DISTRIBUTED DATABASE MANAGEMENT SYSTEMS
ISSUES AND APPROACHES

Amjad Umar

The University of Michigan
Ann Arbor, Michigan 48109

Technical Report No. 88-8
July 1988

TABLE OF CONTENTS

DISTRIBUTED DATABASE MANAGEMENT SYSTEMS
1. INTRODUCTION o o e e e s e e e e s e e e e
2. REVIEW OF BASIC CONCEPTS

2.1 DATABASE MANAGEMENT CONCEPTS

2.2 TRANSACTION MANAGEMENT CONCEPTS
3. DISTRIBUTED DATABASE CONCEPTS

3.T INTRODUCTION o o e e e e e e e e e e

3.2 ADVANTAGES AND DISADVANTAGES OF DDBMS

3.3 REQUIREMENTS OF A GENERALIZED DDBMS
4. DDBMS ARCHITECTURAL CONSIDERATIONS
A REFERENCE ARCHITECTURE
USER INTERFACE MANAGER
1 Global Schema Definition
2 Global Directory Location
3 Discussion and Analysiso
TRANSACTION PLAN GENERATOR

Methods for Accessing Remote Data
2 Remote Joins00 e e e
3 Optimal Plan Generation
4 Discussion and Analysis
2
B

4
4
4
4
4
4,
4.3.1

4.

2.

4.4 GLOBAL TRANSACTION EXECUTION MONITOR
4.4.1 Database Concurrency Control
4 Failure Detection and Transaction Recovery
MS USAGE AND DISTRIBUTED DATABASE DESIGN C e
5.1 Data Allocation Strategies
5.2 Database Definition00 L.
5.3 Database Access and Manipulation
5.4 A Database Design Procedure

6. DDBMS IMPLEMENTATION CONSIDERATIONS
7 SUMMARY AND CONCLUSIONS

.
.
.
.

1

2

2.
2.
2.
3.
3.
3.
3.
3.
4

4.
4.
. DD
1

2
3

.
.
.
.

Table of Contents

DISTRIBUTED DATABASE MANAGEMENT SYSTEMS

1. INTRODUCTION

Advances in the computer and communication technologies have led to dis-
tributed computer systems (DCS) which interconnect many small, medium and
large computer systems through twisted pairs, cables, satellites, fiber
optics and other transmission media. The major advantage of DCS is that
one computer can share the resources (files, databases, programs, print-
ers) of other computers. Resource sharing in DCS can be achieved at the
following levels:

1. Terminal emulation where a computer Cl appears as a 'dumb" terminal
to another computer C2.

2. File transfer packages which allow a user to exchange a file F between
computers Cl and C2. Users of file transfer packages must know the
name of F and the identification of Cl and C2.

3. Servers (disk, file and print) which allow, usually on a local area
network, several computers to simultaneously access files and print-
ers located elsewhere. Servers usually allow access to '"network"
resources, say printer PTRS and disk D, which are located at Cl but
are available to C2.

4. Distributed Database Management Systems (DDBMS) which allow trans-
parent access and manipulation of data that may be physically dis-
tributed to several local and, perhaps, heterogeneous databases.

Terminal emulation and file transfer have been available since the late
60s. Servers of several types are becoming commercially available with
local area networks (see <Svobodova84> for extensive discussion of file
servers). The main focus of this report is on DDBMS which are widely
becoming commercially available.

DDBMS offer many advantages over the standalone databases, however se-
veral unique technical as well as management issues are raised. The
literature on theoretical aspects, implementation issues, prototypes and
commercially available DDBMS continues to grow steadily. However, it is
difficult for a potential designer, manager or end-user of a DDBMS to
understand and digest the technical body of knowledge about DDBMS due to
formal content and differing terminologies.

The purpose of this report is to extract from the current literaure the
key issues in developing and using DDBMS and identify the current ap-
proaches. This report is intended to serve three audiences. First, the
developers of DDBMS who need to gain an indepth understanding of the
subject area and who need to locate additional sources of information.
Second, the managers who need to select a DDBMS package and who need to
cut through the marketing literature in order to make sound decisions.
Third, the programmers/designers of future application systems who will
‘need to develop applications around DDBMS instead of the standalone or
centralized databases. To accommodate different audiences, the treatment
of the subject matter is informal. Numerous references are provided for
additional information. The material is organized in the following
sections:

DISTRIBUTED DATABASE MANAGEMENT SYSTEMS 2

®* Section 2 introduces the basic database and transaction management
concepts in centralized environments and defines the basic terms.

* Section 3 discusses the main DDBMS concepts and describes the goals
of a generalized DDBMS.

* Section 4 describes the technical challenges faced by the designers
and architects of DDBMS and reviews the approaches in developing
DDBMS. Topics covered include directory definition, distributed
query processing, concurrency control and failure handling. A DDBMS
reference architecture is presented for systematic discussion of the
subject matter.

* Section 5 corncentrates on the issues related to the users of a DDBMS
(data definition and distributed database design) and presents a
general procedure for distributed database design.

* Section 6 reviews the facilities of the currently available DDBMS and
section 7 concludes this report by summarizing the main points.

2. REVIEW OF BASIC CONCEPTS

Fig. 2.1 shows a typical environment with a database management system
(DBMS) which manages the access and manipulation of a database and a
transaction management system (TMS) which manages the interactions be-
tween the users and the DBMS. These two subsystems are described here
to provide a basic conceptual framework which will need to be extended
for DDBMS.

2.1 DATABASE MANAGEMENT CONCEPTS

Conceptually, a database consists of a collection of logical data items
where the granularity of a logical data item may be a file, a record, or
an arbitrary collection of data fields. A database management system
(DBMS) is designed to:

1. maintain relationships between logical data items (one to one, one
to many or many to many).

2. isolate programs from data format so that when data changes, the
programs do not need to be changed

3. enforce security to allow access to authorized users only

4. provide integrity of the data in terms of data consistency (the data
must correctly reflect the state of a system), currency (the database
must contain recent information), and concurrency (the data must be
simultaneously accessable by different users)

A typical database management system uses a database dictionary/directory
to store the data relationships, data formats and security restrictions;
database logs to record the activities of transactions; and lock tables
to allow synchronous concurrent access to the database by several users
(see Fig. 2.1). Facilities of a DBMS can be categorized in terms of data
definition, data manipulation and operational facilities.

DISTRIBUTED DATABASE MANAGEMENT SYSTEMS 3

Fig. 2.1 Transaction Management system + Database Management

TRANSACTION TRANSACTION
WORKSTATION <4———P MANAGEMENT
SYSTEM (TMS) Workstation
<+ P reads/writes
) Database
Queries
\ 4
DATABASE MANAGEMENT
SYSTEM USER
DATABASE
__ >
DICTIONARY/DIRECTORY
. DATA RELATIONSHIP LOGSLOCKS
. DATA SIZES
. DATA AUTHORITY

The Data Definition Language (DDL) is used to define the data formats
and data relationships. Results of a DDL are stored in the dictionary.
DDL allows data definitions at two levels: schema which shows the actual
data format and data relationships and subschema which shows a user view
of the data. Database management systems have traditionally supported
the following three schemas:

* Hierarchical: the data is viewed so that only one to many relation-
ships are supported. IBM's IMS <Kapp78> is an example.

* Network: Many to many relationships among logical data items are
supported. Example of a network database management system is
Cullinets's IDMS <IDMS81>.

* Relational: the data is viewed as tables (relations). Example of a
relational system is IBM's DB2 <Date84>.

In addition, a great deal of work at present is being focussed on the
development of "object oriented knowledge bases'" which allow storage of
objects, relationships between objects, rules and events for complex en-
gineering, business and expert systems applications.

The Data Manipulation Language (DML) allows a user to access and ma-
nipulate the database. The power and capability of the DML depends on
the views supported (hierarchical, network, relational). For example,
- the relational systems allow a user to access any information from the
database with only three operations:

¢ selection which chooses rows of a table based on a criteria
* projection which chooses columns of a table based on a criteria
¢ join which combines two different tables on a common attribute

Additional operations like union and semi-join <Bernstein81b> may also
be supported by some relational systems. For example, semi-join is in-
troduced to minimize the internode traffic while performing a join of two
remotely located tables. Semi-join will be explained in section 4.3.

The Operational Facilities of a DBMS provide security, concurrency and
backup/recovery of a database. The operational facilities of a large
centralized DBMS must be comprehensive enough to allow simultaneous ac-
cess of hundreds of users to large centralized databases. On the other
hand, operational facilities may not be needed for single user microcom-
puter databases.

Different commercial DBMS allow different levels of DDL, DML and opera-
tional support. Some general observations about the commercial DBMS are:

1. Relational systems are most popular and relational DML SQL is fast
becoming the standard in relational systems. Information about SQL
can be found in <Date84, Date86>.

2. Most microcomputer database systems are relational, are designed for
single user, support interactive DML and DDL, do not support pro-
gramming interface (DML) and are weak in operational support like
security and backup and recovery.

3. Most host DBMS are becoming relational, are designed for multiple
users, support program imbedded DML and have strong operational fea-
tures.

