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ABSTRACT

Numerical procedures are developed for the digital solution of the
integral equations for the current induced on a perfectly conducting, two-
dimensional periodic surface of arbitrary profile when a plane electromag-
netic wave is incident. By using Floquet's theorem the range of integration
is reduced to a single period, and special summation techniques consisting
of a Poisson summation and the subtraction of the dc term are used to
improve the convergence of the infinite series representation of the Green's
function. The integral equations are then solved numerically using the moment
method and an interpolation scheme.

Data are obtained for both the surface and far fields for a variety of
sinusoidal, full-wave rectified, inverted full-wave rectified and triangular
profiles for plane waves of either polarization at oblique as well as normal
incidence, and the results are compared with the predictions of physical optics.

The numerical results are used to illustrate some interesting physical
phenomena, notably the P-type and S-type Wood anomalies associated with the
frequency and angular responses of diffraction gratings, and to develop a scheme
to estimate back scattering from a sinusoidal surface at oblique incidence.

The knowledge gained in the study of scattering from periodic surfaces
is then applied to the study of rough surfaces by treating the surface as a small
scale roughness superimposed upon a periodic base (representing the large
scale roughness). The small scale roughness is approximated by a random

function with a Gaussian distribution.
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Chapter 1
INTRODUCTION

Periodic structures find a variety of applications in fields ranging from
acoustics and electromagnetics to optics. Typical examples are the diffraction
gratings used in 6ptica1 spectrometers and as resonator components in sub-

optical lasers, the slow-wave structures in microwave tubes, and for micro-
wave lenses and broadband absorbers. They are also important to oceanograph-
ers in the study of acoustic or low-frequency radio wave scattering from an
idealized sea.

Mathematically, the problem of the scattering of waves by a periodic
surface is one which is easy to formulate but difficult to solve. It consists
of solving the wave equation subject to boundary conditions imposed at a sur-
face whose shape can be very complicated. For this reason, an exact analytical
treatment of the problem is seldom possible, and it is only recently, with the
advent of the high speed computer, that reliable results have been obtained.

Prior to this time, a variety of approximate analytical treatments were
developed, most of them based on an approach originated by Lord Rayleigh
(1878). Assuming the surface to be infinite in extent and making use of the

-periodicity in (say) the coordinate x, Rayleigh expanded the scattered field in
a discrete spectrum of outgoing plane waves, which representation was assumed
to hold right down to the surface. Application of the boundary condition leads
to an infinite set of linear algebraic equations, valid for all x, from which to
determine the complex amplitudes of the scattered waves, infinite in number.

The crucial and unjustified step (see Lippmann, 1953) in this procedure
is the assumption that the representation of the scattered field holds every-
where above and on the boundary. This has ever since been a subject of con-
troversy (see, for example, Lysanov, 1958). Thus, for a perfectly conducting
sinusoidal surface, Rayleigh (1878) obtained a solution by successive approxi-

mation based on the initial neglect of all attenuated waves and assuming that



the amplitudes of the corrugations are small irregularities compared to the
wavelength. Later, for the small surface, Tai (1948) proceeded via an
orthogonal mode expansion, followed by matrix truncation, and others have
pursued essentially the same path. An analogous treatment for a corrugated
interface between two homogeneous media was developed by Rayleigh (1907), and
applied to a sinusoidal profile by Pavageau (1963) and to a triangular profile by
Bousquet (1963).

A refinement of Rayleigh's method was developed by Uretsky (1965).

His method starts in the same way as Rayleigh's, but instead of merely assuming
that the scattered field can be expanded as an infinite set of plane waves, Uretsky
proved that this is possible for observation points not too close to the boundary.
To avoid Rayleigh's assumption that the representation holds right down to the
surface, Uretsky used Green's theorem to express the scattered field as an
integral over the elementary sources induced on the boundary by the incident
wave. Numerical results were obtained for a sinusoidal surface with a Dirichlet
boundary condition.

Methods of small perturbations similar to Rayleigh's were used by
Miles (1954) and Katsenelenbaum (1955). The typical procedure is as follows:
the boundary conditions specified on the uneven surface y=f(x) are trans-
formed to the plane y =0 by expansion in a power series with respect to f(x).
Thus the problem of scattering from an uneven periodic surface is reduced to
solving the wave equation subject to specified boundary conditions on a plane.

At best, all such solutions are valid only for corrugations whose height
is much smaller than the free space wavelength, and in an attempt to overcome
this restriction,Meecham (1956a) used a variational method to find the angular
distribution of scattered energy for a perfectly conducting grating. The scat-
tered field was represented as a linear combination of known solutions of the
wave equation whose coefficients were obtained by a least square fit to the
boundary condition at the surface, and the procedure was then applied to a tri-

angular (or sawtooth) profile.



A somewhat different approach was taken by Eckart (1953). He expressed
the scattered fleld as a Helmholtz integral involving the scattered field itself and
its normal derivative on the boundary. The integral was then evaluated after
assuming that the reflection took place at an equivalent flat surfioe. and approxi-
mating the scattered field and its normal derivative on the boundary by the
incident field alone. Another method also based on variations on the Kirchhoff
approximation was used by Brekhovskikh (1952). The method assumed that the
field at the uneven surface was local in nature and could be specified in terms
of the laws of geometrical optics. The field at each point on the surface was
assumed to be the same as if the reflection from that point were to occur from
an infinite plane tangent to the surface at the specified point.

A method based on physical optics was used by Senior (1959). Once
again the determination of the field is reduced to quadratures, and Senior showed
that for a plane wave at normal incidence on a sinusoidal grating, the physical
optics integral can be evaluated exactly to give the complex amplitudes of the
scattered waves. As indicated in Appendix A, the same is true (if shadowing is
. ignored) for both polarizations, and for oblique incidence as well as normal. It
should be emphasized, however, that the solution is still appraximate by virtue
of the postulated surface field distribution, and the failures of the physical optics
estimate of the surface fields are examined in Chapters III and V of this work.

A method which is quite distinct from all of the above was developed
by Sivev (1964) who used conformal transformation and a consideration of the
static limit to analyze reflections from periodic surfaces with shallow and deep
corrugations. The procedure is similar to that recently employed by Millar
(1969, 1971) to investigate the inherent limitation of Rayleigh's method (see
Chapter VII). As first noted by Lippmann (1953), it is not in general valid to
assume that the expansion of the scattered field as a discrete spectrum of out-
going waves alone holds over the entire scattering surface, and this fact was

later verified by Petit and Cadilhac (1964) in the case of a sinusoidal grating.



In any general treatment of the grating problem it is therefore necessary to
allow "ingoing' waves in the immediate vicinity of the surface.

All of the methods considered so far are very limited (satisfactory only
for certain classes of structures) and have little success in predicting certain
characteristics of periodic structures (for example the P-type Wood anomalies).
In the desire for a better understanding of Wood anomalies (see Chapters IV and
VI), a different point of view was proposed by Hessel and Oliver (1965). They
used a guided wave approach and replaced the uneven surface by a ptine which
had a modulated surface reactance. Their theory is more general than the pre-
vious theories and predicts the general location and shapes of the anomalies.
Since the surface geometry and the modulated plane reactance cannot be related
quantitatively, information about the performance of a specific structure cannot
be obtained.

Recently, another approach based on function theoretic techniques was
used by Tseng, Hessel and Oliner (1968), and Itoh and Mittra (1969). Unfor-

tunately structures for which such methods are possible are very few.

Without exception, all of these analytical attempts to determine the fields
scattered by periodic surfaces are subject to approximation, either implicit or
explicit, and it is only with the use of high speed computers permitting the
direct digital solution of the integral equations that reliable results have been
obtained.

Most of the initial work in this area was carried out by the French
investigators, such as Petit, Cadilhac and Wirgin, and was motivated by the
desire for more efficient optical diffraction gratings. In his early papers Petit
(e.g. 1963) followed Rayleigh's approach in expressing the scattered field as a
discrete spectrum of outgoing waves alone, leading to a matrix equation for the
determination of the spectral amplitudes. Since the matrix was then truncated
and inverted numerically, it will be appreciated that the method is no more than
a digitization of that originated by Rayleigh. However, in later papers (Petit,



1967), the Rayleigh assumption was circumvented by using an integral equation
formulation. Series expansions were adopted for the incident and scattered
fields and the integral equation converted to a matrix equation which was solved
numerically. Specific results weee obtained for plane wave incidence on gratings
with triangular profiles, and the efficiencies computed. A rather differemt
approach was taken by Pavageau (1967) who derived the integral equation direct-
ly in terms of the unknown surface current. The equation was cast in the form
~of a honhomogeneous Fredhoim equation of the second kind and solved by iteration.

Methods which are very similar to that which we shall use have recently
been employed by Neureuther and Zaki (1968, 1971a,b) and by Green (1970). The
former considered scattering by periodic struqtures, either dielectric or per-
fectly conducting. The integral equation was obtained from Green's theorem
and the modified Green's function expressed in either of two ways depending on
the parameters of the surface. The first (space harmonic) representationis
analogous to that used by Petit; the second consiste of an infinite series of Hankel
functions, and was computed using a Mellin transform and an asymptotic com-~
parison scheme. Numerical data were obtained for sinusoidal profiles, and very
recently data were obtained also for triangular profiles by Kalhor and Neureuther
(1971). Green (1970) also used the space harmonic representation, but improved
its convergence by summation techniques. Data were presented for the surface
field and diffraction efficiencies of perfectly conducting gratings with triangular
profiles.

The present work also employs the numerical approach, and is concerned
with the scattering of electromagnetic waves by infinite, perfectly conducting,
two-dimensional periodic surfaces of arbitrary but continuous profile. Plane
wave incidence is assumed, with either E or H polarization, and both normal
and oblique incidence are considered. A representation of the Green's function
is employed which is similar to that used by Green (1970), and the convergence
is improved still further by subtracting the dc terms. This has the added ad-
vantage of making explicit the behavior of the Green's function in a neighborhood



of its singularity. The integral equations are formulated on the basis of the
Green's theorem, and the range of integration is reduced to a single period
by application of Floquet's theorem. Using the moment method and an inter-
polation scheme, the integral equations are converted into a matrix equation
which is solved to yield the unknown surface current.

Chapter II is concerned with the formulation of the integral equations
and the development of numerical procedures for solving them. Numerical data
for E polarization are presented in Chapters III and IV. Chapter I is concerned
with the surface field while Chapter IV is devoted to the scattered field. Numer-
ical results are obtained for a variety of surface profiles such as sinusoidal,
full-wave rectified, inverted full-wave rectified and triangular, having various
combinations of amplitudes, periods and for various incidence angles. In pre-
senting the numerical data in Chapter IV, particular attention is given to the
Wood anomalies (P-type), and in both chapters, the data are compared with the
physical optics predictions.

The numerical results for H polarization are presented in Chapters V and
VI and the S-type Wood anomalies discussed. The results support Palmer's
experimental observation that the S-type anomalies are generally stronger
than the P-type and can occur on structures with relatively shallow grooves.

Chapter VII is devoted to Rayleigh's method. After a brief historical
survey of the assumption, numerical data are obtained for the scattered field
using the exact representation as well as Rayleigh's.

Lastly, in Chapter VIII, the knowledge gained from the study of periodic
surfaces is applied to an investigation of scattering from roygh surfaces. The
rough surface is treated as a small scale roughness superimposed on a periodic
base (large scale roughness) with the small scale roughness represented by a

random variable having a Gaussian distribution.



Chapter II

FORMULATION OF THE INTEGRAL EQUATION
FOR NUMERICAL SOLUTION

We consider here an infinite, perfectly conducting periodic surface
illuminated by a plane electromagnetic wave. Since the surface is assumed
two dimensional in the sense of being independent of a Cartesian coordinate z,
the entire problem is two dimensional, and the most general solution can be
deduced from the pérticular solutions appropriate to incident plane waves having
either E or H inthe z direction, i.e. parallel to the corrugations. In either
case, the problem is essentially scalar.

2.1 Formulation

It is convenient to develop first the integral equation in the somewhat
simpler case of a scattering surface of finite extent. Let S (see Fig. 2-1) be
this surface, and surround ft by another closed surface S,. Let W r) and G{r|r")
be two scalar functions which are continuous, together with their first and second
derivatives, on S and SR and throughout the volume V enclosed by them. Assume,

moreover, that y{r) satisfies the homogeneous wave equation

(V2 +iWAx) = 0 (2.1)

inside and on the boundaries of V, whereas

(7 +1AGx|r) = -dz-1) . (2.2)

Applying Green's theorem to the volume V, we obtain

[l e -srhgm G(_g‘_x_‘_'} as'
S+ SR

= {G(_:; =N +PKe) -y NV +k2)G(_1;Lx_")} av' = lr)
v

(2.3)



Fig. 2-1: Geometry for the Application of Green's Theorem.
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Fig. 2-2: Illustration of the interpolation procedure.



by virtue of the properties of the delta function. We now identify yAr) witha
total field

v = yl(m) +u ()
where wl(_g) is an incident plane wave originated by a source at infinity (and
therefore outside V), and ws(_g) is the field scattered by the surface S. Since
¢*(x) must satisfy a radiation condition at infinity, its contribution to the inte-
gral over S_ decreases to zero as the surface S_ recedes to infinity, whereas

R R
d/i(_!_‘_) contributes itself. Equation (2.3) then becomes

Vo =i+ { e[ oo UE) -UE) 5 c(_qy)} a8 (2.4
8

and in spite of the assumptions of an incident plane wave and a surface of finite
extent, Eq. (2.4) is also valid for an arbitrary incident field and for a surface
S extending to infinity. In the latter case, however, the proof is by no means
trivial (Jones, 1932).

The particular situation of concern to us is that in which S is doubly
infinite and divides space into two regions. It is then sufficient to integrate
over only the upper ("illaminated') side of the surface. We also assume that
S is independent of the coordinate z, and this allows us to distinguish two par-
ticular cases acoording to the polarization of the incident field. Mks units are
employed and a time factor eM suppressed throughout.

2.1.1 E (or horizontal) Polarization

if E' = Eiz £, the electric vector in the scattered field will also be

confined to the z direction, and we can make the identification

Ur) = EX) . (2.5)

Since the normal derivative of E:‘)t is related to the surface current density
Kz by the equation
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9
on'

where u is the permeability of free space, Eq. (2.4) can be written as

tot ol . ' na 1 otot | ___@__ v\; 1
£ = ELe) -jou | |k (0+ B 22 Glzlxn} as'

.

S 7 (2.

At the perfectly conducting surface S the boundary condition is

Etot(
g ‘=

and hence, on allowing r to approach the surface, Eq. (2.7) gives rise to the

integral equation

1 1 f = ...—:.l—- i
G(x|r)K (r')ds' = o BT - (2.

S

For a two dimensional problem the free space Green's function is

Glz|z) = -1 Bz - r1)) (2.

4 0

where ng) is the zero order Hankel function of the second kind. The final

integral equation is therefore

(2)

Kz(z' )HO

S

from which Kz has to be determined.

2.1.2 H (or vertical) Polarization

tot, . _ . .
E () =-jwK (), (2.

r) =0 (2.

t t —...?.. i
(dr-r'pat' =—E (r) (2.

6)

7)

8)

9)

10)

11)

If _I—}l = H; /z\, the total magnetic field is likewise in the z direction, and

on making the identification
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tot

Wr) = H (), | (2.12)

Eq. (2.4) becomes

(r) H(r)+ {G(rL)——H (x') - H (r') G(r‘r’}dS' (2.13)

The boundary condition at the perfectly conducting surface S is

3 _tot
5 B, (D) =0 (2.14)

and on allowing r to approach the surface, Maue (1949) bas shown that (2.13)
reduces to

SHMp = H(@- | 8% 52 ae|r as' (2.15)

S
The quantity HZOt is the induced current density, and since this current flows
tangential to the surface in a plane perpendicular to the z direction, we can

write
L(t(;) =H (x)t (2.16)

A
where t is a unit vector tangential to S. Inserting finally the expression (2.10)
for the free space Green's function, we have

K (D) 5o Ho K[z - r’I)dl'-q{H @-3K0} . (2.17)
B

i.e.
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2 A v
K (D k| £ - ') cos(®, [z-x'ar = 41 1 B - 2 KO, . (219
S

This is an integral equation from which to determine Kt'

2.2 Reduction of the Integral Equations for the Periodic Surfaces

We now make use of the fact that the incident field is a plane wave and

that the surface y = f(x) is periodic with period d, i.e.
f(x+md) = f(x) , m=11, %2 %3, . (2.19)

As before, it is convenient to consider separatdly the cases of E and H polari-
zation,

2.2.1 E Polarization

Let us assume that

-jk(x sin6 -y cos 6)

Eiz(_:g) =e (2.20)

where 0 is the angle of incidence with respect to the normal to the mean sur-
face. The integral equation is as shown in Eq. (2.11), but since the integration
extends from -oo to oo, this is not appropriate for a numerical solution. How-
ever, by invoking the periodic property of the surface, the integral can be reduced
to one over a single period alone at the expense of a more complicated form for
the kernel.

From Floquet's theorem, we have that

-jkmd sin6 +

K (x+mdX) =K (r)e m= %1, %2, t3,... . (2.21)

Moreover,

at = 1+ {o(x0} 2 ax

where f'(x) is the derivative of f with respect to x. This allows us to express

the integral as one along the x' axis, and since
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Ne-x'] = Vix-xt-ma)?+ (y-y12 |
we obtlin,

@®
Z D (eVx-x-ma?+ (y-y) )e'jkmdm‘e\/n {f'(x')}2 K (x')dx’

d

.4 -jk(xslne ycos ) , (2.22)
W
valid for 0 < x <d with y = fx), y' = f(x").

