | | LINK D |─4────────| | ┌ ┘
 | | ─────── |─6─────┐ | ENTER | E ┌
 | | LINK F |─7──┐ | | ─────── | ┌────┐ ┌
 | | ─────── |─┐ | | | LOAD E |-5-| | ┌
 └──| RETURN | 8 | └──| RETURN | └────┘ ┘ ┘
 | | | | | |
 └─────────────┘ | | └─────────────┘
 | | F
 | | ┌─────────────┐
 | | | |
 | └─────| ENTER | ┘
 | | ─────── |
 | | ─────── |
 | | ─────── |
 └────────| RETURN | ┘
 | |
 └─────────────┘
 (1) A is loaded and its execution begins.
 (2) B is loaded.
 (3) C is loaded.
 (4) D is loaded and its execution begins.
 (5) E is loaded.
 (6) D and E are released and control returns to A.
 (7) F is loaded and its execution begins.
 (8) F is released and control returns to A.
 (9) A, B, and C are released and control returns to MAIN.

 Virtual Memory Management 155

 MTS 5: System Services

 May 1983

 The example given in Tables 4(a) and 4(b) and Figure 4 below illustrate
 the subroutines LINK, LOAD, and XCTL used together.

 Table 4(a)

 Storage | Time
 Index |
 Number | 0 1 2 3 4 5 6 7 8
 ─────────┼────────────────────────────
 80 | M M M M M M M M M
 81 | A A C C C C F
 82 | B D D
 83 | E

 Table 4(b)

 | Maximum Current
 | Storage Link
 | Index Level
 Time | Number Index
 ─────────┼────────────────────── ┌
 0 | 80 | 80
 1 | 81 | 81
 2 | 82 | 81
 3 | 81 | 81
 4 | 82 | 82
 5 | 83 | 82
 6 | 81 | 81
 7 | 81 | 81
 8 | 80 | 80

 156 Virtual Memory Management

 MTS 5: System Services

 May 1983

 Figure 4

 MAIN
 ┌─────────┐
 | |
 | LINK A |─1───┐ ┌
 | ────── |─┐ | ┌
 | ────── | 8 |
 | STOP | | |
 | | | | A
 └─────────┘ | ┌─────────┐ ┘
 | | |
 | | ENTER | B
 | | ─────── | ┌────┐
 | | LOAD B |-2--| |
 | | ─────── | └────┘
 | | ─────── | C
 | | ─────── | ┌──────────┐
 | | ─────── | | |
 | | XCTL C |─3──| ENTER | ┌ ┘
 | | | | ─────── |
 | └─────────┘ | LINK D |─4───┐ ┌
 | | ─────── |─┐ | D ┌
 | | ─────── | 6 ┌──────────┐ ┘
 | | ─────── | | | | E
 | | ─────── | | | ENTER | ┌────┐
 | | ─────── | | | LOAD E |-5--| |
 | | ─────── | | | ─────── | └────┘
 | | ─────── | └──| RETURN | ┘
 | | ─────── | | |
 | | ─────── | └──────────┘
 | | ─────── | F
 | | ─────── | ┌──────────┐
 | | ─────── | | |
 | | XCTL F |─7──| ENTER | ┌ ┘
 | | | | ─────── |
 | └──────────┘ | ─────── |
 └─────────────────────────────────| RETURN | ┘
 | |
 └──────────┘
 (1) A is loaded and its execution begins.
 (2) B is loaded.
 (3) A and B are released, C is loaded and its execution begins.
 (4) D is loaded and its execution begins.
 (5) E is loaded.
 (6) D and E are released and control returns to C.
 (7) C is released, F is loaded and its execution begins.
 (8) F is released and control returns to MAIN.

 Virtual Memory Management 157

 MTS 5: System Services

 May 1983

 If the user wishes to load a module via the subroutine LOAD and not
 to have it released when the memory for the current link level is
 released, he can call LOAD with the "highest" option. With this option,

 the memory acquired is assigned the smallest available storage index

 number in the range 01 to 7F (base 16). Areas with storage numbers in

 this range are not released until the program execution terminates

 normally or the user explicitly requests the release via the subroutines

 FREESPAC or UNLOAD or the command $UNLOAD.

 As mentioned above, GETSPACE can be called explicitly by the user.

 In the call to GETSPACE, the user can specify whether the memory should

 be associated the current storage level or the highest storage level.

 If the highest storage level is specified, storage index number 00 is

 always used; if the current storage level is chosen, the storage index

 number used by the last call to LINK or XCTL is used. As expected, this

 choice affects when the memory is to be released. If the current

 storage level is chosen, the memory is automatically released at the

 next return from a LINK or the next call to XCTL. Selecting the highest

 storage level means that the memory is not released until execution

 terminates or an explicit request is made. GETSPACE returns the address

 of the first byte of the memory region acquired to the calling program.

 The call to GETSPACE has additional options for the user. The user may

 specify in which segment space is to be allocated. Ordinarily, space is

 merely allocated wherever it is available. The user may also assign the

 storage index number.

 Thus far, the discussion has concentrated on how to acquire space and

 how it is released automatically. There are also three ways to request

 the release of memory explicitly.

 The subroutine FREESPAC is used in conjunction with GETSPACE. A call

 to FREESPAC releases all or part of a contiguous block of virtual memory

 that was acquired via GETSPACE. The user gives the address of the first

 byte of the region to be released and the length to be released. If the

 length is omitted, the entire region is released.

 The subroutine UNLOAD releases memory that was acquired through a

 previous call to the LOAD subroutine. The region to be released may be

 specified by file name, external symbol, virtual memory address, or

 storage index number. When the memory is released, the storage index

 number assigned to it is also released. The FREESPAC subroutine should

 not be used to release memory obtained by the LINK, LOAD, and XCTL

 subroutines. If the storage index number is in the highest range

 (00-7F), it will be reused on the next call to the LOAD subroutine which

 requests the "highest" option. However, if the number is in the

 "current" range, this is not necessarily so. A call to LOAD at "current

 level" uses the smallest unused storage index number that is greater

 than or equal to the current link level index. If the number released

 belongs to a different link level, it is not reused immediately.

 Finally, the MTS command $UNLOAD releases all virtual memory allo-

 cated by the user’s program.

 158 Virtual Memory Management

 MTS 5: System Services

 May 1983

 THE LINKAGE EDITOR __________________

 The linkage editor in MTS provides a wide range of facilities for
 manipulating programs which are in object module form. These facilities
 fall roughly into three categories: making physical changes to object
 programs, making logical changes to object programs, and examining the
 structure of object programs.

 Physical changes to an object program have no effect on its
 execution. A large number of physical formats can represent the same
 object program. The linkage editor provides facilities for changing
 from one physical format to another so that:

 (1) an object program will fit on an alternative storage medium
 (e.g., from a line file to the card punch);
 (2) the CPU time required to load an object program is minimized;
 (3) the file space required to store an object program is minimized.

 The linkage editor also provides facilities for changing the logical
 structure of object programs. Symbols in object programs can be
 replaced or deleted. Object modules can be combined, deleted, or
 replaced. The loader-defined entry point can be changed.

 Interrogative facilities are also available for examining the logical
 structure of object programs. Maps and cross-reference tables of the
 symbols defined and referenced in an object program can be displayed.
 In addition, object module text may be displayed, scanned, or modified.

 The linkage editor is available in the file *LINKEDIT and is invoked
 via the $RUN command. The linkage editor uses the following MTS logical

 I/O units:

 SCARDS - either the input file containing the object modules to be

 edited, or a sequence of linkage editor commands.

 SPRINT - printed output produced by the linkage editor.

 SPUNCH - default output unit for object modules produced by the

 linkage editor.

 SERCOM - linkage editor diagnostic messages.

 GUSER - user responses if conversational mode is used.

 The following parameters may be specified in the PAR field of the

 $RUN command. The parameters must be separated by commas or blanks.

 The minimum abbreviation for each parameter is underlined.

 The Linkage Editor 159

 MTS 5: System Services

 May 1983

 COMSAVE/NOCOMSAVE ___ _____

 COMSAVE specifies that COM (comment) records are to be saved
 during linkedit processing. NOCOMSAVE specifies that COM re-
 cords are not saved. The default is NOCOMSAVE.

 GENSAVE/NOGENSAVE ___ _____

 GENSAVE specifies that object module generation information on
 COM and END records is to be preserved if a combine operation is
 performed. NOGENSAVE specifies that the generation information
 is to be discarded. The default is NOGENSAVE.

 SYMSAVE/NOSYMSAVE ___ _____

 SYMSAVE specifies that SYM (symbol) records are to be saved
 during linkedit processing (except during a combine operation).
 NOSYMSAVE specifies that SYM records are not saved. The default
 is SYMSAVE.

 EMPTY/NOEMPTY ___ _____

 EMPTY specifies that the output file assigned to SPUNCH is to be
 emptied before use. NOEMPTY specifies that the output file is
 not to be emptied. The default is NOEMPTY.

 ORL=n ___

 "n" specifies the maximum output record length to be used for

 output produced by the linkage editor. The default is the

 maximum record length of the output file or device.

 GAPSIZE=n ___

 "n" specifies the maximum object module text gap size to be

 filled during linkage editor processing (see the description of

 the GAPSIZE modifier in the subsection "Command Modifiers").

 MISCSAVE/NOMISCSAVE ____ ______

 MISCSAVE specifies that miscellaneous loader records (ALI, DEF,

 LCS, NCA, OPT, and RIP) are to be preserved during linkedit

 processing. NOMISCSAVE specifies that these records are to be

 deleted. The default is MISCSAVE.

 MSGSAVE/NOMSGSAVE ___ _____

 MSGSAVE specifies that MSG (message) records are to be saved

 during linkedit processing. NOMSGSAVE specifies that MSG re-

 cords are not to be saved. The default is MSGSAVE.

 160 The Linkage Editor

 MTS 5: System Services

 May 1983

 TERSE/VERBOSE ___ ____

 The TERSE/VERBOSE parameters control the amount of information
 produced by the verification of some commands. TERSE specifies
 that minimal information is requested; VERBOSE specifies that
 full information is desired. The default is VERBOSE. This
 parameter pair has no effect if NOVERIFY is specified.

 VERIFY/NOVERIFY _ ___

 VERIFY specifies that verification for each command is request-
 ed. NOVERIFY suppresses the verification. The default is
 VERIFY.

 WXTOER/NOWXTOER __ ____

 WXTOER specifies that all ESD (external symbol dictionary)
 symbols of type WX (weak external reference) are to be converted
 to type ER (external reference) during linkedit processing.
 NOWXTOER specifies that type WX symbols are not converted. The
 default is NOWXTOER.

 Those users who want only to reformat object modules can simply issue
 the following command:

 $RUN *LINKEDIT SCARDS=inFDname SPUNCH=outFDname

 In this case, object modules are read in from "inFDname", converted to

 the linkage editor internal representation, and written on "outFDname".

 The logical structure of the modules is completely and identically

 preserved, with the following exceptions:

 (1) REP records encountered in input modules¹ are absorbed into the
 text of output modules.

 (2) If multiple ENT records are encountered, all but the first

 record encountered are discarded.

 (3) Nonabsolute DEF records are incorporated into the external

 symbol dictionary of the appropriate output modules.

 (4) The first LDT record encountered terminates input, but is

 preserved in the output module(s).

 (5) Library control records are ignored, so if a library is read in,

 all its modules are written out, minus library control records. ___

 (6) COM records are discarded.

 The PAR field allows users some control over the processing done by

 the linkage editor. Those users who wish to use the more advanced

 features of the linkage editor must use the linkage editor command

 language described below. Commands are read from SCARDS and printed

 ¹"Input modules" are object modules read in by the linkage editor.
 "Output modules" are object modules written out by the linkage editor.

 The Linkage Editor 161

 MTS 5: System Services

 May 1983

 output is written on SPRINT; thus, the typical $RUN command to use the

 linkage editor in command mode is:

 $RUN *LINKEDIT

 Command input is terminated by an end-of-file or by a STOP command.

 The paragraphs which follow describe in detail the linkage editor

 command language. Before reading this, the reader is advised to look at

 the sample output at the end of this section in order to get a general

 idea of how the commands are used.

 LINKAGE EDITOR COMMAND LANGUAGE _______________________________

 General Syntax ______________

 The general form of a command is

 ┌ ┐
 commandname|@modifier |...[operand]...

 |@¬modifier|

 |@-modifier|

 └ ┘

 where the characters "¬" and "-" are used to negate a modifier.

 The following rules apply to command usage:

 (1) A command starts with the first nonblank character; thus,

 commands need not start in column 1. There is an exception to

 this rule: the COMBINE command must begin in column 1;

 otherwise, the linkage editor will attempt to treat the command

 as a loader COM record.

 (2) Specification of the command name and command modifiers should

 contain no embedded blanks.

 (3) At least one blank should separate the command name and the

 first operand.

 (4) Multiple operands must be separated by one or more blanks.

 (5) If the last character of the current input line is a minus sign,

 the next input line will be taken as a continuation of the

 current line. The first character of the next line replaces the

 minus sign. There is no limit to the number of continuation

 lines, and the continuation character can occur anywhere within

 a command. Note: for batch use, the minus sign must be punched

 in column 80, since all 80 columns of a card are read.

 (6) Any command or command modifier may be abbreviated by entering

 only an initial substring. The minimal initial substring

 allowed is underscored in each command or command modifier

 description.

 162 The Linkage Editor

 MTS 5: System Services

 May 1983

 (7) A command line beginning with an asterisk "*" is considered to

 be a comment and is not processed, other than possibly being

 echoed, by the linkage editor.

 (8) A command line beginning with a dollar sign "$" is assumed to be

 a MTS command and is executed via a call to the system CMD

 subroutine.

 (9) Modifiers appended to a command are global to all of the

 operands of the command. Certain commands (e.g., UNLINK,

 DISPLAY) allow certain modifiers (e.g., CS, TYPE) to be appended

 to the operands of the command; these modifiers are local to the

 operand.

 (10) A command line may be entered in upper- or lowercase. If the

 command is in lowercase, the entire input line is translated to

 uppercase. Thus, to specify a lowercase symbol in an "slist",

 the command must be entered in uppercase.

 The following table summarizes the linkage editor commands together

 with their applicable modifiers.

 Command Operand Applicable Modifiers _______ _______ __________ _________

 ADD [FROM] FDname [slist] A,CHECK,COMSAVE,GAPSIZE, ___ _ __ ___ ___

 GENSAVE,MISCSAVE,MSGSAVE,NV, ___ ____ ___ __

 SLI,SYMSAVE,TERSE,V,VERBOSE, ___ ___ ___ _ ____

 WXTOER __

 ALIAS name[±xxx] alias [alias] ... NV, V __ __ _

 ATTRIBUTE [ON FDname] [symbol [,] ...] None ___

 BLAST None None __

 CLEAR None NV,V __ __ _

 COMBINE [slist] BC,CHECK,COMSAVE,GAPSIZE, _ __ __ ___ ___

 GENSAVE,MISCSAVE,MSGSAVE, ___ ____ ___

 NAME,NV,TERSE,V,VERBOSE ____ __ ___ _ ____

 COMMENT comment None ____

 COPY [FROM] inFDname [TO] outFDname [slist] ___

 COMSAVE,EMPTY,ENTRY=,GAPSIZE, ___ ___ ___ ___

 GENSAVE,MISCSAVE,MSGSAVE,NV, ___ ____ ___ __

 ORL,SYMSAVE,TERSE,V,VERBOSE, ___ ___ ___ _ ____

 WXTOER __

 CSECT {section|entry} A,NV,V __ _ __ _

 DELETE slist CHECK,CSECT,ENTRY,NV,OM, __ __ __ ___ __ __

 TERSE,V,VERBOSE ___ _ ____

 DISPLAY object ... CSECT=,LENGTH=,TYPE= _ _ _ _

 DUMP [ON FDname] [slist] None __

 INCLUDE [FROM] FDname [slist] CHECK,COMSAVE,GAPSIZE, _ __ ___ ___

 GENSAVE,MISCSAVE,MSGSAVE,NV, ____ ____ ___ __

 SLI,SYMSAVE,TERSE,V,VERBOSE, ___ ___ ___ _ ____

 WXTOER __

 LIST [ON FDname] [object [[FOR] slist]] _

 CSECT,OM __ __

 MAP [ON FDname] [slist] EMPTY,FULL,SORT _ ___ ____ ____

 The Linkage Editor 163

 MTS 5: System Services

 May 1983

 MCMD MTS command None __
 MODIFY object value CSECT=,LENGTH=,NV,TYPE=,V __ _ _ __ _ _
 MTS [optional command] None __

 PUNCH [ON] FDname [slist] CHECK,COMSAVE,ENTRY=,GAPSIZE, _ __ ___ ___ ___
 GENSAVE,MISCSAVE,MSGSAVE,NV, ___ ____ ___ __
 ORL,SYMSAVE,TERSE,V,VERBOSE ___ ___ ___ _ ____
 EMPTY ___
 PURGE [slist] FULL,NV,TERSE,V,VERBOSE ___ ____ __ ___ _ ____
 RENAME old1[=]new1[[,]old2[=]new2]]... NV,V _ __ _
 REPLACE [FROM] FDname [slist] CHECK,COMSAVE,GAPSIZE, ___ __ ___ ___
 GENSAVE,MISCSAVE,MSGSAVE,NV, ____ ____ ___ __
 SLI,SYMSAVE,TERSE,V,VERBOSE, ___ ___ ___ _ ____
 WXTOER __
 RETURN None None ___

 SCAN [{section|address1...address2} value] __
 CSECT=,LENGTH=,TYPE= _ _ _
 SET lhs=rhs [[,] lhs=rhs]... None _
 STOP None None __
 UNLINK [slist] CSECT,NV,OM,TERSE,V,VERBOSE __ __ __ __ ___ _ ____
 UPDATE [FROM] FDname [slist] CHECK,COMSAVE,GAPSIZE, _ __ ___ ___
 GENSAVE,MISCSAVE,MSGSAVE, ____ ____ ___
 NV,SLI,SYMSAVE,TERSE,V, __ ___ ___ ___ _
 VERBOSE,WXTOER ____ __
 XREF [[ON] FDname] None _

 Linkage Editor Commands _______________________

 The following paragraphs describe the commands which are available
 together with the applicable modifiers. In what follows, "slist" stands

 for

 {ALLBUT|[ONLY]} symbol [[,]symbol] ...

 where the brackets [...] denote optional items and the braces {...|...}

 denote alternatives. The commands that allow modifiers to be appended

 to the symbols in the "slist" parameter have an additional listing of

 applicable modifiers termed "operand modifiers."

 164 The Linkage Editor

 MTS 5: System Services

 May 1983

 Command: ADD [FROM] FDname [slist] _______ ___

 Modifiers: A,CHECK,COMSAVE,GAPSIZE,GENSAVE,MISCSAVE,MSGSAVE
 NV,SLI,SYMSAVE,TERSE,V,VERBOSE,WXTOER

 Example: ADD FILE1+FILE2(100,199) ALLBUT QQ

 Explanation: Modules are read from the specified file or device and
 converted to linkage editor internal representation.
 Input is terminated by an end-of-file or by the first LDT
 record encountered. If the COMSAVE and/or GENSAVE modi-
 fiers are not given, all COM or GENSAVE records encoun-
 tered are discarded (see example 2 in the sample run
 below). If the SLI modifier is not given, all library
 control records encountered are ignored, with the net
 effect that all modules of a library are ADDED. ___

 Note: This command is the same as the INCLUDE command.

 Command: ALIAS name[±xxx] alias [alias] ... _______ __

 Modifiers: NV,V

 Example: ALIAS MAIN+2B04 PATCH

 Explanation: The ALIAS command allows the specification of alternate
 names for control sections or entry points. The parame-
 ter "name" must be a control section or entry point name

 and may be specified with an optional signed hexadecimal

 displacement "xxx". Each "alias" symbol is inserted into

 the ESD (external symbol dictionary) table of the module

 containing "name" as a type LD item; thus, the "alias"

 may not be previously defined within the module. Any

 number of alternate names may be specified.

 Command: ATTRIBUTE [ON FDname] [symbol [,] ...] _______ ___

 Modifiers: None

 Example: ATT MAIN X Y <MAIN

 Explanation: The attributes of all symbols specified are written on

 SPRINT unless "ON FDname" is specified, in which case

 they are written on the file or device "FDname". If an

 object module name (see the subsection "Object Module

 Naming Conventions") is specified in the symbol list, the

 attributes of the module are printed. These include:

 The Linkage Editor 165

 MTS 5: System Services

 May 1983

 - assigned and internal names
 - number of control sections
 - total control section length
 - total common section length
 - number of special records, if any

 External symbol dictionary (ESD) names may also be
 specified in the symbol list. The attributes listed for
 an ESD name may include any or all of the following
 items.

 - assigned and internal names of the containing
 module
 - type
 - external symbol identification (ESID)
 - value
 - length
 - name of containing section
 - alignment factor

 If the symbol list is omitted, the attributes of all
 object modules in the linkage editor data structure are
 printed. Object modules that have no assigned name are
 identified by their internal name and the designator
 "<>".

 Command: BLAST _______ __

 Modifiers: None

 Example: BLAST

 Explanation: The BLAST command causes the linkage editor to ignore the

 current data structure without attempting to release the

 data structure in the normal manner via the CLEAR

 command. This is generally useful only for system

 developmental work on the linkage editor.

 Command: CLEAR _______ __

 Modifiers: NV,V

 Example: CLEAR@NV

 Explanation: The CLEAR command completely clears out the linkage

 editor internal data structure. This command is intended

 to allow the user to manipulate independent collections

 of modules without having to reload the linkage editor.

 It also allows the user to "start over" after a mistake

 has been made.

 166 The Linkage Editor

 MTS 5: System Services

 May 1983

 Command: COMBINE [slist] _______ _

 Modifiers: A,BC,CHECK,COMSAVE,GAPSIZE,GENSAVE,MISCSAVE,MSGSAVE,
 NAME,NV,TERSE,V,VERBOSE

 Example: COM@NV ALLBUT SUBR1 SUBR2

 Explanation: The COMBINE command causes specified modules to be
 combined into a single control section module. This
 operation is nonreversible in the sense that modules once
 combined cannot subsequently be separated back into their
 original form(s), i.e., the "combine" operation implies a

 loss of certain structural information. The module which

 results from a "combine" operation is in optimal form;

 that is, both CPU time for loading by the dynamic loader

 and external storage requirements are minimized.

 The name assigned to the new combined module is by

 default the same as the first control section included in

 the combined module. This name can be overridden by the

 NAME modifier or the SET NAME command.

 The BC modifier may be used to bind definitions of common

 sections into the "combined" module. In the default case

 this is not done, i.e., all type CM ESD items, except

 labeled common sections initialized in a BLOCK DATA

 subprogram, are preserved. Control sections representing

 common blocks initialized via BLOCK DATA are indistin-

 guishable from other control sections and, therefore, are

 always subject to combining. The advantage of binding

 common definitions is further optimization of the resul-

 tant module. The disadvantage is that the binding is

 irrevocable; it is therefore impossible to provide larger

 definitions of common blocks, to have the dynamic loader

 select the largest definition, or to perform any similar

 operations. Use of the BC modifier is recommended only

 for relatively static production programs.

 Command: COMMENT comment _______ ____

 Modifiers: None

 Example: COMMENT - NOW WE OPTIMIZE THE LOAD TIME.

 Explanation: This command is simply a NOP (no operation) and is useful

 for documenting sequences of commands given to the

 linkage editor. (See the sample run below.) Note that

 the command COM is an abbreviation for COMBINE, not for ___

 COMMENT. Note that command lines which begin with an

 asterisk "*" are also treated as comments.

 The Linkage Editor 167

 MTS 5: System Services

 May 1983

 Command: COPY [FROM] inFDname [TO] outFDname [slist] _______ ___

 Modifiers: COMSAVE,EMPTY,ENTRY=,GAPSIZE,GENSAVE,MISCSAVE,MSGSAVE,
 NV,ORL,SYMSAVE,TERSE,V,VERBOSE,WXTOER

 Example: COPY@ORL=80 FROM -LOAD TO *PUNCH* ONLY MAIN

 Explanation: The COPY command provides the conversational user with a
 facility similar to the SCARDS to SPUNCH mode of the
 linkage editor. The action of this command is similar to
 that of the following command sequence:

 INCLUDE inFDname slist
 PUNCH outFDname slist
 DELETE slist

 with the difference being that, in order to decrease
 virtual memory charges, modules are included, punched (if
 specified in "slist"), and deleted one at a time.

 Because of this difference, care should be taken when

 applying the ENTRY= modifier since an ENT record will be

 punched for each module. The use of this modifier is

 recommended only when a single module is copied.

 Command: CSECT {section|entry} _______ __

 Modifiers: A,NV,V

 Example: CSECT PC#1

 Explanation: The control section specified by "section" or containing

 the entry point "entry" is made the active section. This

 command should be given before the first DISPLAY, MODIFY,

 or SCAN command. Private control sections can be speci-

 fied by their assigned names (of the form "PC#i),

 available via the ATTRIBUTE, LIST, or MAP commands.

 Command: DELETE slist _______ __

 Modifiers: A,CHECK,CSECT,ENTRY,NV,OM, TERSE,V,VERBOSE

 Example: DELETE SUBRA,SUBRB

 Explanation: Through the DELETE command, the modules implied by the

 symbols in "slist" are deleted from the linkage editor

 internal structure. The primary use of this command is

 to allow replacement of module definitions. (See also

 the REPLACE command description.)

 168 The Linkage Editor

 MTS 5: System Services

 May 1983

 It is also possible to delete control sections or entry
 points from a module. Thus, the modifiers CSECT, ENTRY,
 and OM are used to distinguish between the data type of
 the command operands. For example,

 DELETE X

 deletes the module defining the symbol X (OM is the
 default in this case), while

 DELETE@CSECT Y

 deletes the control section Y from the module that
 contains it, and

 DELETE@ENT Z

 deletes the entry point Z from its containing module
 (this is equivalent to the command PURGE Z). Deleting a
 control section from a multiple control section module
 requires that the control section first be unlinked (see
 the UNLINK command description); thus, the command

 DELETE@CSECT Y

 is equivalent to the command sequence

 UNLINK@CSECT Y
 DELETE Y

 The default operand type is OM.

 Command: DISPLAY object ... _______ _

 Modifiers: CSECT=,LENGTH,TYPE

 Operand
 Modifiers: CSECT=,LENGTH,TYPE

 Example: DIS@T=I 0...20 INLOOP+4 0AC@T=E

 Explanation: This command allows object module text to be displayed in
 a manner similar to the equivalent debug mode command.
 "object" is either a single address parameter (e.g., 100)

 or a block address parameter (e.g., 100...1F0). An

 address parameter may be either a relative hexadecimal

 address or a symbol with an optional signed hexadecimal

 displacement (e.g., INLOOP+4). Only symbols defined in

 the external symbol dictionary (i.e., from an ESD card)

 are recognized; SYM records are not interpreted. A

 hexadecimal address must begin with a decimal digit

 The Linkage Editor 169

 MTS 5: System Services

 May 1983

 (0-9), i.e., "AC" is considered a symbol while "0AC" is

 treated as a hexadecimal number.

 Each "object" is converted according to the type and

 length specified and printed along with a one-character

 code that indicates the parameter type. The type codes

 are defined with the description of the TYPE modifier.

 Command: DUMP [ON FDname] [slist] _______ __

 Modifiers: None

 Example: DUMP ON *PRINT*

 Explanation: The DUMP command is used for debugging the linkage

 editor. It produces an edited external representation of

 the linkage editor internal data structure which is

 unintelligible to anyone but the custodians of the

 linkage editor. The user should use this command only

 when prompted to do so; it is expensive.

 Command: INCLUDE [FROM] FDname [slist] _______ _

 Modifiers: A,CHECK,COMSAVE,GAPSIZE,GENSAVE,MISCSAVE,MSGSAVE,NV,SLI,

 SYMSAVE,TERSE,V,VERBOSE,WXTOER

 Example: INCLUDE FILE1+FILE2(100,199) ALLBUT QQ

 Explanation: Modules are read in from the specified file or device and

 then converted to linkage editor internal representation.

 Input is terminated by an end-of-file or by the first LDT

 record encountered. If the COMSAVE and/or GENSAVE modi-

 fiers are not given, then any COM records or GENSAVE

 records encountered, respectively, are discarded. (See

 example 2 in the sample run below.) If the SLI modifier

 is not given, all library control records encountered are

 ignored, with the net effect that all modules of a ___

 library are INCLUDEd.

 Note: This command is the same as the ADD command.

 Command: LIST [ON FDname] [object [[FOR] slist]] _______ _

 Modifiers: OM,CSECT

 Operand

 Modifiers: OM,CSECT

 170 The Linkage Editor

 MTS 5: System Services

 May 1983

 Example: LIST GENINFO FOR MAIN

 Explanation: The LIST command allows the user to obtain information
 about the object modules currently in the linkage editor
 data structure. The items of information about the
 modules specified by "slist" are specified by "object",

 where "object" may be any one of the following items:

 OMS - list all assigned object module names with __

 their corresponding internal names

 ENTRYS - list all defined symbols (types SD, LD, __

 LR)

 LDS - list all type LD entry point symbols __

 LRS - list all type LR entry point symbols __

 CSECTS - list all control section names __

 PCS - list modules containing private control __

 sections

 PRS - list all pseudo-register definitions __

 ERS - list all external references __

 WXS - list all weak external references __

 COMMOMS - list all common definitions ___

 CMS - list all common definitions (same as __

 above)

 GENINFO - list END record generation information ___

 MISC - list all miscellaneous records (COM, LCS, ___

 RIP,LDT, etc.)

 RLDS - list the relocation dictionary (RLD) for ___

 the specified modules. If the CSECT modi-

 fier is applied to a symbol in the

 "slist", then only the relocations for

 that control section are listed; other-

 wise, RLDs for each control section in the

 specified module are listed. The list

 format is similar to that of the program

 *OBJLIST (LIST=RLD option) except that

 symbol names are printed for the reloca-

 tion and position pointers instead of

 their corresponding ESIDs.

 If "slist" is not specified, the "object" information is

 listed for all modules currently in the linkage editor

 data structure. If "object" is omitted, OM type informa-

 tion is printed for all object modules. If "slist" is

 specified, "object" must also be specified. LIST infor-

 mation is written to SPRINT unless "ON FDname" is

 specified, in which case it is written to the specified

 file or device.

 The Linkage Editor 171

 MTS 5: System Services

 May 1983

 Command: MAP [ON FDname] [slist] _______ _

 Modifiers: A,EMPTY,FULL,SORT={NAME|ESID}

 Example: MAP@SORT=ESID

 Explanation: The external symbol dictionaries of all modules specified
 are printed out in symbolic form. If the FULL modifier
 is not specified, only information about control sec-
 tions, entry points, and common definitions is printed
 (see examples 2 and 3 in sample terminal output). If the
 FULL modifier is given, all information is printed,
 including external references and PL/I pseudo-register
 definitions. The use of the MAP command is especially
 recommended after the COMBINE command has been given;
 this is the only practical way to ascertain the relative
 placement of original modules in the COMBINEd module. If
 the SORT modifier is not given, MAP information is sorted
 by address for each module. Blank lines are used as
 separators between each of the module maps. Preceding
 each module map is a header containing the assigned name
 of the module, the cumulative length of all control
 sections within the module, and the entry point to the
 module. MAP output is written on SPRINT unless "ON

 FDname" is specified, in which case it is written on the

 specified file or device.

