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ABSTRACT

In this report is presented a group theoretical analysis of the lattice
dynamics of crystals possessing the zinc-blende structure.

The form of the dynamical matrix demanded by symmetry is derived for several
symmetry points in the Brillouin zone. The construction of symmetry vectors
and the block diagonalization of the dynamical matrix is shown in detail.
Selection rules for two-phonon infrared absorption are presented for several
critical points.
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CHAPTER I

INTRODUCTION

We wish to present in this report a group theoretical analysis of the
lattice vibrations of the zinc-blende lattice., The results described here were
obtained in connection with the experimental study of phonon dispersion re-
lations in cubic ZnS now in progress in this laboratory. 1 They are, however,
equally applicable to all diatomic crystals having the zinc-blende (or sphalerite)
structure; this includes several I-VII, II-VI, and III-V compounds.

The symmetry properties of the zinc-blende structure were first considered
by Parmenter 2) in relation to electron band structure. Subsequently, Birman(a)
classified the phonons in terms of the symmetry of the lattice for purposes of
working out selection rules in optical spectra. No detailed discussion of the
eigenvectors and the diagonalization of the dynamical matrix based on symmetry
considerations has been presented so far for this lattice, and the purpose of
this report is to fill in the wvacuum.

We begin in the following chapter with a brief resumé of the general
principles involved in application of group theory to lattice dynamics. For a
more detailed discussion of this topic, we refer the reader to two recently
published reviews on this subject.(5)63 Chapter III is devoted to a descrip-
tion of the geometry of the zinc-blende lattice and its reciprocal lattice.
Chapter IV forms the core of this report and contains a discussion of the eigen-
vectors and the dynamical matrix at several symmetry points in the Brillouin
zone. The concluding chapter is devoted to selection rules for two phonon
processes in optical spectra.



CHAPTER II

APPLICATION OF GROUP THEORY TO THE STUDY OF LATTICE DYNAMICS

In this chapter, we present a brief discussion cohcerning the application
of group theory to the study of lattice dynamics. This is done more for the
sake of completeness than as & detailed exposition of the subject, and;foll@wsclosely
the work of Maradudin and Voskol?) referred to earlier.

The problem of finding the phonon frequencies and eigenvectors is essen-
tially one of solving the eigenvalue problem

]"2(9‘)2(5)‘3'):“)52‘@).@(@_/1’) ) (1)

where ah(q) is the normal mode frequency corresponding to the phonon wave vec-
tor g and branch j, e(q,J) is the associated eigenvector, and D(q) is the dynam-
ical matrlx whose elements are given by

—

D () = (M M) ® z ¢ (2] explig xue)]

where_§§Z') denotes the position of the £'th primitive cell, My and Mg: denote
the masses of the kth and k'th atoms, respectively, in the primitive cell, and
(O Z:) is the ofth element of the three-dimensional force constant matrix
connectlng the xth atom in the cell at *the origin and the k'th atom in the cell
2'. Ifn is the number of atoms in the primitive cell, then D( ) is a 3n x 3n
matrix, and correspondingly there are 3n eigenvalues d5 (q) (5~ 2,...30),
and 3n associated eigenvectors each having 3n componen s, Arranging the eigen-
vectors into a 3n x 3n matrix g(g),

(2)

o
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where_g(q,j) is a 3n element column vector, we see that
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Thus to bring the dynamical matrix into the diagonal form @ what we need
to find is the transformation matrix e(q) It turns out that if the crystal has
some point group symmetry (as it generally does), then for q corresponding to
symmetry points or along directions of high symmetry it is p0551b1e using the
techniques of group theory to find a transformation matrix §(q) which serves
to bring D(q) inte a block diagonal form, The matrix S(q) depends on crystalline
bymmetxy alont, urlike c\q) which depends on the force field between the atoms.