In arriving at (2.22) we have implicitly assumed that interchanging the
order of integration and summation is valid (a fact which is by no means obvious),
but even 8o Eq. (2.21) is not a very promising equation for numerical purposes
because of the extremely ppor convergence of the infinite series constituting the

kernel. To rectify this situation, consider

(¢ 4]
P, = m; ng) 6\/(:-::'-‘md)2+(y-y')2>e‘jkmd’m9 . (2.23)

Using the Fourier integral representation of the Hankel function, the Poisson
summation formula (see, for example, Morse and Feshbach, 1953) applied to
(2. 23) gives

L -§( —— 2my +ksin8)x-x) -j|ly-y' IX
p. =2 Z L d o (2.24)
1738 Lo X : :
m=-Q m
re r——-——h.. &
=2 <2m7r 2
x_=|k- (8L +ksme) (2.25)

and the chosen branch of the square root is that for which

ImX <0
m=

in order to satisfy the radiation condition.
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The expression (2.23) for P, has been used by Yen (1962) and Green

1
(1970), and is equivalent to that obtained by Neureuther and Zaki (1968) using
a space harmonic expansion. The features that should be noted are that if

y # y' the successive terms decrease exponentially with increasing (m; for all

! kd kd
m+ o sin6 2” R

and that in addition there is an algebraic decrease (proportional to m-l) pro-
vided by the factor XIn in the denominator.

We can produce still a further improvement in the convergence properties
of the series by separating out the zero-frequency (k = 0) terms, and this has
the added advantage of making explicit the behavior of P1 in the vicinity of the
singular point x' = x, y' =y. Putting k = 0 in (2.24), we haye

2 2
5 2 ) -} gm (x-x") -—;rlm(y-y')l
p1! =_-& E — e e (2.26)
k=0 m=-o j/m| ==
d
and since
@ 27 27 -
A -j*(‘i“(x-X')-“&"y-Y'I
= -2-—log 1- ~
m=1 ) .
- 2 2 !
Sty STy
L= "gpylog 1- .
m=-q

(see, for example, Collin, 1960), provided y' # y, it follows that
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- ga[ [lY'Y'i"'i(X-X'ﬂ’}

P, | =(m=0 term)-j;log [{1-’6

1
{ -4 [ly-y’l-:(x-xﬂ}]
l-e . (2.27)

k=0
Hence, by subtracting the zero frequency value of each term of (2.24) and then
adding (2.27), the integral equation (2.21) takes the form

d
S G, (x,y; X', y)K (x')e Jix'stnd J1+ {f'(x')}E dx! == e’ky""’e

0
0<x<d, (2.28)
where
et o) = -jk[y y'lcose
G, x, y;x', y") koosO
27 ' ' . 27 ] '
" - =5 [ly- v +ax-x)h 9 --a-ﬂy—y\-j(x-xﬂ@
4 e e J
2
&, gmr ("HY‘.‘/'\X; =+ ly-y
+ Ze d e + &
- X+ jme
m o d
- 2
jzx:lm x-xy | y-vix, - ?Iy-y'l\s
+ e L + 2 5 (2.29)
m=1 X g ’;”'

with

x; = k- (2"‘"r +ksing)® \[kz 7"" - ketn®)® . (2.30)
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We observe that the Green's function has now been expressed as the sum of

a term involving explicitly the amplitude and the angle of incidence, a logar-
ithmic function representing the true behavior of G in a neighborhood of its
singularity, and two series which are themselves differences of two convergent
series. |

2.2.2 H Polarization

The incident field in this case is taken to be

e—jk(x sin6 -y cos6)

H(r) = (2.31)

and the reduction of the integral equation (2.17) to a form suitable for numerical
solution proceeds in much the same way as for E polarization. Since

9 _ __ =1
on' -

4' ..Q._ __a_&
f(x)a -ay'f ,

- :
1+ P 2

Eq. (2.17) can be written as

d
Pk (xtax' = 43 { KL ()- § K, () | (2.32)
0
where
@
r : jikmd 6
P, = 1 42y Z 1 (ke -ma g -y | stn
m .
____2::]]_ Z -}-(1—- ')(‘—2-1-1-1—7I+ksin6) X sgn(y y') X
m=- m -~ .

-j(g—lél-—ﬂ +k 8in8)(x - x') —jiy—y'iX
A € e (2.33)
in which sgn(7) is the signum function and Xm is given in (2.25). The zero

frequency (k = 0) limit of P2 is
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® 5 2mm
ik =0 m=—co L ™ j

2 _
(x-x") - —(;-T |m(y -y"),
e
J

2 N
\ n;” AL(X __xv)_‘y_y";

Q
- ‘ R | __j
= 5 (e +somty-y0 ) + 2 {000 +30gnty-y) Ze
m=1

2 1B {0+l -y);
+-a{-f'(x')+jsgn(y-y')j> Ze .

m=1

and since

lo'e)

2 d et

m=1
we have

—— 2 [/, | 1. ! t ’(” T T
P = 51+ Fx) +isgnly -y cot{- T (x-x")+j5ly-y']
2 oo d d d d
k=

+j- 43 -f'(x')+j.sgn(y-y')k cot z (x-x')+] z ;y—y'] PO (2.34)
d ¢ d d J
Hence, by subtracting the zero-frequency value of each term of (2.33) and then
adding (2. 34), the integral equation (2.32) takes the form

d
G,(x, ¥; x', y)K (x)ax' = jd 4 2H;(x)—Kt(x) ., 0<x<d, (2. 35)
0

where
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G2(X. y;x',y')

. -3 3 ') 3 — .
:-isgn(y-y')—j*Lf’(x')tane-sgn(y—y')je Jksin6(x -x") - jkcos 6 |y-y', _

. ot
@ —jzm”(x-x') l—e_]ly_ylem

. -jksinf(x-x") d
m=1 X
m
_ 2m7 |y y'] R
: 2 : + N
A f(xt) 22T 4 ksing)-X sgn(y-y'); -e d {jf(x') sgn(y - y)f -
~ N s m J
I -
w_ . 2mn a -yl X
. —-jksinf(x-x') 174 bx-x1) | e n
-Je € | - g
m=1 ‘ X
i m

A f'(x) - +ksm9) X sgn(y y)§
. d
2mm
—._—‘—_ ly Y! Y
+e yjf'(x')+sgn(y-y’)j +

+ J—{ f'(x') +j sgn(y - y')} cot{ L (x-x")+j Ldf |Y'Y'P‘5 +
+ J2_ 4{"L_f'(x')+jsgn(y-y’)} cot{g(x—X')"”jle‘Y'l o (2.36)

In spite of the obvious complexity of the Green's function GZ' its form

is directly analogous to G, in consisting of certain explicit terms, a pair of

1

cotangent functions representing the true behavior of G, in a neighborhood of

2
its singularity, and two series which are themselves differences of two con-

vergent series. Once again, therefore, the singularity of the Green's function
has been separated out.
We further note that the integral equations (2.28) and (2.35) have been

derived without approximation. In consequence, the formulation so far is
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exact for any two dimensional perfectly conducting periodic surface which is

smooth in the sense of having a continuous first derivative.

2.3 Comments on the Green's Functions of the Integral Equations

Before we discuss the numerical proéedures of solving the integral
equations shown in Eqs. (2.28) and (2.35), it is appropriate to examine their
kernels (modified Green's functions) with some care. Egquation (2.28) for E
polarization is a Fredholm integral equation of the first kind with a weakly
singular kernel. Very little is known about equations of this type, and even the
uniqueness of the solution is not assured. On the other hand, Eq. (2.35) for H
polarization is a Fredholm integral equation of the second kind with a weakly
singular kernel. The advantage of this equation over that for E polarization is
that we can use an iterative scheme (Neumann series) to obtain the solution.
This has been done by Payagean and Bousquet (1969) using the geometric optics
expression for the surface field as a first approximation. As shown in Appendix
B, however, the integral equation for E polarization can be converted from one
of the first kind to one of the second kind, so the successive approximation
method can be applied here as well.

If we examine the Green's function for E polarization, Eq. (2.29), it is
found that the surface slope dependence of the kernel occurs explicitly only in
the terms |1 +f'(x)2. For surfaces of gentle slope such that |f'(x)| << 1, it is
now obvious that the surface current will be relatively insensitive to slope. The
second term of the Green's function has a legarithmic singularity which repre-
sents the correct singular behavior for E polarization in two dimensions. The
last two terms consist of infinite series. Whenever X; or X;n is purely
imaginary, the corresponding terms are exponentially damped. Hence, in a
numerical solution of the integral equation, these series can be terminated at
a term somewhat beyond that where the exponential decay starts. On physical

grounds, it would appear that as functions of K, the values of these series could
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change abruptly when an individual mode becomes cut-off. This could then
lead to an abrupt change in surface field distribution. However, for surfaces.
of small periods (d/X <0.2), the contribution of the infinite series is insig-
nificant, and the first two terms dominate.

For H polarization, the Green's function is much more complicated and
more dependent on angle of incidence and surface slopes, but its qualitative be-
havior is not too different from that for E polarization. If f'(x) = 0, the surface
is a flat sheet and it can be shown that G2 vanishes. The current distribution
is now given by the explicit term alone, and this is just the geometrical optics

value. Again the correct singular behavior for H polarization in two dimensions

is represented by the last two cotangent functions.

2.4 Numerical Procedures

Methods for the numerical solution of integral equations have been
extensively discussed in the literature (see, for example, Harrington, 1968).
The general procedure consists of reducing the equation to a finite set of alge-

braic equations, i.e. to a matrix equation, and can be illustrated by considering

d
G(x, x")K(x")dx'= F(x) , 0<x<d. (2.37)
0

We assume that the unknown function K(x') can be expanded in terms of linearly

independent base functions ¢n(x') such that

N

K(x") -“-Za ¢ (x") (2.38)
B nn

where the an are the associated constants. Substitution of (2. 38) into (2.37)

gives

N d

E a \ Glx,x)p (x")dx' = F(x) (2.39)
n=1 n . n
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and the solution of the integral equation has now been reduced to the determination
of the constants, an, n=12,...,N.

There are several possible ways of finding the a, e.g. least squares fit,
Galerkin's method, and the collocation method, and it is the last of these that
we shall employ.

The collocation method converts (2.39) into a system of N linear
equations by forcing the two sides of (2. 39) to be equal at N sampling points in
the interval (0,d). This is simply a point-matching procedure and results in the

matrix equation

d

N

E a Gx ,x" (x"d&x'=F(x ), 0<x

c—"n m n m -
0

<d, m=1,2,..,N. (2.40)

There now remains the problem of choosing the base functions ¢n(x'), and here
again there are several possible choices, e.g. rectangular, quadratic and
sinusoidal. By appropriate choice, we can economize in the number of sampling
points requred for an "accurate' approximation to the solution K(x), and exper-
ience has shown that a rectangular function is not in general a good choice,
whereas sinusoidal interpolation often works rather well.

The particular form of sinusoidal interpolation that we have adopted is
predicated on the use of sampling points which are uniformly distributed in
0 <x'<d. The range of integration is therefore broken up into N increments
of length A = d/N (see Fig. 2-2). Furthermore, let x'n be the midpoint of the
n'th cell, i.e. x;l =(n- % )4, and let Ax;1 denote the interval

Ja

A
x -3 5 x' <x'+— . We assume that

1
n 2
. A +B sink(x'-x )+C cosk(x'-x ), if x"e Ax!
n n n n n n

K(x') = (2.41)

e N

0 otherwise
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and specify the constants An’ Bn and Cn by continuing the form appropriate to
x'e Ax;l out to the centers of the adjacent cells and imposing continuity. Defining
Kn = K(xn) and Kni'l = K(Xnil)‘ we have

K =A +C ,
n n n

K =A +B sinkA+C coskA ,
nt+l n n n

K =A -B sinkA+C coska,
n-1 n n n

from which we obtain

-K +2K cos kA-K

A = n+l n-1
n 2(cos kA -1)
K -K
_ n+l n-1
Bn ~ 2sinkA (2.42)
- +
C Kn+1 2Kn Kn—l

n_ 2(cos kA -1)

Substitution of (2.41) and (2.42) into (2.40) now gives

i [cos kA - cos k(x! - n) .
] ”
=1 G(Xm ) K coskA-1 _
= Jax - -
n
--sinkA+(cos kA - 1)sink(x' - xn) + sin kA cos k(x' - xn)
* Kn+1 L 2 sinkA(cos kA - 1)
-8inkA - (cos kA- 1)sink(x' - xn) + sin kAcos k(x' - xn) -
- dxl
K1 2 sinkA(cos kA - 1)

=Fx ), (2.43)
m
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where X = (m - -é- )JA, m=1,2,...,N. We note in passing that when n = 1
or N the periodicity of the problem must be used to determine the constants
I(_1 or Kn+1 required in (2.43).

The above procedure is immediately applicable to the integral equations
for E and H polarizations on inserting the appropriate values for the Green's
function and the forcing function, but a brief comment is desirable concerning
the treatment of the singular cell. The Green's functions of concern to us are
singular when x = x', the singularity being logarithmic for E polarization, and
a first order pole for H polarization, and it is therefore necessary to modify

the numerical scheme when X = X - In line with the usual practice, we divide

the singular cell into three portions:

A €
(xn" 2 N xn- 2 ) ’ (xn"

€ €
X +— X +—-, x +
* "n 2)' (n 2’ "n

)

o im
vl D

with 0< e <A. The first and third segments are handled by the standard
numerical technique, whereas the central portion is treated analytically by
means of a limiting process (Andreasen, 1964).

It must be mentioned here that the sinusoidal interpolation by no means
‘assumes that the surface current distribution is sinusoidal. In fact other methods
based on quadratic or flat-top functions can be used just as well. However,
numerical results indicate that good convergence is obtained by uaing sinusoidal
interpolation in this case.

In order to make the computer program applicable to periodic surfaces
of arbitrary shape, it is convenient to represent the surface by its Fourier series.

If y = f(x) is a periodic function of period d, then

(08

a r~ N 7
0 ! 2n7T nr \!
—— n— ! ——— N + ——
fix) = > + E ; a_cos <d x, bnsin< 5 )QJ (2.44)

n=1
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where
d kY
_ 2 21\ _
a =3 f(x)cos<(:1 x| dx (n=0,1,2,...)
0 y
d
_2 2n7 =
bn— 3 f(x) sin 3 X dx (n=1,2,3,...)
0

It is known from the theorems of Fourier series that if {x) is a periodic,
continuous and piecewise continuously differentiable function, then the Fourier series
(2.44) will converge uniformly to f(x). Subject to these restrictions on f(x),
we can therefore synthesize an arbitrary periodic surface to any desired degree
of accuracy. In general, more Fourier terms are needed for H polarization
than for E polarization to obtain the same degree of accuracy because the Green's

function in the former case involves more terms with the first derivative.

2.5 Convergence and Accuracy of the Numerical Solutions

The numerical solution of the integral equations for both polarizations
has been programmed for an IBM/67 computer in Fortran IV language. In solving
an integral equation numerically it is always desirable to carry out a convergence
test for the following reasons:
a) to determine the number of sampling points necessary to achieve
the required accuracy, and
b) to test whether or not the numerical solution approaches a stable

value as the number of sampling points is increased.

Although it has not beeﬁ shown mathematically that the accuracy can be
improved by increasing the number of sampling points, it would appear reason-
able to believe so on physical grounds. In general it is considered that a
numerical solution is "satisfactory" if it remains essentially unchanged when
additional terms or modes are included in the computation, but there are ex-

ceptions to this (see, for example, Lee, Jones and Campbell, 1971).
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The accuracy of the numerical solution in this work has been checked
using the following criteria:
a) Energy conservation. This furnishes a common check on the
accuracy of the solution in electromagnetic scattering from perfectly
conducting surfaces. This is essentially the check employed by Petit
and Cadilhac (1964), Neureuther and Zaki (1968) and Green (1970) as
well as many others, However, as pointed out by Amitay and Galindo
(1968), energy conservation does not provide a measure of accuracy of
a solution found by the Ritz or other related methods, and hence, in
order to use energy conservation to check other than computational
round-off errors, care must be exercised in choosing the method of
solving the» integral equation numerically.

The method that has been adopted in this work is a subsection and
sinusoidal interpolation scheme, and since the solution does not auto-
matically satisfy energy conservation, we are able to use this as a
check. The relation that must be satisfied is

N

Zo: 'AmlzRe(Xm) = kcos (2. 45)

m:
where N is the number of propagating modes and the Am’s are the
scattered field amplitudes. These are detrived in Chapters IV and VI
for E and H polarizations respectively.

b) Convergence test. The numerical solution is found for the same
surface using different numbers of sampling points. As shown later,

the numerical solution approaches a stable value as the number of
sampllng points increases, which value can be considered as the solution.
It is found that the number of sampling paints necessary to yield accurate
results depend on many factors, such as the angle of incidence, the ampli-

tude and period of the profile, the smoothness of the profile as well as
polarization of the incident fields. In general, for both polarizations
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better convergence is obtained for normal incidence or when the
incidence angle is small. The computer program adopted in this work
is based on uniform sampling cells, but it may be true that a nonuniform
sampling scheme would give faster convergence for the same number of
cells., Because the Green's functions are sensitive to a change in the
surface slope, particularly for H polarization, it is necessary for us to
insert more sampling points into those regions where the surface slope

changes most.

c¢) Flat surface check. A very simple and useful check on the numerical
solution is to let the surface become flat., We should then obtain the geo-

metrical optics value for a flat sheet, and this is indead the case.

d) Check with the result obtained by other authors. It is always
desirable to be able to check the results obtained with those obtained
by other workers (and other methods). The numerical results obtained
here will be compared with those obtained by Zaki and Neureuther, and
by Green. Good agreement is indicated.

