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An increasing number of architectures provide virtual memory support through software-managed TLBs. However,
software management can impose considerable penalties that are highly dependent on the operating system’s structure
and its use of vircual memory. This work explores software-managed TLB design tradeoffs and their interaction with
a range of monolithic and microkernel operating systems. Through hardware monitoring and simulation, we explore
TLB performance for benchmarks running on a MIPS R2000-based workstation running Ultrix, OSF/1, and three
versions of Mach 3.0.

Results: New operating systems are changing the relative frequency of different types of TLB misses, some of which
may not be efficiently handled by current architectures. For the same application binaries, total TLB service time var-
ies by as much as an order of magnitude under dlffercm ‘operating systems. Reducing the handling cost for kernel
TLB misses reduces total TLB service time up to 40% For TLBS between 32 and 128 slots, cach doubling of the TLB
size reduces total TLB service time by as mu_c_h as 50%.
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1 INTRODUCTION

Many computers support virtual memory by providing hardware-managed translation lookaside
buffers (TLBs). However, beginning with the ZS-1 in 1988 [23], an increasing number of com-
puter architectures, including the AMD 29050 [4], the HP-PA [12], and the MIPS RISC [13],
have shifted TLB management responsibility into the operating system. These software-managed
TLBs simplify hardware design and provide greater flexibility in page table structure, but typically
have slower refill times than hardware-managed TLBs [11].

At the same time, operating systems such as Mach 3.0 [1] are moving functionality into user
processes and making greater use of virtual memory for mapping kernel data structures held

A shorter version of this paper appeared in the Proceedings of the 20th Annual International Symposium on Computer
Architecture, San Diego, May 1993.

Authors’ address: Department of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor,
MI 48109-2122

This work was supported by Defense Advanced Research Projects Agency under DARPA/ARO Contract Number
DAAL03-90-C-0028 and a National Science Foundation Graduate Fellowship.



Uhligetal. = 2

within the kernel. These and related operating system trends place greater stress upon the TLB by
increasing miss rates and, hence, decreasing overall system performance.

This paper explores these issues by examining design trade-offs for software-managed TLBs
and their impact, in conjunction with various operating systems, on overall system performance.
To examine issues which cannot be adequately modeled with simulation, we have developed a sys-
tem analysis tool called Monster, which enables us to monitor actual systems. We have also devel-
oped a novel TLB simulator called Tapeworm, which is compiled directly into the operating
system so that it can intercept all TLB misses caused by both user process and OS kernel memory
references. The information that Tapeworm extracts from the running system is used to obtain
TLB miss counts and to simulate different TLB configurations.

The remainder of this paper is organized as follows: Section 2 examines previous TLB and OS
research related to this work. Section 3 describes our analysis tools, Monster and Tapeworm. The
MIPS R2000 TLB structure and its performance under Ultrix, OSF/1 and Mach 3.0 are explored
in Section 4. Hardware- and software-based performance improvements are presented in Section
5. Section 6 summarizes our conclusions.

2 RELATED WORK

By caching page table entries, TLBs greatly speed up virtual-to-physical address translations.
However, memory references that require mappings not in the TLB result in misses that must be
serviced either by hardware or by software. In their 1985 study, Clark and Emer examined the
cost of hardware TLB management by monitoring a VAX-11/780. For their workloads, 5% to 8%
of a user program’s run time was spent handling TLB misses [9].

More recent papers have investigated the TLB’s impact on user program performance. Chen,
Borg and Jouppi [6], using traces generated from the SPEC benchmarks, determined that, for a
reasonable range of page sizes, the amount of the ‘address space that could be mapped was more
important than the page size chosen in determining TLB miss rate. Talluri ez 4/. [25] have shown
that although older TLBs (as in the VAX-11/780) mapped large regions of memory, TLBs in
newer architectures like the MIPS do not. They showed that increasing the page size from 4
KBytes to 32 KBytes decreases the TLB’s contribution to CPI by a factor of at least 3!,

Operating system references also have a strong impact on TLB miss rates. Clark and Emer’s
measurements showed that although only 18% of all memory references in the system they exam-
ined were made by the operating system, these references resulted in 70% of all TLB misses. Sev-
eral recent papers [5, 18, 26] have pointed out that changes in the structure of operating systems
are altering the utilization of the TLB. For example, Anderson et al. [5] compared an old-style
monolithic operating system (Mach 2.5) and a newer microkernel operating system (Mach 3.0),
and found a 600% increase in TLB misses requiring a full kernel entry. Kernel TLB misses were
far and away the most frequently invoked system primitive for the Mach 3.0 kernel.

1. The TLB contribution was as high as 1.7 cycles per instruction for some benchmarks.
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Figure 1: The Monster Monitoring System

Monster is a hardware monitoring system consisting of a Tektronix DAS 9200 Logic Analyzer and a DECstation
3100 running three operating systems: Ultrix, OSF/1 and Mach 3.0. The DECstation motherboard has been
modified to provide access to the CPU pins, which lie between the processor and the cache. This allows the
logic analyzer to monitor virtually all system activity. To enable the logic analyzer to trigger on certain operating
systems events, such as the servicing of a TLB miss, each operating system has been instrumented with spe-
cial marker NOP instructions that indicate the entry and exit points of various routines.

This work distinguishes itself from previous work through its focus on software-managed
TLBs and its examination of the impact of changing operating system technology on TLB design.
Unlike hardware-managed TLBs, which have a relatively small refill penalty, the design trade-offs
for software-managed TLBs are rather complex. Our measurements show that the cost of han-
dling a single TLB miss on a DECstation 3100 running Mach 3.0 can vary from 20 to more than
400 cycles. Because of this wide variance in service times, it is important to analyze the frequency
of various types of TLB misses, their cost and the reasons behind them. The particular mix of TLB
miss types is highly dependent on the implementation of the operating system. We therefore focus
on the operating system in our analysis and discussion.

3 ANALYSIS TOOLS AND EXPERIMENTAL ENVIRONMENT

To monitor and analyze TLB behavior for benchmark programs running on a variety of operating
systems, we have developed a hardware monitoring system called Monster and a TLB simulator
called Tapeworm. The remainder of this section describes these tools and the experimental envi-
ronment in which they are used.

3.1. System Monitoring with Monster

The Monster monitoring system (Figure 1) enables comprehensive analyses of the interaction
between operating systems and architectures. Monster is comprised of a monitored DECstation
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Figure 2: Tapeworm

The Tapeworm TLB simulator is built into the operating system and is invoked whenever there is a real TLB
miss. The simulator uses the real TLB misses to simulate its own TLB configuration(s). Because the simulator
resides in the operating system, Tapeworm captures the dynamic nature of the system and avoids the prob-
lems associated with simulators driven by static traces.

