

 M T S

 The Michigan Terminal System

 VOLUME 12: PIL/2 IN MTS

 December 1974

 The University of Michigan Computing Center
 Ann Arbor, Michigan

 1

 DISCLAIMER

 This manual is intended to represent the current state of the Michigan
 Terminal System (MTS), but because the system is constantly being developed,
 extended, and refined, sections of this manual may become obsolete. The
 user should refer to the Computing Center Newsletter, Computing Center _________ ______ __________
 Memos, and future updates to this manual for the latest information about
 changes to MTS.

 2

 MTS 12: PIL/2 IN MTS

 December 1974

 PREFACE _______

 The software developed by the Computing Center staff for the operation of
 the high-speed processor computer can be described as a multi-processor
 supervisor that handles a number of resident, re-entrant programs. Among
 them is a large subsystem, called MTS (Michigan Terminal System), for
 command interpretation, execution control, file handling, and accounting
 maintenance. Most users interact with the computer’s resources through MTS.

 The MTS manuals, a series that will eventually consist of a dozen or more
 volumes, describe in detail the hardware, software, and administrative
 policies of the Computing Center. The volumes now in print are listed
 below. The date indicates the most recent edition of each volume; however,
 since manuals are updated frequently by means of CCMemos, users should check
 the Memo list, or watch for announcements in the Newsletter, to be sure that __________
 their MTS manuals are fully up to date.

 Volume 1: MTS and the Computing Center, January 1973 ____________________________
 Volume 2: Public File Descriptions, April 1971 (reprinted with ___________________________
 updates 1-5, December 1972)
 Volume 3: Subroutine and Macro Descriptions, May 1973 _________________________________
 Volume 4: Terminals and Tapes, August 1974 ___________________
 Volume 5: System Services, March 1974 _______________
 Volume 10: BASIC in MTS, September 1974 ____________
 Volume 11: Plot Description System, April 1971 _______________________
 Volume 12: PIL/2 in MTS, December 1974 ____________
 Volume 13: Data Concentrator User’s Guide, August 1973 ______________________________

 Other manuals are in preparation. The numerical order of the volumes
 does not necessarily reflect the chronological order of their appearance;
 however, in general, the higher the number, the more specialized the volume.
 Volume 1, for example, introduces the user to MTS and the Computing Center,
 while Volume 10 deals exclusively with BASIC. The attempt to make each
 manual complete in itself and reasonably independent of others in the series
 naturally results in a certain amount of repetition. Public file descrip-
 tions, for example, may appear in more than one volume. However, this
 arrangement permits the user to buy only those manuals that serve his or her
 immediate needs.

 General Editors

 3

 MTS 12: PIL/2 IN MTS

 December 1974

 PREFACE TO VOLUME 12 ____________________

 PIL, the Pittsburgh Interpretive Language, was designed and implemented
 at the University of Pittsburgh. This manual describes the second version
 of PIL. The first version of PIL was documented in the second edition of
 Michigan Terminal System, Volume II, December 1967, and in another manual, __________________________
 Introduction to PIL in MTS, by Dr. Larry Flanigan, May 1968. Both of these __________________________
 manuals are now obsolete. PIL/2 in MTS is based on the second version of ____________
 PIL, with many modifications and additions for the implementation on the
 Michigan Terminal System.

 We wish to acknowledge Brent J. Ermlick, author of PIL/X, PITT ____________
 Interpretive Language for the DEC System-10 Computer, on which this manual __
 is based. However, this manual has been extensively revised and
 supplemented.

 Lynn R. Leader
 L. Bernard Tiffany

 4

 MTS 12: PIL/2 IN MTS

 December 1974

 Contents ________

 Preface 3 Part and Step Deletion . . . 45
 Extended Delete 45
 Preface to Volume 12 4 Storage Clean-up 46
 Program Stops 46
 Introduction 7 NUMBER Statement 46
 Error Reporting 47
 Terminal Description 10 Program Restart 50
 Editing 10 Extended I/O List Features . . 52
 Attention Interrupts 12 I/O FOR Lists 52
 FORMs 53
 Modes of Operation 14 Numerical Fields--Standard . 53
 Direct Mode 14 Numerical Field--Scientific
 Indirect Mode 14 Notation 54
 Parts and Steps 14 Numerical Fields--Modified
 Standard 54
 Variables and Constants 17 Alphanumeric Fields 55
 Constants 17 Text Material Defined in
 Variables 18 the FORM 56
 Field Stop Code--Field
 Expressions 21 Delimiter 56
 Arithmetic Expressions 21 Special-Purpose Fields . . . 58
 Boolean Expressions 25 Character Strings as FORMs . 59
 Character Expressions 27 Literal FORMs 59
 String Comparison 27 Expressions in FORM
 String Functions 28 References 59
 String Manipulation 29 Formed Output 60
 Formed Input 61
 Language Statements 32 Error and Resume with
 Comments 32 Formed I/O 62
 Assignment Statements 32 Free Formed I/O 64
 SET Statements 32 Rules Governing Free Formed
 SWAP Statement 33 Output 65
 Conditional Statements 33 Rules Governing Free Formed
 Simple I/O 35 Input 66
 TYPE Statement 35 TYPE FORM N 67
 DEMAND Statement 36 TYPE ALL FORMS 68
 Iteration Statements 38 Form Deletion 68
 FOR Statements 38 Auxiliary I/O 68
 FOR Conditional Keywords . . 39 WRITE Statements 69
 FOR Control 40 READ Statements 70
 Transfer of Control 42 Control Operations 71
 DO Statement 42 DELETE ASSIGNMENT N 73
 DO String 43 TYPE ASSIGNMENT N 73
 TO Statement 43 Program Management 74
 Deletion Statements 44 Pagination 74
 DELETE Statement 44 Program Saving 75
 Variable Deletion 44 Program Loading 76

 5

 MTS 12: PIL/2 IN MTS

 December 1974

 Appendix A. Summary of PIL
 Table 1. Arithmetic Operators Statements 84
 and Functions 78
 Appendix B. The Michigan
 Table 2. Boolean Operators . . . 81 Terminal System 85

 Table 3. String Operators and Appendix C. EBCDIC Character Set 87
 Functions 82
 Index 89
 Table 4. Precedence Order . . . 83

 6

 MTS 12: PIL/2 IN MTS

 December 1974

 INTRODUCTION ____________

 This manual describes PIL, the Pitt Interpretive Language, as modified
 for use under MTS; it is based on the second version of PIL, PIL/2.
 Currently the University of Pittsburgh uses a third version of PIL, PIL/X;
 which is implemented on their PDP-10s, and thus is not compatible for use
 with MTS.

 PIL is similar to earlier conversational languages such as JOSS¹ and
 TELCOMP² with major differences in debugging facilities, error reporting,
 and problem-solving capabilities. Unlike the compiler languages PL/1,
 FORTRAN, and ALGOL, PIL, an interpretive language, provides the user with
 much greater assistance through the use of terminal diagnostics, user
 interaction with the machine, and associated error-recovery procedures. PIL
 differs from compilers by providing direct man-machine interaction facili-
 ties, and from earlier conversational languages in the relaxation of
 restrictions that they imposed upon the user.

 A major goal in the design of PIL was to allow a user to recover errors
 as he worked toward a solution for a particular problem. When the user
 needs to make corrections or improvements, PIL allows him to alter his
 program and to continue without starting anew.

 PIL is oriented toward problem-solving, with program development and
 debugging facilities having highest priority. For the beginning user, PIL
 was designed to be clear, unambiguous, and hence, easily learned. For the
 experienced programmer, the language offers increased flexibility with
 statement structure and expanded capabilities for the solution of non-
 numeric problems. For the researcher, PIL reduces the amount of time and
 effort that must be expended in problem solving.

 PIL is an interactive language and, as such, has limited application for
 batch users. Although it may be run in batch mode, any error condition
 encountered is likely to produce undesired results. In batch mode, all
 non-data input lines are echoed to the printer, thus providing a complete
 printed record of the session. Except for these differences, batch
 execution of PIL is essentially the same as conversational (terminal)
 execution.

 Every statement in PIL begins with a keyword and terminates with an
 optional period followed by a carriage return, which transmits the statement
 to the computer. Periods do not always indicate the end of the statement,
 since they can be contained within a numerical or string constant such as
 27.98 or ".". (See the section on variables, for an explanation of the

 ¹Developed by C. Shaw at the RAND Corporation, Santa Monica, California.
 ²Developed by Bolt, Beranek, and Newman, Cambridge, Massachusetts.

 Introduction 7

 MTS 12: PIL/2 IN MTS

 December 1974

 terms, "numerical constant" and "string constant".) For example, the

 statement

 *SET a=34.

 is equivalent to

 *SET a=34

 Some statements contain more than one keyword. For example:

 *IF a = 3, SET a = 4.

 has two keywords, IF and SET.

 In this manual, keywords will always appear in capital letters. Users

 should note, however, that in actual practice, PIL ignores the case of

 keywords. Therefore, keywords may be typed in any combination of uppercase

 and lowercase, i.e., SET, set, and Set are the same keyword to PIL.

 Keywords specify what is to be done and consequently have certain rules

 associated with them. The language interpreter uses three criteria to

 identify keywords: (1) the location of the word in the statement, (2) the

 first four letters of the word³, and (3) word separation. Therefore,
 keywords do not have to be reserved names. Thus

 *SET SET = 27.98.

 is a legal statement in the language. The first SET is recognized as a

 keyword because it is the first word in the statement; the first word

 specifies the action to be taken. A variable name is expected between a

 keyword and an equal-sign. Since SET follows the rules for variable naming

 (see the section on variables for these rules), it is legal and unambiguous.

 PIL uses an asterisk (*), as a prefix character to request a PIL command,

 and uses a question mark (?) as a prefix character when requesting data or

 values.

 PIL executes a statement in one of two modes: direct mode (desk

 calculator mode) or indirect mode (stored program mode). In direct mode,

 the terminal behaves like a very sophisticated desk calculator. A statement

 is accepted by PIL, immediately executed (before more input is requested),

 and then lost except for its effect (i.e., to re-execute the statement, it

 must again be entered from the terminal). Current values given to variables

 are kept from statement to statement, so that one has in essence, a desk

 calculator with storage (memory) available and several quite sophisticated

 function "buttons" to push. Use of PIL in direct mode is convenient for

 some applications, but is obviously quite limited since one cannot re-

 execute statements except by typing them again. Indirect mode overcomes

 this problem by allowing the user to put together sequences of PIL

 ³All keywords may be abbreviated by their first four letters. Characters
 after the fourth are not checked for validity.

 8 Introduction

 MTS 12: PIL/2 IN MTS

 December 1974

 statements (called "parts") into a program which can be executed as a

 sequence as many times as the user wishes, since the part is not lost when

 it is executed (i.e., the part need not be retyped to use it a second time).

 Normal PIL usage is a blend of direct and indirect modes, using direct mode

 to control the execution of the various parts in indirect mode.

 Please note that the examples in this manual are not continuous parts of

 the same terminal session; they have been chosen only to illustrate portions

 of the text.

 Introduction 9

 MTS 12: PIL/2 IN MTS

 December 1974

 TERMINAL DESCRIPTION ____________________

 The PIL user sits at a computer terminal, a device very similar to a
 standard typewriter except that it is connected to the computer over
 standard telephone lines. First, the user dials one of the telephone
 numbers listed below to establish connection with the computer.

 Memorex 1270 763-0300
 Data Concentrator 763-1500

 Once a connection line has been established, the line is always open and the
 computer is always listening (unless, of course, the system has crashed).
 The user converses with the computer by typing in statements or data. For
 more complete information concerning the use of computer terminals and MTS,
 consult MTS Volume 1, MTS and the Computing Center. ___ ___ ___ _________ ______

 PIL will type an asterisk (*) at the beginning of a line when it is ready
 to receive a command or an indirect statement. A question mark (?) is used
 as a prefix character when PIL is ready to receive data. When a prompting
 character is printed by PIL, the user should enter a PIL statement, PIL
 command, or the appropriate data immediately to the right of the character.
 The user must then enter the line by pressing a return key, which closes the
 line and sends the information to the computer.

 MTS supports a diversity of computer terminals. Some are equipped with
 only uppercase letters; others have both uppercase and lowercase letters.
 Some have certain characters that are not found in other terminals, such as
 a cent-sign (¢) or a back slash. Each terminal has its own protocol which
 must be followed. MTS Volume 1, MTS and the Computing Center, and Volume 4, ___ ___ ___ _________ ______
 Terminals and Tapes, should be consulted for full details on the characteri- _________ ___ _____
 stics of various terminals which are supported by MTS. In this manual, only
 Teletypes and IBM 2741s will be discussed.

 EDITING _______

 Editing facilities depend on both the user’s terminal and the transmis-
 sion control unit. There are five basic editing facilities.

 1. End-of-line Terminate the current line.

 2. Delete-line Delete the whole current line.

 3. Delete-previous Delete the previous character.

 10 Terminal Description

 MTS 12: PIL/2 IN MTS

 December 1974

 4. Literal-next Interpret the next character as the
 character itself.

 5. End-of-file Terminate the input data with a logical
 end-of-file.

 The following table shows which keys (or combinations of keys) the user must
 press to produce the various editing facilities according to terminal type
 and control unit.

 Teletype via Teletype via IBM 2741 via
 Memorex 1270 Data Concentrator either control unit
 ─── ┌ ┐ ┐ ┐
 | | | |
 End-of-line | RETURN, Control-Q,| RETURN or | RETURN |
 | or Control-S | Control-S | |
 |───| ┌ | | ┘
 Delete-line | Control-N | RUBOUT | Underscore |
 |───| ┌ | | ┘
 Delete-previous| Control-H | Control-H | Backspace |
 |───| ┌ | | ┘
 Literal-next | Control-P | Control-P | Exclamation point |
 | | | (!) |

 |───| ┌ | | ┘
 End-of-file | Control-C | Control-C | Cent sign (¢) |

 ───┘ └ └ └

 2741 users should note that they have to type !!, !¢, and !_ to enter the

 characters !, ¢, and _, respectively. Uppercase conversion can be turned

 off via the PIL command

 *CONTROL ’UC=OFF’ ON ’*MSINK*’.

 Then, both upper and lowercase letters may be entered.

 PIL provides its own editing facilities in addition to those the

 terminals provide. They are:

 1. If the last non-blank character in an input line is an asterisk (*),

 then the whole line is deleted. For example:

 * This line is ignored*

 2. If the last character is a minus sign (-), then PIL will assume that ____

 the next line is to be attached to the current line to form one

 logical line. The minus sign is not considered to be part of the

 logical line; the line continues with no blanks inserted. The

 maximum length of a logical line in PIL is 255 characters. If the

 user enters more than 255 characters, the line is truncated without

 warning. PIL uses an ampersand (&) as the prefix character for

 continued lines.

 Terminal Description 11

 MTS 12: PIL/2 IN MTS

 December 1974

 *TYPE 1+2+-
 &3+4

 is the same as

 *TYPE 1+2+3+4

 ATTENTION INTERRUPTS ____________________

 The user may interrupt PIL at any time. The method of interrupting is
 dependent upon the kind of terminal and control unit.

 Teletypes via Memorex 1270: press BREAK key. If using a Model 35
 Teletype, then also press BRK RLS key.
 Teletypes via Data Concentrator: either press the BREAK key or
 Control-E (ENQ) key.
 IBM 2741s: press ATTN key.

 If PIL is interrupted while the user is in direct mode, the message

 INTERRUPTED!!

 will follow. A program may be interrupted with the message:

 INTERRUPTED AT STEP 3.89

 Control is returned to the PIL interpreter. At this point, any direct mode
 statement can be made (with the exception that an active FOR or DO statement
 can not be deleted).

 To return to MTS, the user must press the ATTN key twice. He will be met
 with:

 PIL ATTN!!

 and MTS replies with a "#" prefix character. To return to PIL, the user
 simply types in:

 $RESTART

 which causes PIL to regain control at the point at which it was interrupted.

 A sample terminal session is shown below. The user has entered in all
 lines shown in lowercase, as well as those with the asterisk (*) prefix
 character.

 12 Terminal Description

 MTS 12: PIL/2 IN MTS

 December 1974

 (The user dials 763-1500, which connects the terminal to the computer.)
 MTS : ANN ARBOR (DC16-0086)
 #signon xxxx
 #ENTER USER PASSWORD.
 ?pill
 #JOB-TYPE=TERMINAL, PRIO=NORMAL, CLASS=UNIV/GOVT
 #**LAST SIGNON WAS: 09:33.05
 # USER "XXXX" SIGNED ON AT 10:20.13 ON TUE AUG 27/74
 #run *pil
 #EXECUTION BEGINS
 PIL/2: READY
 *TYPE 125/5.
 125/5 = 25.0
 *TYPE 1.32 + 12.8/32.
 1.32 + 12.8/32 = 1.72
 *TYPE (sine of 12.8)**2+(cosine of 12.8)**2.
 (SINE OF 12.8)**2+(COSINE OF 12.8)**2 = 1.0
 *SET a = the square root of 9.
 *TYPE a, a**2.
 A = 3.0
 A**2 = 9.0
 *STOP
 EXECUTION TERMINATED
 #signoff
 #OFF AT 10:22.04 TUE AUG 27/74
 #ELAPSED TIME 2.733 MIN. $.12
 #CPU TIME USED 2.394 SEC. $.18
 #CPU STOR VMI .566 PAGE-MIN. $.03
 #WAIT STOR VMI .698 PAGE-HR.
 #DRUM READS 103
 #APPROX. COST OF THIS RUN IS $.33
 #DISK STORAGE 193 PAGE-HR. $.03
 #APPROX. REMAINING BALANCE: $20.53
 (The terminal is disconnected.)

