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PREFACE

Project MICHIGAN is a continuing, long-range research and development pro-
gram for advancing the Army's combat-surveillance and target-acquisition capabil-~
ities, The program is carried out by a full-time Institute of Science and Technology
staff of specialists in the fields of physics, engineering, mathematics, and psychol-
ogy, by members of the teaching faculty, by graduate students, and by other research

groups and laboratories of The University of Michigan.

The emphasis of the Project is upon research in imaging radar, MTI radar,
infrared, radio location, image processing, and special investigations. Particular

attention is given to all-weather, long-range, high-resolution sensory and location

techniques.

Project MICHIGAN was established by the U, S, Army Signal Corps at The
University of Michigan in 1953 and has received continuing support from the U. S.
Army. The Project constitutes a major portion of the diversified program of re-
search conducted by the Institute of Science and Technology in order to make avail-
able to government and industry the resources of The University of Michigan and
to broaden the educational opportunities for students in the scientific and engineer-

ing disciplines.

Progress and results described in reports are continually reassessed by Proj-

ect MICHIGAN. Comments and suggestions from readers are invited.

Robert L. Hess
Director
Project MICHIGAN
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SIGNAL DETECTION BY COMPLEX SPATIAL FILTERING

ABSTRACT

This report contains integrated descriptions of the problem of signal detection,
the optimum linear filtering process, a coherent optical system which accomplishes
this filtering process, and a technique for realizing the required complex filter,
Experimental results show that the theory is valid.

The appendixes give a treatment of the Fourier transforming property of lenses
which is general enough that complete optical systems can be evaluated on the basis
of frequency response and region of space-invariant operation,

The experimental results obtained to date indicate that this technique provides
an excellent two-dimensional filtering capability that will play a key role in prob-
lems such as shape recognition and signal detection.

INTRODIUCTION

The fundamental theory of optical spatial filtering has been formulated by several writers
[1-3]. The close analogy of spatial filtering to optimum linear filtering theory promised to open
up new techniques for realizing those frequency domain filters which could not be synthesized in
the time domain because of the realizability contraint. But the advances in spatial filtering since
the formulation of the theory have not been what one might have expected. Perhaps the major
reason is that, whereas the theoretical formulation tacitly assumed that complex filters could
be realized, the actual realization has presented a difficult problem. It was generally assumed
that photographic transparencies would play a large role in the realization of spatial filters [2, 3],
but any hope for making complex filters on film has seemed remote. Some work was aimed in this

direction [4, 5], but it is not directly applicable to the problem treated in this report.

Since spatial filters are passive, they can take on all values on or within the unit circle in the
complex plane [6]. Early experiments in spatial filtering used occluding filters as bandpass fil-
ters to demonstrate the theory. Later, continuous amplitude control, such as Gaussian weighting,
was used to show how equalization could be accomplished by optical systems. The next step was
to add binary phase control to extend the range of filter values to the entire real line. Binary
control was gained by using ruled phase plates, evaporation techniques, or film reliefing tech-
niques. Not only are these techniques awkward to apply, but, more seriously, the impulse
response of a real filter is symmetrical, Clearly, if more general filtering schemes are to be
performed, a fairly easy method of constructing the general complex filter must be found. This
report describes, as one of its major results, a practical technique for realizing a general com-

plex filter even though the filter function is recorded on photographic film.
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In most other approaches to the problem of the realization of the desired complex filter, a
complex distribution of light must be analyzed. This report showshow, at the same time, the
analysis can be avoided and the complex filter can be realized. This feature is important since

the required filter can be found analytically for only a few simple two-dimensional functions.

This report contains an integrated description of the problem of signal detection, the optimum
filtering process, a coherent optical system which accomplishes this filtering process, and a
technique for realizing the required complex filter. The appendixes give some important insight
into the Fourier transforming properties of a lens system operating under coherent illumination.
The theory, which is more general than usual, is used to discuss and evaluate several optical

systems.

MATHEMATICAL NAT&RE OF THE PROBLEM
The mathematical model shown in Figure 1 describes the problem of sensing, recording,
and processing imagery. The scene will be denoted by g(x, y), an intensity function of two space
coordinates. The sensor makes a two-dimensional transformation of g(x, y), and the recording
process transforms it further, Because the recording medium is usually photographic film, film
grain becomes a secondary source of noise, The processing of the imagery is equivalent to a

third transformation on g(x, y), and the output is an estimation of the amount of signal present

The University of Michigan

in g(x, y).

%, y) Sensor T [g(x, )] Recording
gx, vy . 1 A
———{ Transformation Transformation

T T
1 2
T2{T1[g(x, y)1} Processing‘ Estimate
Transformation | g of
T3 Signal Present

Film Grain Noise

FIGURE 1. MATHEMATICAL MODEL FOR IMAGE PROCESSING
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It has become common practice to refer to
f(X, Y) = Tz{Tl [g(X, Y)]}

as the ""scene.' Although this is not strictly correct, transformation T, is usually a nonlinear

2
process, and a poorly controlled one at that; therefore, it becomes necessary to operate on the

available data f(x, y) rather than to attempt to recover g(x, y) before the processing operation,

OPTIMUM3FILTERING
Suppose n(x, y) is a homogeneous isotropic random process with spectral density N(p, q),
and s(x, y) is a known Fourier transformable function of space coordinates. We wish to operate
on f(x, y) = s(x, y) + n(x, y) in such a way that we maximize the ratio of peak signal energy to
mean square noise energy in the output, Suppose h(x, y) is the impulse response of a linear,
space invariant filter with frequency response H(p, q). It is desirable to determine an optimum

filter under the condition stated. See Figure 2,

s(x, 1(x, y) r(x, y)
2 :Gf} o b -
n(x, y) Filter

FIGURE 2, PROCESSING SYSTEM

The signal part of the output is

0
1 .
ry =*—2f q) Hip, o) ¢! P gpq

-0

and
MSN (mean square noise) ff N(p, q) | H(p, q) l dpdq
~C0
2
‘YS(O’ O)l

We want to find maximum over all {H(p, q)} for the ratio , Where the peak signal is

MSN
taken at (0, 0) for convenience. We have
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© 2
1
— || stp q)dpdq

lrs(O, 0)12 4n2Q

MSN  ~ © (1)

1 2
—5 || N(p, q) |H(p, q)|“dpd
4”2g (p, @) IH(p pdq

For nontrivial cases, N(p, q) > 0 for all (p, q), so that it can be treated as the weighting function

in the Schwarz inequality, Rewrite Equation 1 in the form

2

2

0
f f [N(pp,, q)J H(p, q) N(p, q)dpdq

f [H(p, )|” N(p, q)dpdq

1
Ix (0, 0)l e
MSN

Apply the Schwarz inequality to the numerator of Equation 2 to get

oot RS

o0
N(p, q)dpdq f [H(p, q)I?N(p, q)dpdg

Max s\’ ~00
{H} MBS
J [H(p, q p, ¢)dpdq
0
1
<—7J lﬁ(ﬁ N(p, q) dpdq
0

We get a maximum on H when

Hp, ) =k ped) 3)

j

(where the bar indicates a complex conjugate) and the signal-to-noise ratio is

L B
=—2_J dpdq (4)
-0

From Equation 3 we see that under the given constraints the optimum filter is proportional
to the complex conjugate of the signal spectrum divided by the noise spectral density. The output

of the system is given by
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r(x, y) =5 ﬁ F(p, ) H(p, o) /"% gpaq (5)
4 LA

In case N(p, q) is uniform for all frequencies we have

H(p, q) = k' S(p, q)

and

r(x, y) =—k'7 ﬁ F(p, @) S, @) ! P ap aq
‘ 4 %

Employing the convolution theorem, we have

o0
r(x, y) = k' ﬂ flx, v,) s(-x+ X, -y +y ) dx_dy_
=00

©
= k‘ﬂ;f(x +u, y+v) sy, v) dudv .(6)

which is a cross-correlation process, Optical systems which perform the operations indicated

by Equations 5 and 6 will be described in Section 4.