Despite the commercial popularity of relational systems, the weaknesses

of relational systems for CAD/CAM applications are being recognized. For

DISTRIBUTED DATABASE MANAGEMENT SYSTEMS 4

example, CAD/CAM applications require very long records (several mega-
bytes), CAD/CAM records are of variable length, CAD/CAM relationships are
complex and version control/archiving of portions of CAD/CAM designs are
important <Wolfe87>. Several companies (IBM, Computervision, Sherpa
Corporation, and Digital Equipment Corporation are developing CAD/CAM
database products on top of existing commercial DDBMS. In addition, re-
lational systems are not adequate for knowledge engineering applications
which require semantic information and inference.

The database concepts in this section have been introduced informally.
The interested reader is referred to several books <Kroenke77, Vasta85,
Date84, Date86, UllmanB83, Martin86, Teorey82> for additional information.

2.2 TRANSACTION MANAGEMENT CONCEPTS

The concept of a transaction originates from the field of contract law
<Gray81, Walpole87> where each contract between two parties (a trans-
action) is carried out unless either party is willing to break the law.
These transactions have three properties: consistency (they must obey
the law), atomicity (they either happen in entirety or do not happen at
all), and durability (once committed they cannot be cancelled). In com-
puter science, a transaction is defined as a sequence of database queries
(data access and manipulation commands) that transforms one consistent
state of the system into a new consistent state <Eswaran76>. These
transactions must also observe the consistency, atomicity and durability
restrictions.

Transactions may be on-line queries or application programs written in a
procedural language with imbedded queries. A transaction management
system (TMS) provides the following facilities:

1. Schedule transactions for execution. Transactions can be scheduled
serially ("single-threaded") or in parallel ("multi-threaded").

2. Allow read/write operations from the user workstations. Each work-
station may be a terminal or a computer. Workstation read/write op-
erations may involve the communication activities of establishing
sessions, determining network routes and assembling data link control
messages. These operations can be described by using the layers 5
through 1 of the ISO/0OSI Distributed Reference Model <Tannenbaum81>.

3. Manage the resources needed by the transactions during execution.

These TMS facilities are commonly integrated with the DBMS facilities,
as shown in Fig. 2.1, which allow database queries from the transactions.
These queries may involve one or several data items. The transaction may
be decomposed into subtransactions to optimize I/0 and/or response time
(see <Jarke84> for comprehensive discussion).

An example of commercially available TMS is IBM's CICS <Lim82>. It is
not always possible to find separate TMSs in commercial products. In
several cases, TMS facilities are imbedded in communication managers,
operating systems and/or database managers. An introduction to TMS fa-
cilities is given by <Stamper86>. For an extensive discussion of trans-
action management, see <Gray81, Walpole87>.

DISTRIBUTED DATABASE MANAGEMENT SYSTEMS 5

3. DISTRIBUTED DATABASE CONCEPTS

3.1 INTRODUCTION

A Distributed Database Management System (DDBMS) allows a user to access
and manipulate data from several databases that are physically distrib-
uted to several sites. A DDBMS differs from a DBMS, henceforth referred
to as a local DBMS (LDBMS), because it is responsible for providing
transparent and simultaneous access to several databases that are located
on, perhaps, dissimilar computer systems where a local DBMS manages a
single site database. An example of a DDBMS is illustraied in Fig. 3.1
where a parts database is located on a network of three computers - an
IBM mainframe under MVS, a VAX system under VMS and an IBM PC under DOS.
The three computers may use three different LDBMSs: DB2, Ingres and
Dbase3. This DDBMS would allow an end-user to:

1. create and store a new part anywhere in the network

2. access a part-no without knowing where the part-no is physically lo-
cated ’

3. delete a part from one database without having to worry about the
duplicated parts in other databases

4. update a part description in one database without having to worry
about how and when all the duplicated parts will be updated in other
databases

5. access a part from an alternate computer when, say, the nearest com-
puter is not available.

In the future, a common problem for DDBMS will be to provide transparent

access to the commercial, engineering and expert system databases that
may be stored anywhere in the network.

3.2 ADVANTAGES AND DISADVANTAGES OF DDBMS
It can be seen that the DDBMS environment offers several advantages over
the LDBMS. For example, a DDBMS:

1. saves communication costs by providing data at the sites where it is
most frequently accessed

2. improves the reliability and availability of a system by providing
alternate sites from where the information can be accessed

3. increases the capacity of a system by increasing the number of sites
where the data can be located

4. improves the performance of a system by allowing local access to
frequently used data

5. allows users to excercise control over their own data while allowing
others to share some of the data from other sites

However, a DDBMS has the follwing disadvantages:

DISTRIBUTED DATABASE MANAGEMENT SYSTEMS 6

DATABASE

Fig. 3.1: An Example DDBMS

NODE 2

NODE 1

DATABASE

| NODE3

DATABASE

NODE 4

It

increases the complexity of the system and introduces several tech-
nical as well as management challenges especially when geographical
and organizational boundaries are crossed

makes central control more difficult and raises several security is-
sues because a data item stored at a remote site can be always ac-
cessed by the users at the remote site

makes performance evaluation difficult because a process running at
one node may impact the entire network

may deteriorate the overall performance of wide area networks (WANs)
which suffer from the "SUE" factor (slow, unreliable, expensive) as
pointed out by Gray <Gray87>.

should be emphasized that due to the advantages/disadvantages of a

DDBMS each application of DDBMS must be carefully evaluated.

3.3 REQUIREMENTS OF A GENERALIZED DDBMS

The following functional and operational requirements of a generalized
DDBMS are stated to provide a framework for discussion:

Functional Requirements:

1.
2.

The DDBMS should be able to support heterogeneous underlying LDBMS

The user should be able to access data transparently without knowing
the actual location and internal format

The user should be able to allocate single copy, two copies (one at
local node, another at central), or any number of copies in the net-
work

The user should be able to partition and fragment tables in the net-
work

A common global user view of the data should be supported
A common global data manipulation language should be supported

The user should be able to issue distributed transactions which re-
quire information from several nodes

Operational Requirements:

1.

Many users should be able to simultaneously update the duplicated
database.

The data integrity should be supported at several levels: transaction
level (all duplicate updates must be applied before this transaction
ends) and hourly/daily.

The distributed transaction processing should be optimized to mini-
mize query processing costs (time, communication I/0, etc)

The communication and node failures should not drastically impact the
the operation of the DDBMS

DISTRIBUTED DATABASE MANAGEMENT SYSTEMS 7

5. The DDBMS should use standard communication protocols and should be
transportable among different systems

6. The software design of DDBMS should maximize use of asynchronous and
concurrent processing

It should be noted that these requirements are listed for conceptual
understanding of DDBMS. A given DDBMS may choose to implement only a
small portion of these requirements depending on the potential applica-
tion of DDBMS.

4. DDBMS ARCHITECTURAL CONSIDERATIONS

An architecture of DDBMS can be developed to satisfy the requirements
stated in section 3.3. This architecture will partition the requirements
stated above to various components. Several architectures of DDBMS have
been presented <Bernstein81, Decitrye83, Gligor83, Larson85, Cardenas87>.
A reference architecture is presented in section 4.1 to describe the main
components of a DDBMS. This reference architecture is an extension of
the architecture presented by Gligor and Fong <Gligor83>.

4.1 A REFERENCE ARCHITECTURE

Fig. 4.1 shows a reference architecture which identifies the main com-
ponents of a DDBMS and shows how these components interact with the Local
Transaction Management system (LTMS) and Local Database Management Sys-
tem (LDBMS). This architecture is presented as sublayers of layer 7
(application layer) of the ISO/0SI Distributed Reference Model. A Remote
Access Interface is introduced to provide the interface with remote sites.
A brief overview of the architecture is presented here and details are
given in sections 4.2 through 4.4.

User Interface Manager (UIM). This "module" translates the queries into
a global form if necessary, determines the location of the data referenced
in the queries, passes control to LTMS if the transaction is local only
or to the Global Transaction Analyzer (GTA) if the transaction needs ac-
cess to remotely located data. This module is also responsible for
gathering all user results generated during transaction execution and
presenting the results to the user.

Transaction Plan Generator (TPG). This module is responsible for gen-
erating an execution graph (plan) to optimize the performance of the ar-
riving transaction. This may involve decomposing the transaction into
subtransactions which can run as local transactions on various nodes and
translation of the global transaction into local transactionms.

Global Transaction Execution Monitor (GTEM). This module receives the
plan generated by TPG and is responsible for the initiation, execution
and integrity control (synchronization, reliability) of the transaction
plan.

Remote Access Interface. This module prepares all of the messages that
need to to be sent to remote nodes in a particular format and also re-
ceives the messages from the presentation layer and passes them to LTMS
or GTEM sublayers. The protocols used in this sublayer may be the File
Transfer Access Method (FTAM) of ISO, the Manufacturing Message System

DISTRIBUTED DATABASE MANAGEMENT SYSTEMS 8

Fig. 4.1 : A Reference Architecture

USERS
aT

USER DATABASE
N

APPLICATION LAYER (Layer 7)

User Interface Manager

. Analyze user transaction

. Determine the location of
referenced data

. Collect and display user
results

Local Database Manager

. Manage local database
access

N

Transaction Plan Generator

. Global transaction analysis
and transaction decomposition

. Global to local .subtransaction
and schema translation

. Generate optimal execution plan

1

Transaction Execution Mangement

. Route subtransactions
. Concurrency Control
. Reliability and Error Recoverj

Local Transaction Manager -

. Manage local
transactions

- g o g

Remote Access Interface
. Send/receive remote requests

/

PRESENTATION LAYER (Layer 6) ¥

of Manufacturing Automation Protocol (MAP), or the X.400 protocol pro-
posed for electronic mail.