3100, an attached logic analyzer and a controlling workstation. The logic analyzer component of
Monster contains a programmable hardware state machine and a 128K-entry trace buffer. The
state machine includes pattern recognition hardware that can sense the processor’s address, data
and control signals on every clock cycle. This state machine can be programmed to trigger on pre-
defined patterns appearing at the CPU bus and then store these signals and a timestamp (with 1ns
resolution) into the trace buffer. Monster’s capabilities are described more completely in [17].

In this study, we used Monster to obtain the TLB miss handling costs by instrumenting each
OS kernel with marker instructions that denoted the entry and exit points of various code seg-
ments (e.g. kernel entry, TLB miss handler, kernel exit). The instrumented kernel was then moni-
tored with the logic analyzer whose state machine detected and stored the marker instructions and
a nanosecond-resolution timestamp into the logic analyzer’s trace buffer. Once filled, the trace
buffer was post-processed to obtain a histogram of time spent in the different invocations of the
TLB miss handlers. This technique allowed us to time single executions of code paths with far
greater accuracy than can be obtained using a coarser resolution system clock. It also avoids the
problems inherent in the common method of improving system clock resolution by taking aver-
ages of repeated invocations [8].

3.2 TLB Simulation with Tapeworm

Many previous TLB studies have used trace-driven simulation to explore design trade-offs (3, 9,
25]. However, there are a number of difficulties with trace-driven TLB simulation. First, it is diffi-
cult to obtain accurate traces. Code annotation tools like pixie [24] or AE [14] generate user-
level address traces for a single task. However, more complex tools are required in order to obtain
realistic system-wide address traces that account for multiprocess workloads and the operating sys-
tem itself [2, 9]. Second, trace-driven simulation can consume considerable processing and stor-
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age resources. Some researchers have overcome the storage resource problem by consuming traces
on-the-fly [2, 6]. This technique requires that system operation be suspended for extended periods
of time while the trace is processed, thus introducing distortion at regular intervals. Third, trace-
driven simulation assumes that address traces are invariant to changes in the structural parameters
or management policies of a simulated TLB. While this may be true for cache simulation (where
misses are serviced by hardware state machines), it is not true for software-managed TLBs where a
miss (or absence thereof) directly changes the stream of instruction and data addresses flowing
through the processor. Because the code that services a TLB miss can itself induce a TLB miss, the
interaction between a change in TLB structure and the resulting system address trace can be quite
complex.

We have overcome these problems by compiling our TLB simulator, Tapeworm, directly into
the OSF/1 and Mach 3.0 operating system kernels. Tapeworm relies on the fact that all TLB
misses in an R2000-based DECstation 3100 are handled by software. We modified the operating
systems’ TLB miss handlers to call the Tapeworm code via procedural “hooks” after every miss.
This mechanism passes the relevant information about all user and kernel TLB misses directly to
the Tapeworm simulator. Tapeworm uses this information to maintain its own data structures and
to simulate other possible TLB configurations.

A simulated TLB can be either larger or smaller than the actual TLB. Tapeworm ensures that
the actual TLB only holds entries available in the simulated TLB. For example, to simulate a TLB
with 128 slots using only 64 actual TLB slots (Figure 2), Tapeworm maintains an array of 128 vir-
tual-to-physical address mappings and checks each memory reference that misses the actual TLB
to determine if it would have also missed the larger, simulated one. Thus, Tapeworm maintains a
strict inclusion property between the actual and simulated TLBs. Tapeworm controls the actual
TLB management policies by supplying placement and replacement functions called by the oper-
ating system miss handlers. It can simulate TLBs with fewer entries than the actual TLB by pro-
viding a placement function that never utilizes certain slots in the actual TLB. Tapeworm uses this
same technique to restrict the associativity of the actual TLB!. By combining these policy func-
tions with adherence to the inclusion property, Tapeworm can simulate the performance of a wide
range of different-sized TLBs with different degrees of associativity and a variety of placement and
replacement policies.

The Tapeworm design avoids many of the problems with trace-driven TLB simulation cited
above. Because Tapeworm is driven by procedure calls within the OS kernel, it does not require
address traces at all; the various difficulties with extracting, storing and processing large address
traces are completely avoided. Because Tapeworm is invoked by the machine’s actual TLB miss
handling code, it considers the impact of all TLB misses whether they are caused by user-level
tasks or the kernel itself. The Tapeworm code and data structures are placed in unmapped mem-
ory and therefore do not distort simulation results by causing additional TLB misses. Finally,
because Tapeworm changes the structural parameters and management policies of the actual TLB,

1. The actual R2000 TLB is fully-associative, but varying degrees of associativity can be emulated by using certain bits of a map-
ping’s virtual page number to restrict the slot (or set of slots) into which the mapping may be placed.
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Benchmark Description

compress Uncompresses and compresses a 7.7 Megabyte video clip.

IOzone A sequential file I/O benchmark that writes and then reads a 10
Megabyte file. Written by Bill Norcott.

jpeg_play The xloadimage program written by Jim Frost. Displays four
JPEG images.

mab John Ousterhout’s Modified Andrew Benchmark [18].

mpeg_play mpeg_play V2.0 from the Berkeley Plateau Research Group.
Displays 610 frames from a compressed video file [19].

ousterhout John Ousterhout’s benchmark suite from [18].

video_play A modified version of mpeg_play that displays 610 frames from
an uncompressed video file.

Operating System Description

Ultrix Version 3.1 from Digital Equipment Corporation.

OSFN OSF/1 1.0 is the Open Software Foundation’s version of Mach 2.5.

Mach 3.0 Carnagie Mellon University's version mk77 of the kernel and uk38
of the UNIX server.

Mach3+AFSin Same as Mach 3.0, but with the AFS cache manager (CM) run-
ning in the UNIX server.

Mach3+AFSout Same as Mach 3.0, but with the AFS cache manager running as a

separate task outside of the UNIX server. Not all of the CM func-
tionality has been moved into this server task.

Table 1: Benchmarks and Operating Systems

Benchmarks were compiled with the Ultrix C compiler version 2.1 (level 2 optimization). inputs were tuned so that
each benchmark takes approximately the same amount of time to run (100-200 seconds under Mach 3.0). All
measurements cited are the average of three runs.

the behavior of the system itself changes automatically, thus avoiding the distortion inherent in
fixed traces.

3.3 Experimental Environment

All experiments were performed on a DECstation 3100! running three different base operating
systems (Table 1): Ultrix, OSF/1, Mach 3.0. Each of these systems includes a standard UNIX file
system (UFS) [15]. Two additional versions of Mach 3.0 include the Andrew file system (AFS)
cache manager [22]. One version places the AFS cache manager in the Mach Unix Server (AFSin)
while the other migrates the AFS cache manager into a separate server task (AFSout).