An interesting situation arises when the signal and noise are not linearly additive, but are
mutually exclusive processes., Then the signal is no longer a known function, but becomes a
random process. This case arises when the signal is partially occluded by noise, and also when

film grain noise is present. The mutually exclusive noise situation is analyzed in Appendix A.

4
OPTICAL PROCESSING SYSTEMS
4,1, COHERENT OPTICAL SYSTEMS
Optimum filter theory makes widespread use of Fourier transform theory to arrive at
results easily, Unfortunately, since the synthesis of an electronic filter must be made in the
time domain, there are restrictions on the realizability of the filter, as well as some limitations
on its performance. The use of a coherent optical system overcomes some of these restrictions
because it can display the Fourier analysis of signals as a distribution of light,‘ ahd one has the

option of constructing the filter in either the frequency or the space domain,
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The optical system shown in Figure 3 acts as a two-dimensional Fourier analyzer, as is

shown in Appendix B. If f(x, y) denotes the specular amplitude transmission of the transparency

in plane P1 and F(p, q) denotes the complex amplitude distribution of light in plane P2, then
Collimating § f
Lens | '
.'/"
‘*é\“ . . .. —_——
Point  ~_
Source ’
of
L R
Monochromatic ' 2
Light Input Spherical Frequency
Function Lens Plane
(%, y) F(p, @)
FIGURE 3. AN OPTICAL FOURIER ANALYZER
m .
X+
F(p, q) = Hf(x, y) eI qy)dxdy (7)
~o0

when d = f and the illumination is a monochromatic plane wave. In Equation 7 p and q represent

spatial frequency variables having the dimensions of radians/unit distance. But the variables in

plane P2 are in units of distance which are
_AMp
£ = 2n
AMq
=%z

where £ = the direction parallel to x
n = the direction parallel to y
A = the wavelength of the illumination
f = the focal length of the spherical lens
In general, the variables (p, q) will be used for emphasis when a distribution of light is a function

of frequency, as well as to simplify the notation associated with Fourier transform theory.

A transform relationship can exist under a wide variety of conditions. If d # £, then F(&, 7)
is modified by a quadratic phase factor which does not affect the intensity of the distribution.

Also, convergent or divergent illumination will only relocate plane P, which changes the scale

2’
of F(¢, n) as well as modifying F(&, 1) by a spherical phase factor. These phase terms serve

only to determine the position of the image plane for the input transparency, or else the position
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of the frequency plane (plane P2). These conditions are discussed in Appendix B in connection

with the frequency response of optical systems.

The fact that a spherical lens can take the Fourier transform of a complex distribution of
light allows one to construct an optical system by arranging a sequence of lenses which forms
a succession of Fourier transform planes. An image of the input plane can be effected by placing

a lens behind plane P2 which takes the transform of F(p, q) (see Figure 4). Since a positive

Collimating f f f f
Lens
'-c"_ : I '
x/
Point
Source ~¥¢_._
of P L P L Ve
Monochromatic ! Ob'e(I:tive 2 Irnaz in 3
Light Input IJJens Frequency Le%ls & Output
Plane Plane Plane
f(x, y) F(p, a) r(x, y)

FIGURE 4. A COHERENT PROCESSING SYSTEM

spherical lens always introduces a positive kernel in the transform relationship, we have in

plane P_ the distribution

3

r(x, y) = —LZ-ﬂF(p, q) &P ap aq

= f(-X, _Y)

We have assumed that the system has unity magnification and sufficient bandwidth to pass the
highest spatial frequency in the input function. Note that the output is an inverted image of the
input function, which is what one expects from an imaging system operating under any type of
illumination. We have also assumed that the lenses have no aberrations and that the system is
space-invariant. Limitations placed on the system to assure space invariance for a given band-

width signal are discussed in Appendix B.

In certain conditions the optical system in Figure 4 can be made to operate as a cross-

correlator. Suppose a transparency is placed in plane P_, whose transmission is given by

2)
H(p, q). The modified light distribution in this plane is now

R(p, q) = F(p, q) H(p, q)
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Lens L2 takes the Fourier transform of this distribution and displays it in plane P3 as

0
1 j(px+
r(x, y) =—2—ﬂ F(p, q) H(p, q) ol qY)dp dq
CA
By use of the convolution theorem,

©
r(x, y) = fff(x -u, y-v)h(y, v) dudv
-0

If N(p, q) is uniform for all (p, q) of interest, the optimum filter is H(p, q) = k1 S(p, q), and

r(x, y) = kf(x, y) * s(x, y)
which is the cross-correlation of the signal with the input transparency (* denotes convolution).

If two transparencies are placed in contact, their complex transmissions are multiplicative.1
Consequently, to synthesize the filter described in Equation 3, we need to insert a transparency

whose transmission is 1/N(p, q) in plane P, in addition to the transparency representing S(p, q).

When this filter is used, the output of the s3zzstem essentially represents the probability that a
signal has occurred at any point in the input; a bright spot in the output indicates high probability,
whereas low light levels indicate low probability. This process simultaneously detects all signals
with similar orientations in any location in Pl’ as can be seen by observing that the spectrum of
a translated signal is modified by a linear phase factor. This phase factor contains precisely the
information required to image the signal at the proper position in the output. In contrast, the
system is sensitive to the orientation of the signal; but a rotation of the filter relative to the

input will detect these signals sequentially.

Other optical configurations will perform the required operation, but the configuration shown
in Figure 4 is most convenient and has optimum frequency response. The process could be
carried out with two lenses or even a single lens. These configurations are discussed in Appendix

B.