2.6 Computational Time

Perhaps one of the most serious restrictions imposed on numerical work
is the computational time involved. Although the computer programs have been cast
in a general form applicable to surfaces of any size, economics dictate that only
reasonable sizes (say from 0.2X to 2X in period) are explored. It is understood
that most of the computational time consumed is used in filling up the matrix
elements. The rest is used in the matrix inversion process. In general, the
program for H polarization takes more computational time than for E polarization,
because of its more complicated Green's function. To save computational time,
separate programs have been written for the special case of sinusoidal surfaces.
However, in spite of the fact that for the case of normal incidence symmetry can

be used to reduce the matrix size by a factor of two, and hence to reduce the



computational time by a factor of four, separate programs were not written
to take advantage of this, since most emphasis will be given to the more
interesting case of oblique incidence. Examples of the computational time

involved are given later,



Chapter III
SURFACE FIELD FOR E POLARIZATION

In this chapter surface field distributions obtained by numerical
solution of the integral equation for E polarization are presented. The par-
ticular profiles considered are sinusoidal, full-wave rectified, inverted full-
wave rectified, and triangular (see Fig. 3-1) with various periods and angles of
incidence. In each case the physical optics approximation is also presented as
a basis for comparison.

The physical optics method is a widely-used technique for estimating
the scattered field. Basically, it is an extension of geometrical optics in
which the surface field is approximated by its geometrical optics value, thereby
reducing the determination of the scattered field to quadratures. Consequently,
the physical optics method is a high frequency approximation technique, and it
is suitable only when the "effective' dimensions of the scatterer are large
compared with the wavelength, and there is no shadowing involved. How much
shadowing affects the solution is still unknown, and a matter that is then of some
debate is whether shadowing should be taken into account, and if so, how.

According to the physical optics method the current induced on the surface
is

K =20A _I_{_i in the illuminated region, and (3.1)

=0 in the geometrical shadow (3.2)

where 3 is the outward normal to the surface, and for a two dimensional sur-

face this is given by

28
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Fig. 3-1: Profiles of Periodic Surfaces.



30

/l"\l = -—-,-:-_1_—-——,—-_2. [—f'(X))’;'*"}}] (3.3)

V1+£'(x)

Thus, using Eqs. (2.20), (3.1) and (3. 3) we obtain for E polarization

-jk(x sin6 - y cos 6) A

1 ,rf'(x)sin9+cos 9] e (3.4)

K = —
607 1 +£(x) -

in the illuminated region.

By comparison with the exact solution, it is found that in general the
physical optics method fails to give accurate results. However, if we consider
a "smooth" surface with sufficiently large ratio of period to surface height,

we can then rely on the physical optics method.

3.1 Surfaces of Small Period (d/A £ 0.2)
Figures 3-2 through 3-13 represent the current distributions on

periodic surfaces of four different profiles (see Fig. 3-1). Each surface has

a period d = 0,21, and a maximum amplitude a = 0.1A. The angles of inci-
dence considered are 8 = 0 (normal incidence), 6 = 300 and 6 = 600. In each
figure, the exact computed values are shown as circled points, and are joined
by a broken line only to guide the eye; the physical optics approximation is
shown as a solid line.

Let us examine the sinusoidal surface. We observe that for this
relatively small period most of the current is concentrated in the vicinity of
the surface peaks, with the current almost zero in the troughs. There is,
indeed, almost an exponential decrease in the current modulus away from the
peaks, and the main effect of increasing the incidence angle is to scale the
curves, leaving the general shape unchanged. In spite of shadowing due to

large angles of incidence, the curve for the modulus still retains its symmetry.
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The phase is somewhat more sensitive to 6, and whereas the curve is almost
flat for 8 = 0, the shape changes noticeably with increase in 6.

Since kpmm = 0,064 (pmln is the minimum radius of curvature) for
the surface, it i8 not surprising to find that the physical optics approximation
bears no resemblance to the exact data. According to physical optics the
current within the shadow region should be zero, but exact results prove this
is not so, and this is natural because the current must be a continuous function
along the surface. The physical optics phase is also poor for 6 = 0, but agrees
better for large 6, at least in an average sense. In general it is true that the
physical optics approximation shows be’ét agreement with the exact data in
regions where the radius of curvature is largest. That is, in all cases the
maximum discrepancy occurs at the surface peaks and troughs where the radius
of curvature is a minimum,

Examination of the remaining profiles show that the shape of the modulus
curve is very similar, except in small details, to the corresponding one for the
sinusoidal surface, and the phase still remains relatively constant for 6 = 0.

In general, the above remarks for the sinusoidal surface apply also to these
profiles, but each profile has, because of its own geometry, some particular
characteristics. For example, in the case of the inverted full~wave rectified
profile with 6 = 60° (Fig. 3-7), we can see a small standing wave pattern in the
phase just outside the shédow. This is probably due to multiple scattering of the
incident field by the surface. Another example is the ""edge effect' which is
clearly evident in the results for the triangular profile.

In order to obtain a better understanding of the surface field, let us go
back to the integral equation. If we look at Eq. (2. 29) carefully, we observe
that for a sufficiently small period we can approiimate the kernel by the first
two terms, and of these two terms only the first term, which has no singularity,

contains the incidence angle. Thus the approximate integral equation becomes
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d
b3 . ' P US— .
Gl(x, y; x', Y')KZ(X') er( sin6 \/1 +f'(x’? dx' 3_;1 eJky cos 6 (3.5)
0
where

1 e-jk!y -y'|cos @ _
kcos 6

Gi (X, y;x', y') =

T B peylemexily o -2 [yey-seexl]
_-g;logfil—e }{1_6 i

-
—

(3.6)

Since the integral equation is singular, a rough estimate of the solution
to the integral equation may be obtained by examining the equation in the neigh-
borhood of the singularity. Thus

. i 1 -19_ .
lim G, (x,y;x",y") = - lim log[ ], (3.7
x-x!|—> 0 1 k cos6 27 lxoxt}—>0
y-y'j—>0 ly-y'|—>0
where
] 7 g vyl
lim log[ 4= lim log ;{l-e s
|x-xt}—>0 [x-x—>0 L o r
ly-y'—>0 ly-y'[—>0 -5 [yl -3x-x)1 7]
- i

gy -Hy-yl §
= lim log{1+e d -2e d cos[g'z'r (x—x'—)‘H‘

|x-x']—>0 d ~J
\y-y'|—>0
4 2
o= Tlv-yl -Hly-y
= lim 10g<$1+e -2e

ly-y'|—>0 ~
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Using the following expression,

x 2 3
--1+x+§,—'+'3—,’+ e
we obtain
lim log[ 1= lim loge , (3.8)
lx-x'}-——>0 € —>0
ly -y'l—>0
where
121:'2 .
€ ly-y'
d

Thus in the neighborhood of singularity, Eq. (3.5) becomes

x+ 6
/7

{

.1.. 1 N o~ Jkx'siné __th‘_i v’,‘,‘_z_g Jky cos 6
\kcose o log x Kz(x)e \fl:—f(x) dx yy e

x-6 (3.9)

where [x-x'| < 6. 6>0 is an arbitrarily small number. If we assume that the

PO

factor K (x")e -Jlox'sin6 \/ 1 +f'(x') remains constant in this small region, we

can solve Eq. (3.9) to get

:
1 ,jd JCXCE Jloxsing [

| Koos 6 2 = w © . (3.10)

It now follows immediately that if the period d is sufficiently small, the
first term in the square bracket dominates, and so the modulus of the surface
field is seen to be proportional to cos6, a scaling factor. This is consistent

with the numeriocal results.
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The effect on the surface field for a sinusoidal profile due to change in
the amplitude as the period is kept constant, and 6 = 0 is shown in Figs. 3-2,
3-14 and 3-15. It is observed that as the height decreases, so does the current
concentration near the peaks; the phase, on the other hand, is much more nearly

constant, and is more akin to that for a flat surface than a sinusoidal one.

3.2 Surface of Slightly Larger Period (0.2.<d/Xx.£0,86)
Figures 3-16 and 3-17 show the surface field for a sinusoidal profile

with d = 0.4, a =0.2A and 6 =0, 60° respectively. Comparison with Figs.

3-2 and 3-4 indicates that doubling both d and a has little effect on the modulus
of the current, but has a marked effect on the phase. For normal incidence the
phase curve still has a small sag at the surface trough region. Results for
d=0.6A, a=0.3x and 6 = 60° are shown in Figs. 3-18 and 3-19 for the inverted
full-wave rectified and full-wave rectified surfaces respectively. Although the
overall shape of the modulus curves bears much resemblance to the previous
cases of small period (Figs. 3-7 and 3-10), there is evidence (small undulations
along the curves) of stronger multiple scattering here. Again, the physical

optics method fails to give satisfactory results in all cases.

3.3 Surfaces of Larger Period (d/x 20.6)

Let us now consider surfaces of larger period for which the requirements
of physical optics are more nearly satisfied. Referring to Eq. (2.30) it is seen
that as d becomes larger, the number m which makes X:n and X?m purely
imaginary increases (implying more propagating modes), and the infinite series
of the kernel therefore becomes more important. One consequence of this is
that the surface current distributions for surfaces of large period are much more
complicated and quite different from those for surfaces of small period.

Figures 3-20 and 3-21 represent two cases of a sinusoidal surface at
normal incidence with d = 0.95x and a = 0.25A; d = 1.90X and a = 0.25)
respectively. In the first, the modulus displays a strong oscillation having a
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standing wave ratio of about 6 and a period of 0.6\x. Maxima occur at a
distance of 0.17A from the peaks while a minimum exists at the trough of the
surface. The exact phase is still characterized by the familiar almost-constant
value. The physical optics approximation gives no agreement with the exact
solution, but in the second example for which the period has been doubled while
keeping the height constamt, the physical optics approximation is betﬁer, though
there are some noticeable discrepancies. The maxima of the modulus stili
occur at the surface peaks, but minima appear where the surface slope changes
sign, that is, where the surface crosses the x axis. The minimum radii of cur-
vature for these two cases are lmmm = 0,572 and 2,30, respectively.

A case showing better agreement between the exact solution and the
physical optics approximation is given in Fig. 3-22, where the surface is a
sinusoidal one with d = 1.6X, a = 0.1A (ko_. =4.07), and § = 45°, There is
no obvious explanation for the apparent shift between the exact and physical
optics curves.

To examine the effect on the surface field of a gradual increase in the
surface height when the period and angle of incidence are kept fixed, we select
the sinusoidal surface with d = 1.155%, 8 = 60°, and a varying from 0,05 to

0.7x. The minimum radii of curvature for these cases are as follows:

Amplitude a (1) kp

min
0.05 4.280
0.1 2.130
0.2 1.065
0.3 0.710
0.4 0.533
0.5 0.426
0.6 0.355

0.7 0.304
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The numerical results are illustrated in Figs. 3-23 through 3-30.
It is seen that the agreement between the physical optics prediction and the
exact solution deteriorates gradually as the amplitude is increased. If we
examine the phase curves with a little care we find that the physical optics phase
agrees better with the exact phase in the illuminated region, and both of them
are relatively constant there. In contrast to the situation for surfaces of small
period, the field is very sensitive to a change in surface height, and it is there-
fore very difficult to accurately predict. The undulations in the modulus curves
are evidence of multiple scattering which is particularly noticeable when a = 0, 3X.
If the surface height is sufficiently large (a > 0.5)), the surface field near the
region of a surfaée trough is relatively small.

Since the field is so small over most of the concave portions of the
surface, it is of interest to see how much the surface field as a whole is
affected bj the actual geometry of the concavities. We examime this by replacing
the concave part (d/4 < x < 3d/4) of a sinusoidal surface by a flat part, and the
results are presented in Fig. 3-31 for a = 0.5A and 6 = 60°. Comparison with
Fig. 3-28 shows that the replacement has little effect on the surface field in the
illuminated region, but does have a marked effect in the shadow.

Additional data are presented in Figs. 3-32 and 3-33 for a full-wave recti-
fied profile where d = 0,75, a = 0.6\ and 6 = 41, 80, and a triangular profile

where d = 1.75), 8. = 20°, 9. =66° and 6 = 12.2°. For the rectified profile

(Fig. 3-32), the curlrent modulzus no longer has a maximum at the surface peaks
where kp i8 a minimum. In Fig. 3-33, the current modulus shows clearly the
"edge effect" in the neighborhood of the edge, and the physical optics phase
agrees relatively well with the exact phase, except near the trough region. In
both cases the modulus is zero at the center of the surface trough. Fig. 3-34
represents the case of an inverted full-wave rectified profile with d = 0,95,

a=0.25\and 8 = 0.
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3.4 Coupling Among Cells

One aspect which has not beei looked into so far is the effect on the
surface field of a gradual increase in the separation between cells while the
other parameters are kept constant. To examine this, we selected a full-wave
rectified surface with a = 0,31, d = 0.3x, 6 = 60° (kp . = 0.0304) and allowed
the distance £ between two neighboring periods to increase from 0.3\ to 0.7
in 0.1x steps. The results are shown in Figs. 3-35 through 3-39. In the first
two figures the modulus curve has the 8hape characteristic of small periods,
while the physical optics phase oscillates about the exact phase. As £ gets larger,
noticeable changes appear in the modulus curve. One reason for this can be seen
from Eqs. (2.29) and (2.30): as £ increases, the terms in the infinite series
corresponding to higher m's (or higher orders of propagating modes) become
more significant, and have a greater effect on the surface current distribution.
As £ passes through the value 0.5352, X:l changes from purely imaginary to
real, implying that the m = -1 mode becomes propagating. We therefore expect
a rather rapid change in the surface field for £ near 0.535A, and this indeed
occurs as can be seen by comparing Figs. 3-37 and 3-38. Further increases in
£ can again produce large changes in the surface field, especially in the shadow
region (see Fig. 3-39), but it is worth noting that thraughout the illuminated
region the modulus is not very sensitive to £.

In all cases considered, the physical optics predictions bear no
resemblance to the exact results, although the estimate for the phase is some-
what better than that for the modulus. Examination of the plots also reveals the
important fact that the coupling among cells is not very strong even for small
periods, and this leads us to conjecture that as regards the surface field the
infinite surface can be approximated by a finite surface consisting of only a few

cells.

3.5 Accuracy Checks and Computational Time

As mentioned in section 2.5, the numerical results were checked by

considering a) the convergence of the numerical solution, b) the limiting approx-
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imation of a flat surface, and ¢) a comparison with results obtained by previdus
authors. All these will be discussed in this section.

Figure 3-40 shows the result of a convergence test applied to the case
of a sinusoidal profile with d = 0.2A, a = 0.1x and 6 = 0. It can be seen that
the solution does appear stable, and that surprisingly good results are obtained
even with so few as four sampling points. The limiting approximation of a flat
surface is demonstrated with a sinusoidal profile where d = 0.2x, a = 0. 05x
and 6 = 0, and the results are shown in Fig. 3-41,

Note that in spite of this relatively small amplitude the modulus still
shows significant deviations from the value 2.0 for a flat surface. This is
probably due to the rather slow convergence of the infinite series of Eq. (2.29)
when the surface height is very small. However, the phase agrees exceptionally
well with the exact phase, 00, for a flat surface.

Comparison of the numerical results with those obtained by previous
authors is given in Figs. 3-42 and 3-43. In Fig. 3-42, comparison is made with
those by Zaki (1969) for a sinusoidal surface where d = 1.9x, a = 0.25X and
0 = 0, and in Fig. 3-42 with Green (1970) for a triangular profile where d = 1,752,
61 = 200, 62 =66° and H=12.2°. In both cases good agreement is obtained.

The computational (CPU) time used in each computation depends on the
following factors: a) the number of sampling points, b) the number of Fourier
terms used to represent the periodic surface, c¢)the number of terms used in
the infinite series summation and d) the accuracy of the numerical integration
required. In each case the accuracy of the numerical integration using the
Newton-Cotes method was restricted to 1 per cent. A summary of the compu-
tational times for various cases is shown in Table III-1.

It should be pointed out that this CPU time includes the computation of
the diffracted mode amplitudes, the physical optics approximation, as well as

the energy check. In general most of the CPU time is Used in filling up the
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Number N ' Number M ' Number @ ! CPU Time (sec)
| of Sampling  of Terms in of Fourier .(IBM 360/67)
" Points the Infinite terms usedto
i Series represent the
periodic surface :
8 3 1 ~ 34.55
10 3 1 41,87
12 3 1 65.55
10 5 1 96,39
8 2 10 49,12
6 2 10 . 34.58
20 5 15 - 399.22
12 8 1 16837
6 1 1 17 .13
4 3 1 14.49
18 6 1 ©199.39
12 3 10 109.03

i L ! | |
TABLE III-1: Computational Time for E Polarization

matrix and performing the matrix inversion. For the former operation, the
CPU time varies as N2 while for the latter operation it is proportional to N3.
To see exactly how the CPU time is distributed among the various steps of the
computation, let us consider a typical example where N=12, M =3 andQ = 1.

The distribution of the CPU time is

1. Computation of matrix elements 44.0 sec.
2. Matrix inversion 8.3 sec.
3. Physical optics approximation 5.2 sec.
4. Energy conservation check and diffracted 8.0 sec.

mode amplitude calculations



Chapter IV
SCATTERED FIELD FOR E POLARIZATION

In Chapter III we were primarily concerned with the presentation of
numerical data for the surface field. In general, however, the far field is of
more direct interest, and the solution of the integral equation for the surface
field is then only an intermediate step. In this chapter we will limit our
attention to the scattered field, the scattered energy and some interesting
physical phenomena known as anomalies associated with the diffracted energy.
Comparison is also made with the physical optics approximation, and an approx-
imate technique adequate for predicting the field backscattered by a sinusoidal

surface at oblique incidence is given.

4.1 Diffracted Mode Amplitudes

When a plane wave is incident on a periodic surface, the scattered field
can be represented as an angular spectrum of plane waves, which spectrum is
discrete by virtue of the periodic nature of the boundary condition at the surface.
Each of the infinity of waves making up the spectrum has associated with it a
diffraction angle which may be real or complex and is determined by the grating
law. Whereas the amplitude of the wave is a function of the profile size and
shape, and the directions of incidence and diffraction, the diffraction angle
depends only on the value of d/X and the direction of incidence.

A finite number of diffracted waves represent propagating modes and
these are the important ones far from the boundary. The remaining modes are
evanescent and though these do not serve to carry energy away from the surface,
they do play a vital role in affecting the amplitudes of the propagating modes.