To obtain measurements, all of the operating systems were instrumented with counters and
markers. For TLB simulation, Tapeworm was imbedded in the OSF/1 and Mach 3.0 kernels.

1. The DECstation 3100 contains an R2000 microprocessor (16.67 MHz) and 16 Megabytes of memory.
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Operating System Run Time | Total Nu!nber Tota|_ TLB Ser:/ice Ratio tq Ultr_ix TLB
(sec) of TLB Misses Time (sec) Service Time

Ultrix 3.1 583 9,177,401 11.82 1.0

OSF/1 892 11,691,398 51.85 4.39

Mach 3.0 975 24,349,121 80.01 6.77

Mach3+AFSin 1,371 33,933,413 106.56 9.02

Mach3+AFSout 1,517 36,649,834 134.71 11.40

Table 2: Total TLB Misses Across the Benchmarks

The total run time and number of TLB misses incurred by the seven benchmark programs. Although the same
application binaries were run on each of the operating systems, there is a substantial difference in the number of
TLB misses and their corresponding service times.

* Time time based on measured median time to service TLB miss.

Because the standard TLB handlers for OSF/1 and Mach 3.0 implement somewhat different
management policies, we modified OSF/1 to implement the same policies as Mach 3.0.

Throughout the paper we use the benchmarks listed in Table 1. The same benchmark binaries
were used on all of the operating systems. Each measurement cited in this paper is the average of
three trials.

4 OS IMPACT ON SOFTWARE-MANAGED TLBs

Operating system references have a strong influence on TLB performance. Yet, few studies have
examined these effects, with most confined to a single operating system [9]. However, differences
between operating systems can be substantial. To illustrate this point, we ran our benchmark suite
on each of the operating systems listed in Table 1. The results (Table 2) show that although the
same application binaries were run on each system, there is significant variance in the number of
TLB misses and total TLB service time. Some of these increases are due to differences in the func-
tionality between operating systems (i.e. UFS vs. AFS). Other increases are due to the structure of
the operating systems. For example, the monolithic Ultrix kernel spends only 11.82 seconds han-
dling TLB misses, while the microkernel-based Mach 3.0 spends 80.01 seconds.

Notice that while the total number of TLB misses increases 4 fold (from 9,177,401 to
36,639,834 for AFSout), the total time spent servicing TLB misses increases 11.4 times. This is
due to the fact that there are different types of software-managed TLB misses, each with its own
associated cost. For this reason, it is important to understand page table structure, its relationship
to TLB miss handling and the frequencies and costs of different types of misses.
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Figure 3: Page Table Structure in OSF/1 and Mach 3.0

The Mach page tables form a 3-level structure with the first two levels residing in virtual (mapped) space. The
top of the page table structure holds the user pages which are mapped by level 1 user (L1U) PTEs. These L1U
PTEs are stored in the L1 page table with each task having its own set of L1 page tables.

Mapping the L1 page tables are the level 2 (L2) PTEs. They are stored in the L2 page tables which hold both L2
PTEs and level 1 kernel (L1K) PTEs. In turn, the L2 pages are mapped by the level 3 (L3) PTEs stored in the
L3 page table. At boot time, the L3 page table is fixed in unmapped physical memory. This serves as an anchor
to the page table hierarchy because references to the L3 page table do not go through the TLB.

The MIPS R2000 architecture has a fixed 4 KByte page size. Each PTE requires 4 bytes of storage. Therefore,
a single L1 page table page can hold 1,024 L1U PTEs, or 4 Megabytes of virtual address space. Likewise, the
L2 page tables can directly map either 4 Megabytes of kernel data or indirectly map 4 GBytes of L1U data.

4.1 Page Tables and Translation Hardware

OSF/1 and Mach 3.0 both implement linear! page table structures (Figure 3). Each task has its
own level 1 (L1) page table, which is maintained by machine-independent pmap code [21].
Because the user page tables can require several megabytes of space, they are themselves stored in
the virtual address space. This is supported through level 2 (L2 or kernel) page tables, which also
map other kernel data. Because kernel data is relatively large and sparse, the L2 page tables are also

1. Rather than an inverted page table [27].
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TLB Miss Type | Ultrix | OSF/1 | Mach 3.0
L1U 16 20 20
L1K 333 355 294
L2 494 511 407
L3 —_— 354 286
Modify 375 436 499
Invalid 336 277 267

Table 3: Costs for Different TLB Miss Types

This table shows the number of machine cycles (at 60 ns/cycle) required to service different types of TLB
misses. To determine these costs, Monster was used to collect a 128K-entry histogram of timings for each
type of miss. We separate TLB miss types into the six categories described below. Note that Ultrix does not
have L3 misses because it implements a 2-level page table.

L1U TLB miss on a level 1 user PTE.

L1K TLB miss on a leve!l 1 kernel PTE.

L2 TLB miss on level 2 PTE. This can oniy occur after a miss on a level 1 user PTE.

L3 TLB miss on a level 3 PTE. Can occur after either a level 2 miss or a level 1 kernel miss.

Modify A page protection violation.
Invalid  An access to an page marked as invalid (page fault).

mapped. This gives rise to a 3-level page table hierarchy and four different page table entry (PTE)
types.

The R2000 processor contains a 64-slot, fully-associative TLB, which is used to cache
recently-used PTEs. When the R2000 translates a virtual address to a physical address, the rele-
vant PTE must be held by the TLB. If the PTE is absent, the hardware invokes a trap to a software
TLB miss handling routine that finds and inserts the missing PTE into the TLB. The R2000 sup-
ports two different types of TLB miss vectors. The first, called the user TLB (uTLB) vector, is used
to trap on missing translations for L1U pages. This vector is justified by the fact TLB misses on
L1U PTEs are typically the most frequent [11]. All other TLB miss types (such as those caused by
references to kernel pages, invalid pages or read-only pages) and all other interrupts and excep-
tions trap to a second vector, called the generic exception vector.