4,2, NONCOHERENT OPTICAL SYSTEMS
Noncoherent optical systems have limited usefulness, since they can be used only when
N(p, q) = N for all (p, q) of interest. This restriction frequently results in processing such a

small amount of data that the system becomes impractical. The noncoherent system is further

'Unless otherwise noted, the word ""transmission’ will be used in this report to refer to
specular amplitude transmission of the transparency.
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limited by the fact that f(x, y) must be real. Since a noncoherent system does not exhibit a
frequency plane similar to that of a coherent system, H(p, q) must be realized in the space

domain, The problem is to design a system with impulse response

(o8]
k' i(px+
h(x, y) =71;ﬂs(p, qQ) ¢I® qy)dp dq
-00

=k s(-x, -y)

This result can be accomplished easily by using a reference function optical system. In the

optical system shown in Figure 5, plane P_ is an extended source of diffuse illumination (not

1
necessarily monochromatic). The transparency representing f(x, y) is placed in plane P2, and

the reference function representing h(x, y) is placed in plane P,. Since the signal is real,

3

h(x, y) = s(-x, -y). A ray of light from a point (x ) in plane P, passes through the point

Y1 1

(x4, ¥o) in plane P, and is attenuated by f(x ). This ray passes through the reference
2" 72

2 2 Y3

f(x, y) h(x, y)

FIGURE 5. A NONCOHERENT PROCESSING SYSTEM

function at a point (x3, y3) and is further attenuated by a factor s(—x3, -y3). From the geometry
we see that
LN
£ d
Y4 Y273
f - d
The intensity of light in the image of the point (Xl’ yl) is the summation of all rays parallel to

the ray described,; i.e.,

o0
I‘(X4, Y4) = fjf(xz, y2) S('X3: -y3)dX3 dY3
-0

0 % d y . d
= || f(x y)s—4—-x i--y dx,, dy
2’72 f 2 f 2 2 772
-0
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By a change of variables we have

[29)

r(x, y) = kfjf(x +u, y+v) sy, v)dudv
-0

which is the desired output. The constraint on N(p, q) limits the usefulness of the noncoherent

system,

5
REALIZATION OF THE OPTIMUM FILTER
Having determined that the optimum filter which maximizes the ratio of peak signal energy
to mean square noise energy is given by Equation 3, we must find some method to realize H(p, q).
Except for the fact that H(p, q) is usually a complex quantity, photographic film would be the
prime candidate for recording the filter. But only when H(p, q) is nonnegative can it be realized

on film,

Since N(p, q) > 0 for the nontrivial case, it can always be realized on film. Recall that
N(p, q) can be found by averaging over an ensemble of sample functions. A better approximation
to N(p, q) can usually be found by dividing sample functions into subclasses with distinctly
different noise structures. (A class might be all backgrounds consisting of natural terrain, or
the structure associated with populated areas, or the background structure associated with radar
returns, etc.) Since a priori knowledge exists as to which class of noise functions is being

processed, the appropriate N(p, q) can be selected.

5.1. REALIZATION OF NONNEGATIVE FILTERS
The first step in realizing any function on photographic film is a brief review of the film's
transfer characteristics, A typical curve of density versus long exposure is shown in Figure

6. This curve is characterized in its linear region by
D =y (logE_ -logE) (8)

where ’n is the slope of the straight line
En is the exposure
EO is the intercept of the straight line
Dn is the intensity density

n means that a negative transparency is used
The coherent system operates on the transmission of the film so that

T - e—D/2

10
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DENSITY

n

LOG EXPOSURE —#=

FIGURE 6. TYPICAL CURVE OF DENSITY VS. LOG EXPOSURE

or
C
Tn _—m (10)
E
n

If we make En proportional to N(p, q) and require Yy = 2, we have realized the denominator of
H(p, q). The exposure can be made proportional to N(p, q) by photographing a rotating sector
of a circle. Since n(x, y) is assumed to be isotropic, N(p, q) is rotationally symmetric. The

sector is constructed so that

S(p) o N(p) p= Lpz + 012 (11)

2mp

where s(p) is the arc length at radius p; see Figure 7, This sector, uniformly illuminated, is
rotated many times during the exposure interval, with the result that E oc N(p) and Trl = C/N(p).
This process must be modified in order to realize the numerator of H(p, q), since the relation-
ship between Tn and En is not linear. However, if the negative is contact copied onto another
film, the transmission can he made proportional to the original exposure, The exposure on

the second film (referred to as a positive transparency) is proportional to Tn' Applying Equations

8 and 9, we have

(v /2)
P (12)

11
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— s(p)

O

FIGURE 7. SECTOR OF CIRCLE USED
TO GENERATE LOW-FREQUENCY RE-
JECTION FILTERS

where Tp is the specular amplitude transmission of the positive

ynyp is the specular y-product of the process

If we require ynyp = 2, and make En proportional to the amplitude of the numerator, we realize
the numerator of H(p, q). By placing the two transparencies in contact, we realize the entire

filter for nonnegative H(p, q).

5.2, REALIZATION OF A REAL FILTER FUNCTION

If H(p, q) is real, its values lie on the real axis in the complex plane, with lH(p, q)l =1.
We can realize the negative values of H(p, q) by multiplying its magnitude by a phase function
which delays the the light by A/2. At the Institute of Science and Technology this is done by
film reliefing, When certain films are exposed and bleached, depressions are left in the emul-
sion., The transparency is immersed in a cell (Figure 8) filled with a liquid whose refractive
index is such that the actual thickness is reduced to an optical thickness of A/2. The equation

governing the parameters is

t= T(nf - ng) (13)

where t is the optical thickness of the depressions
T is the actual thickness of the depressions

Dy

ng is the refractive index of the emulsion

is the refractive index of liquid

The resulting phase function is placed in contact with the transparencies representing the
magnitude of H(p, q) and N(p, q). All three transparencies are immersed in the liquid cell to

minimize unwanted phase errors in the film base,

12
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Glass Plate Decalin, n, = 1.4804

f

Glass Sides

FIGURE 8. LIQUID CELL

5.3. REALIZATION OF THE COMPLEX FILTER

Since the denominator of H(p, q) can be realized as described in Section 5.1, we will concern
ourselves with the problem of realizing the complex numerator of H(p, q). One problem en-
countered in the realization of the optimum filter is the determination of both the amplitude

and phase of

[0 0}
S(p, q) = ﬂ s(x, y) exp j(px + qy)dxdy

-0

One cannot merely use a spherical lens to take the Fourier transform of s(x, y), as described
in Appendix B, because any physical detector measures only the intensity of S(p, q), not its
phase. The second problem is to realize S(p, q) after the analysis. Since the phase function

is continuous, the reliefing technique described has little value because it requires a continuous

reliefing process, which is almost impossible to construct in the two-dimensional case,

We will now describe a method of analysis that leads directly to the realization of the
complex conjugate of the signal spectrum. A Mach-Zehnder interferometer can be used to
determine the phase in a distribution of light by combining that distribution with a reference
wave whose amplitude and phase distributions are known. This interferometer is modified for

our purposes as shown in Figure 9.