The Local Transaction Management System (LTMS) module performs the func-
tions described in section 2.2 and the Local Database Management System
(LDBMS) performs the functions described in section 2.1.

4.2 USER INTERFACE MANAGER

This module performs the following functions:
1. Read and parse the user transaction.

2. Determine the location of the data referenced by this transaction.
If all referenced data is local, then pass control to LTMS, else pass
control to Transaction Plan Generator sublayer.

3. Collect and present results to the user.

The two major issues are the global schema definition and allocation.

4.2.1 GLOBAL SCHEMA DEFINITION

A common global schema is needed to parse the query in global query for-
mat. The global schema shows all the data in the network and shows where
the data is located. The problem of global schema design is straight-
forward if all the LDBMS are homogeneous but is nontrivial in a network
with heterogeneous databases. At present most DDBMS are using SQL for
schema definition and manipulation <Gligor83, Rauch-Hinden87>. The in-
terested reader is referred to <Cardenas87> for schema design consider-
ations for heterogeneous DDBMS.

4.2.2 GLOBAL DIRECTORY LOCATION

It is customary to show the (data, node assigned) pair in the global
schema and store the global schema in a global directory. Due to the
number of global directory accesses, it is crucial to allocate the global
directory carefully. The directory allocation problem can be treated as
a file allocation problem (FAP) where a file F is allocated to N nodes
to minimize a given objective function. For example, Chu <Chu76, Chu84>
has studied the directory allocation problem as a FAP. The following
tradeoffs can be observed: '

1. If the directory is at a central site, then the communication cost
is high because every transaction will need to access the central site
to locate data.

2. If the directory is at every site, then the update cost will increase
due to duplicate directory updates.

DISTRIBUTED DATABASE MANAGEMENT SYSTEMS 9

It is common to replicate the global directory even if the data is not
replicated. Another common approach is to store the directory at a cen-
tral node with the following processing rules:

. search the local directory at the arriving node
. if not found then search the directory at the central
site

It has been found that the directories can afford to be inaccurate for a
while because they are treated as cache <Goodman87>.

4.2.3 DISCUSSION AND ANALYSIS

The design of this module is dependent on the DDBMS requirements of sup-
porting heterogeneous LDBMS and common global views. This issue is im-
portant at the transaction parsing and result generation steps.

The user transactions may appear in a uniform global query format, e.g.
SQL, or in format of the LDBMS, e.g. Dbase3 format on an IBM PC and IMS
format on IBM mainframe. The uniform global query format is preferable
even though the user of an existing LDBMS may need to learn a new query
language.

The results of a transaction are collected and presented to the user at
the termination of the transaction. A considerable result translation

may be needed if the transaction accessed data, located in several het-
erogeneous databases.

4.3. TRANSACTION PLAN GENERATOR

The transaction plan generator is a crucial component of DDBMS and per-
forms the following functions:

1. Determine the method of accessing data from remote sites.

2. Decompose the transaction into subtransactions if needed.

3. Translate the global transactions into local transactions if needed.

4. Generate an execution plan to optimize response time and/or commu-
' nications cost.

To illustrate the processing of this sublayer, assume that a transaction
T arrives at node n0 and accesses logical data items dl and d2 where dl
is located on node nl and d2 is located on node n2. T can be processed
by using one of the following plans:

1. T is executed at n0 and issues remote calls to nl and n2

2. T is routed to nl where it accesses dl and issues remote calls to node
n2

3. T is routed to n2 where it accesses d2 and issues remote calls to node
nl

DISTRIBUTED DATABASE MANAGEMENT SYSTEMS 10

4.1: REMOTE ACCESS METHODS

a). Transparent Access

LOCAL
DATABASE

P

.REQUESTOR .REMOTE
ACCESS
INTERFACE REMOTE

DATABASE

b). Remote Procedure Call (Requestor/Server)

LOCAL
DATABASE

39

REQUESTOR .REMOTE O
ACCESS « | FEWOE —P
INTERFACE SERVER (@— patenase
<4+

Local ilo 4>
Remote i/o 4>

4. T is decomposed into tl and t2 where tl accesses dl and t2 accesses
d2; tl is sent to nl and t2 is sent to n2.

The Transaction Plan Generator will determine and generate one of these
transaction processing plans based on an optimality criteria. In general,
the problem of determining optimal transaction processing plans, known
in literature as "distributed query processing" <Yu84, Hevner81>, is re-
verse of the optimal data allocation problem because in data allocation
the data is allocated to nodes based on known queries while in transaction
processing the optimal plan is determined based on known data allocations.
This is why some combined data allocation and query optimization algo-
rithms have been proposed <Hevner81>.

The transaction plan generation is dependent on three major issues:
methods used to access remote data, the methods used for performing remote
joins and the optimization strategy.

4.3.1 METHODS FOR ACCESSING REMOTE DATA

The three basic methods for accessing remote data are transparent remote
access, remote procedure call and transaction routing (see Fig. 4.1).

Transparent Remote Access. This method provides a '"location-
independent" transparent access to data located anywhere in the network.
As shown in Fig.4.la, every data access request (e.g. SQL Select) is sent
to the remote node through the Remote Access Interface of the Reference
Architecture. This method is very convenient but may cause excessive
communication traffic.

Remote Procedure Call.This method allows the data at a remote site to
be accessed locally by a remote server as shown in Fig. &4.1b. The re-
quester of a remote procedure call, also called a "client", is responsible
for preparing and sending the remote procedure call. It can be seen from
Fig. 4.1b that a remote procedure call can minimize the communication
traffic. An extensive discussion of remote procedure calls can be found
in <Wilbur87>.

Transaction Routing. By using this method, a transaction is decomposed
into subtransactions where each subtransaction accesses data at only one
node. Then each subtransaction is routed to the remote site and the re-
sults are sent back to the destination node. This approach maximizes the
concurrent - operations of transactions. Decomposition strategies have
been discussed extensively in the literature (see <Yu84, Sacco8l,
Hevner85, Chu84>).

4.3.2 REMOTE JOINS

Since joins between remote sites can cause a considerable amount of com-
munication traffic, a semi-join has been proposed to send only the nec-
essary data <Bernstein79>. Fig. 4.2 illustrates the semi-join operation.
Simply stated, it consists of the following steps for joining R1 and R2
on attribute A:

1. Relation Rl is projected on attribute A, giving R1'

2. R1' is transmitted to R2 and joined with R2, giving R2'

DISTRIBUTED DATABASE MANAGEMENT SYSTEMS 11

Fig. 4.2: Semi-Join Operation

Join Relation PAYROLL at node n1 with PERSONEEL at node n2

PERSONEEL (n1)

NAME | EDUC. ADDRESS
Sam B.S. Detroit
Joe B.S. NY

Pat MBA Toledo
Bob B.S. Detroit
Jack M.S. LA

STEPS IN SEMI-JOIN:

1). Project PAYROLL on NAME at n2: gives PAYROLL' = NAME

2). Transmit PAYROLL' to n1
3). Join PAYREOLL' with PERSONEEL at n1, gives PERSONEEL'

PAYROLL (n2)

PERSONEEL'
NAME | EDUC. ADDRESS
Joe B.S. NY
Pat MBA Toledo

4). Send PERSONEEL' to n2

5). Perform a join between PERSONEEL' and PAYROLL at n2

Gives the final ansewr

NAME | POSITION SALARY
Joe Programmeq 30k
Pat Manager 40k
PAYROLL
Joe
Pat

NAME EDUC. ADDRESS | POSITION SALARY
Joe B.S. NY Programmen 30k
Pat MBA Toledo Manager 40k

Il.a

3. R2' is transmitted to Rl and joined with Rl, giving the final join.

Translation of a join into semi-join is an example of query decomposition.

4.3.3 OPTIMAL PLAN GENERATION

Determination of an optimal transaction processing plan is a difficult
problem. Examples of existing methods are:

1. The "hill-climbing" algorithm developed for SDD-1. This algorithm
uses semi-joins to reduce the data transmitted and chooses a final
node where all the relations are transmitted for final joins
<Goodman79, Wong77>.

2. A family of algorithms to minimize either response time or total time
for "simple queries" in which each relation contains only one common
joining attribute, which is also the output of the query <Hevner79,
Yao79>.

3. The evaluation algorithm used in Distributed Ingres <Epstein80>.
This algorithm fragments one relation and replicates others so that
each site containing a fragment and the replicated relations can
process the join in parallel.

These algorithms differ in several assumptions: network topology, result
site, cost function, and objective function. Detailed analysis of these
algorithms can be found in <Sacco81>. Recent trends in query optimization
indicate heavy usage of artificial intelligence techniques like statis-
tical information about data distribution, explanation and inference
<Epstein87>.

4.3.4 DISCUSSION AND ANALYSIS

It is difficult to make general remarks about query optimization algo-
rithms because each algorithm must be evaluated for given application and
network type. For example, Stone <Stone87> recently describes a case
study in which an efficient serial algorithm performs better than a par-
allel query processing algorithm running on 64,000 processors. It is
common to devise transaction processing networks which minimize communi-
cation cost and maximize use of CPU for slow networks; and minimize re-
sponse time for fast networks.