 Command: MCMD MTS command _______ __

 Modifiers: None

 Example: MCMD EMPTY -OBJ

 Explanation: The MTS command specified is executed and control is

 returned immediately to the linkage editor. Alternative-

 ly, the user may issue the MTS command directly in

 linkage editor command mode by prefixing it with a dollar

 sign, e.g., $EMPTY -OBJ. See Example 2 in the sample

 output.

 Command: MODIFY object value _______ __

 Modifiers: CSECT=,LENGTH,NV,TYPE,V

 Operand

 Modifiers: CSECT=,LENGTH,TYPE

 Example: MOD@C=MAIN 100 I’STM ECD00C,LR CF’

 172 The Linkage Editor

 MTS 5: System Services

 May 1983

 Explanation: This command allows object module text to be altered in a
 manner similar to the equivalent debug mode command. The
 first parameter specifies the locations that are to be
 modified and the second parameter specifies the values to
 be used for the modification.

 "object" is a single address parameter, i.e., either a

 valid relative hexadecimal address or a symbol with

 optional signed hexadecimal offset, which specifies the

 location to be modified.

 "value" specifies a list of one or more constants

 delimited by commas and enclosed in primes. A duplica-

 tion factor and/or type specifier may optionally prefix

 the "value". The duplication factor must be an unsigned

 decimal integer, and the type specifier may be any of the

 code types listed in the description of the TYPE modi-

 fier. Thus, the modification values may be given as an

 assemblerlike constant list (e.g., 18F’0’ or CL8’SCARDS’

 or E’1.0,2.0,3.0’ etc.). No modifiers may be appended to

 "value" itself.

 Verification of the modification is given by printing

 both the old value and the new value of the location

 modified. Verification may be suppressed by appending

 the modifier NV to the command, or by globally turning

 off verification via the SET VERIFY=OFF command.

 Special processing is done by the linkage editor if

 "value" is an adcon (address constant, e.g., A’MAIN+20’

 or V’SERCOM’). First, any relocations for the location

 specified by "object" are deleted from the relocation

 dictionary (RLD) tables. Thus, it is possible to delete

 a RLD item by modifying the appropriate text location to

 a nonrelocatable (i.e., absolute) address constant (e.g.,

 A’0’). If this location is the only reference to an

 external symbol (ER) or pseudo-register (PR), then the

 type ER or PR symbol is deleted from the external symbol

 dictionary (ESD) tables and a warning message is given.

 Then the adcon "value" is examined to determine if it

 requires relocation (for example, A’X+4-X’ is simply the

 constant A’4’); if it does, relocation information is

 inserted into the RLD tables for this location. Finally,

 if "value" specifies an external address constant (type

 V) or a pseudo-register (type Q) that is not defined in

 the ESD tables, then an external reference or pseudo-

 register is created and inserted into the tables and a

 warning message is given. Currently, a pseudo-register

 is assigned a doubleword alignment and length.

 The Linkage Editor 173

 MTS 5: System Services

 May 1983

 Command: MTS [MTS command] _______ __

 Modifiers: None

 Example: MTS EMPTY MYOBJ OK

 Explanation: If no MTS command is given, control reverts to MTS
 command mode in such a way that the linkage editor may be
 reentered with a $RESTART command. If an MTS command is

 given, it is passed to the MTS command language inter-

 preter in such a way that the linkage editor retains _______

 control, i.e., no $RESTART need subsequently be issued.

 Command: PUNCH [ON] FDname [slist] _______ _

 Modifiers: A,CHECK,COMSAVE,EMPTY,ENTRY=,GAPSIZE,GENSAVE,MISCSAVE,

 MSGSAVE,SYMSAVE,TERSE,V,VERBOSE

 Example: PUNCH ON *PUNCH* ONLY MYSUBR

 Explanation: The PUNCH command writes, on an external storage medium,

 modules contained in the linkage editor internal data

 structure. If the GENSAVE and/or COMSAVE modifiers are

 not given, GENSAVE records and/or COM records, respec-

 tively, are ignored, i.e., not punched. The default

 format (presumably optimal) of PUNCHed output may be

 altered (see the descriptions of the GAP and ORL modi-

 fiers). Note: The PUNCH command does not delete modules

 from the linkage editor internal data structure after

 punching them (see the CLEAR and DELETE command descrip-

 tions to do this).

 Command: PURGE [slist] _______ ___

 Modifiers: A,FULL,NV,TERSE,V,VERBOSE

 Example: PURGE@NV

 Explanation: The PURGE command causes deletion of entry point defini-

 tions for all control sections in the linkage editor

 internal data structure. Only those entry points which

 are referenced by ENT or LDT records are not deleted

 unless the FULL modifier is given, in which case all ___

 entry points are deleted. This command is most useful

 when all the independent parts of a program have been

 INCLUDEd and COMBINEd. The entry point names that were

 required by the dynamic loader to link the independent

 parts are no longer required and can be purged. Note:

 Use of PURGE before a COMBINE command is issued is

 174 The Linkage Editor

 MTS 5: System Services

 May 1983

 almostalways an error on the user’s part. PL/I users
 should never purge the symbols IHEMAIN and IHENTRY which
 are referenced by the PL/I library.

 ┌ ┐
 Command: RENAME old1[=]new1|[,]old2[=]new2|... _______ _
 └ ┘

 Modifiers: A,NV,V

 Example: RENAME IEYFORT FORTRANG

 Explanation: The RENAME command causes one or more specified symbols
 to be renamed. Renaming is done for every occurrence of _____
 each specified symbol; all references as well as all __________
 definitions are renamed, including the symbols on DEF,
 ENT, LCS, NCA, and RIP records. The RENAME command is
 useful for correcting misspelled subroutine names or for
 creating names that reveal content better than the
 symbols originally chosen.

 The RENAME command may be used to assign a name to a
 blank common section. The linkage editor assigns the
 internal name ".BLANK" to all blank common sections which

 appear on MAP and LIST command output. This internal

 name may be specified on the RENAME command to give the

 blank common section a name, e.g.,

 RENAME .BLANK=CMDATA

 All blank common sections in the linkage editor data

 structure will be renamed.

 Command: REPLACE [FROM] FDname [slist] _______ ___

 Modifiers: A,CHECK,COMSAVE,GAPSIZE,GENSAVE,MISCSAVE,MSGSAVE,NV,SLI,

 SYMSAVE,TERSE,V,VERBOSE,WXTOER

 Example: REPLACE FROM -LOAD

 Explanation: The REPLACE command reads potential replacement modules

 from "FDname" and selectively replaces modules in the

 linkage editor internal data structure in accordance with

 "slist". Any additional modules on "FDname" are ignored. _______

 The REPLACE command can be thought of as a convenient way

 of performing the following operations:

 DELETE slist

 INCLUDE FROM FDname slist

 The Linkage Editor 175

 MTS 5: System Services

 May 1983

 with the additional feature that the original ordering of
 the input modules is preserved. Note that the UPDATE
 command performs a very similar function.

 Command: RETURN _______ ___

 Modifiers: None

 Example: RETURN

 Explanation: Control returns to MTS command mode in such a way that
 the linkage editor may be reentered with a $RESTART

 command. The command is identical to the MTS command

 with no operands specified.

 Command: SCAN [{section|address1...address2} value] _______ __

 Modifiers: CSECT=,LENGTH,TYPE

 Operand

 Modifiers: CSECT=,LENGTH,TYPE

 Example: SCAN@C=MAIN 0...3FF I’SR 00’

 Explanation: If "section" is specified, the linkage editor will search

 through the text of the named section in an attempt to

 find the value specified. If "address1...address2" is

 specified, then "address1" and "address2" are the lower

 and upper bounds of the text area to be searched.

 "value" must be enclosed in primes and may be optionally

 prefixed by a type specifier (see the description of the

 TYPE modifier for a list of the valid type codes). No

 duplication factor is allowed on "value", nor may a list

 of constants be specified if "value" is an address

 constant (types A, V, and Q). No modifiers may be

 appended to "value" itself.

 If no parameter is specified, then the search resumes,

 starting at the first location beyond the previous match

 from the previous SCAN command.

 The search for the specified value is performed with

 respect to the appropriate boundary alignment of the

 value specified, e.g., instructions are scanned for on

 halfword boundaries, character constants on byte boun-

 daries, etc.

 176 The Linkage Editor

 MTS 5: System Services

 May 1983

 Special processing is done by the linkage editor if
 "value" is a relocatable address constant. First, the

 value of the constant is computed and then the specified

 text locations are searched for this value. If a match

 is found, then the RLD tables are searched for an item

 specifying this match address. The text search continues

 throughout the specified range until an address is found

 that requires the relocations specified in the "value"

 expression.

 Command: SET ALL={ON|OFF} (defaults ON) _______ _ _

 BC={ON|OFF} (defaults OFF) __

 CHECK={ON|OFF} (defaults OFF) __

 COMSAVE={ON|OFF} (defaults OFF) ___

 ECHO={ON|OFF} (see below) ____

 ENTRY={sym[+xxx]|OFF} (see ENTRY= modifier) ___

 FILL=xx (defaults to 81) ____

 GAPSIZE=nnn (defaults to MIN(ORL/2,256)) ___

 GENSAVE={ON|OFF} (defaults OFF) ___

 LENGTH=i (defaults to 4) _

 MISCSAVE={ON|OFF} (defaults ON) ____

 MODCHAR=c (defaults to @) ___

 MSGSAVE={ON|OFF} (defaults ON) ___

 NAME=symbol (defaults to null) ____

 ORL=nnn (defaults to device maximum) ___

 QUIT={ON|OFF} (see below) ____

 RF=xxxxxx (defaults to 0) __

 SLI={ON|OFF} (defaults OFF) ___

 SYMSAVE={ON|OFF} (defaults ON) ___

 TERSE={ON|OFF} (defaults OFF) ___

 TYPE=code (defaults to X) _

 VERIFY={ON|OFF} (defaults ON) _

 VERBOSE={ON|OFF} (defaults ON) ____

 WXTOER={ON|OFF} (defaults OFF) __

 Modifiers: None

 Explanation: Most of the items which can be specified in a SET command

 are also available as modifiers to individual commands.

 The SET command simply changes the global default value

 for such modifiers so that the same modifier values need

 not be given repeatedly.

 If the linkage editor encounters any errors when QUIT is

 turned ON in batch mode, the user is signed off. QUIT

 defaults OFF for batch and is always OFF for conversa-

 tional use.

 If ECHO is turned ON, linkage editor commands are ECHOed

 on SPRINT. ECHO defaults to ON unless the commands are

 being entered directly from a terminal.

 The Linkage Editor 177

 MTS 5: System Services

 May 1983

 The global modifier character "@" may be changed with the

 MODCHAR=c item, where "c" is a single character (pre-

 ferably not alphanumeric). This is necessary if it is

 desired to enter a symbol in a "slist" parameter that

 contains an embedded "@" character, as the linkage editor

 examines each symbol for appended modifiers.

 The address relocation factor of the DISPLAY, MODIFY, and

 SCAN commands may be changed with the set item "RF=

 xxxxxx", where "xxxxxx" is a one to six character

 hexadecimal number. The default is RF=0. This feature

 is primarily useful for combined modules, when it is

 desired to refer to a text location in a combined control

 section by the original assembly listing address.

 Command: STOP _______ __

 Modifiers: None

 Example: STOP

 Explanation: Linkage editor processing is terminated. This command is

 identical to the RETURN command.

 An end-of-file in the command stream also terminates

 linkage editor processing.

 Command: UNLINK [slist] _______ __

 Modifiers: A,CSECT,NV,OM,TERSE,V,VERBOSE

 Operand

 Modifiers: CSECT,OM

 Example: UNLINK ONLY X1,Y2@CS

 Explanation: The UNLINK command breaks up multiple-csect object

 modules into a sequence of single-csect modules. This is

 not the inverse of the COMBINE command which produces a

 single-csect module. The inverse to UNLINK, the LINK

 command which combines object modules without combining

 control sections, is currently not available. When

 unlinking modules which contain private (blank-named)

 control sections, any references to the private sections

 from other control sections in the same module require

 the private sections to be renamed to a nonblank name.

 In this case, a warning message is given and a name of

 the form "PC#i" is generated and used.

 178 The Linkage Editor

 MTS 5: System Services

 May 1983

 It is possible to partially unlink a module, i.e., unlink
 only a single control section from a multiple control
 section module. This may be accomplished by appending
 the CSECT modifier to the control section name that is to
 be unlinked from its containing module. In the example
 above, the module containing the symbol X1 is to be
 divided into single control section modules, and the
 control section Y2 is to be removed from the module that
 contains it (see example 4 in the sample output below).

 Command: UPDATE [FROM] FDname [slist] _______ _

 Modifiers: A,CHECK,COMSAVE,GAPSIZE,GENSAVE,MISCSAVE,MSGSAVE,NV,SLI,
 SYMSAVE,TERSE,V,VERBOSE,WXTOER

 Example: UPDATE FROM -LOAD

 Explanation: The UPDATE command reads potential replacement modules
 from "FDname" and selectively replaces modules in the

 linkage editor internal data structure in accordance with

 "slist". Any additional modules on "FDname" which are

 not part of the current internal data structure are also ____

 included. The UPDATE command can be thought of as a ________

 convenient way of performing the following operations:

 DELETE slist

 INCLUDE FROM FDname

 with the additional feature that the original ordering of

 the input modules is preserved. Note that the REPLACE

 command performs a very similar function.

 Command: XREF [[ON] FDname] _______ _

 Modifiers: None

 Example: XREF

 Explanation: For each control section in the linkage editor internal

 data structure, all symbols "referenced" from that con-

 trol section are printed. A "reference" may refer to

 another control section, to a common section, or to a

 PL/I pseudo-register. The cross-reference listing is

 printed out in two formats: SYMBOL1 -> SYMBOL2 and

 SYMBOL1 <- SYMBOL2. In each format the referenced symbol

 is pointed to by the arrow. In both formats alphabetiza-

 tion is done according to SYMBOL1, and in the case of

 ties, according to SYMBOL2. XREF output is written on

 SPRINT unless "ON FDname" is specified, in which case it

 is written on the specified file or device.

 The Linkage Editor 179

 MTS 5: System Services

 May 1983

 Command Modifiers _________________

 The following paragraphs briefly describe the available command
 modifiers. More detailed descriptions of the effects of these modifiers
 are given in the subsection "Linkage Editor Commands."

 Modifier: A ________ _

 Example: DEL@¬A X

 Explanation: A stands for ALL. The A modifier controls the action

 taken when a multiply-defined symbol is encountered in a

 "slist" parameter; this modifier means "take all defini-

 tions" (the default). The A modifier applies to the

 commands ADD, COMBINE, DELETE, INCLUDE, MAP, PUNCH,

 PURGE, RENAME, REPLACE, UPDATE, and UNLINK. For example,

 the command

 DELETE@A X

 deletes all modules that define the symbol X. If this

 modifier is negated (i.e., ¬A), then the linkage editor

 will detect any multiple definitions of symbols in a

 "slist" parameter and request that the user specify which

 definition is to be used. For example, if the symbol X

 has two definitions, a csect in one module and an entry

 point in another, then the command

 DELETE@¬A X

 prints the following message (the user’s reply is in

 lowercase).

 ***SYMBOL "X" IS MULTIPLY DEFINED.

 PLEASE INDICATE WHICH OF THE FOLLOWING DEFINITIONS

 ARE INTENDED BY RESPONDING WITH "Y" OR "N".

 CSECT "X" IN MODULE "<X" (<OM#1>)?y

 ENTRY "X" IN MODULE "<Z" (<OM#3>)?n

 In this example, the linkage editor prints all defini-

 tions in the order of occurrence with module "<X"

 (internal name <OM#1>) having been included before module

 "<Z" (internal name <OM#3>). In this case, the user has

 indicated that module "<X" is to be deleted, but not

 "<Z". The global default for this modifier may be

 changed with the SET command, i.e.,

 SET ALL={ON|OFF}

 The default is ON.

 180 The Linkage Editor

 MTS 5: System Services

 May 1983

 Modifier: BC ________ __

 Example: COMBINE@BC

 Explanation: BC stands for bind common. This modifier may be applied _ _
 to the COMBINE command; BC causes definitions of common
 blocks to be irrevocably bound into the combined module.

 Modifier: CHECK ________ __

 Example: COMBINE@CHECK

 Explanation: The CHECK modifier may be applied to the COMBINE, DELETE,
 INCLUDE, PUNCH, REPLACE, and UPDATE commands. If the
 CHECK modifier is specified, a consistency check is made
 to check that all symbols in a module have been specified
 if any one symbol in the module has been specified. For
 example, if a module is comprised of control sections A
 and B, the following command will elicit an error
 message:

 DELETE ONLY B

 CHECK may be globally enabled by the SET command, e.g.,

 SET CHECK=ON

 Modifier: COMSAVE ________ ___

 Example: INCLUDE@COMSAVE MYFILE

 Explanation: This modifier causes COM records to be preserved in ADD,
 INCLUDE, PUNCH, and COMBINE commands. The UPDATE and
 REPLACE commands may also be modified by COMSAVE, since
 both commands perform the INCLUDE operation. The default
 for these five commands is to ignore or "throw away" COM

 records. Note that COMSAVE is evaluated independently

 for each of the commands mentioned above, so the sequence

 "INCLUDE@COMSAVE ... PUNCH" does not preserve COM re- ___

 cords for the PUNCH command; "INCLUDE@COMSAVE ... PUNCH-

 @COMSAVE" must be specified. See also the SET command

 description for SET COMSAVE=ON.

 The Linkage Editor 181

 MTS 5: System Services

 May 1983

 Modifier: CSECT ________ __

 Example: UNLINK@CS ONLY X

 Explanation: By default, the operands of most linkage editor commands
 specify object modules. Certain commands, however, per-
 form different functions depending on the type of their
 operands. The CSECT modifier may be applied to the
 DELETE, LIST, and UNLINK commands to specify that the
 symbols in the "slist" parameter imply control sections,

 as opposed to object modules. See the descriptions of

 these commands for the effect of this modifier.

 Modifier: CSECT=section ________ _

 Example: DISPLAY@C=MAIN 100@T=E

 Explanation: This modifier may be applied to the DISPLAY, MODIFY, or

 SCAN commands (and operands) to specify the control

 section ("section") which the command operands refer to.

 This modifier may be globally set with the CSECT command.

 Modifier: EMPTY ________ ___

 Example: PUNCH@EMPTY OBJFILE

 Explanation: This modifier may be applied to the COPY, MAP, and PUNCH

 commands to request that the output file is to be emptied

 before output from the linkage editor is written to it.

 Modifier: ENTRY={symbol[+displacement]|OFF} ________ ___

 Example: PUNCH@ENTRY=ASMGF1 ASMG

 Explanation: This modifier may be applied to the COPY and PUNCH

 commands. If "displacement" is omitted, then an ENT

 record specifying "symbol" as the entry point is punched

 at the beginning of the object program. Entry point

 specification via the ENT record is given the highest

 priority by the dynamic loader. The symbol specified as

 an entry point can be overridden only by another ENT

 record encountered earlier by the loader.

 If "displacement" is specified, then the entry point of

 the module containing "symbol" is inserted on the END

 record of the module. In this case, the entry point

 address is the sum of the value of "symbol" and "dis-

 182 The Linkage Editor

 MTS 5: System Services

 May 1983

 placement", where "displacement" can be from one to six

 hexadecimal digits. The ESID (external symbol identifi-

 cation) of the control section containing "symbol" is

 also inserted in the appropriate field of the END record.

 The keyword OFF may be specified to suppress the punching

 of an ENT record, previously specified in a "SET ENTRY=

 symbol" command.

 Modifier: ENTRY ________ ___

 Example: DEL@ENT Z

 Explanation: The ENTRY modifier may be applied to the DELETE command

 to specify that the operands of the command are entry

 points (as opposed to object modules). This modifier, in

 effect, makes the DELETE command identical to the PURGE

 command.

 Modifier: FULL ________ _

 Example: MAP@FULL

 Explanation: This modifier may be applied to the MAP and RENAME

 commands. By default, these commands are usually only

 applied to a subset of the potential set of affected

 items. The FULL modifier causes the command to be

 carried out for all items which might be affected.

 Modifier: GAPSIZE=n ________ ___

 Example: PUNCH@GAP=400 SEQFILE

 Explanation: When reading in object modules, the linkage editor

 maintains tables which distinguish between segments of

 control sections for which text was received, and "holes"

 for which no text was received. For example, FORTRAN

 program variables not initialized via the DATA statement

 cause holes in a FORTRAN module. When executing commands

 such as INCLUDE, COMBINE, PUNCH, etc., the linkage editor

 will fill in holes of size ≤ GAPSIZE with a fill
 character, which defaults to X’81’, but may be user-

 specified as two hexadecimal digits, e.g., SET FILL=00.

 Each hole of size > GAPSIZE will force generation of a

 new TXT/CSI output record when PUNCHing an object module.

 By filling in small gaps, the number of output records

 can often be greatly reduced. GAPSIZE defaults to ORL/2

 The Linkage Editor 183

 MTS 5: System Services

 May 1983

 (see the ORL modifier below) or 256, whichever is
 smaller.

 Modifier: GENSAVE ________ ___

 Example: COMBINE@GENSAVE

 Explanation: Many translators include generation information on the
 END record of each object module produced specifying such
 things as the name and version of the translator and the
 time and date of translation. This information is lost
 during a COMBINE operation unless GENSAVE is specified.
 If the PUNCH command is subsequently specified with
 GENSAVE, this information is punched on special COM
 records at the beginning of an object module. The number
 of GENSAVE items punched on a COM record depends on the
 value of ORL (see the ORL modifier). If the GENSAVE
 modifier is specified on the ADD, INCLUDE, REPLACE, or
 UPDATE commands, the linkage editor preserves generation
 information contained on any special COM records encoun-
 tered in the input modules. Note that the GENSAVE and
 COMSAVE modifiers are completely independent. See also
 the SET command for SET GENSAVE={ON|OFF}.

 Modifier: LENGTH=i ________ _

 Example: DISPLAY@LEN=16 MAIN+10

 Explanation: This modifier may be applied to the DISPLAY, MODIFY, and
 SCAN commands (or command operands) to set the length
 attribute to "i", where "i" is an unsigned decimal

 integer. The default for input/output conversions is 4.

 Modifier: MISCSAVE ________ ____

 Example: INCLUDE@MISCSAVE PGM.O

 Explanation: This modifier causes miscellaneous records (ALI, DEF,

 LCS, NCA, OPT, and RIP) to be preserved in ADD, COMBINE,

 COPY, INCLUDE, PUNCH, REPLACE, and UPDATE commands. By

 default, miscellaneous records are preserved. See also

 the SET command description for SET MISCSAVE=ON.

 184 The Linkage Editor

 MTS 5: System Services

 May 1983

 Modifier: MSGSAVE ________ ___

 Example: INCLUDE@¬MSG USERS

 Explanation: This modifier causes MSG (message) records to be pre-
 served in ADD, COMBINE, COPY, INCLUDE, PUNCH, REPLACE,
 and UPDATE commands. By default, MSG records are pre-
 served. See also the SET command description for SET
 MSGSAVE=ON.

 Modifier: NAME=symbol ________ ____

 Example: COMBINE@NAME=TEST1

 Explanation: The result of a COMBINE command is a single control
 section module whose name is by default the same as the
 first control section included in the combined module.
 This name can be overridden by the NAME modifier or the
 SET NAME command.

 Modifier: NV ________ __

 Example: INCLUDE@NV -LOAD

 Explanation: Many of the linkage editor commands produce large amounts
 of verification output. NV stands for no verification _ _
 and is used to suppress this output.

 Modifier: OM ________ __

 Example: UNLINK@CS X Y@OM Z

 Explanation: OM stands for object module. The OM modifier may be _ _
 applied to the commands DELETE, LIST, and UNLINK, and to
 the operands of the LIST and UNLINK commands to specify
 that the operands refer to object modules (the default).
 In the above example, the symbols X and Z specify control
 sections, while Y specifies an object module. See the
 descriptions of these commands for the effect of this
 modifier.

 The Linkage Editor 185

 MTS 5: System Services

 May 1983

 Modifier: ORL=n ________ ___

 Example: PUNCH@ORL=80 LINEFILE

 Explanation: ORL stands for output record length and defines the _ _ _
 maximum record size the linkage editor will write for a
 PUNCH command. If ORL is not specified, the default is
 the maximum record length that can be written on the
 output file or device specified in the PUNCH command.

 Modifier: SLI ________ ___

 Example: INCLUDE@SLI MYPROG+MYLIB

 Explanation: SLI stands for selective library inclusion. If SLI is _ _ _
 not specified on an INCLUDE command, all library control
 records encountered in input modules are ignored. This,
 of course, implies that if module libraries are INCLUDED,
 all modules in the library are unconditionally added to
 the linkage editor internal data structure. If, however,
 SLI is specified on an INCLUDE command, selective inclu-
 sion is performed in the same manner as MTS Dynamic
 Loader library processing. When a library module is
 encountered, it is INCLUDEd if and only if it has been
 referenced but not defined. The unresolved reference may
 be from a module read in by the current INCLUDE command
 or by a previous INCLUDE command.

 A word of warning is appropriate to the user of the SLI
 modifier. Since this modifier enables the user to
 extract modules from a library in general, modules can be
 extracted from a library over which the user has no
 design or maintenance control. When parallel changes are
 made in such a library and in the system with which the ___
 library works, the user who has extracted modules from
 the "old" library may suddenly and without warning find

 himself with a program that no longer works. Thus, the

 SLI modifier should be used only in carefully controlled

 situations.

 Modifier: SORT={NAME|ESID} ________ ____ _ _

 Example: MAP@SORT=ESID

 Explanation: The SORT modifier permits sorting of MAP command output

 by name or external symbol identification (ESID) instead

 of the default sorting by address.

 186 The Linkage Editor

 MTS 5: System Services

 May 1983

 Modifier: SYMSAVE ________ ___

 Example: INCLUDE@SYMSAVE MYFILE

 Explanation: SYMSAVE causes SYM records to be preserved in INCLUDE,
 PUNCH, UPDATE, and REPLACE commands. The UPDATE and
 REPLACE commands may be modified by SYMSAVE since both
 commands perform the INCLUDE operation. By default, SYM
 records are preserved by these five commands. Note that
 SYM records currently cannot be preserved by a COMBINE
 command. See also the SET command description for SET
 SYMSAVE=ON.

 Modifier: TERSE ________ ___

 Example: INCLUDE@TERSE -LOAD

 Explanation: The TERSE modifier may be applied to some commands to
 abbreviate the information produced for verification. By
 default, full information is given to verify a command.
 VERBOSE is an antonym of TERSE. See also the SET command
 description for SET TERSE=ON.

 Modifier: TYPE=code[Li] ________ _

 Example: DIS MAIN@T=CL12

 Explanation: This modifier may be applied to the DISPLAY, MODIFY, and
 SCAN commands (or operands) to set the type attribute to
 "code", where "code" is any of the single-character

 type-codes defined below. The default is X.

 Code Type ____ ____

 A A-type address constant

 B binary

 C character (EBCDIC)

 D floating-point (long)

 E floating-point (short)

 F fixed-point (fullword)

 H fixed-point (halfword)

 I machine instruction

 P packed decimal

 Q Q-type address constant (pseudo-register)

 S S-type address constant (output only)

 V V-type address constant

 X hexadecimal

 Y Y-type address constant

 Z zoned decimal

 The Linkage Editor 187

 MTS 5: System Services

 May 1983

 A length attribute "Li", where "i" is an unsigned decimal

 integer, may be appended to the single-character "code"

 to change the default length used in conversion. The

 effect of this is identical to applying the LENGTH=i

 modifier. Complete details on input and output conver-

 sions performed by the linkage editor are given in the

 subsections "Input Conversions" and "Output Conversions."

 Modifier: V ________ _

 Example: PURGE@V

 Explanation: V stands for verify. If verification has been turned off _

 globally via SET VERIFY=OFF, then it can be turned on for

 a particular command via the V modifier.

 Modifier: VERBOSE ________ ____

 Example: INCLUDE@VERBOSE FROM -LOAD

 Explanation: If TERSE has been enabled globally via SET TERSE=ON, the

 full information for the verification of a particular

 command can be produced via the VERBOSE modifier. VER-

 BOSE is an antonym of TERSE. See also the SET command

 description for SET VERBOSE=ON. This modifier has no

 effect if verification is suppressed via the NV modifier

 or the command SET VERIFY=OFF.

 Modifier: WXTOER ________ __

 Example: INCLUDE@WXTOER FILE.O

 Explanation: This modifier may be applied to the ADD, INCLUDE, COPY,

 REPLACE, and UPDATE commands to request the linkage

 editor to convert all ESD symbols of type WX (weak

 external reference) to type ER (strong external refer-

 ence). By default, symbols of type WX are not converted.

 See also the SET command description for SET WXTOER=ON.

 188 The Linkage Editor

 MTS 5: System Services

 May 1983

 LINKAGE EDITOR EXAMPLE ______________________

 A sample terminal run is given below to illustrate several of the
 features of the linkage editor. In this example, user input is in
 lowercase while linkage editor output is in uppercase. Note also that
 the linkage editor uses an asterisk as a prompting character.

 #$run *linkedit

 #EXECUTION BEGINS

 VERSION(12-16-75) 15:10:14 01-15-76

 *comment - example #1 converts object modules to card images.

 *include *time

 *** WARNING: INPUT STREAM TERMINATED BY AN LDT CARD

 INCLUDED:

 TIME

 *punch@orl=80 -cardfile

 PUNCHED:

 TIME

 *clear

 DONE.

 *comment - example #2 converts object modules to optimal form.

 *set symsave=off

 *incl ftnobj

 *** WARNING: SYM/FTN CARDS ARE BEING IGNORED.

 INCLUDED:

 MAIN INSUB OUTSUB

 *list commons

 <INSUB: BLK

 *combine@bc

 COMBINED MODULE:

 MAIN OUTSUB INSUB BLK

 *map

 EXTERNAL SYMBOL DEFINITIONS:(NAME TYPE ESID ADDR VALUE AF)

 <MAIN: ENTRY = MAIN SIZE = 000A10

 MAIN SD 0001 000000 000A10 INSUB LD 000210 0001

 OUTSUB LD 0006D0 0001 BLK LD 0009D8 0001

 *purge

 PURGED:

 BLK INSUB OUTSUB

 *map

 EXTERNAL SYMBOL DEFINITIONS:(NAME TYPE ESID ADDR VALUE AF)

 <MAIN: ENTRY = MAIN SIZE = 000A10

 MAIN SD 0001 000000 000A10

 *$cre -seqobj type=seq

 #$CRE -SEQOBJ TYPE=SEQ

 # FILE "-SEQOBJ" HAS BEEN CREATED.

 *punch -seqobj

 PUNCHED:

 MAIN

 The Linkage Editor 189

 MTS 5: System Services

 May 1983

 *clear
 DONE.
 *comment - example #3 illustrates object module editing.