13
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Signal Objective Output Plane
(X) Y) Lens R(p, q) + S(p’ Q)

FIGURE 9. MODIFIED MACH-ZEHNDER INTERFEROMETER

The signal s(x, y) whose Fourier transform is to be found is inserted in one beam of the
interferometer with a spherical lens. The lens effects the Fourier transform of s(x, y) at its
back focal plane, outside the interferometer. A phase delay is placed in the reference beam to
maintain temporal coherence, If we temporarily neglect aberrations in the interferometer, the

observed output in the back focal plane of the lens is
, 2
Glp, 9) = [R(p, q) + S(p, 9|
2 2 = T
= [R(p, @)I” + IS(p, @)|” + Rlp, @) S(p, q) + Rlp, q) S(p, q) (14)
where

R(p, ) = |R(p, )l exp i¢(p, )

is the light coming from the reference beam, and

S(p, a) = 1S(p, o)l exp j8(p, q)
is the signal spectrum. We can rewrite Equation 14 as

Glp, @) = IR, @) + IS(p, a)|® + 2Re [R(p, q) S, Q)]

= |R(p, Q2+ IS(p, Q2 + 2|R(p, a)lIS(p, a)l cos [¢(p, ) - 6(p, q)] (15)

14
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Both the amplitude and phase of R(p, q) could be adjusted to determine 8(p, q); but since the
phase information of S(p, q) is contained in G(p, q), a nonnegat.ive function, we will show how

G(p, q) can be recorded on photographic film to realize the optimum filter.
The film is exposed so that its transmission is proportional to G(p, q). If we combine this

film with the film on which 1/N(p, q) is realized, the transmission of the combination is

G(p, a) _ IR®, 9I” + 18, 9° | R, @) 80, ) , R, 9) 5, @) (16)
N(p, q) N(p, q) N(p, q) N(p, q)

Suppose we require |R(p, q)| to be a constant and ¢(p, q) to be linear in (p, q); then

S ap, q) + TG @) ¢ 1Y L g, q) PP an)

IR, o)I2 + I8, @)l

where A(p, q) = N(p, q)
)

kS(p), a)
N, q)

b, ¢ are constants

H(p, q) =

Thus, the third term of Equation 17 is the desired filter function multiplied by a linear phase
factor. The problem is to separate this term from the other two terms. This can be accom-
plished by inserting the filter represented by Equation 17 into the optical system (Figure 4) at

plane P2. Lens L2 performs the separation of the three terms in the output by taking the
transform of the light distribution in P ; l.e,,

output = —ﬁ SEE: q; J(px+qy)dp dq (18)

Substituting Equation 17 in Equation 18, we have

output = 1 f f (b, ) Alp, @) & PX ) gpaq
+ mﬂ F(p, q) Hip, ) ¢ (2P0~ g5 g

— ﬂ F(p, q) H(p, q) & [FPP+e)d] 4 49 (19)

15
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The first term of Equation 19, which appears on the optical axis, is of no particular interest.
Nor, in this discuSsion, is the second term, which appears at x = b, y = ¢. The third term is
r(x +b, y + c), where r(x, y) is defined by Equation 5 and is exactly the output expected from an
optimum filter. This term appears with its center displaced from the optical axis by an amount
x = -b, y = -c. At this point it will be convenient to set ¢ = 0, since it is arbitrary; but in order
to avoid overlap of the three outputs the value of b must be such that b Z A, where A is the
length of the signal in the x direction, The fact that this output occurs off axis by a distance

X = -b is not important, since the output sensor can be located properly to detect it.

In passing, a comment will be made on the significance of the second term of Equation 19,
If N(p, q) = N for all (p, q), we saw that the third term could be written as a cross-correlation

integral (for c¢ = 0); i.e.,

[o0]
r(x + b, y)=fff(u, v)s(x+b+u y+v)dudv (20)
-0

The second term of Equation 19 can then be written as a convolution integral, i.e.,

' ©
r(x - b, y)=fff(u, v)s(x-b-u y-v)dudy (21)
-0

Thus, when N(p, q) is uniform, the cross-correlation and convolution of the signal with the input

function are both displayed in the output plane,

If the mirrors or beam splitters in the interferometer have aberrations, the effects
expressed in Equation 19 appear, and may degrade the output somewhat. The aberrations in the

signal analysis beam can be neglected, because the signal is usually small compared to the

'aperture of the interferometer, Denote the aberrations in the reference beam by exp j¥(p, q).

This aberration can be carried through the analysis to get (for the term of interest)

0
rGe+b), y = =5 ff F(p, @) Hip, ) ! ® 9 I 3+0I07a3] g 4 (22)
4n
-0

By use of the convolution theorem, this term can be written as
r(x + b, y) = {(x, y) * h(x, y) * ¥(x, y)

where Y(x, y) is the transform of exp j¥(p, q). But ¥(x, y) is exactly the same form as the

impulse respofxse of a lens having the aberrations exp j¥(p, q). Equation 22 is the output of a
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perfect system as '"'seen' by a lens with aberrations equal to ¥(p, q). It is apparent that a good
quality interferometer is needed if r(x, y) has high-frequency content. (Aberrations in the

various lenses can be treated in the same way as imperfections in the interferometer.)

There is an alternative optical system which can be used in place of the interferometer to

realize G(p, q). In that system, shown in Figure 10, lens L, collimates a point source of

1
monochromatic light. The signal is placed in one part of the beam with the necessary phase

delay. (If the source has sufficient temporal coherence, the phase delay in these systems can
be discarded.) Lens L,,

at a distance b from the center of the signal. Lens L

placed in the other part of the beam, focuses the light to a point in P2

3 simultaneously takes the Fourier trans-

form of the signal and supplies the reference wave. The reference wave automatically has a

linear phase component equal to ¢(p, q) = bp, and the light distribution in plane P2 is identical

to that given by Equation 14.

Phase
Delay
1 s(x, y)
}
—
Point b
>_.._
Source (E /
L1 L2 L3 p 9

FIGURE 10, ALTERNATIVE OPTICAL SYSTEM FOR REALIZING COMPLEX FILTERS

6
SOME NOTES ON THE PERFORMANCE OF MATCHED FILTERS

6.1. CHANGE IN THE SCALE OF THE SIGNAL
We will evaluate the performance of a filter matched to a signal when the input is the signal

with a change in scale. We will assume white Gaussian noise statistics.

Let s(x, y) denote the signal for which the filter was optimized, and let s(mx, my) be the

input signal. Then, from Equation 5, the output of the filter is

o0
r(x, y) = 217 ﬂ S(p, q) H(p, q) o Px+ay) dp dq
m
-0

17
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when the input signal is s(x, y). The output when s(mx, my) in the input is denoted by rm(x, ¥)

We take as a measure of the change in performance of the filter

0 2
~1—2ff S(p, a) H(p, q)dpdg
R = lr(X, y)‘z _ 477 =00 (23)
RPN B Z
r & )l

0
1 1
x=y=0 |—5- j f—z S(p/m, q/m) H(p, q)dpdq
ar 2, m

Applying the Schwarz inequality to both numerator and denominator and noting that the

equality holds in the numerator by Equation 3, we have

©
ﬂ 1S(p, @)l®dpdg

Rz ~© > m2
0 ) 9
H -5 8(p/m, q/m)| dpdq
-0 M

where m is the scaling factor.

