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ABSTRACT

The dynamics of a single bubble moving in a quiescent
liquid is analyzed for single- and binary component systems.
The analysis is made for the region in which the bubble
dynamics is controlled by the transport of energy and/or
mass subject to thermodynamic phase-equilibrium at the
bubble interface,

The dynamics of moving bubble in a single-component
system is investigated initially. The interfacial temperature
remains constant with time for this case. With the application
of the boundary layer simplification and approximating
the velocity field around the bubble as a uniform flow, two
asymptotic solutions of the bubble dynamics for small and large
times, are obtained by means of the coordinate perturbation
method. The bubble behavior during small times is dominated
by diffusion and/or radial convection while at large times
it is controlled by diffusion and axial convection. In the
analysis, the temperature distribution in the liquid around
the bubble is obtained as a function of dimensionless para-
meters and universal functions. Then the total heat flux
over the entire bubble surface is evaluated and related to the
interfacial energy balance condition., The resulting equation

is integrated to yield the bubble growth or collapse rate,
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The solutions for small and large times may be joined
successfully at an intermediate time. It is disclosed that

K B2

the dimensionless parameter =——Tj;———__ governs the bubble
dynamics, where K is a constant, Pe is the Peclet number and
Ja is the Jakob number. The results agree very well with
experiments.

For binary component systems, both injection cooling
and boiling are treated. The method employed is the extension
of that used for the single-component system. Both the

interfacial temperature and concentration vary with time,

The dynamics of a moving bubble in injection cooling is
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/
governed by the parameters U and K3= where [y

is the Lukomskiy number for gaseous phase.

The dynamics in boiling binary component is a
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temperature gradients of the phase-equilibrium curves, Lu

is the Lukomskiy number for liquid phase, f’ and f’l

/
are the liquid and gases densities respectively, and X;;X;
is the relative volatility. The analytical results for the

injection cooling case agree well with experiments,
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CHAPTER I

INTRODUCTION

Problems concerning the dynamics of gas or vapor bubbles
with or without translatory motion are continuously arising
in engineering practice where the knowledge of growth or
collapse rate is necessary. The applications of studies in
bubble-dynamics include boiling, cavitation, injection
cooling and fluidization, among others,

A comprehensive review of the literature is
presented in the following chapter,

The time-history of the growth of a vapor bubble,
either at rest or in translatory motion in an otherwise
quiescent liquid may be divided into three stages: the

initial, intermediate, and asymptotic stages. This Class-

ification is determined mainly by the bubble size. In the
initial stage corresponding to very small sizes, the bubble
growth is significantly influenced by the inertia of liquid,
the surface tension, and the vapor pressure, After the bubble
growth is initiated, there is a rapid increase in its size

and its growth rate reaches a maximum., The bubble growth

rate decreases thereafter as the bhbble grows to larger

sizes, corresponding to the asymptotic stage of growth,

In the asymptotic stage, the effects of viscosity, inertia force
(fluid momentum) and surface tension become: vanishingly small
and the transport of energy and mass appears to be the

dominant mechanism,



D

For the collapse of a vapor bubble, Florschuetz and
Chao ( 21) has identified a dimensionless parameter B to
characterize the modes of collapse as (a) liquid-inertia
control case, (b) heat transfer control case, and (c) general
case in which liquid inertia and heat transfer effects are
both retained. A large value of B implies that the collapse
process is governed by 1iquid~inertia, a small value of B
is associated with a process essentially controlled by the
rate of heat transfer at the bubble wall,.

This work is devoted to analyze the dynamics of a

single, moving gas bubble suddenly brought into contact
with a volatile liquid. Two cases are treated: Single-
component system where both phases are of the same component
and binary-component systems in which either one or both of
the phases may comprise two components. The growth or
collapse of a single, stationary bubble in single- and binary-
component systems were investigated by Yang and Clark (71)
by means of the source theory and by Larsen (42) through the
use of the thin thermal-layer theory. This thesis is the
extension of their work on the similar bubbles but differing
in that the bubbles are in translatory motion resulting
from the action of a buoyancy force. The transfer of momentum,
heat and mass between the moving bubble and the bulk of the
surrounding liquid is considered to take place in a thin
boundary layer around‘theybubble, Thus, the boundary-layer
concept may be applied to simplify the physical problem in
which the bubble‘may either grow or collapse as the result of

a simultaneous action of these coupled transport phenomena,
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The transport equations governing the dynamic behaviors
of a moving bubble are solved by means of the generalized
coordinate-perturbation method, an extension of the method
of Moore (48,49). Two asymptotic solutions, one for small

times and the other for large times, are obtained,



CHAPTER 1I
LITERATURE SURVEY

A. DYNAMICS OF STATIONARY BUBBLE
If a spherical cavity in a liquid of infinite

extent undergoes a step increase in the system pressure, its
collapse rate is controlled by liquid inertia., This is well-
known as a classical Rayleigh's problem (56)., Plesset and
Zwick (53) extended the analysis to include the effect of
surface tension. The criterion‘for the inertia controlled
region is identified by Florschuetz and Chaoc (21) as B>1,
where the parameter B is defined B= J;-%—)/AE

In the asymptotic stage of growth the :ffect of liquid
inertia becomes vanishingly small and the bubble growth
is controlled by energy and/or mass transport. By means of the
similarity transformation technique, Chambre (14) and
Birkhoff, et. al.,(7) investigated the bubble growth in one-
component system and‘Scriven (61) treated both single- and
binary-component systems. Plesset and Zwick (53) and
Florschuetz and Chao (21) employed the #thin thermal layer"
concept to predict the time history of bubble size during the
growth and collapse, respectively. Forster (23) and Yang
and Clark (71) applied the source theory to obtain the
approximate solution for the bubble growth in single- and
binary-component systems. The results agree well with

Scriveﬁvs-(él)°
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For injection cooling, the growth or collapse of the
vapor bubble was predicted by Yang and Clark (71) using the source

theory and Larsen (42) by an integral technique.

B. DYNAMICS OF MOVING BUBBLE

Langston and Eustis (40) correlated the Nusselt number in
terms of the circulation number, for Xe gas bubbles in
aquaous glycol. A moving bubble is approximately a sphere
when its size is less than 1 mm in diameter. As the bubble
size increases its shape gradually deforms into an oblate
ellipsoid and then assumes a "spherical cap" shape when its
diameter exceeds 2 cm, The deformation in bubble shape
depends strongly on liquid properties. The principal
dimensionless parameters governing the stability of the

bubble shape and translatory motion are known as the M

/ 4
number(g-jttlﬁ—-) ) Weber number éféﬁ%%?Lfl) and Reynolds

number ) (30). A small spherical bubble or large

TN
LS}
5
=

spherical bubble or large spherical cap bubble moves upward
in a very stable, rectilinear manner., However, in the unstable
intermediate region, the bubble fluctuatés - in shape from an
ellipsoidal to a spherical one accompanied by a zig-zadg or
spiralling upward motion,

The continuity of the velocity and stress at the bubble
interface requires that the gas or vapor inside the bubble
be in a circulating motion, This flow pattern provides an
apparent slip flow condition. The degree of slip is found to

be closely related to the concentration of the active materials
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at the interface. Consequently, a small spherical bubble

in tap water behaves like a rigid sphere since the thin

film of impurities at the interface can resist the shearing
force and a full internal circulation of the gas inside the
bubble is impeded, However, in pure water, there is
developed a full internal circulation and the drag character-
istics approach that of a fluid droplet.

For a boundary-layer type flow the flow may separate
from the bubble interface leaving a weak circular wake
behind The wake is more pronounced in a more viscous and impure
liquid.

Hadamard (31) and Rybczynski (58) extended the
Stokes'(64) creeping flow analysis around a rigid sphere to
the droplet and bubble case by stipulating slip-flow boundary
conditions along the interface; i.e.,

1. Continuous velocity across the interface, and

2. Continuous tangential stress across the interface,

The result is then

(2-1)

L 2P-Flgp M)
U 3 I 24+ 3

Bond (10) derived the same solution for the gas or vapor
bubble. However, not all the bubbles are found to have a
full internal circulation. Bond and Newton (11) were among
the first who observed the bubble to behave like a rigid sphere
particularly when the bubble‘is small, They used dimensional

analysis to derive the critical radius at which the bubble



will behave like a rigid sphere

0
Rc)’/'t = */3(/0—-;0/) (2-2)

They were the first to suggest that this is due to

surface contamination, Empiricgl investigation by Garner and
Hammerton (26) has resulted in a clear picture of this subject.
Observation of internal circulation was done by adding
ammonia chloride fog; and the experiment confirmed Bond and
Newton's criteria of Eq. (2-2) for a vapor bubble, When
impurities were added, the circulation ceased and the bubble
motion behaved as predicted by the non-slip Stokes solution.
However, when the liquid was pure, circulation started and
the bubble behaved as prediéted by Hadamard's sblution for
the slip condition,

The first attempt toward an analytical explanation for
such transition was made by Boussinesq (13), who advanced
the hypothesis of dynamic surface tension in such a way
that a thin layer of high viscosity exists near the surface

layer and introduced the following equation.

2P pA A

= (2-3)
b =G PERANETTE TN <%
where € = surface viscosity coefficient which expresses

the relation between surface tension and the rate at which
the surface area of the liquid changes. For small bubbles,
Céu approaches Stoke's solution while for large bubbles

LAD approaches Hadamard's solution,
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However, both Bond's and Boussinesq's attempted explanations
utiliiing surface tension and dynamic viscosity layer
effects respectively are indeed hypothetical. For example,
Bond's attempt cannot explain the\fact that the bubble
follows Hadamard's law if the iiquid’is very pure, Likewise,
the existence of high viscous layef in Boussinesq's
hypothesis is not observed physically nor experimentally.

The analysis of Levich (44) seems to explain the observed
phenomena most clearly. He analyzed the diffusion mechanism
of the surface active substance along the interface of a
bubble with adsorption and forced convection theory and
predicted the existence of thin layér of such substance
which establish the surface tension gradient, His analysis
is limited to the creeping flow range in which such phendmena
are profound. At higher Reynolds Numbers, however, the
internal circulation always sets in, regardless of impurities,
Levich argues that at higher Reynolds Numbers such thin films
of contaminated surface are stripped away by inertia effects «

An interesting study has been made on the interfacial
surface phenomena. Young, Goldstein and Bl@ck (72) made a
successful analysis of an effect of temperature gradient on
the bubble motion., It is known that the bubble starts falling
instead of rising in the quinscent liquid if the negative
temperature gradient exists, They succeeded in making a
qualitative analysis, taking into account the inverse surface
tension gradient induced by the temperature gradient. The

analysis predicts the condition for which the bubble motion stops.
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Ramshaw and Thornton (55) attributed the observed oscillation
of the bubble to interfacial disturbances. Leonard and
Houghton (43) and Datta, Napier and Newitt (17) observed that
mass transfer retarded the rise of the bubble., Leonard and
Houghton attributed this retardation to the electrokinetic
effects due to mass transfer

Stokes' solution and its extension to bubbles and
droplets by Hadamand and Rybczynski are limited to creeping
flow range so that Re <€ 1. The analysis for higher Reynolds
Number was carried out by Lunnon (46) for a rigid sphere, and
by Allen (2), Miyagi (47), Bond (10) and Bond and Newton (11)
for air bubbles. Miyagi (47) was apparently the first to
introduce the concept of added mass into bubble motion analysis,
the concept which takes accout of the portion of the liquid which
must be accelerated with a bubble. This made the bubble
motion analysis valid for a wide range, including the rapid
acceleration period in which a bubble accelerates rapidly
from a standstill position to a terminal rising velocity.
Miyagi also noted a zig-zag motion of the bubble,

The concept of added mass has since been employed by
many others for bubble motion analysis, Davidson and
Schuler (18) employed the concept for bubble formation analysis
at the orifice tip. Han and Griffin (32) for bubble fomation
on a heated plate and Gaywood and Birkhoff (27) for moving
bubbles.

The first study which gave a careful attention to a flow

condition around a bubble was reported by Davies and Taylor (19).
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They experimented with large spherical cap bubbles and
observed for the first time that the flow field around the
front stagnation region of the bubble is irtotational. The
irrrotational flow distribution around the bubble has proved
to be valid unless the internal circulation is impeded by

the formation of surface active material layer along the
interface. Because of the irrotational flow, the analysis of
bubble motion is much simplified.