 The example above shows a complete terminal session. The user with ID
 "xxxx" signs on. He runs *PIL, which then greets him with a short message:

 PIL/2: Ready

 The prompting character (*) is printed at the beginning of the next line.
 The user should then enter any PIL statement following the asterisk (*).

 To terminate the PIL session and return to MTS, the user enters a STOP
 statement. Finally, he signs off. The statistics are printed, including
 the cost of the terminal session. Then the terminal is automatically
 disconnected from the computer.

 Terminal Description 13

 MTS 12: PIL/2 IN MTS

 December 1974

 MODES OF OPERATION __________________

 DIRECT MODE ___________

 As previously mentioned, in direct mode, the terminal may be used as a
 sophisticated desk calculator, permitting the user to evaluate arithmetic
 expressions, determine the value of functions, and store results for later
 use.

 Statements in direct mode result in an immediate response by PIL. After
 execution of a direct mode statement, the statement is not retained, but any
 variables defined by it (and their values) are.

 In direct mode, errors are reported immediately. After the user has
 corrected them, he must retype the statement. The sample terminal session
 in the previous section was comprised of direct mode statements.

 INDIRECT MODE _____________

 Indirect statements are retained until the programmer requests that they
 be executed, and then are processed in a sequence defined by part and step
 numbers. Indirect statements comprise a stored program, as in FORTRAN or
 ALGOL, while the desk calculator mode is unique to conversational languages.
 The user may use either mode at any given time to best solve his problem.

 Parts and Steps _______________

 Programs are divided into parts. A part is a collection of one or more
 steps (or statements) arranged in ascending order of step number. A part
 and step number, followed by a space, must precede every statement entered
 into a program.

 *1.05 SET data = 27.98.

 is an indirect mode statement, where .05 refers to the step number, and the
 integer 1, is the part number. Indirect statements may be typed in any
 order and will be inserted in their proper order according to part and step
 number by PIL.

 Part numbers must lie in the range from 1 to 9999 inclusive. A step
 number must lie in the range .0001 to .9999. As a unit, however, a total of

 14 Modes of Operation

 MTS 12: PIL/2 IN MTS

 December 1974

 only 7 digits can be specified. Therefore, 9999.9999 is an illegal part and
 step number. Step numbers may have an arbitrary increment between them
 (e.g., Step 1.1 would be followed by Step 1.95 if there were no steps
 between the values of 1.1 and 1.95).

 At any time the user may request the typing of any part, step, all parts,
 or some combination. Steps are referred to by both the part and step
 number.

 *TYPE step 1.5.
 *TYPE part 3.
 *TYPE all parts.
 *TYPE part 3, step 1.5.

 In typing a part or all parts, PIL types the most current version of the
 part. The steps within a part will be arranged in ascending order by step
 number.

 Processing of a stored program is initiated by a

 DO part n

 where "n" is the part number. Once started, PIL will execute the steps of
 the designated part in order by step number. Step 2.0000 does not follow ___
 step 1.9999 in execution since they are in different parts, although it will
 follow step 1.9999 in program listings. Since it is possible to change a
 program at any time, it is advisable to allow room between steps for
 insertions. Additions will automatically be placed in the correct numerical
 sequence.

 Comments may be typed and stored as part of a program. Following a part,
 step number, and blank, if the first character in the statement is an
 asterisk (*), the remainder of the statement is taken as a comment.

 *1.64 TYPE a,b,c.
 *1.65 *Output of intermediate results.

 To change the sample program shown in the previous section to indirect
 mode:

 #run *pil
 #EXECUTION BEGINS
 PIL/2: Ready
 *1.05 TYPE 125/5.
 *1.10 TYPE 1.32+12.8/32.
 *1.20 SET a = the square root of 9.
 *1.15 TYPE (sine of 12.8)**2 + (cosine of 12.8)**2.
 *1.25 TYPE a,a**2.
 *DO PART 1.
 125/5 = 25.0
 1.32 + 12.8/32 = 1.72
 (sine of 12.8)**2 + (cosine of 12.8)**2 = 1.0

 Modes of Operation 15

 MTS 12: PIL/2 IN MTS

 December 1974

 a = 3.0
 a**2 = 9.0

 16 Modes of Operation

 MTS 12: PIL/2 IN MTS

 December 1974

 VARIABLES AND CONSTANTS _______________________

 The SET statement may be utilized when the user desires to store
 information for later use.

 *SET a = 27.89.
 *SET c = 10.
 *SET b = 2.0+10.0.
 *TYPE a, b, c.
 a = 27.98
 b = 12.0
 c = 10.0
 *TYPE a+b/c.
 a+b/c = 29.18

 In the preceding example, a, b, and c are called variables, and the values
 stored in them are called numerical constants. A variable is a symbolic
 name which has a value that may change during execution of a program. A
 constant (which is not a symbolic name) has a value that cannot change.

 CONSTANTS _________

 Constants may be numerical, such as 3.1415 or 7; character (or string),
 such as "PIL/2" or "123="; or Boolean, such as The True or The False.
 Numerical constants are written as numbers with or without decimal point
 and/or sign. Any number of digits may be used to express a numerical
 constant, but only the seven most significant, starting with the first
 non-zero digit, are retained by PIL. Because a scaling factor is used, it
 is possible to represent both positive and negative numbers from 1.0*10**-65
 to 9.999999*10**64 inclusive. Numerical constants may also be expressed in
 scientific notation, e.g., 25E21 means 25*10**21, while 25E-20 means
 25*10**-20. (The special character string "**" indicates exponentiation.)

 Following is another example of a variable which is set to a numerical

 constant:

 *SET data = 5.3e5

 *TYPE data

 data = 530000.0

 In this example, 5.3E5 is the constant. The variable "data" has

 associated with it the numerical value of 530,000.

 A character string is any sequence of characters, including a null

 sequence, up to 255 characters in length. Any character may appear within

 the string except the hexadecimal value X’00’.

 Variables and Constants 17

 MTS 12: PIL/2 IN MTS

 December 1974

 A string constant is any character string enclosed by a pair of primes
 (’) or quotes ("), called delimiters. The constant begins in the column

 after the first delimiter and continues to the column before the next

 occurrence of the same delimiter. If a delimiter, such as an prime or a

 quote, is a character in the constant, it must be written as two primes or

 two quotes, with no intervening blanks. For example, ’it’’s’ is equivalent

 to "it’s". Note that the prime in this constant is a delimiter in the

 former example but is not in the latter example.

 In the following examples, "a", "b", "c", and "d" are set to string

 constants.

 *SET a = "A string of characters".

 *SET b = ’He said, "Punt".’

 *SET c = "That’s a good idea."

 *SET d = ’it’’s’.

 There are two Boolean constants, The True and The False, to which all

 Boolean expressions evaluate. Boolean arithmetic is discussed in the

 section on expressions.

 VARIABLES _________

 Variables provide a method for retaining intermediate results for use in

 subsequent computation.

 Variable names must conform to the following rules:

 1. The first character of the name must be a letter (either uppercase

 or lowercase).

 2. The remaining characters may be letters or numerals.

 3. The total number of characters in a variable name may not exceed

 eight.

 4. Uppercase letters are distinguished from lowercase. ___

 Examples:

 A, daTA, filename

 but not,

 DataName672 Too many characters

 17AC Starts with a numeral

 .GB Starts with a special character

 If "DataName672" is used as a variable name, an error message stating "Eh?

 SYMBOLIC NAME TOO LONG" is printed. Using either "17AC" or ".GB" results in

 the error message "Eh? INVALID SEQUENCE OF OPERATIONS".

 18 Variables and Constants

 MTS 12: PIL/2 IN MTS

 December 1974

 It is important for users to note that uppercase and lowercase letters
 are not equivalent in variable naming, as they are when indicating keywords.
 Thus, the variables "DATA" and "data" are distinct.

 In addition to variable names with a single value associated with each
 name, it is possible to have many values associated with a single variable
 name. Single- or multiple-dimension arrays (tables) make it possible to
 accomplish this. A subscripted variable must be used to indicate a specific
 value in the array. The subscripts must be separated by commas and enclosed
 in parentheses. For example, DATA(1,2) represents the second entry in the
 first row of a table called DATA. The general rules for subscripts are:

 1. Each subscript may be a constant, a variable, or a numerical
 expression.

 2. A subscript may take any numerical value between -999,999 and
 +999,999, but only the integer part is used to refer to an element.
 Thus, array(1.5) = array(1).

 3. There is no limit to the number of dimensions an array may have.
 When referring to an array element, one subscript for each
 dimension must be present.

 An example illustrating Rule 1 is:

 *SET i = 1.
 *SET j = 2.
 *SET a(i) = 7.
 *SET DATA(a(i)+j,i,j,1) = 24.282.

 DATA(a(i)+j,i,j,1) is the same as DATA(9,1,2,1) and may be referred to in
 either form so long as the values of a(i), i, and j remain unchanged. Any
 element of DATA must be referenced with four subscripts.

 Rule 2 is illustrated by the following example:

 *SET X(3) = 142.87.
 *SET X(3.141592) = 3.141592.
 *TYPE X(3.141592), X(3).
 X(3) = 3.141592
 X(3) = 3.141592
 *SET X(-1.5)=28.
 *TYPE X(-1.5), X(-1).
 X(-1) = 28.0
 X(-1) = 28.0

 In the above example, X(3)’s first value of 142.87 has been replaced by
 3.141592, since only the integer portion of the subscript is used.

 Rule 3 makes it an error to use a different number of subscripts once an
 element of the array has been defined, e.g.:

 Variables and Constants 19

 MTS 12: PIL/2 IN MTS

 December 1974

 *SET d(1,2) = 9
 *SET d(3,4,5) = 100
 Eh? UNMATCHED SUBSCRIPTS

 Elements of the same array do not all have to be of the same type. For
 example,

 *SET A(1,1) = 1.
 *SET A(2,2) = ’string’

 20 Variables and Constants

 MTS 12: PIL/2 IN MTS

 December 1974

 EXPRESSIONS ___________

 PIL provides three kinds of expressions: arithmetic, Boolean, and
 character string. Arithmetic expressions give numerical results, such as
 1.5 or 25. Boolean expressions always evaluate to either The True or The
 False. Character expressions yield a character string.

 ARITHMETIC EXPRESSIONS ______________________

 The arithmetic operations of addition, subtraction, multiplication,
 division, and exponentiation are represented in PIL by +, -, *, /, and **,
 respectively. The multiplication operator must always be written, as the
 rules of variable naming prohibit adjacent positioning to imply multiplica-
 tion. AB means the variable name AB and not "A times B". The phrase "A
 times B" is written as A*B. Variables, constants, arithmetic functions, and
 expressions coupled with or preceded by operators, form expressions. Thus,
 a, a+b, (a+b)*c, 2*((a+b)/(c-d)), and x+THE SINE OF Y are expressions.

 Vertical bars (|) denote absolute value of expressions, i.e., the sign is
 always made positive, |-2.0| = +2.0; thus, |a| and |a+b| form expressions.

 Arithmetic expressions may fall into several categories:

 1. Variables or constants,
 e.g., a, temp1, 12.0, 1.56E20
 2. Functions operating on an expression,
 e.g., SINE OF b, SQRT OF 25
 3. Parenthesized expressions,
 e.g., (a+b-c), (1.0)
 4. Expressions coupled by binary operators,
 e.g., (a+b)*(c-d)
 5. Expressions preceded by unary operators,
 e.g., -(a+b), -(-1), +(a)
 6. Expressions enclosed by vertical bars (|),
 e.g., |a|, |a+b|.

 Grouping marks, such as parentheses, are used to delimit the scope of
 operators in an expression. Operators have an implied or fixed precedence
 order, so any expression without parentheses will always yield the same
 result.

 The arithmetic operators and functions are listed below in order of
 precedence from high to low; equal precedence is shown on the same line.
 When an expression is evaluated, the order of evaluation is determined by
 the precedence of the operators; a higher precedence operation is performed
 before one of lower precedence.

 Expressions 21

 MTS 12: PIL/2 IN MTS

 December 1974

 Expression Element Example __________________ _______

 functions square root of a
 absolute value | a |
 exponentiation a**b
 negation (unary) -a
 multiplication, division a*b, a/b
 addition, subtraction a+b, a-b

 Whenever operators of the same precedence are encountered in an unparenthe-
 sized expression, they are executed in order from left to right. However, a
 function of a function, e.g., SQRT OF SQRT OF 16, is evaluated from right to
 left: SQRT OF SQRT OF 16 = 2.

 Consider the following examples:

 Expression Equivalent __________ __________

 a+b/c*d a+((b/c)*d)
 a+b**c a+(b**c)
 a+b*c+d (a+(b*c))+d
 a/b/c/d ((a/b)/c)/d
 -a**2 -(a**2)

 Extraneous parentheses in expressions are ignored by PIL.

 In addition to the arithmetic operators, many functions are available,
 such as "SINE OF", "COSINE OF," etc. Most functions in PIL have a short and
 a long form. The long and short forms of function names may be used
 interchangeably. The functions are listed below with a brief explanation.
 Like keywords, only the first four letters in any word in a function name
 are checked for validity, and, thus, only those need be used. Table 1 (in
 the back of this manual) contains a table of functions for reference.

 SQUARE ROOT OF X - SQRT OF X
 This function takes the square root of the argument X (>=0).

 SINE OF X - SIN OF X
 This function takes the sine of X (X is in radians).

 COSINE OF X - COS OF X
 This function takes the cosine of X (X is in radians).

 LOG OF X
 This function takes the logarithm, base 10, of "X".

 ANTILOG OF X
 This function takes the antilog of "X".

 LN OF X
 This function takes the natural logarithm (base e) of "X".

 22 Expressions

 MTS 12: PIL/2 IN MTS

 December 1974

 ARC TANGENT OF X - ATAN OF X
 This function takes the inverse tangent of "X".

 EXP OF X
 This function takes the exponential of "X".

 RANDOM NUMBER OF X - RN OF X
 This function acts as a random number generator. If "X" is a single
 variable (or subscripted), the value of "X" changes unpredictably and

 should not be changed. To obtain the longest possible sequence of

 pseudo-random numbers, the same variable should always be used. The

 value of the function, e.g., "Y" in

 *SET Y = RN OF X

 is uniformly distributed over the interval 0 to 1.

 INTEGER PART OF X - IP OF X

 This function takes the integer part of a number. For example, IP of

 2.25 = 2.0.

 FRACTION PART OF X - FP OF X

 This function takes the fractional part of a number. For example, FP

 of 2.25 = 0.25.

 EXPONENT PART OF X - XP OF X

 This function returns the scaling factor of the parameter. For

 example, XP of 3.5 = 0.0, XP of 101.5 = 2.0.

 DIGIT PART OF X - DP OF X

 This function returns the value of X/(10**exponential part of x). For

 example, DP of 35 = 3.5, DP of 102.6 = 1.026.

 MINIMUM OF (X,Y,Z) - MIN OF (X,Y,Z)

 This function may take two or more arguments. The parameter least in

 value is returned. This function is defined for string as well as for

 numerical parameters.

 MAXIMUM OF (X,Y,Z) - MAX OF (X,Y,Z)

 This function may take two or more arguments. The parameter greatest

 in value is returned. This function is defined for string as well as

 for numerical values.

 THE MODE OF X

 In addition to a value, every variable has a mode associated with it.

 There are five variable modes: (1) numerical, (2) Boolean, (3)

 character string, (4) array, and (5) undefined. The function, THE MODE

 OF, takes a simple or subscripted variable as an argument, and reports

 the variable mode of the argument as a number from one to five. These

 numbers correspond to the sequence of variable modes listed above.

 Expressions 23

 MTS 12: PIL/2 IN MTS

 December 1974

 If the statement:

 *SET x = the mode of b.

 | |
 | |
 Is preceded by: | The value of | Explanation
 | x would be: |
 ── | |
 | |
 *SET b = 34. | 1.0 | b is defined as a numerical value.
 | |
 *SET b = 2>1. | 2.0 | b is defined as a Boolean value.
 | |
 *SET b = "PIL". | 3.0 | b is defined as a character string.
 | |
 *SET b(1) = 3. | 4.0 | PIL has a defined variable called "b"

 | | where the defined variable has sub-

 | | scripts. The mode of b is an array,

 | | whereas the mode of b(1) is a numerical

 | | value.

 | |

 *DELETE b. | 5.0 | b is not defined.

 | |

 The function, THE MODE OF, refers to the variables themselves, and

 not to direct or indirect mode.

 THE TOTAL SIZE

 When a user begins a PIL session, a certain amount of space (core

 memory) is allocated in which to work. This space is used to store

 variables and their values, programs, and anything the user defines in

 the course of his session. This space is measured in terms of the

 number of PIL-words it could contain. One PIL-word is 16 bytes. A

 numeric variable uses one PIL-word of space, whereas a character string

 requires two PIL-words (if the string is less than 14 characters long).

 Array allocation is even more complicated. The function THE TOTAL SIZE

 gives a count of the number of PIL-words that are initially available

 to the user. The maximum size available is 65536 PIL-words.

 THE SIZE

 THE SIZE gives a dynamic count of the number of PIL-words available at

 the time of the function call.

 *TYPE the size.

 the size = 197.0

 *SET a = 1.

 *SET b = ’abcdefghijkl’

 *TYPE the size, the total size.

 the size = 195.0

 the total size =197.0

 24 Expressions

 MTS 12: PIL/2 IN MTS

 December 1974

 THE TIME
 This function returns the time in 300ths of a second, relative to
 midnight (00:00). For example, 1.296000E+07 is noon.