It appears that duplicating data unnecessarily increases the complexity
of query optimization and adds to the overhead. Although academic lit-
erature concentrates heavily on query decomposition and optimization
techniques, several heavily used industrial systems like Tandem Encompass
and IBM CICS/ISC heavily use remote procedure calls where data is managed
by autonomous remote servers with minimum internode communications.
IBM's SNA LU6.2 feature, also known as Advanced Program to Program Com-
munication (APPC), is essentially a remote procedure call mechanism which
is being adopted by major vendors as the server-requester protocol. IBM
has also announced an array of products based on LU6.2: distributed da-
tabase managers (DDM), transaction processors (CICS), electronic mail
systems (DISOS), and document interchange mechanisms (DIA/DCA). A major
supporter of remote procedure calls is Jim Gray <Gray87> who claims that
unnecessary data duplication is too expensive and the benefits in response

DISTRIBUTED DATABASE MANAGEMENT SYSTEMS 12

time and availability are not worth the added overhead. This needs to
be weighed in terms of the underlying network: WAN or LAN.

To summarize, transaction plan generation can be extremely complex if data
is duplicated and dispersed at several sites. For most practical pur-
poses, it may be best to assign data uniquely where it is most frequently
used and utilize an efficient remote procedure call facility. The in-
terested reader is referred to growing literature in this area for addi-
tional information <Hevner87, Yu84, Ceri84, Sacco81, Hevner79>.

4.4 GLOBAL TRANSACTICN EXECUTION MONITOR

This module receives the plan generated by the Transaction Plan Generator
and is responsible for monitoring the execution of the plan. It performs
the following functions:

1. The transactions or subtransactions are initiated in the manner in-
dicated by the plan.

2. The concurrency control and deadlock detection/resolution of the ex-
ecuting transactions are managed.

3. All failure and/or performance problems are monitored and handled.

4., All results collected from the transaction execution are sent to the
User Interface Manager.

This module closely interacts with Remote Access Interface and LTMS. The
two main issues addressed by DTMS are the database concurrency control
and reliability and error recovery. These two issues are discussed in
sections 4.4.1 and 4.4.2, respectively.

4.4.1 DATABASE CONCURRENCY CONTROL

Concurrency control coordinates simultaneous access to shared data. At
present, the problem of concurrency control in centralized DBMSs is well
understood and one approach, called two-phase locking has been accepted
as a standard solution <Eswaran76>. However, concurrency control in
distributed systems is an area of considerable activity with no accepted
solutions. This is due to three main complicating factors. First, data
may be duplicated in DDBMS, consequently, the DDBMS is responsible for
locating and updating the duplicate data. Second, if some sites fail or
if some communication links fail while an update is being executed, the
DDBMS must make sure that the effects will be reflected on the failing
node after recovery. Third, synchronization of transactions on multiple
sites is very difficult because each site cannot obtain immediate infor-
mation on the actions currently being carried out on other sites.

Due to these difficulties, over 20 concurrency control algorithms have
been proposed in the past, and still continue to appear (see, for example,
<Farrag87>). Literature surveys have shown that most algorithms are
variants of two-phase locking and time stamped algorithms <Bernstein8l,
Hsiao81>. However, several algorithms do not fall into any category.
The three categories are briefly described and analyzed below. For a
very detailed discussion of concurrency control algorithms, refer to
<Bernstein8l, Kohler81, Hsiao81, Bernstein87>.

DISTRIBUTED DATABASE MANAGEMENT SYSTEMS 13

4.4.1.1 Two-Phase Locking Mechanisms

Two-phase locking (2PL) uses read and write locks to prevent conflicts
between concurrent operations. The 2PL algorithm consists of the fol-
lowing steps for a transaction T in an LDBMS:

releases the readlock on x
releases the writelock on y

. T obtains a readlock to data item x
. T obtains a writelock to data item y
. T reads x

. T writes y

. T

. T

The lock ownership is governed by two rules: (1) different transcations
cannot simultaneously own conflicting locks (read-write or write-write
conflicting locks); and (2) once a transaction surrenders a lock, it may
never obtain additional locks. This implies that each transaction goes
through two distinct phases: a "growing'" phase when a transaction obtains
locks and a "shrinking" phase when the transaction releases locks.

- The 2PL algorithm can be implemented in DDBMS by using the following
scheme:

. T obtains a readlock for x at node n where it is going to be read
. T obtains a writelock to all copies of data item y

. T reads x

. T writes y

. T updates all duplicate copies of y

. T releases the readlock on x

. T releases the writelock on all copies of y

Several variants of basic 2PL have been proposed:

1. The Primary Copy 2PL - a primary copy is designated for each data item
x; read locks are granted by the primary node and the update locks
are granted at each site where the data (primary or duplicated) is
stored. This algorithm has been proposed by Stonebraker
<Stonebraker79>.

2. The Voting 2PL - read/write lock requests are sent to all nodes; if
majority returns with lock granted, then lock is granted else trans-
action waits for locks. This algorithm is also referred to as the
Thomas Voting algorithm <Thomas79>.

3. Centralized 2PL - the lock manager and lock tables are kept at a
central node; if a transaction needs to access any x in the network,
it must be granted lock from the central site. An extensive study
of centralized 2PL locks have been conducted by Garcia-Molina
<Garcia79> who found that the performance of centralized locking
schemes is better than expected.

Several issues arise in the implementation of 2PL-based concurrency con-
trol algorithms:

1. What is the locking granularity, i.e. the smallest database object
that can be locked (database, file, record, field)?

2. What is the wupdate synchronization interval, i.e. the time elapsed
before updates on x are applied to all copies of x. The updates may

DISTRIBUTED DATABASE MANAGEMENT SYSTEMS 14

need to be applied at transaction run, hourly or even daily, de-
pending on the type of application.

3. Where should the lock tables be located?

4. Will a deadlock be caused due to locking? Simply stated, a deadlock
occurs in the following situation:

. Tl must wait for T2 to release a lock
. T2 must wait for T3 to release a lock
. T3 must wait for Tl to release a lock

Deadlocks may occur more frequently in 2PL based algorithms because
all transactions obtain all locks in the growing phase thus several
transactions may wait on each other for locks. Deadlock prevention
and detection techniques are used frequently in DDBMS. No accepted
solution exists for this problem. One of the simplest techniques is
to use "timeout" which forces a transaction to abort after it has
waited for more than a timeout limit.

Detailed mathematical models and simulation results have been developed
to determine which algorithm is best for what type of application with
different granularities, synchronization intervals and lock table lo-
cations <Garcia79>. Recently, Wolfson <Wolfson87> has given an extensive
analysis of locking and commit protocols in DDBMS. Although it is dif-
ficult to make general observations, most of the available DDBMS use
locking mechanisms which are variants of 2PL <Goodman87>.

4.4.1.2 Time Stamped Algorithms

Each transaction T is assigned a unique timestamp at the originating node.
This time stamp is attached to each read and write request. In case of
a conflict, i.e. two transactions trying to update the same data item x,
the conflicting requests are serialized by time stamp. Although several
time stamped concurrency control algorithms have been proposed
<Bernstein81l, Hsiao81>, only a few have been actually implemented in
commercial DDBMS. The major reason for this may be that time stamped
algorithms require a universal clock which is generally not available on
most existing distributed systems.

4.4.1.3 Miscelaneous Concurrency Control Algorithms

Several algorithms have been proposed which combine the time stamped and
2PL algorithms, use unique approaches like Ellis Ring Algorithm <E1l1lis77>
or use certain pessimistic/optimistic assumptions about the nature of
the sytem. An interesting example of a generalized concurrency control
algorithm has appeared recently <Farraag87>. This algorithm considers
the 2PL and time-stamped algorithms as special cases. Due to space lim-
itations, only pessimistic/optimistic will be discussed here. The in-
terested reader should refer to <Bernstein81, Hsia81> for others.

The pessimistic algorithm requires that a transaction secure all the
nececessary locks on data items before execution. If all the locks cannot
be acquired then the transaction will not start execution. This algorithm
can be represented by noting that a "lock" transaction T' is started be-
fore T just to obtain locks:

DISTRIBUTED DATABASE MANAGEMENT SYSTEMS 15

. T' obtains a readlock to all data items x needed by T
. T' obtains writelock to all data items y needed by T
. T starts execution

. T reads x

. T writes y

. T writes all duplicate copies of y

. T releases the readlocks on x

. T releases the writelocks on y

This algorithm is called pessimistic because it assumes that a large
number of conflicts will be encountered by T, thus T should not be started
without owning all locks.

An optimistic algorithm assumes that very few conflicts will occur and
operates in the following manner.

. T starts execution

. T reads x at initiating site

. T writes y at initiating site

. The new values of y are sent to all nodes with duplicate y
The new values are sent with a time stamp
If the new values are updated correctly with no conflicts,
then the updates are made permanent
otherwise the update is discarded and applied again

It can be seen that the optimistic algorithm will work well if there are
very few conflicts. However, in case of several conflicts, there is no
guarentee that a transaction will complete in finite time due to repeated
restarts <Milenkovic80>.

4.4.1.4 Discussion and Analysis

As mentioned previously, many database concurrency control algorithms
have been published and continue to appear in computing journals. It is
difficult to evaluate these algorithms because they use different termi-
nologies, make different assumptions about the underlying DDBMS, are hard
to understand and are difficult to prove correct. Each author claims that
his/her approach is the best. In addition, it is difficult to determine
which of these algorithms has been implemented and which implementations
are being used in commercial products instead of laboratory prototypes.