Levich (44) argued that the irrotational flow distribution
prevails over the entire rising spherical bubble. He obtained
the drag coefficient by calcylating the viscous dissipation in
the irrotational flow. Cha®: (16) and later Moore (48) more
rigoréusly, showed thaf indeed the actual flow distribution

around the rising spherical bubble deviates from that of
irroational flow only by O /A?Jé) everywhere, Moore (49)
corrected the error in the pressure drag term which was
committed both by himself and by Chao. He obtained the
correct asympfotic solution in terms of Re, thus the 1lst term
of the corrected result agreed with Levich’s result obtained
by viscous dissipation analysis,

The stability of a deférmable bubble is recognized to
be due to the interaction of hydrodynamic pressure and
surface tension and it was studied by several authors,

Saffman (539) analyzed the stability criteria for the
oblate shape of the bubble and its gig-zag upward mofion by
assuming that the irrotational flow field prevails at the front

stagnation point as it was observed by Davies and Taylor (19)
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The essential points of the analysis are
(i) The pressure of the gas within the bubble is constant
everywhere and the thermodynamic relation of surface tension

and pressure will be

' |
P+ 6\( FI{I -+ 5 >: CO)’?S‘t-. (2-4)

(ii) The bubble surface corresponds to a stream line.
Hartenian and Sears (33) modified the Saffman's analysis
by considering the following factors,
(i) Inviscid and irrotational flow prevails not only at the
front stagnation region but essentially over the entire
bubble surface.
(ii) Changes in the shape of the bubble surface have effects
on the unstability.
The Weber number measures the ratio of the hydrodynamic pressure
forces to the surface tension forces, which maintain the bubble
shape., If a bubble is rising in pure and relatively inviscid
liquid, the Weber number is found to be a critical parameter,
If a bubble is rising in impure and more viscous liquid, on
fhe other hand, the Reynolds number becomes a critical parameter,
Hartonian and Sears' calculation gives We. crit = 1,26
and Ré. crit = 202, Moore (48) improved Hart©nian and
Sears' analysis by including non-linear terms.
Tadaki and Maeda (66) empirically correlated the drag
coefficient Cp and the deformation ratio of major and

minor axis in terms of Re and M. However, Haberman and
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Morton (30) conclude that the above sets of dimensionless
parameters are insufficient for correlation,

The greatest difficulties for analysis  ©of bubble
motion are as follows:
(i) The shape and motion of the bubble are interdependent,
(ii) The exact condition at the interfacial surface is not
well established. If the surface active material forms a
thin layer, a full slip flow condition is not applicable,
(iii) Separated flow introduces complexities beyond the

capabilities of present analytical methods,



CHAPTER III

ANALYSIS

A. GENERAL FORMULATION FOR DYNAMICS OF MOVING BUBBLE

This chapter presents a general formulation for the
dynamics of a single, moving spherical bubble growing or
collapsing in a binary-component system,

Consider a vapor or gas bubble consisting of a binary-
component mixture moving and growing in a quiescent, super-
heated, binary-component liquid of infinite extent,
Initially, the bubble of radius Ry has a uniform composition
X} and temperature Té. On the o ther hand, the superheated
liquid has a uniform composition X,, and temperature T
throughout. Then the bubble is brought into the liquid.

Due to the buoyancy force the bubble ascends in the liquid as
it grows or collapses. After the bubble is in contact with
the liquid, the interfacial compositions and temperatures
become X! and T{ on the gas-phase side and Xq and Ts on the
liquid-phase side, respectively,

The following restrictions and simplifying assumptions
are imposed on the solution.

(1) The bubble is spherical in shape; and grows
uniformly over the bubble surface. The effect of its deformation
to an ellipsoidal shape is presented in Chapter V-A.

(2) The liquid is considered infinite in extent,

(3) The 1liquid is incompressible.

-13-
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(4) All physical properties such as specific heat,
thermal and mass diffusivity and viscosity remain constant.

(5) The viscous heating, kinetic energy and surface
energy terms are negligible,

(6) At any instant, thermodynamic equilibrium conditions
exist at the bubble interface.

(7) The bubble may be lumped thermally., This assumption
is reasonable because of low heat capacity and high thermal
diffusivity in the gas phase.

(8) The initial pressure distribution is uniform and
the same throughout both phases. The static-pressure change
due to bubble motion is considered negligible.

(9) The inertia force induced by the radial motion of
the bubble surface is sufficiently small to be neglected.
Thus, the growth or collapse of the bubble is controlled
entirely by heat and mass transfer in the liquid phase and
mass transport in the gas phase. This is a good assumption
particularly because the study is focused on the growth or
collapse of a bubble starting with a finite initial size,

(10) The bubble moves at a velocity sufficiently large
so that a full internal circulation known as the Hill's vortex
prevails within the gas phase, This implies that the stress
and velocity are continuous across the interface without
forming any surface active material film (30),

It is convenient to analyze the problem in a frame of
reference fixed at the center of the bubble as shown in

Fig, 3-1, i.e., a spherical co-ordinate system (r, 9, £)
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’?f/}
N

Figure 3-1, Uniformly growing spherical bubble moving
with velocity Ugo(t)
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moving with the bubble. As pointed out by Lighthill (45)
for an incompressible fluid, the frames of moving and stationary
references are equivalent if they are in a uniform, though
not necessary constant, translational motion to one another,
This would be true in this case.

By the adaption of a coordinate system attached to the
moving bubble, the governing equations are obtained in two

regions of physical space.

A.1 Liquid Region (RLr £ oo )

Continuity equation:

LAY TR
or "0 Y riRE @51('5“””6& =0 (3-1)

Momentum equation in © direction:

ou U azg ut . fDP z‘.‘av;_ u )

Momentum equation in r direction:

JUV  you Y TP a gy 20k 24
gb 7‘69‘ y@)" r fo’@}a *}‘//v ,rz P?(Q 2 )(3~3)

Energy equation:

o7 ﬂ?l— oT o VZT

. + U= = -

3t T To9 © Var (3-4)
Mass equation:

24 . _UQ)_(,L BX DVZ (3-5)

ot r 296
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The appropriate boundary conditions are

u(r, 6,0) =v(r,6,0)=0

UR B,t)-URET) , VRET) Ult)

UK B, T )=u(r81TE) VK4t )=o)
To(RO t)- T,,(RET)
U(co,8T) and V(0 , 87 )—>Udt)

T(r6,0)= To
T(RO,t)= T (t)
T(,81)=T,
T(ret):Tiroeromt)
A(1,8,0)= X,

X(R/ 6, t): Xs(t)

(3-6a)

(3-6Db)

(3-6¢)

(3-64)

(3-6¢€)

(3-7a)

(3-7b)

(3-7¢)

(3-74d)

- (3-8a)

(3-8b)
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X(,6,1)=X,

X(Y; 6,t)=X(r6%amt)

o - h 2R ey o sy

A.2 Gas Phase (0 £ r<-R)

9)( 1&13)( + Y Y v/
2% rae ar DVX

X(76,0) =X,

X(R6,t)= X (t)
2X1(0,6,t) _
a7 = 0

X(ret)= X(ro+mt)

A.3 Interface Boundary Conditions (r=R)

The continuity of momentum, mass. and energy
at the bubble surface yields:

Continuity of mass:

(5-R)P s - DF- ) - (R DPLL

(%°R)P =(%-F)F

(3-8c)

(3-84d)

(3-9)

(3-10a)
(3-10b)
(3-10c¢)

(3-10d)

fluxes

(3-11)

(3-12)
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Continuity of energy:

(4 - R)ﬁ{ —-f (3-13)
9" an R
Continuity of momentum in radial direction:

P+ 25 ﬁ, P +AJZ(/? V)(
,44 P 3—,&! Br_T) (3-14)

In addition, the assumption of the thermodynamic-equilibrium
condifions at bubble surface yields:

From the dew curve in Fig, 3-2

Xe- X, (25 (%~ Tos) (5-19)

From the boiling curve in Fig., 3-2

XS—X%O :(%)P('];-. _[oo/s ) (3-16)

From the inviscid-flow theory, it is found that the

potential flow distribution

3
M=Um(t)sm@(i+3%> (3-17)

V= U, (t) cosB(i- )+R( ) (3-18)

may satisfy the governing equations (3-1), (3-2) and (3-3)
and the boundary conditions (3-6b), (3-6¢c) and (3-6e). If
sufficient evidence can be found that the fluid flow over

the bubble may be approximated as an irrotational flow, then
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equations (3-17) and (3-18) would represent the velocity
field around the bubble. This approximation is reasonable
as was revealed by the following observation:

The tangential shear stress at the bubble surface may be

expressed as

Trs(R, 6,7)= /”[)/n %g Ba/ )]r:/? (3-19)

on the liquid side and

te(ROT)= [;,gg + )”—%{-%—-)sz (3-20)

on the gas side. Since the viscosity of the gas is very

small compared to that of the liquid and the velocity

B [
gradient,in’ /y {- ”,>] for the Hill vortex
r o0 r. r=R

flow is of the order of unlty,the tangential shear stress on
the gas side of the bubble surface is very small, i.e.,

/
2}»9(]‘?, @/-é)—eO On the other hand, with the substitution
of equations (3-17) and (3-18), the tangential shear stress

in the liquid at the bubble surface may be expressed as

Z;ﬂg(k,e,t)bé%%s/na

or

_Z—.CQ = _.._LB_ 5/72@ (3-21)

= =
Pl Fe

The equation indicates that 2}9 would be negligibly small

if the Reynolds number for the flow around the bubble is

relatively large. In other words, so long as the Reynolds

number for the flow around the bubble is relatively large
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the viscosity of both the liquid and gas play an unimportant
role even in the . Vicinity of the bubble. Thus, the flow
around the bubble may be approximated as an irrotational flow.
In addition, it is found that the velocity field as expressed
by equations (3-17) and (3-18) satisfy the boundary condition
(3-6d). A further argument on the approximation of the
irrotational flow around a moving bubble is presented in
detail in Appendix I,

An examination reveals that equations (3-17) and (3-18)
also satisfy the initia1 conditions (3-6a) since the bubble
is initially at rest and with zero growth rate. The inter-
facial condition (3-12) for the case of Nt 5>'j°’ simply
yields the expression for the radial velocity component of

the liquid flow at the bubble surface as

% (R6,¢ )= R(t) (3-22)

which is satisfied by equation (3-18),

Now equations (3-17) and (3-18) representing the velocity
field around the bubble, are substituted into equations (3-4)
and (3-5). The solutions of the resulting equations subjected
to the appropriate boundary and interfacial conditions represent
the liquid temperature and concentration fields around the
bubble., It is rather unfortunate that the analytical solution
to the resulting equations is still beyond the reach of the
presently available techniques excluding the use of a
digital computer. However, from the physical reasoning,one

obtains an important conclusion that the viscous flow around
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the bubble induced by its ascending motion and growth or
collapse may be approximated as a potential flow. In other
words, around the surface of the moving bubble there exists

a hydrodynamic boundary layer:in which the velocity components
may be approximated by those of a potential flow, as expressed
by equations (3-17) and (3-18). Now, effort will be directed
toward solving the energy equation (3-4) and the mass
diffusion equations (3-5) and (3-9),

It is convenient to analyze the problem of energy and
mass transport in a frame of reference fixed on the bubble
surface, i.e., a coordinate system moving with the bubble
surface. Equations (3-4), (3-5) and (3-9) in the spherical
coordinates fixed at the center of the moving bubble is now
transformed to the orthogonal coordinates (x,y) fixed at
the forward stagnation point on the bubble surface, X
measures the distance along the bubble surface and y
measures the distance normal to the bubble in the outward
direction for the liquid phase or in the inward direction for
the gas phase., With the boundary-layer simplification,
equations (3-4), (3-5) and (3-9) in the new coordinates

reduce to

oF L 2L, ﬂ:dﬂ_ (3-23)
2t 2X oY Y-
for heat transfer in the liquid phase,
X ‘ax - 72X
oA 4 + \/ = 9 (3-24)

ot By“’
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for mass transfer in the liquid phase, and

/

'aX x” D _
+u Va§ - ()" gg[(/e g) ] (3-25)

for mass transfer in t he gaseous phase, respectively. ﬁ and
V correspond respectively to u and v expressed by equations
(3-17)‘and (3-18) in the new coordinates., U' and V' are
still unknown quantities. Due to the shift of reference
systems, a uniform but time-varying velocity R(t) which is
equal to the growth rate of the bubble is superimposed on

the normal component of the velocity field around the bubble
surface, Thﬁs-the normal velocit& V becomes zero on the
bubble surface and -R{t) at a distance from the bubble in the

liquid phase. This leads us to approximate V in the form of

\/ (L) :R(mg

which satisfies the conditions at the bubble surface and

(3-26)

at a distance from the bubble. Or, in & simpler form, V

may be expressed as

\/(t)-—-—2 g 0 C)( ') (3-27)

with a deviation from equation (3-26) by the order of —gju

3

For a thin hydrodynamic boundary layer over the bubble,the
kS

order of

VE may be considered to be very small,

Now, the velocity component U along the bubble surface

is assumed to take the form of
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Ut) =K Up(t) (3-28)

in which K is the‘proportiohality constant to be determined
by equating the total heat fluxes over the entire bubble
surfacé obtained for the potential flow disfributipn and the
flow field exﬁressed by equations (3-27) and (3-28). The
method of determining K is presented in detdil in Appendix II.
The appropriate boundary conditions t6 be satisfied are
obtained from equatiohs (3-7), (3-8) and é3-10) ass
T (4,0 )=T(%, o, t)=T(o4t)=T,
T(2,0t)=T(t) (3-29)

for equation (3-23);
X(%,4,0)= X(%0,1)=X(04,T)=Xo

X(%o,t)=X(t) (3-30)

for equation (3-24): and

X@y0)=X., X(x0t)=X, X(%~F ¢)-X.(2)

X(x,4t)=X(x yt) (3-31)
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for equation (3-25), 1In addition, two interfacial (or
matching) conditions to be simultaneously satisfied are
obtained from equations (3-11) and (3-13) as:

The energy balance at the bubble interface requires
2 7 ° 4 F@ 2 )
$R 5 R)Phg= - [ onR B 2T dx -
| " S0

The mass balance at the bubble interface requires

‘ 7['/? 2./ /2
4-75}‘32[(?[;f7?)f’)(5-(%/-7?))°/Y5:,:j-? EED/’%Q dy (3-33)
o J=o

for boiling in a binary liquid mixture, and

- nR
2 / /o 2/, ! /
4R (1-K)PR == | 21RDP 2L dx (3-30)
| 0 ' =
for injection cooling.
The thermodynamic equilibrium condition between the

tempefature and concentration at the bubble interface yields

Te-To . Xeo= Ko (3-35)
T.S' ‘7-0-0 Xs_ XOO

for injection cooling; and

X~ Xooz g—;(:)’b (7; = 7;’5 ) (3-36a)

XS'~X; = /i—;{)/)ﬂ;— Tos ) (3-36b)

and
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for boiling in a binary liquid mixture,

B. MECHANISM OF BUBBLE DYNAMICS

B.1 Single-Component System

In order to understand the basic mechanism in
the dynamics of the moving bubbie, fhe differential equation
(3-23) and its éppropriate boundary and interfacial conditions
(3-29) ahd (3-32) are partially non-dimensionalized as follows.