Let§m = (8Iv(3) + x(m)} pe one of the elements of the space group of the
crystal where 3 denctes tre rctaticnal part, x(m) a lattice translation, and
v(8) a fractional translaticn (which is zero for symmorphic groups). Then
under this symmetry cperatiorn, the elgenvector e E&j) transforms as

{

€ (Sq = (g S0els ) -

™

where the elements of the 3u x 3n transformation matrix I are given by
~ — ]
Mep (o156 )= sqeg(u,SmCx 1P,

(%) e,x,..';L”LS_% .(X(MJ-SMK(H’))_? ()

Here SUB is the opth element of the three-dimensional rotation matrix §, x( )
and_iﬁn ) denote the positions of the atoms k and k' in the primitive cell
and

S X ()= DX (1w V(S)+ X)) . (6)

Furtherg‘snﬁﬂ’) derctes the sublattice into which the sublattice v° is trans-
formed by the cperatimeSHr The matrix ; is unitary.* Under Sm, 2(92 is trans-
formed into

5.0 Dig | f’ (4,5.0% (&) (7)

k‘\

*Note that for symmorpbic groups, the atoms always stay in the same sublattice
and consequently I' has only diagonal bLoxes.,



Consider now those particular space group elementsAp = (Rl¥(R) + x(m)) for
which -

E3=5~+&l4.p) (®)

where G is a vector of the reciprocal lattice. We find that P(q,R ) commutes
with D(q) since D(q) D(g + G). Theelements of the type,Qh'?orm a group G(q)
called the group , of the wave vector, and we note that corresponding to every
elerent of this group there is a unitary matrix operator I' which commutes with
D(q) It can be shown that the set of matrices T furnish a 3n-dimensional uni-
tary representation of G(q) which is reducible. We observe in passing that be-
cause of the commutation of D(q) with F(q,Rm) there result interrelationships
between the elements of D(q) Spec1f1cally,

“—)P

<) explog[x(R.LeD=R,, %3] exp-i§ [ x(R,0x)-R.X0t]] (92)

In addition one has

Disg AV (9p)

— — -,

4
v

which in some cases leads to additional interrelations.

Define now a matrix IQE;B) by

T(3;R)=expig-[virr+s x(m)] /(g Rn) , (1O

Like the I’ matrices, the T matrices also commute with D(Q) Further they obey
the multlpllcatlon rule

T(g5R) Tig;R)= disgs

(where R and RJ are rotation matrices corresponding to the ith and jth elements

of G _(q))

U7U
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and provide a unitary multiplier representation of the point group Go(q) made
up of only the rotational parts of Rm. The multiplier ¢(q, J) is given by

dlg;RiR ) = exp -t 6(§3RT)-VIR;] (12)

-1
qu,gi ) being defined through the equation

-1
Ria=9+%i(g,R") (13)

Clearly ¢ = 1 for symmorphic groups always. For nonsymmorphic groups, ¢ =1
for q within the Brillouin zone, while on the surface of the zone it can be
different from unity having the value given by Eq. (13). The representation
(multiplier) provided by the T's is a reducible representation, and the number
n(s) of times the irreducible multiplier representation (IMR) occurs in the
reducible representetion can be found from the formula

| @¥x (14)
n(5)=—h—2 X, 80 [T (43R )/

where h is the order of

(s)

Y (4:R) =Tt R)] (15)

is the character corresponding to the element R of G (q) in the sth IMR,
T(S)(q R) being the matrix representative in the IMR s.

Except in the case of accidental degeneracy (which is rare), the eigen-
vectors belonging to the same eigenfrequency transform accoraing to a unitary
IMR of Go(q), and consequently we can replace the branch index j by a triplet
of symbolsﬁé, a, A, where s denotes the IMR, a its occurrence, and A the partner
in that representation. X takes the values 1,2,...fg, where fg is the dimen-
sionality of the IMR. We thus have

T(s;R) e (g; sql)—%'f,\,\ (g:RI@(gssar (16)

The eigenvector_g(q;sax) is a unit vector in 3n-dimensional space in which
the basis vectors are
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. . . | 3n elements in
el «lpeees - | each basis vector

0 0 1
e B R

<«— %n basis vectors——w

Using the results of group theory we can construct vectors, the so-called
symmetry adapted vectors, which have the same transformation properties with

respect to Go(q) as do the eigenvectors. The prescription for doing this is as
follows: Form first the projection operator

(s

'3
@n(iﬂ: Z CoS g 0] Teg:®) (17)

When this operator is applied successively to the 3n basis vectors mentioned
above, it wlll project out only n(s) linearly independent vectors. Label them
after normalization as w(q,slk), w(q,SEK),...w(q,sn( JA). All these symmetry
adapted vectors transform e according “to the Ath row of the IMR's.