For a prospective DDBMS developer, the following is a suggested approach:

1. Determine the real need for data duplication. The cost of synchro-
nizing duplicated data in several cases outweighs the benefits.

2. Carefully examine the synchronization interval. Most concurrency
control algorithms assume that data consistency needs to be main-
tained within a transaction. For data with long synchronization in-
tervals, no concurrency control is needed.

3. For the DDBMS needing concurrency control, use a variant of 2PL,
perhaps the primary copy 2PL because it is used most frequently.

4. The optimistic concurrency control algorithms seem to work very well
when the transactions are short and the network is fast and reliable.

5. If possible, develop a simple analytical or simulation model to
measure the effect of concurrency control algorithms. In most cases,

DISTRIBUTED DATABASE MANAGEMENT SYSTEMS 16

the analytical models are quite complex <Umar84, Garcia79>. It may
be better to develop a simulation model.

4.4.2 FAILURE DETECTION AND TRANSACTION RECOVERY

In an LDBMS, updates are made permanent when a transaction commits, and
updates are rolled out if a transaction aborts. In DDBMS, a transaction
may commit at one node and abort at another. For example, update com-
pletes at node nl and fails at n2.

A transaction may terminate abnormally due to two reasons: ''suicide"
which indicates that a transaction terminates due to an internal error
like a program check, or "murder" which indicates an external error like
system crash <Gray79>. It is the responsibility of DDBMS to remove all
changes made by a failing transaction from all nodes so that the trans-
action can be reinitiated.

In order for atomic actions to be recoverable, the following two condi-
tions must be met:

1. Updated objects are not realeased until the action is completed

2. The initial states of all objects modified by the action can be re-
constructed through the use of a log.

An extensive recovery system for distributed database management systems
has been proposed by Gray <Gray79> and implemented in System R. This
system consists of the following four protocols:

1. Consistency Locks: This means that each transaction must be well
formed and two-phase. A transaction is well formed if it locks an
object before accessing it, does not lock an already locked item, and
unlocks each locked item before termination. A transaction exhibits
two-phase behavior if no objects are unlocked before all objects are
locked. Transactions using 2PL are automatically well formed and
two-phase.

2. DO-UNDO-REDO log: This is an incremental log of changes to the data-
bases which records the before/after images of each update during the
transaction processing (DO operation). This log also allows removal
(UNDO) of a failed transaction's updates and reapplication (REDQ) of
the successful transaction's updates.

3. Write-Ahead Log: This protocol consists of writing an update to a log
before applying it to the database.

4. Two-Phase Commit: This protocol coordinates the commit actions needed
to run a transaction. When the transaction issues a COMMIT request,
then the following actions take place:

Phase 1:
1). Sends a PREPARE message to each cohort (same process
running on another node)
2). Wait for a reply from the cohort
Phase 2:
1). Write COMMIT entry into the log
2). Send a COMMIT message to each cohort
3). Wait for positive response from each cohort
4). Write a complete entry in log and terminate

DISTRIBUTED DATABASE MANAGEMENT SYSTEMS 17

The two-phase commit has been implemented in several other systems
in addition to system R. Other approaches have been proposed and are
being investigated. An extensive discussion of the reliability of
distributed database management systems for no data replication, data
replication, full replication, and network partitioning is given by
Garcia-Molina <Garcia87>.

5. DDBMS USAGE AND DISTRIBUTED DATABASE DESIGN

Section & concentrated on the architectural and design aspects of DDBMS.
Once a DDBMS has been developed or purchased, then the users (application
designers, database designers, administrators, application users) face
three major decisions: where to allocate the database, how to define the
different views of the database and how to access and manipulate the da-
tabase. These decisions are significantly influenced by the architecture
and the facilities of the DDBMS and are discussed in sections 5.1 through
5.3. A simple distributed database design procedure is given in section
5.4,

5.1 DATA ALLOCATION STRATEGIES

It was suggested in the previous section that the data allocation decision
significantly impacts the query processing, concurrency control and re-
liability of a DDBMS. A given database D can be allocated to a network
by using one of the following strategies:

. D is allocated to a central node NC

. D is uniquely allocated to a node N where it is most
frequently accessed

3. D is allocated to N and a duplicate copy of D is kept at

the central node NC

4. D is allocated to N and duplicate copies of D are kept at
an arbitrary set of nodes N1, N2, N3, etc.

. D is allocated to every node (replicated)

. D is partitioned into D1, D2, D3 which are allocated
by using the strategies 1 to 5.

N

o

The cost/benefit of this decision can be estimated in terms of storage
cost, communication costs (cost to read, cost to update), response time
and data availability. Fig. 5.1 briefly illustrates the tradeoff by
'showing the data duplication on x axis and costs on y axis. It can be
seen from Fig. 5.1 that:

1. the storage cost increases as the number of copies increases
2. the read communication cost decreases as the number of copies in-
creases because most data can be found at local nodes thus eliminating

need for communication calls

3. the update communication cost increases with the number of copies
because duplicated data will need to be updated

4. the availability of data increases with the number of copies in the
system

DISTRIBUTED DATABASE MANAGEMENT SYSTEMS 18

Figure 5.I: TRADEOFF IN DATA ALLOCATION

— UPDATE COMMUNICATIONS

!

nr.i‘n COMMUNICATIONS

\
\ KESPON

“T'nE

Z STORAGE

AvAILABILiTY
COST

\mcu. 1/0

FULLY REPLICATED

0 / 1 2 3 4
NO COPIES DATA DUPLICATION - NO OF COPIES OF A FILE ———

= OPTIONS:

* UNIQUE ALLOCATION: ASSIGN FILE TO ONE NODE
* AMOUNT OF STORAGE: SMALL
* READ COMMUNICATIONS: HIGH
* UPDATE COMMUNICATION: SMALL
+ LOCAL I/O AT EACH NODE: SMALL
» DUPLIC.A‘I'E ALLOCATION: MORE THAN ONE COPY
AMOUNT OF STORAGE: LARGE
* READ COMMUNICATIONS: SMALL
- UPDATE COMMUNCATION: HIGH
+ LOCAL I/0 AT EACH NODE: HIGH

18.a

An optimal data allocation can be theoretically determined which mini-
mizes the total cost (storage + communication + local I/0) subject to some
response time and availability constraints. This problem, traditionally
referred to as the File Allocation Problem (FAP), in computing networks
was first addressed by Wesley Chu in 1969 <Chu69>. Since then over 20
different file allocation algorithms have appeared in literature
<Bryand81, Bucci79, Buckles79, Casey72, Chandy76, Chang8l, Chu69,
Coffman80, Doty82, Eswaran’4, Finckenscher84, Fisher80, Irani8l,
Khabbaz79, Kimbleton77, Koh85, Levin75, Mahmood76>. Earlier allocation
problems were simple, while more recent methods are actual design meth-
odologies which utilize the allocation techniques as one of the decisions
<Umar84, Jain87, Ceri87>. A common FAP is formulated as follows:

. Given:

- files f1, f2, £3,,,

- Nodes nl, a2, n3,,,,,
. Determine:

- ADN(f,n) =1 if f is allocated to n, 0 otherwise
. To minimize:

- storage cost + communication cost + local processing cost
. Subject to:

- response time constraints

- availability constraints

- network topology

- security restrictions

Variants of this problem are cast into a mathematical programming problem
and are solved by using nonlinear, integer and/or dynamic programming
methods.

Application of the existing FAP problems depends on the nature of the
problem, the availability of information needed to reach an exact solution
and the need to determine optimal versus approximate solutions in real
life. Based on past experience in the distributed database allocations,
it has been found that for several real life situations, sophisticated
FAP are needed rarely. In most cases, several data allocation decisions
can be made by excercising judgement and using real life constraints of
security and management. However, it is preferable to use simple ana-
lytical models to support the decisions and improve insights. A method
which combines heuristics with formal models to allocate data in DDBMS
is described in section 5.4.

5.2 DATABASE DEFINITION

After a database has been allocated, the views (schema) of the database
have to be defined. The following three levels of schema definitions are
based on the ANSI/X3/SPARC recommendations for data description:

1. Local (internal) schema which show how the data is stored on ‘each
node. The format of the internal schema is dependent on the LDBMS
of each node.

2. A global (conceptual) schema which describes the data throughout a
network and shows what data is at what node. In case of heterogeneous
LDBMS, the global schema format is different from the internal schema
format. The global schema is usually stored in a global directory.

3. A user (external) schema which shows how a user will view and manip-
ulate the data.

DISTRIBUTED DATABASE MANAGEMENT SYSTEMS 19

The problem of schema design is straightforward if all the LDBMS are ho-
mogeneous but is of critical importance in a network with heterogeneous
databases. At present most DDBMS are using SQL for schema definition and
manipulation <Gligor83, Rauch-Hinden87>. The interested reader is re-
ferred to <Cardenas87> for schema design considerations for heterogeneous
DDBMS.

5.3 DATABASE ACCESS AND MANIPULATION

The user queries (DML) are written by using the external schema. If one
homogeneous query language, like SQL, is used throughout the network, then
the user of a DDBMS should not see any difference between a DDBMS and a
local DBMS. However, if different DML are supported by the DDBMS, then
the main user-oriented issue is: what DML should be used from what node?
This issue is not discussed here in detail.