 *i@nv ftnobj

 *** WARNING: SYM/FTN CARDS ARE BEING IGNORED.

 *xref

 INSUB -> BLK BLK <- INSUB

 INSUB -> ERROR BLK <- MAIN

 INSUB -> FTNCMD BLKLTR <- OUTSUB

 INSUB -> IBCOM# ERROR <- INSUB

 INSUB -> OUTSUB FTNCMD <- INSUB

 MAIN -> BLK IBCOM# <- INSUB

 MAIN -> INSUB IBCOM# <- OUTSUB

 OUTSUB -> BLKLTR INSUB <- MAIN

 OUTSUB -> IBCOM# OUTSUB <- INSUB

 *replace from -load only main

 *** WARNING: SYM/FTN CARDS ARE BEING IGNORED.

 INCLUDED:

 MAIN

 DELETED:

 MAIN

 *update from -load allbut main

 *** WARNING: SYM/FTN CARDS ARE BEING IGNORED.

 INCLUDED:

 MAIN INSUB OUTSUB TIME

 DELETED:

 INSUB OUTSUB MAIN

 *comment - the "main" deleted is from -load

 *map

 EXTERNAL SYMBOL DEFINITIONS:(NAME TYPE ESID ADDR VALUE AF)

 <MAIN: ENTRY = MAIN SIZE = 000210

 MAIN SD 0001 000000 000210

 <INSUB: ENTRY = INSUB SIZE = 0004C0

 INSUB SD 0001 000000 0004C0 BLK CM 0002 000000 000038

 <OUTSUB: ENTRY = OUTSUB SIZE = 000308

 OUTSUB SD 0001 000000 000308

 <TIME: ENTRY = TIME SIZE = 0000E8

 TIME SD 0001 000000 0000E8

 *delete time

 DELETED:

 TIME

 *comb

 COMBINED MODULE:

 MAIN OUTSUB INSUB

 *purge

 PURGED:

 INSUB OUTSUB

 190 The Linkage Editor

 MTS 5: System Services

 May 1983

 *rename main=prog
 OLD: "MAIN" NEW: "PROG"

 *attr prog

 PROG: OM=<PROG ID=<OM#14> TYPE=SD VALUE=000000 LEN=0009D8 ESID=01

 *clear

 DONE.

 *comment - example #4 demonstrates the unlink command

 *inc unlk.test.o

 INCLUDED:

 PC#1 L0 C1 L1 C2 L2

 *list csects

 <L0: C1 C2

 *map

 EXTERNAL SYMBOL DEFINITIONS:(NAME TYPE ESID ADDR VALUE AF)

 <L0: ENTRY = L2 SIZE = 000068

 PC#1 PC 0001 000000 000028 CM 000A 000000 000010

 L0 LD 000020 0001 C1 SD 0006 000028 000028

 L1 LD 000048 0006 C2 SD 0008 000050 000018

 L2 LD 000064 0008

 *unlink@cs c1

 *** WARNING: THE SYMBOL PC#1 HAS BEEN DEFINED.

 UNLINKED:

 C1 L1

 *map

 EXTERNAL SYMBOL DEFINITIONS:(NAME TYPE ESID ADDR VALUE AF)

 <L0: ENTRY = L2 SIZE = 000040

 PC#1 SD 0001 000000 000028 CM 000A 000000 000010

 L0 LD 000020 0001 C2 SD 0008 000050 000018

 L2 LD 000064 0008

 <C1: ENTRY = C1 SIZE = 000028

 C1 SD 0001 000000 000028 CM 0008 000000 000010

 L1 LD 000020 0001

 *clear

 DONE.

 *include unlk.test.o

 INCLUDED:

 PC#1 L0 C1 L1 C2 L2

 *unlink <l0

 *** WARNING: THE SYMBOL PC#1 HAS BEEN DEFINED.

 UNLINKED:

 PC#1 L0 C1 L1 C2 L2

 *map

 EXTERNAL SYMBOL DEFINITIONS:(NAME TYPE ESID ADDR VALUE AF)

 <PC#1: ENTRY = PC#1 SIZE = 000028

 PC#1 SD 0001 000000 000028 CM 0008 000000 000010

 L0 LD 000020 0001

 <C1: ENTRY = C1 SIZE = 000028

 C1 SD 0001 000000 000028 CM 0008 000000 000010

 The Linkage Editor 191

 MTS 5: System Services

 May 1983

 L1 LD 000020 0001

 <C2: ENTRY = L2 SIZE = 000018
 C2 SD 0001 000000 000018 L2 LD 000014 0001

 *stop
 #EXECUTION TERMINATED

 PRINCIPLES OF OPERATION _______________________

 The discussion that follows describes the principles of operation of

 the linkage editor. The reader is assumed to have a working knowledge

 of the basic structure of object modules. Those who do not should first

 read the "Elementary Loader Topics" subsection in the section "The

 Dynamic Loader" in this volume prior to proceeding with the following

 paragraphs.

 The operations of the linkage editor are comprised of three basic

 activities:

 (1) Object modules are read from an external storage medium, e.g., a

 file or card deck, and converted to their linkage editor

 internal representations in virtual memory.

 (2) The linkage editor internal representations of object modules

 may be interrogated or modified.

 (3) The internal representations of object modules are converted to

 an appropriate external format and are written on an external

 storage medium.

 It is important to note that complete conversion to and from linkage

 editor internal representation is always done in any processing of ______

 object modules, even in the case of the "SCARDS to SPUNCH" operation

 described earlier. This implies that certain physical transformations

 (optimizations) are always made in processing object modules even when ______

 no logical changes are made. It is also important to note that under no _______

 circumstances does the linkage editor make direct changes to the ______

 external representations of object modules. Changes can be made

 directly only to the linkage editor internal representations.

 Step (1) above is usually performed via the linkage editor INCLUDE

 command. Step (2) is performed by a number of commands, e.g., MAP,

 COMBINE, PURGE, etc. Step (3) is performed by the PUNCH command. Thus,

 a typical sequence of linkage editor commands might be:

 INCLUDE FDname

 COMBINE

 MAP

 PURGE

 PUNCH FDname

 192 The Linkage Editor

 MTS 5: System Services

 May 1983

 Optimization of Object Modules ______________________________

 The physical format of object modules produced by compilers is often
 dictated by convenience and compiler organization. Seldom are such
 modules optimized either with respect to loading time or file storage
 requirements. The basic compiler-generated loader records consist of a
 16-byte header and a variable-length field which can be up to 240 bytes
 long. However, most compilers produce card-image object modules with an
 average record length considerably less than 80 bytes. Hence, a very
 simple but effective way to reduce both the file storage requirements
 and loading time is to reduce the total number of records by increasing
 the average record length, i.e., by making the object module as compact
 as possible. Object modules produced by *PL1 are particularly non-
 compact. An 8655-line PL/I test program consisting of eleven compila-
 tions, for example, was compiled into an object module with 8063
 records. By using the linkage editor to reformat the module into
 maximum size records, this module was compressed into 981 records in a
 line file. The effect on the loading time (on an Amdahl 470/V7) and
 file storage requirements was as follows:

 Load Time Storage _________ _______

 PL/I module: 1.296 seconds 182 pages
 Compressed into line file: 0.494 seconds 116 pages

 A second, and more complex, way of reducing the loading time and file
 storage requirements is to combine into one module a collection of
 object modules which are always loaded together. This can be very
 effective for programs which consist of a large number of subprograms
 which were written and compiled independently for debugging purposes,
 and are now reliable enough to be heavily used. It should be noted,
 however, that this process is nonreversible and SYM records are not
 retained. No information is retained concerning a module’s previously
 independent status. As an example of this further optimization,
 consider these eleven independent modules which were combined into 145
 records in a line file by the linkage editor:

 Load Time Storage _________ _______

 Compressed and combined: 0.328 seconds 69 pages

 Optimizations Automatically Performed _____________________________________

 The following paragraphs describe transformations (and associated
 optimizations) made in the process of converting object modules to and
 from linkage editor internal representations.

 The Linkage Editor 193

 MTS 5: System Services

 May 1983

 ESD Records:

 ESD items are stored internally in order of their ESID numbers. An
 LD (entry point) item, which has no ESID, is chained to the SD or
 PC (control section) ESD item for the control section in which it
 is contained. On output, ESD items are written in ESID order, with
 LD items written immediately after the associated SD item. As many
 ESD items are written, per output record, as the output file or
 device will allow, up to a maximum of 15. ESIDs are preserved
 exactly, not taking advantage of the (rare) possibility of re-
 numbering to eliminate unused ESID numbers. This strategy was
 adopted so that user-generated loader records which require speci-
 fication of an ESID can be generated in a consistent manner both
 before and after simple (i.e., not using a COMBINE command) linkage
 editor processing.

 TXT/CSI Records:

 TXT and CSI records are read into an internal buffer allocated for
 their associated control sections. For each control section, the
 linkage editor maintains a sorted table which distinguishes between
 control section segments for which text was received and "holes"

 for which there is no text. The linkage editor automatically fills

 holes of size ≤ GAPSIZE with a fill character (default is X’81’).
 By filling in small holes, the number of TXT and CSI records often

 can be greatly reduced without increasing file-storage require-

 ments. TXT and CSI records are always written in address order,

 using the sorted table. The length of a TXT or CSI output record

 is subject to three limitations:

 (1) The maximum length allowable for the output file or device,

 e.g., 80 bytes is the upper bound for all output records to

 the card punch.

 (2) If the gap between one block of text and the next exceeds

 GAPSIZE (GAPSIZE defaults to 256 or one half the maximum

 output file or device record length, whichever is smaller),

 a new record is started for the "next" block. Otherwise,

 the gap is filled with the fill character.

 (3) Since the text of a TXT or CSI record is associated with

 exactly one ESID, the text corresponds to exactly one

 control section; hence, a TXT or CSI record can be no

 longer than the longest control section to be written.

 This means that the benefits of TXT/CSI optimization may be

 limited when writing large numbers of small control sec-

 tions. The COMBINE command, described below, is intended

 to eliminate this problem, among others.

 RLD Records:

 Each item on a RLD record has two ESIDs associated with it: a

 position pointer identifying the control section containing the

 location-dependent data, and a relocation pointer identifying the

 symbol on which the value of the location-dependent data depends.

 194 The Linkage Editor

 MTS 5: System Services

 May 1983

 In the linkage editor internal representation, RLD items are stored
 in order of their relocation pointers on lists attached to the
 control section identified by their position pointers, i.e., RLD
 items are maintained fully sorted by pointers. The definition of
 an RLD data item on an RLD record can take two forms, a short form
 (4 bytes) and a long form (8 bytes). The short form is used only
 in cases where an RLD data item has the same relocation and
 position pointers as the previous RLD data item in the same RLD
 record. In such cases, a special bit in the RLD data item is used
 to signal that the relocation and position ESIDs of the succeeding
 RLD data items are the same as those of the current item and are
 omitted from the succeeding item. Since the linkage editor stores
 (and writes) RLD items sorted by pointers, it achieves maximal
 compression available via the short form. On output, as many RLD
 items are written, per output record, as the file or device will
 allow, up to a maximum of 240 bytes.

 Optimizations Performed by the COMBINE Command __

 The optimizations described above are always performed automatically.
 However, greater optimizations are often attainable through the use of
 the COMBINE command. The COMBINE command basically combines object
 modules containing many control sections into a single object module
 comprised of exactly one control section. The transformation and
 optimizations performed in this process are described in the paragraphs
 which follow.

 ESD Records:

 The module produced by combining object modules contains exactly
 one type SD (control section) ESD item. The name of the SD item is
 the name of the first nonblank control section definition encoun-
 tered in the modules being combined. The length of the combined
 control section SD item is the sum of the lengths of all the
 control sections being combined, each rounded up to a multiple of 8
 bytes. Control sections other than the first are changed, in the
 order in which they are encountered, into entry points (type LD)
 located at the next available displacement in the combined control
 section. All entry points (types LD and LR) in control sections
 being combined are changed into type LD entry points defined as
 displacements from the beginning of the combined control section.

 External references from one control section to another control
 section are resolved if these control sections are being combined.
 The type ER or WX ESD items for such resolved references are
 deleted. This is made possible since there is only one resultant
 control section and such references are internal to this control
 section.

 The Linkage Editor 195

 MTS 5: System Services

 May 1983

 ESD items of types not described above (types CM and PR, and "truly

 external" ER and WX types) are preserved in the combined module,

 but their ESIDs are renumbered to produce a module containing only

 contiguously assigned ESIDs.

 Evidence of the changes made to ESD information may be obtained by

 the use of the MAP command before and after the COMBINE command is

 used.

 TXT/CSI Records:

 All TXT and CSI records of a combined module have ESID 0001, the

 ESID of the resultant control section. The sorted text tables for

 combined control sections are merged into a single sorted text

 table. This means that the addresses from the original TXT and CSI

 records must be changed to reflect the positions of the containing

 control sections in the combined control section.

 RLD Records:

 The relocation and position pointers for all RLD items are changed

 to correspond to ESD items in the combined module. The displace-

 ment fields of the RLD items are changed to reflect the displace-

 ment of their original containing control section in the combined

 control section. Finally, the combined control section text

 referenced by RLD items having relocation pointer 0001 is modified

 to reflect the displacements of the original control sections in

 the new combined control section.

 Optimizations Performed by the PURGE Command __

 The PURGE command deletes type LD and LR ESD items from all modules

 in the linkage editor internal representation. Deletion of these items

 yields savings in loading time and a modest saving in external storage

 requirements. One word of warning is in order: purging entry points

 only makes sense when the purged entry points are unnecessary entry

 points in a combined module. Unnecessary entry points to a module are

 entry points that will never be referenced by another module. It is

 often the case that a combined module is self-contained, and thus the

 PURGE command is often used immediately after the COMBINE command. PL/I

 users should note that the symbols IHENTRY and IHEMAIN should never be

 purged. This can be achieved by the use of the ALLBUT option, e.g.,

 PURGE ALLBUT IHEMAIN IHENTRY

 196 The Linkage Editor

 MTS 5: System Services

 May 1983

 Optimizations Obtained by the SLI Modifier __

 Many object modules have the property that their loading forces the
 loading of a small number of small modules from a large module library.
 A certain amount of CPU time is required to extract these modules from
 the library each time the program is loaded. The SLI modifier allows
 library modules to be extracted from a library at link-edit time. Thus,
 at the expense of linkage editor CPU time and increased external storage
 requirements, loading CPU time can be saved. See the words of warning
 in the SLI modifier description.

 Optimizations Obtained by the BC Modifier ___

 The BC modifier may be applied to the COMBINE command to obtain
 optimization associated with the processing of common sections. The BC
 modifier forces the linkage editor to bind into the combined module
 definitions of common sections that would otherwise require storage
 allocation and other processing when loaded by the dynamic loader. The
 only disadvantage of doing this is that if other modules are to be
 loaded along with the combined module, they must use the common
 definitions (lengths) bound into the combined module. In particular,
 longer lengths cannot be defined.

 PROCESSING SPECIAL RECORDS __________________________

 One of the most difficult problems facing the linkage editor is what
 to do with the special records which may appear in an object module
 file. Special records are those loader records which are generated by
 hand (e.g., REP, ENT, LDT) or library control records generated by
 *OBJUTIL (e.g., DIR, RIP, LIB). Special records pose a problem because
 it is difficult to ascertain which (if any) object modules are affected
 by these special records. It is important to note that the order in
 which special records appear can be crucial. If it is necessary to
 delete, replace, or combine object modules using the linkage editor, the
 problem of deleting, replacing, or combining any associated special
 records becomes important. This section describes the conventions used
 by the linkage editor to handle special records. Users who only
 linkedit object modules produced by compilers can ignore this section
 completely.

 For lack of a better convention, the linkage editor considers any
 special records which precede or are part of an object module to be
 associated with that object module. That is, everything between END
 records is considered to be part of the same object module. This means
 that any operations which delete, replace, or combine object modules
 will also affect those special records which appear before, or within,

 The Linkage Editor 197

 MTS 5: System Services

 May 1983

 the object modules. The process of combining object modules with
 special records creates an additional problem. Because of this process,
 special records which originally appeared between object modules must _______
 now be moved to a new position relative to the combined module. The
 conventions for solving these problems are described below.

 ALI Records

 If MISCSAVE is on, ALI records are preserved in order of occur-
 rence. If combining is performed, the associated ALI records will
 precede the combined module.

 COM Records

 If COMSAVE is ON, COM records are preserved in order of occurrence.
 If combining is performed, the associated COM records will precede
 the combined module.

 DEF Records

 There are two types of DEF records: absolute (ESID=0) and relative
 (ESID>0). Relative DEF records are incorporated into the external
 symbol dictionary during INCLUDE processing and thus lose the
 properties of special records. Absolute DEF records are preserved
 in order and are moved to the front of combined modules, if
 MISCSAVE is ON.

 DIR Records

 DIR records are library control records. If SLI is ON, DIR records
 are interpreted. If SLI is OFF, DIR records are ignored. In
 either case, they are never preserved as part of an object module.

 ENT Records

 ENT records are preserved in order. If combining is performed,
 only the first ENT record is retained, since the loader will only
 look at the first one.

 LCS Records

 If MISCSAVE is ON, LCS records are preserved in order and are
 positioned after combined modules.

 LDT Records

 An LDT record terminates INCLUDE processing. LDT records are
 preserved in order. If combining is performed, only the first LDT
 record is retained and is positioned after combined modules.

 198 The Linkage Editor

 MTS 5: System Services

 May 1983

 LIB Records

 LIB records are library control cards. If SLI is ON, LIB records
 are interpreted. If SLI is OFF, LIB records are ignored. In no
 case are they preserved as part of an object module.

 MDL Records

 Currently, all MDL records are ignored.

 MSG Records

 If MSGSAVE is ON, MSG records are preserved in order and are
 positioned before combined modules.

 NCA Records

 If MSCSAVE is ON, NCA records are preserved in order and moved to
 the front of combined modules.

 OPT Records

 If MISCSAVE is ON, OPT records are preserved in order of occurrence
 and are positioned before combined modules.

 REP Records

 REP records are incorporated into the control section text during
 INCLUDE processing. They are never produced as output from the
 linkage editor.

 RIP Records

 There are two types of RIP records: absolute and conditional RIP
 records. Conditional RIP records are library control records. If
 SLI is ON, they are interpreted. If SLI is OFF, conditional RIP
 records are ignored. In no case are they preserved as part of an
 object module. Absolute RIP records are preserved in order and are
 positioned after combined modules, if MISCSAVE is ON.

 ATTENTION-INTERRUPT PROCESSING ______________________________

 Attention interrupts within the linkage editor are processed as
 follows:

 (1) If an attention interrupt occurs during output verification, the
 remainder of the verification is suppressed.

 (2) If an attention interrupt occurs during the processing of a
 command, the command is aborted if possible. For example, an

 The Linkage Editor 199

 MTS 5: System Services

 May 1983

 attention interrupt during an INCLUDE command causes the command
 to be aborted with nothing included; an attention interrupt
 during a COMBINE command is not allowed; an attention interrupt
 during a PUNCH command causes the command to be aborted,
 resulting in an incomplete object file.

 At any time, two successive attention interrupts without an interven-
 ing return to linkage editor command mode causes a return to MTS with
 the linkage editor still loaded. In this case, the linkage editor may
 be restarted via the $RESTART command.

 INPUT CONVERSION ________________

 Input conversion is used with the MODIFY and SCAN commands. The

 MODIFY command requires two parameters:

 (1) an address parameter specifying what locations are to be

 modified, and

 (2) a list of one or more constants delimited with commas; the

 entire list is enclosed in primes. The constants are converted

 according to the type and length attributes specified.

 The SCAN command also requires two parameters initially:

 (1) a section name or block parameter specifying a region to be

 scanned, and

 (2) a list of one or more constants delimited with commas; the

 entire list is enclosed in primes. The constants are converted

 according to the type and length attributes specified.

 No modifiers may be appended to the constants themselves. Type and

 length modifiers may be appended to the command or to the first

 parameter. A type specifier may optionally prefix the constant list.

 Conventions for the representation of the different types of linkage

 editor constants are presented below. The total length of all constants

 specified in an input constant list may not exceed 256 bytes. If an

 explicit length is not specified via the LENGTH modifier or L attribute

 or implied by the type attribute, the implied length of the constant is

 taken as the number of bytes necessary to contain the constant. The

 term "parameter" refers to the operand that is being modified or scanned

 for. An error comment is produced if an unsupported type is specified,

 or a constant is specified incorrectly.

 A-type adcon If the specified length is one or two bytes, the

 constant is treated as a fixed-point decimal integer

 of length one or two, respectively. If the speci-

 fied length is three or four bytes, the constant may

 be any absolute or relocatable expresssion; the only

 operators recognized are "+" and "-". Symbol names

 given in the expression must be defined within the

 200 The Linkage Editor

 MTS 5: System Services

 May 1983

 module that contains the current active section
 (specified via the CSECT command or CSECT= modi-
 fier). Special processing is done by the linkage
 editor if the constant expression is relocatable;
 see the explanations of the MODIFY and SCAN commands
 for details. The default length for an A-type
 address constant is 4 bytes. The example below
 modifies the location 9B0 to contain the value of
 the symbol MAIN plus the hexadecimal displacement
 1A0, and creates a RLD item for this location after
 deleting any previous relocations from the reloca-
 tion dictionary tables.

 MODIFY 9B0 A’MAIN+1A0’

 Binary A binary constant is written as a string of 1’s and
 0’s. The implied length of a binary constant is the
 number of bytes (eight binary digits per byte)
 occupied by the constant including any padding
 necessary. Padding or truncation required by an
 explicit length specification takes place on the
 left. The padding bit is a 0. In the example
 below, the byte specified by the relative address
 100 is modified to the bit string 00000101.

 MODIFY 100 B’101’

 Character Any of the valid 256 punch combinations may be
 designated in a character constant. Only one char-
 acter constant may be specified in the second
 operand to the MODIFY or SCAN command. Since
 multiple constants within the second operand are
 separated by commas, an attempt to specify two
 character constants results in interpreting the
 comma as a character. Special attention must be
 given to representing primes as characters. Each
 single prime desired as a character in the constant
 must be represented as a pair of primes. The
 maximum length of a character constant is 256 bytes.
 Double primes are counted as one character. If an
 explicit length is specified, padding or truncation
 will take place on the right if necessary. The
 padding character is a blank. In the example below,
 the location 2020 is modified to contain the charac-
 ter string ABCDE.

 MODIFY 2020 C’ABCDE’

 Fixed-point A fixed-point constant consists of a signed or
 unsigned decimal integer. No decimal point is
 allowed. The length of the constant depends on the
 type specifier; if the type is "F", the length is 4

 bytes, if "H", the length is 2 bytes. Any explicit

 The Linkage Editor 201

 MTS 5: System Services

 May 1983

 length specification is ignored. The example below
 modifies the locations 10 and 14 to the constants 1
 and 2, respectively.

 MODIFY 10 F’1,2’

 Floating-point A floating-point constant is written as a decimal
 number. As an option, a decimal exponent may
 follow. The number may be an integer, a fraction,
 or a mixed number. The length of the constant
 depends on the type specifier; if the type is "E",

 the constant is treated as a single-precision con-

 stant and occupies 4 bytes, if the type is "D", the

 constant is treated as a double-precision constant

 and occupies 8 bytes. Any explicit length specifi-

 cation is ignored. The format of the constant is as

 follows:

 (1) The number is written as a signed or unsigned

 decimal value. The decimal point can be placed

 before, within, or after the number. If it is

 omitted, the number is assumed to be an inte-

 ger. A positive number is assumed if an

 unsigned constant is specified.

 (2) The exponent is optional. If specified, it is

 written immediately after the number as En,

 where "n" is an optionally signed decimal value

 specifying the exponent of the factor 10. The

 value of the constant may be in the range of

 .723700515E+76 to .539760535E-78. If an

 unsigned exponent is specified, a plus sign is

 assumed.

 In the following example, the parameter DATA is

 modified to 46.415.

 MODIFY DATA@T=E ’+.46415E2’

 Hexadecimal A hexadecimal constant consists of one or more of

 the hexadecimal digits 0-9 and A-F. Constants that

 contain an even number of digits are translated as

 one byte per pair of digits. If an odd number of

 digits is specified, the leftmost byte has its

 leftmost four bits filled with hexadecimal zeros,

 while the rightmost four bits contain the first

 digit. Hexadecimal constants are right-justified.

 Padding or truncation required by an explicit length

 specification is made on the left. The padding

 character is hexadecimal zero. In the example

 below, the locations 40 and 42 are modified to the

 hexadecimal constants 0008 and 000F, respectively.

 202 The Linkage Editor

 MTS 5: System Services

 May 1983

 MODIFY 40 XL2’8,F’

 Instruction An "instruction" constant consists of a 360/370-

 assembler mnemonic and a hexadecimal operand of the

 appropriate length. The operand is separated from

 the mnemonic by one or more blanks; blanks may be

 included within the operand, but not the mnemonic.

 Extended mnemonics (such as BNM) may be used, in

 which case the extended mnemonic will include the

 mask digit of the BC or BCR instruction. In the

 first example below, the location specified by the

 parameter MAIN is modified to the assembler instruc-

 tion "STM 14,12,12(13)".

 MODIFY MAIN I’STM ECD00C’

 MODIFY 240 I’BL 0 B098’

 Packed & zoned A packed or zoned decimal constant is written as a

 signed or unsigned decimal value. If the sign is

 omitted, a plus sign is assumed. The existence of a

 decimal point in no way affects the conversion of a

 decimal constant. In effect, the decimal point is

 ignored. If zoned decimal conversion is being

 performed, each decimal digit is translated into one

 byte. The rightmost byte contains the sign as well

 as the rightmost digit. For packed decimal conver-

 sion, each pair of decimal digits is packed into one

 byte. If an even number of packed decimal digits is

 specified, the leftmost four bits in the leftmost

 byte are set to zero and the rightmost four bits

 contain the first digit. No more than 16 digits may

 be specified in a packed decimal constant. Padding

 or truncation as required by an explicit length

 specification is performed on the left. For packed

 conversion, the padding character is hexadecimal 00;

 for zoned conversion, the padding character is the

 character "0" (hexadecimal F0). Examples:

 MODIFY 100 P’23’

 MODIFY 104 Z’-44’

 Q-type adcon A Q-type address constant is used to specify an

 external dummy section, i.e., pseudo-register. The

 length of the constant may be from one to four

 bytes; the default is four bytes. The constant is

 specified as a relocatable symbol which names a

 pseudo-register. For the SCAN command, this pseudo-

 register must be defined in the module that contains

 the active control section (via the CSECT command or

 CSECT= modifier). For the MODIFY command, this

 symbol need not specify a previously defined pseudo-

 register; in this case, a pseudo-register definition

 is created and inserted into the RLD tables. Cur-

 The Linkage Editor 203

 MTS 5: System Services

 May 1983

 rently, the pseudo-register is given a doubleword
 length and alignment. Example:

 MODIFY MAIN+22 QL2’MAINB’

 S-type adcon Not supported.

 V-type adcon V-type adcons are treated the same as A-type adcons
 except that a symbol may be an external reference
 defined in the module containing the currently
 active section. In addition, for the MODIFY com-
 mand, a symbol need not be defined; in which case an
 external reference is created for the symbol and
 inserted into the external symbol dictionary (ESD)
 tables. In the example below, the location 8E4 is
 modified to the constant 0 and a RLD item for this
 location, referring to the external reference SER-
 COM, is inserted into the RLD tables.

 MODIFY 8E4 V’SERCOM’

 Y-type adcon Y-type adcons are treated as fixed-point decimal
 constants of length 2; in effect, type "Y" is the

 same as type "H". In the example below, the

 location YCON is modified to the integer 256.

 MODIFY YCON Y’256’

 OUTPUT CONVERSION _________________

 Output conversion is required for the DISPLAY command and in

 verification for the MODIFY command. All of the conversion types listed

 with the description of the TYPE modifier are supported by the linkage

 editor output conversion routines. The following conventions are used

 when the linkage editor attempts to display illegal data.

 Character If a hexadecimal code is encountered which has no

 character equivalent, a question mark is

 substituted.

 Instruction If the opcode field of an instruction does not

 correspond to a machine operation, the instruction

 is printed as two hexadecimal digits surrounded by

 asterisks. The instruction is assumed to be 2 bytes

 in length (RR type).

 Packed & zoned If the data are not in the packed or zoned format,

 the number is printed in hexadecimal format.

 204 The Linkage Editor

 MTS 5: System Services

 May 1983

 OBJECT-MODULE NAMING CONVENTIONS ________________________________

 Most linkage editor commands require the specification of one or more
 object modules. However, object modules do not have translator-assigned
 names. Thus, a problem exists in how to specify a particular object
 module at the command language level. The usual approach is to specify
 a module by implication, e.g.,

 DELETE X

 means "delete the module which defines X". Thus, the object module is

 specified by entering a symbol defined within the module in the "slist"

 parameter. However, this method has at least three shortcomings:

 (1) A module may consist of exactly one private control section and

 hence, define no symbols.

 (2) The symbol X may be multiply-defined.

 (3) There is a problem in how to specify a particular item within a

 module, e.g.,

 DELETE X

 can never mean delete the control section X from its containing

 module.

 The problem of distinguishing the data type of an operand is generally

 handled by modifiers with appropriate defaults. Thus, (3) above is

 resolved by appropriate use of the modifiers OM, CSECT, and ENTRY,

 described in the subsection "Command Modifiers."

 Solutions to (1) and (2) above, however, require alternate ways of

 specifying object modules. For these reasons, the linkage editor

 assigns a name to an object module of the form "<sym", where "sym" is

 the name of the first symbol defined in the module if there is one;

 otherwise, the object module name remains undefined. This assignment is

 made during INCLUDE processing and can be changed via the RENAME

 command. The assigned name can then be used to specify a module as

 follows:

 DELETE <X

 deletes the module named <X which defines the symbol X.

 In addition, the linkage editor assigns an internal name to each

 object module. This name is also assigned during INCLUDE processing and

 has the form "<OM#j>", where j=1,2,.... This internal name, although

 artificial, makes it possible to unambiguously specify an object module.

 The LIST and ATTRIBUTE commands (described in the subsection "Linkage

 Editor Commands") are available to let the user know what the assigned

 The Linkage Editor 205

 MTS 5: System Services

 May 1983

 and internal name of an object module is in order to reference it.
 Thus, a module containing a private control section may be referenced by
 its internal name, as shown in the example below.

 *LIST PCS
 <OM#1>: PC#1

 *DELETE <OM#1>

 DELETED:

 PC#1

 206 The Linkage Editor

 MTS 5: System Services

 May 1983

 THE OBJECT-FILE EDITOR ______________________

 The MTS object-file editor is used for the editing of object files¹.
 The object-file editor provides facilities to replace, add, delete, or
 correct an object module. Object modules that are added to the object
 file are automatically reformatted into maximum-sized records to reduce
 both the loading time and storage requirements. In addition, the
 object-file editor can generate and edit DIR-type loader library files.

 Many of these same facilities are also provided by the MTS linkage
 editor described in this volume. However, since the linkage editor
 makes more general assumptions concerning the reformatting and optimiza-
 tion process, it generally is less efficient in providing these
 services. The object-file editor particularly is more efficient when
 replacing a single module in a file containing many modules.

 The object-file editor is available in the file *OBJUTIL and is
 invoked via the $RUN command. The object-file editor uses the following

 MTS logical I/O units:

 SCARDS - either the input file containing the object modules to be

 replaced or a sequence of commands.

 SPRINT - printed output produced by the object-file editor.

 SERCOM - diagnostic messages.

 GUSER - user responses in conversational mode.

 0 - default unit for the object file to be edited.

 Those users who want only to update their object-module file can

 simply issue the following command:

 $RUN *OBJUTIL SCARDS=inFDname 0=editFDname

 In the above case, object modules are read from "inFDname", converted to

 the optimized format, and written on "editFDname" replacing any previous

 definitions. The logical structure of the input modules is completely

 preserved with the following exceptions:

 (1) The duplicate modules from "inFDname" are discarded.