The partners
associated with each of these y's may be found using the result

(<) ,
69,\’,\ (@f(@)sé,\) = i’(j I A ) (1)
where! V(S)(q) is obtained from (17) by replacing 7§i) by T( % This gives the
requlred symmetry vectors., Next as with the e(q,J) s, form a 3n x 3n matrix
S(q) in which the columns are made up of the symmetry adapted vectors V. Arrange
the symmetry vectors so that all those which transform according to the same row
A of the same IMR are grouped together. Then

- I
S DSy = Dy )
will be block diagonal. In particular,

(1) if an IMR occurs only once in the reducible representation T, the
block of D' associated with this species will be completely diagonal
no matter what the dimension of the IMR. The symmetry vectors are
the required eigenvectors in this case;



(2) if the IMR occurs more than once, n(s) times say, then there will be
fy boxes each of dimension n(s) associated with this species. The
n(s) different frequencies must be obtained by diagonalizing one of
the n(s)-dimensional blocks of D'(q).

The eigenvectors in the case n(s) > 1 are obtained as follows: The n(s) eigen-
vectors e(q,sax)(k =1,...n(s)) all transform according to the Ath row of the
IMR s. They may therefore be expressed as linear combinations of. the n(s)
symmetry vectors which also transform according to the same row of the same
IMR, i.e.,

"
%)

€1(4,52) (g;sax)¥(g;5sin) . (20)

Since the eigenvectors are orthonormal, it is evident that the complex coeffi-
cients cj must satisfy the condition

= ci(gisan) Cilsany = 1 (21)

The coefficients are obtained by feeding (20) and the eigenvalue appropriate to
the mode (determined previously by diagonalizing the n(s)-dimensional block of
D! (q)) into Eq. (1). This yields n(s) complex homogeneous equations in the cy's
Which are then solved for subject to the restraint in (21).

It should be noted that the block diagonalization of D(q) and the deter-
mination of the eigenvectors could be achieved equally well through the use of
the matrices F(q,Rm) and the irreducible or small representations y (q,Rm) of
G(q) rather than T(q,R) and T(s)(q,R) of Go(q) In the former case, we have
instead of (1k),

* _
nis) = 257 [TX 3;QM)] Z}LLWZ;@M%] (22)

(KW\E "’(z,)

whereff'is the order of the translational group, and

(s) - s
X (g0, =T [ x g @]

Tr [w(—a_g X)) g (g R [ L (29)



Equation (22) can be easily seen to reduce to
l T, (s . x - ..
h(S)"‘TZLY [ q:62,)] TY—LE(@;GQ)]
R, - -7

®Ry= 1 RIVIR) ,

The projection operators are formed using the formula

(s) ‘Fg I £ » _‘* '
G&A(i): h 2 L_BXA 3Ry L (%}&h) .
R, -
Techniques for obtaining both the irreducible multiplier(7) and the small repre-
sentations are available. For symmorphic groups the representations are

identical and in fact are nothing but the representations of the crystallographic
point group to which Go(q\ belongs.