For the purposes of this study, we define TLB miss types (Table 3) to correspond to the page
table structure implemented by OSF/1 and Mach 3.0. In addition to L1U TLB misses, we define
five subcategories of kernel TLB misses (L1K, L2, L3, modify and invalid). Table 3 also shows our
measurements of the time required to handle the different types of TLB misses. The wide differen-
tial in costs is primarily due to the two different miss vectors and the way that the OS uses them.
L1U PTEs can be retrieved within 16 cycles because they are serviced by a highly-tuned handler
inserted at the uTLB vector. However, other miss types require anywhere from about 300 to over
500 cycles because they are serviced by the generic handler residing at the generic exception vec-
tor.
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0S Mapped Kernel S.ervit.:e Service- . Additiopal
Data Structures | Migration | Decomposition OS Services
Ultrix Few None None X Server
OSF/1 Many None None X Server
Mach 3.0 Some Some Some X Server
Mach3+AFSin Some Some Some X Server & AFS CM
Mach3+AFSout Some Some Many X Server & AFS CM

Table 4: Characteristics of the OS’s Studied

‘T'he R2000 I'LB hardware supports partitioning ot the 1' LB into two sets ot slots. 1he lower
partition is intended for PTEs with high retrieval costs, while the upper partition is intended to
hold more frequently-used PTEs that can be re-fetched quickly (e.g. L1U) or infrequently-refer-
enced PTEs (e.g. L3). The TLB hardware also supports random replacement of PTEs in the upper
partition through a hardware index register that returns random numbers in the range 8 to 63.
This effectively fixes the TLB partition at 8, so that the lower partition consists of slots 0 through
7, while the upper partition consists of slots 8 through 63.

4.2 OS Influence on TLB Performance

In the operating systems studied, there are three basic factors which account for the variation in
the number of TLB misses and their associated costs (Table 4 and Figure 4). They are: 1) the use
of mapped memory by the kernel (both for page tables and other kernel data structures); 2) the
placement of functionality within the kernel, within a user-level server process (service migration),
or divided among several server processes (OS decomposition); and 3) the range of functionality
provided by the system (additional OS services). The rest of this section uses our data to examine
the relationship between these OS characteristics and TLB performance.

421 Mapping Kernel Data Structures

Unmapped portions of the kernel’s address space do not rely on the TLB. Mapping kernel data
structures, therefore, adds a new category of TLB misses: L1K misses. For the operating systems
we examined, an increase in the number of L1K misses can have a substantial impact on TLB per-
formance because each L1K miss requires several hundred cycles to service.

Ulwrix places most of its data structures in a small, fixed portion of unmapped memory that is
reserved by the OS at boot time. However, to maintain flexibility, Ultrix can draw upon the much
larger virtual space if it exhausts this fixed-size unmapped memory. Table 5 shows that few L1K

misses occur under Ultrix.
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In contrast, OSF/1 and Mach 3.0' place most of their kernel dara structures in mapped vir-
tual space, forcing them to rely heavily on the TLB. Both OSF/1 and Mach 3.0 mix the L1K
PTEs and L1U PTEs in the TLB’s 56 upper slots. This contention produces a large number of
L1K misses. Further, handling an L1K miss can result in an L3 miss®. In our measurements,
OSF/1 and Mach 3.0 both incur more than 1.5 million L1K misses. OSF/1 must spend 62% of
its TLB handling time servicing these misses while Mach 3.0 spends 37% of its TLB handling
time servicing L1K misses.

4.2.2 Service Migration

In a traditional operating system kernel such as Ultrix or OSF/1 (Figure 4), all OS services reside
within the kernel, with only the kernel’s data structures mapped into the virtual space. Many of
these services, however, can be moved into separate server tasks, increasing the modularity and
extensibility of the operating system [5]. For this reason, numerous microkernel-based operating
systems have been developed in recent years (e.g. Chorus [10], Mach 3.0 [1], V [7]).

By migrating these services into separate user-level tasks, operating systems like Mach 3.0 fun-
damentally change the behavior of the system for two reasons. First, moving OS services into user
space requires both their program text and data structures to be mapped. Therefore, they must
share the TLB with user tasks, possibly conflicting with the user tasks’ TLB footprints. Comparing
the number of L1U misses in OSF/1 and Mach 3.0, we see a 2.2 fold increase from 9.8 million to
21.5 million. This is directly due to moving OS services into mapped user space. The second
change comes from moving OS data structures from mapped kernel space to mapped user space.
In user space, the data structures are mapped by L1U PTEs, which are handled by the fast uTLB
handler (20 cycles for Mach 3.0). In contrast, the same data structures in kernel space are mapped
by L1K PTEs, which are serviced by the general exception handler.

4.2.3 Operating System Decomposition
Moving OS functionality into a monolithic UNIX server does not achieve the full potential of a

microkernel-based operating system. Operating system functionality can be further decomposed
into individual server tasks. The resulting system is more flexible and can provide a higher degree
of fault tolerance.

Unfortunately, experience with fully decomposed systems has shown severe performance
problems. Anderson et al. [5] compared the performance of a monolithic Mach 2.5 and a micro-
kernel Mach 3.0 operating system with a substantial portion of the file system functionality run-
ning as a separate AFS cache manager task. Their results demonstrate a significant performance
gap between the two systems with Mach 2.5 running 36% faster than Mach 3.0, despite the fact
that only a single additional server task is used. Later versions of Mach 3.0 have overcome this
performance gap by integrating the AFS cache manager into the UNIX Server.

1. Like Ultrix, Mach 3.0 reserves a portion of unmapped space for dynamic allocation of data structures. However, it appears that
Mach 3.0 quickly uses this unmapped space and must begin to allocate mapped memory. Once Mach 3.0 has allocated mapped
space, it does not distinguish between mapped and unmapped space despite their differing costs.

2. L1K PTE:s are stored in the mapped, L2 page tables (Figure 3).
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System ;l‘::;' ('::2) L1U L1K L2 L3 | Invalid | Modify | Total
Ultrix 583 9,021,420 135,847 3,828 16,191 1151 9,177,401
OSF/1 892 9,817,502 | 1,509,973 34,972 | 207,163 | 79,299 | 42,490 11,691,398
Mach3 975 21,466,165 | 1,682,722 352,713 | 556,264 | 165,849 | 125,409 | 24,349,121
Mach3+AFSin 1,371 30,123,212 | 2,493,283 330,803 | 690,441 | 168,429 | 127,245 | 33,933,413
Mach3+AFSout 1,517 31,611,047 | 2,712,979 | 1,042,527 | 987,648 | 168,128 | 127,505 | 36,649,834
Table 5: Number of TLB Misses
System T°t?r'i‘T“LeB(ss:;;’ ‘el 14y | L1k | L2 | L3 |Invalid | Modify :/;u‘:‘f;f:::
Ultrix 11.82 8.66 | 2.71 | 0.11  — 0.33 0.00 2.03%
OSF/1 51.85 11.78 1 32.16 | 1.07 4.40 1.32 1.1 5.81%
Mach3 80.01 25.76 | 29.68 | 8.61 9.55 2.66 3.75 8.21%
Mach3+AFSin 106.56 36.15143.98 | 8.08 11.85 2.70 3.81 7.77%
Mach3+AFSout 134.71 37.93147.86|25.46| 16.95 2.69 3.82 8.88%

Table 6: Time Spent Handling TLB Misses

These tables show the number of TLB misses and amount of time spent handling TLB misses for each of the oper-
ating systems studied. In Ultrix, most of the TLB misses and TLB miss time is spent servicing L1U TLB misses. How-
ever, for OSF/1 and various versions of Mach 3.0, L1K and L2 misses can overshadow the L1U miss time. The
increase in Modify misses is due to OSF/1 and Mach 3.0’s use of protection to implement copy-on-write memory
sharing.