6.2, CHANGE IN THE ORIENTATION OF THE SIGNAL
We wish to find some basis for evaluating the performance of a filter matched to a certain

signal when the input is the same signal with a different orientation. The output of the system

is conveniently expressed in polar coordinates as

W p2m

r  (p,y)= f f s(r, 8) h(r +p, 8 + y)r drdé (24)

sh
0 Y0

Considered as a function of p, the output is a maximum at p = 0. To investigate the effect of

signal orientation on the output, we consider the normalized function

r )

t(y) = T ) (25)

sh(

For signals which are nearly rotationally symmetric, f(y) =1 for all y. Our first task is to

find a measure of the degree of nonrotational symmetry (termed orientativeness) or the signal,

We begin by forming the function

g(r, 6) = s(r, 6) - k(r)

The University of Michigan
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where

27
K(r) H% J s(r, 0) do
0

Thus, g(r, ) represents a measure of the difference between the signal and a function which

has rotational symmetry. We then evaluate
Rgh(w) =R, () - R, (v)

But

121r

© 2T
Ry = o ), fo fo s(r, ¢) h(r, §+ y)r drd6 d¢

Since we integrate over all §, we can write 8 + y = @ and let a - ¢ = 3, so that

2T [ po0 27
1
Rien = ﬁfo [fo fo s(r, ¢) h(r, ¢ + f)rdr dq{ldﬁ

= Ave[R_, (8)] (26)

and
Rgh(y) =R, (v) - Ave[R_ ()]

We now look at the normalized function

R ()
h
£ () =<8 (27)
1 Rgh(o)
and define the "orientativeness' or the signal to be
T
Or=—-1 Oy <7
Ye C
where Ve is the angle for which fl(y) =C, 0 < C <1. By constructing the fi one

can always find a y for which fl(y) = C for any signal. The function fl(y) is now the measure
of the performance of a filter matched to a signal when the input is a signal which has under-
gone a change of orientation. This result is highly dependent on the shape of the signal, whereas

the result of Section 6.1 was not,

19
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EXPERIMENZI'AL RESULTS

A few experimental results will serve to illustrate the theory of spatial filtering and indicate
the potential to be expected when complex filters can be realized. A practical result of realizing
complex filters by the technique described in Section 5.3 is that the noise rejection capability is
better than that of conventional filters, since the minimum transmission of films is not zero when
the y-product is fixed, and some noise passes through the filter. In the method described in
Section 5.3, the carrier frequency is recorded only for those values of (p, q) for which S(p, q) # 0.
Since the noise passing through the filter where S(p, q) = 0 is not deviated into the output of

interest, the effective transmission at those points is in effect equal to zero.

7.1. DETECTION OF SIMPLE GEOMETRICAL SHAPES

The first example presented is the detection of one of the elementary geometrical shapes
shown in Figure 11. Any of the shapes could serve as the signal; we chose the small rectangle
first, We realized the complex filter of this signal by the method described in Section 5.3; the
output of interest is shown in Figure 12, Note that all signals with proper shape and orientation

were detected simultaneously.

FIGURE 11. SET OF GEOMETRICAL FIGURE 12. DETECTION OF RECTANGLES
SHAPES

The second signal selected was the ""L'" shape, which has a complex spectrum. The Fourier
transform of the complex filter, shown in Figure 13, illustrates the fidelity with which the
complex filter was realized. The light distribution in the center of the output is the transform

of the first two terms of Equation 14. The L in the upper corner is the transform of the third

20
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FIGURE 13. RECONSTRUCTION FROM A COMPLEX FILTER

term, and the other L is the transform of the last term. Note that these two images are inverted

and reversed relative to each other, which graphically demonstrates that the Fourier transform

of [S(p, )] = s(x, y) and the Fourier transform of [S(p, q)] = s(-x, -y). Of course, since s(x, y) is
real, _sm) = s(-x, -y). Figure 14 shows the output, which is the cross-correlation of the "L"
with the input function. Note the symmetry in the output correlation, which is a necessary feature
of cross-cdrrelation. The other L's in the input, having different orientations, do not give as large
an output (cf. Section 6.2), but a rotation of the filter relative to the input would sequentially de-
tect them. The output, which is shown for illustration in Figure 15, is the convolution of the

signal with the input function. Note that it is asymmetrical, a consequence of convolution unless

the signal is even.

7.2, DETECTION OF ALPHANUMERICS

The second example is the detection of alphanumerics. An interesting variation of the
first example is to record the alphabet (shown in Figure 16) via its complex spectrum as the
filter function. It is a simple matter to select any one of the alphanumerics as the signal to
be detected and use it as the input signal. The output, when the input is the letter "g," is shown
in Figure 17. Since the filter (which is the normal input function in disguise) does not have to
be changed while the search is carried out, this technique suggests a method for scanning a

printed page for the presence of any pafticular alphanumeric.

21
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FIGURE 14. CROSS CORRELATION OF FIGURE 15, CONVOLUTION OF L WITH THE
L WITH THE SET OF SHAPES SHOWN SET OF SHAPES SHOWN IN FIGURE 11
IN FIGURE 11

FIGURE 16. SET OF ALPHANUMERICS FIGURE 17. DETECTION OF LETTER g

7.3. DETECTION OF AN ISOLATED SIGNAL IN RANDOM NOISE
In the preceding two examples the noise spectral density was uniform enough to be consid-
ered white, This final example shows the detection of a signal which is immersed in a noise

background with nonuniform spectral density, and demonstrates the power of using a coherent

system for signal detection.
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Figure 18(a) shows a figure in a noise background. Since the noise background is pre-
dominantly low-frequency, the denominator of the filter must be realized. Figure 18(b) shows

that the background noise has been completely suppressed and the signal has been detected,

o
.
\<“?\V%>>\Q@g>‘»3©‘@
. iq»@g%g

o

.

“
’&

S

(a) (b)

FIGURE 18, DETECTION OF ISOLATED SIGNAL IN NOISE BACKGROUND, (a) Signal plus noise.
(b) Detection of signal,
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Appendix A
OPTIMIZATION IN PRESENCE OF MUTUALLY EXCLUSIVE NOISE

One consideration in optimum filtering of photorecords is that the noise is frequently
mutually exclusive and not additive, We can consider the signal g(x, y)'to be multiplied by an
indicator function I(x, y), which is a random process on X, y having a known autocorrelation
function. Since the desired signal is now random rather than known, the optimum filtering
process is found by performing a least squares analysis. A block diagram describing the

system is shown in Figure 19.