With the definitions of

» .V
(Z’:f;) g*=—R%\zZ=—:)a=‘(%lu )
R ‘727& 3@
"R O T T 93")5 JS’" /?) 7) ”’é' (3-37)
J PC(Teo" .T;> 1) .QLZQQ7?° r- ALZ«73
£’ ﬁfﬂ o cjb
in which Uo= KUOOO and é\ is the thickness of the

time-dependent thermal boundary layer, equations (3-23), (3-29)

and (3-32) may be rewritten, following simplification, as

222

S[UBQ ”?9) 20 (3-38)

(58(9 g_‘B@M_& %)
32’* o o4 (7

T 2240T {;o\ 4

0(£0,%)=1, 60 4,2)=6(x, 1) 6 Y0)=0  (3-39)

éﬁ) = 21_5(_& ) (’3_40)
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The combination of equations (3-26) and (2-40) yields

i -;\. dé%? R’{_ -
U= s ng O[(—} i:) (3-41)

It must be noted that the magnitude of [(——) - | J

within the thermal boundary layer is ()(5) and g*',
2. %, 25,0 v o0

In order to satisfy two of the boundary conditions,it is
2

vnecessary to retain the é%gg. term in equation (3-38). An
examination of equation (3-38) with the substitution of
equation (3-41) reveals that the following regions are of
partlcular interest.
Region a: For 5 0[2“ ) the transient term is 0(1).
Region b: For ér:éj(ifg_), the radial convective term is 0(1)
Region c: For Jg :670?2)/ the axial and radial convective
terms are of the same order.
Region d: For 5: O(,%-I2)) the axial convective term is 0(1),
Now these regions will be examined separately as follows,
Regions a and b correspond to the initial stage of the
bubble growth in which diffusion and/or radial convection

are the dominant mechanisms.

In the initial stage of the bubble growth one defines

7R, 2475 = i
- = - (3-42)

Then equation (3-38) may be rearranged as

. 9‘ 2 2
(sgf -ggj)v‘ ”a% QB;)[/—?)-I}%} (3-43)

-
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It may be shown from an examination of equation (3-43)
that only the second term on the leftwhand side and the é{g%
term on. the right-hand side of the equation remain when:

2@ < | and a°2<?: / . This indicates that the
diffusion process is the dominant mechanism in region a;
However, if Tg = O(!) vut WZ<< / so that ?;rz<< [
then both diffusion and radial convection become important
but the cOntribufion of the axial convection is still
negligible; The contribution of the axial convection depends
on the magnitude of the parameter a“z

Regions ¢ and d correspond to the intermediate and

asymptotic stages of the bubble growth,

By defining

Ro A _ )
R AT e

o

equation (3-38) may be rewritten as

20, 4,20 . | 99) o8 _ 38 (3-45)
82;'f L(azq'+‘2fiagﬁgééajf'- aéﬁ 5

Equation (3-45) indicates that when N>/ , the
radial convection bécomes negligible. This corresponds to
region d. However, when ?ﬁﬁC¥7) both the radial and axial
convection are of the same order, which corresponds to

case C,

This can be summarized in Table 3-1,
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TABLE 1II-1

MECHANISMS OF BUBBLE DYNAMICS CONTROLLED BY THERMAL DIFFUSION

Stage of Dominant
Region Situation Bubble Growth Mechanism

a ?’5<< | initial diffusion

b ?;;::l/ N&L| initial dif fusion and
radial convection

c z;:I, ak;/ intermediate diffusion, axial
convection and
radial convection

=2
d ?;f\i>'/ asymptotic diffusion and

axial convection

(i) For regions a and b, the analysis of the bubble dynamics
of translating bubbles reduces to that of stationary bubbles
(ii) 1In regions c and d, the axial convection effect is

important.

B.2 Binary-Component Systems

Since the energy-equatioﬁ for a binary-component
system is the same as that of a single-component system, the
parameter (" is still a criterion in determining the
mechanism of the bubble dynamics.

With the definition of

J'o( T v X=X,
d?f j?ézla——b—,/@% Xm

2 e, ) frem, o)

e~ XﬁXoo
7"7_0’ T, X (3 Lq
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the interfacial conditions (3-32), (3-34) and (3-35) for

injection cooling may be rewritten as

" 99, ' (3-47)
ag 3*: o] '

27re X Ly BX) (3-48)
yro

2r=T

X'+ Xe Jg o4

» * for a linear relationship
X =T between the temperature and (3-49)
concentration at the bubble surface

As was discussed in the previous section III-B.1, when
the bubble dynamics is controlled by heat transport, equation
(3-47) indicates ]’ T GJ-E—Q) are 0(1). Hence, according
to equation (3-49) ,X“ is 0(1) Therefore one finds from

o a0 0 0(6) x4 2
e o B 0) e s o0

' ! 33*
vanishingly small and mass diffusion has very little effect.
The bubble dynamics is then heat transport controlled,
Similarly if 62 >> | , the bubble dynamics will be mass
transport controlled. In reference to I1I-B.1 one may now
realize that the bubble dynamics in binary systems can be
classified into the same four domains as in the case of a
single-component system., Each domain may be further divided
iﬁto three subdomains depending on the magnitude of the

2
parameter 63 . PFor example, Table II1I-2 presents three

subdomains of the domain a.
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TABLE I1I1-2
MECHANISMS OF BUBBLE DYNAMICS IN BINARY-COMPONENT SYSTEMS

Region Key parameter Stage Dominant Mechanism
al ?;«’, é((l small time energy diffusion
a2 ‘Z:S(<)) é.>> | small time mass diffusion

2 . » 1
a3 4 ~ small time both mass and
2;< ) (3 | energy diffusion

The other three domains b, ¢ and d can be divided in

the same way as the domain a into three subdomains.

B.2 Boiling in Binary-Component system

The parameters which determin€ the mechanism of
the bubble dynamics are obtained from the governing differential

equations and interfacial conditions as

J——Pe? Pli-do)  _Ja P (XX,
(J)J'_f oo S,JT,JO R

(3-50)

It should be noted that [4,: _Efm appears in the
, 3
parameters rather than Lu = D as in the case of
injection cooling analysis. Due to the large density
!
ratio Ja P is generally much smaller as
ALy P T
compared to B for injection cooling., However,
JLu
80 @, play an identical role as (3 in injection
cooling, that is, they indicate the relative importance
between the massgenergy transport to the bubble growth, 1In
addition, it is disclosed in equations (3-50) that CXO and(ﬂ,
which are the gradients of the dew or boiling curve in the

thermodynamic equilibrium diagram and the interface
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/
relative volatility ratio ( Xq = Xoo ) are .also

among the physical properties involved in the criteria,
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CHAPTER 1V
SOLUTIONS FOR DYNAMICS OF MOVING BUBBLES
Two asymptotic solutions, valid for small and large

times, are obtained in the following to predict the bubble

growth rate in single- and binary-component systems,

A. SINGLE-COMPONENT SYSTEM

A.1 Small Time Solution

The small time solution; which signifies the
solution for small times after the start of the bubble
motion is equivalentbto the case ¥%§?<35l where (J
is the velocity component along the bubble surface as expressed

by equation (3-28), and |J is its time-derivative,

With the definition of

T TM‘6<’Z).?30,Z‘:/ ,fo)g)"“) (4-1)

’g- l()o

?'.= gj;(%)— (4-2a)

2‘3‘5 ) 27'-"%/3'._)2/ "ot (4—2b)
v
v

where

" U 2
§‘;-—Q ) E =—(—.)' —_— e (4”2(:)
0 / !
U v\
the energy equation (3-23) and its appropriate boundary
conditions reduc¢e (3-29) to

36~
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20 (e 2-292)+ B2 (081000 ) 20(5-02, 40022 )

2

+--—+9}§( f‘ (fl 95 -3E.£ ) —99 (4-3)

and

9(00/(2%)54,_)201 @(OJZan”>= / (4-4)

respectively.
The temperature function © may be expanded as

6(7,%,5;) = 6:(7)+2 2,6, (1) + 2 & Og, (1)1
2ty O W2 TE G 5{*2>+ S - (4-5)

In applying the method Qf power series, the series
concerned must be convergent. For the temperature function
as expressed by equation (4-5), it requires that the (Z’n
and .En, be small and are in a decreasing sequence.

In an isothermal system Levich (44), Moore (48,49)
and Chao (16) obtained a relationship between the drag
coefficient and the Reynolds number of a steadily ascending
air bubble as /

Co L Re

This indicates that if the change in the flow velocity
is sufficiently small compared to the velocity i tself, then
the translatery velocity of the gas bubble may be directly

proportional to the squate of the bubble radius or

U, & R
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On the other hand, if the change in the flow velocity
is very large compared to the velocity itseif, Miyagi (47)
proposed |

Un K | = %55z
The relationship was obtained experimentally and theoretically
by the concept of added mass.

For small times the bubble velocity as approximated

by equation obtained from Miyagi (47)'givés-

U (1+¢e )( -/)

O eCt
O /-ec”‘v
o - '/+eCt sck
U /-4€" +€
s vt“—“;> o ) the first equation gives

_g_: + + 0(f3) Consequently,

£,200t%), £-0(t), £-0(¢),---

and the parameters J?n are in a decreasing sequence,

As to the asymptotic nature of (Zﬁ), there is a certain
uncertainty because the bubble behavior is still unknown
at this time. However, in case the bubble grows from a
finite initial size by a diffusion mechanism, this growth

may be expressed as
A 2
R=R, + at”(/+at+at+--)

where Q,,d,, @, ---are constants.
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Then it can be found that as t— O

T,= 0(t%), 2= 0(t%) -, 2,2 002 %)

Although the parameterseth do not form an asymptotic
sequence of decreasing order, it will be seen later that
the coefficients of the‘En'terms in the temperature
function O decrease very rapidly.

Now, equation (4-5) is substituted into equations
(4-3) and (4-4) followed by cbllecting terms multiplied by

the various powers and products of the T»n and ﬁn o

It yields.

Zeroth order solution

~§jﬂ/@;-——6;' = 0 (4-6)
First order solutim
% -28y-206,+6, -0/ =0

8‘; -'*"’“@? @Z’ ’/'2@2. 62’ =0

4

- 50z, + 6y 136p,- 0L =0
% -1y + 0y +4—9§n93:=o
£ ~%9;-°+@Eo+ 437;@6'; @fi:
£ -—%9}%+@f+2@f/ —9";-.0
b GO + 04 +30s, -6, =0
I :?'@sa + &5, +465, 953

(4-7)
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Second order solution

AN ”9*2% 6, -6y = 0

;-0 +665,498,26,-2 = 0 -
(&) -2 60 +26.4:+4 Gy, - ,\'? =0
B -{G+36,+2p-28 -Gy =0
B 19194 +26,768,94-29; = 0
o 3Gy i 0, < o
which satisfy the appropriate boundary conditions

B(o)=[ , B,(0)=0 ; (4-9)

and all other functions at 7=0 and 00 equal to zero.

The universal funct1ons 6%7 are numerlcally 1ntegrated

05646 + 0573/ F 4 - 0.1857 ’”(L)wam N0 0opp 2 )
+02909(11t 0092671 /z{)+
- 0./4:32 "—‘( +0.0464 —%(”) + ---

:J__T—?E__FE ” (4-10)
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One is now reminded that the absolute value of the coefficients
! LN / /

for the ¢, terms such as 63'0(0)/ @Z_’(o)) %(())--— decrease

like 0.5731, 0.1857, 0.0458,

Depending upon  the accuracy sought for the solution, the

following three approximations are presented.