 (2) REP records of input modules are absorbed into the text of

 object modules.

 (3) Nonabsolute DEF records are incorporated into the external

 symbol dictionary of the appropriate output modules.

 (4) Records other than SYM, ESD, TXT, CSI, RLD, END, REP, and

 ¹An object file normally consists of several object modules representing
 a main program and its subroutines.

 The Object-File Editor 207

 MTS 5: System Services

 May 1983

 nonabsolute DEF, are placed in front of the output modules. An
 example is a NCA record.

 A typical example is a FORTRAN program consisting of several
 subroutines whose object modules are in the file OBJ. While debugging
 the program, the user discovers an error in one of the subroutines.
 This error may be corrected in the source file by the MTS file editor.
 After the program is recompiled, the object-file editor may be used to
 replace the erroneous module in the object file. The last two stages
 would be as follows:

 $RUN *FTN SCARDS=PROG(200,299) SPRINT=*PRINT*

 $RUN *OBJUTIL SCARDS=-LOAD 0=OBJ

 In this example, the source code for the subroutine is in the file PROG

 at the specified line range. The FORTRAN compiler places the new object

 module into the file -LOAD which is read by the object-file editor and

 replaces the old version of the subroutine in the file OBJ.

 The PAR field allows the user some control over the processing done

 by the object-file editor. Those users who wish to use the more

 advanced features of the object-file editor must use the object-file

 editor command language described below. Commands are read from SCARDS

 and printed output is written on SPRINT; thus, the typical $RUN command

 to use the object-file editor in command mode is:

 $RUN *OBJUTIL

 Command input is terminated by an end-of-file, by a RETURN command, or

 by a STOP command.

 The following parameters may be specified in the PAR field of the

 $RUN command. The parameters must be separated by commas or blanks.

 Parameters may be negated by "-", "¬", "NO", or "N". The minimum

 acceptable abbreviation for each parameter is underlined.

 BREAK=n __

 Each new module added to the edit file begins at the next

 highest multiple of the line number "n". Lines currently in the

 edit file are not changed to reflect the new value. The default

 value is 1.000. The BREAK parameter has no effect for sequen-

 tial edit files.

 COMSAVE ___

 The COMSAVE parameter specifies that COM (comment) records are

 to be saved during processing. NOCOMSAVE specifies that COM

 records are not to be saved. The default is COMSAVE.

 208 The Object-File Editor

 MTS 5: System Services

 May 1983

 DEFSAVE ___

 The DEFSAVE parameter specifies that nonabsolute DEF records are
 to be preserved during the object-module optimization process.
 NODEFSAVE specifies that nonabsolute DEF records are to be
 incorporated into the external symbol dictionary of the appro-
 priate object modules. The default is NODEFSAVE.

 DIRECTORY ___

 The DIRECTORY parameter specifies that the object-file editor is
 to produce a two-record DIR directory of the object modules in
 the edit file for future use by the object-file editor. The DIR
 record and its directory are written at line numbers -1 and 0,
 respectively, in the edit file when the object-file editor
 terminates processing. This record will normally not be read by
 the system loader since it is in the negative line number range
 of the file. On subsequent uses of the object-file editor, the
 program will read this DIR record directory to build its
 internal representation of the edit file instead of reading the
 entire file as it must do if no DIR record exists. The presence
 of this DIR record will increase the file space required for the
 edit file but will greatly reduce the expense of replacing
 object modules in an edit file containing an object program
 consisting of a very large number of modules. The default is
 NODIRECTORY, i. e., the object-file editor will not produce a
 DIR record directory. However, if the edit file contains a DIR
 record at lines -1 and 0, then DIRECTORY is assumed. The
 DIRECTORY parameter has no effect for sequential files.

 DLR ___

 If the DLR (delete library records) parameter is specified, _ _ _
 library (LIB and DIR) control records will be deleted from the
 edit file. NODLR specifies that library records are not to be
 deleted. The default is NODLR.

 DMD ___

 If the DMD (delete multiple definitions) parameter is specified, _ _ _
 object modules which are multiple definitions will be deleted
 from the edit file. NODMD specifies that multiple definitions
 are not to be deleted. The default is NODMD.

 EMPTY ___

 The EMPTY parameter specifies that the edit file assigned to
 unit 0 is to be emptied before use. NOEMPTY specifies that the
 edit file is not to be emptied. The default is NOEMPTY. EMPTY
 has no effect in command mode.

 The Object-File Editor 209

 MTS 5: System Services

 May 1983

 FILL=xx ____

 Two hexadecimal digits "xx" specify a character to fill the gaps

 in the text of the control sections. The default is FILL=81.

 GAPSIZE=n ___

 "n" specifies the maximum object-module text gap size to be

 filled during the object-file editor processing. The default is

 ORL/2 or 256, whichever is smaller.

 LIBRARY ___

 The LIBRARY parameter specifies that the edit file (if empty) is

 to be formatted as a loader library file. In this case, the

 object-file editor will generate a DIR loader record at the

 beginning of the file and subsequently update the directory as

 object modules are added to the library. The default is

 NOLIBRARY, i.e., the file is not formatted as a loader library

 file. However, if the edit file is not empty, the object-file

 editor will examine the file and automatically determine whether

 or not it is a library file and act accordingly. Note that the

 LIBRARY parameter is distinct from the DIRECTORY parameter which

 requests the object-file editor to generate and maintain a

 special directory in the negative line-number range of the

 object file for its own use when editing.

 MISCSAVE ____

 The MISCSAVE parameter specifies that miscellaneous (ALI, RIP,

 DEF, OPT, NCA, and LCS) loader records are to be preserved

 during processing. NOMISCSAVE specifies that miscellaneous

 records are to be discarded. The default is MISCSAVE.

 MSGSAVE ___

 The MSGSAVE parameter specifies that MSG (message) records are

 to be saved during processing. NOMSGSAVE specifies that MSG

 records are not saved. The default is MSGSAVE.

 OPTIMIZE ___

 The OPTIMIZE parameter specifies that object modules are to be

 optimized, i.e., reformatted according to ORL, FILL, and GAP-

 SIZE. NOOPTIMIZE specifies that input records of object modules

 are to be copied as is. The default is OPTIMIZE.

 ORL=n ___

 "n" specifies the maximum output record length to be used for

 output produced by the object-file editor. The default is the

 maximum output record length of the edit file (normally 32767).

 210 The Object-File Editor

 MTS 5: System Services

 May 1983

 QUIT ____

 The QUIT parameter specifies that if the object-file editor
 encounters any errors in batch mode, the user is signed off.
 NOQUIT specifies that the batch user is not to be signed off if
 an error occurs. The default is NOQUIT.

 REPSAVE ____

 The REPSAVE parameter specifies that REP (replace) records are
 to be preserved during the object-module optimization process.
 NOREPSAVE specifies that REP records are to be absorbed into the
 control-section text of the appropriate object modules. The
 default is NOREPSAVE.

 SLOTS=n _____

 "n" specifies the number of slots (one slot per entry point) to

 be allocated for the DIR record of a library file. "n" may be

 between 1 and 2730; the default is 128 for sequential files or

 the minimum (the least possible number of slots) for line files.

 The SLOTS parameter should be specified only if the edit file is

 empty and is to be formatted as a library file. Alternatively,

 the LIBRARY parameter may be specified if the empty edit file is

 to be a library file and, if a sequential file, it requires no

 more than 128 slots.

 SYMSAVE ___

 The SYMSAVE parameter specifies that SYM (symbol) records are to

 be saved during processing. NOSYMSAVE specifies that SYM

 records are not saved. The default is SYMSAVE.

 TERSE/VERBOSE ___ ____

 The TERSE/VERBOSE parameters control the amount of information

 produced by the verification of some commands. TERSE specifies

 that minimal information is requested; VERBOSE specifies that

 full information is desired. TERSE is an antonym for VERBOSE.

 The default is the setting of the MTS TERSE option. This

 parameter pair has no effect if NOVERIFY is specified.

 UPDATE/REPLACE ___ ___

 The UPDATE/REPLACE parameters control whether the file assigned

 to SCARDS is an update or replacement file in no-command mode.

 UPDATE specifies that object modules read from SCARDS not in the

 edit file will be included. REPLACE specifies that new modules

 will be excluded. The default is UPDATE.

 The Object-File Editor 211

 MTS 5: System Services

 May 1983

 VERIFY _

 The VERIFY parameter specifies that verification for each
 command is requested. NOVERIFY suppresses the verification.
 The default is VERIFY.

 The complete description of the object-file editor command language
 is given on the following pages.

 OBJECT-FILE EDITOR COMMAND LANGUAGE ___________________________________

 The general form of a command is:

 commandname[@modifier]...[operand]...

 Modifiers may be prefixed by "¬", "-", "NO", or "N" if they are to be

 negated. In some commands, "slist" as an operand of a command stands

 for:

 {ALLBUT|[ONLY]} symbol [[,]symbol] ...

 The following notation conventions are used in the description of the

 object-file editor command language:

 ... denotes zero or more repetitions of the preceding words.

 | denotes a choice of options, e.g., x|y means choose "x" or

 "y".

 [] denotes optional words.

 { } denotes alternatives.

 ___ denotes a minimum acceptable abbreviation for a word, e.g.,

 INCLUDE indicates I is the minimum acceptable abbreviation for _

 INCLUDE.

 The following rules apply to command usage:

 (1) A command starts with the first nonblank character, which need

 not start at position 1.

 (2) There should be no embedded blanks in the command name and

 command modifiers.

 (3) At least one blank should separate the command name and the

 first operand.

 (4) There must be a blank or a comma between any two operands.

 (5) If the last character of the current input line is a minus sign

 "-", the next input line will be taken as a continuation of the

 current line. The first character of the next line replaces the

 continuation character. There is no limit to the number of

 continuation lines, however, the total number of characters in a

 command line may not exceed 256. Note: For batch use, the

 continuation character must be punched in column 80, since all

 80 columns of a card are read.

 212 The Object-File Editor

 MTS 5: System Services

 May 1983

 (6) Any command or command modifier may be abbreviated by entering
 only an initial substring, which is underscored in each command
 or command modifier description.
 (7) A command line beginning with an asterisk "*" is considered to

 be a comment and is not processed, other than possibly being

 echoed by the object-file editor.

 (8) A command line beginning with a dollar sign "$" is assumed to be

 an MTS command and is executed by a call to the system CMD

 subroutine.

 The following table summarizes the object-file editor commands and

 their applicable modifiers.

 Command Operand Applicable Modifiers _______ _______ ____________________

 ADD [FROM] FDname [slist] BREAK=, COMSAVE, DEFSAVE, ___ __ ___ ___

 GAPSIZE=, MISCSAVE, MSGSAVE, OPT, ___ ____ ___ ___

 ORL=, REPSAVE, SYMSAVE, TERSE, ___ ___ ___ ___

 VERBOSE, VERIFY ____ _

 CLEAR None VERIFY __ _

 CLOSE None None ___

 COMMENT comment None ___

 CREATE filename [lhs=rhs]... LIBRARY, SLOTS=, VERIFY ___ ___ _____ _

 CSECT {section|entry} VERIFY __ _

 DELETE slist DIRECTORY, TERSE, VERBOSE, VERIFY __ ___ ___ ____ _

 DISPLAY object ... LENGTH=, TYPE= _ _ _

 EDIT filename DLR, DMD, EMPTY, LIBRARY, SLOTS= __ ___ ___ ___ ___ _____

 EMPTY filename [{OK|O.K.|!}] LIBRARY, SLOTS=, VERIFY ___ ___ _____ _

 EXPLAIN [ON FDname] [item]... EMPTY __ ___

 HELP None None _

 INCLUDE [FROM] FDname [slist] BREAK=, COMSAVE, DEFSAVE, _ __ ___ ___

 GAPSIZE=, MISCSAVE, MSGSAVE, OPT, ___ ____ ___ ___

 ORL=, REPSAVE, SYMSAVE, TERSE, ___ ___ ___ ___

 VERBOSE, VERIFY ____ _

 LIST [ON FDname] [object [[FOR] slist]] _

 EMPTY, TERSE, VERBOSE ___ ___ ____

 MAP [ON FDname] [slist] EMPTY, FULL, SORT= _ ___ ____ ____

 MCMD MTS command None __

 MODIFY object value COMGEN, LENGTH=, REPGEN, TYPE=, __ ___ _ ___ _

 VERIFY _

 MTS [optional command] None __

 PATCH module-name VERIFY __ _

 PUNCH [ON] FDname [slist] COMSAVE, DEFSAVE, EMPTY, GAPSIZE=, _ ___ ___ ___ ___

 MISCSAVE, MSGSAVE, OPT, ORL=, ____ ___ ___ ___

 REPSAVE, SYMSAVE, TERSE, VERBOSE, ___ ___ ___ ____

 VERIFY _

 RENAME old1[=]new1[[,]old2[=]new2]]... _

 OM=, VERIFY __ _

 REPLACE [FROM] FDname [slist] COMSAVE, DEFSAVE, GAPSIZE=, ___ ___ ___ ___

 MISCSAVE, MSGSAVE, OPT, ORL=, ____ ___ ___ ___

 REPSAVE, SYMSAVE, TERSE, VERBOSE, ___ ___ ___ ____

 The Object-File Editor 213

 MTS 5: System Services

 May 1983

 VERIFY _
 RETURN None None ___
 SCAN [{section|address1...address2} value] __
 LENGTH=, TYPE= _ _
 SET lhs=rhs [[,] lhs=rhs]... None _
 SNIFF None None __
 STOP None None __
 UPDATE [FROM] FDname [slist] BREAK=, COMSAVE, DEFSAVE, ___ __ ___ ___
 GAPSIZE=, MISCSAVE, MSGSAVE, OPT, ___ ____ ___ ___
 ORL=, REPSAVE, SYMSAVE, TERSE, ___ ___ ___ ___
 VERBOSE, VERIFY ____ _
 XREF [ON FDname] [slist] DEF, EMPTY, UNDEF _ _ ___ ___

 214 The Object-File Editor

 MTS 5: System Services

 May 1983

 Object-File Editor Commands ___________________________

 Command: ADD [FROM] FDname [slist] _______ ___

 Modifiers: BREAK, COMSAVE, DEFSAVE, GAPSIZE, MISCSAVE, MSGSAVE, OPT,
 ORL, REPSAVE, SYMSAVE, TERSE, VERBOSE, VERIFY

 Example: ADD FILE1+FILE2(100,199) ALLBUT QQ

 Explanation: Modules are added to the edit file from the specified
 file or devices. Input is terminated by an end-of-file
 or by the first LDT record encountered.

 Command: CLEAR _______ __

 Modifiers: VERIFY

 Example: CLEAR@NV

 Explanation: The CLEAR command completely clears out the current
 internal representation of the edited file. The object-
 file editor will then rebuild its internal representation
 by reading the edit file. If the edit file contains a
 DIR record, it will be reconstructed to ensure its
 validity. This command is necessary whenever the user
 changes the edit file without letting the object-file
 editor know (via MTS, MCMD or $ commands; in particular,

 via an MTS $RENUMBER command).

 Command: CLOSE _______ ___

 Modifiers: None

 Example: CLOSE

 Explanation: The CLOSE command causes the directory in the library

 file to be updated. Normally the directory is not

 updated (rewritten) until the program terminates or

 before a call to MTS or MTSCMD. The CLOSE command has no

 effect if the edit file is not a library or does not

 contain a special directory (via the DIRECTORY

 parameter).

 The Object-File Editor 215

 MTS 5: System Services

 May 1983

 Command: COMMENT comment _______ ___

 Modifiers: None

 Example: COMMENT - Now we delete some symbols.

 Explanation: The COMMENT command is useful for documenting sequences
 of commands given to the object-file editor. Note that
 command lines beginning with an asterisk "*" are also

 treated as comments.

 Command: CREATE filename [lhs=rhs]... _______ ___

 Modifiers: LIBRARY, SLOTS, VERIFY

 Example: CREATE PROG.O SIZE=100P

 Explanaton: The CREATE command creates an edit file. The filename is

 acquired and becomes the active edit file. The optional

 keywords are:

 SIZE=nP

 MAXSIZE=nP

 TYPE={LINE|SEQ}

 VOLUME=volname

 The keywords are the same as those for the MTS command

 $CREATE except that the SIZE and MAXSIZE are expressed in

 terms of pages.

 If the LIBRARY modifier is specified, a library file is

 created. In this case, a DIR loader record is generated

 at the beginning of the file before any modules are

 added. The SLOTS modifier should be specified for a

 sequential file if the library is to contain more than

 128 entry points (the default). The number of slots must

 be between 1 and 2730. If SLOTS is specified, the

 LIBRARY modifier is assumed.

 Although sequential files may be created and edited, it

 is recommended that a line file be used since deletion

 and replacement operations are much more efficient.

 216 The Object-File Editor

 MTS 5: System Services

 May 1983

 Command: CSECT {section|entry} _______ __

 Modifiers: VERIFY

 Example: CSECT MAIN

 Explanation: The control section specified by "section" or containing

 the entry point "entry" is made the active section. This

 command should be given before the first DISPLAY, MODIFY,

 or SCAN command.

 Command: DELETE slist _______ __

 Modifiers: DIRECTORY, TERSE, VERBOSE, VERIFY

 Example: DELETE SUBRA, SUBRB

 Explanation: Through the DELETE command, the modules implied by the

 symbols in "slist" are deleted from the edited file.

 This allows the replacement of module definitions.

 The DIRECTORY modifier may be specified to remove only

 the specified entry points from the DIR record directory,

 if the edit file is a loader library file. If a module

 has all of its entry points deleted from the directory,

 the module is deleted from the edit file.

 The DELETE command may be used to delete modules from

 either line or sequential-type edit files. However,

 since a sequential file must be rewritten from the point

 of change to effect the deletion, it could be substan-

 tially more expensive to delete modules from a sequential

 edit file than a line file. For this reason, line files

 are preferred for editing.

 Command: DISPLAY object ... _______ _

 Modifiers: LENGTH=, TYPE=

 Operand

 Modifiers: LENGTH=, TYPE=

 Example: DIS@T=I 0...20 INLOOP+4 0AC@T=XL32

 Explanation: The DISPLAY command allows object-module text to be

 displayed in a manner similar to the equivalent debug

 mode command. "object" is either a single address

 parameter (e.g., 100) or a block address parameter (e.g.,

 100...1F0). An address parameter may be either a rela-

 tive hexadecimal address or a symbol with an optional

 The Object-File Editor 217

 MTS 5: System Services

 May 1983

 signed hexadecimal displacement (e.g., INLOOP+4). Only
 symbols defined in the external symbol dictionary (i.e.,
 from an ESD card) are recognized; SYM records are not
 interpreted. A hexadecimal address must begin with a
 decimal digit (0-9) only if it is also the name of a
 defined symbol, e.g., AC is first interpreted as a symbol
 name. If no symbol of that name is defined, then it is
 considered as a hexadecimal number. However, 0AC is
 always treated as a hexadecimal address. Each address
 parameter must specify a valid relative address within
 the currently active control section, as specified via
 the CSECT command.

 Each "object" is converted according to the type and

 length specified and printed along with a one-character

 code that indicates the parameter type. The type codes

 are defined with the description of the TYPE modifier.

 Command: EDIT filename _______ __

 Modifiers: DLR, DMD, EMPTY, LIBRARY, SLOTS

 Example: EDIT PROG.O

 Explanation: The current edited file is set to filename. This command

 must be specified if unit 0 is not initially assigned.

 The object-file editor reads the edit file "filename" and

 builds an internal directory of the location of each

 object module in the file. Currently, "filename" must be

 a single file with no explicit concatenation or explicit

 line-number increment specified. The object-file editor

 cannot delete or replace modules in a sequential file

 which is not a loader library file.

 The EMPTY modifier may be specified to request the

 object-file editor to empty "filename" before setting it

 to the current edited file. The DLR modifier may be

 specified to request the object-file editor to delete any

 library (LIB or DIR) control records in the edit file

 "filename". The DMD modifier may be specified to delete

 all multiply-defined object modules from the edit file.

 If the file is empty, the LIBRARY modifier may be

 specified to request that a loader library file be

 generated. The SLOTS modifier should be specified if a

 sequential file loader library is to contain more than

 128 entry points (see the CREATE command above). If the

 edit file is not empty, the object-file editor automati-

 cally will determine whether or not the file is a loader

 library file. Currently, only DIR-type loader library

 files may be edited.

 218 The Object-File Editor

 MTS 5: System Services

 May 1983

 Command: EMPTY filename [{OK|O.K.|!}] _______ ___

 Modifiers: LIBRARY, SLOTS, VERIFY

 Example: EMPTY FILE.O

 Explanation: The specified filename is emptied and then becomes the

 current edit file. If the user is at a terminal,

 confirmation is requested before a permanent file is

 emptied. Confirmation is not requested for temporary

 files. The command may be confirmed by the response

 "OK", "O.K.", or "!". The confirmation may be given as

 the second parameter of the command.

 Note: This command is the same as the EDIT command with the

 @EMPTY modifier specified.

 Command: EXPLAIN [ON FDname] [item]... _______ __

 Modifiers: EMPTY

 Example: EXPLAIN @DMD, COMMANDS

 Explanation: The EXPLAIN command prints an explanation of the speci-

 fied items on SPRINT or on FDname if specified. The

 following items can be explained:

 $, *, ?, ADD, CLEAR, CLOSE, commands, COMMENT,

 continuations, CREATE, CSECT, DELETE, description,

 DIRECTORY, DISPLAY, EDIT, EMPTY, everything, exam-

 ple, EXPLAIN, FILL, HELP, INCLUDE, LIST, MAP, MCMD,

 modifiers, MODIFY, MTS, objutil, parameters, PATCH,

 PUNCH, QUIT, RENAME, REPLACE, RETURN, SCAN, SET,

 slist, SNIFF, STOP, syntax, UPDATE, XREF, @BREAK,

 @COMGEN, @COMSAVE, @DEF, @DEFSAVE, @DLR, @DMD, @EMP-

 TY, @FULL, @GAPSIZE, @LENGTH, @LIBRARY, @MISCSAVE,

 @MSGSAVE, @OPT, @OPTIMIZE, @ORL, @REPGEN, @REPSAVE,

 @SLOTS, @SYMSAVE, @TERSE, @TYPE, @UNDEF, @VERBOSE,

 @VERIFY.

 Items listed in lowercase are generic and produce a

 general explanation; items listed in uppercase refer to a

 particular command, modifier, or parameter and produce a

 specific explanation. The EMPTY modifier may be speci-

 fied to empty the output file first.

 The Object-File Editor 219

 MTS 5: System Services

 May 1983

 Command: HELP _______ _

 Modifiers: None

 Example: HELP

 Explanation: The HELP command prints a list of all valid object-file
 editor commands.

 Command: INCLUDE [FROM] FDname [slist] _______ _

 Modifiers: BREAK, COMSAVE, DEFSAVE, GAPSIZE, MISCSAVE, MSGSAVE, OPT,
 ORL, REPSAVE, SYMSAVE, TERSE, VERBOSE, VERIFY

 Example: INCLUDE FILE1+FILE2(100,199) ALLBUT QQ

 Explanation: Modules are added to the edit file from the specified
 file or devices. Input is terminated by an end-of-file
 or by the first LDT record encountered.

 Note: This is a synonym of the ADD command.

 Command: LIST [ON FDname] [object [[FOR] slist]] _______ _

 Modifiers: EMPTY, TERSE, VERBOSE

 Example: LIST ON *PRINT*

 Explanation: The LIST command allows the user to obtain information
 about the object modules currently in the edit file. The
 items of information about the modules specified by
 "slist" are specified by "object", where "object" may be

 any one of the following items:

 OMS - list all module names with their corre- __

 sponding beginning line numbers or

 sequential pointers. If "slist" is

 given, then the ending line number and

 number of lines of each specified module

 is also listed.

 ENTRYS - list all defined symbols (types SD, LD, __

 LR).

 LDS - list all type LD entry point symbols. __

 LRS - list all type LR entry point symbols. __

 CSECTS - list all control-section names. __

 SDS - list all control-section names (same as __

 above).

 PCS - list modules containing private control __

 sections.

 PRS - list all pseudoregister definitions. __

 ERS - list all external references. __

 220 The Object-File Editor

 MTS 5: System Services

 May 1983

 WXS - list all weak external references. __
 COMMONS - list all common definitions. _____
 CMS - list all common definitions (same as __
 above).
 GENINFO - list END record generation information. ___
 MISC - list all miscellaneous records (COM, LCS, ___
 RIP, etc.).
 RLDS - list the relocation dictionary (RLD) for ___
 the specified modules. The list format
 is similar to that of the program
 *OBJLIST.
 ENDJUNK - list records at the end of the edit file. ___
 COMMENTS - list all COM (comment) records. ___
 REPS - list all REP (replace) records. ___
 PATCHES - list all REP records (same as above). ___
 MSGS - list all MSG (message) records. ___
 OPTS - list all OPT (options) records. ___
 ALIS - list all ALI (alias) records. ___
 LCS - list all LCS (low-core symbol) records. ___
 LDTS - list all LDT (load terminate) records. ___
 RIPS - list all RIP (reference if present) ___
 records.
 DEFS - list all DEF (define) records. ___
 NCAS - list all NCA (no care) records. ___
 ENTS - list all ENT (entry) records. ____
 MDLS - list all MDL (multiple definition load- ___
 ing) records.
 DUPLICATES - list all multiply-defined entry points. ___
 URSYM - list all unreferenced symbols, i.e., all __
 defined symbols not referenced by any
 type ER (external reference) symbols.
 OBJSCAN - list an edited account of the contents of ___
 each specified object module. The list
 format is similar to that of the program
 *OBJSCAN.
 REFERENCES - list the names of all object modules ___
 containing an external symbol dictionary
 (ESD) reference to the specified symbols.
 At least one symbol must be specified in
 the "slist"; the ALLBUT modifier is not

 allowed. This option is similar to the

 XREF command except that only selected

 symbols are cross-referenced.

 If "slist" is not specified, the "object" information is

 listed for all relevant modules. If "object" is omitted,

 OM type information is printed for all object modules.

 If "slist" is specified, "object" or "FOR" must also be

 specified. LIST information is written to SPRINT unless

 "ON FDname" is given, in which case it is written to the

 specified file or device. The EMPTY modifier may be

 specified to empty the output file before printing the

 list.

 The Object-File Editor 221

 MTS 5: System Services

 May 1983

 Command: MAP [ON FDname] [slist] _______ _

 Modifiers: EMPTY, FULL, SORT=

 Example: MAP OBJSCAN

 Explanation: The external symbol dictionaries of all modules specified
 are printed out in symbolic form. If the FULL modifier
 is not specified, only control sections, label defini-
 tions, and common definitions are printed. If the FULL
 modifier is given, all information, including external
 references and pseudoregisters, is printed. Unless the
 SORT=NAME modifer is specified, the map output for each
 object module is given by order of occurrence of the
 symbols on the ESD records. The MAP listing is printed
 on the SPRINT output unless "ON FDname" is given. The

 EMPTY modifier may be specified to empty the output file

 before printing the map.

 Command: MCMD MTS command _______ __

 Modifiers: None

 Example: MCMD EMPTY OBJECT OK

 Explanation: The MTS command specified is executed by MTS, and control

 is returned to the object-file editor. Alternatively,

 the user may issue the MTS command directly in object-

 file editor command mode by prefixing it with a dollar

 sign, e.g., $EMPTY -OBJ.

 Note: The object-file editor will not know if the user changes

 the file being edited.

 Command: MODIFY object value _______ __

 Modifiers: COMGEN, LENGTH=, REPGEN, TYPE=, VERIFY

 Operand

 Modifiers: LENGTH=, TYPE=

 Example: MOD MAIN I’STM ECD00C,LR CF’

 Explanation: The MODIFY command allows object-module text to be

 altered in a manner similar to the equivalent debug mode

 command. The first parameter specifies the locations

 that are to be modified and the second parameter speci-

 fies the values to be used for the modification.

 "object" is a single address parameter, i.e., either a

 valid relative hexadecimal address or a symbol with

 222 The Object-File Editor

 MTS 5: System Services

 May 1983

 optional signed hexadecimal offset, which specifies the
 location to be modified.

 "value" specifies a list of one or more constants

 delimited by commas and enclosed in primes. A duplica-

 tion factor and/or type code may optionally prefix the

 "value". The duplication factor must be an unsigned

 decimal integer, and the type code may be any of the code

 types listed in the description of the TYPE modifier.

 Thus, the modification values may be given as an assem-

 blerlike constant list (e.g., 18F’0’, CL8’SCARDS’, E’1.0,

 2.0,3.0’, etc.). No modifiers may be appended to "value"

 itself. The total length of the input constant "value"

 may not exceed 256 bytes.

 The REPGEN modifier may be specified to cause the MODIFY

 command to generate REP (replace) records to effect the

 text modification instead of actually changing the appro-

 priate TXT or CSI record (the default). The object-file

 editor will prompt the user for an optional comment to be

 inserted in the comment field of the REP card as follows:

 Enter comment for REP card:

 ?

 If no comment field is desired, the user may enter a null

 line in response to the prompt. The prompt may be

 suppressed by specifying the NOCOMGEN modifier and the

 REP card generated will have a null comment field. By

 default, if REPGEN is specified, COMGEN is assumed.

 These modifiers may also be set globally via the SET

 REPGEN=ON and SET COMGEN=ON commands. Currently, the

 REPGEN and COMGEN modifiers are only legal for edit files

 that are line files.

 Verification of the modification is given by printing

 both the old value and the new value of the location

 modified. Verification may be suppressed by appending

 the modifier NV to the command, or by globally disabling

 verification via the SET VERIFY=OFF command.

 Command: MTS [MTS command] _______ __

 Modifiers: None

 Example: MTS EMPTY OBJECT OK

 MTS

 Explanation: If the MTS command is specified, it is executed by MTS,

 and the object-file editor may be reentered with an MTS

 $RESTART command. Alternatively, the user may issue just

 the MTS command. Control then reverts to MTS command

 The Object-File Editor 223

 MTS 5: System Services

 May 1983

 mode in such a way that the object-file editor may be
 reentered with a $RESTART command.

 Note: The object-file editor will not know if the user changes

 the file being edited.

 Command: PATCH module-name _______ __

 Modifiers: VERIFY

 Example: PATCH SUBR

 Explanation: The PATCH command allows object-module text to be patched

 by inserting REP (replace) records in the object module

 specified by "module-name". The object-file editor will

 prompt the user for the patches as follows:

 Enter address text <comment> :

 ?

 Each input line will generate one REP card. Input is

 terminated by a null line or end-of-file. If the user

 enters an input line containing only the single character

 "D", then the previously entered patch record will be

 deleted. If @VERIFY if specified (the default), the

 object-file editor will print each REP card to be

 inserted and prompt the user for confirmation before

 inserting the REP cards into the appropriate module.

 Patches may be entered in free format, i.e., leading

 zeros need not be supplied. However, an even number of

 hexadecimal digits must be specified in the text field.

 Commas may be used to delimit the text for readability,

 but only on byte boundaries. The comment field is

 optional but if given, it must be separated from the text

 field by one or more blanks.

 Note that the ESDID field of the REP card is not ___

 specified by the user. The object-file editor will

 determine this from the patch address. If the patch

 address is not unique within the module, then the

 containing control-section name must be specified on the

 PATCH command to generate the proper ESDID.