User Mode

User Mode

ULTRIX &

OSF/1

File system, networking, scheduling and Unix
interface reside inside a monolithic kernel.
Kernel text resides in unmapped space.
Ultrix places most kernel data structures in
unmapped space while OSF/1 uses mapped
space for many of its kernel data structures.

Unix Server
File system

File system ?
ggltworkgng gcehme dmnli ::g Ul)ix Server
eduling File system
Kernel Mode Networking

Mach 3.0
Kernel Mode

File system, networking, and Unix interface
reside inside the monolithic Unix Server. Ker-
nel text and some data reside in unmapped
virtual space but the Unix Server is in
mapped user space.

User Mode

Scheduling

Mach 3.0
Kernel Mode

Same as standard Mach 3.0, but with
increased functionality provided by a server
task. The AFS Cache Manager is either inside
the Unix Server or in its own, user-level server
(as pictured above).

Figure 4: Monolithic and Microkernel Operating Systems

A comparison of the monolithic Ultrix and OSF/1 and the microkernel Mach 3.0. In Ultrix and OSF/1, all OS ser-
vices reside inside the kernel. In Mach 3.0, these services have been moved into the UNIX server. Therefore, most
of Mach 3.0’s functionality resides in mapped virtual space. Mach3+AFS is a modified version of Mach 3.0 with the
AFS Cache Manager residing in either the Unix Server (AFSin) or as a separate user-level server (AFSout).
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We compared our benchmarks running on the Mach3+AFSin system against the same bench-
marks running on the Mach3+AFSout system. The only structural difference between the systems
is the location of the AFS cache manager. The results (Table 5) show a substantial increase in the
number of both L2 and L3 misses. Many of the L3 misses are due to missing mappings needed to
service L2 misses.

The L2 PTEs compete for the R2000’s 8 lower TLB slots. Yet, the number of L2 slots required
is proportional to the number of tasks concurrently providing an OS service. As a result, adding
just a single, tightly-coupled service task overloads the TLB'’s ability to map L2 page tables.
Thrashing results. This increase in L2 misses will grow ever more costly as systems continue to
decompose services into separate tasks.

4.2.4 Additional OS Functionality

In addition to OS decomposition and migration, many systems provide supplemental services
(e.g- X, AFS, NFS, Quicktime). Each of these services, when interacting with an application, can
change the operating system behavior and how it interacts with the TLB hardware.

For example, adding a distributed file service (in the form of an AFS cache manager) to the
Mach 3.0 Unix server adds 10.39 seconds to the L1U TLB miss handling time (Table 6). This is
due solely to the increased functionality residing in the Unix server. However, L1K misses also
increase, adding 14.3 seconds. These misses are due to the additional memory management the
Mach 3.0 kernel must provide for the AFS cache manager. Increased functionality will have an
important impact on how architectures support operating systems and to what degree operating
systems can increase and decompose functionality.

5 Improving TLB Performance

This section examines both hardware- and software-based techniques for improving TLB perfor-
mance. However, before suggesting changes, it is helpful to review the motivations behind the
design of the R2000 TLB described in Section 4.1.

The MIPS R2000 TLB design is based on two principal assumptions [11]. First, L1U misses
are assumed to be the most frequent (> 95%) of all TLB miss types. Second, all OS text and most
of the OS data structures (with the exception of user page tables) are assumed to be unmapped.
The R2000 TLB design reflects these assumptions by providing two types of TLB miss vectors:
the fast uTLB vector and the much slower general exception vector. These assumption are also
reflected in the partitioning of the 64 TLB slots into the two disjoint sets of 8 lower slots and 56
upper slots. The 8 lower slots are intended to accommodate a traditional UNIX task (which
requires at least three L2 PTEs) and UNIX kernel (2 PTEs for kernel data), with three L2 PTEs
left for additional data segments.

Our measurements (Table 5) demonstrate that these design choices make sense for a tradi-
tional UNIX operating system such as Ultrix. For Ultrix, L1U misses constitute 98.3% of all
misses. The remaining miss types impose only a small penalty. However, these assumptions break
down for the OSF/1- and Mach 3.0-based systems. In these systems, the costly non-L1U misses
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account for the majority of time spent handling TLB misses. Handling these misses substantially
increases the cost of software-TLB management (Table 6).

The rest of this section proposes and explores four ways in which software-managed TLBs can
be improved. First, the cost of certain types of TLB misses can be reduced by modifying the TLB
vector scheme. Second, the number of L2 misses can be reduced by increasing the number of
lower slots'. Third, the frequency of most types of TLB misses can be reduced if more total TLB
slots are added to the architecture. Finally, we examine the tradeoffs between TLB size and asso-
ciativity.

5.1 Reducing Miss Costs

The data in Table 5 show a significant increase in L1K misses for OSF/1 and Mach 3.0 when
compared against Ultrix. This increase is due to both systems reliance on dynamic allocation of
kernel mapped memory. The R2000’s TLB performance suffers because L1K misses must be han-
dled by the costly generic exception vector, which requires 294 cycles (Mach 3.0).

These miss costs can be reduced either through better hardware support or through more
careful coding of the software miss handlers. For example, hardware support could consist of addi-
tional vectors for LIK and L2 misses. Based on our timing and analysis of the TLB handlers, we
estimate that vectoring the L1K misses through the uTLB handler would reduce the cost of L1K
misses from 294 cycles (for Mach 3.0) to approximately 20 cycles. We also estimate that dedicat-
ing a separate TLB miss vector for L2 misses would decrease their cost from 407 cycles (Mach 3.0)
to under 40 cycles. Alternatively, a software solution could test for level 2 PTE misses at the begin-
ning of the generic exception vector, before invocation of the code that saves register state and
allocates a kernel stack.

Table 7 shows the benefits of adding additional vectors. It uses the same data for
Mach3+AFSin as shown in Table 5, but recomputed with the new cost estimates resulting from
the refinements above. The result of combining these two modifications is that total TLB miss ser-
vice time drops from 106.56 seconds down to 58.29 seconds. L1K service time drops 93% and L2
miss service time drops 90%. More importantly, the L1K and L2 misses no longer contribute sub-
stantially to overall TLB service time. This minor design modification enables the TLB to much
more effectively support a microkernel-style operating system with multiple servers in separate
address spaces.