Uncorrupted Available
Signal I(x, y) Data\
gx, y) A ~ 1 y) h(x, )
N\ : 'H(p, Q)
[1- Xx, y)] — n(x,y) O—
p(x, y)
P(p, )

FIGURE 19. PROCESSING SYSTEM WHEN
MUTUALLY EXCLUSIVE NOISE IS PRESENT

I(x, y) is an indicator function taking on values (0, 1) and is an approximation to a mutually
exclusive noise function. P(p, q) is some operation on G(p, q); in our case P(p, q) = 1 for all
(p, q) of interest. The problem is to find a filter function H(p, q) which will ininimize the ex-
pected value of lel2

We will continue the analysis for one dimension; the two-dimensional extension is obvious.
We write
E[ex + u) €(x)] = Re(u)
which is the autocorrelation function of the error term (E is the expected value). Re(u) will be

expressed in terms of the usual autocorrelation functions of g(x), f(x), and n(x), and it can

readily be seen that E(lelz) = RE(O).
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A useful relationship between Re(u) and its spectral density is given by
[e¢} —ipu
R, (u) = k f s.(p) e P ap
=0
and we note immediately that
oo}
R (0) = [lel 1= J S, (p)dp
-0

Since Se(p) is the Fourier transform of an autocorrelation function, Se(p) z 0 for all p, and we

can minimize RE(O) by minimizing Se(p). To find SE(O) we write
€(x) = £(x) * h(x) - g(x) * p(x)
where * denotes convolution, Then

Re(u) = Efe(x + u) x)]

= E[f(x + u) * h(x + u) - g(x + u) * p(x + w)] [{(x) * h(x) - g(x) * p(x)]
R(u) = R(x) * h(x) * B + R (x) * p(x) * 530 |

- Rgf(X) * h(x) * p(-x) - ng(—x) * p(x) * h(-x)

Taking Fourier transforms of both sides and using the result that

,_%[Ry(X) * h(x) * p(-x)] = S, (P)H(p)P(p)

we have

8.(p) = Sf(p)lH(p)l2 + SglP(p)l2 - S5 (PJHE)PR) - S, (p)PE)HP)

Complete the square in H(p) to get

2 2
S_.(p)P(p) IS_.(p)P(p)I

1/2, of 2 of
Sep) = 8;(p)" “Hp) - =—— 7| +8 o IPE)° - =

where Sf(p) is the spectral density of the available data
Sg(p) is the spectral density of the signal
S gf(p) is the cross-spectral density of the signal with available data
P(p) is the desired operation on the signal

H(p) is the filter function which is being optimized

25



Institute of Science and Technology The University of Michigan

We can choose H(p) to minimize Se(p). It is apparent that H(p) has no influence on the last

two terms of Se(p); therefore we take

S_+(p)P(p)
gf
H(p) =B
(p) 50
which minimizes Se(p) and therefore minimizes E(lelz). To recover the signal with minimum

error, we let P(p) = 1 for all p, and we have

S _.(p)
__gf
H(p) = S¢(p)

To get this into a useful form, we write ng(p) and Sf(p) in terms of the statistics of the

input functions. To determine Sf(p), we have
f(x) = n(x) [1 - I(x)] + g(x)(x)

and

R.(x) = E[f(x + u)f(x)] = (1 - 2a) Rn(x) + Rn(x) R.(x)

f I

+ Rg(x)RI(x) + 2abc - 2bcRI(x)
Take Fourier transform of both sides to get

5,p) = (1 - 2)S, (@) + 5, () * S;@) + 5,(p) * S,(p) + 2abed(p) - 2beS (o)

where a = E[I(x)]
b = E[g(x)]
¢ = E[n(x)]

5(p) = C sinc kA (A = aperture of optical system)

A similar analysis for S _.(p) gives

gf(p
ng(p) = aSg(p) + (1 - a)bed(p)

Thus we can now write the optimum filter in terms of the known statistics of the input data and
the indicator function, as follows:

asg(p) +(1 - a) bed(p)
H(p) = @ - 2a)8, ) + Sg(p) *8,(p) + 8 () * 8(p) + 2abed(p) - 2beS(p)

This result shows that, in general, the best filtering operation is to attenuate the spectrum
heavily where there is little signal energy, and vice-versa. More precise information on H(p)

will be obtainable if the autocorrelation function of 1(x) is known.
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Appendix B
THE FOURIER TRANSFORMING PROPERTY OF LENSES

B. 1. DERIVATION OF THE FOURIER TRANSFORM RELATIONSHIP

The theory outlined in Section 2 of this report is based on the assumption that a spherical
lens can effect the two-dimensional Fourier transform of a complex distribution of light. It is
also asserted that the transform relationship holds, to within a phase factor, for a wide variety
of positions of the lens relative to the input transparency, so that we can cascade lenses to
take successive transforms. The analysis in this appendix is in one dimension; the extension

to two dimensions is obvious, though not simple,

We begin by assuming that a transparency with complex transmission f(x) is placed in

plane P_ at a distance d from the lens in plane P_ (see Diagram 1), Although the transform

(
1 2
relationship is found with far less effort if d = {, the results are not general enough to apply in
evaluating the performance of combinations of lenses. We proceed from the application of
Kirchoff's formulation of Huygens' principle [7], which indicates that the disturbance at a point

in P2 due to a disturbance in P1

is given by

f
P
Py Py 3
DIAGRAM.1
jkr
— Af(x )eJ
‘/__]_ ) (1 + cos 9) Ax (28)
A VT 2 0

where A is the wavelength of light
A is the amplitude of illumination at point X,
r is the distance from X, to Y,
¢ is the obliquity angle, i.e., the angle from X, to Yo measured from the optical axis
f(xo) is the transmission of transparency at x = X,

k= 2m/x
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The incoming illumination is E(x) = A(x) exp jo(x); usually A(x) and ¢(x) are constant. Since
the exact value of ¢(x) is unimportant, we can set it equal to zero and regard it as the reference

phase, The total contribution at the point Yo is

o(y) = \/'TX A f £(x) exp (jkr) (1 + cos 0) . (29)
P
1

2Vr

The obliquity factor is usually neglected by assuming that # remains small throughout the
integration. Though this may be true when d = {, it is not true when d - 0, and a better reason

for neglecting the obliquity factor must be sought.

Consider the effect of the contribution from the points in a small region in P, on a given

1
point in PZ' If lrz - r1| >> ), the contribution at y, averages to zero if f(xz) = f(xl). Thus we

can determine the maximum permissible value of § as a function of d and the frequency content

of f(x). Interms of x, y, and d, the condition that |r2 - r_ll >> X implies thath/dl2 + (x - y)2 -
de +(x+ Ax - y)2 >> A, or that |2x A% + (Ax)2 - 2yAxl >> 2xd.

Neglecting (Ax)2 with respect to the other terms, we have

ax >>-24 (30)
Suppose we agree that the obliquity factor can be neglected if
120088, .99
which implies that tan ¢ < 0.20. But 6 = arc tan (x - y)/d, so that
=T =0.20 (31)
and from Equation 30 we have that Ax >> 0x20' Since Ax is the distance over which f(x) must

not vary appreciable, the highest allowable frequency in f(x) is

Prnax = 1/Ax << 0.20/A << 375 1/mm

m

Since the highest frequency encountered in typical input signals is approximately 30 to 50
1/mm, it seems safe to neglect the obliquity factor. Note that this analysis makes no restriction
on the relative aperture of the system, the permissible field of view, or the value of d. These

restrictions comprise the reasons usually cited for neglecting this factor,

If we ignore the obliquity factor, the light distribution in P2 is

gly) = -%A !—e. dx (32)
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Expanding r = Ldz +(x - y)2 by the binomial theorem, we have

1/x-y 2 1/x-y 4
r=d[1+§<—d——> —§<—d—>,..} (33)
From our previous assumption, (x - y)/d < 0.2, so that we need retain only the first two terms
of Equation 33. Since the VT term in the denominator is relatively insensitive to the small
variations in (x - y)z/d2 over the region of integration, we set r = d and take it outside the
integral. Also the phase term exp (jkd) is constant and can be dropped from the analysis. The
lens at P, is represented by the phase factor exp [-j(ky2/2f)], where f is the focal length of the