The number of modes that propagate can be determined from the expressions
for an given in Eq. (2.30): if Xt is real, the corresponding mode propagates
without attenuation, whereas if X m is pure imaginary, the mode is evanescent.

To find the (complex) amplitudes of the diffracted waves we proeeed as follows.

82
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Let y = f(x) be the profile of the surface. Assuming the incident plane

wave to be

i_ e-jk(x sin6 - y cos 6)
z

E (4.1)

(see Eq. (2.20)), and by invoking the pen odicity of the surface, the scattered

field can be written as
0]
-ji(B x+X y)
E> = E A e ™ @ (4.2)
m
=-@

for y > maxf(x), where

and

The field arising from the currents induced on the surface is given by

d
Ez(x, y) = %—‘ ‘ P1 \/1+ {f'(x')}z Kz(x')dx' (4.3)
0

where P1 is as shown in Eq. (2.24). In particular, this is valid for y > maxf(x),

and hence, by combining Eqs. (2.22), (2.24), (4.2) and (4.3) we have

3o
A e =
m
d

-j {Bm(x -x'") +Xm(y— y')7
e

i {raof K xoax

Ms
e
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from which we obtain

d
HB_x+X_y!) —
A =2 Ve ™ e} K e (4.4)

h
Notice that the angle of diffraction Om for the mt mode is given by

tanGm = Bm/Xm (4.5)

which, after a little mathematical manipulation, can be reduced to the grating

law formula

sin8 = mA + sin@ . (4.6)
m d

Having determined the current distributions Kz(x) it is therefore a trivial
matter to compute the amplitudes of all the diffracted modes, both propagating
and evanescent, and the amplitudes of the propagating waves for several dif-
ferent values of d/A, a/X and 6 for a sinusoidal surface are given in Tables
IV-1 through IV-4. As a basis for comparison, the physical optics approxima-
tions are included. In general, the physical optics values, with or without
shadowing included, tend to be too small, and we further note that if shadowing
is excluded (or is not present), the physical optics estimates are the same for

both polarizations (see Appendix A).

TABLE IV-1

Amplitudes of Diffracted Waves for a Sinusoidal Surface
(d=0.2x, a =0.1X),

} § = 00 ; 6 = 30° 6 = 60°

i . - . g i e = e e g e 4

- Mag. Phase ;| Mag. } Phase Mag. [ Pha%e

s ; 0y (o] {

T T o I S B I

g S - 00 o
Numerical 4,5, ’ 50.81 | 0.9940 | 44.33 ; 1.0000 | 25.90
Solution : l : i f
Phys.Optics | cpo5 = o | o0.7251 | 0 0.9037 ' 0
w/o shadow ; z | | ‘
Phys. Optics, o : 0.1253 | 15.96 | 0.1770 | 19.41

. wshadow | 004
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TABLE IV-2

Amplitudes of Diffracted Waves for a Sinusoidal Surface
(d-l 9\, a=0.251, 6 =00

r | Mag. : Phase | Mag. |  Phase |
: ‘ (o] 0y _ 0
i Al e |__.___J lAﬂ'” =9,
Numerical o 000 _160 970  0.6630 | 107.05
Solution i , :
i | o |
ghy,swal 10.3042 | 0 0.4389 90 l
. ptlcs | l L l L i )
TABLE IV-3

Amplitudes of Diffracted Waves for a Sinusoidal Surface
(d =0.42, a = 0.2)).

| 9 =0° [ 6 = 60° {
| Ma, Phase i  Mag. ] ~ Phase
| pj 0 1 Ay L #,O
; —f A ]
Numerical 0.9998 | -80.81 | 1.0230 | 49.89
g Solution { a
. Physical Optics ) o4 | ' 0.6450 0
. w/o shadow ' ': ‘
 Physical Opties  oo49 | o | g.a750  60.37
Lw shadow \

TABLE IV-4

Amplitudes of Diffracted Waves for a Sinusoidal Surface
(d=0.2x, a=0.03\ 6=0°).

.l' ' Mag. i Phage _—‘
A 1 R N B
Numerical ' 1.0000 8.12 :
Solution
t Physical ‘ |

jopties %0
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4.2 Diffracted Energy and Wood Anomalies

4.2.1 Discussion

As mentioned in Section 4.1, when a plane wave is incident on a periodic
surface, the scattered field forms a discrete spectrum of plane waves, either
propagating or attenuated away from the surface. Only the propagating modes
can carry energy away from the surface and are responsible for the far field.
Since the surface is perfectly conducting, the diffracted energy as a whole must
equal that carried by the incident field.

The problem of determining how the incident energy is distributed among
the diffracted waves of various orders is a relatively old one, and has been the
subject of numerous theoretical and experimental investigations, many of them
motivated by the desire for more efficient optical diffraction. This subject is
particularly important in the design of diffraction gratings for use as mono-
chromators in spectroscopy because of their superior properties, such as higher
powers of resolution and lower absorption of light, in comparison with prisms.

If we examine the spectrum of light resolved by optical diffraction gratings,
we often find rapid variations in the intensity of some diffracted modes over a
small range of incidence angles or over a narrow frequency band. These
phenomena are termed the Wood anomalies. Unlike ghosts (Rowland or Lyman),
anomalies are not caused by errors in the spacing of the rulings, but are due
to a type of resonant interaction among the diffracted modes scattered from
different periods. An anomaly may appear as a bright or dark band in an other-
wise normal spectrum. °

Historically, grating anomalies were first observed in reflection grating
spectra by Wood in 1902. Since these effects could not be explained by means
of ordinary grating theory, Wood termed them "anomalies'. At that time, how-
ever, he reported that anomalies could occur only if the incident field was H-
polarized (S-type anomalies), and there were no anomalies for E polarization
(P-type anomalies). Later, experiments by Ingersoll (1920) and Strong (1936)

also showed no evidence of P-type anomalies in grating measurements.
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The first theoretical treatment was given by Rayleigh (1907). His
approach was based on an expansion of the scattered field in terms of outgoing
waves only. (Details of this will be given in a later chapter.) Using this
assumption, he found that the scattered field was singular at wavelengths for
which one of the diffracted modes emerges from the grating at the grazing

angle. These wavelengths are now known as the "Rayleigh wavelengths", AR:
d . . .
ARi,:t—-r-r-l-(_l-smG) m=1,2,3,... . (4.7)

He also observed that the occurrence of such singularities corresponded to the
appearance of the Wood anomalies. Furthermore, these singularities appear
only when the incident field is H-polarized, thereby accounting for the S
anomalies, and if the incident field is E polarized, the theory predicts a regular
behavior near )\.R

It should be noted that although Rayleigh's theory correctly predicts the
major features experimentally observed at that time, it does not give the shape
of the bands associated with the S anomalies because of the indicated singularity
at the Rayleigh wavelength.

In his later publications, Wood (1935) suggested the existence of the P
anomalies, but it was Palmer (1952) who succeeded in detecting these anomalies
experimentally, thus proving their existence beyond doubt. Furthermore,
Palmer pointed out that the P anomalies (unlike the S-type) occur only for
gratings with deep grooves. Since Rayleigh's assumption (chapter VII) is valid
for shallow grooves only, no inconsistency is present, but Rayleigh's theory is
incomplete. Recent, more sophisticated theoretical treatments by Hessel and
Oliner (1965), Wirgin (1969), Itoh and Mittra(1969) and many others also indi-
cate the existence of P anomalies.

The numerical results which we have obtained can also be used to

explore the Wood anomalies, and this we shall now do.
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4.2.2 Computed Data for the Diffracted Energy

a) Two Radiating Modes. Figure 4-1 shows the plot of normalized
diffracted energy versus surface height for a full-wave rectified profile having
d = 0.75A with 6 = 41, 80. Since an equivalent plot for a sinusoidal surface
was obtained by Zaki (1969), it is included here for comparison purposes. For
this particular choice of parameters, the diffracted modes corresponding to
m =0 and m = -1 can propagate.

Examination of the curves show that the diffracted energy for either mode
displays a standing wave behavior. At a certain value of a/A depending on the
profile shape, there is a complete exchange of energy between the two modes,
indicating the existence of a P-type anomaly. When this happens, the total
diffrécted energy is carried by the m = -1 mode, and thus there will be a bright
band in the diffraction grating spectrum for the m = -1 mode. The value of a/x
for which it occurs is (Fig. 4-1) 0.8 for a sinusoidal surface, but just over 2.4
for the full-wave rectified surface. Note, however, that the actual peak-to-
trough depth for the sinusoidal surface is 2a, so that as a function of the total
depth the change is not quite so dramatic.

The above data clearly demonstrate the P anomalies are deep-grooved
phenomena and dependent on the shape of the grooves. These are consistent
with Palmer's experimental observations. Furthermore, the curves show that
the band for the full-wave rectified profile is broader than that for the sinusoidal
surface, and hence for the former surface the diffracted energy in both modes
is less sensitive to a change in surface height.

Note that these P anomalies differ from the classical S anomalies in
that they are broader and need not occur near the Rayleigh wavelengths. Under
certain conditions, a total (100 per cent) energy conversion takes place between
the incident plane wave and the m = -1 mode, with the amplitude of the specularly-
reflected wave becoming zero at this point. These phenomena were also investi—

gated by Tseng, Hessel and Oliner (1968), and they termed them Brewster-angle
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effects in an analogue to the well-known Brewster-angle effect for the case of an
interface between two different, homogeneous, isotropic media. Furthermore,

they pointed out that at the first P anomaly we must have the following condition
(Bragg condition):

kdsinf = 7 (4.8)

Therefore, if we substitute this relation into Eq. (2.21), we obtain

K (r+mdk) = K (1) N ST
sz(}‘) if m = even (4.9
{-KZ(_I_') = odd

which shows that at this anomaly the current distribution over any chosen cell
(or period) must be in or out of phase with that over the reference cell (m = 0)
depending on whether the chosen cell is displaced an even or odd number of
periods, respectively, from the reference cell. But this is only a necessary
condition for the existence of an anomaly. There does not appear to be any
rule for predicting the exact depth of groove for an anomaly to occur since this
depth is different for different profiles. However, using the condition (4.8), we
can derive some information about the nature of the current distribution when
the first anomaly occurs. This is done as follows.

From Eqgs. (4.2) and (4.8), for the m = 0 mode:

B() = ksin8 = v/d,
(4.10)

X0 = kcosf ;
and for the m = -1 mode:
By =-r/d,
- (4.11)
X . =-kcosf .
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Substituting Eq. (4.10) into Eq. (4.4) we get

d

A = —2H

T
—x+ —

_ i( 3 X kcos@y)\/~

0 2dkcos6

1+ f1(x)° K (x)dx. (4.12)
0

Similarly, using Eq. (4.11),
. m
ad  -j(- 3 x+k cos 0y)

) S el
A-l 2dk cos 0 € ‘/I"‘f(x) KZ(X)dX, (4.13)

which can be written as

d 2m LT
w -3 X ](-c-1 x+kcos By)r,..._.___f
A1 = Zdkcose \ °© e J1+£()7 K (dx . (4.14)
0
Furthermore, at the first P anomaly:
A ! = | _
Aol =0 A l=1. (4.15)

Observe that Eqs. (4.12) and (4. 14) differ only by a factor exp(-j %er)

in the kernel, but their magnitudes differ by unity. To show that this is also
2T

3 x) by its conjugate Qexp(j % x)\, change the

true if we replace exp(-j

variable x to -x to get

d j(—gx+kycose) -~ - -

o [
A1 " Zdkcosd | © 0T K (Code (410

If it is assumed that f(x) is an even function then

J'(gxﬂcycose) -

N S w2
Ay 2dk cos 6 e y 1+£'(x) KZ( x)dx , (4.17)
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and using Eq. (2.21)
KZ(’X) - KZ(X) ej2ksin9x

= Kz(x) e (4.18)

Thus Eq. (4.17) becomes

d .27

T
i=x j(= x+k cos6y)
:_.—w-y__ d d 2
A 2dk cos 6 € e V1+£'(x) Kz(x)dx (4.19)

which differs from Eq. (4.14) only in sign. Moreover, if we add Eqs. (4.14)
and (4.19), we have

d T
(= x+kcos Oy) -
- _j&’_l;‘___ i 21 A d 1 ! 2
A_1 = Feoosd sin{ 5 x) e y1+£(x) KZ(X)dX , (4.20)

0

whereas if we subtract Eq. (4.19) from Eq. (4. 14),

d T
/ (< x+kcosOy) - ——x
- _.._wE_...__ J_?_E \ d . 2
0= Fkcose | =a¥® VI+f(x)" K (dx  (4.21)
0

Therefore from Eqgs. (4.12), (4.20) and (4.21) and the orthogonality

property of the trigonometric function, we can conclude that

s
kd cos 6 d x+kcos 6y)

K (x) = 1 sin(gla e_j( (4.22)
2 Jou \/1+f'(x)2 d ‘

which describes the behavior of the surface field at the first P anomaly. In

particular, if we consider a sinusoidal surface, then the modulus of the surface
field will exhibit a standing wave pattern showing the propagation of unattenuated

surface waves along the x-axis. Once again this phenomenon is seen to be
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analogous to the Brewster angle effect which is used in launching a surface

wave along an interface of two homogeneous, isotropic media. For a perfectly
conducting flat sheet, this Brewster angle is of course equal to 90° (with the
normal to the surface), but since the surface is corrugated, it can be modelled
by an appropriate reactance surface (see, for example, Hessel and Oliner, 1965),
whose Brewster angle can now assume values other than 900.

Another illustration for two radiating modes is shown in Fig. 4-2 for a
full-wave rectified profile at oblique incidence with 6 = 600. The parameters
of theprofile are a = 0,31, d=0.30), and the period varies from 0 to 0.7A.

The plots show that there is a gradual exchange of diffracted energy between the
m = 0 and m = -1 modes when d >0.535A, which is a Rayleigh wavelength.

b) Three Radiating Modes. As the period becomes larger, more radiating
modes are possible. A case of three radiating modes is shown in Fig. 4-3 for a
sinusoidal surface at oblique incidence, 6 = 600. The parametei's of the surface
are d = 1,155, and a varies from 0.05 to 0.7Ax. The three radiating modes
arethe m = 0, m = -1 and m = -2 modes, and as computed from the grating
law, their diffracted angles are 60° (m = 0), 0(m = -1) and -60° (m = -2),
Thus, the m = 0 mode is the specular mode, radiating in the foreward scattered
direction, the m = -1 mode radiates in the normal direction, and the m = -2
mode is the backscattered mode, radiating in the reverse direction of incidence.

The plots show a gradual exchange of the diffracted energy among the
three radiating modes. For a <0.05)A, the dominant mode is the m = 0 mode,
which carries almost all the diffracted ehergy. Thus from the far field point
of view, the surface is similar to a flat surface. As the amplitude increases,
the other two modes come in, and play an important role in sharing the radiated
energy. Since no single mode is observed to carry the whole (or none) of the
energy (except, of course, when a << 0.05)\), even for a as large as 0.7,
it is unlikely that the P anomalies will occur with three radiating modes when
the surface height is not very deep (of order A or less); and if they do occur, it

will only be for groove depths much greater than those for two radiating modes.
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The same kind of plots were also obtained using the physical optics
approximation, either with or without shadowing, and they are shown in Figs.
4-4 and 4-5. Comparison with Fig. 4-3 indicates that neither version of the
physical optics method gives satisfactory agreement with the exact solution
except for the range a < 0.1Xx. For such surface heights, there is no shadow

region.

4.3 Conservation of Energy

One criterion that we have used to check the accuracy of the numerical
solution is conservation of energy. The numerical results do indeed satisfy
this condition, as can be seen from Figs. 4-1 and 4-2 for the two radiating mode
case, and from Fig. 4-3 for the three radiating mode case. The results for a

single radiating mode are given in Table IV-5.

TABLE IV-5
Conservation of Energy for a Sinusoidal Surface

i B Physical Optics
o Numerical _ w/o Shadow w Shadow
_d/x 2}!7& _GSO) Energy Error (°/0)| Energy Error(°/o) Energy Error(°/o)

0.2 0.1 0 {0.9970 -0.70 ' 0.4128 -58.72 0.4128 -58.72
0.2 0.1 30 {0.8564 -1,18 0.4553 -47.50 0.5075 -41.45 |
- 0.2 0.1 60 |0,5013 0.26 0.4084 -18.32 0.6172 23.44 .
- 0.2 0.01 0O {0.9990 -0.10 0.9921 - 0.79 0.9921 - 0.79 '
0.2 0,03 0 |1.0042 0.42 0.9308 - 6.92 0.9308 - 6.92 ’
! 0.4 0.2 0 |0.9976 -0.76 0.0030 -99.70 0.0030 -99.70
. 0.4 0.2 60 |0.5068 1.36 0.2061 -58.78 0.1147 -76.47
i_l.9 0.25 0 |0.9996 0.04 10.4202 -57.98 0.4202 -57.98 _j

From Table IV-5 and Figs. 4-4 and 4-5, we see that the physical optics
approximations in general do not satisfy the condition of energy conservation.

Another plot showing the relation between the diffracted energy and the
minimum radius of curvature (at the surface peak or trough) is shown in

Fig. 4-6. It indicates that for kpmin > 4.5, most of the diffracted energy is
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carried away by the m = 0 mode so that as far as the radiated field is concerned,

the sinusoidal surface can be considered a flat surface if kpmm >4.5.

4.4 Approximate Technigues

Although the main purpose of this work is to develop numerical procedures
for solving the integral equations for scattering from periodic surfaces, a sub-
sidiary objective is to use the understanding gained from our results to treat back-
scattering from rough surfaces, with particular reference to oblique angles of
incidence. A desirable step in this process is to find more simple methods for
predicting the field back-scattered by a periodic surface without resorting to
the integral equation.

