MEMO-3-83

EIGEN LINK to VAX

J. L. Turney

September 1983

CENTER FOR ROBOTICS AND INTEGRATED MANUFACTURING

Robot System Division
COLLEGE OF ENGINEERING
THE UNIVERSITY OF MICHIGAN

ANN ARBOR, MICHIGAN 48109

MEMO-3-83

The Eigen Link to the VAX

The eigen link is a software/hardware interface which allows the user to control the
Eigen Video video disc recorder from the VAX. The eigen link consists of a simple
software driver on the VAX, a 9600 baud serial line, and a small gray box located near
the Eigen Video controller which contains the hardware interface from the VAX to the

Eigen Video controller.

The eigen link functions as féllows. The software driver accepts single charascter
commands with disc track numbers or disc -track offsets from the user. It translates
these commands to a 9800 baud serial command signal to the hardware interface. The
hardware receives the 9600 baud serial command signal, decodes the command, and

loads offsets into a set of counters.

Hardware Description

Fig. 1 displays a schematic for the hardware in the eigen link. The heart of design
is the Intersil IM8403 UART, "Universal Asynchronous Receiver and Transmitter”. L3
initializes the UART on power up. L1 converts the input serial signal from the VAX
into a TTL level input into the UART. The signal is received serially at 9600 baud, 7
bits per frame, with the parity bit ignored. The UART has its own internal baud rate
clock. When a frame of data has been received, DR at pin 19 of the UART goes high
triggering the one shot L4 and reseting the receive buffer through L2. L7 decodes the
ru,pper three bits of the frame. The decoded signal from L7 either loads one of the three
4-bit counters, L9, L10, or L11, or to sends a command to the eigen controller. The
counting mechanism is armed by -setting L8. If L6 is not set, the eigen controller will run

until stopped by the stop command. The counters L9-L11 are set to count down, so

MEMO-3-83

that once they are loaded, they will accept clock pulses from the one shots L8 and L15
and count down to zero. Once they hit zero they send a stop command through L14 if
L6 is armed. The two one shots L8 and L15 are used to trigger off the leading and trail-

ing edge of the clock output from the eigen controller.

MEMO-3-83

Ne
THL 2
e
N P -
10~ —& ﬁ_ﬁs e |8 |7 Nem_w,_ 2 40
B _W_N 2 I|.§ THLR TG HATORS They TRRS TR 781 BRCRL. WGdiv PE l_mEl!
. re
| a1 LI INTERSIL e
: IM G403 UART | 2 '
9] bR 1ei2 2
2RD pews RRR7 msxg CIS| ast P srp R8QY Rom ere: FRE) _
t Is le I+ P® T Tm __e 1 v 2 . H
i § = =
B =13
Ble Ly P
L ;ul P
Q = .
° 3
3 {2 |! hv Q L 4
= S
9 L7 15 load low —||
w 4 7415138 O}
e o“n“.o_wnw_.n.mo_wc__« qle_ |t |15 9 o |t s 9 ho |t |t "
& 74sn3 e |lm L9 _ % Lo % L) ol 5 LIz ,
- \ .
T—jc 5 < 745190 oo 7191 ln v {.\;Rws_m.u . 74123 q] A
we-t e X PL 919, 9 P 999%.[c__R
cr © ERFPRE THE G.n_.__ " _q_o.._mp 3 ¢ |7
P10 load wmiddle ' < —MAo
B Is load _high
Ls
x T fo 5 G
FI._ Stap ue
< = A > 7210
revevse > 72:M
record 5> u3
reset > J21

MEMO-3-83

Software Description A description of the software is presented in the standard manual form

for UNIX on the next page.

BIGEN () UNIX Programmer’s Manual MEMO-3-83

NAME

eigen — invoke the eigen software interface

SYNOPSIS

elgen

DESCRIPTION

BUGS

etgen invokes the software interface to the Eigen Video controller. The software interface accepts
single character commands followed by either absolute track locations on the video disc or by
track offsets.

The syntax for a command is simply:
< command character>|<offset> | @<track>]

where the square brackets ”| |” indicate that the enclosed items are optional, and the *|”
separates the options. <command character> is one of the command characters, {+]-|r|s|t|h]q},
If the ”@” character is included, <track> which must follow refers to an absclute track loca-
tion, if the "@” character is absent then < offset> refers to a relative track location. No spaces
are allowed between characters. Below are displayed the commands and their actions.

+ forward

+< offset> forward for <offset> tracks

+Q@<track> forward until <track> location

- backward

-< offset> backward for <offset> tracks

-Q@<track> backward until <track> location

r record

r<offset> record for <offset> tracks

1@< track> record until <track> location

s stop

t display current track

t<track> get internal track count to <track>

h help by displaying command summary
q quit

When the Eigen Video video disc is powered up, it does not initialize to the same starting point so
that an absolute track position is not really absolute, but only absolute with respect to the current
session.