5.4 A DATABASE DESIGN PROCEDURE

A simple database design procedure is suggested in Fig. 5.2 and an ana-
lytical model to support the procedure is given in Table 5.1. This pro-
cedure and model are presented here so that a potential designer of DDBMS
can use a quick paper and pencil method to compute the costs for data
allocations. The steps of the procedure are:

Determine the database requirements, by interviewing end-users, and
normalize them, say in the third normal form. Let D1, D2,,,, D50 be
the database relations generated. Define a global schema of the da-
tabase.

2. Partition/cluster relations into:
. location specific data which is primarily used at one site - as-
sume D1,,,,D40 are location specific due to security or other

situations (robotics, payroll, etc)

. location independent data which may be accessed from many sites
- assume D41,,D50 are location independent

3. Allocate location specific data to nodes where it is needed most
frequently and eliminate it from further considerations

4. Reduce the number of allocation independent files due to:

¢ security: assume D&41-D43 must be restricted to one node due to
security restrictions

®* management: assume D&44-D45 must be allocated to a central site
for management control

5. Allocate the rest of the files: D46-D50 by using a FAP by using the
following tradeoffs:

. amount of storage

. read communications (cost, time)
. update communication (cost, time)
. local I/o at each node

DISTRIBUTED DATABASE MANAGEMENT SYSTEMS 20

Fig. 5.2: A Distributed Database Design Procedure

Ia.

Ib.

2,3,

4,5.

6a.

6b.

Database Requirement Definition

|

Conceptual Database Design

Data Partitioning

Data Allocation

\} .
[4
N/

DBMS Schema Design

Physical Database Design

DISTRIBUTED DATABASE MANAGEMENT SYSTEMS

TABLE 5.1 SIMPLE ANALYTICAL MODEL

. ALLOCATE A DATASET d TO n NODES:
.CALCULATE STORAGE, READ/UPDATE COMMUNICATION, LOCAL I/O
.CALCULATE TIME, COST, ETC.

1. STORAGE OCCUPIED BY d- STORE(d)z FSIZE(d).A(d..i)
i

WHERE FSIZE(d): SIZE OF d IN BYTES
A(d,) =1 IF d IS ALLOCATED TO NODE i, 0 OTHRWISE

STORE(d)= TOTAL STORAGE OCCUPIED BY d
2. NO. OF UPDATES U(i,j,d)= UP(i,d).A(d.j), O IF i=j

IN NETWORK

WHERE U(i,j,d): NO. OF UPDATES ISSUED BETWEEN i AND j FOR d

UP(i,d)= NO. OF UPDATES
3. NO. OF RETRIEVALS R(,j',d)= RD(,d).Ad,})
j'IS THE CLOSET NODE, R(ij,d)=0

IF i=j

ISSUED FROM i TO DATASET d

WHERE R(i,j,d) : NO. OF READS ISSUED BETWEEN i AND j FOR d
RD(i,j')= NO. OF READS ISSUED FROM i TO DATASET d

4. NO. OF LOCAL I/0 AT j=LIO(j,d)= Z UG,j,d) + Z R(i,j,d)
i i

5. CAN CALCULATE OTHER PARANETERS:

. TOTAL STORAGE COST= Z STORE (d)

1

. RESPONSE TIME (WITHOUT QUEUING)

= Z Z R(i,j',d).SPEED(i,j)+Z Z U(i,j,d). SPEED(i,j)
i i

+Z LIO (j,d).IOSPEED(j)

EXAMPLE: ALLOCATE d TO 3 NODES: FSIZE = 100K

.A=1 01, UP=10 15 O,RD= 10 15 20
1. STORAGE= 100X 1+ 100X 0+100 X 1=200k

2. UPDATE = U(i,j,d) =

3. READS = R(i,j,d) =

1
2
3

W N =~

2 3
0O O 10
15 0 15
O 0o O
1 2 3
0 0 0
15 O 0
0 0 0

20.b

(can use analytical/simulation for analysis)

6. Modify the global schema to show the data allocations

7. Conduct a local database design for each of the databases and define
the external user schema.

The simple analytical model shown in Table 5.1 can compute the storage
occupied, communication traffic and local processing traffic in terms of
data allocations. These dependent variables can be used to compute rough
estimates of response time and availability. An example illustrates this
model. This model can be easily translated to a Fortran or Pascal rou-
tine. A more sophisticated routine to calculate the traffic and the re-
sponse time is given in <Umar84, Umar85>.

6. DDBMS IMPLEMENTATION CONSIDERATIONS

A DDBMS can be implemented by using a variety of approaches in data al-
locations, directory definition and allocation, concurrency control al-
gorithms, transaction processing strategies and recovery management. The
choice of right techniques and algorithms depends on the facilities to
be supported by the DDBMS. Fig. 6.1 shows a framework to help a potential
developer in making this decision. The framework uses the following three
variables as the constrained variables:

. Homogeneous versus heterogeneous LDBMS

. Network control (central, distributed) where one node is
designated to coordinate the interactions between all
other nodes _

. Number of copies allowed in a network, i.e. single,
two copies (one at central site, one at local site),
and more than two

Based on these constrained variables, several options are defined. For
each option, the choices available in terms of database definition, di-
rectory allocation, concurrency control, transaction processing, and re-
covery management are listed. It should be noted that the simplest
implementation of a DDBMS is for option 1 (homogeneous, centrally con-
trolled, unique data allocation) and the most difficult is for option 5
when the DBMS are heterogeneous, there is no central control, and the data
can be replicated.

Several DDBMS are being announced for commercial use this year <Graham87,
Rauch-Hinden87, McCord87>. These systems implement different facilities.
Some of the commercially available DDBMS are (see <Rauch-Hinden87> for
detailed description):

. ADR/Dnet of Applied Data Research

. Cincom's DDBMS

. Shard, Adaplex and Model 204 of Computer Corporation of America
. cXDMS of Computer-X Inc.

. IDMS/Distributed of Cullinet

. VAX Data Distributer of Digital Equipment Corp.
. Starburst of IBM

. Informix-Star of Informix Software

. SQL*STAR of Oracle, Inc.

. Ingres/Star of Relational Technology

. Sybase/Star Server of Sybase, Inc.

. Encompass of Tandem Computers

DISTRIBUTED DATABASE MANAGEMENT SYSTEMS 21

Unify's DDBMS

Several implementations support option 1 shown in Fig. 6.1. For example,
most systems use SQL as a standard query language, assume some level of
centralized control and allow limited data distribution. Several home
grown implementations allow centralized data with distributed skeleleton
files. The approach of remote procedure call is supported by CICS-ISC
and Local area network file servers like Btrieve on Token Ring. This
approach allows a single application to access many databases, i.e.
program P can access file F1 on node nl and F2 on node F2. This approach
allows only one copy of a file.

Option 2 is supported by DDBMS where the central site database is peri-
odically extracted and sent to user sites. The central site database
can be retrieved and updated; user site data can be retrieved but cannot
be updated. An example of this approach is the DEC VAX Data Distributor.
In this DDBMS, a user extracts and replicates relational RDB/VMS which
are sent to user nodes via DECNET.

Options 3 and 4 are supported by some DDBMS; a database is subdivided
(partitioned), say by region or product, and then the data is replicated
while a user views one logical database. An example of this approach is
the Tandem Computer's Encompass which is one of the oldest DDBMS. En-
compass allows distributed queries, dlstrlbuted updates and synchronlzed
replicated data. Relational Technology's INGRES/STAR and Oracle's Oracle
SQL*STAR are other examples of this type of implementation. Both can
retrieve data, perform joins, and update data from different sites.
Current versions restrict update to one site. Other examples of imple-
mentations in progress in these optlons are ADR'S DNET 2.0, CCA's ADAPLEX,
distributed MODEL 204, UNIFY CORP's distributed version of Unify DBMS
and Informix Software Incs distributed INFORMIX DBMS.

An improvement over the partitioned support are the fragmentation systems
where horizontal and vertical fragments of a database are allocated to
different sites. The user does not know that the database has been
fragmented. Relational Technology Inc. announced fragmentation support
for late 1988. No other significant plans to support fragmentation have
been announced. An area of significant activity at present is the dis-
tribution among micros, minis and mainframes. Details of these efforts
can be found in the papers by Rauch-Hinden <Rauch-Hinden87>.

Some of the oldest implementations of DDBMS, e.g. the Tandem Encompass,
are described in detail by Gray <Gray87>. Cohan et al <Cohan82> describe
a DDBMS that has been implemented for network services. In addition to
the commercially available DDBMS, several research and development DDBMS
are being developed in dlfferent parts of the world. Examples of these
systems are:

. COSYN being developed in France

. CSIN being developed in the US

. Sirius-Delta being developed in France

. Sirius-POLYPHEME being developed in France
. Distributed DPLS being developed in Japan
. XNDM being developed in the US

. Multibase being developed in the US

. JIPDEC-Distributed DBMS (Japan)

. POREL (Germany)

. Nixdorf (Germany)

Details of these implementations can be found in <Gligor83>.