The method that naturally comes to mind is the physical optics method, but
as we have already seen, the predictions are rather poor in the far field and even
worse as regards the near field. One reason for this is that. the approximation
is a local one only, taking no account of the coupling between cells and of the
interactions among the diffracted energy.

If we examine the curves shown in Figs. 3-26 through 3-30 for the
sinusoidal surface, we notice that over the illuminated portion of the surface
and particularly near the surface peak, the current is primarily determined by
the local profile shape, and is affected relatively little by the other part of the
surface. Furthermore, in most cases the surface field is largest over this
region, and the phase does not show the rapid variation which it does in the
shadow region. These facts reinforced with some reasoning based on ray optics
suggest that it may be possible to estimate the back scattered field with reason-
able accuracy using only a knowledge of the current in the illuminated region.
This is indeed the case, as was shown by applying the stationary phase method
to Eq. @.4) over the illuminated region and using the exact values for the surface
field. The results are presented in Table W-6 and compared with the exact

results.



101

TABLE IV-6

Comparison of the energy backscattered by a sinusoidal surface:
d =1.155\, 6 = 60° computed using the exact and stationary
phase methods.

Surface i Normalized Backscattered Energy j

Amplitude (a/\) |  Exact Method  Stationary Phase .
i 0.3 f 0.176 0.152
0.4 0.280 0.320
| 0.5 | 0.320 0.360
0.6 0.272 0.344

L 0.7 . 0.200 0.216 N

Since the above computation requires a knowledge of the true surface
field, albeit over only a limited portion of the surface, we cannot avoid solving
the integral equation unless we can find an approximate method for estimating
the surface field in this region. Because of the relatively good agreement be-
tween the physical optics phase and the exact phase over the illuminated region,
the phase in this region can be simply taken as the incident phase. As for the
current modulus, we can approximate it in either of two different ways.

a. Circular cylinder approximation.

For an E-polarized plane wave incident on a circular cylinder of radius

a, the modulus of the current induced at the point P(x,y) is

) 2 —ne]nu(x)
mod{K_(x)} " e £ = (4.23)
== Hn (ka) |

where u(x) = obtuse angle between the normal at P(x,y) and the incident ray.
Let us now identify a with the local radius of curvature, p(x), at the point
P(x, y) on the surface (see Fig. 4-7). For a sinusoidal surface, p(x) is given
by
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[ . 21 3/2
olx) = 1+(a2Ksme) . ’ (4.24)
aK lcosti
and
_ 37 -1 ~N
u(x) +t (aKsinKx/ -6 . (4.25)

To take account of the deviation of the incident ray from the normal

at P(x,y), we multiply Eq. (4.23) by a factor cosu to give

o 2, -n _jnu !
mod{K (x)k=|- 2 E :'L—e;— cosuf . (4.26)
z | wHTp n=-o H(2)(kp) |
n

This equation can now be used to compute the current modulus in the illuminated
region of the surface.

b. Parabolic cylinder approximation.

Another way of approximating the current modulus over the lit region of
the sinusoidal surface is to use our knowledge of the current induced on a per-
fectly conducting parabolic cylinder whose vertex coincides with the peak of
the sinusoidal surface (see Fig. 4-8), and both surfaces have the same radius
of curvature at this point. Because of the mathematical complexity of the ex-
pression when the cylinder is at oblique incidence, we use instead the normal
incidence results and modify it by the factor cosu defined above.

At normal incidence, the current induced on a parabolic cylinder is

-~ -5 iklg? ')

1 [k 1
e (4.27)
\!E i 2 F(nVk)

K (x)

where &,n,z are parabolic cylindrical coordinates related to the rectangular

Cartesian coordinates by the transformation
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Fig. 4-8: Approximation of the Surface Current Modulus

over the Illuminated Region of the Sinusoidal Surface
by that on a Parabolic Cylinder.
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1
X=§(§-‘n), Y""T)E, Z =2z >

and F(n\'h) is the Fresnel integral which can be computed using

. V2/7 w 2/1w 7
F = {7/2 -;— - cos -vrt ‘dt +j( sin(-;- 7rt2>dt!
[ 0 L_.

Thus, multiplying Eq. (4.27) by cosu, we get

- -2 g D)

1 k 1
K (x) = — e cosu,
\‘5 g2 +n2 F(n/k)
and
i -';'jk(€2+n2)
\K (x)l = 1= k . cosu
z lwu\/s2+ 2 Flnyk) °

(4.28)

(4.29)

(4.30)

(4.31)

which is the equation used to compute the current modulus in the illuminated

region of a sinusoidal surface at oblique incidence.

From experience, it has been found that the parabolic cylinder
approximation generally gives results slightly less than the exact values,

whereas the circular cylinder approximation gives slightly larger values.

The results are shown in Table IV-7, and also compared with the exact values.
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TABLE IV-7

Comparison of Normalized Current Modulus over the Illuminated
Region for the Sinusoidal Surface with d = 1.155) and 6 = 60°.

[ Surface | Location of Point | Circular | Parabolic|
Amplitude:  On the Surface, ' Exact Cylinder . Cylinder |
a/x x Coordinate (A\) ' Results Approx. | Approx. |
{ 0.82 . 0.90 1.66 0.0 .
03 0.92 1.45 1.87 1.20
T 1.01 1.88 2.06 1.75
! 1.11 1.88 @ 2,10 . 1.8 |
; 0.92 1.26 1.50 1.00 |
| 0.4 1.01 1.7 | 1.94 1.50
1 Lu L2 | 205 196
? 0.92 C 1,14 1.60 0.96 |
. 0.5 1.01 1.15 1.86 1.25
, 1.11 2,08 | 2.20 2.12 !
.._._ . S W e ]
| 0.92 1.00 | 1.50 0.70 !
‘ 0.6 1.01 1.33 | 1.99 1.18 ¢
L. ‘ 1.11 . 2.25 E 2.30 2.20




Chapter V
SURFACE FIELD DATA FOR H POLARIZATION

In this chapter surface field distributions obtained by numerical solution
of the integral equation for H polarization are presented. The particular
profiles considered are sinusoidal, full-wave rectified, inverted full-wave
rectified, and triangular (see Fig. 3-1) with various periods and angles of
incidence. In each case the physical optics approximation is presented as a
basis for comparison, and comparison is also made with analogous results
for E polarization. Many of the remarks made in Chapter III for E polarization
hold for H polarization as well, but the surface field now is generally more
complicated and unpredictable even over a small region of the surface.

According to physical optics, the surface current induced on the surface
is

_ 9o~ JK(x8in6 - f(x) cos 6)
= 2e

Kt(x) (5.1)

in the illuminated region, and
Kt(x) =0

in the shadow.
As in the case of E polarization, however, this approximation is inadequate

for many purposes.

5.1 Surfaces of Small Period (d/)A.< 0.2)

Figures 5-1 through 5-12 represent the surface fields on periodic surfaces
of four different profiles, each having a period d = 0.2X and a maximum ampli-
tude a = 0.1A. The angles of incidence are 6 =0, 300, and 600.

Let us first examine the results for a sinusoidal surface (Figs. 5-1 through
5-3). The current modulus now has a maximum at the surface trough and a

minimum at the peak, and in contrast to the case for E polarization, it remains

107
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substantially unchanged as the angle of incidence is varied. The physical optics
approximation is somewhat like the mean of the exact solution. For 6 = 0, the
phase is almost constant (as for E polarization), but there is more variation,
especially near the surface peak, when 6 # 0.

Figures 5-4 through 5-9 show the surface fields for full-wave rectified
and inverted full-wave rectified profiles. Except that there is a slight improve-
ment in the agreement between the exact modulus and the modulus of the physical
optics, the general behavior is rather similar to that for a sinusoidal surface.
Shadowing has little effect on the current modulus.

The last three figures (Figs. 5-10 through 5-12) are for triangular
profiles, and we note only the absence of any "edge effects".

A point worth mentioning is that for all the profiles considered, the
exact phase at normal incidence is close (in a mean sense at least) to the
physical optics phase. In order to see why the modulus of the surface field is so
insensitive to any change in the angle of incidence, let us go back to Eq. (2.35).
As in the case of E polarization, if the period is sufficiently small, we can
approximate the modified Green's function, Eq. (2.36), by the first two and

the last two terms. Thus, the approximate integral equation becomes

d
G;(x, y; X", y") Kt (x')dx' ~ jd{ZH;(x) - Kt (x)} , (5.2)
0

where
G;(x, y;x',y') = -jsgnly-y") -j {f'(x')tan@-sgn(y-y')} X
e‘-jk sinf(x - x') - jkcos 0|y - y'I +
i : x i X
+y {f'(x')ﬂsgn(y-)")} cot{— 1 (x-x")+j d IY—Y'% +

+Jz- {—f'(x')+jsgn(y—y‘)} cot{%(x-x'ﬂj% [y—y'|} . (5.3)
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*
Note that of the four terms in G2, only the second contains the angle
of incidence explicitly. Since the integral equation is singular, a rough picture
of the solution may be obtained if we consider the integral equation in the neigh-

borhood of the singularity. Thus

lim G;(x, y;x',y') = -jsgn(y-y") -j{'f'(x',)tanfe- sgn(y - y')} +

[x—x' —>0
|y-—y' —0
T T
{f‘(x)ﬂsgn(y y)} lim cot{-—(x—x')+j—|y—y'|} +
Y N d d
x x'|—>0
ly-y'|—>0
+l{f'(x')+Jsgn(y y')} cot{éf (x-x')+j-g|y—y'|7$. (5.4)
x x'[—->0
|y~ y]—->0
Using the relation
3% 46738
cot(&) =j -————-_——g
e «eJ
we obtain for the cotangent terms
2b+j2a  2b-j2a
+ +
cotl-a+ih) =§ e and cotlati) =3 (5.9
1-¢ 1-¢°7)
where a = =(x-x'), b= =<|y-y
d ? d ’
Therefore,
2b+j2a)
+
lim cot{——(x x')+j= 'y Y|} jil 82b+j2a
|x-x'|—>0 ga|—§0 1-
lv -y'F—=>0
> lim :—(ﬁﬂé’—) . (5.6)
jajl—>0 a +b

b—>0
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Similarly, for the other term

im cot{ (x- x')+j—|y yl}“’ lim Lﬂﬁ . (5.7)
|x x' -->O a—>0 a +b
ly-y'|—0 b—>0

Substituting Eqs. (5.6) and (5.7) into Eq. (5.4), we obtain, after some mani-
pulation,

lim G (x,y,x',y) = -jsgn(y -y') - j[f'(x')tane sgn(y - y]+
|x x'l—>0
ly y|-—>0
+ lim -—-———— [bsgn(y y')+af'(xz’ . (5.8)

|la}=>0 dla?+b?)

b —>0
Thus, in the neighborhood of the singularity, Eq. (5.2) becomes

X+te

_{-j sgnly -y') -j [f'(x')tane - sgn(y - y'ﬂ +

X-€

+ lim 2
laf>0 da®+b?)
b —>0

[bsgn(y y')+af'(x']} K (x")dx’

~ jd {ZH;(X) - Kt(x)} ' (5.9)

where |x-x'| <e with € (>0) an arbitrarily small number.

If we assume Kt(X) to remain constant over this small region of
integration, then by the property of sgn(y -y'), all integrations involving
sgn(y - y') vanish. Hence

X+e
] ]
{‘jf'(x')tan9+ lim 21,912_(_&%

|a|—>0 d(a”+b®)
b —>0

1 | B Y] i
} K, (x')dx _jd{ZHiz(x)-Kt(x)} (5.10)

X-€
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If the surface amplitude is relatively small, a and b can be assumed

to be of the same order of magnitude, in which case Eq. (5.10) becomes

Xte
' {-—jf‘(x')tan6+-j~f-'i-’{)—7] K (x)dx' jd{zniz\(m-xt(x)} , (5.11)
e m(x-x')

which can be solved by treating Kt(x) and (x) as constant over the range of

integration. We thus obtain
-jf'(x)tan6 Kt(x)2€ ~jd {ZH;(x) - Kt(x)} , (5.12)

and since € is an arbitrarily small number, the left hand side can be neglected
in comparison with the second term on the right hand side. Equation (5.12) now

reduces to
K (x) = 2H (x) , (5.13)
t Z

which is just the geometrical optics value. This is consistent with the numerieal
results.

For a sinusoidal profile, the effect on the surface field produced by a
change in the surface amplitude as the period is kept constant is shown in Figs.
5-1, 5-13 and 5-14. As the surface height is increased, the numerical results

approach those for a flat sheet.

5.2 Surfaces of Slightly Larger Period (0.2.§ d/A.£0.6)

Figures 5-15 and 5-16 show the surface field for a sinusoidal profile
with d = 0.4, a =0.2Xx and 6 =0, 60° respectively. By comparing these
with Figs. 5-1 and 5-3 it is seen that doubling both d and a has a somewhat
larger effect on the current modulus than was the case for E polarization. In

particular, there is a noticeable change of shape, with minimum no longer



124

3
B
Q
=
8
o
H 1
&
3
S
K
g
et
2
0.1 0.2
0 L ]

x/A

-10

Fig. 5-13: Normalized Surface Field for a Sinusoidal Surface (d = 0.2\,
a = 0,03)x and 6 = 0) for H polarization, --o-- exact,
— physical optics.



Normalized Current Modulus

Phase (degrees)

125

2 a— e e e e e e
S e ——C———

1 e

0 1 |
0.1 0.2
x/x

4

2

0

-2

-4 L

Fig. 5-14: Normalized Surface Field for a Sinusoidal Surface
(d=0.2x, a =0,01Ix and 6 = 0) for H polarization, --o--
exact, — physical optics.



Normalized Current Modulus

120

N
o

Phase ((‘lggrees)

126

Normalized Surface Field for a Sinusoidal Surface |
(d =0.4A, a =0,2x and 6 = 0) for H polarization, --o-- exact,
— physical optics.



——QQ
. < P o S
7 N\
0 / \
= / \
3 4 2
& ,’ \
= \
g / \
B / \
I3 1 e
= \ -
:; \t\\ ,/ \ /;{
3 \\ /l \\ //
S
0 |
| 0. 2 X / ). | ‘d 4
[+ Shadow >
180 - /
///
120+
7
/
Ll
60 |-

Phase (degrees)
o

]
[o2)
o

~-120

-180

Fig.

-~
//

/D'

| /

59-16: Normalized Surface Field for a Sinusoidal Surface (d = 0. 4\,

a=0.2xand 0 = 600) for H polarization, --o-- exact,
— physical optics.



128

occurring at the surface peak. Once again, ther e is no agreement between
the exact data and physical optics, either in modulus or phase.
Results for a full-wave rectified profile with d = 0.6A, a = 0,3\ and
= 60° are given in Fig. 5-17. The undulations of the modulus clearly indi-
cate strong coupling among cells (or multiple scattering among cells). Most
of the surface current concentrates in the illuminated region. As the angle of
incidence i8 further increased to 6 = 75° (Fig. 5-18), the modulus undergoes

a marked change, whereas the phase remains constant over most of the surface.

5.3 Surfaces of Larger Period (d/A 2,0.6)

Surface field distributions for surfaces of large period are generally
more complicated than those for surfaces of small period, primarily because
of the greater number of radiating modes.

Let us first consider the results for two sinusoidal surfaces whose
periods are near the Rayleigh wavelength., The first one (Fig. 5-19) has
d =0.951, a =0.251 and 8 = 0. It is seen that the current modulus curve
has a maximum at the surface trough and minima at the places where the
surface crosses the x axis. The phase, however, remains fairly constant over
the lower part of the concave portion of the surface, but changes rapidly from
positive to negative where the modulus has its minimum. The second one is
given in Fig. 5-20, where d = 1.90x, a = 0.25\ and 6 = 0. Here the modulus
has a marked oscillation, quite distinct from that found for E polarization. One
of the maxima is at the surface trough, and the current is again a minimum at
the surface peak. The agreement with physical optics is poorer than for E
polarization, with neither modulus nor phase being approximated to any real
extent.

A careful study of Figs. 5-19, 5-20 and the corresponding ones for E
polarization (Figs. 3-20 and 3-21) leads us to conjecture that there are strong
surface waves propagating along the x-axis when d is close to 2\ for H

polarization, and when d is close to the wavelength for E polarization.
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Another case also showing a marked oscillation in the modulus is given
in Fig. 5-21 where the surface is a sinusoidal with d = 1.6, a = 0.25X and
o = 45° (kpmin = 1,63). The physical optics phase is in befter agreement with
the exact phase except in the region where the surface is most likely to receive
shadowing.

T o examine the effect on the surface field due to a gradual increase in
the surface height when the period and angle of incidence are kept fixed, we
select a sinusoidal profile with d = 1,155, 6 = 60° and allow a to increase
from 0.05A to 0.7A. The numerical results are shown in Figs. 5-22 through
5-29, Again as in the case of E polarization, the agreement between the exact
results and physical optics deteriorates as a is increased. Unlike E polarization,
however, this agreement remains exceptionally good for the phase even when
the amplitude becomes as large as 0.2A. Furthermore, the exact phase in the
illuminated region is very close to that of the incident field in all cases con-
sidered, but physical optics overestimates the modulus.

To see how much of the surface field depends on the concavity of the
surface, we replaced the concave portion (d/4 <x <3d/4) of the sinusoidal
surface (a = 0.5\) by a flat part. The results are presented in Fig. 5-30.
Comparison with Fig. 5-27 shows that this replacement has a marked effect on
the surface field in the shadow region, but little effect elsewhere.

Additional data for a full-wave rectified profile (d=0.85), a =0.30\, and

9 = 36%), and a triangular profile (d = 1,75\, 6, = 20°, 6, = 66°, and

= 12.20) are given in Figs. 5-31 and 5-32. I;the form:r case, the exact
modulus and phase are in good agreement with the physical optics values over
the left hand portion of the surface, but the agreement (particularly for the
modulus) is less good on the right. For the triangular profile, the exact
modulus shows an oscillatory variation not predicted by physical optics, and
this oscillation is most pronounced on the far right hand portion of the surface.