Zercoth order approximation which is accurate to 0(1)

riz = 08 (4-11a)

1
First order appreximation which is aceurate to 0(2;6)

r{T =05+ 0,50-7—?4’- 2 (4-11b)
Second order approximation which is accurate to 0( Zg)

YT, = 05 +05’07-ﬁz 0/542 *Wm‘(?ﬂ 2;) (4-11¢)

in which T,  is defined as % —g— or 40{‘)—8 t

A.2. Large time solution

The large time solution which signifies the solution
for large times from the beg%nning of the transient behavior
is equivalent to the case 956'<< /[ . The flow and
temperature field at large timés may be considered to be in
a quasi-steady state. Thus, at large times the rate of
molecular diffusion is balanced by the rate of cohvection.

By defining

TT‘” . 4-1
= O A ) (4-12)
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- gg (4-13a)

U X f__Q_"{_z §=,L)_<_7__3_-_ (4-13b)
AT ’-/'u(u)’ 72| U)‘

It is interesting to note here that the parameters 7T,
defined for the small-time solution are in an identical form
with the parameters )Eh defined for the large-time
solution since the relation of (/. f %?z is imposed

for large times,.

By expanding |J in the form of

U=2t"(a,+at+at+--- )

or ) =Z€Qf(ao+a,% + Q‘jz+ =)

:It can be -readily seen that unless (J—s O as ’t——~9'00 ,
g;%} form a sequence of decreasing order as tl——>CD

from equation-(4-13b), Since only a finite range of X
i.e.,, from O to T R is to be considered in the analysis.

The.energy equation (3-23) and its appropriate boundary

conditions (3-29) may be rewritten as

)R (o2 B2 (oS es) oo
26
7’,

4 --= =



-43-

B(wf.)=0 , ©(0§,)= /0

(4-15)

With the substitution of the temperature function 9

expanded in the form of

oM, &)= )+ Zgbef('?)+zz—fé//fg(7)+"' (4-16)

into equations (4-14) and (4-15) one obtains

Zeroth order approximation
o’ "
-6, -0,=0

First order approximation

n A" )~/ 1/ _
j; ~§_§¥L-yé%c% t 6 2 -'é%; =0
ﬁs | fl+'§%; +‘?€% - f =

Eo 36505800

Second order approximation

2 .__2_ /-.2 .:/‘r., i
Lio) P %%2; 4 426%7 +26 jgg é%g-o

‘ -_ { lz
szfl 'ze}fig' 2@""69 5'4'295 3‘9 2;)5,

° ()
2 . ¢/

B) 3620, 446, -G, =0

(4-17)

~ (4-18)

(4-19)
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Third order approximation

. 3 | I

subjected to the appropriate boundary conditions
B0)=1, B (w)=0 (4-21)

and all other funct}ons at ) = O and %0 are zero.

At large times the energy flux varies significantly
over the bubble surface; Therefore, a surface integration
is required to evaluate the total heat flux over the
entire bubble sufface. With the substitution of Q,n (o)
obtained by the numerical integration of equations (4-17)

through (4-21) into equation (3-32) one obtains

YM@(O 5646 + 0, /443 r4 B 00%{7}“—@+ 00///4)“
-fo/aogh_ﬁ) 004//;0011&009;3(%3) (4-22)

+OEH Jp = [ i

In case a quasi-steady state is assumed to exist at large

III 3

. , 2 |
times, the relation ¥ =D holds. Then equation (4-22)

through the substitution of

jﬂ:/d’/”ﬁdp:/%??t{g /h[g/kﬁdﬁz%f%ﬁ}?/gdﬁ:%“_
j@ﬂ/ﬂ[z’d(ﬁ [ coo(s’ —m(m—:?f@ ,4,';2(30//3
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becomes

[0]06 + 0,3455—576- —0./9’74-51; +0.00°5?Z%3_+_-

’ ‘9 , tr T4
U uu U
¢ 0.36§8% - 0674855 03100 ---
g u® u>> ut (4-23)
'3 4 r U
ut 2oty .U
0: e + Laad
+ /74'3?214‘_5 o) 2 2{3/¢
Just for the sake of comparison with the quasi-steady
behavior, if. r and U were considered to be independent,

then equation (4-22) may be rearranged as

o ‘ , "'7\.- 2
j%@ (055%1 + 0@’73/-}’%2@-0,/957%/—5@)%--

- } S 2 '
-o.l‘FS?%%@Jr 0‘0464%(—%@) +-- )C}B (4-24)
- n T
=T

The integration of equation (4-24) yields

37 - 0 ngpL g -
10/06 + 37 o = 0.MEHE P 4

! -
—0.34&5‘3’,—1’\ +0, 6742 ””? +--- (4-25)
U u

¥
N —=
,r



-46-

Both equations (4-23) and (4-25) converge very rapidly
as JFL——e>&D or when the axial convection becomes a dominant
mechanism,

' Three approximate solutions are obtained from equation
(4-23) for the bubble behavior at large times:

First approximation which is accurate to 0(1)

A
?Z{—B/él: /0/06 (4-26a)

Second approximation which is accurate to 0( )

< U ' u '

g < + 0. = _

2 7% /0106 3455 s (4-26b)
Third approximation which is accurate to 0( a:)

’

P U - Sy
Z % 10106 + 0.348& U _

ahS’ B (4-26c)
! ' 2
“0 19744 1 034884
y* U3
B. BINARY-COMPONENT SYSTEM - INJECTION CQOLING CASE

-The problem of bubble dynamics for injection-cooling
case may be simplified by the following physical arguments:
Noting that the diffusdion coefficient of a gas iS much larger
than that of a liquid, the concentration distribution in the
gas phase may become uniform more rapidly than in the liquid
phase. Therefore, one can assume that the bubble growth
at large times is controlled by heat tramsport in the liquid
phase while the concentration distribution in the gaseous phase

is uniform at a saturation value. However, during small
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times, the bubble behavior is controlled by both the mass
diffusion in the gas phase and the energy diffusiqnxin the
liquid phase. For such case the boundary layer concept cannot
be applied to the gas phase since the diffusion of.' gas toward
the bubble center is very rapid.

The problem is. analyzed for two cases: A. Bubble
behavior at small times and @3———9 0. By An integral
technique, Larsen (42) obtained the solution for the case
at finite ’B , that is, both. mass and energy diffusion but
no convective effects are presented. Here, consideration is
given to the case only energy diffusion controls the bubble
dynamics, B, Bubble behavior at large times during which
the gas concentration inside the bubble distributes uniformly,

B.1 Smail-time solution with-6—> 0,

As ”B-——)‘ 0, the gas concentration is considered
uniformly distributed and équal to that at a saturation state
Xg, Hencerthe‘bubble dynamics is governed only by the energy
equation (3-23) subject to the conditions of thermodynamic
equilibriﬁmL ahd energy and maés balance at the bubble surface.

Due to the timewise variation in the gas concentration
duriné the bubble growth the temperature at the bubble surface
is time-dependent, Consequently the fludd temperaturé T

» vo!

must also depend on Tg and its time derivatives Ty, Tg...

By defining

T-Too _ /n o . .
| '-7_-\;':7-; = Q{?/ Zfo(z:/""zfoifu"',go)é’/ ”_) (4-21)
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= g,£}%5 (4—28a)
SUIRE T T
S L S
$- 7;72;7; _U(,Z.) 5579_7}2;7;((_/(,/_‘, 823—7}72(7())3’ - (4-280)

The asymptotic nature of the parameters T and _577
has. been already discussed-in IV-A.1, If Tg varies with
time in the form of "

vy
-1, = Q+QZ‘ +0’ZL7*—-- (4-29)
where Clo is a constant and of 0(1) and N> 3,
it can be shown that the parameters <5n ‘are in a decreasing
sequence, Now, with the substitution of equations (4-27)
.andr(4=28) the energy equation (3-23) and its appropriate

boundary'conditions (3-29) can be rewritten as
0N . p2@ o
0,0 + 73‘(‘%"2——220) ( ECre+l —2)7‘22_, N
20725, )+ -+ 52 (5264, +99 ($r356+28 )4
06 (§‘+SO—5°§°—§°) + _a+g- (82+25,—5,3°-350§0>+ -

(4-30)
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and

B(0,Tn, En, Bn)=l  O(00,20,8, 60)=0 (4-31)

respectively,
With the introduction of the temperature function 0

expanded in the power series as

0(1,Tn £n,80)= 0,(0) 126, 00) 2% (;)c_(v)-wizé,'@',(z),«-:-(4-3z>

into equations (4-30) and (4-31) fo;lowéd by collecting
terms, one obtéinsx a set of ordinary differential equationms.

The differential equations ‘for 9, of the zeroth order
approximation, ¢  and Qﬁ%r of the first order approximation
and Qez.,«%' and fo of the second approximation are
identical with equat1ons (4-6), (4-7) and (4-8) respectively.
The equations and appropriate boundary conditions for the
functions related to the parameters c§n are :
First order approximation

1

So -0 , +6.+ 05, 9

5, =9
(4-33)
- O. / _ " _ '

83 bR 5, +‘é%}+ 2éi& é%ﬂ =
Second order approximation involving eé;g
o2 ng ! | _ " . )
(0,) 26551265, - 65, =

5! | / “v (4-34)
%0, -§@t 5, 1—92,—?'?900 +.?9?oga-<92;30-0 |

£ > ”“‘C) + €> *‘Qg ~+2’f

2% T2 %, ;5
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05.(0) = B5 () =0,--- (4-35)

The boundary conditions are that all functions at ) = 0O
and 0O are zero,

The solution for the bubble dynamics of the injection cooling
case may be obtained in a similar way as the case of a single
component system except the expression corresponding to
equation (4-10) for the single-component system becomes
much more complicated. Therefore, only the solution up to
the first-order approximation will be presented here,

Since /ch = O[ﬁ'z) =0fZ”o¢)) the terms with the
parameter ﬁ; are neglected. The  substitution of
equation (4-32) and the numerical value of the first
derivatives of the functions 8., at ¥ =0 into

equation (3-32) produces

. ’

0.5+ 0&/0—77: o + ad‘oﬁf&; = ﬁ—?;“f— (4-36)

Since the gas concentration is uniformly distributed

inside the bubble, equation (3-34) reduces to

X*: /")(oo _ ["Xo
Xoo' Xa },,S(Xw_ Xo)

. . : Vi # :
With the substitution of X = | obtained from a

(4-37)

linear relaticn ship between the interfacial temperature and

concentration, the parameter ),  defined as

K;3 - /“)(o

Xe (4-38)
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and the parameter ,X* defined by equation (4-37) to eliminate

* = >
7_, T and )( in equation (4-36), one obtains

; |
v
Xy
. 0.5 (I Xm)(':"s ){b 3 (4-39)
XYV o _ S/ 0 -
T +1.530(1 X”)F?S 2809 =X, Y71 )

The bubble growth predicted by equation (4-39) is accurate
to ()(ant '> or ()éji_ Q‘ )

For the case of fmnate ﬂ3, , Larsen (42) obtained fhe
bubble growth equation by an'integrai technique as

3 .
y 2 (l—xm) (.—:‘\% - ! )

rr - . (4-40)
4 ~2/"3 2
(1,.%3;) +.§@€3(%%-I>{I—J&”)
where Y = Jﬁ
| L%

B.2 Large-time solution

At large times the bubble growth is governed
by the energy transport in the iiquid phase subject to the
conditions of thermodynamical equilibrium and energy
balance at the interface.

With the introduction of

T T 9(7 /g fu ’/&9;&,“"") (4-41)

| g
= — (4-42a)
12 g dx a



£, = —5 £ = -Q/(j/ £-L )J - (4-42b)

JC,:T__ET.DZ. 5+ %H 5. % X (__) (4-t26)

§ o
the energy transport equation (3-23) and its boundary conditions

(3-29) can be rewritten as

5,,9—7 )12 (f,"f -2£) 42 (f #2£,-3£.5,)
(gfg 52 g§)+99(§ 33, D§§+25) o (4D

and ?
(o, En) Sy )=/, O @(w,fn)é;)>0,_ (4-44)
respectively,

By substituting the temperature function

Qf'Z,gﬁ,S,,):Qo()y)+ Z—f,f@&/’?) ‘+ch;%,(‘7)+-“
t22 6§ Gk e() -

into equations (4-43) and (4-44), one finds that the

(4-45)

functions 9, Q§J and © 5; have to satisfy equations
(4-17), (4-18) through (4-21), and (4-33) through (4-35),
respectively.

In a similar fashion as IV B-1, the substitution of
equation (4-45) and 6%;(0) .into equation (3-32), one
obtains the solution for the bubble gréwth up to the first-

order approximation,
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—l:-——- (4-46)
r 7t

10189 + /. 3932 L
9+ 37

With the aid of equations (3-49), (4-37) and (4-38) to
eliminate. T*, T* and X*, in equation (4-46), it yields

the bubble growth equation as

/0/6‘?(/ Xoo)(Ta - ’)

s . 3 (4-47)
+HT79(1-X,) L 0.702(/—)(&_)&_/)
00 }\6 . ,rz Y3 "
h- h . t -t ' _7.;___
which is accurate up to () (_er) or 0(7_*

C. BINARY-COMPONENT SYSTEM-BOILING

Scriven (61) was among the first who analyzed the
bubble dynamics problem for nucleate boiliﬂg in binéry-
component systems. The growth of bubble in such a system
is governed by the simultaneous transport of energy and
mass in the liquid except during the initial stage of the
bubble growth in which the sutface tension and inertia
effects are importanf.