 The LIST command

 LIST REPS [[FOR] slist] ___

 may be used to list the REP records in a specific module

 or in the entire file if no "slist" is given. Currently,

 it is only possible to PATCH modules in a line file.

 224 The Object-File Editor

 MTS 5: System Services

 May 1983

 Command: PUNCH [ON] FDname [slist] _______ _

 Modifiers: COMSAVE, DEFSAVE, EMPTY, GAPSIZE, MISCSAV, MSGSAVE, OPT,
 ORL, REPSAVE, SYMSAVE, TERSE, VERBOSE, VERIFY

 Example: PUNCH ON -X ONLY SORT

 Explanation: If no "slist" is given, all modules of the current edit

 file are punched on FDname. Otherwise, the specified

 modules are punched. In addition, if the EMPTY modifier

 is specified, the FDname is first emptied before

 punching.

 Command: RENAME old1[=]new1 [[,]old2[=]new2] ... _______ _

 Modifiers: OM=, VERIFY

 Example: RENAME OBJECT=OBJUTIL

 Explanation: The RENAME command causes one or more specified symbols

 to be renamed. Renaming is done for every occurrence of _____

 each specified symbol; all references as well as all __________

 definitions are renamed, including the symbols on ALI,

 DEF, ENT, LCS, NCA, and RIP records. Symbols on SYM

 records are not renamed. The RENAME command is useful

 for correcting misspelled names or for creating names

 that reveal content better than the symbols originally

 chosen. Equal signs may be omitted.

 The renaming of a symbol may be restricted to a single

 object module by specifying the OM=name modifier, where

 "name" is any defined symbol in the desired object

 module. In this case, only those occurrences of the

 specified symbol within object module "name" will be

 renamed.

 A private control section may be given a nonblank name by

 specifying its assigned internal name (of the form

 "PC#n") as the "old" symbol. The external symbol dic-

 tionary (ESD) type of the symbol will be changed from PC

 (private control) to SD (section definition).

 Command: REPLACE [FROM] FDname [slist] _______ ___

 Modifiers: COMSAVE, DEFSAVE, GAPSIZE, MSGSAVE, OPT, ORL, REPSAVE,

 SYMSAVE, TERSE, VERBOSE, VERIFY

 Example: REPLACE FROM -LOAD

 Explanation: The REPLACE command reads potential replacement modules

 from "FDname" and selectively replaces those modules in

 The Object-File Editor 225

 MTS 5: System Services

 May 1983

 the edit file according to "slist". Any additional

 modules in "FDname" are ignored. The REPLACE command can

 be thought of as a convenient way of performing the

 following operations:

 DELETE slist

 INCLUDE FROM FDname slist

 with the additional feature that the original ordering of

 the modules in the edit file is preserved if possible.

 Note that the UPDATE command performs a very similar

 function.

 Command: RETURN _______ ___

 Modifiers: None

 Example: RETURN

 Explanation: Control reverts to MTS command mode in such a way that

 the object-file editor may be reentered via the $RESTART

 command. The RETURN command is identical to the MTS

 command with no operands specified.

 Command: SCAN [{section|address1...address2} value] _______ __

 Modifiers: LENGTH=, TYPE=

 Operand

 Modifiers: LENGTH=, TYPE=

 Example: SCAN 0...3FF I’SR 00’

 Explanation: If "section" is specified, the object-file editor

 searches through the text of the named section in an

 attempt to find the value specified. If "address1...

 address2" is specified, then "address1" and "address2"

 are the lower and upper bounds of the text area to be

 searched. The area to be searched must be within the

 currently active control section as specified via the

 CSECT command.

 "value" must be enclosed in primes and may be optionally

 prefixed by a type code (see the description of the TYPE

 modifier for a list of the valid type codes). No

 duplication factor is allowed on "value", nor may modi-

 fiers be appended to "value" itself. The total length of

 the input constant "value" may not exceed 256 bytes.

 226 The Object-File Editor

 MTS 5: System Services

 May 1983

 If no parameter is specified, the search resumes with the
 first location beyond the previous match from the previ-
 ous SCAN command.

 The search for the specified value is performed with
 respect to the appropriate boundary alignment of the
 value specified, e.g., instructions are scanned for on
 halfword boundaries, character constants on byte boun-
 daries, etc.

 Command: SET lhs=rhs[[,]lhs=rhs]... _______ _

 Modifiers: None

 Example: SET COMSAVE=ON SYMSAVE=OFF

 Explanation: Most of the items which can be specified in a SET command
 are also available as modifiers to the individual com-
 mands. The SET command simply changes the global default
 value for such modifiers so that the same modifier values
 need not be given repeatedly. The available keywords
 are:

 BREAK=n Defaults to 1.000 __
 COMGEN={ON|OFF} Defaults to setting of REPGEN ____
 COMSAVE={ON|OFF} Defaults to ON ___
 DEFSAVE={ON|OFF} Defaults to OFF ___
 DIRECTORY={ON|OFF} Defaults to OFF ___
 DLR={ON|OFF} Defaults to OFF ___
 DMD={ON|OFF} Defaults to OFF ___
 ECHO={ON|OFF} (see below) ____
 ENDJUNK=name Defaults to ENDJUNK ___
 FILL=xx Defaults to 81 ____
 GAPSIZE=nnn Defaults to min(ORL/2,256) ___
 LENGTH=n Defaults to 4 _
 LIBRARY={ON|OFF} Defaults to OFF ___
 MODCHAR=character Defaults to @ ___
 MISCSAVE={ON|OFF} Defaults to ON ____
 MSGSAVE={ON|OFF} Defaults to ON ___
 OPTIMIZE={ON|OFF} Defaults to ON ___
 ORL=nnn Defaults to device maximum ___
 QUIT={ON|OFF} (see below) ____
 REPGEN={ON|OFF} Defaults to OFF ___
 REPSAVE={ON|OFF} Defaults to OFF ____
 SLOTS=n Defaults to 128 for sequential _____
 files, minimum for line files
 SYMSAVE={ON|OFF} Defaults to ON ___
 TERSE={ON|OFF} Defaults to the setting of the ___
 corresponding MTS TERSE option
 TYPE=code Default to X _
 VERBOSE={ON|OFF} Defaults to the setting of the ____
 corresponding MTS VERBOSE option

 The Object-File Editor 227

 MTS 5: System Services

 May 1983

 (antonym of TERSE)
 VERIFY={ON|OFF} Defaults to ON _

 Note that most of these items may be specified as
 execution parameters in the PAR field of the $RUN command

 (see the description of the parameters available at the

 beginning of this section).

 If ECHO is turned ON, object-file editor commands are

 ECHOed on SPRINT. ECHO defaults to ON unless the

 commands are being entered directly from a terminal.

 If the object-file editor encounters any errors when QUIT

 is turned ON in batch mode, the user is signed off. QUIT

 defaults OFF for batch and is always OFF for conversa-

 tional use.

 The special loader records (LCS, RIP, LDT, etc.) at the

 end of the edit file are considered as part of a special

 object module named ENDJUNK. This name will appear in

 the object-file editor command verification and can be

 used to specify this special module. If the name ENDJUNK

 conflicts with another object module, it may be changed

 via the SET ENDJUNK=name command, where "name" is from 1

 to 8 characters.

 Command: SNIFF _______ __

 Modifiers: None

 Example: SNIFF

 Explanation: This command lists the filename, its file type, the

 number of modules, the number of entries, and the number

 of object records. If the edit file is a sequential

 library file, the number of free slots is listed.

 Command: STOP _______ __

 Modifiers: None

 Example: STOP

 Explanation: The object-file editor terminates processing. An end-of-

 file in the command stream also terminates the

 processing.

 228 The Object-File Editor

 MTS 5: System Services

 May 1983

 Command: UPDATE [FROM] FDname [slist] _______ ___

 Modifiers: BREAK, COMSAVE, DEFSAVE, GAPSIZE, MSGSAVE, OPT, ORL,
 REPSAVE, SYMSAVE, TERSE, VERBOSE, VERIFY

 Example: UPDATE FROM -LOAD

 Explanation: The UPDATE command reads potential replacement modules
 from "FDname" and selectively replaces those modules in

 the edit file according to "slist". Any additional

 modules in "FDname" are also included. The UPDATE ________

 command can be thought of as a convenient way of

 performing the following operations:

 DELETE slist

 INCLUDE FROM FDname

 with the additional feature that the original ordering of

 the modules in the edit file is preserved if possible.

 Note that the REPLACE command performs a very similar

 function.

 Command: XREF [ON FDname] [slist] _______ _

 Modifiers: DEF, EMPTY, UNDEF

 Example: XREF

 Explanation: For each module, all external symbols "referenced" from

 that module are printed. A "reference" may refer to

 another control section, a common section, a PL/I pseudo-

 register or an entry point in another control section.

 The cross-reference listing is printed out in two forms:

 one showing modules with all their references, and the

 other showing references with all modules referenced. If

 "slist" is specified, only modules in "slist" will have

 their references shown. XREF output is written on SPRINT

 unless "ON FDname" is specified, in which case it is

 written on the specified file or device. The EMPTY

 modifier may be specified to empty the output file before

 printing the cross reference. If the DEF modifier is

 specified, then only those external references of a

 module that have a definition within the edit file are

 included in the cross-reference. This modifier is useful

 for determining which subroutines were "called" by a

 particular module in a large, multiple-module edit file.

 If the UNDEF modifier is specified, then only those

 external references of a module that do not have a

 definition within the edit file are included in the

 cross-reference.

 The Object-File Editor 229

 MTS 5: System Services

 May 1983

 Command Modifiers _________________

 The modifiers are prefixed by "@" or MODCHAR as set by the SET

 MODCHAR command (see the SET command) and appended to the commands. A

 modifier may be negated by prefixing it with "¬", "-", "NO", or "N".

 Modifier: BREAK=n ________ __

 Example: ADD@BREAK=100 OBJFILE

 Explanation: The BREAK modifier may be appended to the ADD, INCLUDE,

 or UPDATE commands to set the beginning line number of

 each new module added to the edit file to the next

 highest multiple of "n". The default is 1.000. This

 modifier has no effect for sequential files.

 Modifier: COMGEN ________ ___

 Example: MODIFY@REPGEN@¬COMGEN 240 C’WXYZ’

 Explanation: The COMGEN modifier may be applied to the MODIFY command

 to control the prompt issued by the object-file editor

 for the comment field to be appended to the REP card

 generated by the REPGEN modifier. By default, if REPGEN

 is specified, then COMGEN is assumed. NOCOMGEN sup-

 presses the prompt and the REP card generated will have a

 null comment field. COMGEN only has effect if the REPGEN

 modifier is specified.

 Modifier: COMSAVE ________ ___

 Example: ADD@COM MYFILE

 Explanation: The COMSAVE modifier causes COM records to be preserved

 in ADD, INCLUDE, PUNCH, REPLACE, and UPDATE commands. By

 default, COM records are preserved.

 Modifier: DEF ________ ___

 Example: XREF@DEF

 Explanation: The DEF modifier may be applied to the XREF command to

 request the object-file editor to include in the cross-

 reference only those external references of a module that

 have a definition within the edit file. This modifier is

 useful for determining which modules "call" which subrou-

 tines in a large, multiple-module edit file.

 230 The Object-File Editor

 MTS 5: System Services

 May 1983

 Modifier: DEFSAVE ________ ___

 Example: INC@DEFSAVE -LOAD

 Explanation: The DEFSAVE modifier may be applied to the ADD, INCLUDE,
 PUNCH, REPLACE, and UPDATE commands to request the
 object-file editor to preserve nonabsolute DEF records
 during the object-module optimization process. By de-
 fault, these DEF records are incorporated into the
 external symbol dictionary of the appropriate object
 modules, corresponding to @¬DEFSAVE.

 Modifier: DIRECTORY ________ ___

 Example: DELETE@DIR ONLY ENTB

 Explanation: The DIRECTORY modifier may be appended to the DELETE
 command to specify that the operands of the command are
 to be removed only from the DIR record directory of a
 loader library, but not from the library file itself.

 Modifier: DLR ________ ___

 Example: EDIT@DLR PGM.O

 Explanation: The DLR modifier may be applied to the EDIT command to
 request that the object-file editor delete any library
 (LIB or DIR) control records in the file to be edited.
 The default is @¬DLR.

 Modifier: DMD ________ ___

 Example: EDIT@DMD PGM.O

 Explanation: The DMD modifier may be applied to the EDIT command to
 request the object-file editor to delete all object
 modules which are multiple definitions from the file to
 be edited. The default is @¬DMD.

 Modifier: EMPTY ________ ___

 Example: PUNCH@EMPTY ON SORTFILE ONLY SORT

 Explanation: The EMPTY modifier may be applied to the EDIT, EXPLAIN,
 LIST, MAP, PUNCH, and XREF commands to request that the
 output file is to be emptied before output from the
 object-file editor is written to it.

 The Object-File Editor 231

 MTS 5: System Services

 May 1983

 Modifier: FULL ________ _

 Example: MAP@FULL

 Explanation: The FULL modifier may be applied to the MAP command to
 specify that the entire external symbol dictionary is to
 be printed.

 Modifier: GAPSIZE=n ________ ___

 Example: ADD@GAPSIZE=400 SEQFILE

 Explanation: When executing commands such as ADD, INCLUDE, PUNCH,
 REPLACE, and UPDATE, the object-file editor will fill in
 holes of size <= GAPSIZE (for which no text was received)
 with a fill character, which defaults to X’81’. The fill
 character may be user-specified in the SET command with
 two hexadecimal digits, e.g., SET FILL=00. Each hole of
 size > GAPSIZE forces generation of a new TXT/CSI output
 record. By filling in small gaps, the number of output
 records can often be greatly reduced. GAPSIZE defaults
 to ORL/2 or 256, whichever is smaller.

 Modifier: LENGTH=n ________ _

 Example: DISPLAY@LEN=16 MAIN+10

 Explanation: The LENGTH modifier may be applied to the DISPLAY,
 MODIFY, and SCAN commands (or command operands) to set
 the length attribute to "n", where "n" is an unsigned

 decimal integer. The default is 4.

 Modifier: LIBRARY ________ ___

 Example: CREATE@LIB PROGLIB

 Explanation: The LIBRARY modifier may be appended to the CREATE, EDIT,

 or EMPTY commands to request that a loader library be

 generated in the empty edit file. The default is _____

 @¬LIBRARY. This modifier has no effect if the edit file

 is not empty; in this case, the object-file editor

 automatically will determine whether or not the file is a

 loader library.

 232 The Object-File Editor

 MTS 5: System Services

 May 1983

 Modifier: MISCSAVE ________ ____

 Example: ADD@-MISC *LIBRARY ONLY DTB, BTD

 Explanation: The MISCSAVE modifier causes miscellaneous (ALI, DEF,
 LCS, NCA, OPT, and RIP) records to be preserved in ADD,
 INCLUDE, PUNCH, REPLACE, and UPDATE commands. By de-
 fault, miscellaneous records are preserved.

 Modifier: MSGSAVE ________ ___

 Example: ADD@-MSG *USERS

 Explanation: The MSGSAVE modifier causes MSG (message) records to be
 preserved in ADD, INCLUDE, PUNCH, REPLACE, and UPDATE
 commands. By default, MSG records are preserved.

 Modifier: OPTIMIZE ________ ___

 Example: REPLACE@¬OPT FILE ALLBUT IHENTRY

 Explanation: Object modules are normally optimized according to ORL,
 GAPSIZE, and FILL. No optimization forces the object-
 file editor to copy object modules with no conversion.
 By default, the object modules are optimized. Object
 modules are optimized if any of the options FILL,
 GAPSIZE, or ORL are specified even if NOOPTIMIZE is
 specified.

 Modifier: ORL=n ________ ___

 Example: PUNCH@ORL=80 LINEFILE ONLY LAND

 Explanation: ORL stands for output record length and defines the
 maximum record size the object-file editor will write for
 ADD, INCLUDE, PUNCH, REPLACE, and UPDATE commands. The
 default for ORL is the file or device maximum.

 Modifier: REPGEN ________ ___

 Example: MODIFY@REPGEN 97B4 E’3.14159’

 Explanation: The REPGEN modifier may be applied to the MODIFY command
 to request the object-file editor to generate REP
 (replace) records to effect the text modification instead
 of actually changing the appropriate TXT or CSI record.
 This allows a record of the text change to be kept as a
 separate line in the edit file. If COMGEN is in effect
 (defaults to ON if REPGEN is specified), the object-file

 The Object-File Editor 233

 MTS 5: System Services

 May 1983

 editor will prompt for an optional comment to be inserted
 into the comment field of the generated REP record. The
 default is @¬REPGEN, i.e., do not generate REP records.
 Currently, the REPGEN modifier is only legal for edit
 files that are line files.

 Modifier: REPSAVE ________ ____

 Example: PUNCH@REPSAVE TEMPOBJ

 Explanation: The REPSAVE modifier may be applied to the ADD, INCLUDE,
 PUNCH, REPLACE, and UPDATE commands to request the
 object-file editor to preserve REP records during the
 object-module optimization process. By default, REP
 records are absorbed into the control-section text of the
 appropriate object modules, corresponding to @¬REPSAVE.

 Modifier: SLOTS=n ________ _____

 Example: EMPTY@SLOTS=200 SEQLIB

 Explanation: The SLOTS modifier may be appended to the CREATE, EDIT,
 and EMPTY commands to specify the number of slots (one
 slot per entry point) to be allocated for the DIR
 directory record of the loader library. The edit file
 must be empty if the EDIT command is given. The default
 is 128 for sequential files, or the minimum (the least
 possible number of slots) for line files only if the
 LIBRARY modifier or parameter is specified.

 Modifier: SORT=NAME ________ ____ ____

 Example: MAP@SORT=NAME MAIN

 Explanation: The SORT modifier permits sorting of MAP command output
 by name instead of by order of occurrence of the symbols
 on the ESD records.

 Modifier: SYMSAVE ________ ___

 Example: INCLUDE@SYM MYFILE

 Explanation: The SYMSAVE modifier causes SYM records to be preserved
 in ADD, INCLUDE, PUNCH, REPLACE, and UPDATE commands. By
 default, SYM records are preserved.

 234 The Object-File Editor

 MTS 5: System Services

 May 1983

 Modifier: TERSE ________ ___

 Example: REPLACE@TERSE FROM -LOAD

 Explanation: The TERSE modifier may be applied to some commands to
 abbreviate the information produced for verification.
 VERBOSE is an antonym of TERSE. The default is the
 setting of the MTS TERSE option.

 Modifier: TYPE=code[Ln] ________ _

 Example: DIS 2048@T=CL12

 Explanation: The TYPE modifier may be applied to the DISPLAY, MODIFY,
 and SCAN commands (or operands) to set the type attribute
 to "code", where "code" is any of the single-character

 type-codes defined below. The default is X.

 Code Type ____ ____

 B binary

 C character (EBCDIC)

 D floating-point (long)

 E floating-point (short)

 F fixed-point (fullword)

 H fixed-point (halfword)

 I machine instruction

 P packed decimal

 S S-type address constant (output only)

 X hexadecimal

 Y Y-type address constant (same as H)

 Z zoned decimal

 A length attribute "Ln", where "n" is an unsigned decimal

 integer, may be appended to the single-character "code"

 to change the default length used in conversion. The

 effect of this is identical to applying the LENGTH=n

 modifier.

 The type attributes supported are the same as the linkage

 editor except that the object-file editor does not

 recognize the address types A, V, and Q. See the

 subsection "Input Conversion" in the section "The Linkage

 Editor" in this volume for a description of the attri-

 butes listed above.

 The Object-File Editor 235

 MTS 5: System Services

 May 1983

 Modifier: UNDEF ________ ___

 Example: XREF@UNDEF

 Explanation: The UNDEF modifier may be applied to the XREF command to
 request the object-file editor to include in the cross-
 reference only those external references of a module that
 do not have a definition within the edit file. This
 action is the opposite of the DEF modifier.

 Modifier: VERBOSE ________ ____

 Example: REPLACE@VERBOSE FROM -LOAD

 Explanation: If TERSE has been turned on globally via SET TERSE=ON,
 then full information for the verification of a particu-
 lar command can be produced via the VERBOSE modifier.
 VERBOSE is the antonym of TERSE. The default is the
 setting of the MTS VERBOSE option. This modifier has no
 effect if verification is suppressed via the @¬VERIFY
 modifier or the command SET VERIFY=OFF.

 Modifier: VERIFY ________ _

 Example: ADD@V -LOAD

 Explanation: If verification has been turned off globally via SET
 VERIFY=OFF, then it can be enabled for a particular
 command via the VERIFY modifier.

 236 The Object-File Editor

 MTS 5: System Services

 May 1983

 OBJECT-FILE EDITOR EXAMPLE __________________________

 A sample terminal run is given below to illustrate several of the
 features of the object-file editor. In this example, user input is in
 lowercase while object-file editor output is in uppercase. Note also
 that the object-file editor uses an asterisk as the prompting character.

 #$run *objutil

 #EXECUTION BEGINS

 OBJUTIL VERSION(EP237) 12:53:25 09-27-77

 *comment - example #1 replaces two modules in an object file.

 *edit gom.o

 *replace from -load

 REPLACED:

 SCOPE DSCAN

 *sniff

 Line file "GOM.O" has 71 modules, 182 entry points and

 2277 lines.

 *list oms for scope, dscan

 SCOPE 12914.000 DSCAN 15330.000

 **

 *comment example #2 extracts a module from a library.

 **

 *create sort.o

 File "SORT.O" has been created.

 *add from *library only sort

 ADDED:

 *** WARNING: Input terminated by an LDT card.

 SORT SORT1 SORTEA

 *map

 SYMBOL TYPE ESID ADDRESS LENGTH AF

 Module: SORT Size = 002E78

 SORT SD 0001 000000 002E78

 SORT1 LD 000000 0001

 SORTEA LD 0029F0 0001

 **

 *comment: example #3 is a different way to do the same thing

 *comment: as in example #2.

 *edit *library

 *** WARNING: The edit file "*LIBRARY" cannot be used for output

 *sniff

 Sequential library file "*LIBRARY" has 54 modules, 141 entry

 points and 115 free slots.

 *list om sort

 SORT 0007004E

 *punch@empty on sort.o only sort

 PUNCHED:

 The Object-File Editor 237

 MTS 5: System Services

 May 1983

 SORT SORT1 SORTEA
 **
 *comment example #4 creates and generates a library file.

 *create@library sublib size=20p

 File "SUBLIB" has been created.

 *sniff

 *** There are no object modules in "SUBLIB"

 *add prog.o allbut main

 ADDED:

 READIN OUTPUT PASS1 PASS2

 *include sort.o+*lcs

 INCLUDED:

 SORT SORT1 SORTEA ENDJUNK

 *list

 READIN 3.000 OUTPUT 10.000

 PASS1 14.000 PASS2 18.000

 SORT 22.000 ENDJUNK 43.000

 *list endjunk

 ENDJUNK - LCS LCSYMBOL

 *sniff

 Line library file "-SUBLIB" has 5 modules, 7 entry points and

 43 lines.

 *

 *comment example #5 demonstrates editing sequential files

 *edit *time

 *** WARNING: The edit file "*TIME" cannot be used for output.

 *sniff

 Sequential file "*TIME" has 1 module, 1 entry point and 6

 lines.

 *add *users

 *** ERROR: The edit file "*TIME" cannot be used for output.

 *xref

 Module - External references

 TIME - FREESPAC GDINFO SERCOM SPRINT

 Symbol - Referenced by modules

 FREESPAC- TIME

 GDINFO - TIME

 SERCOM - TIME

 SPRINT - TIME

 *stop

 CPU time = 1.69 seconds.

 #EXECUTION TERMINATED 13:03:55 T=1.711 $.95

 238 The Object-File Editor

 MTS 5: System Services

 May 1983

 ACCOUNTING __________

 INTRODUCTION ____________

 The ACCOUNTING command allows users to display status information
 about their individual signon IDs. This includes such information as
 the amounts of spent and remaining funds, the permanent disk space
 allocation, and the plotting time allocations. The ACCOUNTING command,
 when used in this fashion, replaces the function of the *STATUS program.

 The ACCOUNTING MANAGEMENT system allows project directors and in-
 structors to distribute resources such as money, permanent disk space,
 and plotting time, as they wish, to various signon IDs belonging to
 their project or class. In addition, other constraints such as the
 expiration date, the maximum number of concurrent signons, and the
 passwords for individual signon IDs may be changed. These resource
 distributions are limited by maximums set for the entire project or
 class rather than having each signon ID with its own relatively fixed
 maximums. In addition, the amounts used and the maximums for any given
 signon ID may be displayed, as well as the amounts allocated compared
 with the maximums for the project and the totals for the project as a
 whole.

 DISPLAYING STATUS INFORMATION ABOUT AN INDIVIDUAL SIGNON ID ___

 Any signon ID may display accounting status information about its own
 account. The ACCOUNTING command is given in the form

 $ACCOUNTING [statusopts]

 where "statusopts" are one or more options that specify either the type

 of information to be displayed or the format in which the information is

 to be displayed. The default "statusopt" in batch mode is FULL while

 the default in terminal mode is NOFULL.

 The sample output below illustrates the format of the information

 presented for the FULL format.

 ACCOUNTING 239

 MTS 5: System Services

 May 1983

 Status of S000 at 01/26/83 21:22 Used Maximum Remaining

 Cumulative charge ($) 125.29 500.00 374.71

 Permanent disk space (pages) 51 100 49

 Current signons 1 2 1

 Cumulative connect time (h:m:s) 4:36:47

 Cumulative disk storage (pg-days) 874

 Cumulative virtual memory

 CPU (m:s) 14:06

 Wait (pg-d h:m:s) 9d 10:44:25

 Cumulative CPU time (seconds) 15.175

 Magnetic tape mounts 7

 Magnetic tape drive (h:m:s) 1:21:54

 Cumulative page printer lines 1275

 Cumulative page printer images 250

 Cumulative page printer sheets 82

 Cumulative line printer lines 308

 Cumulative line printer pages 10

 Cumulative cards read 16

 Batch sessions 1

 Terminal sessions 23

 Expiration date and time: 12/31/83 24:00:00 EDT

 The sample output below illustrates the format of the information

 presented for the NOFULL format.

 Status of S000 at 01/26/83 21:22 Used Maximum Remaining

 Cumulative charge ($) 125.29 500.00 374.71

 Permanent disk space (pages) 51 100 49

 Current signons 1 2 1

 Cumulative connect time (h:m:s) 4:36:47

 By default, the heading is always printed at the top of the status

 information summary. This heading may be suppressed by specifying the

 NOHEADING option, e.g.,

 $ACCOUNTING NOHEADING

 Individual resource options may be specified to display the remaining

 amounts of resources such as funds, permanent disk space, and plotter

 time. For example,

 $ACCOUNTING DISK

 will display the remaining (unused) number of disk pages available to

 the signon ID in the format

 Remaining disk space (pages) 49

 The individual resource options that may be specified are as follows:

 240 ACCOUNTING

 MTS 5: System Services

 May 1983

 CHARGE - Display remaining funds
 DISK - Display remaining disk space
 EXPIRE - Display expiration date
 NETWORK - Display remaining outbound Merit network time
 PLOTTER - Display remaining plotter time
 SIGNONS - Display remaining number of concurrent signons
 TERMINAL - Display remaining terminal connect time

 The FULL modifier may be appended to any of the above resource
 options to print the used, maximum, and remaining values of a resource,
 e.g.,

 $ACCOUNTING DISK@FULL

 will display the used, maximum, and remaining number of disk pages for

 the signon ID in the format

 Status of S000 at 01/26/83 21:22 Used Maximum Remaining

 Permanent disk space (pages) 51 100 49

 Appendix A to this section gives further information about the

 ACCOUNTING command including all of the alternative names that may be

 used for the above options and modifiers.

 The status information is current at the time the ACCOUNTING command

 is given with the exception that tape-drive time and paper-tape punched,

 as well as the associated charges for these, are not included for tapes

 currently mounted, nor are charges included for concurrent signons using

 the same signon ID.

 The status information printed by the ACCOUNTING command is only

 approximate. A user’s true position is given only by the monthly

 billing.

 THE ACCOUNTING MANAGEMENT SYSTEM ________________________________

 Before a project can use the ACCOUNTING MANAGEMENT system, one of the

 signon IDs belonging to the project must receive authorization. There

 can be only one authorized signon ID per project. The authorization and

 setting of maximums for the project and this authorized signon ID can be

 accomplished by contacting the Business Office at the Computing Center

 (764-8000).

 In the examples that follow, it is assumed that the project number is

 SMPL, the signon ID authorized to use ACCOUNTING is S001, and the other

 IDs belonging to the project are S002, S003, S004, and S005. The

 maximum amount of money for the project is $550, and the maximum and

 used amounts of money for each signon ID are as follows:

 ACCOUNTING 241

 MTS 5: System Services

 May 1983

 ID Maximum $ Used $ __ _________ ______

 S001 100 25

 S002 100 10

 S003 100 125

 S004 100 0

 S005 50 15

 Also appearing in the examples are project and signon ID maximums and

 used (funds, terminal time, and plotting time) or current (disk space,

 expiration date, and concurrent signons) signon ID amounts for each of

 the other values that may be changed. The current time is 4:41 p.m. on

 January 25, 1983.

 The examples follow each other logically; that is, the result of each

 example is presumed to be the starting point for the next example. With

 the exception of the sections "Adding Money to a Signon ID" and

 "Producing Headings" where the complete heading is given, the one line

 heading in each example is for convenience only and is not part of the

 actual output.

 The discussion of the commands, signon ranges, and keywords assumes

 operation from a terminal; batch operation involves only minor dif-

 ferences. A batch job to produce the examples in this section appears

 in the section "Batch Input to Produce Examples in This Section."

 To start ACCOUNTING after signing on, using the authorized signon ID

 for the project, enter the MTS command

 $ACCOUNTING MANAGEMENT

 or (in abbreviated form)

 $AC M

 after the #-sign is printed. The response will be

 Project SMPL at 01/25/83 16:41 EST

 and a "$?" prefix will be printed indicating a request for input.

 THE COMMANDS ____________

 The ACCOUNTING MANAGEMENT system has its own command language. The

 commands that manage resources are generally given in the form

 command sigrange keyword

 where "command" is the command verb, "sigrange" specifies the signon IDs

 that are to be acted upon, and "keyword" specifies the action to be

 taken.

 242 ACCOUNTING

 MTS 5: System Services

 May 1983

 Adding Money to a Signon ID ___________________________

 If $100 is to be added to the maximum charge for S003, enter

 ADD S003 CHARGE=100

 If the value of a keyword is numeric, it may, in general, be preceded

 by a plus or minus sign and contain a decimal point. If it is negative,

 it will be treated algebraically. Negative results are set to zero.

 After the $100 has been added to S003, ACCOUNTING will respond with

 Signon Charge Disk Expire Concur Term Time Plot Time

 (Dollars) (Pages) Date/Time Signon (Hrs:Min) (Hrs:Min)

 (Maximum above used or current amount. NC=no change on. DL=deleted.)

 S003 200.00 10 12/31/83 1 Ignored Ignored

 125.00 2 24:00 EST 0:00 0:00

 and another "$?" prefix. The first line after the three-line heading

 shows the new maximums for S003, and the second line shows the amount

 already used ($125). If this is all that is desired, generating an

 end-of-file condition on input or issuing the STOP command will

 terminate and unload ACCOUNTING.