There exists be51des the space group symmetry one other symmetry, viz.,
time reversal (i.e., the invariance of the equations of matrices under the
transformation t - -t) which also sometimes leads to degeneracies, By this we

mean a degeneracy of two frequencies not required by space group symmetry con-
siderations, i.e.,

wsk(q_)) = ws@'(z)) o % o

Q)Sq,(i) = 0, (%) sS'=% g )

Without going into details, we shall note that the criterion for additional
degeneracy may be stated as follows.(5

(i) q inside the Brillouin zone:
Ay

Compute @ = 1/h & X(S)(q A%) where A is an element such that

Aq -9 and theAsummatlon is over all such elements. If Q =

there Ts no additional degeneracy. If Q = -1 there is an additional
degeneracy of the form,

(3) = wWearty) , alxa . e



(11)

(111)

If Q = 0, then also there is an additional degeneracy with msa(q) =
wg ! av(qL s8' # s. The extra degeneracy introduced in the last two
casee is referred to as time reversal degeneracy.

q on surface of the Brillouin zone:

~

Compute @ = 1/h Z{exp-i[q + A q] v(A)) x(s)(q A ) where once again
A is a rotationaé element which sends q into -q The occurrence or
nonoccurrence of extra degeneracies due to time reverssl symmetry
follows the same pattern as in case (i) depending on whether Q =

-1, or O.

q on the surface of the zone and equal to Q/2:

——

If q = (9/2), then Q must be computed according to the formula

Q=+ {or-i[ S8 ET v}y 45 R

and the test applied as before,



CHAPTER III

SYMMETRY OF THE ZINC-BLENDE LATTICE

The zinc-blende lattice can be looked upon as two interpenetrating face
centered cubic, lattices displaced relative to each other along the cube diagonal
by an amount (a/4, a/4, a/4) where a is the cube edge, each lattice containing
the same species of atoms. Figure 1 shows the arrangement of atoms in the cubie
unit cell. Here the positive ions are indicated by filled circles and the
negaetive ions by open circles. The face centered lattice formed by the positive
ions is clearly evident. With a little effort, it can be seen that the negative
ions also form a F-C-C lattice and that the latter is displaced along the cube
diagonal with respect to the lattice of positive ions, Note that our choice of
locating a positive ion at the origin is arbitrary. We might just as well have
constructed the unit cell with the negative ion at the origin. Figure 2 shows
the basis VeCtors,ﬁg’_£?1_§§ of the direct lattice, where

L= Fli+4)

as <& (L+k) (25)

jz jt‘kibeing unit vectors along the cartesian axes. Also shown in the figure
is the trigonal primitive cell, which we note contains two atoms in conmntrast
to the cubic unit cell which contains eight atoms. The coordinates of the two
atoms in the primitive cell are:

5('):' (O,O)O)

X(2)= (as4 ,a/4,a/4)

The reciprocal lattice, as is well known, has the body centered cubiec structure;
a portion of this is shown in Figure % along with the basis vectorsik},JEZ,JE?,
where

EQI = %E ( £‘+ i_"fé) )
.L_D.z‘:%?(-_‘b4i'+£) y
és"%(é“g*é) . (26)
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Figure 1. Cubic unit cell of the zinc-blende lattice.
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Figure 2., Primitive cell of the zinc-blende lattice and its relation
to the cubic unit cell. Also shown are the basis vectors a;, as, and
ag of the direct lattice.
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Figure 3. Portion of the reciprocal lattice of the zinc-blende struc-
ture. The basis vectors b;, bs, and by are also shown
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The first Brillouin zone is shown in Figure L4 with the symmetry points labelled
¢ssentially as in Figure 1 of Parmenter's paper.

The space group G of the zinc-blende lattice is T2(F h}m), and the under-
lying point group G, is Td(h3m) The 24 elements of the group T4 are listed be-
low and grouped 1nto classes. The notation employed for the group elements
follows the standard pattern, C denoting pure rotation, o denoting reflections,

and S standing for roto-reflections. The arguments and subscripts serve to
specify the operation with respect to the cubic axes.

fed, $C, 0,3, C(Tin, 5T, C(TTH , C(TT 1),
C,0T, CaTF {c, o0, (w ¢ (2)]}
g - ~1 -
({S‘,_(x)))4 (), 5, 0g) 1S g0, 54(2), S, (z—)})

{U—xl‘) /Wi’%x’qiu)qc\%>¢-§x} .

The three-dimensional matrices corresponding to the various group operations
are given below.