The physical optics phase is again a good approximation to the exact phase.
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5.4 Coupling Among Cells

Figures 5-33 through 5-37 illustrate the effect on the surface current
distribution produced by a progressive change in the period of the surface while

the other parameters are kept fixed. The surface selected is a full-wave
rectified surface with a = 0.3\, d=0.3), 0=60" and £ (the distance between
two neighboring periods)varying from 0.3X to 0.7X in 0.1\ steps. For the
first two figures, where £ < 0.4), the modulus shows very good symmetry in
spite of shadowing, and over the central portion of the surface at least the
phase is almost constant. The physical optics estimates are rather unsatis-
factory. As d becomes larger and approaches the Rayleigh wavelength (equal
to 0.535), according to Eq. (4.7)), the surface field experiences a marked
change as shown in Fig. 5-35, but the modulus still preserves its symmetry.
Further increase in d again brings noticeable changes in the shape of the
modulus (see Figs. 5-36 and 5-37), and in spite of the fact #mt the radius of
curvature is a minimum at the surface peak, the physical optics estimate of
the modulus is most accurate in that region. Compared with the analogous
results for E-polarization, the surface fields for these relatively small separ-
ations between cells are more sensitive to the change in period, suggesting

that the coupling between cells is stronger.

5.5 Accuracy Checks and Computational Time

Figure 5-38 shows the results of a convergence test applied to a sinusoidal
surface with d = 0}. 2\, a =0.1x and 8 = 0. An indication of the accuracy
achieved with an almost flat surface can be had from Fig. 5-14, and because of
the nature of the integral equation, this limiting case works better here than it
did for E polarization.

Comparison of the results with those obtained by Zaki (1969) for a
sinusoidal surface (d = 1.90x, a = 0.251 and 6 = 0) is shown in Fig. 3-39,
and with those of Green (1970) for a triangular profile (d = 1,752, 91 = 200,

8, = 600, and 6 = 12.20) in Fig. 5-40. Good agreement is obtained in both

2
instances.
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As in the case of E polarization, the time consumed in each
computation depends on several factors (see section 3.5 of Chapter HI), but in
general the CPU time is larger now because of the more complicated (modified)
Green's function. A summary of the CPU times for various combinations of
parameters is given in Table V-1,

The distribution of the CPU time for a typical computation where N = 12,

M =3 and Q = 1 is given below:

1. Computation of matrix elements 50.3 sec.
2. Matrix inversion 8.4 sec.
3. Physical optics approximation 4.3 sec.
4. Energy conservation check and calculation of
diffracted mode amplitudes 9.0 sec.
TABLE V-1
Computational Time for H Polarization
Number N of Number M of | Number Q of CPU Time
Sampling Points | Terms in the Terms in the (sec)
Infinite Series | Periodic Func- IBM/67
tion Representation
4 3 1 13.00
6 2 10 35.58
6 3 10 41,67
8 3 1 42.47
8 3 10 52.07
8 3 12 61.71
8 8 1 71,87
8 6 1 60. 46
10 3 1 67.13
10 8 1 104. 84
12 3 1 73.10
12 3 10 120.38
16 6 180.21
16 5 1 167.36
20 5 15 424,75




Chapter VI
SCATTERED FIELD FOR H POLARIZATION

In this chapter we consider the scattered field, scattered energy and
such associated physical phenomena as the S anomalies. Numerical data are
presented to illustrate the discussion, and comparisons are made with the

physical optics approximation as well as the results for E polarization.

6.1 Diffracted Mode Amplitudes

Using a procedure directly analogous to that for E polarization, and
assuming the incident magnetic field shown in Eq. (2.31), we can write

(0 0)
-j(B_x+X_y)
8 _ . m m
Hz(x,y) = n;) Ame , (6.1)
with
1 ‘ j(Bmx'+me)
Mo g | ¢ {Xm-Bmf (x )} K (xhix (6.2)

0

where Xm and Bm are as given before.

The dependence on Xm and Bm is rather heavier than that displayed by
Eq. (4.4).

Once the unknown K (x') has been found, it is a simple matter to compute
the amplitudes of all the diffracted modes, both propagating (Xt real) and
evanescent (X purely imaginary), and the amplitudes of the propagating waves
for several different values of d/A, a/X and 8 for a sinusoidal surface are
given in Tables VI-1 through VI-4. It is observed that the physical optics
approximation, with or without shadowing included, tends to underestimate
the amplitudes, and we further note that if shadowing is excluded (or is not
present), the physical optics estimate is the same for both polarizations (see
Appendix A).

156
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TABLE VI-1

Amplitudes of Diffracted Waves for a Sinusoidal Surface
(d=0.2x, a=0.1)).

g = 0° 9 = 30° 6 = 600
Mag. Phase Phase Mag. Phase
' 1{O 1(O 1 r (O
] 8@ |A | Bo(®) DERAY
| Numerical 0.9830 -12.45 | 0.9910 -23.82 | 1.0640 -67.24
+ Solution
[ B -
Physical Optics 0.6425 0 0.7251 0 0.9037 O
~ w/o shadow ) . o
Physical Optics | 5,05 0.1550  -65.17 | 0.5440 -166.31
w/ shadow
TABLE VI-2

Amplitudes of Diffracted Waves for a Sinusoidal Surface

(d =1.90n, a =0.251, 6 =0),

I Phase Phase
o = ' (O) = gt (0
By () 1l IAI (%) =By
Numerical | 94040  _g0.50 0.3350 52.55
Solution
Physical
Optics I et S
TABLE VI-3

Amplitudes of Diffracted Waves for a Sinusoidal Surface
(d =0.4x, a =0.2)\).

o = (° 6 =60°
Mag. Phase Mai Phase
0 (o]
_ ol O [lan 8
Numerica 0.9350 -107.19|1.0140 -145.28
Solution o
Solution
Physical Optics 0.0540 0 0.6450 0
w/o shadow R D
Physical Optics | § .9 0.1290 -131.32
w/ shadow ) o N
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TABLE VI-4

Amplitudes of Diffracted Waves for a Sinusoidal Surface
(d=0.2\, a =0,03%, 68 =0).

Mai Phase
] 1{O

IAO ¢O( )
Numerical

Solution 0.9986 -0.55
Physical

Optics 0.9647 0

6.2 Diffracted Energy and Wood Anomalies

6.2.1 Discussion

The diffracted energy is the field quantity most frequently measured.
It is, of course, directly related to the diffracted mode amplitudes, and the
general remarks concerning energy and the Wood anomalies made in section
4.2.1 also apply here. Unlike the P anomalies, however, the S anomalies
(which were discovered earlier) have been more widely studied and are more
completely understood. According to Rayleigh's theory, the occurrence of
the S anomalies corresponds to the singularity of the scattered field at Ray-
leigh wavelengths. At these wavelengths, a new spectral order appears at
grazing angles, and thus causes a sudden rearrangement in the diffracted
energy among the other modes. But it should be noted that there are S
anomalies other than those which occur at the Rayleigh wavelengths, and
these are similar to the '"Brewster angle' type discussed in section 4.2.2. A
comparison with the P anomalies reveals that the S anomalies are generally

much stronger and can occur with structures having relatively shallow grooves.
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6.2.2 Computed Data for the Diffracted Energy

a) Two radiating modes. The fields scattered by surfaces of very small
(electrical) period are of relatively little interest. Anomalies are observed
only when more than one radiating mode is present, and, of course, the sim-
plest cases (also the ones most investigated) are those where there are just two
radiating modes.

Figure 6-1 shows a plot of the normalized diffracted energy versus
the surface height for a full-wave rectified profile for which d = 0.85A and
6 = 36°. Since an equivalent plot for a sinusoidal surface was obtained by
Zaki (1969), it is included here for the sake of comparison. With this choice
of parameters, only the m =0 (specular) and the m =- 1 (back scattered)
modes can propagate. The diffracted energy exchange is continuous,
exhibiting maxima and minima in an almost standing wave pattérn. The rate
of conversion of the diffracted energy is more rapid for the sinusoidal sur-
face than with the full-wave rectified surface. Anomalies occur in both cases,
however, with the first appearance being at a = 0,16 for the former surface
and at a = 0,361 for the latter. Note that this type of anomaly is different
from the classical (Rayleigh) type in that they do not occur at the Rayleigh
wavelengths. |

Another example for two radiating modes is shown in Fig. 6-2 for a
full-wave rectified profile with a = 0.3, d=0.30A, 6 = 60° and ¢ varying
from 0 to 0.7x. We note the abrupt exchange of diffracted energy between
the m = 0 and m = -1 modes near the Rayleigh wavelength, )LR = 0.535A.

This exchange is, however, not complete, but about 50 per cent. A stronger
anomaly showing complete conversion of energy is observed at d = 0.7A.

The changing division of diffracted energy between two radiating modes
as a function of the angle of incidence is illustrated in Fig. 6-3 for a full-wave
rectified profile with d = 0.6\ and a = 0.3X. It is seen that there is a dis-
continuity in the diffracted energy for both modes at 6 = 41. 8° corresponding
to a Rayleigh wavelength, and for incidence angles greater than 41. 8° most
of the energy is carried by the m = -1 mode.
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»—x full-wave rectified
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Fig. 6-1: Diffracted Energy for Two Radiating Modes, for
H polarization.
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b) Three radiating modes. As the period of the surface is increased,
higher order modes come in, and the distribution of diffracted energy among
the radiating modes becomes more complex. This is clearly demonstratedin
Fig. 6-4 for a sinusoidal surface where d = 1,155, 6 = 60° and a varies
from O to 0.7A, With this choice of parameters there are three radiating modes,
with the m = 0 mode radiating in the specular direction (90 = 600), the m = -1
mode radiating in the normal direction ( 9_1 = () and the m = -2 mode radiating
in the back scattered direction (9_2 = -600). The curves show no resemblance
to those for the case of two radiating modes. For a <0.05), the m = 0 mode
is the dominant one, carrying at least 80 per cent of the total energy. Once
again, we see that the diffracted energy for each mode is more sensitive to a
change in the surface height than was the case for E-polarization, and a strong
anomaly is observed for even the relatively shallow groove depth, a =0, 3x.
For this depth, all of the energy is carried by the m = -2 mode which produces
a correspondingly strong back scattered field.

The same kind of plots were also obtained using the physical optics
approximation, either with or without shadowing, and they are shown in Figs.
4-4 (the same for both polarizations) and 6-5. By comparing these with Fig.
6-4, it is apparent that neither version of the physical optics approximation
gives satisfactory agreement with the exact solution except perhaps when
a <0.05A.

A plot showing the relation between the diffracted energy and the
minimum radius of curvature (at the surface peak or trough) of a sinusoidal
surface for which d = 1.155X and 8 = 60° is shown in Fig. 6-6. As in the
case of E polarization, the dominant mode for kpmin 24.5 isthe m =0
(specular) one. Thus, as far as the scattered field is concerned, the surface

with kpminz 4.5 can be treated as flat.
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6.2.3 Blazed Gratings

The diffracted energy for various orders of radiating mode can be
computed from Eq. (6.2) and used as a basis for the design of blazed gratings
(gratings whose profiles are so shaped as to maximize the diffracted energy in
a given direction or a given mode).

Blazed gratings find important applications in spectroscopy where the
spectrum is observed in only one order at a time, the energy going into the other
order modes being completely wasted. It is therefore desirable to have the
observed spectrum as luminous as possible, and one way of achieving this is
to reduce the number of propagating modeé by using smaller periods. Another
way is to minimize the amount of energy carried by the other modes, and
according to Eq. (6.2) and neglecting the contribution due to the perpendicular
side of the surface, the diffracted energy of the mth mode for a right-angled
triangular profile will be zero if

Xm— Bmf'(x) =0
or f'(x) = xm/Bm . (6.3)

Eq. (6.3) is particularly useful when there are only two radiating modes.
However, since this applies only to H polarization, the echelette grating so
designed is polarization dependent.

6.3 Conservation of Energy

One feature that is common to perfectly conducting, periodic surfaces
regardless of the number of radiating modes involved is the condition of
energy conservation, and this can be used as a check on the accuracy of the
numerical solution. The results of this check are shown in Table VI-5 for
a sinusoidal surface sustaining, in most cases, only one radiating mode.
Results for two and three radiating modes are shown in Figs. 6-1 and 6-3. In
all cases considered, the numerical results satisfy the condition of energy
conservation, but the physical optics approximation, with or without shadowing

included, does not.
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TABLE VI-5

Conservation of Energy for a Sinusoidal Surface

Physical Optics
Numerical w/o Shadow w/ Shadow
d/x a/x 6(° | Energy Error(°/o)|Energy Error(°/o)|Energy Error(°/o)
0.2 0.1 O 0.9848 -1.52 0.4728 -58,72 [0.4728 -58.72
0.2 0.1 30 | 0.8532 -1.43 0.4554 -47.30 0.0208 -98.00
0.2 0.1 60 | 0.5075 1.50 0.4083 -18.34 0.1479 -70.42
0.2 0.01 0 | 0.9980 -0.20 0.9921 - 0.79 10.9921 - 0.79
0.2 0,03 0 | 0.9987 -0.13 0.9308 - 6,92 10.9308 - 6.92
0.4 0.2 0 | 0.9823 -1.77 0.0030 -99.70 10.0030 -99,70
0.4 0.2 60 | 0.5042 0.84 0.2061 -58.78 {0.0083 -98.50
1.9 0.25 0| 0.9974 -0.26 0.4202 -57.98 (0.4202 -57.98

6.4 Approximate Techniques

As in the case of E polarization, an attempt has been made to use the
knowledge obtained from the numerical results to develop a simple method for
estimating the field back scattered from surfaces at oblique incidence. 'Were
it possible to arrive at a valid approximation téchnique, it would be very use-
ful in such practical problems as sea surface or terrain scattering.

Naturally the physical optics method was tried, but was abandoned
because of its rather poor agreement with exact results. As we have seen in
previous sections, the scattered field, involving the conversion of energy among
radiating modes, is a very complicated quantity which offers little prospect
of simple approximation in any general situation. However, in particular cases
such as back scattering by a sinusoidal surface at oblique incidence (Figs. 5-25
through 5-29), there is some hope of developing an approximate technique. In
a procedure directly analogous to that for E polarization, the field back scat-

tered by a sinusoidal surface at oblique incidence was computed by the stationary
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phase method using the exact surface field over only a restricted portion of

the illuminated region of the surface. The results are shown in Table VI-6,

TABLE VI-6

Comparison of the Energy Backscatteged by a
Sinusoidal Surface: d = 1.155), 6 =60, Computed
Using the Exact and Stationary Phase Methods.

‘ Normalized Back Scattered Energy

Surface Stationary
Amplitude (a/)) Exact Method Phase Method

0.3 0.98 1.06

0.4 0.64 0.69

0.5 0.75 0.70

0.6 0.60 0.64

0.7 0 0.16

Although the agreement with the exact values is excellent, the
approximate method still requires a knowledge of the true surface field over
a small region of the surface, and in order to avoid solving the integral equa-
tion numerically, it is necessary to find some other means for estimating this
field. As regards the phase, the physical optics value turns out to be adequate;
unfortunately, the modulus is a much more complicated quantity and, unlike
E polarization, is not dependent on the local surface properties. Many different
methods using combinations of ray optics and surface wave theory have been
tried. For example, one method considered the interaction of two rays: the
incident ray and the ray reflected from the opposite face of the surface; another
method considered forward and backward traveling waves whose amplitudes
we sought to choose to fit the exact data. However, neither of these methods
alone (or even in combination) was satisfactory, though it was noted that a
rough estimate for the modulus was provided by the imaginary part of the
physical optics approximation. Though there is no physical basis for this
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whatsoever, the corresponding estimates of the back scattered field were

computed, and a comparison with the exact values is given in Table VI-7.

TABLE VI-7

Comparison of the Current Modulus over the Illuminated Region
Of a Sinusoidal Surface, Computed Using the Exact Method and
The Imaginary Part of the Physical Optics Approximation.

(d = 1.155%, 8 = 60°).

Normalized Current Modulus

! Location Approximation Using i
' Surface of Point, Exact The Imaginary Part of i
Amplitude (a/A) | x Coordinate (1) Method | The Phys. Optics Values
g 0.915 1.75 2.00
0.3 . 1.010 2.05 1.92
| 1.109 | 2.30 1.84
| 04  0.938 1.84 1.96
| . i 1,082 1.99 2.00
| ~0.915 2.00 1.97
; 0.5 | 1.010 - 1.42 1.90 !
| % 1.109 1.84 1.96 !
? 0.915 1.85 1.93 |
j 0.6 ; 1.010 1.17 1.70
| | 1.109 1.84 1.70
07 . 1.010 | 1.04 1.43
' i 1.109 1 0.90 1.37




Chapter VII
RAYLEIGH'S METHOD

As mentioned in Chapter IV in connection with Wood anomalies,
Rayleigh's work was one of the early attempts to theoretically investigate
scattering (electromagnetic or acoustic) by a periodic surface. His approach,
now termed ''Rayleigh's method'', is indeed an important one, and has been
used, with or without refinement, by many subsequent investigators. We
shall now examine his method in some detail and compare exact data with

data obtained using his assumption.

7.1 History

In 18907 Lord Rayleigh studied the scattering of sound waves by corru-
gated surfaces and sought to solve the wave equation in combination with the
appropriate boundary condition. His method is an intuitive one that has been
used by many investigators and is based on the following two assumptions:

a) the scattered field may be represented by a linear combination of discrete
plane waves, either propagating or attenuated from the surface, and b) this
representation holds everywhere above and on the boundary. A simple and
straightforward description of the Rayleigh method for a periodic boundary is
given by Beckmann and Spizzichino (1963). The second assumption, which is
often termed the '""Rayleigh assumption, " has been a controversial subject for
many years.