 THE DATE
 This function returns the day of the year in the form YYDDD where YY
 refers to the year (19YY) and DDD is the day of the year. For example,
 THE DATE = 74236 is August 24, 1974.

 THE ELAPSED TIME
 This function returns the actual connect time in 300ths of a second
 since the user signed on.

 THE CPU TIME
 This function returns the CPU time the user has used in 300ths of a
 second since the user signed on.

 THE COST
 This function returns the estimated cost of the user’s run thus far.

 Notice that if a function takes parameters, the function name must be
 followed by the word "of". If the function does not take parameters, the
 function name must be preceded by the word "the". For example:

 *SET A = The Time.

 will set A to the time of day to the nearest 300ths of a second, relative to
 12 midnight. It is also permissible, but not necessary, to use "the" before
 a function with parameters; e.g.,

 *SET A = the square root of (2*data(i,1)+3).

 Notice also that a function parameter may itself be an expression; keep in
 mind that functions have the highest precedence of all the operators, so
 that SQRT of 4*3 means (sqrt of 4)*3 and would evaluate to 6.0.

 BOOLEAN EXPRESSIONS ___________________

 Boolean expressions (sometimes called "truth-functions" or "logical"

 expressions) are also available in PIL. A SET statement will store the

 result of a Boolean expression in any specified variable and set the mode of

 this variable to Boolean. A Boolean expression may be:

 1. A Boolean literal, i.e., The True or The False, or a variable with a

 Boolean value.

 2. Two arithmetic or Boolean expressions coupled with a Boolean binary

 operator.

 Expressions 25

 MTS 12: PIL/2 IN MTS

 December 1974

 3. A Boolean expression preceded by a Boolean unary operator.

 The following explains Boolean operators, functions, and constants.

 $LT, <
 This is the relational operator, less than.

 $LE, <=, ¬>
 This is the relational operator, less than or equal to.

 $EQ, =
 This is the relational operator, equal to.

 $NE, ¬=
 This is the relational operator, not equal to.

 $GE, >=, ¬<
 This is the relational operator, greater than or equal to.

 $GT, >
 This is the relational operator, greater than.

 $AND, &
 This is the logical product. If both Boolean expressions on either
 side of the "$AND" are true, then the value of the whole expression is
 true. Otherwise, it evaluates to false. For example,
 1<2 $and 5=5 is true,
 1>2 $and 5=5 is false.

 $OR, #
 This is the logical sum. If either expression or both are true, then
 the whole expression is true. This function evaluates to false only if
 both of the expressions are false. For example,
 1<2 $or 5>7 is true,
 1>2 $or 5>7 is false.

 $NOT, ¬
 This is the negation, and reverses the value of the expression.
 $not 1>2 is true.

 $XOR
 This is the exclusive or. If one of the two expressions is true, the
 whole expression is true. If both are false, or both are true, the
 expression evaluates to false. For example,
 5=5 $xor 1<2 is false,
 5=6 $xor 1<2 is true.

 THE TRUE
 This is the constant value, THE TRUE.

 THE FALSE
 This is the constant value, THE FALSE.

 26 Expressions

 MTS 12: PIL/2 IN MTS

 December 1974

 THE BATCH
 This evaluates to true if the user is in batch mode, false if the user
 is in conversational mode.

 All Boolean operators have lower precedence than the arithmetic opera-
 tors. The priority of Boolean operators is shown in the following four
 lines, ranked in descending order of priority. The operators shown on the
 same line are equal.

 $gt (>), $lt (<), $eg (=), $ne (¬=), $ge (>=, ¬<), $le (<=, ¬>)

 $not (¬)

 $and (&)

 $or (#), $xor

 For example,

 *SET x= $not a<b # b=c & e+d=f-g

 is equivalent to:

 *SET x= ($not(a<b))#((b=c) & ((e+d)=(f-g)))

 The following examples show the use of Boolean expressions:

 Statement result __________ ______

 *SET x=The True x=The True

 *SET x=10+5<7+8 x=The False

 *SET x=1=1 x=The True

 *SET x=1=2 $and 1$ne 2 x=The False

 *SET x=The True & (1>2#3=3) x=The True

 In the third example, the first equal sign encountered (going from left

 to right in the statement) is the replacement operator; the second equal

 sign is a relational operator.

 CHARACTER EXPRESSIONS _____________________

 A character string is any sequence of characters, including the null

 string, up to 255 characters in length. Functions are available for string

 manipulation.

 String Comparison _________________

 Any string may be compared with any other string, using the relational

 Boolean operators. (See the section on Boolean expressions above.) Indivi-

 dual characters of the two strings are compared from left to right. If

 Expressions 27

 MTS 12: PIL/2 IN MTS

 December 1974

 strings are of unequal length, the shorter string is treated as though it
 were padded at the right with blanks. The following collating sequence is
 the basis for comparison of strings:

 blank < punctuation marks < a...z < A...Z < 0...9

 For a complete list of the collating sequence, including the punctuation
 marks, consult Appendix C. Here are some examples of string comparison:

 *IF "x" < "y", TYPE "yes".
 yes
 *IF "abcd" = "abcd ", TYPE "strings equal".
 strings equal
 *type ’Ab’ < ’bA’
 ’Ab’ < ’bA’ = The False

 String Functions ________________

 THE LENGTH OF - (L OF)

 To determine the length of a string, THE LENGTH OF (which may be
 abbreviated to L OF) function is used. Its value is a count of the
 characters contained in a given string. It will always be an integer in the
 range 0 to 255.

 *SET x = "1234567".
 *TYPE the length of x.
 the length of x = 7.0

 THE UPPER CASE OF - (UPPER OF)
 THE LOWER CASE OF - (LOWER OF)

 Since many applications using strings are concerned with content, it is
 useful to be able to ignore the case of alphabetic data. This can be done
 in PIL by using the following two PIL functions:

 *SET X = the upper case of "abcde".
 *SET Y = the lower case of X.
 *TYPE X,Y.
 X = "ABCDE"
 Y = "abcde"

 Special characters and numerals are unchanged by these functions.

 28 Expressions

 MTS 12: PIL/2 IN MTS

 December 1974

 String Manipulation ___________________

 Two strings may be concatenated, i.e., the second joined to the end of
 the first. The "+" (plus) operator performs this task, provided that both

 operands are strings. The length of the resulting concatenation is the sum

 of the lengths of the two operands and may not be greater than 255. To

 illustrate:

 *SET x = "12345".

 *SET y = "67890".

 *SET z = x + y + "abc".

 *TYPE z, the length of z.

 z = "1234567890abc"

 the length of z =13.0

 It is also useful to be able to extract and examine some portion of an

 arbitrary string. There are three functions that allow this kind of

 manipulation. They are:

 The first m characters of string1

 The last n characters of string2

 The substring of (string3, offset, length)

 Here "m" and "n" may be any arithmetic expression, and "string1" and

 "string2" are any string expressions. "m" and "n" must be non-negative and

 not greater than the length of the string. With these considerations in

 mind, the first two functions are self-explanatory and convenient for

 accessing characters at the beginning or end of a string, respectively.

 These two functions can be replaced by string operators which are,

 respectively:

 m $fc string1

 n $lc string2

 Thus we have:

 3 $FC ’abcdef’ = "abc"

 2 $LC ’12345’ = "45"

 1 $LC (’12’ + ’34’) = "4"

 $FC and $LC are of the same precedence as their equivalent functions. (For

 precedence order of operators and functions, see the section on expre-

 ssions.) Therefore, if the two operators, $FC and $LC, occur in one

 statement, they are executed in order from right to left. Thus, complex

 expressions may be written, such as:

 3 $fc 5 $lc ’adcdefgh’ = "def"

 3 $lc 5 $fc ’abcdefgh’ = "cde"

 To get just the first or the last character of a string, one may use the

 following names:

 Expressions 29

 MTS 12: PIL/2 IN MTS

 December 1974

 The first character of string1
 The last character of string2

 or, respectively:

 1 $fc string1
 1 $lc string2

 To access internal characters, the third function, SUBSTRING OF, is the
 most convenient. The three parameters must appear in the following order:

 1. The string to be operated on.

 2. The offset, i.e., the starting point of the desired substring.
 (The first character has offset 1, etc.)

 3. The length of the desired substring.

 The offset must be greater than 0, the length must be greater than or equal
 to 0, and the sum of the offset and the length must be less than or equal to
 the length of the string plus one.

 Consider the following examples:

 1. *SET x = the first character of the last 2 characters of "abcd".
 *TYPE x.
 x = "c"

 2. *SET y = the substring of ("ab"+"ef", 3, 1)

 *TYPE y

 y = "e"

 3. *FOR i = 1 to n: FOR x(i) = the first character of str: -

 SET str = the last (length of str - 1) characters of str.

 The last example would put "n" successive characters of the variable "str"

 into x(1),...,x(n-1),x(n), respectively, and leave any remaining characters

 in "str". The following statement would define the array "x" as above, but

 would leave the variable "str" unaltered.

 *FOR i=1 to n: SET x(i) = the substring of (str,i,1)

 THE VALUE OF - (VL OF)

 This function takes a string as its argument and returns, as its value,

 the numerical value obtained by evaluating the string as a PIL expression.

 If the function receives an argument which is not a string, then the

 function value is the numerical value of the argument itself. This function

 is useful for converting a string containing numerical digits to a numerical

 value. For example:

 30 Expressions

 MTS 12: PIL/2 IN MTS

 December 1974

 *SET a = 3, b = 5, c = "a+b*2"
 *TYPE the value of c.
 the value of c = 13.0
 *TYPE the value of "12345".
 the value of "12345" = 12345.0

 THE BCD VALUE - (BCD VL)

 The BCD VALUE (or BCD VL) function allows conversion of all data types to
 string. If the operand is numerical, the decimal digits are converted to
 character digits. If the operand is string, the BCD VALUE is identical to
 the operand. If the operand is Boolean, the BCD VALUE will be either "The
 True" or "The False".

 *SET a = 3.
 *TYPE the bcd value of (a*a).
 the bcd value of (a*a) = " 9.0"

 THE BCD TIME

 THE BCD DATE

 THE BCD TIME and THE BCD DATE return strings with the time or date in

 readable form.

 *TYPE the bcd time, the bcd date.

 the bcd time = "14:29.06"

 the bcd date = "08-17-74"

 THE USER

 The last string function, THE USER, returns a four-character user ID:

 *TYPE the user

 the user = "1B3C"

 Expressions 31

 MTS 12: PIL/2 IN MTS

 December 1974

 LANGUAGE STATEMENTS ___________________

 COMMENTS ________

 Comments may be entered at any time. If the first character of an input
 line is an asterisk, the entire line is considered to be a comment.

 ASSIGNMENT STATEMENTS _____________________

 SET Statements ______________

 The format of the simple SET statement⁴ as shown in the examples used
 thus far, is:

 *SET v = e

 where "v" is a variable name and "e" is an expression.

 A more general form of the SET statement, the multiple SET, allows more
 than one variable to be assigned a value in a single statement. The format
 is:

 *SET v1 = e1, v2 = e2, v3 = e3, ...

 where processing proceeds from left to right.

 For example:

 *SET i=1, x(i)=i, b=The True, c="Hi!"

 *TYPE i, x, b, c

 i = 1.0

 x(1) = 1.0

 b = The True

 c = "Hi!"

 To use an undefined variable, i.e., a variable without an associated

 value, is an error, and PIL will notify the user that an error has occurred.

 ⁴The keyword SET can be omitted. It is implied by the presence of the equal
 sign (=) immediately after a variable name, either simple or subscripted.

 32 Language Statements

 MTS 12: PIL/2 IN MTS

 December 1974

 *SET b = i.
 Eh? i = ?

 This SET statement is not legal, since "i" is not defined. It is now up to
 the user to define "i" in some manner (e.g., SET i = 1.) or continue to

 another task not dependent on the value of "i".

 SWAP Statement ______________

 The SWAP statement interchanges the values and the mode of two variables.

 *SWAP a, b.

 affects a and b in the same way as (but more efficiently than) the sequence:

 *SET temp=a, a=b, b=temp.

 Subscripted variables are allowed in the SWAP statement:

 *SWAP A(i), B(j,k).

 After this statement, A(i) is set to the value that B(j,k) had, and B(j,k)

 has the value that A(i) had.

 CONDITIONAL STATEMENTS ______________________

 Conditional transfer of control is accomplished with the IF statement.

 In the simplest form, the PIL statement IF is followed by a conditional

 expression (any Boolean expression), a comma (,), and another PIL statement.

 IF a<b, TYPE a

 The second PIL statement is the object statement and can be any legal PIL

 statement. If the Boolean expression evaluates to The True, the object

 statement is executed; if it evaluates to The False, it is not.

 Consider the following statement:

 *1.5 IF j < 5, IF x+y+z > 57, SET j=j+1.

 If the value of "j" is less than 5, then "x+y+z" is compared to 57. If, and

 only if, both conditional expressions are true, PIL will execute SET j=j+1.

 The IF statement also has a provision for executing a statement when the

 condition is false.

 Language Statements 33

 MTS 12: PIL/2 IN MTS

 December 1974

 *3.7 IF a < b, THEN DO part 1; ELSE DO part 2.
 *1.1 TYPE "CONDITION WAS TRUE".
 *2.1 TYPE "CONDITION WAS FALSE".

 The words THEN and ELSE may be omitted. Their only purpose is to improve
 readability. The semicolon (;) separating the two object statements is __
 necessary. Without it, PIL assumes the simpler form of the IF statement is
 meant. Thus, step 3.7 may be retyped as:

 *3.7 IF a < b, DO part 1; DO part 2.

 As mentioned earlier, the IF statement requires a Boolean expression. Thus,
 a Boolean variable may be used as the Boolean expression for the IF
 statement as in the following example:

 *SET flag = 1 < 2.
 *IF flag, TYPE "TRUE"; TYPE "FALSE".
 TRUE

 An example of a more complex Boolean expression follows:

 *SET a= The True, b= 1>2, c= $not b $and a
 *IF (a $or b) $and ($not c), TYPE "True"; TYPE "False".

 False

 An IF statement may have another IF statement as the object of the THEN

 or ELSE clause. A difficulty arises in a statement such as:

 *IF a>b, THEN IF x=y, TYPE x; ELSE TYPE z

 To which IF does the ELSE clause belong? In other words, is "z" to be

 typed: (1) when "a" is less than or equal to "b" or (2) when "a" is greater

 than "b", and "x" does not equal "y"? The rule in this situation is that an ___ __

 ELSE clause belongs to the "nearest" IF which does not have an ELSE clause. ____ ______ _______ __ ___ _________ __ _____ ____ ___ ____ __ ____ ______

 In the above example, since the ELSE clause belongs to the object statement

 IF, (see number 2 above), "z" is typed. In order to associate the ELSE to

 the outermost IF, i.e., type "z" (as described in number 1 above), the

 object statement IF must have its own ELSE clause. A clean way to do this

 is:

 IF a>b, THEN IF x=y, TYPE x; * ; ELSE TYPE z

 The object IF statement now has a single asterisk for its ELSE clause. The

 "*" is regarded as a comment (or a "no operation") and it tells PIL to go on

 to the next statement. It is associated with the object statement IF,

 causing "ELSE TYPE z" to be associated with the outermost IF statement. "z"

 is then typed when "a" is less than or equal to "b." If "a" is greater than

 "b" and "x" does not equal "y", PIL continues at the next statement after ____

 the outermost IF.

 34 Language Statements

 MTS 12: PIL/2 IN MTS

 December 1974

 SIMPLE I/O __________

 Simple Input/Output (I/O) is achieved by the statements DEMAND and TYPE,
 followed by one or more items. Other I/O statements are described in the
 sections on extended I/O.

 TYPE Statement ______________

 TYPE is an output statement which has been used in earlier examples. It
 requests output of one or more items.

 *SET a = 3.1, b = 1<2, c = "PIL/2".
 *TYPE a,b,c.
 a = 3.1
 b = The True
 c = "PIL/2"

 The TYPE statement may also include algebraic expressions:

 *SET a=1, b=10, c=2, d=3, e=4.
 *TYPE (a+(c*d/e))/b.
 (a+(c*d/e))/b = 0.25

 Literal strings, delimited by pairs of quotation marks (") or primes (’),

 may be typed:

 *TYPE "Hello", ’Hello’+"!"

 Hello

 ’Hello’+"!" = "Hello!"

 Notice above that a single string constant is typed without repeating the

 expression in the list. This can be used to enter headings into output. In

 most cases, the variable is typed, followed by an equal sign and the value.

 An entire array may be requested by a single reference to the name. For

 example:

 *SET a(1,1)=1.0, a(15,7)=300, a(7,24)=2.0

 *TYPE a.

 a(1,1) = 1.0

 a(7,24) = 2.0

 a(15,7) = 300.0

 Only those elements of the array that are defined will be typed.

 *TYPE a(2,1)

 Eh? a(2,1) = ?

 Language Statements 35

 MTS 12: PIL/2 IN MTS

 December 1974

 A special format is used for typing numbers whose absolute values are
 above 999,999 or below 0.0000001. The form of this number is SD.DDDDDDESDD,
 where S represents a sign (+ or -), D indicates a digit, and E represents
 10**.

 *TYPE 10**10, 1E10.
 10**10 = 1.000000E+10.
 1E10 = 1.000000E+10.

 The TYPE statement is used for several special purposes not directly
 related to the execution of a program. Summarized below are some of the
 forms available.