Multiple TLB miss vectors provide additional benefits. In the generic trap handler, dozens of
load and store instructions are used to save and restore a task’s context. Many of these loads and
stores cause cache misses requiring the processor to stall. As processor speeds continue to outstrip
memory access times, the CPI in this save/restore region will grow, increasing the number of
wasted cycles and making non-uTLB misses much more expensive. TLB-specific miss handlers
will not suffer the same performance problems because they contain only the single data reference
to load the missed PTE from the memory-resident page tables.

1. The newer MIPS R4000 processor [13] implements both of these changes.
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Previous New
T of Previous New Total Cost Total Time
PTyEp:Aiss Miss Miss Counts from Cost Saved
Costs Costs Table 6 (sec)
(sec)
(sec)
L1U 20 20 30,123,212 36.15 36.15 0.00
L2 294 20 330,803 8.08 0.79 7.29
L1K 407 40 2,493,283 43.98 299 40.99
L3 286 286 690,441 11.85 11.85 0.00
Modify 499 499 127,245 3.81 3.81 0.00
Invalid 267 267 168,429 2.70 2.70 0.00
Total 33,933,413 106.56 58.29| 48.28
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Table 7: Benefits of Reduced TLB Miss Costs

This table shows the benefits of reducing TLB miss costs through the hardware-based approach of adding a
separate interrupt vector for L2 misses and allowing the uTLB handler to service L1K misses. This change
reduces their cost to 40 and 20 cycles, respectively. Their contribution to TLB miss time drops from 8.08 and
43.98 seconds down to 0.79 and 2.99 seconds, respectively.

5.2 Partitioning the TLB

The MIPS R2000 TLB fixes the partition between the 8 lower slots and the 56 upper slots. This
partitioning is appropriate for an operating system like Ulwrix [11]. However, as OS designs
migrate and decompose functionality into separate user-space tasks, having only 8 lower slots
becomes insufficient. This is because, in a decomposed system, the OS services that reside in dif-
ferent user-level tasks compete by displacing each other’s L2 PTE mappings from the TLB.

In the following sections we examine the influences of operating system structure, workload,
PTE placement policy, and PTE replacement policy on the optimal partition point. We then pro-
pose and adaptive mechanism for dynamically adjusting the partition point.

5.2.1 Influences on the Optimal Partition Point

To better understand the impact of the position of the partition point, we measured how L2
miss rates vary depending on the number of lower TLB slots available. Tapeworm was used to vary
the number of lower TLB slots from 4 to 16, while the total number of TLB slots was kept fixed at
64. OSF/1 and all three versions of Mach 3.0 ran the mab benchmark over the range of configu-
rations and the total number of L2 misses was recorded (Figure 5).

For each operating system, two distinct regions can be identified. The left region exhibits a
steep decline which levels off near zero seconds. This shows a significant performance improve-
ment for every extra lower TLB slot made available to the system, up to a certain point. For exam-
ple, simply moving from 4 to 5 lower slots decreases OSF/1 L2 miss handling time by almost
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Figure 5: L2 PTE Miss Cost vs. Number of Lower Siots

The total L2 miss time for the mab benchmark under different operating systems. As the TLB reserves
more lower slots for L2 PTEs, the total time spent servicing L2 misses becomes negligible.

50%. After 6 lower slots, the improvement slows because the TLB can hold most of the L2 PTEs
required by OSF/1%.

In contrast, the Mach 3.0 system continues to show significant improvement up to 8 lower
slots. The additional 3 slots needed to bring Mach 3.0’s performance in line with OSF/1 are due
to the migration of OS services from the kernel to the UNIX Server in user space. In Mach 3.0,
whenever a task makes a system call to the UNIX server, the task and the UNIX server must share
the TLB’s lower slots. In other words, the UNIX server’s three L2 PTE’s (text segment, data seg-
ment, stack segment) increases the lower slot requirement, for the system as a whole, to 8.

Mach3+AFSin’s behavior is similar to Mach 3.0 because the additional AFS cache manager
functionality is mapped by the UNIX server’s L2 PTEs. However, when the AFS cache manager is
decomposed into a separate user-level server, the TLB must hold three additional L2 PTEs (11
total). Figure 5 shows how Mach3+AFSout continues to improve until all 11 L2 PTEs can simul-
taneously reside in the TLB.

Unfortunately, increasing the size of the lower partition at the expense of the upper partition
has the side-effect of increasing the number of L1U, L1K and L3 misses as shown in Figure 6.
Coupling the decreasing L2 misses with the increasing L1U, L1K and L3 misses yields an optimal
partition point shown in Figure 6.

1. Two L2 PTE:s for kernel data structures and one each for a task’s text, data and stack segments.
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Figure 6: Total Cost of TLB Misses vs. Number of Lower TLB Slots

The total cost of TLB miss servicing is plotted against the L1U, L1K, L2 and L3 components of this total time.
The number of lower TLB slots varies from 4 to 32, while the total number of TLB entries remains constant at
64.

The benchmark is video_play running under Mach 3.0.

This partition point, however, is only optimal for the particular operating system. Different
operating systems with varying degrees of service migration have different optimal partition
points. For example, the upper graph in Figure 7 shows an optimal partition point of 8 for Mach
3.0, 10 for Mach3+AFSin and 12 for Mach3+AFSout, when running the Ousterhout bench-
mark.

Applications and their level of interaction with OS services also influence the optimal parti-
tion point. The lower graph in Figure 7 shows the results for various applications running under
Mach 3.0. compress has an optimal partition point at 8 slots. However, video_play requires
14 and mpeg_play requires 18 lower slots to achieve optimal TLB performance. The need for
additional lower slots is due to video_play and mpeg_play's increased interaction with services
like the BSD server and the X server. It also underscores the importance of understanding both
the decomposition of the system and how applications interact with the various OS services.

The TLB partition was implemented to allow operating systems to separate PTEs with low
retrieval costs from PTEs with higher retrieval costs. All four of our operating systems use the
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Figure 7: Optimal Partition Points for Various Operating Systems and Benchmarks

As more lower slots are allocated, fewer upper slots are available for the L1U, L1K and L3 PTEs. This yields
an optimal partition point which varies with the operating system and benchmark.

The upper graph shows the average of 3 runs

of the ousterhout benchmark run under 3 different operat-

ing systems. The lower graph shows the average of 3 runs for 3 different benchmarks run under Mach 3.0.
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Policy PTE Placement Cost

A Level 2 PTEs in lower partition. All other PTEs in 1.91
upper partition.

B Level 2 and 3 PTEs in lower partition. Level 1 user 3.92
and kernel PTEs in upper partition.