Appendix

#include <stdio.h>

#define WRITE_MODE 1
#define END_OF _STRING 0
#define TRUE 1

#define FALSE 0

#define SUCCESS 1

#define FAILURE 0

#define PROCEDURE

#define DO_INDEFINITELY while(1)

char load_low = 0x00,

load_middle == 0x20,

load_high = (x40,
stop = 0x60,
forward == (x80,
reverse = (OxAOQ,
record = 0xCO,
reset = 0xEQ;

int eigen_line, i

PROCEDURE main() {
int number_track, attempt, track, count,
nargs, sync, temp, absolute;

char command_line[20], input_char;

MEMO-3-83

MEMO-3-83

/t***********#*******************************

tty18 is the line dedicated to the eigen link
***********#********************************/

eigen_line = open(”/dev/tty18”, WRITE_MODE);

/*#**************************

Zero the counter of the eigen
****************************/

write(eigen_line, &reset, 1);
track = 0;

sync = TRUE; /#** eigen is synchronized *++/

DO_INDEFINITELY
{

next_command: printf(”Oigen: ”);

i=0;

while((input_char = getchar()) != "0 &£& i<19)
command_line[i++] = input_char;

command_line[i] = 0;

number_track = 0;

count = FALSE;

absolute = FALSE; /#** input track numbers can be for
absolute addresses or relative
addresses **#/

/***#*****t********

Input eigen command
:**t****s**tt*****/

if((command_line[l] !="") &&
(command_line[1] !=""))

nargs = sscanf(command_line, ”%*1¢%d”, &number_track);

if(nargs<=0) /*** If command line did not fit above
format try a different format with
an absolute address for the track
number specified ***/

nargs =sscanf(command_line,”%*1c@%d”,&number_track);
/#** look only for the track number *+*/
if(nargs==1))

if(sync == FALSE) /#** if an absolute track
number is specified but
the eigen link has lost
count of where it is, then
report that a new absolute
address must be loaded **+*/

printf("Orror: track count lost, must reinit0);
goto next_command;

}

absolute = TRUE; /*#** an absolute address has
been specified ***/
}

}

if(command_line[0] == "+’ ||
command_line[0] ==
command_line[0] ==

{

if(absolute) /**+ if an absolute address was
specified then find the difference
between the current location and
the desired absolute location and
load this to the 12 bit down counter
on the eigen link **#/

{

temp = number_track;
switch(command_line[0])
{

case '+

case 'r’:

number_track = (number_track - track

MEMO-3-83

MEMO-3-83
+ 600)%600;
break;
case '-':
number_track = (track - number_track

+ 600)%600;
break;

attempt = load_count(number_track); /*** load count
here ***/

if(attempt == FAILURE) goto next_command;
count = TRUE;
switch(command_line[0]) /*** adjust the track
address appropriately **/

{
case '+’ :
case 't’ : if(absolute) track = temp;

else track = (track + number_track)%600;
break;
case -’ : if(absolute) track = temp;

else track = (track - number_track + 600)%600;

break;

}

}

if(command_line[l] =="") command_line[0] = '?’;"

/***#***##*****#****#*t***#**##***************#*******

Command handler. Send eigen commands to the eigen link
**********#***#*****#**###**tt#*t******#*****#*******/

switch(command_line{0])

10

/***
n »»

If no count is specified for the +”, =" or "r”
command, or if the s command is executed, this
program loses the correct track address and must

be recalibrated with the ”t” command.
#*t*****#*#*****#************************/

case '+': write(eigen_line, &forward, 1);

if(count == FALSE) sync = FALSE;
break;

case '-': write(eigen_line, &reverse, 1);
if(count == FALSE) sync = FALSE;

break;

case 'r’: write(eigen_line, &record, 1);
if(count == FALSE) sync = FALSE;

break;

case 's’: write(eigen_line, &stop, 1);
if(count == FALSE) sync = FALSE;

break;

/*****t***#**t**
Print current track number if the command has no number

specified. Set the track address if a count is specified
t***#*****t*********#***************************#******/

case 't": if(command_line[l]=="")
if(sync == FALSE)
{

printf(”Orror: track count lost, must reinit0);
goto next_command;

}

printf(”Ourrent track: %3d0, track);

11

MEMO-3-83

MEMO-3-83

}

else

{

track = number_track;

printf(Orack reinitialized0);

sync = TRUE;
}

break;

case 'h’":
printf(” + forward”);
printf(” +CNT forward for CNT tracks”);
printf(” +@TRACK forward to TRACK”);
printf(® - reverse”);
printf(” -CNT reverse for CNT tracks”);
printf(” -@TRACK reverse to TRACK”);
printf(> r record”);
printf(” rCNT record for CNT tracks”);
printf(” r@TRACK record to TRACK”);
printf(® s stop eigen”);
printf(” ¢ print current track number”);
printf(” tTRACK set track number to TRACK”);
printf(” h help”);
printf(” q quit0);

break;

case 'q": exit(0);

default: printf(*Orror: unrecognizable command, type h for help0);

12

MEMO-3-83

int PROCEDURE load_count(number_track)

int number_track; {

char high_byte, middle_byte, low_byte, count;

int i;

if((number_track < 0) || (zumber_track >= 4096))
printf(”Orror: argument out of range, 0-40950);
return(FAILURE);

}

if(number_track == 0) return(FAILURE);

/t*******#**************#******************t****#***t

The number of tracks to be skipped is broken into

three nibbles. These are combined with commands which
allow three 4-bit counters to be loaded with the

number of tracks to be skipped. The counters

will be decremented to zero. When the count

goes negative the eigen will be stopped by the

counters. The number of tracks is therefore

loaded with one less than the desired number of

tracks.
#*****t********#********#*t******t******************/

number_track—;

count = number_track/256;
high_byte = load_high | count;

pumber_track -= count*256;

count = number_track/16;
middle_byte = load_middle | count;

number_track -= count*16;

count = number_track;

13

low_byte = load_low | count;

/****#****t***#***********##t*t*****

The three 4-bit counters are loaded.
****************#*********t*#**#***/

write(eigen_line, &low_byte, 1);

i=0;
while(i++ <1000});

write(eigen_line, &middle_byte, 1);

i=0;
while(i++ <1000);

write(eigen_line, &high_byte, 1);

i=0;
while(i++ <1000);

return(SUCCESS);

14

MEMO-3-83