 1. To get a copy of a part which has been defined, specify:

 *TYPE part 5.

 2. To get a copy of the entire program presently defined, specify:

 *TYPE all parts.
 or
 *TYPE all steps.

 (Note that both statements, "TYPE all parts" and "TYPE all steps"

 will cause the entire program to be printed. Thus, they are

 interchangeable.)

 3. To list all defined variables and their current values, specify:

 *TYPE all values.

 4. To list the entire program, all variables and their values as well as

 assignments and forms (these are used and described in a later

 section on extended I/O), specify:

 *TYPE all stuff.

 Since the terminal is a relatively slow device, the user is advised to

 use these features sparingly. Information may be selectively obtained by:

 *TYPE a,b,c,part 5,step 5.1,x(i).

 *TYPE step 1.3,a+b,sine of x(j)+2.

 *TYPE a+b/c, all parts, all values.

 etc.

 DEMAND Statement ________________

 The DEMAND statement requests the user to provide values for a list of

 variables. The list follows the word DEMAND.

 36 Language Statements

 MTS 12: PIL/2 IN MTS

 December 1974

 *DEMAND a,b,c.
 a = ?_27.98.
 b = ?_18.46.
 c = ?_57.28.

 The "?_" following "a =", "b =", "c =" is provided by PIL and indicates
 that the interpreter is ready for a response from the user, such as 27.98.
 The user’s response to a DEMAND sequence may be any of the following:

 1. Constants, e.g., 2.79828.

 2. Arithmetic expressions, e.g., a+b/c, where a, b, and c are previously
 defined variables.

 3. Functions, e.g., The size, sqrt of a.

 4. Any combination of the above.

 5. End-of-file to signal the end of the input.

 *DEMAND a,b,c.
 a = ?_4.0
 b = ?_a + sqrt of a
 c = ?_a*b
 *TYPE a,b,c
 a = 4.0
 b = 6.0
 c = 24.0

 Upon demand for a subscripted variable, the value of the subscript will
 be given by PIL.

 *1.1 SET i = 1.
 *1.2 SET j = 2.
 *1.3 DEMAND b(i,i+j,j).
 *DO part 1.
 b(1,3,2) = ?_The True
 *TYPE b(1,3,2)
 b(1,3,2) = The True

 DEMAND, unlike TYPE, cannot use the variable name to imply an entire
 array. If "x" is an array, DEMAND x will cause the following report:

 *SET x(1,1) = 1., x(2,4) = 0.
 *DEMAND x.
 x = ?_5.
 Eh? UNMATCHED SUBSCRIPTS.

 Notice that the error is spotted after the user supplied the first value.

 Language Statements 37

 MTS 12: PIL/2 IN MTS

 December 1974

 ITERATION STATEMENTS ____________________

 FOR Statements ______________

 The FOR statement in PIL provides the user with a convenient method for
 controlling the repeated execution of a particular segment of a PIL program.
 It is flexible enough to provide all types of loop control normally required
 by the user, as well as easy handling of more intricate loops.

 The simplest FOR statement repeats an object statement, such as SET a(i)
 = i, for a given list of values.

 *FOR i = 1,2,3,4,5,7,9,11: SET a(i) = i.

 This statement will repeat the execution of the object statement eight
 times, using each of the listed values for the variable i.

 The object statement may be any legal PIL statement except a TO
 statement. Any expression may be specified in the list. For example:

 *SET a=11, b=10, c=5, s="This is a string"
 *FOR i="A",a+b*c, a-50, s: TYPE i
 i = "A"
 i = 61.0
 i = -39.0
 i = "This is a string"
 *

 Instead of specifying each individual value the variable in a FOR loop is to
 take, a shorthand notation can be used. The general form is:

 *FOR i = m TO n: DEMAND b(i).
 *FOR i = m TO n BY p: DEMAND b(i).

 where "i" is a variable, "m" and "n" may be any numerical expression, and
 "p" is any numerical expression which evaluates to a positive number. The
 default increment ("p" in the second example) is one. It is possible to use

 more than one TO-phrase in a single FOR statement:

 *FOR i = 1 TO 5, 7 TO 11 BY 2: DEMAND b(i).

 "i" takes on the values 1, 2, 3, 4, 5, 7, 9, and 11.

 The BY phrase may precede the TO so that:

 *FOR i = 1 TO 5, 7 BY 2 TO 11: DEMAND b(i).

 is equivalent to the previous FOR statement.

 Any type of expression may appear in a single FOR list, with each entity

 separated from the next by a comma. Thus, one can type:

 38 Language Statements

 MTS 12: PIL/2 IN MTS

 December 1974

 *FOR i = a+b, x+y TO x BY w: TYPE a(i).

 When a TO loop is encountered, if the initial value of the FOR variable
 is not greater than the final value, the object statement is executed. Upon
 return, the increment is added to the FOR variable, and then the FOR
 variable is compared to the final value. Whenever the value of the FOR
 variable becomes greater than the final value, the loop is terminated, and
 the process is repeated with the next item in the list. The process is
 repeated until the last list element (which precedes the colon) is
 satisfied. Note that if the initial value is greater than the final value
 in the TO loop, the object statement will not be executed.

 One word of caution! The indexing element is interpreted on every
 reference. Thus, if the indexing variable ("i" in the example above) is an

 array element, it is looked up each time the variable is incremented. It is

 possible that different array elements may serve as the index during a

 single FOR statement. The same problem may occur if the increment or final

 value are specified by array elements. For example:

 *SET i=1

 *FOR a(i)=1 TO 20 : SET i=i+1

 will result in:

 Eh? a(2) = ?

 FOR Conditional Keywords ________________________

 Two keywords provide loop control for FOR statements. The first is:

 *FOR i = a BY b UNTIL r > n: TYPE x(i).

 X(i) is typed for successive values of "i" until the Boolean expression

 which follows the keyword UNTIL is satisfied. The second form is:

 *FOR i = a BY b WHILE j < n+1: SET c(i) = b(i).

 This form will continue to repeat as long as the Boolean expression

 following the keyword WHILE is true. (CAUTION! If the Boolean expression

 has a constant value, The True, an infinite loop results.)

 If the "BY" value is omitted, the index variable will NOT be incremented

 using WHILE or UNTIL, and the object statement is executed until the Boolean

 expression evaluates to The False for a WHILE clause, or to The True for an

 UNTIL clause. For example:

 *SET x=1, y=4

 *FOR I=1 UNTIL x>y : SET x=x+i

 *TYPE x,i

 x = 5.0

 i = 1.0

 Language Statements 39

 MTS 12: PIL/2 IN MTS

 December 1974

 Summarized below are some of the various FOR statements, using TYPE as
 the object statement.

 *FOR i = 1 TO 3: TYPE i,i**2.
 i = 1.0
 i**2 = 1.0
 i = 2.0
 i**2 = 4.0
 i = 3.0
 i**2 = 9.0
 *FOR i = 1 BY i TO 20: TYPE i.
 i = 1.0
 i = 2.0
 i = 4.0
 i = 8.0
 i = 16.0
 *FOR i = 3 BY 17 WHILE i < 40: TYPE i.
 i = 3.0
 i = 20.0
 i = 37.0
 *FOR i = 3 BY 18 UNTIL i > 50: TYPE i.
 i = 3.0
 i = 21.0
 i = 39.0

 The statement:

 *FOR i = 1 BY 1 WHILE 1 < 2: SET i = i+1.

 will result in an infinite loop, since the Boolean expression (1 < 2) is
 always true.

 FOR Control ___________

 Three other statements are related to the FOR statement and affect the
 course of the iteration. They are:

 *NEXT i.
 *LAST i.
 *END i.

 NEXT i restarts the FOR loop with the next value of the index "i"
 regardless of the nesting of FOR statements or parts. This allows nested
 FORs and parts to be automatically terminated and control to be returned to
 the FOR statement which has "i" as its index. For example:

 *1.1 FOR i = 1 TO 100: DO part 2
 *2.1 IF mode of a(i)=5, NEXT i.
 *2.2 SET a(i)=0

 40 Language Statements

 MTS 12: PIL/2 IN MTS

 December 1974

 In the above program, if a(i) is defined, its value is set to 0. The values
 of a(i), which were undefined, remain undefined.

 The statement LAST i terminates the FOR loop whose index is "i". It is
 similar to NEXT i in that nested FOR statements are also terminated. The
 program then continues as though the FOR statement had finished normally,
 i.e., control is returned to the statement following the FOR loop with index
 "i" (or the preceding FOR if it is nested in one statement). For example:

 *1.1 FOR i=1 TO 100: DO part 2

 *2.1 IF mode of a(i)=5, LAST i

 *2.2 SET a(i)=0

 The above program sets all defined values of a(i) to 0 until the first

 undefined element of array "a" is found. The value of "i" is the subscript

 of the undefined element.

 END i terminates the loop on "i" as does LAST i, but control is passed to

 the statement following END i. When the part containing the END i is

 exhausted, processing continues at the statement following the FOR on index

 "i" (or again, the preceding FOR, if it is nested in one step).

 Neither LAST nor END change the value of the index.

 An example of LAST i and END i follows:

 *1.1 FOR i=1 TO 10:DO part 2

 *1.2 TYPE 1.2,i

 *2.1 IF i=3, LAST i; TYPE i

 *DO part 1

 i = 1.0

 i = 2.0

 1.2 = 1.2

 i = 3.0

 *2.1 IF i=4, END i; TYPE i*i

 *2.2 TYPE ’DONE.’

 *DO part 1

 i*i = 1.0

 DONE.

 i*i = 4.0

 DONE.

 i*i = 9.0

 DONE.

 DONE.

 1.2 = 1.2

 i = 4.0

 Language Statements 41

 MTS 12: PIL/2 IN MTS

 December 1974

 TRANSFER OF CONTROL ___________________

 Once execution of a program has begun, the sequence in which steps are
 executed is determined by the numerical order of step numbers within a part,
 unless a transfer-of-control statement is encountered. There are two
 statements that accomplish this; the DO statement and the TO statement.

 DO Statement ____________

 *DO part 5.

 is used to initiate part 5. If no part 5 has been defined, PIL prints an
 error comment. For example, consider a program that finds one real root of
 a quadratic equation (ax² + bx + c = 0) by:

 -b + / b² - 4ac
 x = _______________
 2a

 A program to do this calculation might be:

 *4.1 TYPE ’ENTER THE COEFFICIENTS OF THE EQUATION ax²+bx+c=0.’
 *4.2 DEMAND a,b,c
 *4.3 DO part 5.
 *4.5 TYPE root.
 *5.1 * to solve a quadratic equation - real roots
 *5.2 SET root = (-b+SQRT OF (b**2 - 4*a*c))/(2*a)
 *DO part 4.

 In this example, part 4 is used to initiate part 5 (at step 4.3). The
 sequence of execution would be: 4.1, 4.2, 4.3, 5.1, 5.2, 4.5. After
 completing execution of part 5, control is returned to part 4 at step 4.5.
 A part is completed when there are no more steps in the part to be executed
 or when a DONE statement is encountered:

 *5.3 DONE.

 Besides the DO part, there is a variation that executes only one step of
 a part. For example:

 *1.1 DO step 2.1
 *1.2 STOP
 *2.1 TYPE "2.1"
 *2.2 TYPE "2.2"
 *DO part 1
 2.1
 STOP AT STEP 1.2

 42 Language Statements

 MTS 12: PIL/2 IN MTS

 December 1974

 Note that PIL processed step 2.1 and then returned to the normal sequence of
 processing, that is, to step 1.2.

 DO String _________

 The DO STRING command indicates to PIL that the string argument following
 the command is to be interpreted as a PIL statement and executed. This
 allows the user to construct statements under program control, and then to
 execute them. For example:

 *SET x = "TYPE 2*2"
 *DO string x
 2*2 = 4.0
 *

 Here is another example:

 *set v="all values", x=100, y=The True
 *DO string "type "+v
 v = "all values"
 x = 100.0
 y = The True
 *

 TO Statement ____________

 The second transfer-of-control statement is the TO statement.

 *4.3 TO part 5.

 transfers to part 5. Execution in part 5 would begin with the lowest step
 number (step 5.1). An important point to remember here is that control of _______ __
 execution is not returned to step 4.5. _________ __ ___ ________ __ ____ ___

 The TO statement may also refer to a step number.

 *4.3 TO step 5.2.

 will send control to step 5.2 and thereby bypass execution of the first step
 in part 5. Execution begins with step 5.2 and continues through part 5.

 The TO statement is meaningful only in the indirect statement mode. It
 is an error in direct mode.

 Language Statements 43

 MTS 12: PIL/2 IN MTS

 December 1974

 DELETION STATEMENTS ___________________

 Whenever PIL is waiting for input, the user may alter a variable, add or
 replace any indirect statement, or execute any direct statement. If it is
 necessary to replace an existing step with a new one, the old step number
 should be entered, followed by the new statement. The step now contains the
 new entry; the previous contents of the step are lost.

 DELETE Statement ________________

 Storage is used by defining variables, steps, and forms (see the
 explanation in the section on extended I/O list features). Because there is
 a limit to the amount of storage each user has, it is useful to be able to
 remove some of these in order to free more storage space. This process is
 called "deletion".

 Variable Deletion _________________

 *DELETE yooord.

 will delete the variable "yooord" from the user dictionary and increase
 available storage. If "yooord" is an array or string variable, this may
 free a large amount of storage. After execution of the DELETE statement,
 the variable "yooord" is undefined.

 *DELETE a,b,c,d(1,2),t(3).
 *TYPE a
 Eh? a = ?
 *DELETE a
 *

 The first DELETE causes the variables named in the list to be deleted in
 order from left to right. Unlike the TYPE statement, the second DELETE
 statement does not produce an error comment.

 Like the TYPE statement, an entire array (table) may be deleted by simply
 mentioning its name. All variables may be deleted by:

 *DELETE all values.

 leaving only defined parts, steps, and forms in core.

 44 Language Statements

 MTS 12: PIL/2 IN MTS

 December 1974

 Part and Step Deletion ______________________

 Parts and steps defined by the user may be deleted selectively by the
 following statements:

 *DELETE part 5.
 *DELETE step 5.6.

 The part or step named is deleted and its storage is released. All defined
 parts will be deleted by:

 *DELETE all parts

 thus effectively destroying all programs, but leaving any defined variables
 and forms in storage.

 Multiple steps or parts can be deleted with one command, i.e.,

 *DELETE step 1.5, part 4

 If a currently active DO or FOR statement could be deleted, an attempt to
 RESUME or GO would have unpredictable results. Hence, to delete these
 statements, it is necessary to deactivate all running parts and FOR
 statements. This is accomplished by issuing the DONE statement in direct
 mode. For example:

 *1.1 DO part 2.
 *2.1 STOP
 *DO part 1
 STOP AT STEP 2.1
 *DELETE step 1.1
 Eh? ACTIVE CONTROL STATEMENT MAY NOT BE CHANGED OR DELETED
 *DONE
 *DELETE step 1.1
 *GO
 Eh? NO PLACE TO GO

 Once the DONE has been issued, the program must be restarted from the
 beginning.

 Extended Delete _______________

 As in the I/O statements (see the section on extended I/O list features)
 a FOR statement may operate within a DELETE statement:

 *DELETE a, (FOR i=1 to 10: matrix(i)),-
 & (FOR k=2 by 2 to 12: b(k)).

 Language Statements 45

 MTS 12: PIL/2 IN MTS

 December 1974

 This statement deletes matrix(1) through matrix(10), and the even-numbered
 elements of b from 2 to 12.

 Storage Clean-up ________________

 To eliminate everything belonging to the user (parts, values, and forms),
 the statement:

 *DELETE all stuff.
 or
 *CLEAN

 is used. After a CLEAN statement, the interpreter will respond with:

 PIL/2: Ready

 and the user may begin a new problem. CLEAN is a legal statement in both
 direct and indirect modes.

 PROGRAM STOPS _____________

 In the earlier example that solved for roots of quadratic equations, if
 the user wishes to stop the execution of the program and check the values of
 a, b, and c before calculating the square-root function, the statement:

 *5.15 STOP.

 can be used. When this statement is executed, PIL responds with:

 STOP AT STEP 5.15

 PIL will then type an asterisk (*) and wait for further instructions. At
 this point, the user may issue any command that he would issue normally,
 say, after an error message. GO or RESUME would restart execution at step
 5.2, the first step in part 5 with numerical value higher than 5.15.

 The STOP statement is used as part of a program to allow the user to
 check its progress, to make a change, or to make further additions to his
 program.

 NUMBER Statement ________________

 As the user may note, typing part and step numbers for indirect program
 statements (particularly if the program is long) may be a tiresome task.

 46 Language Statements

 MTS 12: PIL/2 IN MTS

 December 1974

 Consequently, PIL provides a numbering mechanism via the NUMBER statement.
 The form is:

 *NUMBER m, n.

 This statement starts the numbering with the initial part and step number
 "m". PIL types the number and then waits for the user to type a statement.
 If the first non-blank character of the user-written statement is a dollar
 sign ($), the rest of the statement is taken as a direct statement. It is

 executed at once, and the step number is not incremented. Otherwise, the

 statement is stored. The next statement is incremented by "n", which must

 be in range of 0.0001 to 0.9999. This process continues until another

 NUMBER or UNNUMBER statement (both in direct mode only) is given. The

 following sequence illustrates the numbering mechanism:

 *NUMBER 2.1, .05

 * 2.1_SET a=1.

 * 2.15_SET b=a+2.