 Subtracting Money from a Signon ID __________________________________

 While ADD causes the values of the keyword parameters to be added to

 the current maximums, SUBTRACT causes the values of the keyword

 parameters to be subtracted from the appropriate current maximums. To

 reduce the maximum amount of money for S003 by $10, enter

 SUBTRACT S003 CHARGE=10

 The result will be

 Signon Charge Disk Expire Concur Term Time Plot Time

 S003 190.00 10 12/31/83 1 Ignored Ignored

 125.00 2 24:00 EST 0:00 0:00

 and a "$?" prefix.

 ACCOUNTING 243

 MTS 5: System Services

 May 1983

 Modifying Money for a Signon ID _______________________________

 MODIFY causes the current values of the appropriate maximums to be
 replaced with the values of the keyword parameters. To set the maximum
 amount of money for S002 to $15, enter

 MODIFY S002 CHARGE=15

 ACCOUNTING will respond with

 Signon Charge Disk Expire Concur Term Time Plot Time

 S002 15.00 2 12/31/83 1 Ignored Ignored

 10.00 0 24:00 EST 2:00 0:00

 Equalizing Money for a Signon ID ________________________________

 EQUALIZE causes the values of the keyword parameters to be added to

 the appropriate current used amounts (as opposed to the current maximums

 for ADD) and the corresponding maximums are replaced with the result.

 Thus, to give S003 $25 more than has been used, enter

 EQUALIZE S003 CHARGE=25

 The result will be

 Signon Charge Disk Expire Concur Term Time Plot Time

 S003 150.00 10 12/31/83 1 Ignored Ignored

 125.00 2 24:00 EST 0:00 0:00

 This command is useful for giving all the students in a class the

 same amount of money with which to do a new problem.

 Expiring a Signon ID ____________________

 The EXPIRE command, without any keyword parameters, is the same as

 EQUALIZE with the keyword parameters CHARGE=0, DISK=0, EXPIRE=03/01/00,

 CONCURSIG=1, TERMINAL=0, PLOT=0, and NOCHANGE=ON (see the section "The

 Keywords"). That is, all maximums except concurrent signons are set to

 the amount currently used, the signon ID is expired, and "no change" is

 set on. Thus,

 EXPIRE S002

 244 ACCOUNTING

 MTS 5: System Services

 May 1983

 would produce

 Signon Charge Disk Expire Concur Term Time Plot Time

 S002 10.00 0 01/25/83 1 2:00 0:00
 NC 10.00 0 16:41 EST 2:00 0:00

 Any keyword parameters given with the EXPIRE command override the
 values of the corresponding implied keyword parameters. Therefore,

 EXPIRE S004 CHARGE=95

 produces

 Signon Charge Disk Expire Concur Term Time Plot Time

 S004 95.00 0 01/25/83 1 0:00 0:00
 NC 0.00 0 16:41 EST 0:00 0:00

 Note that NOCHANGE=OFF does not override NOCHANGE=ON (see the section
 "Changing NOCHANGE").

 Deleting a Signon ID ____________________

 The irreversible DELETE command, like EXPIRE ("Expiring a Signon ____________

 ID"), sets all maximums except concurrent signons and disk space to the

 amounts currently used, expires the signon ID, and sets "no change" on.

 The maximum number of concurrent signons is set to one and the maximum

 amount of disk space is set to zero. Unlike EXPIRE, the implied keyword

 parameters cannot be overridden, and any file space belonging to the

 signon ID ceases to be part of the cumulative file space for the project

 (see the section "PROJECT.") This latter feature means file space from

 the signon ID can be reassigned to other signon IDs belonging to the

 project even though the files have not actually been destroyed.

 Because the effect of DELETE is such that the signon ID cannot be ___________________________

 reinstated, the signon range is restricted to a single signon ID to __________

 protect against accidental deletion. In addition, if operation is from

 a terminal, verification will be requested. Any response to a verifica-

 tion request other than OK will cancel the DELETE command.

 Therefore,

 DELETE S005

 from a terminal would produce the verification request

 Enter "OK" to delete S005

 ACCOUNTING 245

 MTS 5: System Services

 May 1983

 and entering

 OK

 would allow S005 to be deleted:

 Signon Charge Disk Expire Concur Term Time Plot Time

 S005 15.00 0 01/25/83 1 0:15 0:00
 DL 15.00 8 16:41 EST 0:15 0:00

 The letters DL under S005 indicate that the signon ID has been deleted.

 All keyword parameters that specify changes except NOCHANGE are
 invalid for DELETE.

 In addition to the behavior produced by "no change" ("Changing

 NOCHANGE"), a deleted signon ID will not appear in a listing produced by

 DISPLAY ("Obtaining the Status of a Signon ID") unless the signon range

 is a single ID, the LIST=ALL keyword is included or SET LIST=ALL has

 been issued ("Controlling the Listing").

 Displaying a Signon ID ______________________

 The DISPLAY command enables one to print the maximum and used amounts

 for a signon ID.

 DISPLAY S001

 would produce

 Signon Charge Disk Expire Concur Term Time Plot Time

 S001 100.00 0 12/31/83 1 Ignored Ignored

 25.00 0 24:00 EST 0:00 0:00

 Note that these are the amounts as of the last signoff of the signon

 ID. (However, see the section "Miscellaneous" regarding charges for

 file storage.) All keyword parameters that specify changes are invalid

 for DISPLAY.

 See also the section "PROJECT" for DISPLAY PROJECT.

 Continuing with a Different Signon ID _____________________________________

 The CONTINUE command may be used following any command that requires

 a signon range. Without any keyword parameters, it does the same thing

 246 ACCOUNTING

 MTS 5: System Services

 May 1983

 as the previous command but uses the new signon range. It will not
 produce a new heading unless the HEADING keyword (see the section
 "Producing Headings") is explicitly used with the CONTINUE command.

 Thus, if

 ADD S002 CHARGE=5 NOCHANGE=OFF

 which produces

 Signon Charge Disk Expire Concur Term Time Plot Time

 S002 15.00 0 01/25/83 1 2:00 0:00

 10.00 0 16:41 EST 2:00 0:00

 is followed by

 CONTINUE S004

 the result will be

 Signon Charge Disk Expire Concur Term Time Plot Time

 S004 100.00 0 01/25/83 1 0:00 0:00

 0.00 0 16:41 EST 0:00 0:00

 Any keyword parameters given with CONTINUE override the corresponding

 keyword parameters used with the previous command. Thus, after the

 above sequence of ADD and CONTINUE

 CONTINUE S002 CHARGE=-3

 would produce

 Signon Charge Disk Expire Concur Term Time Plot Time

 S002 12.00 0 01/25/83 1 2:00 0:00

 10.00 0 16:41 EST 2:00 0:00

 Note that NOCHANGE=OFF does not override the keyword parameter NOCHANGE=

 ON (see the section "Changing NOCHANGE").

 ACCOUNTING 247

 MTS 5: System Services

 May 1983

 OTHER SIGNON RANGES ___________________

 Blocks ______

 So far, the signon range has been a single signon ID. It may,
 however, refer to a group of signon IDs. For a specific, contiguous
 block of signon IDs belonging to the project, the signon range is the
 first signon ID followed by three dots (periods) and the last signon ID.
 For example,

 DISPLAY S002...S004

 would produce

 Signon Charge Disk Expire Concur Term Time Plot Time

 S002 12.00 0 01/25/83 1 2:00 0:00
 10.00 0 16:41 EST 2:00 0:00

 S003 150.00 10 12/31/83 1 Ignored Ignored
 125.00 2 24:00 EST 0:00 0:00

 S004 100.00 0 01/25/83 1 0:00 0:00
 0.00 0 16:41 EST 0:00 0:00

 The incrementation of signon IDs within a block is defined as the
 collating sequence for the IBM 360/370 system. That is, alphabetic
 letters come before the numbers 0 through 9. The first signon ID should
 be less than or equal to the last signon ID.

 ENTIRE ______

 If all of the signon IDs for the project are desired, the ENTIRE
 parameter may be used for the signon range. For example,

 SUBTRACT ENTIRE CHARGE=10

 would produce the results

 248 ACCOUNTING

 MTS 5: System Services

 May 1983

 Signon Charge Disk Expire Concur Term Time Plot Time

 S001 90.00 0 12/31/83 1 Ignored Ignored
 25.00 0 24:00 EST 0:00 0:00

 S002 2.00 0 01/25/83 1 2:00 0:00
 10.00 0 16:41 EST 2:00 0:00

 S003 140.00 10 12/31/83 1 Ignored Ignored
 125.00 2 24:00 EST 0:00 0:00

 S004 90.00 0 01/25/83 1 0:00 0:00
 0.00 0 16:41 EST 0:00 0:00

 Note that S005, which has been deleted ("Deleting a Signon ID"), is

 not included.

 Signon-Range Groups ___________________

 Any combination of signon ranges except PROJECT may be grouped

 together by enclosing the list of signon ranges in parentheses. For

 example,

 DISPLAY S001...S005

 also could be entered as

 DISPLAY (S001 S002...S004 S005)

 Defined Signon-ID Ranges ________________________

 A user-defined name, called a defined signon-ID range, may be given

 to a signon range. The name, which must begin with a +, is defined by

 the SET command. The range may consist of a single signon ID, a block

 of signon IDs, another defined signon-ID range, or a parenthesized

 combination of these. For exampe, the commands

 SET +SINGLE=S001

 SET +BLOCK=S002...S004

 SET +GROUP=(+SINGLE +BLOCK)

 define the signon-ID range names +SINGLE, +BLOCK, and +GROUP.

 After the name +BLOCK is defined, the previous DISPLAY S002...S004

 command could be given as

 ACCOUNTING 249

 MTS 5: System Services

 May 1983

 DISPLAY +BLOCK

 Similarly, the previous SUBTRACT ENTIRE command could be given in any
 one of the following forms:

 SUBTRACT (S001 S002...S004) CHARGE=10
 SUBTRACT (S001 +BLOCK) CHARGE=10
 SUBTRACT (+SINGLE S002...S004) CHARGE=10
 SUBTRACT +GROUP CHARGE=10

 PROJECT _______

 The above signon ranges can be used with any command requiring a
 signon range except DELETE. PROJECT can be used only with DISPLAY.
 Entering

 DISPLAY PROJECT

 would produce

 Signon Charge Disk Expire Concur Term Time Plot Time

 PRJ 550.00 50 12/31/83 Ignored Ignored Ignored
 345.00 10 24:00 EST 2:15 0:00

 Tot 337.00 10 2:15 0:00
 175.00 2 2:15 0:00

 No change ON for 1 and OFF for 4 of the 5 project ID’s

 This listing needs some explanation. The first line, labeled "PRJ"

 for PROJECT, shows the maximums for the project. Note the $550 under

 charge. (The value under "Concur" is the maximum number of concurrent

 signons per signon ID.) The second line shows the cumulative amounts ___

 for the project. Since MTS permits a user to finish, once he is signed

 on, a signon ID maximum may be less than the corresponding used or

 current amount. This same condition can also be produced by using

 ACCOUNTING. Therefore, the cumulative amounts for the project are

 computed by summing the larger of the maximum and used or current

 amounts for each signon ID (see also the section "Miscellaneous"

 regarding disk space). Referring to the listings in the sections

 "Deleting a Signon ID" and "ENTIRE," the cumulative amount of money is

 computed as follows: The larger of the maximum and used amounts for

 S001 is $90. The larger amount for S002 is $10, and the larger amounts

 for S003, S004, and S005 are $140, $90, and $15, respectively. Adding

 these amounts together produces the sum of $345.

 The third line, labeled "Tot" for TOTALS, shows the sums of the

 maximums for the signon IDs. Thus, the sum of the maximums of $90, $2,

 $140, $90, and $15 for S001 through S005 is $337. If a value in this

 250 ACCOUNTING

 MTS 5: System Services

 May 1983

 third line is equal to the corresponding value for the project
 cumulative (second line), no signon IDs in the project have exceeded the
 signon ID maximums. If a value is less than the project cumulative
 value, then one or more signon IDs have used more than their allocated
 maximums. The fourth line shows the sums of the used or current amounts
 for the signon IDs. The differences between these values and the ___
 project maximums (first line) are the amounts that have not been __
 actually used by the project; although at least some of these dif- ________________________________
 ferences have probably been allocated to individual maximums.

 (Note that the 8 pages of disk space belonging to the deleted signon
 ID, S005, are ignored in all of the above calculations.)

 The fifth line states the number of signon IDs with "no change" on

 ("Changing NOCHANGE"), the number of signon IDs with "no change" off,

 and the number of signon IDs belonging to the project (5 in this case).

 Remaining amounts for the project can be obtained by giving the

 command

 DISPLAY PROJECT LIST=REMAINING

 which produces

 Signon Charge Disk Expire Concur Term Time Plot Time

 PRJ 550.00 50 12/31/83 Ignored Ignored Ignored

 345.00 10 24:00 EST 2:15 0:00

 Rem 205.00 40

 Div 51.25 10 Ignored Ignored

 Tot 337.00 10 2:15 0:00

 175.00 2 2:15 0:00

 Rem 162.00 8 0:00 0:00

 No change ON for 1 and OFF for 4 of the 5 project ID’s

 The line labeled "Rem" shows the results of subtracting the cumula-

 tive amounts (second line) from the maximums (first line) for the

 project. The line labeled "Div" shows the amounts that should be added

 to each signon ID with "no change" currently off in order to evenly

 distribute the remaining amounts. That is, the values in the "Div" line

 are the results of dividing the values in the "Rem" line by the number

 of IDs with "no change" off ($205/4=$51.25).

 ACCOUNTING 251

 MTS 5: System Services

 May 1983

 THE KEYWORDS ____________

 Changing Maximum Charge _______________________

 We have already seen that the CHARGE keyword is used to specify
 changes in dollars of the maximum amount of money permitted to a signon
 ID. Other keywords are used to specify other maximums and control
 functions. All keyword parameters come after the signon range and may __
 be listed in any order.

 Changing Maximum Disk Space ___________________________

 The DISK keyword is used to specify changes in pages of the maximum
 disk space permitted to a signon ID. To add 5 pages of disk space to
 S003, entering

 ADD S003 DISK=5

 produces

 Signon Charge Disk Expire Concur Term Time Plot Time

 S003 140.00 15 12/31/83 1 Ignored Ignored
 125.00 2 24:00 EST 0:00 0:00

 The second line of the listing under DISK is the amount of disk space
 (2 pages) currently being used by S003.

 Changing Expiration Time ________________________

 The EXPIRE keyword is used to specify changes in the expiration time
 of a signon ID. The value of EXPIRE may be in either of two forms, a
 date form or a time form.

 The date form is MM/DD/YY, where ____

 MM is the month,
 DD is the day of the month, and
 YY is the year,

 is used to set the expiration time to 12:00 p.m. of the specified date
 (leading zeros are not required). For example,

 MODIFY S003 EXPIRE=6/30/83

 252 ACCOUNTING

 MTS 5: System Services

 May 1983

 produces

 Signon Charge Disk Expire Concur Term Time Plot Time

 S003 140.00 15 06/30/83 1 Ignored Ignored
 125.00 2 24:00 EDT 0:00 0:00

 The time form is MM/DD/YY@hh:mm, where ____

 MM/DD/YY is explained above,
 hh is the hour in twenty-four hour notation, and
 mm is the minutes,

 is used to set the expiration time to a particular minute of the
 specified date (leading zeros and/or minutes are not required). For
 example,

 MODIFY S004 EXPIRE=6/30/83@16:45

 produces

 Signon Charge Disk Expire Concur Term Time Plot Time

 S004 90.00 0 06/30/83 1 0:00 0:00
 0.00 0 16:45 EDT 0:00 0:00

 and S004 will not be able to sign on after 4:45 p.m. on June 30, 1983.

 Note that the EXPIRE keyword behaves as though it were used with
 MODIFY, even when used with ADD, EQUALIZE, or SUBTRACT. That is,

 ADD S004 CHARGE=5 EXPIRE=6/30/83@16:45

 and

 SUBTRACT S004 CHARGE=5 EXPIRE=6/30/83@16:45

 have the same effect on the expiration time as the above example; but
 the effect on the maximum amount of money is quite different in each
 case.

 If an attempt is made to expire a signon ID before both the current
 time and the current expiration time, the earlier of these two times is
 used as the expiration time. Thus,

 MODIFY S004 EXPIRE=12/31/82

 would produce

 Signon Charge Disk Expire Concur Term Time Plot Time

 S004 90.00 0 01/25/83 1 0:00 0:00
 0.00 0 16:41 EST 0:00 0:00

 ACCOUNTING 253

 MTS 5: System Services

 May 1983

 when the current time is 4:41 p.m. on January 25, 1983.

 If a signon ID is expired, there will be no charge for file (disk)
 space belonging to that signon ID after the expiration time. In return,
 the right to destroy the file space belonging to expired signon IDs is
 reserved by the Computing Center. However, the file space will still be
 considered to be part of the cumulative file space for the project until
 it is actually destroyed. If the expiration time of the signon ID is
 set to a later time before the file space is destroyed, the project may
 be charged for all file space used during the previously expired time.

 The fact that a signon ID is expired has no effect on the changing of
 maximums by ACCOUNTING.

 Changing Maximum Concurrent Signons ___________________________________

 The CONCURSIG keyword is used to specify the number of times that a
 signon ID may be signed on at the same time. To permit S003 to have up
 to 3 concurrent signons, entering

 MODIFY S003 CONCURSIG=3

 produces

 Signon Charge Disk Expire Concur Term Time Plot Time

 S003 140.00 15 06/30/83 3 Ignored Ignored
 125.00 2 24:00 EDT 0:00 0:00

 If the project is permitted unlimited concurrent signons per signon
 ID, the IGNORE parameter may be used as the value of the CONCURSIG
 keyword. Thus

 MODIFY S003 CONCURSIG=IGNORE

 produces

 Signon Charge Disk Expire Concur Term Time Plot Time

 S003 140.00 15 06/30/83 Ignored Ignored Ignored
 125.00 2 24:00 EDT 0:00 0:00

 The word IGNORED in the listing indicates that there is no explicit
 limit on the number of concurrent signons.

 If the value of CONCURSIG is numeric, it must be greater than or
 equal to 1 and less than or equal to 32767. Also, CONCURSIG always ________________
 behaves as if used with MODIFY, even when used with ADD, EQUALIZE, or ______________________________
 SUBTRACT.

 254 ACCOUNTING

 MTS 5: System Services

 May 1983

 Changing Maximum Terminal Time ______________________________

 The TERMINAL keyword is used to specify changes to the maximum
 terminal time permitted to a signon ID. To restrict S002 to 150 minutes
 of terminal time, entering

 MODIFY S002 TERMINAL=150

 produces

 Signon Charge Disk Expire Concur Term Time Plot Time

 S002 2.00 0 01/25/83 1 2:30 0:00
 10.00 0 16:41 EST 2:00 0:00

 If the project is permitted unlimited terminal time, subject only to
 available funds, signon IDs belonging to the project may also be
 permitted unlimited terminal time. Unlimited terminal time is indicated
 in the listing by the word IGNORED in place of the maximum. Unlimited
 terminal time may be set by using the IGNORE parameter as the value of
 the keyword TERMINAL. Thus, to give S002 unlimited terminal time,
 entering

 MODIFY S002 TERMINAL=IGNORE

 produces

 Signon Charge Disk Expire Concur Term Time Plot Time

 S002 2.00 0 01/25/83 1 Ignored 0:00
 10.00 0 16:41 EST 2:00 0:00

 When the value is IGNORE, the behavior is the same for each of the
 commands ADD, EQUALIZE, EXPIRE, MODIFY, and SUBTRACT. Also, the maximum
 terminal time is set to zero for purposes of the line labeled TOT
 produced by DISPLAY PROJECT and the commands ADD and SUBTRACT.

 The H suffix is used to specify changes in hours of maximum terminal
 time permitted to a signon ID. To restrict S002 to two and a quarter
 hours of terminal time, entering

 MODIFY S002 TERMINAL=2.25H

 produces

 Signon Charge Disk Expire Concur Term Time Plot Time

 S002 2.00 0 01/25/83 1 2:15 0:00
 10.00 0 16:41 EST 2:00 0:00

 Note that digits to the right of the decimal point in the value specify
 a decimal fraction of an hour, not minutes.

 ACCOUNTING 255

 MTS 5: System Services

 May 1983

 Changing Maximum Plotting Time ______________________________

 The PLOT keyword is used to specify changes to the maximum plotting
 time permitted to a signon ID. To give S003 105 minutes of plotting
 time, entering

 MODIFY S003 PLOT=105

 produces

 Signon Charge Disk Expire Concur Term Time Plot Time

 S003 140.00 15 06/30/83 Ignored Ignored 1:45
 125.00 2 24:00 EDT 0:00 0:00

 If the project is permitted unlimited plotting time, subject only to
 available funds, the word IGNORE may be used as the value of the PLOT
 keyword. For example,

 MODIFY S003 PLOT=IGNORE

 produces

 Signon Charge Disk Expire Concur Term Time Plot Time

 S003 140.00 15 06/30/83 Ignored Ignored Ignored
 125.00 2 24:00 EDT 0:00 0:00

 See also the analogous discussion of unlimited terminal time in the
 section "Changing Maximum Terminal Time."

 The H suffix is used to specify changes in hours of maximum plotting

 time permitted to a signon ID. To give S003 one hour of plotting time,

 entering

 MODIFY S003 PLOT=1H

 produces

 Signon Charge Disk Expire Concur Term Time Plot Time

 S003 140.00 15 06/30/83 Ignored Ignored 1:00

 125.00 2 24:00 EDT 0:00 0:00

 Note that digits to the right of the decimal point in the value specify

 a decimal fraction of an hour, not minutes.

 256 ACCOUNTING

 MTS 5: System Services

 May 1983

 Filtering Signon IDs within a Signon Range __

 The signon IDs that are processed within a specific signon range may
 be restricted by the use of filters. A filter is a keyword parameter
 that is composed of a keyword prefixed by MAX, USED, or REM, followed by
 <, <=, >, >=, or ¬=, and finally a value. The keywords that may be used
 for filters are CHARGE, DISK, EXPIRE, CONCURSIG, TERMINAL, and PLOT.
 EXPIRE and CONCURSIG may only be prefixed with MAX. The values for all
 filters must be numeric except for MAXEXPIRE which must be a date or a
 time.

 When filters are specified, only those signon IDs that meet the
 conditions specified by all of the filters will be processed. If the
 maximum for a signon ID is ignored, the signon ID is treated as though
 the maximum were infinity. Examples of filters are

 MAXCHARGE<7.50
 USEDDISK>=10
 MAXEXPIRE>6/30/83
 MAXCONCURSIG¬=1
 REMTERMINAL<=1H
 USEDPLOT>30

 Changing NOCHANGE _________________

 When using a block or ENTIRE for the signon range with any command
 except DISPLAY, it may be desired that certain signon IDs within the
 range not be changed. If a signon ID has "no change" on, it is ignored

 by the command; and no listing line is produced for it unless the

 LIST=ALL keyword has been included or SET LIST=ALL has been entered

 ("Controlling the Listing"). The NOCHANGE keyword is used to specify

 the status of "no change". The words ON or OFF may be used as the value

 of the keyword. To have S003 ignored by commands that produce changes,

 entering

 MODIFY S003 NOCHANGE=ON

 produces

 Signon Charge Disk Expire Concur Term Time Plot Time

 S003 140.00 15 06/30/83 Ignored Ignored 1:00

 NC 125.00 2 24:00 EDT 0:00 0:00

 Note that the letters NC under the signon ID indicate that "no change"

 is on. Now, entering

 EQUALIZE ENTIRE DISK=2

 ACCOUNTING 257

 MTS 5: System Services

 May 1983

 would produce

 Signon Charge Disk Expire Concur Term Time Plot Time

 S001 90.00 2 12/31/83 1 Ignored Ignored
 25.00 0 24:00 EST 0:00 0:00

 S002 2.00 2 01/25/83 1 2:15 0:00
 10.00 0 16:41 EST 2:00 0:00

 S004 90.00 2 01/25/83 1 0:00 0:00
 0.00 0 16:41 EST 0:00 0:00

 and entering

 DISPLAY S003

 which produces

 Signon Charge Disk Expire Concur Term Time Plot Time

 S003 140.00 15 06/30/83 Ignored Ignored 1:00
 NC 125.00 2 24:00 EDT 0:00 0:00

 verifies that S003 was not changed.

 If it is now desired to add 5 dollars to S003,

 ADD S003 CHARGE=5 NOCHANGE=OFF

 turns off "no change" and produces

 Signon Charge Disk Expire Concur Term Time Plot Time

 S003 145.00 15 06/30/83 Ignored Ignored 1:00

 125.00 2 24:00 EDT 0:00 0:00

 To change the maximums for a signon ID that has "no change" on and

 leave "no change" on at the end of the operation, the keyword parameters

 NOCHANGE=ON and NOCHANGE=OFF should both appear. For example,

 ADD S003 NOCHANGE=ON NOCHANGE=OFF DISK=2

 produces

 Signon Charge Disk Expire Concur Term Time Plot Time

 S003 145.00 17 06/30/83 Ignored Ignored 1:00

 NC 125.00 2 24:00 EDT 0:00 0:00

 Note that the order of the keyword parameters makes no difference.

 258 ACCOUNTING

 MTS 5: System Services

 May 1983

 NOCHANGE behaves the same with any command except DISPLAY, which
 ignores it. It can be used to inhibit the changing of a signon ID which
 is not currently being used. A recommended method of expiring a signon
 ID, for example S002, would be to first destroy all files belonging to
 the signon ID, and then enter

 EQUALIZE S002 CHARGE=0 DISK=0 EXPIRE=03/01/00 CONCURSIG=1 -
 TERMINAL=0 PLOT=0 NOCHANGE=ON

 to produce

 Signon Charge Disk Expire Concur Term Time Plot Time

 S002 10.00 0 01/25/83 1 2:00 0:00
 NC 10.00 0 16:41 EST 2:00 0:00

 Note that this is the same as entering

 EXPIRE S002

 after destroying the files.

 Changing Normal Priority Access _______________________________

 The NORMPRIO keyword is used to specify how the signon ID may sign on
 using normal priority. The four values that may be used are ON,
 TERMINAL or T, BATCH or B, and OFF.

 If the value is ON, then the signon ID will be permitted to use
 normal priority through either batch or a terminal. If the value is
 TERMINAL or T, then the ID will be permitted normal-priority signons
 from a terminal but not in batch. Likewise, if the value is BATCH or B,
 signons will be permitted in batch but not from a terminal. The value
 OFF indicates that no signons may be made using normal priority.

 Therefore, if it is desired that S004 not be permitted to use normal
 priority from batch, entering

 MODIFY S004 NORMPRIO=TERMINAL

 produces

 Signon Charge Disk Expire Concur Term Time Plot Time

 S004 90.00 2 01/25/83 1 0:00 0:00
 0.00 0 16:41 EST 0:00 0:00
 NP=T

 The designation NP=T in the listing indicates that normal priority may
 be used only from a terminal. No "NP=" designation would indicate that

 ACCOUNTING 259

 MTS 5: System Services

 May 1983

 both batch and terminal may use normal priority. NP=B and NP=OFF are
 used in the listing for the other normal-priority settings.

 NORMPRIO produces the same behavior for each of the commands ADD,
 EQUALIZE, EXPIRE, MODIFY, and SUBTRACT.

 Changing Low Priority Access ____________________________

 The LOWPRIO keyword specifies the manner in which low-priority
 signons may be made. The values are the same as for NORMPRIO (see the
 section "Changing Normal Priority Access") and have the same meaning

 except that they refer to low-priority usage.

 MODIFY S004 LOWPRIO=BATCH NORMPRIO=OFF

 which produces

 Signon Charge Disk Expire Concur Term Time Plot Time

 S004 90.00 2 01/25/83 1 0:00 0:00

 0.00 0 16:41 EST 0:00 0:00

 NP=OFF LP=B

 restricts S004 to low-priority, batch usage.

 Specifying a Project Signon File ________________________________

 The SIGFILE keyword is used to designate a source file, or project

 signon file, controlled by the project director, which is invoked

 immediately after the user signs on and before the user’s signon file is

 processed. That is, the behavior is the same as though a $SOURCE

 command for the project signon file were issued immediately after

 signing on. The file may contain commands to set default local time

 limits, run security programs, etc.

 The value for the SIGFILE keyword is a file name, OFF, or null. If

 the value is a file name that does not have a signon ID prefix, the

 signon ID authorized to use ACCOUNTING is prefixed to the file name. If

 the file name includes a signon ID prefix, the shared file separator

 character following the signon ID must be a colon. If the value is OFF

 or null, any previous designation of a project signon file is nullified

 for the signon IDs in the signon range.

 To designate the file INITIAL as the project signon file for S004,

 enter,

 260 ACCOUNTING

 MTS 5: System Services

 May 1983

 MODIFY S004 SIGFILE=INITIAL

 which results in

 Signon Charge Disk Expire Concur Term Time Plot Time

 S004 90.00 2 01/25/83 1 0:00 0:00
 0.00 0 16:41 EST 0:00 0:00
 NP=OFF LP=B
 Sigfile=S001:INITIAL

 The project signon file must be specified for each signon ID for
 which it is to be effective. Consequently, all signon IDs for the
 project may have the same project signon file, some may have different
 project signon files than others, some may not have a project signon
 file, etc. The project signon file designation may be changed only by
 using ACCOUNTING.

 Since the required permit status for the project signon file depends
 on the contents of the file, only minimal checking can be done by
 ACCOUNTING. It is, therefore, the responsibility of the ACCOUNTING user
 to insure that the project signon file and all other files referenced
 directly or indirectly have the appropriate access for the signon IDs
 that will be using them.

 SIGFILE produces the same results when used with any of the commands
 ADD, EQUALIZE, EXPIRE, MODIFY, or SUBTRACT.

 Inhibiting Project Signon File Attentions ___

 The SFATTN keyword with the value OFF is used to specify that the
 processing of attention interrupts is to be delayed until after either
 the project signon file has been processed or a program run by the
 project signon file has set the attention interrupt exit. The value ON
 permits attention interrupts during the processing of the project signon
 file.

 To inhibit attention interrupts during project signon file processing
 when S004 signs on, entering

 MODIFY S004 SFATTN=OFF

 produces

 Signon Charge Disk Expire Concur Term Time Plot Time

 S004 90.00 2 01/25/83 1 0:00 0:00
 0.00 0 16:21 EST 0:00 0:00
 NP=OFF LP=B
 Sigfile=S001:INITIAL SA=OFF

 ACCOUNTING 261

 MTS 5: System Services

 May 1983

 If SA=OFF does not appear in the listing, either attention interrupts
 are allowed during project signon file processing or it is irrelevant
 because there is no project signon file. For example,

 MODIFY S004 SIGFILE=OFF

 causes the listing to be

 Signon Charge Disk Expire Concur Term Time Plot Time

 S004 90.00 2 01/25/83 1 0:00 0:00
 0.00 0 16:41 EST 0:00 0:00
 NP=OFF LP=B

 even though attention interrupts would still be inhibited if a new
 project signon file were specified.

 SFATTN behaves the same with ADD, EQUALIZE, EXPIRE, and SUBTRACT as
 with MODIFY.