DISTRIBUTED DATABASE MANAGEMENT SYSTEMS 22

FIG.6.1: DDBMS IMPLEMENTATION OPTIONS

CASE
a.

b
c
d.
e

CASE

[CHN o P e TN o i o)

CASE

© QA0 TOMm

CASE

O A0 T

CASE

© A0 T

1: HOMOGENEOUS, CENTRALLY CONTROLLED, NO DATA DUPLICATION
DATABASE DEFINITION AND TRANSLATION: NOT DIFFICULT

. DIRECTORY ALLOCATION: AT INDIVIDUAL SITES
. DATABASE CONSISTENCY/CONCURRENCY: NOT NEEDED FOR UNIQUE DATA

QUERY OPTIMIZATION: NOT DIFFICULT

. FAILURE HANDLING: NOT DIFFICULT

2: SAME AS 1, COPY CAN EXIST AT CENTRAL SITE
DATABASE DEFINITION AND TRANSLATION: NOT DIFFICULT
DIRECTORY ALLOCATION: MAY BE AT CENTRAL SITE
DATABASE CONSISTENCY/CONCURRENCY: CAN BE BASIC 2PL
QUERY OPTIMIZATION: SIMPLE HILL CLIMBING

FAILURE HANDLING: SIMPLE TWO PHASE COMMIT

3: SAME AS 2, SEVERAL COPIES CAN EXIST

DATABASE DEFINITION AND TRANSLATION: NOT DIFFICULT
DIRECTORY ALLOCATION: MAY BE AT CENTRAL SITE
DATABASE CONSISTENCY/CONCURRENCY: CENTRAL CONTROLLED
QUERY OPTIMIZATION: MANY CHOICES

FAILURE HANDLING: TWO PHASE COMMIT

4: SAME AS 3, NOT CENTRALLY CONTROLLED

DATABASE DEFINITION AND TRANSLATION: NOT DIFFICULT
DIRECTORY ALLOCATION: MANY CHOICES

DATABASE CONSISTENCY/CONCURRENCY: MANY CHOICES

. QUERY OPTIMIZATION: MANY CHOICES

FAILURE HANDLING: MANY CHOICES

5: SAME AS 4, HETEROGENEOUS

DATABASE DEFINITION AND TRANSLATION: VERY DIFFICULT, MANY CHOICES
. DIRECTORY ALLOCATION: MANY CHOICES

DATABASE CONSISTENCY/CONCURRENCY: MANY CHOICES
QUERY OPTIMIZATION: MANY CHOICES
FAILURE HANDLING: MANY CHOICES

7 SUMMARY AND CONCLUSIONS

Design and implementation of DDBMS involves many challenges and choices.
This report has attempted to present four different aspects of DDBMS.
First a set of requirements for a generalized DDBMS are presented to
provide the scope of issues to be handled by a DDBMS. Second, a reference
architecture is presented which clusters the main issues into several
modules. The architecture is used to explain the issues encountered and
approaches available in database definition, concurrency control, query
processing and recovery/failure management. Third, the usage aspects of
DDBMS, e.g. the distributed database design problem, are explained and a
simple design method is presented. Fourth, the implementation issues are
summarized and various commercially available DDBMS are discussed.

The following general observations can be made:

1. The complexity of the DDBMS to be developed depends on the options
supported. It is simple to develop DDBMS which support single copy
and homogeneous LDBMS approach.

2. DDBMS have moved from research to commercial availability. However,
it is difficult to determine what approaches are being adopted by
commercial DDBMS.

3. Evaluation of commercial DDBMS is difficult due to the vagueness be-
tween promised versus available facilities.

4. Tandem system has one of the oldest and proven systems due to its
architecture which supports a large number of small computers.

5. SQL is considered a standard for transparency, but:
- SQL conversion to local DBMS is not trivial
- all SQL are not same, e.g. ISO SQL is a subset of DB2 SQL
- relational systems may not be adequate for engineering
applications like CAD/CAM

In short, the difficulties encountered in implementing DDBMS must be
carefully weighed against the advantages of DDBMS over centralized sys-
tems. For several applications, it may still be better to provide a
centralized database or use a single copy DDBMS after all of the costs
for query processing, concurrency control and failure management have
been taken into account.

DISTRIBUTED DATABASE MANAGEMENT SYSTEMS 23

REFERENCES

10.

11.

12.

.13,

14.

15.

16.

17.

Bernstein, P. A. and Goodman, N., "Concurrency Control in Distributed
Database Systems', ACM Computing Surveys, Vol.13, No.2, June 1981,
pp.185-222.

Bernstein, P. A. and Chiu, D.W., "Using Semi-Joins to Solve Relational
Queries'", JACM, Jan. 1981.

Bernstein, P. A., Hadzilacos, V., and Goodman, N., "Concurrency Con-
trol and and Recovery in Database Systems', Addison Wesley, 1987

Bryand, R.M., and Agre,J.R., "A Queuing Network Approach to the Module
Allocation Problem in Distributed Systems', ACM Conf. on Measurement
and Modelling of Computer Systems, Sept. 1981, pp. 181-190.

Bucci,G., Streeter,D.N.,: "A Methodology for the Design of Distrib-
uted Information Systems', CACM,v.22, no.4, April 1979, pp. 233-245.

Buckles, B.P. and Harding, D.M., 'Partitioning and Allocation of
Logical Resources in a Distributed Computing Enirnment', General Re-
search Corporation Report, Huntsville, Alabama, 1979.

Cardenas, A.F., "Heterogeneous Distributed Database Management: the
HD-DBMS", Proceedings of the IEEE, May 1987, pp.588-600.

Casey, R.G.,"Allocation of Copies of a File in an Information Net-
work"', SJCC 1972, AFIPS Press, Vol. 40, 1972

Ceri, S., Pernici, B., and Wiederhold, G., "Distributed Database De-
sign Methodologies", Proceedings of the IEEE, May, 1987, pp.533-546.

Chandy, D.M. and Hewes, J.E. 'File Allocation in Distributed Sys-
tems', Proc. of the Intl Symp on Computer Performance Modelling,
Measurement and Evaluation, March 1976, pp.10-13.

Chang, S.K. and Liu, A.C., ' A Database File Allocation Problem',
COMPSAC, 1981, pp.18-22.

Chu, W.W., 'Optimal file allocation in a multiple computer system',
IEEE Tran. on Computers, oct. 1969, pp. 885-889.

Chu, W.W., "Performance of File Directory Systems for Data Bases in
Star and Distributed Networks', 1976 NCC, Vol. 45, 1976.

Chu, W.W., "Distributed Data Bases", Handbook of Software Engineer-
ing, Edited by C.R. Vick and C.V. Ramamoorthy, Van Nostrand REinhold,
1984

Ceri, S., and G. Pellagitti, "Distributed Databases: Principles and
Systems', McGraw Hill, 1984.

Ceri, S., Pernici, B., Wiederhold, "Distributed Database Design
Methodolgies", Proceedings of the IEEE, May 1987, pp.533-546.

Coffman, E.G., Gelenbe, E, et al, 'Optimization of the Number of
Copies in Distributed Databases', Proc. of the 7th IFIP Symposium on
Computer Performance Modelling, Measurement and Evaluation , May
1980, pp. 257-263.

18.

19.

20.

21.

22.

23.

24,

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

Cohen, D., Holcomb, J.E., and Suryanarayana, M B., "Distributed Da-
tabase Management to Support Network Services", IEEE Conference on
Communications, 1982.

Date, C.J., "An Introduction to Database Systems", Fourth edition,
Vol.1 and Vol. 2, Addison Wesley, 1986

Date, C.J., "A Guide to DB2", Addison Wesley, 1984

Decitre, P., "A Model for Describing Distributed Database Management
System Archltecture , 16th Annual IEEE Electronics and Aerospace
Systems Conference', Sept. 1983.

Doty, K.W., McEntyre, P.L. and 0'Reilly, J.G., 'Task Allocation in a
Dlstrlbuted Computer System', Proc. of IEEE INFOCOM 1982, pp. 33-38.

Epsteln, R., Stonebraker, M., Wong, E., "Distributed Query Processing
in a Relational Database System", ACM SIGMOD Austin, TX, 1978

Epstein, R., "Query Optimization: A Game of Time and Statistics", Unix
Review, May 1987, pp. 28-29.

Eswaran, K.P; Gray,J.N, et al "Notions of Consistency and Predicate
Locks in a Database System", CACM,Vol.19, No.11,Nov.1976

Eswaran, K P; "Allocation of Records to Files and Files to Computer
Networks s IFIP 1974, pp.304-307.

Farrag, A.A., and Ozsu, M.T., "Towards a General Concurrency Control
Algorithm for Database Systems , IEEE Trans. on Software Engineering,
Vol. SE-13, No.10, Oct. 1987, pp.1073-1073.

Finckenscher, G. 'Automatic Distribution of Programs in MASCOT and
ADA Environments', Royal Signal and Radar Establishment, London,
1984.

Fisher, P., Hollist, P. and Slonim, J. "A Design Methodology for
Distributed Databases", Proc. IEEE Conf. on Distributed Computing,
pp.199-202, Sept.1980.

Fisher, M.L. and Hochbaum, D.sp., 'Database Location in Computer
Networks', ACM Journal, V.27, N.4, Oct. 1980.

Garcia-Molina, H., "Performance of Update Synchronlzatlon Algorithms
For Repllcated Data in a Distributed Database", Ph.D. Dissertation,
Stanford University, June 1979.