 * 2.2_TYPE a, b

 * 2.25_$TYPE 1+2

 1+2 = 3.0

 * 2.25_$UNNUMBER

 *DO part 2.

 a = 1

 b = 3

 *

 The dollar sign in step 2.25 declares to PIL that what follows next (i.e.,

 TYPE or UNNUMBER) is to be taken as a direct statement, and that the current

 step number should not be incremented. This allows the user to use direct

 mode, such as $TYPE 1+2, during the numbering mechanism. If both "m" and

 "n" are omitted in the NUMBER statement, they default to 1.0000 and 0.01,

 respectively.

 *NUMBER 99

 is the same as:

 *NUMBER 99, .01

 ERROR REPORTING _______________

 Errors encountered in indirect mode are reported with a reference to a

 step number.

 ERROR AT STEP 1.5: j = ?

 would be the message obtained if step 1.5 below contained a reference to

 undefined variable "j" when the step was executed.

 Language Statements 47

 MTS 12: PIL/2 IN MTS

 December 1974

 *1.5 IF z = 0, SET x = j*y.

 As long as z does not equal 0, the variables j and y may remain undefined,
 since the execution of this statement would not require these values. to
 the user for correction. If the user desires to restart at the beginning,
 he may do so by issuing another DO part statement, or restart at the point
 of the error by typing GO or RESUME (GO and RESUME are explained in the next
 section). For example, using the previous example of solving quadratic
 equations, if the equation is x² + 4 = 0, both roots are complex. "a", "b",
 and "c" are 1.0, 0.0, and 4.0, respectively, when part 5 is entered. The
 sequence might be:

 *DO part 5
 ERROR AT STEP 5.2: NEGATIVE ARGUMENT FOR SQUARE ROOT FUNCTION
 *TYPE a,b,c.
 a = 1.0
 b = 0.0
 c = 4.0
 *TYPE -4*a*c.
 -4*a*c = -16.0
 *SET c = -4.
 *RESUME.
 *TYPE root
 root = 2.0

 From the example, it can be seen that during the correction procedure the
 data have been changed (effectively changing the problem to x² - 4). When
 an error occurs, any direct statement may be issued, or indirect statements
 may be added or deleted. (The only exception is that active FOR or DO
 statements may not be deleted.) Steps may be replaced by typing the part
 and step number followed by the new statement.

 There is another statement which is similar in effect to the STOP
 statement but which is more extreme. This is the ERROR statement:

 *1.79 ERROR "Square root argument may not be negative.".

 This statement permits the PIL program to report data inconsistencies
 (errors), and to halt itself in one program step. This halt is rather
 severe in that neither GO nor RESUME can restart the program. Thus, the
 program must be restarted. The above example would produce the following
 output on the terminal:

 ERROR AT STEP 1.79: Square root argument may not be negative.

 A variable may be printed in the ERROR statement to construct clearer error
 messages. The variable name surrounded by plus signs "+" will print the
 character representation of the variable in the error message. For example,

 *1.93 ERROR ’No, Mr. "+name+". Your data produces -
 &imaginary values.’.

 48 Language Statements

 MTS 12: PIL/2 IN MTS

 December 1974

 PIL is designed so that a user may interrupt his program at any time.
 After an interrupt or a halt (e.g., a program error or a STOP statement) and
 before a GO or RESUME, the user is in full control, and can use any part of
 PIL including a DO statement. If, however, a DO is executed in indirect
 mode, PIL will "lose its place" in the program where it had been
 interrupted, and it will not be possible to resume the indirect program at
 the point of interruption. This problem can be solved by using a special DO
 statement that "remembers its place". This special DO statement (effective

 in direct mode only) permits the user to use a GO or RESUME statement to

 resume the indirect program. In this special form, the particular part or

 step number appears in parentheses:

 *DO (part 5).

 *DO (step 1.9).

 Returning to the "root of a quadratic equation" example:

 *SET a=1., b=0, c=4.0

 *DO part 5

 ERROR AT STEP 5.2: NEGATIVE ARGUMENT FOR SQRT FUNCTION

 *SET c=-4.0

 The user corrects "c" and now wishes to execute only one step of the program

 and then resume. If he types:

 *DO step 5.2

 *RESUME

 he obtains an error report:

 Eh? NO PLACE TO RESUME

 since the DO step statement actually terminated the program. To prevent

 such a premature termination, he should type:

 *DO (step 5.2)

 *RESUME

 *TYPE root

 root = 2.0

 *

 In the "root of a quadratic equation" example, an error condition existed

 whenever the square root argument was negative. Thus, it is desirable to

 have the program check to see if the discriminant, i.e., b**2-4*a*c, is

 negative.

 After inserting:

 *5.15 IF (b**2-4*a*c) < 0, TO step 5.6

 *5.6 TYPE "Complex Root.".

 *5.5 DONE.

 Language Statements 49

 MTS 12: PIL/2 IN MTS

 December 1974

 the program now looks like:

 5.1 * to solve a quadratic equation - real roots
 5.15 IF (b**2-4*a*c) < 0, TO step 5.6.
 5.2 SET root = (-b+SQRT OF (b**2-4*a*c))/(2*a).
 5.5 DONE.
 5.6 TYPE "Complex Root.".

 The program now checks for a negative discriminant; if it is negative,
 control passes to step 5.6 and a message is printed.

 PROGRAM RESTART _______________

 There are two direct mode statements, GO and RESUME, which are used to
 restart a program that is stopped because of an indirect STOP statement, an
 interrupt, or an error. In case of STOP, both GO and RESUME restart
 processing at the statement logically following the STOP. After an
 interrupt or an error, there is a subtle but very important difference
 between GO and RESUME. GO restarts execution at the beginning of the
 interrupted statement, while RESUME continues from the point of interrup-
 tion. The following examples show the most important instances where the
 two commands behave differently.

 1. Multiple Set Statement ________ ___ _________

 *1.1 SET a=1
 *1.2 SET a=a+1,b=c+1
 *1.3 TYPE a,b,c
 *DO part 1
 ERROR AT STEP 1.2: c = ?
 *SET c=2

 Now, if the GO command is given, the output is:

 a = 3.0
 b = 3.0
 c = 2.0

 whereas, if the RESUME command is given, the output is:

 a = 2.0
 b = 3.0
 c = 2.0

 GO causes the "a=a+1" component of step 1.2 to be executed twice, and
 the variable "a" then equals 3, which is incorrect. RESUME restarts
 where the error occurred, i.e., the "b=c+1" component of step 1.2,
 and thus "a" has the correct value, 2.0.

 50 Language Statements

 MTS 12: PIL/2 IN MTS

 December 1974

 2. FOR Statement ___ _________

 If an error occurs in the object statement of an indirect FOR
 statement, correction of the error and subsequent issuing of the GO
 statement will cause PIL to begin the FOR statement again. This may
 cause another rather serious error. Consider the following example:

 *1.1 FOR i=1 TO 10: SET a(i)=i.
 *1.2 SET SUM = 0.
 *1.3 FOR i = 1 TO 11: SET SUM = SUM+a(i).
 *1.4 SET AVG = SUM/10.
 *1.5 TYPE AVG.
 *DO part 1.
 ERROR AT STEP 1.3: a(11) = ?
 *SET a (11) = 0.
 *GO
 AVG = 11.0

 Upon completion of this program the variable AVG should equal 5.5.
 However, since the accumulated sum was not reset to zero after
 correcting the undefined variable error, the variable AVG now equals
 twice the value, or 11.0. To obtain the correct result, the RESUME
 command should be given. In this example, RESUME restarts the FOR
 statement at the point where the error occurred, i.e., with i=11, and
 thus 5.5 is calculated for AVG.

 3. Input/Output Lists ____________ _____

 RESUME can be very useful when used with I/O lists. For example:

 *1.1 DEMAND a,b,c,d

 *DO part 1

 a = ?_1
 b = ?_2
 c = ?_"ug!
 ERROR AT STEP 1.1: INVALID USE OF QUOTATION MARKS

 GO results in:
 a = ?_
 while RESUME results in the more desirable:

 c = ?_

 so that "a" and "b" do not have to be defined again.

 In addition, the output of arrays, parts, and all forms can be
 interrupted and restarted without danger of duplication with the
 RESUME command.

 Language Statements 51

 MTS 12: PIL/2 IN MTS

 December 1974

 EXTENDED I/O LIST FEATURES __________________________

 TYPE and DEMAND statements may be extended with the following features:

 1. I/O FOR lists, which control the iteration within a TYPE or
 DEMAND statement;

 2. FORMs, which declare input and output format specifications; and

 3. FREE FORMs, which allow data to be entered without any restric-
 tion from format specifications.

 I/O FOR Lists _____________

 A FOR statement can operate within the standard I/O lists of the DEMAND
 and TYPE statements. An expression must appear after the colon; therefore,
 it is illegal to type parts and steps using this construction.

 *1.8 TYPE (FOR i = 1 TO 5: a(i), b(i)).
 *1.9 DEMAND (FOR i = 1 TO 5: abc(i)).

 This extension is most useful in conjunction with both FORMED and FREE
 FORMED I/O, as it allows specification of several items in an array without
 listing them individually. The standard rules for "FOR" apply, including
 nestings.

 Consider the example:

 *FOR i = 1 TO 5: FOR j = 1 TO 5: SET a(i,j) = i*j.
 *TYPE (FOR i = 1 TO 5: (FOR j = 1 TO 5: a(i,j))).
 a(1,1) = 1.0
 a(1,2) = 2.0
 .
 .
 .
 a(5,4) = 20.0
 a(5,5) = 25.0
 *

 This example types all elements from a(1,1),...,a(5,5). The parentheses
 must be paired, and those around the "FOR" are required in a TYPE or DEMAND ___ ________
 statement.

 The next example will illustrate a DEMAND with an I/O FOR list:

 *DEMAND a, (FOR y=1,2:(FOR z=3,4: W(y,z))),b
 a = ?_12.0
 W(1,3) = ?_The False
 W(1,4) = ?_a**2

 52 Language Statements

 MTS 12: PIL/2 IN MTS

 December 1974

 W(2,3) = ?_W(1,4)+sqrt of a
 W(2,4) = ?_-75.32486
 b = ?_"This is a string"
 *

 Notice that both simple variables and I/O FOR lists can be used in the
 same I/O list.

 FORMs _____

 The FORM statement is used to declare input and output format specifica-
 tions, and thus allows the user to control the appearance of his output line
 and to extract values for variables from specific areas of his input lines.
 The form may provide for any number of items on a single line.

 A form is declared as follows:

 *FORM 83.
 ? x = __.___ Y = ___._

 The FORM statement is used to enter a FORM DEFINITION. The operand is an
 integer from 1 to 9999. The first input line following the FORM statement ___ _____ _____ ____
 is the FORM DEFINITION, which controls the handling of data. Notice that,
 for output only, the first character after the question mark (?) is taken ___ ______ ____
 as a carriage control character. A blank indicates single spacing, a zero
 indicates double spacing, and a minus sign indicates triple spacing. For a
 more complete list of carriage control characters, see MTS Volume 3,
 Subroutine and Macro Descriptions. Forms can be defined only in direct __________ ___ _____ ____________
 mode, although forms may be used in indirect mode.

 There are several types of allowable specifications, called fields,
 within a FORM. A description of each type of field follows. Fields are
 well defined, specifying in which columns to print or demand values.

 Numerical Fields--Standard __________________________

 A standard numerical field is represented by a sequence of underscores
 (or left-pointing arrows, depending on the terminal) plus an optional
 period. Each underscore represents a possible digit position of a PIL
 number. The period represents the decimal point of the number. The user
 should allow a high-order digit position for a possible minus sign.

 Thus, the number -0.05729 when typed in each of the following fields
 would appear as:

 ___._____ __.___ _.____ _._ __.______
 -0.05729 -0.057 -.0572 -.0 -0.057290

 Language Statements 53

 MTS 12: PIL/2 IN MTS

 December 1974

 Note that numbers are truncated (not rounded) to fit numerical fields and
 that trailing zeros are inserted if the number of significant digits are
 exceeded, as in the last example.

 Likewise, the number 9287.423 when typed in each of the following fields
 would appear as:

 ______._____ ____._ ___.____ _____ ____.
 9287.42300 9287.4 ******** 9287 9287.

 Note that the fourth field produced an integer. The third field was too
 small and did not have enough leading positions to contain the number. This
 is an overflow. The field is filled with asterisks, signifying an error
 condition, and program execution stops. More will be said about errors
 later.

 Numerical Field--Scientific Notation ____________________________________

 The field specifying scientific notation is represented by a series of
 periods. The width of the field is the number of periods specified, with a
 minimum of six (6) periods. If less than six periods are specified, the
 group of periods is regarded as a character string within the form, and is
 not considered to be a field.

 Thus, the numbers 3.141593, 872357.1, -87.23, 0.000000000567, -.85 when
 typed according to the following form would appear as:

 3.1415E+00 8.723E+05 -8E+01 5.E-10 -8.5E-01 ...

 Notice that a plus sign is not printed for positive numbers. Also note
 that the series of three periods is not used as a field but as a character
 string, enabling the user to use constructions such as ellipsis points in
 the text.

 Numerical Fields--Modified Standard ___________________________________

 If the user does not wish to use scientific notation, yet anticipates
 that some of his results may be either too large (overflow) to fit or too
 small (underflow) to print any significant digits in a standard numerical
 field of reasonable size, he can specify a modified numerical field. The
 number will be printed in scientific notation upon overflow or underflow,
 thereby preventing an error comment.

 To specify this modified numerical field, the user appends to any
 standard numerical field exactly four exclamation points. If no overflow or _______
 underflow occurs, the number is printed out as usual, and the exclamation

 54 Language Statements

 MTS 12: PIL/2 IN MTS

 December 1974

 points are replaced by blanks. Whenever overflow or underflow occurs, the
 underscore characters are treated as periods, and the number is printed out
 as if the entire field were originally specified as scientific notation.
 The exponent is printed in the positions taken up by the exclamation points.

 Therefore, the numbers 234.8961, .07, -94.232, -.000000287 would appear
 -2.87E+07

 _._____!!!! .____!!!! ____.____!!!! ___.__!!!!
 2.3489E+02 .0700 -94.2320 -2.870E-07

 Note that, for scientific notation fields, room for at least six
 characters must be supplied. Hence, the field specification ’_!!!!’ is
 illegal.

 Alphanumeric Fields ___________________

 The field specifying alphanumeric information is indicated by a series of
 pound signs (#), each #-sign representing one character.

 On output, character strings are left-justified in the field. If a

 string is longer than the field specification, the excess characters are

 truncated, while strings of a length shorter than the specified field are

 padded with trailing blanks. Boolean values are typed out as if they were

 the character strings ’The True’ and ’The False’. Numeric values cannot be

 typed for alphanumeric fields.

 Thus, when the values ’This is a STRING’, The True, 5>7, "A"+’bCy’ are

 typed in the following form:

 #############

 they will appear as:

 This is a STR

 The True

 The False

 AbCy

 Note that the expressions 5>7 and "A"+’bCy’ are evaluated and only the

 final values are typed out according to the alphanumeric field.

 One warning, however, about attempting to read Boolean values with a

 character field: the second value above, The True, when appearing in the

 input line will be treated as the character string "The True", and NOT the

 Boolean value The True.

 Language Statements 55

 MTS 12: PIL/2 IN MTS

 December 1974

 Text Material Defined in the FORM _________________________________

 Any characters not recognized as field specifications (with the excep-
 tions given below) are copied directly into the output line until a legal
 field is found. This enables the user to include text in his form
 definition. Examples are:

 *FORM 1.
 ? Number = ____ Quantity = ___.__
 *TYPE in form 1, 12, -3.24.
 Number = 12 Quantity = -3.24
 *TYPE in form 1, 834.
 Number = 834
 *

 Note that the text material is not inserted beyond the end of the last
 field used; a field stop code permits text occurring after the end of the
 field definition to be included as part of the field.

 Field Stop Code--Field Delimiter ________________________________

 Users frequently desire to have fields adjacent to each other. Yet some
 means must be available to differentiate the individual fields from each
 other. A FIELD STOP CODE indicates where the field ends. The field stop
 code in PIL is the character "|" (vertical bar) or a back slash. The FIELD

 STOP CODE is only specified in the form definition. It delimits adjacent

 fields, it does not appear in an output line or take up space in an input

 line. Therefore, when the field stop code is used, there may not be strict

 one-to-one correspondence between the appearance of the input/output line

 and that of the form definition.

 The following example will show how the field stop code is used to

 separate adjacent fields:

 *FORM 2.

 ?######

 *1.1 DEMAND in form 2, a.

 *1.2 TYPE a.

 *DO part 1.

 ?ZEPHYR

 a = "ZEPHYR"

 *FORM 3.

 ?#|#|###|#

 *2.1 DEMAND in form 3, (FOR i=1 to 4: b(i)).

 *2.2 TYPE b.

 *DO part 2.

 ?ZEPHYR

 b(1) = "Z"

 b(2) = "E"

 56 Language Statements

 MTS 12: PIL/2 IN MTS

 December 1974

 b(3) = "PHY"

 b(4) = "R"

 *

 The field stop code can do more than just separate adjacent fields.

 Because it indicates where the field ends, the field stop code can be used

 to enable text following the field to be regarded as part of the field. The

 following examples will illustrate how trailing text is handled with and

 without the field stop code:

 *FORM 4.

 ? X = __ Pounds Y = __ Ounces

 *TYPE in form 4, 10.

 X = 10

 *TYPE in form 4, 10, 32.