2

lens. The P_ plane can be considered the back principal plane of the lens, We will proceed

2

from P2 to P3 in the same way as from P1 to PZ’ The total contribution at a point £ in P3 is

FE) =S fpl - fpzdy 109 exp[i(55) 5 - 9% | x e (1(55)5" Jeme [1(35)5 - ©°] (39

Looking at the exponent only, we have
.k, 2 2, .k 2 _k,6 2 2
exponent-]ﬁ(x - 2Xy +y )-]-z?y +32—f(y - 2yE+ &) (35)

Let f/d = m, and complete the square in Equation 35 to get

.k 2 .k .k
exponent = j-[Vmy - (Vm x + £)]” - j3-(vé - Vm yg) - j £(/m x£) (36)
Substituting Equation 36 in Equation 34, we get

_]A

F(§) = NG

fpldx fpzdy 160 expfi 5 VB y - /A x + £)°)

x exp (-5 Evm xe) exp £ 101 - vi) y2)]

= --Xjf\ﬁ f dx f(x) exp (-jfEVﬁ X5> v(x, £) (37)
P
1
where

o 0= [ ayem(igmy - (mxs o er [0 @] @
2

Evaluating v(x, £), we let vm y - (Vm x + £) = p, and we have

v(x, £) ='w/i_m j:;ll.dp exp [—jil‘E (1 \-/Yn_\/a)g (p+Vmx+ &)] exp (j—%-{f—pz) (39)
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30

where

Ym A - (Vm x + £)

ul.

LL =-Vm A - (Vm x + £)

It

2A = aperture in P2

jfE <1 :/%E) £ (Vm x + g)} through the integral, since it is

not a function of the variable of integration. Thus

We can pass the phase factor exp [-

T1A exp ['jfg(l :/Efrﬁ) ‘52] k k(1 - {m
F(¢) - T fp dx 1) exp [-1F ViR x| x exp [ (1) i g i, ©)
! (40)
where
ul
- k 2 k(1 -Vm
b(x, &) = f expljssp | exp |-jF £p|dp (41)
" ol ] e [55(1525)s ]
Note that part of the phase term in the integrand of Equation 4 cancels out, leaving
. k(1 -+m), 2
(o) - o [—Jf_ﬁ——< )] [ axt e (-1§ x8) bix, ) (42)
A Ydfm P f ’

1

If b(x, £) = k for all (x, &) of interest, and if m = 1, we have an exact Fourier transform
relationship between F(£) and f(x). Further, the integral in Equation 42 is independent of m,
which is to be expected since the scale of F(£) is not a function of m, (The manner in which the
phase term depends on m will be discussed after b(x, £) is evaluated.) Since Equation 41 de-
termines the validity of the Fourier transform relationship, we modify b(x, £) to a Fresnel
integral, which is easier to evaluate than the form given. Completing the square in the exponent,

we get

b(x, £) = exp [—j% <_1_;_2£_£_n_1> 52] fljl exp {J% I:p - <1 1-/5\[6) Epo} (43)

Change variables by letting

p- (**——1 :,;n—m)g =Vri/k v
so that
u.l.
bix, £) = VFI7E exp [-i s (Lo 2/ e m) 2] f exp [j(r/2)v?] dv (44)
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where the new upper and lower limits are

ul. = VZA—I? [A - x - &/m] (45a)

Ll = V%%Ilf— [-A - x - §/m] (45b)

Before evaluating Equation 44, we will discuss the general behavior of the function
A-u 9
F(u) = f exp[j(m/2)v"] dv
-(A+u)

which is a Fresnel integral in its standard form. The evaluation of F(u) cannot be given in a

closed form, but the function is tabulated extensively. If the function is written as

A-u A-u
F(u) = [f cos (17/2)v2 dv + j f sir1(71/2)v2 dv]
-(A+u) -(A+u)
=X+ ]y (46)

one can use a curve known as a Cornu spiral, which plots the first integral against the second
(see Figure 20). Values of u are read along the curve, and the corresponding values of x and y
are read from the coordinate axis. The magnitude of F(u) is found in the usual way. It can be
seen from the curve that F(u) has its greatest change in value near lu| = A, so that we have as

an approximation

0.5

0.5 —

/—- 0.5 X —

C;\\ 0.5

FIGURE 20. CORNU SPIRAL
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F(u) = V2 lul < A
=0 lul > A

In Equation 44, u = x + r—i—, and the factor V % in both limits represents a scaling factor.

We first look at the case in which A >> |x + —r%l Then the integral reduces to v2 and

b, £) = VERI/E exp [-15 (LoV2m + m) 2] (a7)

which is independent of x as expected, since the given requirement is equivalent to demanding
that the system is space invariant, i.e., F(£¢) is not a function of the position at which the signal

is found in Pl' Substituting Equation 47 in Equation 44 and simplifying, we have

B e [ 5 (1) ] [

F(£) = 55 exp |~igz (T ) & b, f(x) exp |- x¢ (48)
‘ 1

Note that if the input transparency is in the front focal plane of the lens (m = 1) the result is an

exact Fourier transform relationship, For m < 1, the factor (1 - m)/m > 0, and the quadratic

phase term indicates that the lens is capable of forming a real image of f(x) to the right of the

lens at a distance

If m > 1, the image is virtual and cannot be imaged to the right of the lens without the aid of a

second lens,

3

The remaining task is to evaluate b(x, &) for the case in which the condition A >> (x + E)
is not satisfied. We want to investigate three different cases, m - o, m =1, and m - 0, We
can facilitate the analysis by restricting our attention to values of x> 0 and £ > 0, since similar

results will hold for x< 0, £ < 0.

In the first case of interest, m is very large; i.e., the transparency is close to the principal

plane of the lens. In this case £/m is very small and

V2m/ (A1) (A-x)

bix, &) = £(2) exp (13 v7) av (49)
-V2m/ (A f) (A+x)

where

£(£) = V7t/K exp []%(um_m) gz}
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The limit on the maximum signal aperture to satisfy space invariance is IX| < A, Hence, in
order to obtain maximum system aperture, the input signal should be placed very close to the
lens. A second lens is necessary to image f(x), but it can also be selected to maximize system
frequency response, This is discussed more fully in Appendix B, Section 3.