Consider a binary liquid mixture which is in thermo-
dynamic equilibriﬁm at points 1 and 17 in Fig, 3-2 . The
liquid temperature is T&,g and the conceﬁtrations are
X» and X; in the liquid and vapor phases, respectively.
Suppose at zero time the system is superheated by131;=7;r7;5.
Then as time goes on the equilibrium condition assumed
existing at the bubble interface will shift along the
equilibrium lines from points 1 and 1' respectively to

points 2 and 2' which are at the temperature Ty and
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concentrations XS and Xg respectively. Thus the interfacial
temperatures and:concentrations on the vapor as well as
liquid sides are time-wisely varying.

The concentration and temperature gradients in the
vapor phase may be considered negligible compared with those
in the liquid phase, since the diffusivitisare much larger in
‘the vapor phase than those in the liquid phase., Therefore,
the bubble dynamics is considered governed by the energy
and mass transport in the liquid side,

The solutions of the energy equation (3-23) for the
liquid phase subject to the boundary conditions (3-29)
are obtained in the previous section as equation (4-32)
for small times ahd equation (4-45) for large times. In
the following only the mass equation (3-24) for the liquid
phase subject to the boundary conditions (3-30) will be
first solved for small and large times., Effort will then
be directed toward finding the expressions for the bubble
growth at both small and large times.

C.1 Small time solution

With the definition of

;((S ;<<M X(Q ZB/ /)—-'folfli 5 o 5,/---) (4°=48)

0

- [0 N
’2—3/D~U (4-49a)

3:5—(—%, 2;;%(%), - - (4-49b)
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:-Qu ) 3—(—‘/_.'—Q— y == - - c
¢ :L'(S_ __.._U : < X.s { >z - - -

If the mass transport equation (3-24) and its appropriate

boundary conditions (3-30) may be éxpresséd as

X+ 3 & B (£ ) 1 2R fope o2 w7 )
%(5—95:“‘@) a;,(f "8, H28,) Y
éa%‘) (8+ gofgogs-g:)-}%(zf, 20, -c—S,So - 28,8,) -~

X
a5t =0

and

X(0,2n, 0,5 )= X[oo Z, 5n/§ )=0 (4-51)

respectively.
Now the concentration function )( is expanded

into the Taylor's power series as

X0 Ty £ 8a) = Xl0) + 20 X (1) 2621
+ 38X (1) 433 255, ()5 - -

The substitution of equation (4-52) into equations

(4-52)

(4-50) and (4-51) followed by colléctiné terms yields a
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set of the ordinary differential equations for the functions
;{<>,;{gb/>&§“-. Since the energy and mass equations are
identical in the form and the temperature and concentration
functions are expanded in an identical form, the differential
equations which define the functions AXn are also
identical with those for the functions © in equation
(4-32) provided that SW is replaced by 5@ . Therefore,
‘the solutions for X, and Bn are the same. |

With the substitution of the numerical values of é%;&o)
and ;(é(o%the interfacial conditions (3-32) and (3-33)

may be expressed as

~#

0.§ +0870 T, +0$05——? 'r’}/’?';'L (4-53)
T T*

0. +o§/o—;—%?+agog—- r,[_(g3+_@_) (4-54)

The interfacial equilibrium conditions (3-36) are réwritten

as

= 0"' (I- T#) (4-55)

X'=dy (1-T" ) (4-56)

The important parameters in equations (4-53) and (4-54)
are the parameters @o and Q, . (30 and @, are
analogous to Gg ~in the injection-cooling case and indicate

the effect of mass diffusion. As @o (3'-—>0 or equivalently
/.
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LU——ﬁ>OQ)the process is predominantly heat-transfer controlled.
On the other hand, as ﬁg,ﬁ%—e—oo or equivalently Lu—>0
the mechanism is predominantly mass-transfer controlled.

T*, the interfacial temperature in dimensionless form,
may be obtained by combining equations (4-53), (4-54)

and (4-56) as

R goﬂ?, - BIW (o5 +0s08L, ) (4-57)
0 o P Cs

The combination of equations (4-53) and (4-57) produces the

bubble-growth equation as

Boaste - SBT(Fe o) 7S psvans e i s

The approptiate initial conditions are

T(o)=/,0 (4-59a)

7'*(0):/’0 (4-59b)

f&@ may be determined by substituting equation (4-59a)
‘into equation (4-57)., The bubble behavior predicted by

equation (4-58) is accurate to the largest value of C7ﬂ¥;?3>/
- A
0/777;“?—'5) or 0/‘;{7@)

C.2 Large-time solution

For large times, the concentration function is

defined as

Xsi)X(Z = X(i)fo)f—l;'-"“) 80, gl}-——) (4-60)
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where
)= 5]%' (4-61a)
U X _‘_Q U .- -
5‘Ca U—U f’-(/ ) U( , (4-61b)

C X, X T.X (xf S AN
50—}(?3-&“)8[ )Z:sxm(u) a-)?s-:s)_(m(uj (4-61c)

or in the Taylor's power series as

X = X('?)+Zf7(g9+2<§>((') +ZZEE7( (’2)+--- (4-62)

where the functions )( " are identical with the functions On
in equation (4-45).

At large times, convective effects become important,
and the bubble behavionhdeviates remarkedly from that of a
stationary bubble. 1In additibn; the mass and energy fluxes
vary considerably over the bubble surface. Therefore, the
surface integration of the fluxes over the entire bubble
surface is required in taking the interfacial balance of
energy and mass. Taking the surface integral of the flux
terms and substituting the numerical values of the transport
functions, the interfacial energy and mass balance conditions

(3-32) and (3-33) yield

/01859 + / 3939 L. 7_, 7‘2 L40m L 72 T fi%} (4-63)

.
Y e '
10159 +/3932%’f—_)’:2 + 07025 = T (Bt S, ) Ch)



-590-

The combination of equations (4-63), (4-64), (4-53)

and (4-56) produces

1 1t Bot [0ISF 7 +0. 702 7
T = - s, 7 ’2“(9?}"’)“3/202 (4-65)

..§ G ,
r /T/ﬁf [T(/ow awr)mrr /393(0509 /143 Y‘)] (4-66)

subject to the initial conditions which correspond to the
final valuesof-the small;time solution (4-58)

An examination of equations (4-65) and (4-66) discloses
that the bubble growth at large times éependﬁon three
parameters 1, (30 and ﬁ,. " determines the effect of
the axial convection, while ‘2, and sz indicate the

relative importance of the mass to energy transport.



CHAPTER V

RESULTS AND DISCUSSION

Equations (4-6) through (4-9), (4-17) through (4-21)
and (4-33) through (4-35) for the universal functions O m
or equivalently X ¢ were integrated by means of an IBM 7090
digital cémputer° The © ,» and X, functions associated with
the temperature and concentration respectively are plotted
in Figs. 5-1 through 5-6.

The fundamental requirement in the analysis is that the
temperature and concentration functions, © and X, expressed
in the form of the asymptotic series as equations (4-5),
(4-16), (4-32), (4-45), (4-52) and (4-62) or
equivalently, the bubble dynamic equations (4-10), (4-11),
(4-23), (4-25), (4-26), (4-39), (4-47), (4-58) and (4-66)
converge in the specific domains of time,

The speed and radius of convergence of these
asymptotic series may be determined by comparing the
results thus obtained with the existing exact solution
and/or experimental results., The radius of convergence is
especially important since it determines the possibility of
joining two asymptotics solutions obtained for small and
large times.

A. DYNAMICS OF MOVING BUBBLE IN SINGLE-COMPONENT SYSTEM

As was discussed in Chapter III, the dynamics of a

moving bubble at small times after the transient is initiated

is dominated mainly by diffusion and/or radial convection.

~60-
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That is,the axial convection effect is less significant, or
corresponding to the case of T < | . The exact
solution of Florschuetz and Chao (21) was employed to compare
with the results obtained by equations (4-11), Equation

(4-11a) which yields

}"’= J" J’Es (5-1)

upon the integration indicates only the diffusion effect;
Equations (4-11b) and (4-11c) include the effect of radial
convection, Fig. 5-7 shows that the series is rapidly
converging and have a rather large radius of convergence,

It is instructive to examine the behavior of the bubble
dynamic equation (4-11) as T;—>®, When T53 ——> O
corresponding to the case of stationary bubble, equation (5-1)
gives ( "=/ ) fﬂ - = const. While as G —>% and T
becomes sufficiently large, the bubble tends to behave like

. . /
T = constant. For the latter, one finds C,= 37 2'/""_‘4/"

and j;nis . Consequently the governing equation

reduces to

349 , 49 .
20/7401'72 0

which gives

Y= 3G (5-2)
This behavior is also seen from Fig, (5-7), in which the bubble
growth becomes a function of square-root time as 5 or V— @,
Another way, we may consider that'equation (5-1) corresponds

to the solution for the dynamics of a plane interface while
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equation (5-2) corresponds to fhe solution for the
dynamics of a spherical interface, For the former case there
is no relative convective effect to accompany the motion
of the phase front.

At large times in which ?gj>'7%3 y the bubble dynamics
is dominated by the diffusion and axial convection,

Equations (4-26a) and (4-26b) can be integrated to yield

Qr[r—r ) = /011 (T~ Ty ) (5-3a)

and

20 (72 54t o 6940~ 7:7.) =10/ (0T, ) (5-3b)

respectively, in which 23 and ﬁh are the time and bubble
radius at the matching point of the small-and large-time
solutions. For the case of Z't_,\: 2'/‘7 y  let n and Y,
be the solutions of equations (5-3a) and (5-3b) respectively.

; are related as

2 e M IR

Then )} and [

: 3
Equation (5-4) shows that %)/}" N as /‘_?__>oo
' 2
Si = — = > £
ince £ = 0(??327) , one finds that as /50__5 0,

the series becomes rapldly convergent, Fig. 5-8 shows the
convergence of the solution up to the second-order approximations
for several values of ;; at the matching point of the

small- and large-time solutions, It is revealed from the

figure that if )fo = 0.1 ~ 0.2, the solution up to the
second~order approximation can give sufficiently accurate

prediction., From equation (5-3a) and (5-3b), one can see that

Tl (1+d2) or uo (1+dTy)? (5-5)
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This confirms that the coordinates fn, are indeed the
asympfotic coordinates as T,—>® if U can be expressed
as 17 > Q tz: : So long as 4 o 2}4 as shown in
equation (5-5), ‘fﬂ can be arranged in a very rapidly

decreasing sequence as

8,00 )5 £=0(57),

Fig. 5-9 shows the solutions in the entire time domain
for various values of the parameter a“ . As "—— 0O
the matching point shifts to the right, indicating that the
growth solution of a stationary bubble expresses that of a
moving bubble for longer time. But as J*—>00 , the matching
point shifts towards the origin, indicating that the axial
convection begins earlier to dominate the bubble growth,
It is obvious from Fig. 5-9 that the bubble growth behavior
is completely different in these two time domains.

Florschuetz and Chao (21) studied experimentally the
bubble colliapse in a single-component system (vapor bubble
in subccoled water) under a reduced gravitational condition.
Some theoretical predictions for the collapse of a statiomary
bubble obtained by means of the thin thermal boundary layer
concept deviate from the experimental results., This deviation
is attributed to the slight translatory motion of the bubbles
which was observed during the free-fall. It is therefore,
attempted to compare the present theory for the moving
bubble with their experiments (21), The results are summarized

in Table 5-1.
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TABLE 5-1

RESULTS FOR EXPERIMENTAL BUBBLE COLLAPSE
IN SINGLE-COMPONENT SYSTEM (21)

L2 2KR_

Run Ja Approx. € X r 2
‘Qw} Jbz ﬁ‘ Ja M M
kR/v:o.s

A 26.4 0.3 1.7 2.9 0.6 0.2

B 25.1 0.8 4.5 4.7 0.7 0.1

C 15.8 1.0 5.6 5.4 0.7 0.1

D 14.8 Normal 44.0 14.8 0.9 0.1
Gravity

It should be noted that the bubble velocity U, was
measured when | = 0.8, If the plane-interface solution
(5-1) is still valid at ¥ = 0.8 , " may be obtained as

|
J’\__;ﬁ/’( / Uf:o 2
T dts ®

The matching time and radius, ZM and 7}7 were deternmined

under the conditions that the parameter ‘fo for large-time
is equal or less than 0.2 and the growth curve near the
matching time is smooth, Professor Chac indicated in a
personal communicitich that the dimensionless bubble velocity
W =1, 1In other words, t he bubble velocity was almost
constant during the collapse. Therefore, the use of
equation (4-25) is appropriate. The equation up to the
second-order approximation for Y = 1 is then ntegrated to
give

%
Run A: Pz 0.46-07/(r-06)-086(%-02)

Run B: P 0.59-04(r-07)- 1.4/ (- 0./)
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3%

Run C: T = 0.85-0.//(r-09)-89 (&-00/ )
3

Run D 1= 059- 0.38(r-07)-/€1(tz-0./)

The results are presented graphically in Fig. 5-10,
which shows good agreement with the experiments (21). The
effect of the bubble shape on the dynamic behavior is an
important factor to be considered, since most bubbles deviate
from a spherical shape, Consider a potential flow distribution
around an ellipsoid. In order to use a uniform flow dis-
tribution in the present analysis, it is first examined
what correction should be made to K in equation (3-28)
for the spherical bubble., This will be examined under
steady state as was proven for the spherical case,

By defining W = a/b as the ratio of the major and

minor axis, the potential function @ is obtained as

e dA ‘
= (5-
/Qé rcoa@//+ B[(WZM)(/M)% ) £5-6)

__ 2 i o J -~/ 3
Where B W= (- we W=7 'f'ﬁﬂJW / )

By employing a method similar to the analysis of the

spherical case, Boussinesq(12) shows that, for thin boundary

layer, total heat flux Q@W over the entire surface of an

ellipsoid is

3 YA
_SR(T-T)[F 20,
Oy ) BB W (—OT—/) (5-7)

where the equivalent radius Req for the ellipsoid is
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For a sphere of radius R, equation (5-7) reduces to

3 72Uy )5 _
0, - th(TTy) I () (59

o

The analytical results obtained for a spherical bubble
may be applied to an ellipsoidal one by the use of the

equivalent radius Reqy or equivalently using

}1 - § 4 ‘ (5-8a)
T 3B wW*
in equation (3-28),

The numerical values of K which is related to K@pg as

8 -
) K'=:ﬁ; kégQ (5-8b)

are presented in Table 5-2 for several ellipsoidal bubbles

of different W,

TABLE 5-2

K AND Ko, . FOR ELLIPSOIDAL BUBBLES

w 1.0 1.2 1.4 1.6 1.8 2.0 2.5 3.0

Kew 1.0 1.07 1.15 1.240 1.33 1.41 1.62 1.