 Resetting Passwords ___________________

 A password for a nonstudent signon ID may be reset by specifying the
 PASSWORD keyword with the MODIFY command. ACCOUNTING MANAGEMENT will
 prompt first for the password for the authorized ID (S001), and then for
 the new password for S004 followed by a confirmation of the new
 password. Multiple responses may be placed on the same line. For
 example, the command

 MODIFY S004 PASSWORD

 produces the prompting sequence

 Enter password for S001

 Enter new password for S004

 Reenter new password for S004 to confirm

 The resulting output is

 S004 90.00 2 01/25/83 1 0:00 0:00
 0.00 0 16:41 EST 0:00 0:00
 NP=OFF LP=B

 Password previously set on 02/23/82 at 16:45 EST has been changed

 In batch mode, the new password must be placed on the input line
 immediately following the MODIFY command. A second password may be
 placed on the same line as the first password, in which case the two ____
 passwords must be identical.

 262 ACCOUNTING

 MTS 5: System Services

 May 1983

 In order to be able to reset a password for a signon ID, three
 conditions must be met:

 (1) the signon ID must be a nonstudent account,
 (2) the signon range must be a single signon ID, and
 (3) the signon ID must have previously granted permission by
 entering the MTS command

 $SET PROJECTPWCHANGE=ON

 The setting of PROJECTPWCHANGE may be displayed by specifying the

 PWCHANGE keyword. For example,

 DISPLAY S004 PWCHANGE

 produces

 S004 Pwchange=ON

 Controlling the Listing _______________________

 The LIST=OFF keyword parameter may be included on a command to

 suppress the printing of the listing line for each signon ID. For

 example,

 ADD S001 CHARGE=15 LIST=OFF

 The LIST=ALL keyword parameter causes all signon IDs in the specified

 signon range to be listed even though they would not normally be printed

 because they have "no change" on or have been deleted. For example,

 MODIFY S003...S005 CHARGE=50 LIST=ALL

 results in

 Signon Charge Disk Expire Concur Term Time Plot Time

 S003 145.00 17 06/30/83 Ignored Ignored 1:00

 NC 125.00 2 24:00 EDT 0:00 0:00

 S004 50.00 2 01/25/83 1 0:00 0:00

 0.00 0 16:41 EST 0:00 0:00

 NP=OFF LP=B

 S005 15.00 0 01/25/83 1 0:15 0:00

 DL 15.00 8 16:41 EST 0:15 0:00

 In this case S004 has been modified, and S003 and S005 also appear in

 the listing even though they have not been changed.

 ACCOUNTING 263

 MTS 5: System Services

 May 1983

 The LIST=MAXIMUM and LIST=NOMAXIMUM keywords control the printing of
 the maximum amounts for each signon ID. The default is LIST=MAXIMUM.

 The LIST=USED and LIST=NOUSED keywords control the printing of the
 used amounts for each signon ID. The default is LIST=USED.

 The LIST=REMAINING and LIST=NOREMAINING keywords control the printing
 of the remaining amounts for each signon ID. The default is
 LIST=NOREMAINING.

 An abbreviated form of the listing may be obtained by specifying the
 keyword parameter LIST=BRIEF. When this parameter is specified, only
 the values for those keywords specified with the command will be listed.
 In order to list values other than the ones changed, the keywords for
 those values may be specified without an equal sign and value. The use
 of a keyword in this manner implies LIST=BRIEF. If no keywords are
 specified and LIST=BRIEF is in effect for the DISPLAY command, values
 for which the maximum is not ignored are listed for charge, disk,
 terminal, and plot. For example,

 DISPLAY S003 LIST=BRIEF

 produces

 S003 Charge=145.00,125.00 Disk=17,2 Plot=1:00,0:00

 while

 DISPLAY S003 EXPIRE

 produces

 S003 Expire=06/30/83@24:00 EDT

 The default is LIST=FULL.

 The defaults for each of the LIST keywords may be changed by the SET
 command which is described at the end of this section.

 Producing Headings __________________

 The HEADING keyword may be included with the command to produce a
 heading at the top of a new page before printing the next listing line.
 For example,

 DISPLAY S001 HEADING

 would produce

 264 ACCOUNTING

 MTS 5: System Services

 May 1983

 Signon Charge Disk Expire Concur Term Time Plot Time
 (Dollars) (Pages) Date/Time Signon (Hrs:Min) (Hrs:Min)
 (Maximum above used or current amount. NC=no change on. DL=deleted.)

 S001 105.00 2 12/31/83 1 Ignored Ignored
 25.00 0 24:00 EST 0:00 0:00

 The initial heading can be suppressed by including the NOHEADING
 keyword with the first command to the program that takes a signon range.

 OTHER COMMANDS ______________

 The SET Command _______________

 The SET command may be used to set default parameters which are
 effective until the setting is changed by another SET command. The
 keywords that may be used with the SET command are INPUT, OUTPUT, LIST
 (see "Controlling the Listing"), ECHO, PROMPT, and the definitions of

 defined signon-ID ranges (see "Defined Signon-ID Ranges").

 The INPUT and OUTPUT parameters specify the locations for input and

 output. To return to the default locations, enter

 SET INPUT=* OUTOUT=*

 The ECHO parameter controls the echoing of input in the output

 listing. The values for ECHO are ON (always echo), OFF (never echo),

 and DEFAULT or * (echo if input and output locations are different).

 The PROMPT parameter specifies the character string used to prompt

 for input. If the string contains a blank, it must be enclosed in

 primes or quotation marks. PROMPT=$? is the default.

 Temporarily Returning to MTS ____________________________

 A temporary return to MTS may be made by entering the commands MTS or _________

 RETURN. Control may be returned from MTS to ACCOUNTING by entering a

 $ACCOUNTING MANAGEMENT command. If MTS is followed by a string of

 characters, the string is treated as an MTS command and is executed by

 MTS.

 Thus

 MTS

 ACCOUNTING 265

 MTS 5: System Services

 May 1983

 or

 RETURN

 or

 MTS CALC 100/25

 leaves the session in MTS command mode. Entering

 $ACCOUNTING MANAGEMENT

 produces a return to ACCOUNTING.

 An input line starting with a dollar sign or MCMD indicates a command

 that is to be executed by MTS. An automatic return is made to

 $ACCOUNTING after the command is executed. Thus, entering

 MCMD CALC 100/25

 or

 $CALC 100/25

 would cause the CALC command to produce the answer 4, and then a "$?"

 prefix would be printed indicating another input request by ACCOUNTING.

 In either of the above cases, in order to save restarting costs, it

 is assumed that a return will be made to ACCOUNTING and that ACCOUNTING

 will eventually be terminated in a normal manner. Failure to terminate ____________________

 with an end-of-file on input or the command STOP may result in not being __

 able to use ACCOUNTING at a later time. It should also be noted that ______________________________________

 until ACCOUNTING is terminated in this normal manner, the user is

 charged for approximately 40 additional pages of virtual memory.

 Terminating ACCOUNTING MANAGEMENT _________________________________

 ACCOUNTING may be terminated and unloaded by entering the command

 STOP

 MISCELLANEOUS _____________

 Since allocations for the signon ID that uses ACCOUNTING can be

 changed the same as for any other signon ID belonging to the project,

 care must be taken to insure that resources for this ID are not reduced

 too greatly. Specifically, it is quite possible to reduce the amount of __

 266 ACCOUNTING

 MTS 5: System Services

 May 1983 Page Revised September 1985

 money for this signon ID to the point that once it is signed off, it __
 will not be able to sign on again. If this happens, it is necessary to _________________________________
 have appropriate changes made by the Computing Center Business Office
 (764-8000) so that the signon ID can again be used.

 The cost of processing blocks, ENTIRE, and signon-range groups
 ("Other Signon Ranges") can be reduced by assigning the output to a

 printer (the default in batch or *PRINT*), a file, or *DUMMY*. The same

 reduction in cost can also be accomplished by using the LIST=OFF keyword

 (not effective for DISPLAY) with commands having a block, ENTIRE, or a

 group as the signon range. For example, the listing output could be

 assigned to *PRINT* by entering the command

 SET OUTPUT=*PRINT*

 The value of a maximum for a signon ID can always be reduced.

 However, if an increase in the value of a maximum would cause the

 cumulative for the project (second line produced by DISPLAY PROJECT) to

 exceed the maximum for the project, the increase will not be permitted.

 Thus, it may be possible to subtract a given amount from a signon ID and

 impossible to add the same amount back because the cumulative for the

 project originally exceeded the project maximum.

 If an attempt to change the maximums for a signon ID causes an error,

 the maximums are not changed; no listing is produced for the signon ID;

 and an appropriate error comment is printed.

 An attention interrupt will cause a "$?" prefix to be printed

 indicating that the program is ready for the next input line. If a

 signon ID is being processed at the time of the interrupt, the

 processing, including listing of the results, will be completed before

 the interrupt takes effect.

 The used amount of money in the listing includes charges for file

 (disk) storage to the current time.

 It is not necessary for a project maximum to be represented

 completely by the corresponding signon ID maximums. That is, the

 project maximum may be greater than the sum of the corresponding signon

 ID maximums. If this is the case, to increase the maximum for a signon

 ID, merely enter the appropriate input line (with the provision that the

 new maximum will not cause the cumulative for the project to exceed the

 project maximum).

 The project cumulative for file (disk) space is computed as described

 in the section "PROJECT" with one exception for compatibility with MTS.

 Before computing the greater of the maximum and current space for each

 signon ID, if the maximum is not zero, the value to be used for current

 space is reduced by the smaller of 16 pages and 2 plus the truncated

 integer result of dividing the maximum space by 8. That is, if the

 maximum is 0 pages, the value of the current space is used; if the

 maximum is 1 to 7 pages, the value to be used for current space is

 reduced by 2 pages; if the maximum is 8 to 15 pages, the value to be

 ACCOUNTING 267

 MTS 5: System Services

 Page Revised September 1985 May 1983

 used for current space is reduced by 3 pages; and if the maximum is
 greater than or equal to 112 pages, the value to be used for current
 space is reduced by 16 pages.

 Both commands and keywords may be abbreviated. Only the first three
 letters of a command are necessary. The commands and keywords may be
 abbreviated as shown in the section "Accounting Management Commands"

 that follows.

 Thus, the last example in the section "Changing NOCHANGE" can be

 written more concisely as

 EQU S002 C=0 D=0 E=03/01/00 CS=1 T=0 P=0 NC=ON

| Initialization File ___________________

|

|

| An accounting initialization file may be specified by the MTS command

|

| $SET INITFILE(ACCOUNTING)=filename

|

| When ACCOUNTING is being initialized, a check will be made to determine

| if an initialization file has been specified. If so, ACCOUNTING will

| read initializing commands from the specified file before reading

| commands from *SOURCE*. The initialization file facility may be

| disabled by the MTS command

|

| $SET INITFILE(ACCOUNTING)=OFF

 268 ACCOUNTING

 MTS 5: System Services

 May 1983

 BATCH INPUT TO PRODUCE EXAMPLES _______________________________

 $SIGNON S001 ’PROJECT DIRECTOR’

 password

 $ACCOUNTING MANAGEMENT

 ADD S003 CHARGE=100

 SUBTRACT S003 CHARGE=10

 MODIFY S002 CHARGE=15

 EQUALIZE S003 CHARGE=25

 EXPIRE S002

 EXPIRE S004 CHARGE=95

 DELETE S005

 DISPLAY S001

 ADD S002 CHARGE=5 NOCHANGE=OFF

 CONTINUE S004

 CONTINUE S002 CHARGE=-3

 STATUS S002...S004

 SUBTRACT ENTIRE CHARGE=10

 DISPLAY PROJECT

 DISPLAY PROJECT LIST=REMAINING

 ADD S003 DISK=5

 MODIFY S003 EXPIRE=6/30/83

 MODIFY S004 EXPIRE=6/30/83@18:00

 MODIFY S004 EXPIRE=12/31/82

 MODIFY S003 CONCURSIG=3

 MODIFY S003 CONCURSIG=IGNORE

 MODIFY S002 TERMINAL=150

 MODIFY S002 TERMINAL=IGNORE

 MODIFY S002 TERMINAL=2.25H

 MODIFY S003 PLOT=105

 MODIFY S003 PLOT=IGNORE

 MODIFY S003 PLOT=1H

 MODIFY S003 NOCHANGE=ON

 EQUALIZE ENTIRE DISK=2

 DISPLAY S003

 ADD S003 CHARGE=5 NOCHANGE=OFF

 ADD S003 NOCHANGE=ON NOCHANGE=OFF DISK=2

 EQUALIZE S002 C=0 D=0 E=03/01/00 CS=1 T=0 P=0 NC=ON

 MODIFY S004 NORMPRIO=TERMINAL

 MODIFY S004 LOWPRIO=BATCH NORMPRIO=OFF

 MODIFY S004 SIGFILE=INITIAL

 MODIFY S004 SFATTN=OFF

 MODIFY S004 SIGFILE=OFF

 MODIFY S004 PASSWORD

 newpassword

 ADD S001 CHARGE=15 LIST=OFF

 MODIFY S003...S005 CHARGE=50 LIST=ALL LIST=ALL

 DISPLAY S003 LIST=BRIEF

 DISPLAY S003 EXPIRE

 DISPLAY S001 HEADING

 STOP

 ACCOUNTING 269

 MTS 5: System Services

 May 1983

 ACCOUNTING MANAGEMENT COMMANDS ______________________________

 The following notation conventions are used in the prototypes of the
 commands:

 lowercase - represents a generic type which is to be replaced by
 an item supplied by the user.
 uppercase - indicates material to be repeated verbatim in the
 command.
 brackets [] - indicates that material within the brackets is
 optional.
 braces {} - indicates that the material within the braces repre-
 sents choices, from which exactly one must be select-
 ed. The choices are separated by vertical bars.
 ellipsis ... - indicates that the preceding syntactic unit may be
 repeated.
 underlining - indicates the minimum unambiguous form of the command
 or parameter. Longer abbreviations are accepted.

 The following pages give a complete summary of the commands in the
 Accounting Management command language.

 270 ACCOUNTING

 MTS 5: System Services

 May 1983 Page Revised September 1985

 Summary of Accounting Management Command Prototypes ___

 ADD sigrange keyword ... [filter ...]

 sigrange signon-ID
 signon-ID...signon-ID
 +groupname
 ({signon-ID|signon-ID...signon-ID|+groupname} ...)
 ENTIRE

 keyword CHARGE=dollars _
 {CONCURSIG|CS}={number|IGNORE} __ _
 DISK=pages _
 EXPIRE=date-time _
 {LOWPRIO|LP}={ON|TERMINAL|BATCH|OFF} __ _ _ __
 {NOCHANGE|NC}={ON|OFF} ___ __
 {NORMPRIO|NP}={ON|TERMINAL|BATCH|OFF} ___ _ _ __
 PLOT={mm|hhH|IGNORE} _ _
 {SFATTN|SA}={ON|OFF} ___ __
 {SIGFILE|SF}=[{filename|OFF}] __ __
 TERMINAL={mm|hhH|IGNORE} _ _
 {HEADING|NOHEADING|NHEADING} _ ___ __
 LIST={ALL|ON|OFF} _ _ __
 LIST={FULL|BRIEF} _ _ _
 LIST={MAXIMUM|NOMAXIMUM} _ _ ___
 LIST={USED|NOUSED} _ _ ___
 LIST={REMAINING|NOREMAINING} _ _ ___

 filter {M[AX]|U[SED]|R[EM]}keyword operator value

 CONTINUE sigrange [keyword ...] [filter ...] ___

 DELETE signon-ID [option ...] ___

 option {NOCHANGE|NC}={ON|OFF} ___ __
 {HEADING|NOHEADING|NHEADING} _ ___ __
 LIST={ALL|ON|OFF} _ _ __
 LIST={FULL|BRIEF} _ _ _
 LIST={MAXIMUM|NOMAXIMUM} _ _ ___
 LIST={USED|NOUSED} _ _ ___
 LIST={REMAINING|NOREMAINING} _ _ ___

 DISPLAY {sigrange|PROJECT} [keyword ...] ___

 EQUALIZE sigrange keyword ... [filter ...] ___

 EXPIRE sigrange [keyword ...] [filter ...] ___

| HELP [topic] ___

 MCMD mts-command ___

 ACCOUNTING 271

 MTS 5: System Services

 Page Revised September 1985 May 1983

 MODIFY sigrange keyword ... [filter ...] ___

 MTS [mts-command]

 RETURN ___

 SET option ...

 option ECHO={ON|OFF|DEFAULT|*} __ _
 INPUT={FDname|*}
 LIST={ALL|ON|OFF} _ __
 LIST={FULL|BRIEF} _ _
 LIST={MAXIMUM|NOMAXIMUM} _ ___
 LIST={USED|NOUSED} _ ___
 LIST={REMAINING|NOREMAINING} _ ___
 OUTPUT={FDname|*}
 PROMPT={string|’string’|"string"}

 +groupname=sigrange

 STOP ___

 SUBTRACT sigrange keyword ... [filter ...] ___

 272 ACCOUNTING

 MTS 5: System Services

 May 1983

 ADD ___

 Accounting Command Description

 Purpose: To increase the maximum resource allotments.

 Prototype: ADD sigrange keyword ... [filter ...]

 Action: The ADD command may be used to increase the maximum
 resource allotments for a signon ID or a group of signon
 IDs. "sigrange" specifies the signon ID or group of IDs

 and may be one of the following:

 signon-ID

 A single signon-ID may be specified, e.g.,

 S003.

 signon-ID...signon-ID

 A contiguous block of signon IDs belonging to

 the project may be specified, e.g.,

 S002...S004.

 All of the signon IDs ranging from the first ID

 to the last ID are included in the block.

 +groupname

 A defined signon-ID range may be specified (see

 the SET command description for details).

 ({signon-ID|signon-ID...signon-ID|+groupname} ...)

 A parenthesized list of signon IDs, blocks of

 signon IDs, or defined signon-ID ranges may be

 specified, e.g.,

 (S001 S002...S004 S005).

 ENTIRE

 The ENTIRE parameter may be specified to in-

 clude all of the signon IDs in the project.

 The following "keyword" parameters are used to specify

 the particular resource that is to be increased.

 ADD Accounting Command 273

 MTS 5: System Services

 May 1983

 CHARGE=dollars _

 The CHARGE parameter specifies the amount of
 money that is to be added to the maximum charge
 allotment for the signon ID or IDs. The charge
 is given in units of dollars with decimal
 points and minus signs permitted, e.g., CHARGE=
 50 will add $50 to the account(s) while CHARGE=

 -50 will delete $50 from the account.

 {CONCURSIG|CS}={number|IGNORE} __ _

 The CONCURSIG parameter sets the number of

 allowable concurrent signons for a signon ID or

 IDs, e.g., CONCURSIG=3 sets the number of

 concurrent signons to 3. The value must be

 greater than zero. The IGNORE parameter may be

 used to specify an unlimited number of concur-

 rent signons.

 DISK=pages _

 The DISK parameter specifies the number of disk

 pages that is to be added to the maximum disk

 space allotment, e.g., DISK=25 adds 5 disk

 pages to the current allotment. Minus signs

 are permitted.

 EXPIRE=date _

 The EXPIRE parameter sets the expiration date

 and time for a signon ID or IDs. The date and

 time is given in the form "mm/dd/yy@hh:mm",

 e.g., EXPIRE=6/30/87@18:00 sets the expiration

 date and time to 6 pm of June 30, 1987. The

 minute portion of the time may be omitted, in

 which case ":00" is assumed. The entire time

 portion also may be omitted, in which case

 Midnight is assumed, e.g., EXPIRE=12/31/87 sets

 the expiration date and time to Midnight of

 December 31, 1987.

 {LOWPRIO|LP}={ON|TERMINAL|BATCH|OFF} __ _ _ __

 The LOWPRIO parameter specifies the manner in

 which LOW-rate access may be made. ON allows

 both terminal and batch access, TERMINAL allows

 terminal access only, BATCH allows batch access

 only, and OFF allows no access during LOW-rate

 periods.

 274 ADD Accounting Command

 MTS 5: System Services

 May 1983

 {NOCHANGE|NC}={ON|OFF} ___ __

 The NOCHANGE parameter sets the "no change"

 status of a signon ID. When NOCHANGE=ON for a

 signon ID, subsequent accounting commands that

 change values will ignore the signon ID.

 {NORMPRIO|NP}={ON|TERMINAL|BATCH|OFF} ___ _ _ __

 The NORMPRIO parameter specifies the manner in

 which NORMAL-rate access may be made. ON

 allows both terminal and batch access, TERMINAL

 allows terminal access only, BATCH allows batch

 access only, and OFF allows no access during

 NORMAL-rate periods.

 PLOT={mm|hhH|IGNORE} _ _

 The PLOT parameter specifies the amount of plot

 time to be added to the maximum plot-time

 allotment. "mm" specifies minutes of plot

 time, "hhH" specifies hours of plot time, and

 IGNORE specifies an unlimited amount of plot

 time. Decimal points and minus signs are

 permitted.

 {SFATTN|SA}={ON|OFF} ___ __

 The SFATTN=OFF parameter specifies that the

 processing of attention interrupts is to be

 delayed until after either the project sigfile

 has been processed or a program run by the

 project sigfile has set the attention interrupt

 exit. The SFATTN=ON parameter permits atten-

 tion interrupts during the processing of a

 project sigfile.

 {SIGFILE|SF}=[{filename|OFF}] __ __

 The SIGFILE parameter specifies a project sig-

 file to be executed when the signon ID or IDs

 sign on. The project sigfile is controlled by

 the project director and is processed when the

 signon ID signs on before the ID’s own sigfile

 is processed. SIGFILE=OFF or SIGFILE= disables

 the project sigfile.

 TERMINAL={mm|hhH|IGNORE} _

 The TERMINAL parameter specifies the amount of

 terminal time to be added to the maximum

 terminal-time allotment. "mm" specifies

 minutes of terminal time, "hhH" specifies hours

 ADD Accounting Command 275

 MTS 5: System Services

 May 1983

 of terminal time, and IGNORE specifies an
 unlimited amount of terminal time. Decimal
 points and minus signs are permitted.

 The following "keyword" parameters control the format and

 extent of the output produced by the command.

 {HEADING|NOHEADING|NHEADING} _ ___ __

 The HEADING parameter forces a skip to the next

 page followed by the printing of the heading.

 NOHEADING suppresses the page skip and the

 printing of the heading. HEADING is effective

 only when LIST=FULL is in effect.

 LIST={ALL|ON|OFF} _ _ __

 LIST={MAXIMUM|NOMAXIMUM} _ _ ___

 LIST={USED|NOUSED} _ _ ___

 LIST={REMAINING|NOREMAINING} _ _ ___

 LIST={FULL|BRIEF} _ _ _

 The LIST parameter controls the type and extent

 of output produced by the command. LIST=ALL

 produces an entry in the list for each signon

 ID in the signon range regardless of whether it

 was changed. LIST=ON produces an entry for

 each signon that was actually changed. LIST=

 OFF suppresses the listing. The default is

 LIST=ON.

 LIST=MAXIMUM produces for each entry a line

 giving the maximum amounts allotted to each

 resource. LIST=NOMAXIMUM suppresses the print-

 ing of that line. The default is LIST=MAXIMUM.

 LIST=USED produces for each entry a line giving

 the used amounts for each resource. LIST=

 NOUSED suppresses the printing of that line.

 The default is LIST=USED.

 LIST=REMAINING produces for each entry a line

 giving the remaining amounts for each resource.

 LIST=NOREMAINING suppresses the printing of

 that line. The default is LIST=NOREMAINING.

 LIST=FULL produces the listing in column for-

 mat. LIST=BRIEF produces the listing in key-

 word format and only prints the keywords for

 the resources that were actually changed. The

 default is LIST=FULL.

 276 ADD Accounting Command

 MTS 5: System Services

 May 1983

 The above LIST parameters may be specified
 either individually or in a parenthesized list,
 e.g., LIST=(ALL,REMAINING).

 In addition, resource keywords without values
 may be specified to request the printing of
 that resource. Such a keyword specification
 implies BRIEF format, e.g.,

 ADD S001 DISK CHARGE=10

 will print the disk and new charge values in
 keyword format.

 PWCHANGE __

 The PWCHANGE parameter may be specified to
 display the setting of the MTS $SET PROJECTPW-

 CHANGE option by a signon ID, e.g.,

 ADD S001 PWCHANGE CHARGE=10

 will display the setting of the PROJECTPWCHANGE

 option and the new charge value. PWCHANGE

 implies BRIEF format.

 "filter" parameters may be given to specify restric-

 tions on the "sigrange" that is processed by the

 command. The filter is specified in the following

 form:

 {M[AX]|U[SED]|R[EM]}keyword operator value

 The M, U, and R abbreviations are not initial

 substring abbreviations, i.e., MCHARGE or MAXCHARGE

 are valid but MACHARGE is invalid.

 The keywords that may be filtered are CHARGE,

 CONCURSIG, DISK, EXPIRE, PLOT, and TERMINAL. The

 operators that may be used are <, <=, >, >=, and ¬=.

 Only MAX may be used with CONCURSIG and EXPIRE.

 Examples are:

 MAXCHARGE<7.50

 USEDDISK>=10

 MEXPIRE>6/30/83

 MCS¬=10

 REMTERMINAL<=60

 UPLOT>30

 Ingored maximums are treated as infinity, e.g.,

 UPLOT>30 includes IDs for which PLOT=IGNORE is in

 effect.

 ADD Accounting Command 277

 MTS 5: System Services

 May 1983

 With the above examples, only the signon ID or IDs
 in "sigrange" that satisfy the filtering restriction

 are processed, e.g., the command

 ADD S001...S009 CHARGE=10 USEDCHARGE<100

 increases the maximum charge allotment by $10 only

 for those signon IDs in the sigrange that have used

 less than $100.

 278 ADD Accounting Command

 MTS 5: System Services

 May 1983

 CONTINUE ________

 Accounting Command Description

 Purpose: To continue the action of the previous command.

 Prototype: CONTINUE sigrange keyword ... [filter ...] ___

 Action: The CONTINUE command may be used to continue the action
 of the previous ADD, EQUALIZE, EXPIRE, MODIFY, or SUB-
 TRACT command except with a new "sigrange" and, optional-

 ly, new "keyword" parameters. Any new keyword parameters

 specified on the CONTINUE command override the same

 parameters given on the previous command. For example,

 the command sequence

 ADD S001 CHARGE=10 DISK=10

 CON S004 DISK=5

 is equivalent to the command sequence

 ADD S001 CHARGE=10 DISK=10

 ADD S004 CHARGE=10 DISK=5

 The "sigrange", "keyword", and "filter" parameters avail-

 able are the same as for the ADD command.

 CONTINUE Accounting Command 279

 MTS 5: System Services

 May 1983

 DELETE ______

 Accounting Command Description

 Purpose: To delete a signon ID.

 Prototype: DELETE signon-ID [option ...] ___

 Action: The DELETE command may be used to delete a single signon
 ID. The maximum resource allotments (charge, terminal
 time, and plot time) are set to their current used ____
 values, the disk space allotment is set to zero, the
 number of concurrent signons is set to one, the expira-
 tion date is set to the current time, and the "no change"

 flag is set. All disk space belonging to the signon ID

 is returned to the project and may be reassigned to other

 signon IDs.

 Verification is requested. Any response other than OK

 will cancel the command.

 Only the HEADING, NOHEADING, and LIST formatting options

 and the NOCHANGE parameter may be specified. They are

 described with the ADD command.

 A deleted signon ID may not be reinstated.

 280 DELETE Accounting Command

 MTS 5: System Services

 May 1983

 DISPLAY _______

 Accounting Command Description

 Purpose: To display the status of resource allotments.

 Prototype: DISPLAY {sigrange|PROJECT} [kwyword ...] ___

 Action: The DISPLAY command may be used to display the current
 values for the used and maximum resource allotments for a
 signon ID, a group of signon IDs, or a project.

 The "sigrange" and "keyword" parameters available are the

 same as for the ADD command, except that values are not

 permitted on keywords, e.g.,

 DISPLAY DISK CHARGE

 DISPLAY Accounting Command 281

 MTS 5: System Services

 May 1983

 EQUALIZE ________

 Accounting Command Description

 Purpose: To equalize the maximum resource allotments.

 Prototype: EQUALIZE sigrange keyword ... [filter ...] ___

 Action: The EQUALIZE command may be used to equalize the maximum
 resource allotments for a signon ID or a group of signon
 IDs. The equalization is performed by adding the
 resource values to the used (instead of the maximum) ____
 amounts to set a new maximum allotment. For example, the
 command

 EQUALIZE ENTIRE CHARGE=25

 will equalize the maximum charge allotments of the
 project so that each signon ID has $25.00 available in

 unused funds.

 The "sigrange", "keyword", and "filter" parameters avail-

 able are the same as for the ADD command.

 282 EQUALIZE Accounting Command

 MTS 5: System Services

 May 1983 Page Revised September 1985

 EXPIRE ______

 Accounting Command Description

 Purpose: To "expire" a signon ID or group of signon IDs.

 Prototype: EXPIRE sigrange keyword ... [filter ...] ___

 Action: The EXPIRE command may be used to "expire" a signon ID or

 a group of signon IDs. All of the maximum resource

 allotments (charge, disk space, terminal time, and plot

 time) are set to their current used values, the number of ____

 concurrent signons is set to one, the expiration date is

 set to the current time, and the "no change" flag is set.

 "keyword" parameters may be specified to override the

 setting of the above-mentioned resource allotments. In

 particular, the maximum disk space may set to zero by

 specifying DISK=-32768 so that the disk space used by the

 signon ID or IDs will become automatically available to

 the project when the files are destroyed.

 An "expired" signon ID may be reinstated with the ADD or

 MODIFY commands by setting NOCHANGE=OFF, setting a new

 expiration date, and adding funds.

 The "sigrange", "keyword", and "filter" parameters avail-

 able are the same as for the ADD command.

 EXPIRE Accounting Command 283

 MTS 5: System Services

 Page Revised September 1985 May 1983

| HELP ____
|
| Accounting Command Description
|
|
|
| Purpose: To obtain on-line assistance for ACCOUNTING.
|
| Prototype: HELP [topic] ___
|
| Action: The HELP command provides on-line assistance for the use
| of ACCOUNTING. If no parameter is specified, general
| assistance is provided; otherwise, assistance on a spe-
| cific "topic" is provided. For further information,

| enter the command

|

| HELP HELP

|

| The HELP command is under the control of the MTS command

|

| SET HELPMODE={LINE|SCREEN}

 284 HELP Accounting Command

 MTS 5: System Services

 May 1983 Page Revised September 1985

 MODIFY ______

 Accounting Command Description

 Purpose: To modify the maximum resource allotments.

 Prototype: MODIFY sigrange keyword ... [filter ...] ___

 Action: The MODIFY command may be used to change the maximum
 resource allotments for a signon ID or a group of signon
 IDs. The MODIFY command is similar to the ADD command
 except that that the resource allotments are set to a
 particular value instead of being increased by a particu-
 lar value.

 The "sigrange", "keyword", and "filter" parameters avail-

 able are the same as for the ADD command.

 In addition, the following parameter may be specified by

 nonstudent projects for the MODIFY command: __________

 PASSWORD

 The PASSWORD parameter may be specified by a

 project director to change the password of a

 single signon ID if the owner of that ID has

 issued the MTS command $SET PROJECTPWCHANGE=ON,

 e.g.,

 MODIFY S001 PASSWORD

 The project director will be prompted for both

 the password of the current signon ID and the

 new password of the signon ID being changed.

 In terminal mode, there will be a prompt to

 enter the new password a second time for

 verification. If desired, the responses to

 these prompts may be entered on the same line

 in which case the prompting message will be

 suppressed. In batch mode, the verification is

 not required.

 MODIFY Accounting Command 284.1

 MTS 5: System Services

 Page Revised September 1985 May 1983

 284.2 MODIFY Accounting Command

 MTS 5: System Services

 May 1983

 MTS, MCMD _________

 Accounting Command Description

 Purpose: To return to MTS command mode or to execute an MTS
 command.