In the second case to be discussed, m = 1. Then {(¢) = Vri/k and

v2/(Af) (A-x-£)
b(x, £) = q{i f exp (]% v2> dv (50)
-V2/(Af) (A+x+£)

For small x we see that b(x, £) reaches its half-amplitude point for |£| = A and
b(x, &) =vari/k  lel< A
=0 £l > A

This is the classical result, the so-called aperture limited frequency cutoff, However, this
result is valid only for small signal apertures; as the signal aperture increases, the symmet-

rical band pass decreases and the lens system becomes space variant,

It is almost impossible to continue this discussion without placing a limitation on the
frequency content of the signal. Suppose the highest frequency of the signal is displayed at 50,
which corresponds to a maximum frequency of

2r¢

0
P, =57 rad/mm

We then find the largest range on the signal aperture which will retain space invariance. From

Equation 44 we see that this condition is satisfied if
(x+§o/m)sA for x>0
(x - go/m) <-A forx<0
Thus, to have space invariance we must restrict the signal aperture such that
Xl < (a- ¢ /m) (51)

From Equation 51 it is easy to see the result for m - 0. As m becomes smaller, the input
signal is farther from the lens, and the allowable range on Ix| rapidly decreases. In those
regions where |X| exceeds the limitation imposed by Equation 51, the symmetrical frequency
response is reduced, and the result is a space variant operation. For perfect lenses, b(x, £)
adequately describes the space variant characteristics of the lens, but aberrations usually
cause the system to be space variant before Equation 51 is violated, except for small values of

m,
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This section presents a general discussion of the Fourier transform properties of a lens
operating with coherent illumination. The generality allows a determination of the validity of
the Fourier transforming property of the lens. Equation 44 relates the frequency response of a
lens to the region over which it can be considered space invariant. An application of the results

of this section will be used in Section B. 3, in evaluating complete lens systems.

B. 2, AN ALTERNATIVE APPROACH TO THE TRANSFORM RELATIONSHIP
If Section B.1 masks the fundamental results to be obtained from b(x, £), the following
approach may be instructional. It is known that a §-function is equivalent to a point source in

the input plane (Diagram 2). A point source in P, creates a spherical wave at P_ with radius

1 2

—
: 5 Y :
Point _{_ 0
Source
2}
f/m v/ f
Py Py P
DIAGRAM 2

f/m. Each element on the wave can be considered to be a certain frequency, and if the highest
2mé
frequency of the signal is PO =—§, we require that all the energy from that element enter the

lens. Let the element representing P0 be located a distance (x + y) = A above the optical axis.

_y _>o _ . _ _
Then tan 6 = 7m- 1 ory go/m. To get all the light from this element into the lens, we
require that (x + y) < Aor x < (A - go/m). A similar situation holds for x < 0; so we have
IX| < (A - go/m), which is Equation 51. Thus, this approach yields the same major result as
the detailed analysis of b(x, £). The minor oscillation of b(x, &) is not accounted for, since
diffraction effects of the lens aperture were not considered here; otherwise the results would

be identical.

B.3. EVALUATION OF OPTICAL SYSTEMS

In this section, the results from Section B.1 will be used to evaluate three basic systems
which perform fundamental spatial filtering operations. We will evaluate the systems on the
basis of (1) the maximum frequency that the system will image for a limited region in the
input plane, (2)the maximum signal aperture that can be imaged when the input signal is
band-limited and the lens system operates as a space invariant system, and (3) minimum total

system length., Each system will have unity magnification.
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B.3.1. THREE-LENS SYSTEM. Perhaps the simplest system to analyze ié the three-lens

system shown in Figure 21, Lens L, collimates a point source, and the input transparency is

1

placed in plane P1 close to lens L2. From Equation 51 we note that the maximum frequency

9 is extremely high, but that the maximum frequency that can be imaged is
3 to Priax = E;—zfé rad/mm. The length of signal which can be imaged with space

invariance when the signal is band limited to frequency P, is

response of lens L

limited by L

IXl < (A ——p;)—:i) mm

If lens L, has a focal length of 1/2 £, the total system length is 3f.

Q0T

FIGURE 21. THREE-LENS SYSTEM

2

B.3.2. TWO-LENS SYSTEM. A two-lens system is shown in Figure 22, In this system

L, collimates the point source and the input transparency is placed in plane P, at a distance

1 1
2f from L2' Lens I_;2 is the transforming lens as well as the imaging lens. The maximum
frequency imaged by this system is Pliax = %rad/ mm, The maximum signal length to be

imaged under space invariance and maximum frequency content P, is
p Af
Ix] < (A ——Z—) mm

The total system length is 5f.

B.3.3. ONE-LENS SYSTEM. The one-lens system shown in Figure 23 can also perform
the desired operation. In this case the signal is illuminated not be a plane wave, but by a diver-

gent wave of radius r = s - d. The frequency plane is located at a distance t from lens L,, where

1,
t =st/(s - f). The image plane is at a distance q =df/(d - f) from lens Ll' The maximum fre-

quency passed by the lens for small signal lengths is Pax = 27A/ (A d) rad/mm.

The maximum signal length which is imaged when the lens operates under a space invariant
condition and the signal is limited to frequencies less than P, will now be found. Equation 51

cannot be applied directly, because the illumination is not a plane wave and the frequency plane
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’-—f
Point
Source P
1
L1 L2
ot Py

2f——|

FIGURE 22, TWO-LENS SYSTEM

FIGURE 23. ONE-LENS SYSTEM

is not located in the back focal plane of the lens, We first find a relationship between the

frequency variable p and a distance variable £ in plane P_,. Referring to Diagram 3, we have

9

fe— <

DIAGRAM 3
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_2my
p= d
and

£ ¥y
qg-t t

Therefore
. 2mté

P=3dq -1

To find the range on the signal aperture we refer to the sketch in Diagram 4, Since 6 is small

-

Point
Source

Pl L1 P 2 P
DIAGRAM 4

(d > f) we can make the approximation that Ay = Ayl. Then, in terms of the maximum frequency

in the signal, we have

tAfp
Ay = 2m(q - t)
and
- S X
y=352

We require that (y + Ay) < A, Thus

XS t)\fpo
s-d+21r(q—t) <A

or, for space invariance,

p Aft
s-d 0
x| < S [A " 2n(q - t)}
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The total system length is s + q, and it is difficult to minimize this distance since the amount
of signal aperture is also dependent on it, It is clear, however, that the maximum frequency
response of this system is good. If one is willing to work with a small signal aperture, the

system length can be kept reasonably short.

B.3.4. COMPARISON OF THE THREE SYSTEMS. It will simplify the comparison of these

systems if we give numerical values to the system parameters. Suppose that

PO/21r =50 1/mm

A =25 mm
A = 5000 A
f =200 mm

To fix the parameters for the one-lens system, let

d=2f=q
S = 4f
t=4/3f

Substituting these parameters in the one-lens system formula gives

p Af
1 o}
|X|<§<A- p- >

The systems are compared in the table,

The three-lens system is clearly superior on the basis of all three methods of comparison.
The one- and two-lens systems have equal frequency response, but the signal aperture in the
one-lens system is only half that of the two-lens system., This waste of system aperture should

be avoided by using one of the other two systems; doing so reduces the length of the system also.

TABLE: COMPARISON OF THREE OPTICAL SYSTEMS

One-Lens System  Two-Lens System Three-Lens System

P
— 125 1/m 125 1/m 250 1/m
Range on IX| for 7.5 mm 15 mm 20 mm
P nax or or or
on = 50 1/m 30% of aperture 60% of aperture 80% of aperture
Total system length 1200 mm 1000 mm 600 mm
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ERRATA
Page Line Change
6 Fig. 3 For f between P, and L, read d

1 1
38 Table For m read mm (4 occurrences)