 X = 10 Pounds Y = 32

 *

 Notice that ’Ounces’ is not typed following the ’32’ because it occurs

 after the end of the last field used. If it is desired to have the word

 ’Ounces’ printed (and ’Pounds’ in the first part of the example), field stop

 codes must be inserted into the form definition:

 *FORM 5.

 ? X = __ Pounds| Y = __ Ounces|

 *TYPE in form 5, 92.

 X = 92 Pounds

 *TYPE in form 5, 92, 6.

 X = 92 Pounds Y = 6 Ounces

 *

 This is a convenient means of handling text defined in a form statement.

 Note that the vertical bar "|" does not appear in the output line.

 The vertical bar (and also the back slash) may be used as text rather

 than as a field stop code. This requires the use of two adjacent vertical

 bars (or back slashes). The two vertical bars are treated as one single

 character of text, and occupy only one position in the output line. For

 example:

 *FORM 6.

 ? ||A|| = ___ Miles

 *TYPE in form 6, 256.

 |A| = 256

 *

 Note that since a vertical bar was not specified after ’Miles’, the field

 ended at the last underscore; ’Miles’ was not included as part of the field.

 Therefore, to cause ’Miles’ to be printed out.

 *FORM 7.

 ? ||A|| = ___ Miles|

 *TYPE in form 7, 256.

 Language Statements 57

 MTS 12: PIL/2 IN MTS

 December 1974

 |A| = 256 Miles
 *

 Special-Purpose Fields ______________________

 A VARIABLE-LENGTH FIELD, permitted for output only, is specified by a ___ ______ ____
 percent sign (%) followed immediately by a numerical or alphanumeric field

 indicator (# and _, respectively). This must be large enough to contain the

 longest string or number to be output. The %-sign is regarded as a

 character in the field definition. Thus, "%___" specifies 4 numerical

 positions. If the character string is shorter than the field specification,

 the field is reduced to the same size as the character string. In the

 example below, the comma is immediately after "Doe", even though the field

 width may be six characters.

 *FORM 8.

 ? Mr. %#####, you owe us %___ dollars.|

 *TYPE in form 8, "Jones", 1728, "Doe", 3.

 Mr. Jones, you owe us 1728 dollars.

 Mr. Doe, you owe us 3 dollars.

 *

 WARNING: Remember, this variable-length field is to be used for output ___ ______

 only! It is an error to attempt to use this field during input. ____

 A FLOATING DOLLAR SIGN may also be entered in the form definition. A

 single dollar sign will be printed just before the first significant digit

 of the number. The floating $ field is:

 $$___.__

 The numerical field specification can be any legal numerical field with at

 least one digit before the decimal point. The length of the field is the

 total number of characters in the field definition. Therefore, the above

 form could be used to print out numbers to 9999.99. .05, 17.06, 1891.09,

 1.24, -6.84 would appear in the output line as:

 $0.05

 $17.60

 $1891.09

 $1.24

 $-6.84

 The floating dollar signs are permitted for input, but the $-sign is simply

 ignored. A number, possibly including a minus sign, must appear immediately

 after the dollar sign.

 58 Language Statements

 MTS 12: PIL/2 IN MTS

 December 1974

 Character Strings as FORMs __________________________

 Character strings may be used as form definitions. This allows the user
 to build form definitions. For example:

 *SET frm="##".
 *FOR i=1 to 64: SET frm=frm+"|##".
 *DEMAND in FORM frm, (FOR i=1 to 65: char(i)).

 or

 *FOR i=1 TO 3: FOR j=1 TO 3: SET a(i,j) = i*10+j.
 *SET nine=" __ __ __"
 *TYPE in form nine, a.
 11 12 13
 21 22 23
 31 32 33
 *

 Literal FORMs _____________

 A literal form is a form definition which is a character string defined
 within the I/O statement itself. The character string itself is the form
 definition. The following are examples of legal literal forms:

 *TYPE in form " ___ ___ ___", 1, 2, 3.
 *TYPE in form " ########", "Zephyr".
 *1.2 DEMAND in form "______ #######", w,x,y,z.
 *1.3 TYPE in form " _____"+".____", 12.4327.

 Notice that in the last example the form is an expression composed of two
 literal character strings.

 Expressions in FORM References ______________________________

 The reference to a form can be a number, a literal character string, or a
 variable which is defined as a character string. As shown in the last
 example above, the form reference can also be an expression. This
 expression can be any PIL expression that, after being evaluated, is either
 character or numerical mode. If the operand of the FORM statement is of
 character mode, the resulting character string is taken as the form
 definition; if it is numerical mode, the form definition with that number is
 used. Note that only integers are used (e.g., "TYPE in form 1.7, 37.5" uses

 form 1). A type of expression other than numerical or character string is

 an error.

 Language Statements 59

 MTS 12: PIL/2 IN MTS

 December 1974

 The use of expressions in form references is illustrated by the following
 examples:

 *1.84 DEMAND in form alpr+"###", String.
 *38.2 TYPE in form " __"+z+".__", 25.5, 87.621
 *TYPE in form 1+sqrt of 9, y+9.7+cos of omega

 As shown in the last example, expressions can occur in the I/O list
 elements, in addition to the form reference for output statements. In input
 statements, the I/O list must be a list of single variables.

 Formed Output _____________

 The TYPE IN FORM statement is used to indicate formed output. The list
 specification is identical to the TYPE list. The form number may be either
 a number or an expression, and if the form specified is undefined, an error
 message will be given and program execution will stop. If the following
 field is defined:

 *FORM 9.
 ? X = __.___ Y = _.______ ##### = ___

 the statement:

 *TYPE in form 9, 27.4032, -.047, "Alpha", 76.

 will type the following line:

 X = 27.403 Y = -.047000 Alpha = 76

 The value of each item in the I/O list is inserted into the output line
 according to the corresponding field specification. The form is scanned
 from left to right for fields, and the values are placed into the output
 line one item at a time. It is an error to attempt to output numerical
 values in an alphanumeric field; likewise, it is an error to attempt to
 output Boolean values and character strings in a numeric field. If no
 fields are defined within a form, it is an error to use that form in FORMED
 I/O.

 If more items are to be typed out than are defined in the form, the line
 is typed, then the form is rescanned from the beginning until all items in
 the I/O list have been printed. Thus, an N by N matrix, with a form of N
 fields, is typed out in row form (one row per line). This is shown in the
 following example:

 *FORM 10.
 ? __ __ __
 *FOR i=1 to 3: FOR j=1 to 3: SET a(i,j)=i*10+j.
 *TYPE in form 10, (FOR i=1 to 3: (FOR j=1 to 3: a(i,j)))
 11 12 13

 60 Language Statements

 MTS 12: PIL/2 IN MTS

 December 1974

 21 22 23
 31 32 33
 *

 Note carefully how the I/O FOR lists are constructed. The enclosing
 parentheses must be paired and are required.

 Formed Input ____________

 The DEMAND IN FORM statement is analogous to the TYPE IN FORM statement,
 and most lines created by the TYPE IN FORM can be reread by the DEMAND IN
 FORM. However, it must be noted that:

 1. A NUMERIC FIELD merely indicates that numerical input is expected;
 no alignment of data within the field with respect to a decimal
 point is necessary. Also, no scaling of unaligned fields will be
 performed. No intervening blanks are permitted.

 2. An ALPHANUMERIC FIELD designates a sequence of characters, which
 may include primes (’) or quotes ("). Such a sequence should not ___

 be enclosed within delimiters as in a simple DEMAND, (DATA not

 "DATA".)

 3. The input list must be completely satisfied. It is an error if a ____ __ __________ __________

 DEMAND IN FORM statement with four input parameters and with a form

 having four fields receives only three input items on the line.

 However, if the width of a field is longer than the variable, then

 the width of the field is effectively shortened to equal the number

 of characters in the variable.

 4. If a RESUME is given after an error has occurred, the next item to

 be read from the input line will be located in the position

 occupied by the field where the error previously occurred.

 5. Null lines produce an error.

 6. The fields are well defined; they not only specify the length of

 the field, but also the columns in which the input must be found.

 The following example will demonstrate FORMED INPUT:

 *FORM 11.

 ? _____ ####

 *9.1 DEMAND in form 11, a,b,c,d,e,f.

 *DO part 9.

 ? -7.3 String 9

 ? 46 HELP

 ERROR AT STEP 9.1: NO DATA FOR INPUT FIELD

 *RESUME

 Language Statements 61

 MTS 12: PIL/2 IN MTS

 December 1974

 ? -5e-9
 *TYPE all values.
 a = -7.3
 b = "trin"
 c = 9.0
 d = 46.0
 e = "HELP"
 f = -5.000000E-09

 Error and Resume with Formed I/O ________________________________

 As in all PIL statements, errors sometimes occur. Whenever this happens
 during formed I/O, information is printed as to the nature of the error and
 where it occurred. If an error arises during formed output, the line is
 printed with asterisks inserted in the field where the error occurred. If
 any previous items were successfully inserted into the output line, they
 will appear in their proper place before the asterisks, along with any text
 defined in the form. All processing stops whenever an error occurs, and
 nothing is printed in the output line after the asterisks. An example of an
 error during formed output, and one means of correcting the error, follows:

 *SET hgt=19.
 *FORM 12.
 ?Height = ___ feet| Weight = ___ pounds|
 *87.4 TYPE in form 12, hgt, wgt.
 *DO part 87.
 Height = 19 feet Weight = ***
 ERROR AT STEP 87.4: wgt = ?
 *SET wgt=97.
 *GO
 Height = 19 feet Weight = 97 pounds

 In this case GO was used. Had RESUME been used instead, the results
 would have looked like:

 *SET wgt=97.
 *RESUME
 Weight = 97 pounds
 *

 RESUME causes the output to continue at the item that produced the error.
 Any text associated with the field is printed out, as indicated in the
 example above. Any items that were printed before the error are left blank.
 When using RESUME, output processing continues at the field occupying the
 same relative position in the form as the one in which the error occurred
 (i.e., if the error occurred in the fourth field, output processing will
 then resume at the fourth field). Thus, if a field specification is the
 wrong type or size, the form can be altered, allowing output to continue
 with the corrected form. As an example:

 62 Language Statements

 MTS 12: PIL/2 IN MTS

 December 1974

 *FORM 13.
 ? Length is __ km| __ m| __ cm|
 *9.2 TYPE in form 13, 12, 347, 18.
 *DO part 9.
 Length is 12 km **
 ERROR AT STEP 9.2: NUMBER EXCEEDS SPECIFIED FIELD WIDTH
 *FORM 13
 ? Length is ___ km| ___ m| ___ cm|
 *RESUME
 347 m 18 cm
 *

 If the form is changed to one having a fewer number of fields, and the
 number of the field at which PIL is to resume is greater than the number of
 fields presently defined, field counting wraps around to the beginning of
 the form. The form is rescanned as many times as necessary. For example,
 if form 13 above is redefined to be:

 *FORM 13.
 ? Length is ___

 and a RESUME is given, the field count would restart to the beginning of the
 form. Thus, the first (and only) field is where the output will continue:

 *RESUME
 Length is 347
 Length is 18
 *

 Errors are handled in a similar way for formed input. If an error occurs
 (after an input line has been read), an error message will be typed out.
 Errors can be caused by not entering data according to the field specifica-
 tions (i.e., either entering data of the wrong type or not having the data
 properly aligned with the field). Errors can also occur from other sources,
 such as an undefined variable in the I/O list. An example of this type of
 error is:

 *1.1 DEMAND in form "____ ____", a, b(k(7)).

 *DO part 1.

 ? 275 -874

 ERROR AT STEP 1.1: k(7) = ?

 *SET k(7)=4.

 *RESUME

 ? -874

 *TYPE a, b(k(7)).

 a = 275.0

 b(4) = -874.0

 Language Statements 63

 MTS 12: PIL/2 IN MTS

 December 1974

 Free Formed I/O _______________

 The normal DEMAND statement is inconvenient for large amounts of data;
 and the use of formed I/O, which greatly speeds up terminal output, is
 awkward to use for terminal input. Therefore, when entering large amounts
 of data from the terminal, it is recommended that the input be read in FREE
 FORM.

 There are two complementary statements in FREE FORMED I/O: TYPE IN FREE
 FORM and DEMAND IN FREE FORM. Any line created by a TYPE IN FREE FORM can
 be reread by a DEMAND IN FREE FORM. An example of free formed output is:

 *TYPE in FREE FORM, 12, 7**2, "Hello", 1>5.
 12.0, 49.0, "Hello", The False

 Notice that items are separated from each other by a comma and a space
 and that the output is compact. Also note that Boolean values are printed
 (and likewise read) as Boolean values, not as character strings as in formed
 I/O.

 The following example illustrates free formed input:

 *13.4 DEMAND in free form, w, x, y.
 *13.5 TYPE all values.
 *13.6 TO step 13.4.
 *DO part 13.
 ? 12, 14.7, "1492"
 w = 12.0
 x = 14.7
 y = "1492"

 ? -87.426e+27, The True, "String

 ERROR AT STEP 13.4: IMPROPER USE OF QUOTATION MARKS
 *RESUME
 ? ’String’
 w = -8.742600E+28
 x = The True
 y = "String"

 Acceptable items for use during free formed I/O are:

 NUMBERS Any legal type.
 CHARACTER STRINGS Enclosed by quotes (’) or (").

 BOOLEAN VALUES The True and The False only.

 64 Language Statements

 MTS 12: PIL/2 IN MTS

 December 1974

 Rules Governing Free Formed Output __________________________________

 1. Each item is placed into the output line and followed by a comma
 and a blank. Successive items are inserted until the end of the
 output line is reached, and the line is printed. This depends on
 the maximum line length. The next item begins a new line, starting
 in column 2. This process is repeated until all items in the I/O
 list are printed.

 2. The last item of the I/O list is not followed by a comma. This
 identifies the last line printed from a single TYPE statement,
 since lines that are continued always end with a comma.

 3. Column 1 is always blank.

 4. The output line can be as long as the maximum output length
 (depending on terminal type) or 255, whichever is less.

 Some examples are:

 *1.1 TYPE IN FREE FORM, (FOR i=1 TO 50: i)
 *1.2 TYPE IN FREE FORM, i=70, "abcdeF",1*2*3*4
 *1.3 TYPE IN FREE FORM, "This is the 3rd one".
 *DO part 1.
 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0, 11.0, 12.0,
 13.0, 14.0, 15.0, 16.0, 17.0, 18.0, 19.0, 20.0, 21.0, 22.0, 23.0,
 24.0, 25.0, 26.0, 27.0, 28.0, 29.0, 30.0, 31.0, 32.0, 33.0, 34.0,
 35.0, 36.0, 37.0, 38.0, 39.0, 40.0, 41.0, 42.0, 43.0, 44.0, 45.0,
 46.0, 47.0, 48.0, 49.0, 50.0
 The False, "abcdeF", 24.0
 "This is the 3rd one"
 *TYPE i
 i = 51.0
 *DELETE all values
 *TYPE IN FREE FORM, 10, 10**2, 10**3, notdef.
 10.0, 100.0, 1000.0,
 Eh? notdef = ?
 *

 Note that, when an error occurs, asterisks are not printed out as in
 FORMED I/O, since no field is associated with the variable, and the width of
 the printed value is undefined.

 Language Statements 65

 MTS 12: PIL/2 IN MTS

 December 1974

 Rules Governing Free Formed Input _________________________________

 1. This method provides a convenient way to read data with more than
 one item per line. Data are read from the input line one item at a
 time until the end of the line is reached. A new line is read if
 all variables have not yet been assigned values.

 2. Items must be separated from each other by a valid delimiter, which
 may be a comma, one or more blanks, or a combination of both.

 3. Every DEMAND starts by reading a new line; unused items left over
 from a previous line are not used.

 4. Quotes must appear around character strings.

 5. When a slash (/) is encountered which is not a part of a character
 string, the remainder of the line is treated as a comment, and a
 new line is read.

 6. A blank line is ignored. A null line is an error.

 7. When commas are used as delimiters and they appear adjacent to each
 other or with blanks between, the value of the variable read is
 left unchanged; superfluous commas are not ignored. This enables
 the user to read in new values for some list elements, and at the
 same time leaves other list elements set to their previous values.
 The first variable read is left unchanged whenever the first
 non-blank character in a line is a comma. An example is given on
 the next page.

 8. An asterisk (*) which is not inside a character string and which is
 not the last non-blank character in the input line terminates the
 DEMAND. The rest of the I/O list elements are unchanged.

 9. The Boolean values, The True and The False, can be in uppercase or
 lowercase, or any combination thereof, but must be two separate
 words.

 The following are examples of free formed input:

 *1.1 DEMAND IN FREE FORM, a, b, c.
 *1.2 TYPE a, b, c.
 *1.3 TO step 1.1.
 *DO part 1.
 ?5, "Mary’s" 10.0
 a = 5.0
 b = "Mary’s"
 c = 10.0
 ?, 84, ,
 a = 5.0
 b = 84.0

 66 Language Statements

 MTS 12: PIL/2 IN MTS

 December 1974

 c = 10.0
 ?THE true, 106.9 /This is a comment!
 ? "Abcde"
 a = The True
 b = 106.9
 c = "Abcde"
 ?, -72.4 /Another comment.
 ?, /Both a and c are unchanged
 a = The True
 b = -72.4
 c = "Abcde"
 ? 1 * The "*" (plus something) terminates the demand

 a = 1.0

 b = -72.4

 c = "Abcde"

 ?1, 2, False /This will cause an error--rule 9

 ERROR AT STEP 1.1: IMPROPERLY FORMED CONSTANT

 *RESUME

 ?THE FALSE

 a = 1.0

 b = 2.0

 c = The False

 ? 57.4

 ?