K 2.52 2.72 2.93 3,16 3.39 3.60 4,10 4,

Since the forward stagnation region of an ellipsoidal
bubble widens as W increases, the uniform flow around the

bubble would also increase correspondingly.
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The experimental results obtained by Langston and
Eustié (40) are now compared with the present analysis for
the collapse of ellipsoidal bubbles initiated by a step
increase in the system pressure. Since the saturation
temperature corresponding to the final pressure was much
lower than that of the vapor inside the bubble, the bubble
(40) collapsed due to the 1loss of the internal energy in the
vapor rather than due to condensation. However, the present
analysis may still be applied-to this situation proyigeq
that the Ja number is replaced by the parameter iF %?;;r ‘
Because of "> 1, it is necessary to consider the ;;lution
up to the first—order'apprdximation. However, the interface
temperature varies since tgé'gas temperature decreases
with time, equation (4-46) should be employed.

It was reported in refefence (40) that the relationship

T = e ®%
exists between "Tﬁ:"ﬂo-fT; ond 73 - where 6* is a constant,
Therefore, the bubble-dynamics equation (4-46) up to the

first-order approximation may be written as

o dr SR
AT de, e 1ol
" L0 /) 8%y ]
¥ = + . - 2
or P g/ 2/,6?(/ € )J
The prediction agrees very well with the experiments as may

be seen from Fig. 5-11.

B. DYNAMICS OF A MOVING BUBBLE IN A BINARY COMPONENT SYSTEM——_
INJECTION COOLING
Equation (4-39) which describes the bubble growth at

small times corresponding to B%—a()is integrated numerically,
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The results are presented in Fig. 5-12 for a comparison with
Larsen's solution (42) obtained by an integral technique.
Equation (4-40) by Larsen is presented graphically in Fig. 5-13
for X, = 0.01 and Xoo = 0.90 to demonstrate the effects of
the parameter 6 at small times., It is seen from the figure
that as G increases, the bubble growth decreasesrapidly.
This is because the gas inside the bubble is nonsoluble to
the surrounding liquid and consequently the bubble growth
‘becomes dominated by mass diffusion in the bubble as 6
increases.

At large times where the effect of the axial convection
in the liquid becomes important and the concentration of the
gas phase inside the bubble reaches a practically uniform
condition, equation (4-47) is integrated. For X5 = 0.01 and
Xg = 0.90 the effects of qy > the bubble radius at the
matching point of the two asymptotic sclutions, and §°
are illustrated in Figs. 5-14 and 5-15, They indicate that
the bubble growth bécomes slower as 0  increases. The
effects of the initial and final compositions, Xp and X,
on the bubble growth are illustrated in Figs. 5-16 and 5-17.
For §° = 0.2, Fig. 5-16 shows that the effects of X  is
entirely negligible while Fig. 5-17 demonstrates a large
effect due to X o -

Two asymptotic solutions for small and large times are
matched at two differemt times qy = 0.56 and qy = 0.36 as
illustrated in Fig. 5-18. It is disclosed from the figure
that the matching point of fhe two solutions seems to

affect the bubble dynamics very little as time elapses,



-80-

20

1X0v

O<«—¢ 10j sawt)l [lews je
8ur1005 wor1oafur ur 3yqqnqg SutAow 3O yimorn °zi1-¢ aandry

Hg¥ /D 2P p)=2 ‘INIL SSIINCISNINIA
o'e 0o¢ o'l

_ [ I

/ \
amm— -

- - m——

[2b] Seo._\

(v9]
(1-®Pi-0=b'sniavy 31889 SSIINOISNIWIA

”

O



-81-

"06°0 = 9°x pue T0°0 = OX 04
*sawt) Jrews 3je Sur1ooo uor3ioafur ur I31qqnqg
Sutaow jo yymoi3 syz uo @ JO S3120933d "€£1-¢ 2andtyg

+ Amm 4/ Omdasu S1 ‘JNIL SS3TINOISNINIQ
mo_ X0 o¢ 0o¢e (ON|
- ] i I ]
006
OG\
0%

¢
(1-%a- 0= b’sniavy 3788n8 SSIINOISNIWIA




-82-

"9¢vp°0 = Wb pue 060 = XX ‘10°0 = X
104 -sowt) 3318] 3e Suriood uorioalfur ur
31qqnq SuTtaow jJO UY3MoI3 Byl uo (& JOo s3109339 °"vI-¢ 2an3tyg

b %/%% =%2 ‘3011 sS3IINOISNINIG

be 2¢ 0¢ 82 92 v¢ 22 02 81 91 I 21 0l 8 9 v 2

rr 1+t & 1 1 ° 1 T ]

O

1-®1 712 = b'snigvy  37199N8 SSIINOISNINWIC



-83-

"06°0 = 9% pue 10°0 = °X 04
*sowty 281e1 e Sutyoop uor3idalur ur 91qqng

guraow jJO YyimoI3d 3y} uo %@ pue rh Jo $129339 *c1-¢ 2iand1yg

} 94/° =*1 “3wiL ss3INOISNIWIG
0's Ot o€ 02 ol

! _ ! ! !

ge''b —-—

96’

L
2

01-%1/01-4 = b'snigvy  37198N8 SSIINOISN3WIA



-84 -

14

"2°0 = _f Pu®e 06°0 = 90X
104 °sauwt} 2331 3e 3urjood uorloafur ur
21g9qnq 3uraow JO y3moix3 oyj uo 9Oy jo S31033J¥ ‘91-C 2indtg

} °4/°0 =*2 ‘g1 sS3ITINOISNIWIG

ce O0eg 8¢ 9¢ P2 2¢ 0¢ 81 91 »I 21 Ol 8 9 ¢ 2
1 L] ! ¥

1 _ | i 1 I _ i 1 ¥ T

_

b 4
100 © e
. X x\
200 _
€00=9x® "
x\
o
\Q\x\

o'l

1 %P4/ 1-2 = b*snIQVY 3798N9 SS3INOISNIWIA



-85-

"2°0 = _f§ Pue £00°0 = °X
304 °sowt3} d931e7 je 3ur100O0 uoridafur ut
a1qqng Sutaow JO yYimox3 oyl uo 00Y JO S30333Fd “LI-C 2andty

b %/% =42 “3WI1 SSIINOISNINIA
2€ 0€ 82 92 $2 22 02 8 91 vl 2101 8 9 & 2 o
ﬁ ] 1 LE T 1—‘ i 1 H 1 _ ] 1 1 1

o . ) )
1-®1/1-1 = b ‘sniavy 37199N8 SSIINOISNIWIC

©



-86-~

"958°0 = 99X pue £00°0 = °X 103
3ur1002 uor3ldafur ur 91qqnq SuraAow JO Yimorn ‘gQI-¢ 3indty

b (Jd/0 x _0l)= 2 ‘3WIL SSIINOISNINIA

.IN.m Oog 8¢ 9¢ b2 22 0¢ 81 91 #+1 21 Ol 8 9 ¥ ¢ O
T

| _ 1} 1 I ! _ | T T _ T I I T

96°0-¥b o
9¢0:="d v

~
\Q -
\\

l°o||4\ \o‘\\

o1=A —w=o— "7 L= 12p1gs=¢ B
N

\ 01=4
/\\ uol}njosg
swl] -jpwg

[ 2] awiadx3y —~—

uoynjog awi} -abso —=——

@© © < N

o
(O'I_“ml)/(O'l -4)= b ‘SNidvy 3198N49 SSITINOISNIWIA



-87-

The theoretical prediction agrees well with the experiments
(42) over a considerable range of time,
C. DYNAMICS OF A MOVING BUBBLE IN A BOILING BINARY-COMPONENT

SYSTEM

At small times during which both diffusion and radial
convection but not axial convection control the bubble growth,
the.present analysis'would yield an identical result as a
stationaiy bubble. However, for stationary bubbles the
result obtained in the present analysis is different from fhat
of Scriven (61) for stationary bubble in that the bubble may
grow from a finite size. The bubbie-dynamics equation (4-58)
is integrated numerically for several values of ﬁo and B,,
The results are plotted in Fig. 5-19 for the bubble growth
history and-Fig° 5-20 for the bubble-surface temperature.
Figure 5-19 shows that as @o and @, decrease, the bubble
grows more rapidly. When 630 and (?, approaches zero, the
bubble dynamics becomesheatetransport controlled and
approaches that of éing1e=component system. The bubble-
surface temperature as shown in Fig. 5-20 remains almost
constant with time for large values of éﬂ, and (3,
But as @% and 53/ decrease , the temperature T* tends to
increase with time and asymptotically approaches unity at
large times,

Figures 5-21 and 5-22 illustrate the effects of é% andﬁ%
respectively on the surface temperature and growth of
moving bubble. @@ _and.(s/ play. an identical role on bubble
growth as €3 for the injection cooling case. An increase in

either ﬁ%{or (3, signifies more mass-diffusion effect on the
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growth and consequently lower growth rate. It is interesting
to investigate how the gradients Ao, CX, in the phase-
equilibrium diagram and the rélative volatility (Xo - Xy)
affect the bubble growth., As d, or (dr"dox//dO increases
for constant@gthe relative volatility between the liquid and
gas sides of the bubble surface would cause the effect of mass
transport to increase.

Figure 5-23 illustrates the bubble-surface temperature,
phase:equilibrium diagram, (30 and (3, against the concentration
for the ethyl glycoiawater solution. /30 and /Si are cal-
culated based on the phase-equilibrium diagram of the solution. The
bubb le-surface temperature T* isobtained from equation (4-53) and
(4-54) when the interfacial conditions are at steady state,
that is, T* = 0 and X* = 0, The figure shows that T* reaches
the minimum value at approximately X = 0,95 where the bubble
growth rate is minimum as ana1ytica11y predicted by Scriven (61)
and confirmed experimentally by Benjamin and Westwater (6).,
This is due to the characteristics of the phase-equilibrium

diagram which determines the values of (3, and @L . As

i

shown in Fig. 5-23, (3, is maximum at X = 0,95,

The éffects of a\ on the growth of moving bubble in
boiling binary~component system are illustrated in Fig., 5-24
for the case of (30 = ﬂ?, = 0.5. It is disclosed that

the bubble growth rate increases with an increase in Jq,
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T=(T-TQ/T-T)
]

200
180
160
140 t
120 |
100

TEMPERATURE °C

| 1
0] 2 4 6 8 1.0

ETHYLGLYCOL IN MASS FRACTION

Figure 5-23. Bubble surface temperature, phase equilibrium
diagram, », and f§ for moving bubble in
boiling ethylglycol-water solution.
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CHAPTER VI

CONCLUSION

The dynamics of a single moving spherical bubble in
both single- and binary-cbmponent systems was analyzed
for the case in which the mechanism is controlled only by
the transport of enmergy and/or mass. With the application
of the boundary layer simplification and the approximation
of the velocity field around the bubble, the soluton of the
transport equations of heat and mass was obtained asymptot-
ically both for small and large times by employing the
coordinate perturbation method. In the case of the single-
component system, the small-time solution is characterized
by the dominance of diffusion and/or radial convection effects,
while the large-time solution is subjected to the dominance
of the diffusion and axial convection effects., The total
heat transfer across the bubble surface is obtained in terms
of an asymptotic series of the coordinates, T, and f?l'
It is then substituted into the energy balance condition at
fhe bubble surface, Thé grow{h or collapse rate of the moving
bubble is determined by the combination of the resulting
equation and the appropriate bubble velocity, The prediction
is accurate to the perturbation order retained for the heat
flux solution., The solutions for both the heat flux and
bubble dynamics at small énd large times are found to

converge very rapidly,

-95-
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— %
It is disclosed that the parameter I =d2K Pe /Jd

which.shows the relative importance of the axial convection
to the radial convection'controls fhe dynamics of the moving
bubble in a single-component system. Whether the elapsed

time is "small time™ or "large time" is determined by the
relative.magnitude between s and l/aﬂz . If 'Z"s>)’/512
the time corresponds to "large time"; if Cs< \/J‘z, the
time is designated‘as Qsﬁall time". The bubble behavior is
entirely different in these two time domains, However, the
bubble behavior in these two time domains may be successfully
joined at a certain time interval,

The analytical results agtee very well with the
experiments (21, 40) for both spherical and ellipsoidal
bubbles,

For binary-component systems, the dynamics problem is
complicated by the time dependency of the interfacial
temperature and‘coﬁcent-ration° This difficulty was over-
come through the use of the coordinate perturbation method.
The transport equations of mass and energy are solved in
térms of coordinates which include T (t) and X;(t) in
addition to U (t) and R(t). The bubble dynamics is
determined by subsfituting the fluxes into the interfacial
méss and energy balance conditions_and then combining with
thermodynamic equilibrium condition together with the
appropriate relation of the translating velocity. Due to
the complication, the solutions up to the first _order
approximation are obtained for the mass and heat fluxes as

well as the bubble dynamics,
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In the case of injection cooling-the effectof the axial canvection
on thé dynamics,of moving bubble is negligible at small times.
Therefore, the intégréi solution of Larsen (42) may be used.