C All PTEs in lower partition, except for level 1 user 2.46
PTEs. which are placed in upper partition.

D No partitioning at all. 11.92

Table 8: Alternate PTE Placement Policies

This table shows the affect of alternate PTE placement policies on TLB management cost. The cost is the total
time spent (in seconds) to handle TLB misses for the Mach 3.0 system running ousterhout. The partition
point is fixed at 8 slots for the lower partition and 56 slot for the upper partition.

lower slots for L2 PTEs and the upper slots for all other types of PTEs. However it is unclear why
the costly-to-retrieve L1K and L3 PTEs are not placed in the lower slots, but are mixed with the
L1U PTEs. Further, if mixing costly-to-retrieve mappings with L1U PTEs is acceptable, it is
unclear if PTE partitioning is required at all.

To determine the effects of other PTE placement choices, we modified the miss handlers of
the baseline systems to implement other meaningful policies. The results are shown in Table 8.
Policy A is identical to that implemented by the baseline systems. The importance of some sort of
partitioning is shown by Policy D, where all PTEs are mixed together, and which demonstrates
very poor performance. At first glance, the baseline policy A appears to be the most desirable.
However, note that with policies B and C, the lower partition was not permitted to grow beyond
8 slots to accommodate the additional PTE types allocated to this partition.

To see if the performance of policies B and C would improve with a larger lower partition, we
varied the partition point from its fixed location at 8. Figure 8 shows the results for this experi-
ment performed for PTE placement policies A, B and C. Only the total curves are shown. Note
that each policy has different optimal points, but at these optimal points the performance is
roughly the same for each system. From this we can conclude that the most important PTE place-
ment policy is the separation of L1U and L2 PTEs (to avoid the very poor performance of policy
D). However, the differences between the other PTE placement policies A, B and C are negligible,
provided that the partition point is tuned to the optimal region.

Careful software management of the TLB can extend the degree to which separate services can
coexist in a system before performance degrades to an unacceptable level. This is important
because a key characteristic of microkernel system structuring is that logically independent ser-
vices should reside in separate user-level tasks that communicate through message passing. To
illustrate this more clearly, we constructed a workload that emulates the interaction between serv-
ers in a multi-server microkernel OS. In this workload, a collection of user-level tasks mimic the
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Figure 8: TLB Partitioning for Different PTE Placement Policies

This is the same experiment as that of Table 8, except with different PTE placement policies. Only the total TLB
management costs are shown. The total cost for policy D (no partition) is off the scale of the plot at 11.92 sec-
onds.

behavior of communicating OS servers by passing a token between each other. The number of
servers and the number of pages that each server touches before passing the token along can be
varied. Figure 9 shows the results of running this multi-server emulator on the Mach 3.0 kernel.
With each additional server, the optimal partitioning point moves farther to the right. A system
that leaves the partition point fixed at 8 will quickly encounter a performance bottleneck due to
the addition of servers. However, if the TLB partition point is adjusted to account for the number
of interacting servers in the system, a much greater number of servers can be accommodated. Nev-
ertheless, note that as more servers are added, the optimal point still tends to shift upwards, limit-
ing the number of tightly-coupled servers that can coexist in the system. This bottleneck is best
dealt with through additional hardware support in the form of larger TLBs or miss vectors dedi-
cated to level 2 PTE misses.

The baseline systems use a FIFO replacement policy for the lower partition and a random
replacement policy for the upper partition when selecting a PTE to evict from the TLB after a
miss. To explore the effects of using other replacement policies in these two partitions, we modi-
fied the miss handlers to try other combinations of FIFO or random replacement in the upper
and lower partitions. The results of one such experiment are shown in Figure 10. For these work-
loads, differences between the replacement policies are negligible over the full range of TLB parti-
tion points, indicating that the choice of replacement policy is not very important.
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Figure 9:TLB Partitioning under Multi-server Operating Systems

This graph shows total TLB management costs for Mach 3.0 running a workload that emulates a multi-server
system by passing a token among different numbers of user-level tasks.
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Figure 10: Replacement Policies

This graph shows the performance of different replacement policies (random or FIFO) for the Mach 3.0 system
implementing PTE placement policy A on ousterhout.



Fixed Static Dynamic
Partitioning | Partitioning | Partitioning
Workload (sec) (sec) (sec)
ousterhout 3.92 (8) 1.27 (18) 1.11
video_play | 16.1(8) 14.7 (18) 14.3
IOzone 1.30 (8) 0.43 (32) 0.43

Uhlig et al.
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Table 9: Different TLB Partitioning Schemes

This table compares the total TLB management costs when fixing the partition at 8, when setting it to the static
optimal point (shown in parentheses), and when using dynamic partitioning. The PTE placement policy is B.

5.2.2 Dynamic Partitioning

We have shown that the best place to set the TLB partition point varies depending upon the oper-
ating system structure, workload, and PTE placement policy, but not the replacement policy.
Given knowledge of these factors ahead of time, it is possible to determine the optimal partition
point and then statically fix it for the duration of some processing run. However, although an
operating system can control PTE placement policy and have knowledge of its own structure, it
can do little to predict the nature of future workloads that it must service. Although system
administrators might have knowledge of the sort of workloads that are typically run at a given
installation, parameters that must be tuned manually are often left untouched or are set incor-
rectly.

To address these problems, we have designed and implemented a simple, adaptive algorithm
that dynamically self-tunes the TLB partition to the optimal point. The algorithm is invoked after
some fixed number of TLB misses at which time it decides to move the partition point either up,
down, or not at all. It is based on a hill-climbing approach, where the objective function is com-
puted from the two most recent settings of the partition point. At each invocation, the algorithm
tests to see if the most recent partition change resulted in a significant increase or decrease in TLB
miss handling costs when compared against the previous setting. If so, the partition point is
adjusted as appropriate. This algorithm tends to hone-in on the optimal partition point and tracks
this point as it changes with time.

We tested this algorithm on each of the benchmarks in our suite and compared the resultant
miss handling costs against runs that fix the partition at 8 and at the static optimal point for the
given benchmark. The results are shown in Table 9. Note that dynamic partitioning yields results
that are at times slighdy better than the static optimal. To explain this effect, we performed
another experiment that records the movement of the TLB partition point during the run of gcc,
a component of the mab benchmark. The results (see Figure 11) show that the optimal partition
point changes with time as a benchmark moves among its working sets. Because the dynamic par-
titioning algorithm tracks the optimal point with time, it has the potential to give slightly better
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Figure 11: Dynamic TLB Partitioning during gcc

This graph shows the movement of the TLB partition with time while running gcc on a system that implements
the dynamic, adaptive partitioning algorithm.

results than the static optimal which remains fixed at some “good average point” for the duration
of arun.