 ?

 ?18.6 12 /Note that blank lines are ignored

 a = 57.4

 b = 18.6

 c = 12.0

 ? <<null line--see rule 6>>

 ERROR AT STEP 1.1: NO DATA IN INPUT LINE

 *

 TYPE FORM N ___________

 The TYPE FORM statement can be used either to examine a form for errors

 or to print a header line entered as a form. No identification is typed

 with the form.

 For example:

 *FORM 14.

 ? FEET INCHES

 *FORM 15

 ? __ ___

 *1.1 TYPE "", form 14, "".

 *1.2 TYPE in form 15, (FOR i=1 TO 8: i, i*12)

 *DO part 1.

 Language Statements 67

 MTS 12: PIL/2 IN MTS

 December 1974

 FEET INCHES

 1 12
 2 24
 3 36
 4 48
 5 60
 6 72
 7 84
 8 96
 *

 TYPE ALL FORMS ______________

 The TYPE ALL FORMS statement types out all defined forms in ascending
 numerical order. For every form, the form number will be typed, followed by
 the form definition. This is printed in the same two-line format used for
 entering forms.

 Form Deletion _____________

 Forms may be deleted using the DELETE statement. To delete a specific
 form, specify the form reference in the DELETE statement. To delete all
 defined forms, specify ALL FORMS in the DELETE statement. Examples
 illustrating these are:

 *DELETE form 10.
 *DELETE form 72, form 85, form 3.
 *DELETE all forms.

 AUXILIARY I/O _____________

 Peripheral I/O equipment (devices) are available in the system. They may
 be used when a user wishes to have data read from or written to a device
 other than his remote terminal.

 To access the auxiliary I/O equipment, PIL has incorporated several
 statements to assign devices to a job, read from or write onto them, or
 perform control operations on certain devices (e.g., REWIND, END FILE,
 etc.). All examples in the following section use string literals for file
 or device names ("FDname"), and numbers for assignment numbers ("asst").

 Wherever these occur, appropriate expressions may be substituted.

 68 Language Statements

 MTS 12: PIL/2 IN MTS

 December 1974

 All I/O in PIL is done through assignments. To be used, all devices must
 be assigned within PIL or attached to MTS logical I/O units 0 to 19. File
 or device names must be string expressions. No embedded blanks are
 permitted, and the case of letters is not significant. The name may be as
 long as the user wants and may terminate with a blank. PIL assignment
 numbers must evaluate to an integer value in the range of 0 to 99 (the
 fractional part is discarded). The assignment numbers from 0 to 19
 correspond to MTS logical I/O units 0 to 19, respectively. The others refer
 to particular files or devices not attached to MTS logical I/O units.

 Devices in PIL must be associated to assignment numbers:

 *ASSIGN "*PRINT*" TO 7.0.

 will assign a HASP pseudo-device name "*PRINT*" to assignment number 7.
 This name refers to a remote line-printer. In general, the user defines the
 assignment number by the ASSIGN statement:

 *ASSIGN FDname TO asst.

 where "FDname" is a string expression representing a file or device name and
 "asst" is an assignment number. For example:

 *ASSIGN ’file’ TO 4.
 *ASSIGN ’A’ TO 5., ’B’ TO 6.0.

 Notice that multiple assignments can be made in a single statement. These
 assignments must be separated by a comma.

 Magnetic tapes or paper tapes must be mounted by the operator. This
 should be done through the MTS MOUNT command, e.g.,

 *MTS "mount pool on 9tp *tape*"

 See the description of the MOUNT command in MTS Volume 1: MTS and the ___ ___ ___
 Computing Center. A brief description of the MTS statement in PIL is in _________ ______
 Appendix B in the back of this manual.

 WRITE Statements ________________

 Writing onto an assignment number is accomplished by:

 *WRITE ONTO 4, a,b,c,d,e.

 The statement

 *WRITE ONTO 89, all parts.

 will transmit to assignment 89 all currently defined parts.

 Language Statements 69

 MTS 12: PIL/2 IN MTS

 December 1974

 Any statement that is available with TYPE is also available with WRITE.
 Conceptually, the TYPE may be replaced with WRITE ONTO 7 with a comma (,)
 following the assignment number. Thus,

 *1.1 WRITE ONTO 7, all parts.
 *1.2 WRITE ONTO 7, all forms.
 *1.3 WRITE ONTO 7, in form 16, A,B,C,REG.

 are all legal, executable statements.

 It should be mentioned that the form of output to these files is exactly
 the same as that obtained from the TYPE command. Like TYPE, WRITE may be
 executed either in direct or indirect mode. Before first writing onto an
 assignment number, the user may remove the prior contents of the specified
 assignment by issuing an EMPTY statement (see "Control Operations" on the

 following pages).

 READ Statements _______________

 As WRITE is to TYPE, so READ is to DEMAND. The two statement forms, in

 fact, complement one another.

 *READ FROM 8, xsize.

 reads one record and stores the result into the variable xsize.

 The flexibility that a user has with DEMAND is also available with READ.

 Again, we may consider DEMAND as being replaced with READ FROM 8 with a

 comma (,) following the assignment number.

 Thus:

 *1.2 READ FROM 8, in free form, A, J, Ysl.

 *1.3 READ FROM 8, in form 12, A, B, X.

 are legal and meaningful statements.

 PIL currently treats the end-of-file condition as an error and types:

 Eh? END OF FILE.

 At this point, control is returned to the user at the terminal, where he may

 resume calculations. Like the DEMAND statement, the READ statement can be

 used either in direct or indirect mode.

 70 Language Statements

 MTS 12: PIL/2 IN MTS

 December 1974

 Control Operations __________________

 File control operations are available to allow the user to position an
 assignment at any chosen point.

 *REWIND 3.

 rewinds the file or device associated with assignment number 3 and places
 the user at the beginning of the file. File or device names may also be
 specified in place of assignment numbers such as:

 *REWIND ’myfile’.

 The endfile control operation, as in

 *END FILE ’*tape*’.
 *END FILE 8.

 writes a file mark on the designated assignment and is used as the logical
 terminator for subfiles within a file.

 *BACK SPACE 6 FILES ON 7

 back-spaces 6 files on assignment 7.

 *FORWARD SPACE (n-1) RECORDS ON 9.

 forward-spaces the assignment (n-1) records.

 The END FILE operation is considered to be a WRITE operation; the BACK
 SPACE and FORWARD SPACE operations are considered as READ operations.

 Any legal PIL expression may be used to calculate the number of files or
 records to be spaced forwards or backwards. But again, only the integer
 portion of the expression will be used. Thus, if n = 16.9879, the file
 would be forward-spaced or back-spaced by 16 records. Negative numbers are
 not allowed.

 The EMPTY statement empties an MTS file. Unlike the MTS EMPTY command,
 no confirmation is demanded.

 *EMPTY ’pilfile’

 Assignment numbers may be specified in the EMPTY statements:

 *EMPTY 2.

 The file referred to by the assignment 2 is emptied. Devices other than
 files cannot be emptied.

 The CONTROL statement allows execution of control operations on certain
 types of files and devices. It is usually written:

 Language Statements 71

 MTS 12: PIL/2 IN MTS

 December 1974

 *CONTROL str ON FDname.
 *CONTROL str ON asst.

 where "str" represents a string mode control command parameter to be
 performed on either FDname or "asst". Examples:

 *CONTROL ’rew’ ON ’*tape*’.

 rewinds the 9-track magnetic tape named *TAPE*.

 *CONTROL ’uc=off’ ON ’*sink*’.

 forces the pseudo-device *SINK* to turn off automatic capitalization.

 The CREATE statement permits the user to create an MTS file. The form
 is:

 *CREATE FDname

 where "FDname" represents a file name in the form of a string expression.
 The following creates an MTS line file named PILFILE with a default file
 size of one page. (See MTS Volume 1, MTS and the Computing Center for ___ ___ ___ _________ ______
 additional information on MTS.)

 *CREATE "pilfile".

 The user may wish to specify the type of a file. He may type:

 *CREATE "pilfile", TYPE ’line’.

 Other legal file types are ’SEQ’ for sequential files and ’SEQWL’ for
 sequential files with line numbers. To create a file which is larger than
 one page, the user can specify:

 *CREATE ’pilfile’, type ’line’, size 25.

 where the size refers to 4096-character pages.

 For the CREATE statement, PIL will check to make sure that a file of the
 given name does not exist. If it does exist, a complaint will be made.
 Otherwise, PIL proceeds to check the user’s file space allocation to
 determine if there is enough space remaining to allow creation of the file.
 It will then attempt to get the disk space for the specified size. If PIL
 is successful in its attempt, the user is informed of the creation of the
 file.

 The DESTROY statement permits the user to destroy a private file or a
 temporary file. Unlike the MTS command DESTROY, PIL will NOT ask for ___
 confirmation. The form is:

 *DESTROY FDname

 72 Language Statements

 MTS 12: PIL/2 IN MTS

 December 1974

 where "FDname" specifies the name of the file to be destroyed. "FDname" may
 be a literal string (enclosed in quotes or double-quotes), or may be a
 character variable. An example would be:

 *DESTROY "pilfile"

 A complaint will be made if the file named does not exist. Otherwise, the
 file to be destroyed is deleted from the user’s file catalog, and the disk
 space is released. The user is then informed of the successful destruction.

 Any file accessible to the user may be renamed by the RENAME statement.

 *RENAME "oldfile" AS "newfile".

 Here the file name OLDFILE is changed to NEWFILE.

 DELETE ASSIGNMENT N ___________________

 The DELETE statement includes features to allow the user to return a
 device to the system.

 *DELETE assignment 20.

 deletes the assignment number 20. Any future references to assignment
 number 20 would generate an error since the assignment is now undefined.
 All other assignments 0 to 19, if previously specified, are retained by MTS,
 and may therefore be used again.

 TYPE ASSIGNMENT N _________________

 The user may list all defined assignments and the devices or file names
 associated with them via the TYPE statement.

 *TYPE all assignments.

 lists the currently defined assignment numbers and their associated devices
 or file names. Or the user may type a specific assignment:

 *TYPE assignment 8.
 8 = "-FILE"

 Language Statements 73

 MTS 12: PIL/2 IN MTS

 December 1974

 PROGRAM MANAGEMENT __________________

 For the user who desires more flexible control over certain system
 functions, such as pagination of output, program saving, and program
 loading, PIL has several statements related to these functions, although
 they are not specifically related to program logic.

 Pagination __________

 If a user specifies nothing with regard to pagination, he will use every
 line of a page. This defaults to 66 lines per page. He may request,
 however, that PIL keep an accounting of lines and format pages so that they
 could fit into a notebook. In this case, PIL will supply certain reference
 information such as a page heading. To obtain pagination, the user types:

 *PAGES YES.

 PIL will then respond with:

 Set paper to second line from top, hit return.

 After the carriage return is struck, PIL will start pagination with:

 Page 1 USERID
 05-07-74
 12:41.34

 The last line of the page heading is the time of day on a 24-hour basis
 (00:00.00 is midnight), and USERID is the user’s ID number.

 After this, PIL will keep track of pages, supplying a page skip when
 necessary. It will also begin a new page when the word PAGE appears as
 either a direct or indirect statement. The page control program assumes
 that single spacing is used at the terminal.

 Pagination may be turned off by the statement:

 *PAGES NO.

 If it is desired to use other than a standard page size, the PIL user can
 specify the number of lines to be printed per page.

 *PAGES YES 33.

 would set the page size to 33 lines. Thirty-three lines with a line space
 lever set at double spacing gives a page with same physical size as a normal
 single-spaced page. Pages should be set to the number of lines that can be
 printed on the physical page. The page size must be greater than 15 but

 74 Language Statements

 MTS 12: PIL/2 IN MTS

 December 1974

 fewer than 99 lines per page; it includes page heading lines that are
 produced. The default is 66 lines for a terminal or 60 lines for a line
 printer.

 SPACE and LINE are two statements that help the user space down the
 specified number of blank lines. Both can be used either directly or
 indirectly.

 To space a single line, the statement

 *SPACE.

 can be used.

 *SPACE 5.

 spaces five lines. If the number of blank lines to be spaced would exceed
 the page size, a new page is begun, and the blank lines are ignored.

 LINE moves the page to a desired line number of the current (or the next)
 page.

 *LINE 5

 If the currect line is 2, it skips to line 5. If the current line is 15, it
 skips to the fifth line after the heading of the next page. The statement
 LINE with no parameter:

 *LINE.

 spaces just one line.

 If the user moves the paper himself, PIL will not detect it, and the
 pagination will be incorrect.

 Program Saving ______________

 A program may be saved by a user for use at some later time by the SAVE
 statement:

 *SAVE AS ’fname’, all parts.

 will save all currently defined parts as the file "FNAME". "FNAME" must
 already be created. The name is specified by a string expression and must
 always be followed by a comma (,). Note that a file name is forced to
 uppercase, so xYz is the same file as XyZ. Assignment numbers from 0 to 19
 may be used instead of such file names.

 The object part of the SAVE statement is an almost complete subset of the
 TYPE output list. Only "all assignments" or "assignment n" are not valid.
 Summarized below is a representative list of possible object statements:

 Language Statements 75

 MTS 12: PIL/2 IN MTS

 December 1974

 1. a list of variables. (a,b,c,d,e,f.)
 2. part n. (part 2.)
 3. step n. (step 16.4)
 4. all parts.
 5. all values.
 6. all forms.
 7. all stuff.
 8. part n, step 5.3, all forms, 9.

 Also, any combination of the above forms separated by commas may be used.
 If the user wishes to define a program as all parts and forms, then the
 statement:

 *SAVE AS ’Fname’, all parts, all forms.

 will save the program as FNAME. SAVE is allowed in both the direct and
 indirect mode. It is recommended that the user empty the specified file
 before using the SAVE statement.

 Program Loading _______________

 A program may be loaded into the user’s core by the LOAD statement. If
 the program is on a file referred to by the above SAVE statement:

 *LOAD "fname"

 will load the contents of the specified file into the user’s core storage.

 Many times a program will be created and saved on a terminal with
 lowercase capabilities and later loaded and further debugged on a terminal
 without lowercase capabilities. This causes difficulties if variables must
 be examined or altered in direct mode. To change such a program to
 uppercase while loading, append the MTS modifier @UC to the file PROGRM:

 *LOAD "PROGRM@UC"

 The LOAD statement is valid in both direct and indirect modes. Direct
 statements, including another LOAD, may be specified in a file that is to be
 loaded. No more than 31 LOAD statements can be active at the same time. If
 the user has parts, forms, and values defined and requests a program to be
 loaded, PIL will merge the two programs.

 There are two basic rules to remember when merging:

 1. Any value, form, or step already defined will be redefined by the
 new program being loaded if a value, form, or step of the new
 program has the same name or number.

 2. If the variable names, forms, or step numbers of the program being
 loaded are different from those defined in the loading program,
 then the loading program will remain intact.

 76 Language Statements

 MTS 12: PIL/2 IN MTS

 December 1974

 It is recommended that the user not interrupt his terminal during a LOAD
 sequence, as the results placed in storage are then unpredictable. The
 loading sequence can also be abnormally terminated if any error occurs.

 Language Statements 77

 MTS 12: PIL/2 IN MTS

 December 1974

 Tables

 Table 1. Arithmetic Operators and Functions

 OPERATOR | MEANING | EXAMPLE
 Short | Long | |
 ── | | |
 | | |
 + | | Addition | a + b
 | | |
 - | | Subtraction | c - d
 | | |
 * | | Multiplication | a * c
 | | |
 / | | Division | b / d
 | | |
 | | b |
 ** | | Exponentiation a | a**b
 | | |
 = | | Replacement | x = y
 | | | | | | |
 | | | Abs of | Absolute Value | |a - b|
 | | |
 | | _ |
 Sqrt of | Square Root of | /x | Sqrt of x
 | | |
 Sin of | Sine of | Sin x | Sine of x
 | | |
 Cos of | Cosine of | Cos x | Cos of x
 | | |
 Log of | | Log x | Log of x
 | | 10 |
 | | |
 | | x |
 Antilog of | | 10 | Antilog of x
 | | |
 Ln of | | Log x | Ln of x
 | | e |
 | | |
 Atan of | Arc Tangent of | Inverse Tan x | Atan of x
 | | |
 | | x |
 Exp of | | e | Exp of x

 78 Table 1 Arithmetic Operators and Functions

 MTS 12: PIL/2 IN MTS

 December 1974

 OPERATOR | MEANING | EXAMPLE
 ── ┐ | |
 | | |
 Rn of | Random number of | Random number | Rn of x
 | | generator¹ | (changes x)
 | | |
 Ip of | Integer part of | Integer part of | Ip of -3.5 = -3.0
 | | a number |
 | | |
 Fp of | Fraction part of | Fraction part of | Fp of 3.5 = 0.5
 | | a number |
 | | |
 Xp of | Exponent part of | Power of 10 scaling | Xp of 3.5 = 1.0
 | | |
 Dp of | Digit part of | Dp of x = | Dp of 35 = 3.5
 | | x/(10**xp of x) |
 | | |
 Min of | Minimum of | Least value² | Min of (a,b,c)
 | | |
 Max of | Maximum of | Greatest value² | Max of (a,b,c)
 | | |
 The Size | | Current available |
 | | space³ |
 | | |
 The Total | | Total work space |
 Size | | |
 | | |
 The Time | | Time in 300ths of a | The Time =
 | | second relative to | 1.296000E+07
 | | 00:00 (midnight) | (i.e., noontime)
 | | |
 The Date | | Day of year in form | The Date =
 | | YYDDD where YY refers | 74236.0
 | | to the year (19YY) and| (i.e., August 24,
 | | DDD is day of year. | 1974)
 | | |
 The | | User’s actual computer|
 Elapsed | | connected time |
 Time | | in 300ths of a second |
 | | from the signon time. |

 Table 1 Arithmetic Operators and Functions 79

 MTS 12: PIL/2 IN MTS

 December 1974

 OPERATOR | MEANING | EXAMPLE
 ── ┐ | |
 | | |
 The | | User’s actual computer|
 CPU | | usage time in 300ths |
 Time | | of a second from |
 | | the signon time |
 | | |
 The Cost | | User’s cost in dollars|
 | | from the signon time |

 ¹When the parameter of RANDOM NUMBER OF is a single variable (or
 subscripted), e.g.,

 *SET y = rn of x

 the value of the parameter (x) changes unpredictably and should not
 be altered if the longest possible sequence of pseudo-random numbers
 is desired. The value of the function, y in the above example, is
 uniformly distributed over the interval 0 to 1.