At large times, the bubble dynamics is controlled only by

heat transport in the liquid, since the gas concentration inside
the bubble becomes nearly uniform due to its large diffusivity.
Howeveiﬂ the interfacial temperature and concentxation vary
with time followiﬁg the thermodynamic equilibrium relationship.
In addition to , the parameter _@=Ja /JE’ , which
éignifies the relative importance between the mass and. energy
transport, affects the dynamics of moving bubble in injection
cooling. It is disclosed that the bubble growth is controlled
by the mass transport for laige values of (3 and by the energy
transport for small values of CB . The parameter ¢ plays
an identical role in the injection-cooling case as that in a
single-component system, The analytical results give good
qualitative agreement with the experiment (42).

For a boiling binary-component system, the analysis is
performed for the growth or collapse of a moving bubble
starting,f;Om a finite initial size, The bubble dynamics
in this case:is controlled by the simultaneous mass and energy
transport in the liquid side, The relative importance of

the mass to energy transport is determined by two parameters
BB L ded Ly g T P e
Ly P Ao "“ALu P oo ,
In the G, -and Q' there is the common factor J’g/ﬂj jo/f
which corresponds to (3. in the injection-cooling ease. 1In

do‘da

addition, the gradient of the phase equilibrium curve -
0
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and the relative volatility (X, - Xj ) are included in
the two parametets.

In general,.the interfacial temperature and concentration
vary with time. However, for large values of (30 and 63, s
they remain almost constant as in the case of a stationary

bubble (61).



APPENDIX I

FLOW DISTRIBUTION AROUND A BUBBLE

The physical model to be analyzed consists of a
spherical bubble growing at the rate of R(t) in a free
stream of an incompressible liquid with velocity LAn(t);

Following the analysis of Moore (49), we will show that
the irrotatiomal flow distribution is exact everywhere to
O(Re“%);

It is assumed that the velocity field within the boundary

layer can be expressed as

uw = l:L+l,{/
Vo= U o+ v
p = P + P

o

where U, V and p are mean velocity components and pressure u',
v' and p' are the time varying perturbation order velocity
components and pressure in the irrotational flow field
expressed by equations (3-17) and (3-18).

From continuity equation (3-1) it is found

However, from equation (3-21)

] 2V 2 ju’ 3 U o

L2 4 rZ /X o Lieg

r oo ar/r') R "o
-99.
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: 2 -
Since ;5_-;_0(5 )/)":0//),2 T”@ 0(/);
:0(5); therefore ’U'/= 0(5)

In order that the viscosity effect may be of the same order

as convective terms in equations (3-2), and (3-3),

~/
S =0 (Re')
Therefore, U = 0(/) U= 0(/?@ / 0(/?6)V=0//?e
6r, the irrotational flow distribution of equations (3-17)

and (3-18) is valid to QO (Ré%)



APPENDIX 11
DETERMINATION OF THE CONSTANT K

The interfacial boundary conditions by allowing an
arbitrary time dependence on U (t) and R(t) determine
the unknowns Uw (t) and R(t). This scheme of analysis
suggests that with regards to transport e@uations we are
interested only in the total heat flux values over the
bubble surface.

Consider the energy equation

yLL 97_ Uﬂ = o(j_l__ (A-1)
MY 24

subject to the boundary conditions
T(x,00 )="TT1(0Y ):—T:;o
T(x, 0 >,= TS (A-2)

where u and v are the potential flow distribution and may

be expressed as

_ 0 " X
——2—Uw Aim 5

U= =84 Uo cos

By defining

yBUn B T Te o x
? /jes:wjdf 9—1—;"7;, )6 R

=101~
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the equation and boundary conditions may be reduced to

pdo _de _

e ——— —

2 dn dn:
B(o)=1, B (0)=0

Total heat flux over the entire bubble surface can be

obtained as

fﬂ[?f éiz) ﬂ’”ﬁﬂ/ﬁ f’(TATW/?Pf]@/J’MfO/E P
7{5(7;0 >7’?43/_ ?e (A-3)

Now one assumes that the flow over the sphere is

uniform and may be expressed as

U = /T'é4w (and V = O)

where K is a constant to be determined.
For this case the total heat flux over the entire

bubble surface can be obtained as

P EERR /—fﬂ@dﬁ
“A(T-T)R Tk P/ (A-4)

K is determined by the comparison of equatipns (A-4), (A-3)

as,

= ;:; = 289 (A-5)

Consider the unsteady energy equation

97 97_ = of =— 27 (A-6)
ot Bzr ?g 27"

subject to the initial and boundary conditions
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T(x,00,t)=T(04,t)=T(x 40)

T

T(x, 0,t )= Ts
where u and v are the potential flow distribution written as

U= %—-Um(‘[j) SI?’J? \ %d—éﬁ u)o(‘t > COS—R—-

At small times, one defines

U
1 o

g - Uso cos'(3 Un d - Uso S!'WZB/Uao): -

R U " K\ (A-7)
ﬁz_(jgg_UQsz N /8._._%;(_(_)@;> , = -
where @ = ¥ which varies between ( O~/ ) over the

sphere, It is noted that U&(‘l‘):O(f)as -t---—>'0 and therefore
dy=O(t) d,=0(1?) =, f£=0(F)-= 05 t—>0

With the temperature function © expanded as

5- T = (1) +e (1) +d G (1) 14 6 1)+ -

the total heat flux over the entire bubble surface can be

obtained as
R o~ / / ~
2TR (-;;,TSM%_Heo(o)-mogo(o)-r---} sinf d3

/ /
. o L :

Since 6%( l 6&6(0) are constants and s1n(3 and cos(s
are orthogonal in the interval ( O, TU ), the contribution of
d, term to the total heat flux is entirely negligible,
Therefore, the effect of the sinusoidal velocity variation

on the total heat flux must come from the ¢, term which is O(f?)
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or(]faf) as may, be seen in Chapter IV. Consequently the
value of K determined for a steady state may also be applied
to the unsteady state within the error of 0(t3) at small
times;

At large times the temperature field may be considered
to be in quasi-steady state, that is the zeroth-order
approximation represents the steady-state solution,

The deviation of the unsteady behavior from the steady
one is mainly due to the delay in the boundary-layer
response to the variation of the free stream. For potential
filow the velocity ftield is established everywhere by pressure
wave propagation, Therefore, the potential flow field is
established instantaneously. 8o the delay may come
only from the response of the thermal boundary layer,

The order of magnitude of such delay;can be established
by the following physical reasoning, 8/4% isiknoWn as the
diffusion time and indicates the order of magnitude of the
time required for the energy (generally the vorticity) to

diffuse through the thickness é\ of the boundary layer.
Un ()
Uso (£)

Therefore, it is expected that the ratio of the two character-

The characteristic time due to flow unsteadiness is

istic times indicates the order of magnitude of the delay

in the boundary layer response., One now defines the ratio

as =U§-
’So_utd

The boundary layer thickness 5' is well-known for a

flat plate and stagnation region:

2
8: o ¥ for a flat plate
Uso
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8: ok R for a stagnation region
Fr%ﬁjthe definition of the similarity variable 7 for steady
state solution, “the energy boundary layer thickness may
be found to be 5z= du(,ZV”iFaag
32 Up <4m#3

Consequently .l?e may take the following forms depending

on the geometry,

' ;Ejg for a flat plate
vy i

)f CAU for a stagnation region

°" Uno Uno

/g Uoo Q /Qmj(/f for a sphere.
° Upd2 S1°B

It is important to note that ﬁ?a is (0 éf”(fDJ
' 00 Yoo

for the three different geometries, provided that (3 is 0(1),

Therefore, the large-time behavior deviates from its steady

one by O(_Eﬁali_>
Upo U()o

The conclusion may also be derived from the following
analysis,

One defines

3 Unl® Am@
( gj R [an’sdg

‘. fsmgdf . ’R/emfdf
A u% o Unsin®B ) 7 Um 3y U Sin*3)

in which the parameters j;n are in an asymptotic sequence

at large times for a large class of function U g (t).
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Equation (A-6) may then be rewritten as}fﬁ ;
B/2c_7), (¢ LS EdE et L
05+ B 61 osp )25
S . 2
St 4t 90 _ S
43 o 27°

The solution may be expressed in the power series as

O(?,@) éa/gu" ):80(0/(3) +;€, @é;(t/)} (3)1—/&%(’?/{3)-{--— - (A-8)

where the functions 0 ., mast satisfy the equations
2
.Q._@o-{- on =0
241 d0”

B, 3
y25u o (1 peasblSEIE) oo [ 0,
§ 2 94 Swﬁ@ 9(5 97
subject to the conditions € _(0) = 1, 0,(C0 ) = 0,
6250(0,@‘>= fﬁgo(Oq,e y=0
The function Qo is the zeroth-order approximation
of the quasi-steady solution and is the steady state
solution of equation (A-1).
Equation for Ql%’ may be solved by the iterative method.
The results are presented in Fig., A-1.
The total heat flux over the entire bubble surface

up to the first-order approx1mat10n can be expressed as

Uoo R B 77[jpsm é‘c/gj/z 9@&(@5)
2E%’(R‘E)R K] ,dm@ 0//3

=2mA(T - DR, U‘”P P/ ’ a,/4§

The integral of theequatlon was performed graphically in

Fig. A-2.
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If the velocity field is approximated by U= R'LQ and
U= one obtains the total heat flux as

ﬁ' O&

QTIR,?(TO‘,—TS U U

|
= QW'ﬁ’(‘r T->ﬁ?—ih77—]g'é* 0'/4Q?

From the comparison of the last two equations one finds
that the result obtained from the latter expression deviates
about 2% from that given by the former expression. It was
shown in Chapter V that at a matching point where ‘fa
is a maximum, ,Eoéo,z . Since the zeroth- and first-order
approximations of the total heat flux are of the order
of unity and ﬁ% , respectively, two per cent error in
the first-order approximation would contribute about 0,4%
error to the total heat flux or equivalently to the bubble
dynamics. Therefore, it may be concluded that the uniform-
flow approximation M=l(Q;and =0 may be employed
for the determining of the bubble dynamics, in the steady

as well as unsteady thermal and concentration fields,
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APPENDI1X I11

COMPUTER PROGRAMS

THIS PROGRAM _COMPUTES THE UNIVERSAL FUNCTIONS FUR TRANSPORT EGWUATIONS FUR

ENERGY AND MASS. THE FUNCTIONS ARE VALID FOK BUTH SMALL AND LAKGL
_TIMES I1F THE RELATION BETWEEN BUBBLE RADIUS AND TRANSLATOURY SPEED 1S TO BE
INDEPENDENT » THE COMPUTATION IS BASED ON THE RUNGE-KUTTA METHCD.