The invocation period for the dynamic partitioning algorithm can be set so that its overhead
is minimal. It should be noted, however, that there is an additional cost for maintaining the TLB
miss counts that are required to compute the objective function. Although this cost is negligible
for the already costly L2 and L3 PTE misses, it is more substantial for the highly-tuned L1 PTE
miss handler.! Hardware support in the form of a register that counts L1 misses could help to
reduce this cost.

5.3. Increasing TLB Size

In this section we examine the benefits of building TLBs with additional upper slots. The trade-
offs here can be more complex because the upper slots are used to hold three different types of
mappings (L1U, L1K and L3 PTEs), whereas the lower slots only hold L2 PTEs.

To better understand the requirements for upper slots, we used Tapeworm to simulate TLB
configurations ranging from 32 to 512 upper slots. Each of these TLB configurations was fully-
associative and had 16 lower slots to minimize L2 misses.

Figure 12 shows TLB performance for all seven benchmarks under OSF/1. For smaller TLBs,
the most significant component is L1K misses; L1U and L3 misses account for less than 35% of
the total TLB miss handling time. The prominence of L1K misses is due to the large number of
mapped data structures in the OSF/1 kernel. However, as outlined in Section 5.1, modifying the

1. Maintaining a memory-resident counter in the level 1 miss handler requires a load-increment-store sequence. On the R2000,
this can require anywhere from 4 to 10 cycles, depending on whether the memory reference hits the data cache. This is a 20% to
50% increase over the 20-cycle average currenty required by the level 1 miss handler.
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Figure 12: TLB Service Time vs. Number of Upper TLB Slots

The total cost of TLB miss servicing for all seven benchmarks run under OSF/1. The number of upper slots
was varied from 8 to 512, while the number of lower slots was fixed at 16 for all configurations.

Other is the sum of the invalid, modify and L2 miss costs.

hardware trap mechanism to allow the uTLB handler to service L1K misses reduces the L1K ser-
vice time to an estimated 20 cycles. Therefore, we recomputed the total time using the lower cost
L1K miss service time (20 cycles) for the OSF/1, Mach 3.0 and Mach3+AFSout systems (Figure
13).

With the cost of L1K misses reduced, TLB miss handling time is dominated by L1U misses.
In each system, there is a noticeable improvement in TLB service time as TLB sizes increase from
32 to 128 slots. For example, moving from 64 to 128 slots decreases Mach 3.0 TLB handling time
by over 50%.

After 128 slots, invalid and modify misses dominate (listed as “other” in the figures). Because
the invalid and modify misses are constant with respect to TLB size, any further increases in TLB
size will have a negligeable effect on overall TLB performance. This suggests that a 128- or 256-
entry TLB may be sufficient to support both monolithic operating systems like Ultrix and OSF/1
and microkernel operating systems like Mach 3.0. Of course, even larger TLBs may be needed to
support large applications such as CAD programs. However, this study is limited to TLB support
for operating systems running a modest workload. The reader is referred to [6] for a detailed dis-
cussion of TLB support for large applications.
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Figure 13: Modified TLB Service Time vs.
Number of Upper TLB Slots

The total cost of TLB miss servicing (for all seven
benchmarks) assuming L1K misses can be handled by
the uTLB handler in 20 cycles and L2 misses are han-
dled in 40 cycles. The top graph is for OSF/1, the mid-
dle for Mach 3.0 and the bottom for Mach3+AFSout.
Note that the scale varies for each graph.

5.4. TLB Associativity

Large, fully-associative TLBs (128" entries) are difficult to build and can consume nearly twice the
chip area of a direct mapped structure of the same capacity [16]. To achieve high TLB perfor-
mance, computer architects could implement larger TLBs with lesser degrees of associativity. The
following section explores the effectiveness of TLBs with varying degrees of associativity.

Many current-generation processors implement fully-associative TLBs with sizes ranging from
32 to more than 100 entries (Table 10). However, technology limitations may force designers to
begin building larger TLBs which are not fully-associative. To explore the performance impact of
limiting TLB associativity, we used Tapeworm to simulate TLBs with varying degrees of associa-

tivity.
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Number of | Number of
Processor Associativity | Instruction Data
Siots Slots

DEC Alpha 21064 full 8+4 32
IBM RS/6000 2-way 32 128
TiViking full 64 unified R
MIPS R2000 full 64 unified S
MIPS R4000 full 48 unified _
HP 9000 Series 700 ful 96+4 96+4
Intel 486 4-way 32 unified

Table 10: Number of TLB Slots for Current Processors
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Note that page sizes vary from 4K to 16 Meg and are variable in many processors. The MIPS R4000 actually
has 48 double slots. Two PTEs can reside in one doubie slot if their virtual mappings are to consecutive pages

in the virtual address space. [13]

The top two graphs in Figure 14 show the total TLB miss handling time for the

mpeg_play benchmark under Mach3+AFSout and the video_play benchmark under Mach 3.0.

Throughout the range of TLB sizes, increasing associativity reduces the total TLB handling time.
These figures illustrate the general “rule-of-thumb” that doubling the size of a caching structure

will yield about the same performance as doubling the degree of associativity [20].

Some benchmarks, however, can perform badly for TLBs with a small degree of set associativ-

ity. For example, the bottom graph in Figure 14 shows the total TLB miss handling time for the
compress benchmark under OSF/1. For a 2-way set-associative TLB, compress displays
pathological behavior. Even a 512-entry, 2-way set-associative TLB is outperformed by a much
smaller 32-entry, 4-way set-associative TLB.

These three graphs show that reducing associativity to enable the construction of larger TLBs

is an effective technique for reducing TLB misses.
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6 SUMMARY

This paper demonstrates to architects and operating system designers the importance of under-
standing the interactions between TLBs and operating systems. Software-management of TLBs
magnifies the importance of this understanding, because of the large variation in TLB miss service
times that can exist.

TLB behavior depends upon the kernel’s use of virtual memory to map its own data struc-
tures, including the page tables themselves. TLB behavior is also dependent upon the division of
service functionality between the kernel and separate user tasks. Currently popular microkernel
approaches rely on server tasks, but can fall prey to performance difficulties. Running on a
machine with a software-managed TLB like that of the MIPS R2000, current microkernel systems
perform poorly with only a modest degree of service decomposition into separate server tasks.

We have presented measurements of actual systems on a current machine, together with simu-
lations of architectural problems, and have related the results to the differences between operating
systems. We have outlined four architectural solutions to the problems experienced by microker-
nel-based systems: changes in the vectoring of TLB misses, flexible partitioning of the TLB, pro-
viding larger TLBs and changing the degree of associativity to enable construction of larger TLBs.
The first two can be implemented at little cost, as is done in the R4000.
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