 ²Min and Max may have any number of arguments and are defined for
 string as well as for numerical mode.

 ³The Size does not always present an accurate picture of the amount of
 space available because some temporary space is needed by PIL to
 execute a program. A few PIL cells are reserved exclusively for
 temporary space but still are included in the figure reported by The
 Size function.

 80 Table 1 Arithmetic Operators and Functions

 MTS 12: PIL/2 IN MTS

 December 1974

 Table 2. Boolean Operators

 OPERATOR | MEANING | EXAMPLE
 Short Long | |
 ─── ┐ | |
 | | |
 < | $lt | less than | a < b
 | | |
 <= | $le | less than or equal to | b <= c
 ¬> | | |
 | | |
 = | $eq | equal to | c = d
 | | |
 ¬= | $ne | not equal to | b ¬= c
 | | |
 >= | $ge | greater than | c >= b
 ¬< | | or equal to |
 | | |
 > | $gt | greater than | d > e
 | | |
 & | $and | logical product | a < b $and c = d
 | | |
 # | $or | logical sum | a > b $or c = d
 | | |
 ¬ | $not | logical negation | $not a < b
 | | |
 | $xor | exclusive or | a $xor b
 | | |
 | The True | constant true |
 | | |
 | The False | constant false |
 | | |
 | The Batch | The True if in batch, |
 | | else The False |

 Table 2 Boolean Operators 81

 MTS 12: PIL/2 IN MTS

 December 1974

 Table 3. String Operators and Functions

 OPERATOR | MEANING | EXAMPLE
 Short Long | |
 ── ┐ | |
 | | |
 | | |
 " | | String Delimiter | "abc"
 | | |
 ’ | | String Delimiter | ’abc’
 | | |
 + | | Concatenation | "a" + "b"
 | | |
 L of | Length of | Length of a | L of "ab" = 2.0
 | | character string |
 | | |
 Upper of | Upper case of | Force string to | Upper case of "aBc"
 | | uppercase | = "ABC"
 | | |
 Lower of | Lower case of | Force string to | Lower case of "Abc"
 | | lowercase | = "abc"
 | | |
 n $fc a | The first n | | 2 $fc a
 | characters of a | |
 | | |
 n $lc a | The last n | | 2 $lc b
 | characters of a | |
 | | |
 Subs of | The Substring | A substring of string| The substring of
 (s, b, 1) | of (s, b, l) | s, starting at char- | ("abc",2,1)="b"

 | | acter b with length l|

 | | |

 | THE BCD Time | Time of Day with | The BCD Time =

 | | format "hh:mm.ss" | "12:00.00"

 | | |

 | The BCD Date | Day of Year with | The BCD Date =

 | | format "mm-dd-yy" | "09-24-74"

 | | |

 VL of | The value of | Evaluate string as |

 | | a PIL expression |

 | | |

 BCD VL of | The BCD value of| Convert operand |

 | | to string value |

 | | |

 | The User | The user’s ID |

 82 Table 3 String Operators and Functions

 MTS 12: PIL/2 IN MTS

 December 1974

 Table 4. Precedence Order

 The PIL precedence rules place the various PIL elements in the following
 order (high to low):

 Functions, $fc, $lc, |...|

 **

 unary -, unary +

 *, /

 binary +, binary -

 $le (¬>, <=) , $lt (<), $ne (¬=), $eq (=), $ge (¬<, >=), $gt (>)

 $not (¬)

 $and (&)

 $or (#), $xor

 assignment =

 For equal-precedence operators in a subexpression, the subexpression is

 evaluated from left to right. Functions (as well as $fc, $lc, and |...|)

 are evaluated from right to left. Enclosing parentheses may be freely used

 to change the implied order of expression evaluation.

 Table 4 Precedence Order 83

 MTS 12: PIL/2 IN MTS

 December 1974

 Appendixes

 Appendix A. Summary of PIL Statements

 Below is a complete list of PIL statement keywords. Letters underscored
 indicate the minimum abbreviated form for these words. All other keywords,
 including function names, can be abbreviated only to their first four
 letters.

 Direct or Indirect Direct Only Indirect Only __________________ ___________ _____________

 ASSIGN FORM TO _ ____ __
 BACK SPACE GO _ ____ _
 CLEAR PAGES _ _____
 CONTROL RESUME ___ ___
 CREATE __
 DELETE _
 DEMAND ___
 DESTROY ___
 DO __
 DONE ___
 EMPTY __
 END _
 END FILE _ ____
 ERROR __
 FOR ___
 FORWARD SPACE _ ____
 IF _
 LAST __
 LINE _
 LOAD __
 MTS _
 NEXT _
 NUMBER __
 PAGE _
 READ _
 RENAME ___
 REWIND ___
 SAVE __
 SET _
 SPACE __
 STOP __
 SWAP __
 SYSTEM __
 TYPE _
 UNNUMBER _
 WRITE _

 84 Appendix A Summary of PIL Statements

 MTS 12: PIL/2 IN MTS

 December 1974

 Appendix B. The Michigan Terminal System

 There are several PIL statements that help the user to interface with
 MTS.

 The SYSTEM statement, whether in direct or indirect mode, always
 terminates the PIL/2 session and causes a return to MTS (Michigan Terminal
 System). If the user desires to use PIL/2 again, he must rerun PIL/2. An
 alternate for the SYSTEM statement is a STOP statement in direct mode only. ______
 Example:

 *SYSTEM.
 *STOP.

 There are many operations that only MTS can do; for example, mount a
 magnetic tape, permit a file for users, edit a line file, or copy a file to
 another file. Consequently, PIL provides an MTS statement. The general
 form is:

 *MTS s.

 where "s" stands for a string expression representing any legal MTS command.
 (Note that string expressions must be enclosed by delimiters.) For example,
 to list a file:

 *MTS ’$list pilfile’
 #$LIST PILFILE
 >
 > SET a = 1
 >
 *

 When the MTS command is completed, PIL regains control, unless the command
 given is a RUN, DEBUG, LOAD, or SIGNOFF, etc. Another example:

 *MTS "mount c000 9tp *t* ’abc’".

 requests an operator to mount a nine-track tape with rack name c000 and ID
 ’ABC’. The tape is then referred to by pseudo-device name *T*.

 Another form of the MTS statement is:

 *MTS

 In this case, PIL returns to MTS, but PIL may be $RESTARTED to give PIL
 control again. An example of this is:

 *MTS
 #permit pilfile read others
 #restart
 *

 Appendix B The Michigan Terminal System 85

 MTS 12: PIL/2 IN MTS

 December 1974

 Here the user permits all other users to read his own file PILFILE.

 A full description of MTS commands can be found in MTS Volume 1, MTS and ___ ___
 the Computing Center. ___ _________ ______

 86 Appendix B The Michigan Terminal System

 MTS 12: PIL/2 IN MTS

 December 1974

 Appendix C. EBCDIC Character Set

 The collating sequence of characters is indicated by their hexadecimal
 values as shown below.

 Hex Char- Hex Char- Hex Char- Hex Char-
 Value acter Value acter Value acter Value acter
 ──

 40 Space 81 a C1 A F0 0
 4A ¢ 82 b C2 B F1 1
 4B . 83 c C3 C F2 2
 4C < 84 d C4 D F3 3
 4D (85 e C4 D F4 4
 4E + 86 f C6 F F5 5
 4F | 87 g C7 G F6 6
 50 & 88 h C8 H F7 7
 5A ! 89 i C9 I F8 8
 5B $ 91 j D1 J F9 9
 5C * 92 k D2 K
 5D) 93 l D3 L
 5E ; 94 m D4 M
 5F ¬ 95 n D5 N
 60 - 96 o D6 O
 61 / 97 p D7 P
 6B , 98 q D8 Q
 6C % 99 r D9 R
 6D _ A2 s E2 S
 6E > A3 t E3 T
 6F ? A4 u E4 U
 7A : A5 v E5 V
 7B # A6 w E6 W
 7C @ A7 x E7 X
 7D ’ A8 y E8 Y
 7E = A9 z E9 Z
 7F "

 Appendix C EBCDIC Character Set 87

 MTS 12: PIL/2 IN MTS

 December 1974

 88

 MTS 12: PIL/2 IN MTS

 December 1974

 INDEX _____

 <, 26 ARC TANGENT OF X, 23
 <=, 26 Arithmetic expressions, 21
 Arithmetic functions, 78
 +, 21, 29 Arithmetic operators, 21, 78
 Arrays, 19, 35
 |, 21, 56 ASSIGN, 69
 Assignment numbers, 68
 &, 26 Asst, 68
 ATAN OF X, 23
 #, 26 Attention interrupts, 12
 Auxiliary I/O, 68
 $AND, 26
 $EQ, 26 BACK SPACE, 71
 $FC, 29 BCD VL, 31
 $GE, 26 Boolean constants, 17, 18
 $GT, 26 Boolean expressions, 25
 $LC, 29 Boolean operators, 27, 81
 $LE, 26 BY, 38, 39
 $LT, 26
 $NE, 26 Carriage control character, 53
 $NOT, 26 Character constants, 17
 $OR, 26 Character expressions, 27
 $XOR, 26 Character strings as forms, 59
 CLEAN, 46
 *, 21 Comments, 15, 32
 **, 21 Concatenation, 29
 Conditional statement, 33
 ¬, 26 Constants, 17
 ¬<, 26 Continuation line, 11
 ¬>, 26 Control operations, 71
 ¬=, 26 CONTROL statement, 71
 COS OF X, 22
 -, 21 COSINE OF X, 22
 CREATE statement, 72
 /, 21
 Delete-line, 11
 >, 26 Delete-previous, 11
 >=, 26 DELETE all parts, 45
 DELETE all stuff, 46
 =, 26 DELETE all values, 44
 DELETE ASSIGNMENT N, 73
 Absolute value, 21 DELETE part n, 45
 Addition, 21 DELETE statement, 44, 45
 Alphanumeric field, 55 DELETE step n, 45
 ANTILOG OF X, 22 DEMAND IN FORM, 61

 89

 MTS 12: PIL/2 IN MTS

 December 1974

 DEMAND IN FREE FORM, 66 Free formed input, 66
 DEMAND statement, 35, 36, 52 Free formed output, 65
 DESTROY statement, 72 Functions, 22
 Device name, 68
 DIGIT PART OF X, 23 GO, 48, 49, 50, 51, 62
 Direct mode, 8, 14
 Direct statement, 47 I/O FOR lists, 52
 Division, 21 IF statement, 33
 Do (part n), 49 Indirect mode, 8, 14
 DO (step n), 49 Indirect mode statement, 14
 DO part n, 15, 42 Input/output lists, 51
 DO statement, 42 INTEGER PART OF X, 23
 DO step n, 42 Interrupt, 49
 DO string, 43 IP OF X, 23
 DONE (direct), 45 Iteration statements, 38
 DONE (indirect), 42
 DP OF X, 23 Keywords, 8

 EBCDIC character set, 87 L OF, 28
 Editing, 10 Language statements, 32
 ELSE, 34 LAST i, 40
 EMPTY N, 71 LINE n, 75
 End-of-file, 11 Literal-next, 11
 End-of-line, 11 Literal forms, 59
 END FILE, 71 LN OF X, 22
 END i, 40, 41 LOAD, 76
 Error, 47, 62 LOG OF X, 22
 ERROR statement, 48 Logical expressions, 25
 EXP OF X, 23 Logical line, 11
 EXPONENT PART OF X, 23 Loop control, 38
 Exponentiation, 21 LOWER OF, 28
 Expressions, 21, 35
 Expressions in forms, 59 MAX OF (X,Y,Z), 23
 Extended delete, 45 MAXIMUM OF (X,Y,Z), 23
 MIN OF (X,Y,Z), 23
 FDname, 68 MINIMUM OF (X,Y,Z), 23
 Field delimiter, 56 MTS, 69, 85
 Field stop code, 56 Mulitple-dimension arrays, 19
 Fields, 53 Mulitple set statement, 50
 File name, 68 Mulitplication, 21
 Floating dollar sign, 58
 FOR conditional keywords, 39 NEXT i, 40
 FOR control, 40 NUMBER statement, 46
 FOR statement, 38, 45, 51 Numerical constants, 17
 Form definition, 53 Numerical field, 53, 54
 Form deletion, 68
 Formed input, 61 PAGES, 74
 Formed output, 60 Pagination, 74
 FORMs, 53 Parentheses, 21
 FORWARD SPACE, 71 Part deletion, 45
 FP OF X, 23 Part numbers, 14
 FRACTION PART OF X, 23 Parts, 9, 14
 Free formed I/O, 64 Precedence, 21, 22, 83

 90

 MTS 12: PIL/2 IN MTS

 December 1974

 arithmetic operators, 22 THE COST, 25
 Boolean operators, 27 THE CPU TIME, 25
 with functions, 22 THE DATE, 25
 Prefix character, 8, 11 THE ELAPSED TIME, 25
 Program loading, 76 The False, 25, 26
 Program management, 74 The first character of, 30
 Program restart, 50 The first m characters of string,
 Program saving, 75 29
 Program stops, 46 The last character of, 30
 The last m characters of string, 29
 RANDOM NUMBER OF X, 23 THE LENGTH OF, 28
 READ statement, 70 THE LOWER CASE OF, 28
 RENAME, 73 THE MODE OF X, 23
 Restart, 12 THE SIZE, 24
 RESUME, 48, 49, 50, 51, 62 The substring of (string,offset,
 REWIND, 71 length), 29
 RN OF X, 23 THE TIME, 25
 THE TOTAL SIZE, 24
 SAVE, 75 The True, 25, 26
 Scientific notation, 17 THE UPPER CASE OF, 28
 SET statement, 17, 32 THE USER, 31
 Simple I/O, 35 THE VALUE OF, 30
 SIN OF X, 22 THEN, 34
 SINE OF X, 22 TO loop, 39
 Single-dimension arrays, 19 TO part n, 43
 SPACE, 75 TO statement, 43
 Special DO statement, 49 TO step n, 43
 SQRT OF X, 22 Transfer of control, 42
 SQUARE ROOT OF X, 22 TYPE ALL FORMS, 68
 Statement, 7 TYPE all parts, 15, 36
 Statistics, 13 TYPE all steps, 36
 Step deletion, 45 TYPE all stuff, 36
 Step numbers, 14 TYPE all values, 36
 Steps, 14 TYPE ASSIGNMENT N, 73
 STOP (direct), 13, 85 TYPE FORM N, 67
 STOP (indirect), 46 TYPE IN FORM, 60
 String comparison, 27 TYPE IN FREE FORM, 65
 String constants, 17, 18 TYPE part n, 15, 36
 String functions, 28, 82 TYPE statement, 35, 52
 String manipulation, 29 TYPE step, 15
 String operators, 82
 Subscripts, 19 UNNUMBER, 47
 SUBSTRING OF, 30 UNTIL, 39
 Subtraction, 21 UPPER OF, 28
 SWAP statement, 33 Uppercase conversion, 11
 SYSTEM, 85
 Variable deletion, 44
 Terminal description, 10 Variable length field, 58
 Text material in forms, 56 Variable name, 18
 The Batch, 27 Variables, 17, 18, 35
 THE BCD DATE, 31 VL OF, 30
 THE BCD TIME, 31
 THE BCD VALUE, 31 WHILE, 39

 91

 WRITE statement, 69

 XP OF X, 23

 92

 Reader’s Comment Form

 ──

 PIL/2 IN MTS
 Volume 12
 December 1974

 ──

 Errors noted in publication:

 ──

 Suggestions for improvement:

 ──

 Date ─────────────────────

 Name──

 Address───

 Your comments will be much appreciated. Please fold the completed form as
 shown on the reverse side, seal or staple, and drop in Campus Mail or in the
 Suggestion Box at the Computing Center.

 93

 fold here
 ──

 Publications
 Computing Center
 University of Michigan
 Ann Arbor, Michigan 48105
 USA

 ──
 fold here

 94

 Update Request Form

 PIL/2 IN MTS
 Volume 12
 December 1974

 Updates to this manual will be issued periodically as errors are noted or
 as changes are made to MTS. If you desire to have these updates mailed to
 you, please fold the completed form as shown on the reverse side, seal or
 staple, and drop in Campus Mail or in the Suggestion Box at the Computing
 Center. Campus mail addresses must be given for local users.

 Name──

 Address───

 ───

 ───

 95

 fold here
 ──

 Update Subscription Service
 Publications
 Computing Center
 University of Michigan
 Ann Arbor, Michigan 48105
 USA

 ──
 fold here

 96