As first observed by Lippmann (1953), a choice of scattered field
consisting only of outgoing waves is not the most general, and may not com-
pletely represent the field within the grooves; at any point in this region, one
would expect the field to include waves propagating (or exponentially damped)
in both directions, since there are currents on those parts of the grating above
and below the given point. Meecham (1956b) studied reflection from irregular

surfaces with a method based on Fourier transforms, and obtained numerical

171



172

results for the distribution of energy reflected from a sinusoidal surface. By
comparing these with experimental results and also with the ones obtained using
Rayleigh's method, he concluded that errors were of the same order as those
in the physical optics approximation.

Heaps (1957) attacked the validity of the '""Rayleigh assumption' in
another way. He studied the reflection of plane acoustic waves at a sinusoidal
surface of zero pressure and investigated the least possible value of the sur-
face pressure consistent with the assumption that all the reflected radiation
is in the form of undamped plane waves. After comparing his results with
the experimental data of LaCasce and Tamarkin (1956), he concluded that
"if all reflected energy has the form of undamped plane waves then the surface is
necessarily sound absorbing and of pressure significantly different from zero.
Thus, in the neighborhood of the corrugated surface of zero pressure, it is
necessary to také into account other forms of radiation and such forms play a
significant part in satisfying the boundary condition.' Murphy and Lord (1964)
have also criticized the Rayleigh assumption. By making a direct comparison
of the results obtained from an exact representation of the field with those based
on Rayleigh's formulation, they concluded that the latter is inadequate.

On the defense side, there are people who support Rayleigh's
assumption. Marsh (1963) has generalized Rayleigh's method, and considered
the scattering of acoustic waves from a sinusoidal surface (y =acos Kx) with
a Dirichlet boundary condition. He showed that the boundary condition can be
satisfied using only outgoing waves. Numerical data were obtained for the
amplitudes of diffraction which, upon substitution into the energy relation, in-
dicated conservation of energy. However, it must be noted that the values of
Ka used were relatively small, and as shown later, the Rayleigh assump-
tion is indeed valid in this case. Additional support of Rayleigh's assumption
comes from Millar (1963), who argued from the viewpoint of analytic continu-

ation. He remarked that if the boundary values are analytic, '"the exterior
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field may be continued into the grating from above, and that the exterior plane
wave representation will converge everywhere above a plane parallel to y = 0.
Likewise, the interior field may be continued into the upper half-space from
below, and the interior plane wave representation will be convergent below a
plane parallel to y = 0. If the two half-spaces of convergence so defined con-
tain a common layer which, in turn, completely contains the reflecting surface
y = acos Kx, then the two representations, each outgoing or attenuated in its own
half-space, may be matched on the reflecting surface where both are valid. "
This remark seems very reasonable.

Possibly the most significant step toward the resolution of the contro-
versy (with Dirichlet condition) was taken by Petit and Cadilhac (1966). They
demonstrated (using analytic continuation) that for the profile y = a cos Kx
(-0 < x < ) Rayleigh's assumption could not be valid if Ka > 0. 448; for
Ka < 0. 448, the question remained open. Recently Millar (1969) used a tech-
nique developed to locate singularities of solutions to the Helmholtz equation.
By applying this to the sinusoidal profile, he was able to show that Rayleigh's
assumption is indeed valid if Ka <0.448 and is not valid if Ka > 0. 448.

In order to shed some light on this remark, let us compute the scattered

field using the exact representation and under the Rayleigh assumption.

7.2 Numerical Results by the Exact and Rayleigh Methods

For E polarization we have, from Eq. (2.22),

d ,
Elxy) =\ P V1+ ()2 K ({ax' . (7.1)
0

Using the exact representation we can expand the field in terms of incoming and

outgoing waves, thus
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Q

-iB_x+X_y) -i(B_x-X_y)
E(x,y) = z Ea e ™ Myc e ™ ™ ] (7.2)
Z m m

m=-o

From Eqgs. (7.1) and (7.2) we get

_ B _x+X y)
B =i K me W px) K (x)dx , (7.3)
M Js
B x-X_y)
. W m m Y
Cm— 2de +e \/1+f(x) Kz(x)dx (7. 4)
S

+ -

where S and S represent the portions of the surface above and below a plane
through the point P(x,y) (see Fig. 7-1). Of course, when y is above the grating,
i.e.y > max f(x) , then

B =A and C =0,
m m m

where Am is defined by Eq. (4.4)

On the other hand using Rayleigh's assumption, we can expand the field

everywhere in terms of outgoing waves alone, viz.

0 0]
L -iB_x+X_y)
F(x,y) = E Be ™ ™ (7.5)
Z m

m=-q0
If we now substitute
-1 ~x') 4+ —xr!
P = Z 2 -eJ[Bm(x x') Xmly YD
1 X d
m=-o m

into Eq. (7.1), we get
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d @
-j|B_(x-x")+X_|y-y|
Ei(x,y)= ‘-‘2’-(‘;- | _5_ -)21-— e [m m j\/1+f'(x')2 K ({)dx'.
0 m==-Q0 m z

(7.6)

In order to make Eq. (7.5) equal to Eq. (7.6) everywhere on the surface, we
must remove the modulus sign in the kernel. Thus, equating Eqs. (7.5) and

(7.6), we obtain

" a B x+X ) 5
Bm= e \/1+f'(x) KZ(X)dx (7.7)
0
(B x+X_y)
= e ™ m \/1+f'(x)§ K _(x)dx
S+
B x+X y)
N e ™ T ) K (x)dx . (7.8)
.

Intuitively we expect the discrepancy between Egs. (7.2) and (7. 5) to be greatest
when S =0, that is when the point P(x,y) is in the surface trough. Thus, let-
ting S =0, we get from Eq. (7.2)

s o]

d

-ji( 5B +aX_ )

— 2"m m
Esz(d/z,-a)—z C_e (7.9)

m=-
where

B x-X )
W m m Y
cm—dem e \/1+f (x) Kz(x)dx‘,
0

and from Eq. (7.5)
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® d
~ ~ ~H5B_-aX )
Ez(d/z, -a) = E Bme 2’m m (7.10)

m=-00

where

=]
H

4 8 x-x_y)
e ™ m \/1+f'(x)2 K_(x)dx

0

Using Eqgs. (7.9) and (7.10), numerical results for the scattered field were
computed for a sinusoidal and an inverted full-wave rectified surface, and

these are shown in Table VII-1.

TABLE VII-1

E-polarization. Comparison of Scattered Fields at the Surface
Trough Obtained by the Exact and Rayleigh Methods.

Type of Scattered Field
Surface Ka Fxact Representation Rayleigh's Method
0.314 2. 27440 - jO. 22657 2.27420 - jO. 22664
Sinusoidal | 0.942 1.96310 - jO. 48310 1.95450 - jO. 48166
1.884 1.86610 - jO. 52445 1.75170 - jO. 54162
Tnverted
F:llfwave 0.314 2.42170 - j0. 18443 2.42180 - §0. 17913
Rectified | 0+ 942 2.22550 - j0. 49810 2.22720 - j0. 46486

Table VII-1 shows that, for sufficiently small values of Ka, the
scattered fields based on the exact and Rayleigh methods agree extremely

well for a sinusoidal surface. This is consistent with Millar's remark. In
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the case of the inverted full-wave rectified surface, agreement is not so good
for the same values of Ka. This is probably due to the fact that the inverted
full-wave rectified profile is not an analytic function as is required in Millar's
analysis.

Turning now to H-polarization, we have

d
PZKt(x)dx . (7.11)
0

S
H (x,y) = 4

Using the exact representation we get

0]

-i(B_x+X y) -i(B_x-X_y)
Hi(x,y)= z [B' e T M igre ™ M ] (7.12)
= L'm m
where
i(B_x+X_y)
B =—di - \ o m 'm {x -8 f'(x)}K(x)dx, (7.13)
m 2 m _ m m t
S
and
B x-X_y)
1 m m
1 o cee—— -
ct =~ x|, {xm Bmf'(x)} K (x)dx (7.14)
S
and when
y> max[f(x):] ,
then B' =A and C' =0 ,
m m m

where A;n is defined by Eq. (6-2).
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On the other hand, using Rayleigh's agsumption, we have

: (0 0]
N -i(B_x+X_y)
Hi(x,y)= _s_ Bl e m.m (7.15)

m=-Q0

If we now substitute the expression

™
2. 2
P, = Z j‘lﬁz(“" {f'(x)( (!;m + ks’iné-xmsgn(y-y') } X

m=-00 m

., 2mw )
-J(——d +k sin O)(x - x') -J|y-y']Xm
x e e

into Eq. (7.11) we get

d o
8 1 E .
Hz(x, y) = 5dX {f (x)
m |}, m=o

=i Z;nvr +ksin 6)(x - x') —jly-y'[Xm .
e e Kt(x)dx.

(7.16)

2mnw
+ - -
3 ksiné Xmsgn(y y)} X

Again, in order to make Eq. (7.15) equal to Eq. (7.16) everywhere on the
surface, we require the modulus sign in the kernel to be removed. Thus,

equating Egs. (7.15) and (7. 186),

d
~ (B_x+X_y)
B =\ e mm {Xm-Bmf'(x)} K (x)dx (7.17)
0
iB_x+X_y)
= e ™ M {x -B f'(x)}K(x)dx+
+ m m t
S
(B x+X y)
+\ e ™ M {x -B f'(x)}K(x)dx; (7.18)
_ m m t

S
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and if we examine the tield at the surface trough (so that S~ = 0), then

. d
. 2 -5 B +aX )
H%d/2, -a) = Zc' .
Z m

where
C!' =
m

and from Eq.

where

n

B' =
m

Numerical values computed using Eqs. (7.19) and (7. 20) for a sinusoidal

1

2dX
m

(7.15)

d

0

m=-Q0

HB_x-X_y)

e {Xm-— Bmf'(x)} Kt(x)dx ,

© d

5B _-X a)
~ 2
Hsz(x,y)= E B;ne meom

T KB_x+X_y)

e
0

m=-Q

{xm- Bmf’(x)} K (x)dx .

(7.19)

(7.20)

surface and an inverted full-wave rectified surface with d =0.2), 6=0 and

different values of Ka are shown in Table VII-2.

H-polarization.

TABLE VII-2

Comparison of Scattered Fields at Surface
Trough Obtained by the Exact and Rayleigh Methods

Type of Scattered Field
Surface Ka Exact Representation Rayleigh's Method
Sinusoida | O 314 0. 74072 - j0. 63363 0. 75254 - j0. 62012
0.157 0.87126 - jO. 31756 0.87870 - jO. 31196
Ip{‘lnift‘::ve 0.314 0. 79608 - jO. 34601 0.92741 - jO. 34870
0.942 -0. 07901 - j0.90223 1. 07230 - j1. 00060
Rectified
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It is interesting to note that the criterion under which the Rayleigh
assumption holds seems different for H-polarization, with all data suggesting
that Ka must be smaller than the value 0. 448 appropriate to E-polarization.
However, the exact figure for H-polarization is unknown. Again the agree-
ment between the exact representation method and the Rayleigh method be-
comes worse if the periodic surface is not an analytic function (such as an
inverted full-wave rectified profile).

From the above computed data for E and H polarizations, we there-
fore conclude that Rayleigh's method can be used, with sufficient accuracy,
for estimating the field scattered by a periodic surface provided that it is
analytic and has a small value of Ka (say less than 0.5). If the surface is not
an analytic curve (in practice, a grating profile cannot be shaped to coincide
with an analytic curve), Rayleigh's method provides us better results if the
incident field is E-polarized.



Chapter VIII
APPLICATION TO ROUGH SURFACE SCATTERING

8.1 Discussion

Although the main purpose of this work is concerned with scattering
by a periodic surface of arbitrary shape, it is appropriate to consider the
application of our resuits to scattering from rough surfaces.

In the past decade or so, a great number of papers have been published
dealing with this type of scattering. A few of the more important references
are Rice (1951), Hoffman (1955), Beckmann (1963) and Fung and Chan (1969),
and if there is one feature that almost all such theoretical treatments have
in common, it is their reliance on the physical optics approximation which, in
effect, reduces the determination of the scattered field to quadratures. Of
course, there exist many differences of detail, both conceptual and analytical,
depending, for example, on whethér the perturbed surface is defined specifically
or statistically, the nature of the statistical variations assumed, the stage at
which averaging is performed, the method of evaluating the remaining surface
integral, whether shadowing is taken into account, etc. However, the results
obtained are still limited by the physical optics approximation, which takes no
account of any multiple scattering, is invalid for surfaces of curvature small
compared to the wavelength (small scale roughness), and provides a false esti-
mate of shadowing.

If the surface is illuminated near normal incidence, these deficiencies
are of little conséquence, primarily because the base surface provides a strong
return. As we depart from normal incidence, the surface concentrates the
return in the forward (specular) direction, where the estimated scattering
from the perturbed surface may remain valid, but in other directions (e.g.
back scattering) all of the observed return is a consequence of roughness, and

any perturbation based on physical optics is of doubtful accuracy.
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In order to treat adequately the case of oblique incidence on a rough

surface, it is desirable to postulate a base surface which will itself generate

a back scattered return at these angles; to devise a means for accurately
estimating this scattering; and then to handle by a perturbation technique such
small scale roughness as it may be desirable to include. In order to simulate
actual rough surfaces, the small scale roughness will be assumed statistical
in character. From the viewpoint of optical gratings, the effect of this kind of
roughness is equivalent to degrading a diffraction grating with small random
errors. For this reason, the results obtained here are also applicable to the
study of grating imperfections which may cause phenomena such as 'ghosts"

and wave-front aberrations.

8.2. Perturbation of the Surface Field

Consider a plane wave of either polarization incident in a direction
making an angle 6 with the positive y axis, as shown in Fig. 8-1. We repre-
sent the rough surface by a small scale roughness superimposed on a sinusoidal

base simulating large scale roughness. The surface height is then
- = 2m
y=f(x)=acos<-d—x> + §x) , -0 <x < (8.1)

with a >> |&x)|.

Furthermore we assume that &x) is a random variable obeying a

Gaussian distribution with zero mean, such that

2
1 ax)
g {dx)} - 0\/77 exp { 202 s (8 2)

<gdx)>=0

where o is the standard deviation, and the bracket sign <> represents a statis-

tical average process.
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Fig. 8-1:

Geometry of a Rough Surface Consisting of a Periodic Base
and a Small Scale Random Roughness.
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In accordance with the boundary conditions, the wave induces on the
surface a current density F(r) which is the actual source of the scattered
field. Application of Green's second identity and the appropriate boundary
conditions then yields the following expressions for the scattered field:

E%(r) = ju \ G(r, r")F_(r')dt
Z Z

S
(8.3)

9G(r, r"

HS(E) = e
Z on'

Ft( £| )dl'
S

for E and H polarization respectively, where

6(e, ) =-Lu®

4 0 (kl_l:—zll) ]

and ﬁ' is the unit outward normal to the surface.
If the observation point is far from the nearest point on the surface,

the asymptotic form of the Hankel function may be introduced; viz.

Ht)Z)(kR) ~ \/-E{-{; ¢ JKT exp {jk(x cos f + ysin ¢)} (8.4)

where
1/2
R={e-x 4 (7-5 )
and § is the angle of diffraction, made with the positive x axis.

Combining Eqgs. (8.3) and (8.4) we get

a
E_(r) = o(r) (Jkx cos +ysind) 1+ 80002 F_(x)dx (8.5)

-0
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for E-polarization and

8¢

H:( r)= -%ﬂ ej k(x cosfj+y sin f) cos(h, D \1+f(x)" F t(x)dx

-0
m -
o kwgu‘rz ejk(x cos §+ysin ¢){f.(x) cos f - sin ¢} F t(x)dx
oo (8.6)
for H-polarization
where q( ) - <__2..L. /2 -jkr
r rkr © )

Since the perturbation is, by assumption, small, the perturbation on
the periodic base is equivalent to a perturbation on the surface current. More-
over, by using the fact that the modulus of the surface field is less sensitive
to a small change in the surface height than the phase, we can assume that the
perturbation on the surface field produces only a small change in the phase of
the unperturbed surface field. This allows us to replace the rough surface by
its periodic base. Let

§=f(x)=acos<2§x> ,
and

jkax) (8.7)

F (x)=K (x)e
z z
for E-polarization,

F (x) = Kt(x)ejkdX) (8.8)

for H-polarization, where Kz(x) and Kt(x) are the aurface fields for the unper-
turbed surface.






188

The factor < > in Eq. (8. 11) can now be evaluated and is (Beckmann and
Spizzichino, 1963)

jk|ox,)-8x,)
<eJ [xl x2:]>=exp {-kzoz(l-c)} . (8.13)

and when this is substituted into Eq. (8. 11), we obtain

(0 0]

® jk[x,-x,)cos p+(y. -y, )sing
<lEz(r, ¢)lz>=lq(r)? e] Exl EAAR N sn]ﬁ+f'(x1)2 ﬁ+fv(x2)2 X

=00 ~-QD

* 22
X Kz(xl)Kz(xz)exp [—k o (1 -c?_' dxldx2 (8.14)

For convenience, the normalized correlation coefficient will be used
2,2
c(r) =exp(-1 /T") (8.15)

where 7= X, X, (assuming stationary process) and T is the correlation distance.