TeEel 1S5+03%3ZEROTH ORDER 3% SOLUTION

TeEe2 I5e¢$% €  ORDER 5% SOLUTION

TeEe3 ISee$s Ty QRDER_$% 50LUTION

TeEe4h I1See$s T ORDER $$ SOLUTION

TeEe5 ISee%$ s ORDER_ %% SOLUTIGHN

TeEeb 154435 e  ORDER 5% SOLUTION

TeEe7 _I1Seebd &  ORDER »» SULUTION

TeEeB I1See$% &  ORDER 5% SOLUTICN

TeEe9 1See$% €3 _ ORDER_3% SCLUTION

TeEslO ISee3% T, ORDER 5% SULUTIGN

TeEell 1See$% ¥ ORDER 3% SULUTION

TeEel2 ISee%5 TF ORDER $% SULUTICH

TeEel3 ISee$s &7 CRDER 3% SOLULTION

TeEelt [Sesdd g,g, ORDER 5% SCLUTICK

TeEslD 15ee8% & CRDER 1% SULUTIUN

TeEelb ISeesd 5,({%)/0RDEN 5 SubLUTION

TeEel7 ISee$d  F (FPRDER 2% SULLTIUN

TeEel8 ISeeSd ¥ ($2)CRDER % SULUTIUL

TeEel9 ISeesd g8, ORIER b3 SULLTIUN

TeEe20 ISeedd 5’30 ORDER =% SULUTION

FOR SMALL TIMES FOR LARGE TIMES

. W 2 as . ‘ « 2 " 3

ol Bt &1 A0 Tl ) RED R -

T RWY R0 RW )" RWJ R R\’
e ~ FY7ye - * ¢l

Rf- SRS B - fsl- 86 £ S0

?" v WwHGg\voh v/, g”’U(UB'T)—(U)) ViU,
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$COMPILE MAD,PRINT OBJECT,EXECUTE y DUMP

MAD (03 JAN 1966 VERSIUN) PROGRAM LISTING eues can ose

DIMENSION Y12),F(2),Q(2)
INTEGER JyIyNyMyT42ZET ,TEND,TMAX1,TMAX2
INTEGER GRSIZ,GRSTIZ1,G6RSTZ2
VECTOR VALUES DEL=$1H ,F6.4,3F15.8%%
VECTOR VALUES EPS=$1H ,1F10.4%%
DIMENSION P(121),Y1(121),Y2(121)4F2(121)4R(55)
DIMENSION A{ 3509,AD),8(3509,BD),C(3509,CD)
VECTOR VALUES AD=2,1,120
VECTOR VALUES ~BD=2,1,120
VECTOR VALUES (CD=2,1,4120
READ AND PRINT DATA
EXECUTE SETRKD«(2,Y{1)yF(1)4,QsX,STEP)
T=1
¢o=Cco0 e . -
PRINT COMMENT $ FOR SMALL TIME BINARY SYSTEM $
TMAXL=TMAX2
POTEN=0.
GRSIZ1=GRSIZ
GRSIZ2=GRSIZ1

SWST GRSIZ=GRSIZ1
SW6 ZET=0
SW10 ZET=ZET+1

WHENEVER ((-1)eP.ZET)elLo0yYX=YDP+ZET-1
WHENEVER ((=1)ePoZET) G0y YX=YDP-ZET+1
R(0)=1.5

SW2 Q=CF#(R(N)/R(N-1)-1)
WHENEVER Q.G.87.20,Q=87.20
WHENEVER Q.L.(-87.20),0=-87.20
DX==DY#((2.3504/(EXP4(Q)=EXP.(=Q)))+1)
LY=DX
N=N+1
YX=YX+DY
Y(2)=YX
WHENEVER T.E.l
Y(1)=1.
OTHERWISE
Y{1)=0.
END OF CONDITIONAL

START

Y2(4)=Y(2)
F2{J)=F(2)
SWL F(1)=Y(2)
WHENEVER T.E.1l, F(2)=~0.5%XxY(2) ‘ /
WHENEVER TeEe2 4 F(2)=—.5%XeY(2)+Y(1)=2.#X%B(1,J)
WHENEVER ToEe3 4 F(2)==.5#X#Y(2)42,.%Y(1) + A(2,J)

WHENEVER ToEeb4 4 F(2)=—.5%XxY{2)+3.2Y(1) + A(3,J)




SW3

SW15

PTPT

SW5

SW4

SW7
S$SS

SWl4
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WHENEVER TeE.6 4 F(2)==,58XaY(2)+Y{1)=.5#X*B(14J)

WHENEVER T.Ea7 v F(2)=—.5#X2Y(2)42.4Y(L)+A(6,J)

WHENEVER T.E.10, F(2)=-.5#X#Y(2)+42.#Y{1)-2.,#X#B(2,J)-A(2,J)
WHENEVER T.E.1lly F(2)==.5#X*Y(2)+3.2Y(l) =~ =X#B(3,J)+A(10,J)
—.528(3,J)

WHENEVER T.E.12, F(2)==.58X#Y{2)+4.5Y (L) + A(l1l,J) #2.

WHENEVER TeE.13y, F{2)=~a5#X#Y(2)+2.#8Y(1)+.5#B(6,J)#X-2.%A(6,J)
WHENEVER T.E.14y F{2)=-.58X#Y(2)+3.2Y(1)+.25#B(7,J)-1.5%A(7,J)

+A(13,J)

WHENEVER T.E.15, F(2)=-.58XaY(2)42.#Y(1)+.58X#B(2,J)-A(24J)-2.%

X#B{64J)

WHENEVER T.E 16y F(2)=-0.5#X2Y{(2)+Y(1)+A(1,J)
WHENEVER ToEa17y F(2)==0.5#X#Y(2) +2.2Y(1)+A(16,J)
WHENEVER T E.18y F(2)==0.5#X*Y(2)+2.%Y(1)

WHENEVER T.E.19, F(2)=-0.5%X*Y(2)}+2.%Y(1)-2.#X*B(16,J)+A(2,J)

"4\'. l’.}yJ)

WHENEVER TeE.209F(2)==0.5%X#Y(2)42.#Y(1)+A(6,4J)+0.5#X#B(16,J)

S=RKDEQ.(0)
WHENEVER S.E.1.04TRANSFER TO SW1
WHENEVER J.E.GRSIZ,TRANSFER TO SW3
TRANSFER TO START
WHENEVER JABS.Y(1).5.0.005.AND. N.L.NMAX
R{N)=Y(1)
TRANSFER TO SWZ2
OTHERWISE
TRANSFER TO SW15
END OF CONDITIONAL .
WHENEVER ¢ABSeY(2)e0Gee0D1ANDeZEToLZMAXyTRANSFER TU SWIO
TRANSFER TO PTPT
WHENEVER ZET.E.ZMAX,PRINT COMMENT $ EQ. CAN NOT BE MADE
SATISFY BOUNDARY CONDITIONS =%
PRINT RESULTS T
PRINT RESULTS ZET o
WHENEVER N.EJNMAX, TRANSFER TO SWl4
PRINT COMMENT $ R(M) $
THROUGH SW5y FOR M=2,14M.G.N
PRINT FORMAT EPS,R(M)
THRUUGH SwW4, FOR I=14141.G6.GRSIZ
ALT,I)=Y1(I)
BIT,1)=Y2(1)
ClT,I)=F2(1)
THROUGH SW74FOR I=144491.6.GRSIZ
PRINT FORMAT DELP(I)oYL(I)yY2(I),F2(1)
T=T+1
WHENEVER TeE.5.0R.T.E.4.0R.T.E.8.0R.T.E.9, TRANSFER TO S$5S
WHENEVER T.G.TENDy TRANSFER TO SW14
TRANSFER TO Swé
END UF PRUGRAM

THE FOLLOWING NAMES HAVE OCCURRED ONLY ONCE IN THIS PROGRAM.
COMPILATION WILL CONTINUE.

SWST %020
CF #0128
GRSIZ2 %019
POTEN #0117
STEP *¥012
TEND *094%
TMAXL %016
TMAX2 #0116



-113-

THIS PROGRAM COMPUTES THE BUBBLE GROWTH OR BUBBLE COLLAPSE FOR BINARY SYSTEMS.
THE COMPUTATION IS BASED ON THE $RUNGE-KUTTA$ METHOD.

TeEelesose$355 SMALL TIME SOLUTIONS FOR BINARY BOILING SYSTEM $$%

TeEeloeoesedd LARGE TIME SOLUTIONS FOR BINARY BOILING SYSTEM $%%

TeEe3evoeeed55 SMALL TIME SOLUTIONS FOR INJECTION COOLING SYSTEMS $%%

TeEelboeseeb%% LARGE TIME SOLUTIONS FOR_INJECTION COOLING SYSTEMS $%%
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$COMPILE MAD,PRINT OBJECT,EXECUTE

yDUMP ,PUNCH OBJECT

MAD (03 JAN 1966 VERSION) PROGRAM LISTING eoe soe sse

READ

AGAIN

START
SW1

DIMENSION Y(3),F(3),Q(3)

INTEGER J,T,MA,MB, TMAX, TMIN,IM,J1 ,MO,MOO
VECTOR VALUES DEL1=$1H yFB8.4,4F15.8%%
VECTOR VALUES DEL2=$1H ,F8,4,5F15.8%%
PRINT DATA

READ AND
WHENEVER
WHENEVER
WHENEVER
WHENEVER
JM=JM
TMAX=TMIN
XS0=S5SQRT.
M00=10
X001l=1.~-

TeEe3,
TeEoly
ToEol’
TeEe2,y

{XINI)

X00

EXECUTE
EXECUTE
EXECUTE
EXECUTE

RO03=(1.0-X0) /X001
BATO=(1,-X0)/(X00~X0)
COF0=.5759%,5631/BETO

COF1=0.5759#0.2858/BETO

COF2=.5759%#,2815/BETO

DOFQ=RAMD

DOF1=DOF0/1.0159
DOF2=1.3932/D0OF0

#BETO

SETRKD«(1sY(1)sF{1)4QsXsSTEP)
SETRKD«(1,Y{1)yF{1)sQ9¢X,sSTEP)
SETRKD.(2,Y(1),F(1),QyX,STEP)
SETRKD«(25,Y(1),F(1),Q,X,STEP)

AO0=(1.0 + BETG+ BET1)/BETC
R0O0=R003.P..33333

J=0

BAT=0.5631#(1.~-BATO*0.5)

BET=(1.C-BET1)#0.5631
RINI=1.0 + 2.8BET#XS0O
RANI=1.0 + 2.#BAT#XSC
PRINT RESULTS ROC ,BET

WHENEVER
Y(1)=RINI
Y(2)=BET/

OR WHENEVER T.E.3

Y(1)=RSTA

T.E.l

XSO

OR WHENEVER T.E.2

Y{1)=RST
Y(2)=VST

A
A

END OF CONDITIONAL

X=XINI
MB=0
J=J+1
XSQ=SQRT,

{ X)

WHENEVER X.L..005

STEP=0.09
OTHERWISE
STEP=STAP

£5

END OF CONDITIONAL

WHENEVER

YSQ=SQRT.
Y2=Y(1)%Y
Y32=Y(1)=

TeEL2
{vy(1))
(1)
YSQ

+RINI 4BAT,RANI

«ORT.Ee4

A01=1.059%Y2 + 0.702+Y(2)
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TST=A00-A01/(DOF1l%Y32 =Y{(2))
F(1)=Y{(2)
F{2)=Y(2)#Y(2)#DOF1/YSQ#{-TST#ACL1+RAMO*Y(2)%Y32+
0 DOF2#{0.,5079-1.143%Y(2)/Y2)/YSQ)
OR WHENEVER T.E.1l
BCON=Y(2)#XSQ
BCON2=BCON=#BCON
RIR=Y{(2}/Y(1)
RIRT=RIR#X
A01=0.,5631 + 0.5710%RIRT
TST=A00 -AQL/(BETO#BCON)
F(L)=Y(2)
F{2)=(COF1#RIRT-COF2+BCON2-AQ1#TST#BCON)/COFO#Y(2)/X
OR WHENEVER TeEe3 LOR.T.E.%
Y2=y{1)#Y(1l)
Y3=y2#Y(1)
YY3=R003/Y3
TST= X001#(YY3-1.0)
WHENEVER TeE«3
F(1)=0.5631#TST/(XSQ + 1,728=#X001#X=YY3/Y(1)=- 0.5716%X/Y(1)
0 =*TST)
OTHERWISE
F(1)=0.5631#TST/XSQ
END OF CONDITIONAL
END OF CONDITIONAL
RREL=(Y(1)-1.0)/(R0OD-1.0)
SW2 S=RKDEQ.(C)
WHENEVER S.E.10,TRANSFER TO SW1l
WHENEVER T.E.2 OR.T.E.1
WHENEVER JeG.GRSIZ
PRINT RESULTS T4XyY(1),Y(2),F(2),TSTHRREL
TRANSFER TUO SwW5s
END OF CONDITIONAL

OTHERWISE
WHENEVER Y(1)eG.RMAX<OR.Y(1)eLRMIN.ORJ.G.GRSIZ
SW6 PRINT RESULTS ToX,Y(1),Y(2),TST,RREL

TRANSFER TOQ SW5

END OF CONDITIONAL

END OF CONDITIONAL

Jl=J

WHENEVER X.L..01

MA=MOO

OTHERWISE

MA=MQ

END OF CONDITIQNAL

WHENEVER J1/MA.E.MB, TRANSFER TO START

MB=J1/MA

WHENEVER T.E.4,PRINT FORMAT DEL1sX,Y{(1),F(1),TST,RREL
WHENEVER TeE«3yPRINT FORMAT DEL1,XsY(1)4F(1),TST,RREL
WHENEVER T.E.1,PRINT FORMAT DEL2, X,Y(1),Y(2),F(2),TST,RREL
WHENEVER TeE«2,PRINT FORMAT DEL2y XsY(L),Y(2),F(2)+TST,RREL
TRANSFER TQ START

SW5 TRANSFER TO READ
END OF PROGRAM

THE FOLLOWING NAMES HAVE OCCURRED ONLY ONCE IN THIS PROGRAM,
COMPILATION WILL CONTINUE.

AGAIN #025
SW2 #078
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