Garcia-Molina, H., Abbot, R.K., "Reliable Distributed Database Man-
agement", Proceedings of the IEEE, Vol. 75, No. 5, May 1987,
pp601-620.

Gligor, V.D., and Fong, E., Dlstrlbuted Database Management Systems:
An Architectural Perspectlve , Journal of Telecommunication Networks,
Vol. 22, No. 3, pp.247-270, Fall 1983.

Graham, G., '"Real-World Distributed Databases'", Unix Review, May
1987.

Gray, J., "Notes on Datbase Operating Systems", in Operating Systems:
An Advanced Course, Springer-Verlag, N.Y. 1979, pp.393-481.

Gray, J., "The Transaction Concept: Virtues and Limitations', Pro-
ceedings of Conference on Very Large Databases, Sept. 1981, pp.
144-154.,

37.
38.

39.

40.

41.

42.

43.

44,

45.

46.

47.

48.

49.

50.

51.

52.

53.

54.

55.

Gray, J., "Transparency in Its Place", Unix Review, May 1987.

Gray, J.N., and Anderson, M., "Distributed Computer Systems: Four
Cases", Proceedings of the IEEE, May 1987, pp.719-729.

Goodman, N., et al., "Query Processing in SDD-1: A Ssystem for Dis-
tributed Databases", CCA, Technical Report, CCA-79-06, 1979.

Goodman, N., "Interview with Phil Bernstein", Unix Review, May 1987.
GYLY?76). Gylys, V.B. and Edwards, J.A, 'Optimal Partitioning of
Workload for Distributed Systems', COMPCON, fall 1976.

Hebalkar, P.G. 'Logical Design Considerations for Distributed Data-
base Systems', IEEE COMPSOC, Nov. 1977, pp.562-580.

Rauch-Hinden, W., "True Distributed DBMSes Presage Big Dividends",
Mini-Micro Systems, May and June, 1987

Heinselman, R.C. "System Design Selection for Distributed databases",
Proc. IEEE Conf. on Distributed Computing, pp.203-210, Sept.1980.

Hevner, A.R., and Yao, S.B., "Query Processing in Distributed Data-
base Systems', IEEE Transactions on Software Engineering, Vol. SE-5,
No. 3, May 1979.

Hevner, A.R., 'A Survey of Data Allocation and Retrieval Methods for
Distributed Systems', School of Business and Management Working paper
81-036, Univ. of Maryland, Oct. 1981.

Hevner, A.R., and Yao, S.B., "Querying Distributed Databases on Local
Area Networks", Proceedings of the IEEE, May 1987, pp.563-572.

IDMS System Overview, Westwood, Mass., Cullinane Database Systems,
1981.

Irani, K.B. and Khabbaz, N.G., 'A Combined Communication Network De-
sign and File Allocation for Distributed Databases', 2nd Intl Conf
on Distributed Systems, Paris, April 1981.

Jain, H.K., "A Comprehensive Model for the Design of Distributed
Computer Systems', IEEE Trans. on Software Engineering, Vol. SE-13,
No.10, Oct. 1987, pp.1092-1105.

Jarke, M. and Koch, J., "Query Optimization in Database Systems', ACM
Computing Surveys, June 1984, pp.111-152. :

Kapp, D., and Leben, J., "IMS Programming Techniques", Van Nostrand-
Reinhold Company, 1978.

Khabbaz, G.N, "A Combined Network Design and File allocation in Dis-
tributed Computer Networks', Ph.D dissertation proposal, Univ. of
Michigan, 1979.

Kimbleton,S.R; "A Fast Approach To Network Data Assignment", Proc.
of 2nd Berkeley Workshop on Distributed Data Management and Computing
Networks, May 1977, pp.245-255

Koh, K. and Eom, Y.I "A File Allocation Scheme for Minimizing the
Storage Cost in Distributed Computing Systems', First Pacific Com-
puter Communication Symposium, Seoul, Korea, Oct. 1985, pp.310-317.

Kohler, W. H., "A Survey of Techniques for Synchronization and Re-
covery in Decentralized Computer Systems', ACM Computing Surveys,
Vol.13, No.2, June 1981, pp.149-184.

56.

57.

58.

59.

60.

61.

62.

63.

64.

65.

66.

67.

68.

69.

70.
71.

72.

73.

74.

75.

Kroenke, D., "Database Processing", SRA, 1977.

Larson, J. A., "A Flexible Reference Architecture for Distributed
Database Management", Proceedings of ACM 13th Annula Computer Science
Conference, March, 1985, New Orleans, pp.58-72.

Larson, B., "A Retrospective of R*: A Distributed Database Management
System', Proceedings of the IEEE, May 1987, pp.668-673.

Levin, K.D and Morgan, L.H. " Optimizing Distributed Data Bases- A
Framework For Research", Proc. NCC, 1975, Vol.44, pp.473-478

Lim, P.A., "CICS/VS Command Level with Ans Cobol Examples' Van
Nostrand Reinhold, 1982.

Lu, P.M. and Yau, S.B.,"A Methododlogy for Representing the Formal
Specifications of Distributed Computer System Software Design", Proc.
IEEE Conf. on Distributed Computing Systems, pp.31-42, Oct. 1979.

Mahmood, S. and Riordan, J.sp.; "Optimal Allocation of Resources in
Distributed Information Networks', ACM Trans. on Database systems,
Vol.1, No. 1, March 1976, pp. 66-78

Mariani, M.P. and Palmer, D.F. (eds.), "Tutorial: Distributed System
Design', EHO 151-1, IEEE Computer Society, 1979.

Mariani, M.P. and Palmer, D.F "Software Development for Distributed
Computing Systems", Handbook of Software Engineering, edited by
C.V.Ramamoorthy and C.R.Vick, Van Nostrand, 1984, pp.656-674.

Martin, D., "Advanced Database Techniques", MIT Press, 1986.

McCord, R. and Hanner, M., "Connecting Islands of Information', Unix
Review, May 1987.

Rothnie, J.B. and Goodman, N. "A Survey of Research and Development
in Distributed Data Base Management", 3rd Conference on Very Large
Data Bases, Tokyo, Oct. 1977, pp.48-60

Sacco, G.V. and Yao, S.B., "Query OPtimization in Distributed Data-
bases", Working Paper MS/S #81-029, College of Business Adminis-
tration, University of Maryland, 1981.

Shatz, S.M., and Jia-Ping Wang, "Introduction to Distributed-Software
Engineering", IEEE Computer, October, 1987, pp.23-32.

Stamper, D., "Business Data Communications", Benjamin/Cumings, 1986.

Stone, H., "Parallel Querying of Large Databases: A Case Study", IEEE
Computer, October, 1987, pp.11-21.

Stonebraker, M., "Concurrency control and consistency of multiple
copies of data in distributed Ingres", IEEE Trans. on Software Engi-
neering, SE-5, 3, (May 1979), pp.188-199. ' ’

Svobodova, L., "File Servers for Network-Based Distributed Systems",
ACM Computing Surveys, Dec. 1984, pp.353-398.

Tanenbaum, A.S, and van Renesse, R. "Distributed Operating Systems",
Computing Surveys, pp. 419-470, December 1985.

Tanenbaum, A.S., "Computer Networks'", Prentice Hall, 1981.

76.

77.
78.

79.

80.

81.

82.

83.

84.

85.

86.

87.

88.

Teorey, T.J and Fry, J.P "Design of Database Structures", Prentice
Hall, 1982.

Ullman, J., "Principles of Database Systems", John Wiley, 1982.

Umar, A "The Allocation of Data and Programs in Distributed Data
Processing Environments', Ph.D. Dissertation, Univ. of Michigan, 984.
Also published as Computing Research Laboratory report CRL-TR-22-84,
University of Michigan, Ann Arbor, Michigan.

Umar, A. and Teorey, T.J "A generalized approach to Program and Data
Allocation in Distributed Systems", First Pacific Computer Communi-
cation Symposium, Seoul, Korea, Oct. 1985, pp.462-472.

Vasta, J., "Understanding Database Management Systems', Wardsworth,
1985.

Wilbur, S., and Bacarisse, "Building Distributed Systems with Remote

Procedure Call", Software Engineering Journal, Sept. 1987,
pp.148-159.
Walpole, J. et al, "Transaction Mechanisms for Distributed Program-
ming Environménts', Software Engineering Journal, Sept. 1987,
pp-169-171.

Wolfe, P.E., "Computer Aided Design Report", Vol. 7, No. &4, April.
1987.

Wolfson, 0., "The Overhead of Locking (and Commit) Protocols in Dis-
tributed Databases", ACM Trans. on Database Systems, Vol. 12, No. 3,
Sep. 1987, pp. 453-471.

Wong, E., "Retrieving Dispersed Data from SDD-1: A System for Dis-
tributed Databases', Berkeley Workshop on Distributed Data Management
and Computing Networks, 1977.

Woodside, C.M and Tripathi, S.K "Optimal Allocation of File Servers
in a Local Area Network Environment', IEEE Trans. on Software Engi-
neering, Aug. 1986, Vol. SE-12, No. 8, pp. 844-848.

Yao, S.B., "Optimization of Query Evaluation Algorithms', ACM Trans.
on Database Systems, Vol. 4, No. 2, June 1979, pp.133-155

Yu, C., and C. Chang, "Distributed Query Processing", ACM Computing
Surveys, vol. 16, no. 4, pp.399-433, Dec. 1984.