Using the expansion
o]
X S " (ko)?® /TP
exp -ko(l-cﬂxe T R
n=0 ’

a little mathematical manipulation is sufficient to convert Eq. (8. 14) into

2
< IE:(r, ¢)| %5 v(r)(T/k«or)2 ’ u(x, Pddx| + 2v(r)

-0 -

-xz/'l‘:2 2
u(x, P e dx

© 2,2 2
+ 2v(r) alx, pxe® /T dxll ... (8. 16)

-0
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where

2.2
v(r) =|q(r)? e k (ka/T)2 ,

To evaluate Eq. (8. 16) numerically, we must reduce the limit of
integration from infinity to a finite value. This can be done by noting that
Kz(x) is a periodic function. Thus, using Eq. (2.21),

d o o] 2
< [ESr, B> = el /k0)? |\ utx, ) mz_; foflmdlcosf-sinf)} o, '
. S

d (v 1)
2, 2 2

+2v(r) | \ ulx, ) Z }L;jkmd(cosié-sinfb) (x+m d)e-(x+md) /T } dx

0 m=-oo

i = € fiamd(cos f- sinf) 2 ~x+md?/12y _F
#2ux)| ) ux, f) {eJ COBP =8P (x+md)®e " T }d",

0 m=-00
+ o o . (8. 17)

which can be evaluated by truncating the infinite series. On examining Eq.
(8.17), it is observed that for small values of o the first term dominates and
represents contributions coming mainly from the periodic base, while the
second and higher order terms are the contributions from the perturbations.
Numerical results showing the scattered field pattern for a sinusoidal
profile (d =1.155\, a=0.3xand 8 = 600) are shown in Figs. 8.2 through 8.4
with o =0.05\ and T varying from 0.5d to 3d. It is seen that the diffracted
energy spectrum has broadened slightly into a shape like a pencil beam around
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180°

Fig. 8-2: Scattered Intensity Pattern (T = 0, 5d), for E polarization,

Fig. 8-3: Scattered Intensity Pattern (T = d), for E polarization.,
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Fig. 8-4: Scattered Intensity Pattern (T = 3d),

for E polarization,
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IFig. 8-5 Scattered Intensity Pattern (T = 0, 5d). for H polarization.
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1801

Fig. 8-6: Scattered Intensity Pattern (T = d), for H polarization,

180

Fig. 8-=7: Scattered Intensity Pattern with Finite Source Illumination
(p =3d, T =d), for E polarization,



193

the discrete (unperturbed) spectrum. In all cases considered, there is a
decrease of diffracted energy in the specular and normal directions when the
surface is perturbed. There is also some evidence of surface wave radiation
for small P. In the back scattered direction, however, the energy is relatively
unaffected.

In an analogous way, using Eq. (8. 6) we get for H-polarization

d (0 0]
. 2
<[HS > = v ko) witx, ) Z {elkmd“m p-sin ’”)} dx
0 m=-Q0
d = ' 2,2 2
+2v(r)| \ u'(x,P) Z {ejkmacosfé-sinﬂ) (x+md)e_(X+m.d) /T }dx
m=-00
I > 2, 2 2
rov(o)| \ wix ) p {SmH000 D) (gt mal /T Jex
m=-
0
+... . ~ (8.18)
where

V(1) = (k/w) v(x)

u'(x, @) = ejk(x cos f+y sin ) {f’(x) cos f -sin ¢} Kt(X) s

in which the first term represents the dominant contribution from the periodic
base surface, and the second and higher order terms show the effect of the
small scale roughness. Numerical results for the scattered field pattern for
a sinusoidal surface (d =1.155, a=0.4x and 6 = 600) are presented in Figs.
8-5 and 8-6, where o =0.05A and T varies from 0.5d to d. It is seen that
they bear the same features as those for E-polarization; however, we observe

now there is a decrease of diffracted energy in the back scattered direction.
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In the above study we have assumed an unlimited illumination area which
means that the entire infinite rough surface is exposed to the incident wave
(whether there is shadowing involved is another matter). However, in a more
practical situation, it is likely that not all of the rough surface will be illuminated
(1imiting illumination area) because of the finite aperture of the illuminating source.
‘Thus let us assume the incident wave to be a plane wave whose amplitude is given

by a Gaussian distribution as

Eiz(E) - I(x)e—jk(xsine—ycos 6) (8. 19)
fbr E-polarization, and
Hiz(x) - I(x)e—jk(xsin 6-ycos6) (8. 20)
for H-polarization, where
I(x) = L exp(-x2/2p2) (8.21)
py2m

and p is the standard deviation.
Rigorously speaking, in order to find the current distributions. on the
‘rough surface due to the finite source illuminations Eq. (8.19) or (8. 20),

it is necessary to solve two other problems whose integral equations are

K (g')H(z)(kI_x_'_-—_x;'[)dl' _4 I(x)e—jk(xsine-ycose) (8.22)
z 0 N7
S

for E-polarization, and

. H(z)(k|£—£'[)dl‘=4j I(x)e

9 -jk(xsin6 -y cos 6) 1
an' 0 )

-'Kt(_g)} (8.23)

Kt(_t;') 5

S

for H-polarization.
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But if the amplitude of the incident wave does not decrease very rapidly with
respect to x, the current distribution for the finite source illumination can be
approximated by the current distribution for the non-limiting source illumination

after multiplication by the factor given in Eq. (8.21). Thus from Eq. (8.16)

2
<|E:(r, ¢>]2>- v(r)(T/ka)?" Ux, P)dx
-m
(s 9]
2, 2 2
+ 2v(r) Ux, Prxe ™ /T de
-0
2, 2 2
sovn) || et e™ /T x| +. .. (8.24)

-0

where u(x, #) = u(x, $)I(x).

Eq. (8.24) can be computed numerically by considering only that part
of the surface where the amplitude of the incident wave is significant. The
numerical results for a sinusoidal surface (d =1.155), a=0.3\, and 6 = 600)
with p = 3d and the limit of integration varying from -10d to +10d are shown
in Fig. 8-7. It is seen that the results are very similar to those obtained
previously for an infinite illumination area.

In an analogous way, we obtain for H-polarization
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00
2
<|6e, )7> = v'(r)(T/ko)zl w'(x, ¢)de

(00)
2,2 |2
+ 2v(r) u'(x, Px e /T dx |
-m I
(00)
2,2 12
+ 2v!(r) E'(x,mxzex /T dx| +. .. (8.25)

where '(x, #) = u'(x, P)I(x).

The numerical results are shown in Fig. 8.8 (using the same parameters
as for E-polarization). Again it is seen that the scattered field intensity pattern

has the same characteristics as the pattern for an infinite illumination source.
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Fig. 8-8: Scattered Intensity Pattern with Finite Source Illumination
(p = 3d. T = 1d), for H polarization.



Chapter IX
CONCLUSION

We have here considered the problem of a plane electromagnetic wave
incident on a perfectly conducting, two dimensional periodic surface, and have
developed numerical procedures for the direct digital solution of the integral
equations for the surface fields. By using special summation techniques fol-
lowed by the subtraction of the dc term to improve the convergence of the
series for the modified Green's function, a relatively efficient procedure has
been arrived at, and this has been programmed for a computer.

For both polarizations (E and H), data have been obtained for the surface
fields on a variety of profiles representing sinusoidal, full-wave rectified,
~inverted iull-wave rectified and triangular surfaces having different periods,
amplitudes and angles of incidence. In each case the physical optics approxi-
mation is included for comparison and to aid in developing a simpler method
for predicting scattering from a periodic surface. It was found that the polari-
zation has a marked effect on the surface field, and the current distribution is
strongly dependent on the number of radiating modes. In general the physical
optics method fails to give an accurate prediction.

Knowing the surface field, the amplitudes of the diffracted waves in the
discrete angular spectrum representation of the scattered field can be computed,
and this has been done using the exact surface fields as well as the physical
optics estimates with shadowing either included or ignored. Here again the
physical optics predictions are deficient, and whereas the fesults derived from
the numerical program satisfy the conservation of energy law, the physical
optics values do not.

The numerical results have been used to explore the physical phenomena
associated with the diffracted energy of the radiating modes and known as Wood

anomalies. Both the S and P anomalies were observed. It was found that there

198
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are anomalies which do not occur at the Rayleigh wavelengths, and the S-type
anomalies are generally stronger than the P-type and can occur on structures
having relatively shallow grooves.

Consideration has also been given to the Rayleigh assumption. Numerical
data for the scattered field were obtained for surfaces of different profiles using
the exact and Rayleigh methods. The results are consistent with Millar's re-
mark, and indicate that the criteria under which the Rayleigh assumption holds
are different for different polarizations.

Lastly the knowledge gained from the study of periodic surfaces was
applied to a study of rough-surface scattering. The rough surface was con-
sidered as a small scale roughness superimposed on a sinusoidal periodic base
(l1arge scale roughness), the small scale roughness hdving a Gaussian distribu-
tion. The numerical results obtained show that the main effect of a small per-

turbation is to broaden slightly the dis crete (unperturbed) spectrum.
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Appendix A
PHYSICAL OPTICS APPROXIMATION

Although the main purpose of this work is the development of a numerical
technique for the determination of exact values for the surface and, hence, scat-
tered fields, we have found it desirable to compare the results obtained with
those provided by the physical optics approximation. This approximation is
a physically-based one which postulates an explicit form for the surface field
arrived at by assuming each element of the surface to bear that current which
it would carry were it part of the local tangent plane. The calculation of the
scattered field is then reduced to quadratures.

In many instances, however, and a periodic sheet is one, an analytical
evaluation of the physical optics integral is a difficult procedure, particularly
in such cases where part of the surface is shadowed, and some of the short-
comings of physical optics estimates in general certainly arise from sloppiness
in the evaluation of the integral. In still other cases, the physical optics result
proves to be more accurate if shadowing is ignored* (see, for example, Adachi,
1965) and it is of interest to observe that for a sinusoidal sheet it is then pos-
sible to produce an exact evaluation of the integral. Needlessto say, however,
the resulting scattered field is still subject to the unknown errors inherent in
the use of the physical optics approximation, and to the neglect (if present) of
all shadowing effects.

The procedure is directly analogous to that given by Senior (1959) for the
particular case of an H polarized plane wave at normal incidence on a sinusoidal
sheet and consists of three steps:

(i) writing down the physical optics integral for the scattered field
without any shadowing included;

*
This modified method is sometimes called '"extended physical optics''.
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(ii) asymptotically evaluating this expression appropriate to an
observation point at large distances from the sheet; and

(iii) matching this expression to a discrete angular spectrum of waves
to obtain their amplitudes. Since these amplitudes are independent of the field
point we have, in effect, produced an exact evaluation of the integral valid cer-
tainly in the half space above the sheet.

Let us take the equation of the perfectly conducting sheet to be
y =acos Kx (A.1)

where a is the amplitude of the corrugations and 27 /K =d is the period. If

the incident field is E-polarized, we write

i_ Qe-—jk(x sin 8-y cos 6)

E (A.2)
(cf. Eq. 2.20), implying
gl = -Y(cos X +sin0) e-Jk(x sin - ycos 6) (A. 3)

where Y is the intrinsic admittance of free space.
By virtue of the periodicity of the sheet and, hence, of the problem as
a whole, the scattered field can be expressed as a discrete spectrum of waves

which waves are certainly outgoing as regards y >a. Thus, we have

. Zm -jk(xsin6m+ycos6 )
= 7 A e m (A.4)

=

where

ksinf =mK+ksiné,
m

k cos Gm = /l?—-(mK+ ksin 6)2
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and that branch of the square root is chosen having imaginary part non-positive.

Application of the physical optics approximation, followed by steps (i) through

(iii) above now gives

A .n k mKa
m = -j > 5 cos 6 - p
\/k -(mK+ksin6) m

where

U =a <k cos 6+ \/kz-(mK+ksin 6)2> )
m
In particular,

AO = —J0(2ak cos ),

andas a —>0,

A —>1

0 , Am—->0, m%*o0,

in agreement with the known solution for a flat sheet.

If the incident field is H-polarized, we take

B-l - Qe—jk(x sin 6 -y cos 6)

’

implying

Ei = l§(cos ox+ sint‘?’)})eﬂk(xsme-ycos 0) ,

and expand the scattered magnetic field as

o)
-jk(x8in6 +ycos 6 )
Hs==,z\ E A' e m m

- m
m=-Q

sin 6} Jm(um) (A.6)

(A.7)

(A.8)

(A.9)

(A.10)

where Gm is as before. On evaluation of the physical optics integral, we now

obtain
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A;n = Am . (A.11)
The equivalence of the results for the two polarizations is consistent with the
known fact that the physical optics approximation for a perfect conductor is
inherently polarization insensitive.

Results computed from Eqgs. (A.6) and (A. 11) agree with those given
in the appropriate columns of Tables III-1 through III-4, Tables V-1 through

V-4, and obtained from a numerical evaluation of the integrals in Eqs. (4.4)
and (6. 2).



APPENDIX B
An Alternative Integral Equation for E Polarization

Another integral equation for the surface current on a periodic
conducting surface can be derived. It is different from Eq. (2.11), and since
it is a Fredholm equation of the second kind with a weakly singular kernel, it
can be solved using an iterative scheme such as a Neumann series.

Consider the perfectly conducting cylindrical surface of Fig. B-1. The
equation of the surface is y = f(x), where f(x) may or may not be a periodic
function of x at this stage of the discussion. The incident plane electromag-

netic wave propagates in the direction of the unit vector

A

k=sinpx-cos§y (B.1)
and the incident electric field is parallel to the generators of the surface:

i_ e-jk(x sinf -y cos §)

E (B.2)
jwt |
The time dependence factor e is omitted.
The scattered field is (Stratton, 1941)
..ij
s A 1 e 1
E (£+zz)-——41r Jumg L R dv (B.3)
v
where Rl=_x_'-£'+(z-z')'2 , (B.4)

P(x,y,z) and P'(x',y',z') are the field and integration points respectively,
I is the volume current density, and v is a volume containing both the field
point and the scattering surface. The vectors r and r' lying in the plane z =0

are shown in Fig. B-1 and are given by

r=xx+yy, _r;'==x'§+y'9 . (B.5)
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Fig. B-1: Scattering by a Cylindrical Surface.

Fig. B-2: Geometry of Orthogonal Vectors.
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If K is the surface current density, then

Kds =]1dv , (B.6)
and therefore
-jkR
ES(r+ ")=-jw0 eJ 1de;
"Z£ 2z 47 R 4
1
S
jwuo (0] e-ij1
= - ] ! t
e KZ(_I; )dx R dz (B.7)
1
S! -0

where S' is the scattering surface, and S is its profile in the z = 0 plane.

Now
o —ijl
e Ve iorg(2)
R1 dz' = jrH (kR) (B.8)
-
where R= \/(x-x')2+(y—y')2 . (B.9)

Substitution of Eq. (B. 8) into Eq. (B.7) yields

8, A 8 0 (2)
E(r+zz)=E (x)= -— H '(kR)K (r')ds' (B.10)
A z 4 0 z
S
where ds' = 1+f'(x'):2 dx' . (B.11)

The kernel H(Oz)(kR) \/1+f'(x’)2 is nonsymmetric and weakly singular at R =0,

(2)
0 (kR).

Let the normal n to the surface S' at the fixed point P be as shown

due to the logarithmic singularity of H

in Fig. B-2; differentiating both sides of Eq. (B. 10) with respect to n, as P

approaches the surface S', we obtain



212

aEs(r) W
/2 I -0 8 (2) )dg!
{ o } Z n HO (kR)Kz(_I_‘_ Yds' . (B.12)
PonS

S

To evaluate the left-hand side, observe that with the three basis vectors

t, nand 7 of Fig. B-2, Maxwell's equation VXE = -jwuogl_ with E = Ez gives
(Hn =0 on S')

BEZ . 8Ez N N R
= = i +
ot B quo(Htt sz) , (B.13)

and therefore,

BEz
e -prOHt (B. 14)
N i 8
Since K=nXH and E =E +E, Eq (B. 14) becomes
°E,  OE
— T e e -
e - jougK ,  on S. (B. 15)
Now
o
z _ . (& 4 -jk(x sin f -y cos §)
ry ik <an sin @ 5 CO8 ¢> e , (B. 16)
and making use of the relations
ox A A A oy AAA
X 2 A =% = ‘n=y- .17
r- (Vx)'n =Xx-n, n (Vy)'n=y-n , (B.17)

and Eq. (B.1), Eq. (B. 16) gives
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9E
—Zz L ]kk

a o ~Tk(xsin §-ycos ¢)
o (B. 18)

Substitution of Eqs. (B. 15) and (B. 18) into Eq. (b. 12) yields

€ : .
K (r) = - 0 ﬁ.ﬁe-Jk(xsin¢—ycos¢)+ io (2)
z M 4 on

0

(kR)K (r')ds'
(B.19)

Since the integrand in Eq. (B. 19) is singular, when P = P', particular
care must be taken in interchanging the differentiation with respect to n and
the integration with respect to x'. This difficulty was previously encountered
by Maue (1949) and Riblet (1952), among others, and can be overcome in the
manner that they adopted. The procedure consists of interchanging 9/6n and

% , but in replacing KZ(_r_) on the left-hand side with %KZ( r): for a detailed
Sl
justification of this step, see Maue (1949). The result is

€ .
_1_K (r) = - 0 k_ne-jk(xsin;b-ycosfb)+ i {_@_ H(Z)(kR)} K (r')ds' .
2 z+ Ho 4 on 0 z—
S
(B. 20)

It now remains to evaluate the partial derivative in the integrand, viz.

(2)

oH
(2) _0_ aR
a (kR) R k — (B.21)
(2)(kR)

H(2)(kR)

where —_é-(-k_RT = - H; , (B. 22)
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-x!' -y A (r'-r). n
?B.,?.B..@*_+§B.QX,XX;(3+L1'y.g:_ =
o & on 9y éon R R R
=-R'n, (B.23)
A I'-rx
with R = = (B. 24)

which is a unit vector directed from the fixed point P towards the integrand
point P'. When Eqs. (B.21), (B.22) and (B. 23) are inserted into Eq. (B. 20),

we have

€
-] - A
K (1) = -2 / 0 .4 o ikxsinf-ycos ) 125 R n)H(IZ)(kR)KZ(r')ds“ (B. 26)
Ho
S
which is a weakly singular one-dimensional Fredholm integral equation of the
second kind for the unknown surface current density Kz.

A

As a simple check, let us take f(x) =0. Then R*n=0 and

€
K =2 U cos¢e-—jkxsin¢ , (B. 26)
z \/ My

which is the expected geometric optics result.
Equation (B. 25) is valid for any cylindrical surface and thus can be
applied to the case of a periodic surface.
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