 Prototype: MTS [MTS-command]

 MCMD MTS-command ___

 Action: The MTS command returns the user to MTS command mode. If
 an MTS command is included, it is executed.

 The MCMD command executes an MTS command in MTS command
 mode and then returns to accounting-management command
 mode.

 MTS commands may also be executed from the accounting
 management system by prefixing them with a dollar sign
 ($), e.g.,

 $DISPLAY TIME

 MTS, MCMD Accounting Command 285

 MTS 5: System Services

 May 1983

 RETURN ______

 Accounting Command Description

 Purpose: To return to the caller.

 Prototype: RETURN ___

 Action: The RETURN command returns to the caller (normally MTS
 command mode). This does not terminate the invocation of
 the $ACCOUNTING system.

 286 RETURN Accounting Command

 MTS 5: System Services

 May 1983

 SET ___

 Accounting Command Description

 Purpose: To set accounting-management system options.

 Prototype: SET option ...

 Action: The SET command may be used to change the status of
 various accounting-management system options. More than
 one option may be specified on the SET command; one or
 more blanks must separate each option.

 ECHO={ON|OFF|DEFAULT|*} Default: DEFAULT

 The ECHO option controls the echoing of input
 commands. ECHO=ON specifies that input lines are
 always echoed on the output device. ECHO=OFF speci-
 fies that input lines are never echoed. ECHO=
 DEFAULT or ECHO=* specifies that input lines are
 echoed only if the output device is different from
 the input device.

 INPUT={FDname|*} Default: *

 The INPUT option specifies the file or device from
 which input lines are read. By default, input lines
 are read from * which is the current setting of the
 MTS $SOURCE command. If an attention interrupt is

 given, the input is reset to *MSOURCE*. An end-of-

 file on input terminates the $ACCOUNTING system.

 LIST={ALL|ON|OFF} Default: ON

 LIST={MAXIMUM|NOMAXIMUM} Default: MAXIMUM

 LIST={USED|NOUSED} Default: USED

 LIST={REMAINING|NOREMAINING} Default: NOREMAINING

 LIST={FULL|BRIEF} Default: FULL

 The LIST parameter controls the type and extent of

 output produced by the command. LIST=ALL produces

 an entry in the list for each signon ID in the

 signon range regardless of whether it was changed.

 LIST=ON produces an entry for each signon that was

 actually changed. LIST=OFF suppresses the listing.

 LIST=MAXIMUM produces for each entry a line giving

 the maximum amounts allotted to each resource.

 LIST=NOMAXIMUM suppresses the printing of that line.

 SET Accounting Command 287

 MTS 5: System Services

 May 1983

 LIST=USED produces for each entry a line giving the
 used amounts for each resource. LIST=NOUSED sup-
 presses the printing of that line.

 LIST=REMAINING produces for each entry a line giving
 the remaining amounts for each resource. LIST=
 NOREMAINING suppresses the printing of that line.

 LIST=FULL produces the listing in column format.
 LIST=BRIEF produces the listing in keyword format
 and only prints the keywords for the resources that
 were actually changed.

 The above LIST parameters may be specified either
 individually or in a parenthesized list, e.g.,
 LIST=(ALL,REMAINING).

 OUTPUT={FDname|*} Default: *

 The OUTPUT option specifies the file or device to
 which output lines are written. By default, output
 lines are written to * which is the current setting
 of the MTS $SINK command. If an attention interrupt

 is given, the output is reset to *MSINK* if the

 input is not being read from *MSOURCE*.

 PROMPT={string|’string’|"string"}

 Default: $?

 The PROMPT option sets the accounting-management

 system prompting prefix. The prompting prefix may

 be from zero to sixteen characters in length. If

 the prefix string contains blanks or commas, it must

 be enclosed in primes or quotes.

 +groupname=sigrange

 A user-defined signon-ID range may be defined. The

 name of the range must begin with a plus sign (+).

 The contents of the range may consist of a single

 signon ID, a block of signon IDs, another defined

 signon-ID range, or a parenthesized combination of

 these, e.g.,

 SET +SINGLE=S001

 SET +BLOCK=S002...S004

 SET +GROUP=(S001 +BLOCK S005...S009)

 The defined signon-ID range may be used with any

 command requiring a signon-ID range parameter, e.g.,

 DISPLAY +BLOCK

 EQUALIZE (+BLOCK S005...S009) CHARGE=10

 288 SET Accounting Command

 MTS 5: System Services

 May 1983

 STOP ____

 Accounting Command Description

 Purpose: To terminate the accounting-management system session and
 return to the caller.

 Prototype: STOP ___

 Action: The accounting-management system session is terminated
 and control is returned to the caller (normally MTS
 command mode). All system workspace and buffers are
 released.

 STOP Accounting Command 289

 MTS 5: System Services

 May 1983

 SUBTRACT ________

 Accounting Command Description

 Purpose: To decrease the maximum resource allotments.

 Prototype: SUBTRACT sigrange keyword ... [filter ...] ___

 Action: The SUBTRACT command may be used to decrease the maximum
 resource allotments for a signon ID or a group of signon
 IDs.

 The "sigrange", "keyword", and "filter" parameters avail-

 able are the same as for the ADD command.

 290 SUBTRACT Accounting Command

 MTS 5: System Services

 May 1983 Page Revised September 1985

 APPENDIX A: DISPLAY STATUS INFORMATION _______________________________________

 The ACCOUNTING command may be used to display status information for
 any signon ID. The ACCOUNTING command is given in the form

 ACCOUNTING [statusopts]

 where "statusopts" specify one or more options that may be used to

 selectively filter the status information given about the current signon

 ID. The options are as follows:

 FULL ___

 Print all information. In addition to the items listed under

 NOFULL below, the following quantities are printed:

 amount of temporary file space

 cumulative figures for file storage

 CPU and wait-memory used

 CPU time used

 number of tape mounts

 tape-drive time used

 lines, images, sheets, and pages printed

 cards read and punched

 paper tape punched

 plotter paper used

 number of batch and terminal sessions

 expiration date and time

 FULL is the default in batch mode if no options other than

 HEADING or NOHEADING are specified.

 {NOFULL|¬FULL|-FULL} _ ___ ____ ____

 Print the maximum, used, and remaining figures for the

 following items:

 charge

 current file space

 concurrent signons

 terminal time

 plotter time

| external network time

 NOFULL is the default in conversational mode if no options

 other than HEADING or NOHEADING are specified.

 HEADING _

 Print a heading before the next line that contains a used

 amount. This is the default for the first such line printed.

 Appendix A: Display Status Information 291

 MTS 5: System Services

 Page Revised September 1985 May 1983

 {NOHEADING|¬HEADING|-HEADING} _ _ __ __

 Do not print a heading. If this option is specified, it
 should be first.

 {CHARGE|DOLLARS|FUNDS|$} _ __ __

 Print the remaining amount of funds for the user.

 {DISK|FILE} _ _

 Print the remaining amount of file space for the user.

 EXPIRE _

 Print the expiration date and time for the user.

 NETWORK _

 Print the remaining amount of outbound network connect time

 available to the user.

 PLOTTER _

 Print the remaining amount of plotter time available to the

 user.

 SIGNONS _

 Print the remaining number of concurrent signons permitted for

 the user.

 {TERMINAL|CONNECT} _ __

 Print the remaining amount of terminal connect time available

 to the user.

 One of the following modifiers may be appended to the CHARGE, DISK,

 SIGNONS, TERMINAL, PLOTTER, or NETWORK parameters or their

 synonyms. If a modifier is to apply to more than one parameter,

 the parameters may be separated by commas and grouped within

 parentheses, e.g., ($,DISK)@D.

 {@DETAILED|@FULL|@NOREMAINING|@¬REMAINING| __ __ __ _ ___

 @-REMAINING} ___

 Print the maximum, used, and remaining figures for the

 modified quantities rather than only the remaining amounts.

 292 Appendix A: Display Status Information

 MTS 5: System Services

 May 1983 Page Revised September 1985

 {@REMAINING|@NODETAILED|@¬DETAILED|@-DETAILED| __ __ _ ___ ___
 @NOFULL|@¬FULL|@-FULL} __ _ ___ ___

 Print only the remaining amounts for the modified quantities.
 This is the default if a modifier is not specified.

 The ACCOUNTING command may be used to print information regarding the
 signon IDs charge; current and cumulative file space; signons; terminal,
 plotting, and network time; CPU and wait-memory use; CPU time; I/O; and
 expiration time.

 If the command is given in conversational mode and no options are
 specified (other than HEADING or NOHEADING), the items listed for the
 parameter NOFULL are printed. If the command is given in batch mode and
 no options are specified (other than HEADING or NOHEADING), the items
 listed for the parameter FULL are printed in addition to those listed
 with NOFULL. If all information about an item is zero, no information
 normally is printed unless the item is specifically specified as a
 "statusopt". The information is current at the time the command is

 given with the exception that tape drive time and paper tape punched as

 well as the associated charges for these are not included for tapes

 currently mounted, nor are charges included for a concurrent signon

 using the same signon ID.

 It must be emphasized that the information printed is only approxi-

 mate. A user’s true position is indicated only by the monthly billing.

 Appendix A: Display Status Information 293

 MTS 5: System Services

 Page Revised September 1985 May 1983

| APPENDIX B: MULTILEVEL ACCOUNTING __________________________________
|
|
| In addition to being able to allocate resources to a group of signon
| IDs, Accounting Management may be set up to allow a higher-level manager
| to allocate resources to lower-level managers who in turn can reallocate
| the resources to the individual signon IDs. For example, a course
| instructor may allocate funds to teaching assistants who then may
| allocate those funds to the individual students.
|
| Each multilevel accounting structure may be viewed as a tree. Each
| of the branches is an accounting level; each of the leaves on a branch
| is a signon ID.
|
| Each accounting level will have one or more signon IDs and zero or
| more lower accounting levels attached to it. The one signon ID which is
| always attached to an accounting level is the signon ID that does the
| accounting management for that level.
|
| Each accounting level controls the maximums for the signon IDs and
| levels attached directly to it. The maximums for both signon IDs and
| levels are controlled by their immediately higher level, not subsequent-
| ly higher levels.
|
| The used quantities for a signon ID, as always, are the resources
| that have been expended or are currently in use. The used quantities
| for an accounting level are the resources that have been allocated to
| lower levels and signon IDs, whether or not these resources have
| actually been expended. If the used amount for a lower level or signon
| ID is greater than the maximum allocated, then this used amount is
| included in the used amount of the higher level.
|
| The use of Accounting Management with higher levels is the same as
| described for single levels with the following differences:
|
| (1) In the listing, an L beneath the signon ID indicates that this
| is an accounting level rather than a signon ID. The level
| should be specified on commands to Accounting Management by
| using the level ID, which is the same as the signon ID that
| manages the level. Accounting Management knows whether the ID
| should refer to an accounting level or to a signon ID.
|
| (2) Only signon IDs have passwords and sigfiles. Therefore, the
| PASSWORD, PWCHANGE, SIGFILE, and SFATTN keywords are not applic-
| able to accounting levels.
|
| (3) The DELETE command may not be used for accounting levels.
|
| (4) To determine how much has actually been used by all signon IDs
| belonging to all lower levels, use the LIST=ACTUALUSED keyword.
| This will print these amounts as an additional set of quantities
| in the listings for the accounting levels. For single levels
| that contain only signon IDs, this is the same information as

 294 Appendix A: Display Status Information

 MTS 5: System Services

 May 1983 Page Revised September 1985

| the amounts used by the level, but it requires additional
| processing time to produce it.

| Examples of Multilevel Projects

 Appendix A: Display Status Information 294.1

 MTS 5: System Services

 Page Revised September 1985 May 1983

 294.2 Appendix A: Display Status Information

 MTS 5: System Services

 May 1983

 INDEX _____

 <EFL>, 103 BLAST linkage editor command, 166
 <FIX>, 103 Block data subprogram, 94
 Block of signon ID’s, 248
 $ACCOUNTING command, 239 Blocking, 11, 12, 21-24, 49, 50,

 52, 77-80

 *LIBRARY, 84 Blocking utility, (See Blocking)

 *LINKEDIT, 159 BREAK object-file editor modifier,

 *OBJLIST, 87 230

 *OBJSCAN, 87 BREAK object-file editor parame-

 *OBJUTIL, 97, 207 ter, 208

 BTCRPL option, 92

 A linkage editor modifier, 180 Byte, 12

 Account status, 240

 Accounting, 239 CALL option, 37, 73

 Commands, 242 Character sorts, 13-04, 18, 34,

 File space, 245, 252, 252 72, 74

 Heading, 264 Charge, 239

 Keywords, 242, 250 CHARGE Accounting keyword, 243,

 Listing, 263 274

 Project maximums, 239, 250 CHECK linkage editor modifier, 181

 Signon ranges, 242, 248, 273 CHK SORT parameter, 26

 Signon-range filters, 257, 276 CLEAR linkage editor command, 166

 Signon-range groups, 249, 273, CLEAR object-file editor command,

 287 215

 Status, 246, 250 CLOSE object-file editor command,

 Totals, 250 215

 ADD Accounting command, 243, 273 Collating field, 12, 18, 37, 48,

 ADD linkage editor command, 165 51, 72-76

 ADD object-file editor command, Collating sequence, 12, 19, 34,

 215 35, 37, 48, 56, 72-76

 Adding, Accounting, 243 COM record, 89, 139, 198

 Additional parameters, SORT, 25-28 COMBINE linkage editor command,

 Address sort, 57, 67 167, 195

 ALI record, 89, 142, 198 COMGEN object-file editor modi-

 ALIAS linkage editor command, 165 fier, 230

 ARL SORT parameter, 29 Commands, Accounting, 242

 ATTRIBUTE linkage editor command, COMMENT linkage editor command,

 165 167

 Average record length, SORT, 29, COMMENT object-file editor com-

 51 mand, 216

 Common section, 93, 94

 Batch priority, 259, 260 COMSAVE linkage editor modifier,

 BC linkage editor modifier, 181, 181

 197 COMSAVE linkage editor parameter,

 Index 295

 MTS 5: System Services

 May 1983

 160 DIRECTORY object-file editor pa-
 COMSAVE object-file editor modi- rameter, 209
 fier, 230 DISK Accounting keyword, 252, 274
 COMSAVE object-file editor parame- Disk space, 245, 252
 ter, 208 DISPLAY Accounting command, 246,
 Concurrent signons, 254 281
 CONCURSIG Accounting keyword, 254, DISPLAY linkage editor command,
 274 169, 204
 CONTINUE Accounting command, 246, DISPLAY object-file editor com-
 279 mand, 217
 Control section, 86, 93 DLR object-file editor modifier,
 Control statement, SORT, 17, 57, 231
 62, 63, 65, 67, 67, 68, 81 DLR object-file editor parameter,
 Copy, 18 209
 COPY linkage editor command, 168 DMD object-file editor modifier,
 CREATE object-file editor command, 231
 216 DMD object-file editor parameter,
 Csect, 86, 93, 94 209
 CSECT linkage editor command, 168 DPI SORT parameter, 29
 CSECT linkage editor modifer, 182 DUMP linkage editor command, 170
 CSECT object-file editor command, Duplicate records, SORT, 26, 56
 217 Dynamic loader, 83
 CSI record, 116, 194, 196 Dynamic loading, 98, 99
 Current link level, 148
 Current option, 149 ECHO Accounting option, 265, 287
 Current storage level, 148, 158 EDIT object-file editor command,
 218
 Data sets, SORT, (See also Input Efficiency, SORT, 20, 24, 27, 28,
 and Output), 21-24, 75 34, 42, 49, 50, 56, 58
 Deblocking, (See Blocking) EMPTY linkage editor modifier, 182
 Deblocking utility, (See Blocking) EMPTY linkage editor parameter,
 DEBUG command, 84, 99, 147 160
 DEC SORT parameter, 26 EMPTY object-file editor command,
 DEF object-file editor modifier, 219
 230 EMPTY object-file editor modifier,
 DEF record, 89, 138, 198 231
 Defined sequence, 20, 34, 56, 74 EMPTY object-file editor parame-
 DEFSAVE object-file editor modi- ter, 209
 fier, 231 END record, 86, 104, 118
 DEFSAVE object-file editor parame- END SORT parameter, 25
 ter, 209 ENT record, 89, 104, 138, 198
 DEL SORT parameter, 26, 51, 56 ENTIRE Accounting keyword, 248,
 DELETE Accounting command, 245, 273
 280 ENTRY linkage editor modifer, 183
 DELETE linkage editor command, 168 ENTRY linkage editor modifier, 182
 DELETE object-file editor command, Entry point, 104
 217 EQUALIZE Accounting command, 244,
 Deleting a signon ID, 245 282
 DIO SORT parameter, 29 Equalizing, Accounting, 244
 DIR library, 98 ERRMAP option, 110
 DIR record, 97, 145, 198 Errors, SORT, 29, 30, 39, 40, 51,
 DIRECTORY object-file editor modi- 59, 63, 66, 68
 fier, 231 ESD record, 86, 113, 194, 195

 296 Index

 MTS 5: System Services

 May 1983

 ESID, 87 INCLUDE object-file editor com-
 Exits, SORT, 30-41, 41, 49, 63, mand, 220
 67, 68 Index number, 148
 Expiration time, 252 Initial ESD list, 100
 EXPIRE Accounting command, 244, INPUT Accounting option, 265, 287
 283 Input, SORT, 21-24, 29, 31, 33,
 EXPIRE Accounting keyword, 252, 39, 48, 49, 50, 51, 57, 75
 274
 Expiring a signon ID, 244 Keywords, Accounting, 242, 252
 EXPLAIN object-file editor com-
 mand, 219 LCS record, 90, 140, 198
 External dsect, 94 LCSYMBOL, 103
 External symbols, merging, 94 LDT record, 90, 104, 137, 198
 LENGTH linkage editor modifer, 184
 FDUB, SORT, 31, 36, 39, 40, 57 LENGTH object-file editor modi-
 File space, 245, 252 fier, 232
 FILL object-file editor parameter, LIB record, 95, 143, 199
 210 LIBRARY object-file editor modi-
 FILL option, 91 fier, 232
 FORTRAN output, sorting, 15-06 LIBRARY object-file editor parame-
 FREESPAC subroutine, 148, 158 ter, 210
 FULL linkage editor modifier, 183 LIBSRCH option, 84
 FULL object-file editor modifier, Line library, 98
 232 Link level, 148
 Funds, 239 LINK subroutine, 99, 147
 Linkage editor, 159
 GAPSIZE linkage editor modifier, Linkage editor commands, 162
 183 LIO SORT parameter, 27
 GAPSIZE linkage editor parameter, LIST Accounting keyword, 263, 276
 160 LIST Accounting option, 287
 GAPSIZE object-file editor modi- LIST linkage editor command, 170
 fier, 232 LIST object-file editor command,
 GAPSIZE object-file editor parame- 220
 ter, 210 Listing, Accounting, 250, 263
 GENSAVE linkage editor modifer, LOAD command, 84, 99, 147
 184 LOAD subroutine, 99, 147
 GENSAVE linkage editor parameter, Loader, 83
 160 Loader map, 110
 GETSPACE subroutine, 88, 147, 158 LOADINFO subroutine, 88
 Low priority, 260
 Halfword, 12 Low-core symbol dictionary, 101
 HEADING Accounting keyword, 264, LOWPRIO Accounting keyword, 260,
 276 274
 Heading, Accounting, 264
 HELP object-file editor command, Magnetic tapes, SORT, 28, 50
 220 Map, 111
 Highest option, 149, 158 MAP linkage editor command, 172
 Highest storage level, 148, 158 MAP object-file editor command,
 222
 I/O error, SORT, 29, 30, 39, 40, Maximum storage index number, 148
 51 MBY SORT parameter, 29
 INCLUDE linkage editor command, MCMD Accounting command, 285
 170 MCMD linkage editor command, 172

 Index 297

 MTS 5: System Services

 May 1983

 MCMD object-file editor command, OPT record, 90, 142, 199
 222 Optimization, SORT, (See
 MDL option, 91 Efficiency)
 MDL record, 90, 140, 199 OPTIMIZE object-file editor modi-
 Merge, 11, 12, 18, 20, 31 fier, 233
 MERGE bit, 100 OPTIMIZE object-file editor param-
 MISCSAVE linkage editor modifer, eter, 210
 184 ORL linkage editor modifier, 186
 MISCSAVE linkage editor parameter, ORL linkage editor parameter, 160
 160 ORL object-file editor modifier,
 MISCSAVE object-file editor modi- 233
 fier, 233 ORL object-file editor parameter,
 MISCSAVE object-file editor param- 210
 eter, 210 OUTPUT Accounting option, 265, 287
 MNR SORT parameter, 27 Output, SORT, 21-24, 29, 35, 36,
 MODIFY Accounting command, 244, 40, 49, 50, 51, 57, 75
 284
 MODIFY linkage editor command, Page, 147
 172, 200, 204 Parameters, SORT, 25-28
 MODIFY object-file editor command, Parameters, SORT numeric, 58, 63,
 222 66, 68
 Modifying, Accounting, 244 PASSWORD Accounting keyword, 262,
 Money, 239 284
 MSG record, 90, 141, 199 PATCH object-file editor command,
 MSGSAVE linkage editor modifier, 224
 185 PDMAP option, 111
 MSGSAVE linkage editor parameter, PGNTTRP, SORT, 30
 160 PGS SORT parameter, 29
 MSGSAVE object-file editor modi- PLOT Accounting keyword, 256, 275
 fier, 233 Plotting time, 256
 MSGSAVE object-file editor parame- PL1SYM, 103
 ter, 210 POINT library, 98
 MTS Accounting command, 285 POP option, 91
 MTS linkage editor command, 174 Predefined map, 111
 MTS object-file editor command, Priority, 259, 260
 223 Private control section, 94
 PRMAP option, 110
 NAME linkage editor modifier, 185 Program interrupt, SORT, 29, 30,
 NCA record, 90, 139, 199 40, 51
 NCALCS option, 91 Program mask, SORT, 30
 NOCHANGE Accounting keyword, 257, PROJECT Accounting keyword, 250
 275 Project maximums, 239, 250
 Normal priority, 259 Project status, 250
 NORMPRIO Accounting keyword, 259, PROMPT Accounting option, 265, 287
 275 Psect, 94
 Notation, SORT prototype, 16 Pseudo-register, 93
 NULMSG option, 91 Pseudo-register map, 110
 NV linkage editor modifier, 185 PUNCH linkage editor command, 174
 PUNCH object-file editor command,
 Object module, 83, 85, 205 225
 Object module library, 95 PURGE linkage editor command, 174,
 Object-File Editor, 207 196
 OM linkage editor modifier, 185 PUSH option, 91

 298 Index

 MTS 5: System Services

 May 1983

 PWCHANGE Accounting keyword, 276 Setting global parameters,
 Accounting, 265
 QUIT object-file editor parameter, SFATTN Accounting keyword, 261,
 211 275
 SIG, SORT, 27, 31, 33, 35, 39, 40,
 REC SORT parameter, 27 41
 Record, 12 SIGFILE Accounting keyword, 260,
 Relocation factor, 111 275
 RENAME linkage editor command, 175 SIGFILE attentions, project, 261
 RENAME object-file editor command, SIGFILE, project, 260
 225 Signon file attentions, project,
 REP record, 92, 137, 199 261
 REPGEN object-file editor modi- Signon file, project, 260
 fier, 233 Signon ranges, 242, 248, 273
 REPLACE linkage editor command, Signon-range filters, 257, 276
 175 Signon-range groups, 249, 273, 287
 REPLACE object-file editor com- Signons, concurrent, 254
 mand, 225 SLI linkage editor modifier, 186,
 REPLACE object-file editor parame- 197
 ter, 211 SLOTS object-file editor modifier,
 REPSAVE object-file editor modi- 234
 fier, 234 SLOTS object-file editor parame-
 REPSAVE object-file editor parame- ter, 211
 ter, 211 SNIFF object-file editor command,
 RERUN command, 84, 99, 147 228
 RES SORT parameter, 27, 50 SORT, (See also item desired or
 Resetting passwords, 262 Table of Contents), 11, 12, 18
 RESTART command, 149 Address sort, 57, 67
 Restricted parameters, SORT, 29 Average record length, 29, 51
 RETURN Accounting command, 286 Blocking, 12, 21-24, 49, 50,
 Return codes, SORT, 30, 31, 33, 52, 77-80
 35, 37, 39, 40, 41, 57 Character sorts, 13-04, 18, 34,
 RETURN linkage editor command, 176 72, 74
 RETURN object-file editor command, Collating field, 12, 18, 37,
 226 48, 51, 72-76
 RIP record, 92, 96, 144, 199 Collating sequence, 12, 19, 34,
 RLD record, 86, 117, 194, 196 35, 37, 48, 56, 72-76
 RUN command, 84, 99, 147 Control statement, 17, 57, 62,
 63, 65, 67, 67, 68, 81
 SAVESD option, 91 Copy, 18
 SCAN linkage editor command, 176, Data sets, 21-24, 75
 200 Defined sequence, 20, 34, 56,
 SCAN object-file editor command, 74
 226 Duplicate records, 26, 56
 Section map, 111 Efficiency, 20, 24, 27, 28, 34,
 Segment, 147 42, 49, 50, 56, 58
 Sequential library, 97 Errors, 29, 30, 39, 40, 51, 59,
 SET Accounting command, 249, 265, 63, 66, 68
 287 Exits, 30-41, 41, 49, 63, 67,
 SET linkage editor command, 177 68
 SET object-file editor command, FORTRAN output, 15-06
 227 Input, 21-24, 29, 31, 33, 39,
 SETIOERR, SORT, 30 48, 49, 50, 51, 57, 75

 Index 299

 MTS 5: System Services

 May 1983

 Merge, 12, 18, 20, 31 SYMSAVE object-file editor parame-
 Mode, 18 ter, 211
 Notation, prototype, 16 SYMTAB option, 88, 99
 Numeric parameters, 58, 63, 66,
 68 TERMINAL Accounting keyword, 255,
 Output, 21-24, 29, 35, 36, 40, 275
 49, 50, 51, 57, 75 Terminal priority, 259, 260
 Program interrupt, 29, 30, 40, Terminal time, 255
 51 TERSE linkage editor modifer, 187
 Program mask, 30 TERSE linkage editor parameter,
 Restart, 27, 50 161
 Return codes, 30, 31, 33, 35, TERSE object-file editor modifier,
 37, 39, 40, 41, 57 235
 Simple character sorts, 13-04 TERSE object-file editor parame-
 Subroutine, 57, 57-70 ter, 211
 Tape-merge facility, 28 Timing, SORT, 42-47, 60, 64, 67,
 Timing, 42-47, 60, 64, 67, 69 69
 Virtual data set, 57, 58, 62, Totals, Accounting, 250
 65 TPS SORT parameter, 28
 SORT linkage editor modifier, 186 TXT record, 86, 115, 194, 196
 SORTEA, 41 TYPE linkage editor modifier, 187
 SORTE0, 30, 30-41 TYPE object-file editor modifier,
 SORTE1, 31, 49, 54 235
 SORTE2, 33, 49, 51
 SORTE3, 35, 49, 51, 51 Unblocking, (See Blocking)
 SORTE4, 36, 49, 51, 54 Unblocking utility, (See Blocking)
 SORTE5, 37, 49, 63, 67, 68, 73 UNDEF object-file editor modifier,
 SORTE6, 30, 39 236
 SORTE7, 30, 40 UNLINK linkage editor command, 178
 SORTE8, 30, 40, 63, 67, 68 UNLOAD command, 148
 SORTE9, 41 UNLOAD subroutine, 100, 148, 158
 SORT2, 57, 62-64 UPDATE linkage editor command, 179
 SORT3, 57, 65-67 UPDATE object-file editor command,
 SORT4, 57, 67-70 229
 SPIE, SORT, 30 UPDATE object-file editor parame-
 START command, 149 ter, 211
 Statistics, SORT, 51
 Status, Accounting, 246, 250 V linkage editor modifier, 188
 STOP Accounting command, 289 VERBOSE linkage editor modifer,
 STOP linkage editor command, 178 188
 STOP object-file editor command, VERBOSE linkage editor parameter,
 228 161
 Storage index number, 100, 148 VERBOSE object-file editor modi-
 SUBTRACT Accounting command, 243, fier, 236
 290 VERBOSE object-file editor parame-
 Subtracting, Accounting, 243 ter, 211
 SYM record, 86, 119 VERIFY linkage editor parameter,
 SYMSAVE linkage editor modifer, 161
 187 VERIFY object-file editor modi-
 SYMSAVE linkage editor parameter, fier, 236
 160 VERIFY object-file editor parame-
 SYMSAVE object-file editor modi- ter, 212
 fier, 234 Virtual data set, 57, 58, 62, 65

 300 Index

 MTS 5: System Services

 May 1983

 Virtual memory, 147 161

 WARN option, 91 XCTL subroutine, 99, 147
 Word, 12 XREF linkage editor command, 179
 WXLCS option, 92 XREF object-file editor command,
 WXTOER linkage editor modifer, 188 229
 WXTOER linkage editor parameter,

 Index 301

 MTS 5: System Services

 May 1983

 302 Index

 Reader’s Comment Form

 System Services
 Volume 5
 May 1983

 Errors noted in publication:

 Suggestions for improvement:

 303

 Your comments will be much appreciated. The completed form may be sent
 to the Computing Center by Campus Mail or U.S. Mail, or dropped in the
 Suggestion Box at the Computing Center, NUBS, or UNYN.

 Date ────────────────────

 Name ───

 Address ──

 ──

 ──

 Publications
 Computing Center
 University of Michigan
 Ann Arbor, Michigan 48109

 304

 Update Request Form

 System Services
 Volume 5
 May 1983

 Updates to this manual will be issued periodically as errors are noted
 or as changes are made to MTS. If you desire to have these updates
 mailed to you, please submit this form.

 Updates are also available in the memo files at the Computing Center,
 NUBS, and UNYN; there you may obtain any updates to this volume that may
 have been issued before the Computing Center receives your form. Please
 indicate below if you desire to have the Computing Center mail to you
 any previously issued updates.

 Name ───

 Address ──

 ──

 ──

 Previous updates needed (if applicable):──────────

 The completed form may be sent to the Computing Center by Campus Mail or
 U.S. Mail, or dropped in the Suggestion Box at the Computing Center,
 NUBS, or UNYN. Campus Mail addresses should be given for local users.

 Publications
 Computing Center
 The University of Michigan
 Ann Arbor, Michigan 48109

 Users associated with other MTS installations (except the University of _______________________
 British Columbia) should return this form to their respective installa-
 tions. Addresses are given on the reverse side.

 305

 Addresses of other MTS installations:

 Publications Clerk
 352 General Services Bldg.
 Computing Services
 The University of Alberta
 Edmonton, Alberta
 Canada T6G 2H1

 Information Officer, NUMAC
 Computing Laboratory
 The University of Newcastle upon Tyne
 Newcastle upon Tyne
 England NE1 7RU

 Rensselaer Polytechnic Institute
 Documentation Librarian
 310 Voorhees Computing Center
 Troy, New York 12181

 Simon Fraser University
 Computing Centre
 User Services Information Group
 Burnaby, British Columbia
 Canada V5A 1S6

 Wayne State University
 Computing Services Center
 Academic Services Documentation Librarian
 5950 Cass Ave.
 Detroit, Michigan 48202

 306