100 010 N 001

E = 01o> Ca(111) ={ 00 1 Ca (111) =<1oo

- 001 - 100 - 010
) 00 -1 4 0 -1 . 01 0
Ca(111) = <-1o 0) Cs(111) =( 0 01 Ca(111) = 00 -1
01 o ~ 10 - 10 Q

N 0 0 -1 ) 0 01 1 0 -1
Ca (111) =(1 0 o Ca(111) = (-1 00 Cs (111) = (0 0 -1
- 0-1 0 - 0-19/ 1 0 O
1 0 0 <1 0 O -1 00
Ca(x) ={ 0-1 0 Co(y) ={ 01 0 Co(z) ={ 0-10
- 0 0-1 00 -1 - 0 01
-1 00 ~10 0 0 0 -1
-1

Su(x) = o 01 84 (x) = 00-1 S4(y) ={0-1 0
0-10 - 01 Q - 1 0 Q
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0-10 i) 84 (z) ={1 0 O

-1 00 . 00 -1 - 0O 0 -
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Central Brillouin zone and the symmetry points of the zone.



CHAPTER IV

RESULTS FOR ZINC-BLENDE STRUCTURE

The general considerations of Chapter II will now be applied to the various
symmetry points in the irreducible portion of the Brillouin zone illustrated in
Figure 5. This prism occupies 1/48 of the volume of the first zone, and the re-
sults for points in the rest of the zone may be obtained through the application

of Egs. (&) and (7).

We begin by noting that since Tﬁ 1s a symmorphic group, the T matrices have
nonzero diagonal boxes only, and have the typical form -
e, R
O

—_

O
Tiq:R
< 13 =-') ©. R ) (28a)

where

5. = exp 6_‘3 -[g(@)_~§5(£)j , Z/=/)Z . (28b)

(=

Clearly, ©; = 1 always since }jl) = 0. The values for ©- for the elements
of Go(q) for g corresponding to the various symmetry points under consideration
A A
are listed in Table I. We begin the symmetry analysis with the point A.

A q = 2n/a(n,0,0) 1>m>0
Az

The point group G _(g) associated with A has the elements (E |0} (Ca(x)]0)
LEVZ,O]’ tgyle), and is isomorphous to the molecular point group Cpy. The T

matrices are:
()

;Z-/él; E) = o €
C_z(x) 0

I(A,'Cl(x)): (—o QJK))
)

Jya ©O

L(a;T4z) = <o

. Tge o
I(ng?a) = (o T“g) (29)

16
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TABLE I

— — ,I_._ ~ — ~— — — — — — — — — — — — —
] 1 ]
—
—
[QV]
~
1t
i
1 O (@] 154 rv = - @] O O [®) ] O O @] O [©) O (@)
—
[qV]
~
o]
(A
@ (1] [\ o] (o] 4]
- - - - N EN N IN - - N LN LN
i T AL Sl AT IS A A A A A A S e = |
LN - - - LN - - 1 - LN LN LN - -
il T T e e R e L I 1 STy Sy oS PU U PO =t A
~ — | 1 1 1 1 ~— ~ ~ ] ~ ~— ~— ~— ~— ~— ~ ~—
~ ~— ~ ~ ~ ~

FOR VARIOUS SYMMETRY POINTS
All 24

Operation

Xy
vz
Xz

Yz
Fz
(111)

—
[ ~
o] e} =] ~— © o] €3}
Y
O

Cs(111)
-1
Cs

q
(0,0,0)

(1,0,0)
~(n,0,0)
(nym,m)

X
a

PHASE FACTORS USED IN CONSTRUCTING THE MULTIPLIER REPRESENTATIONS

Point



19

TABLE I (Concluded)

Point q Operation =R§(2) q-[x(2) - 2_}5(2)] 0o
2 111
Z ?( 1,1,0) E (Z)Z’Z)a 0 1
11 1
aly) | (43 Da . 2
ox,, 1 | 111
W al(1,2,0) E ‘T’u’u)a 0 1
1 11 .
S4(y) ('X: ’E:z)a _522 -1
-1 1 1 1 )
Sq (¥) (e g i
11 1
Cz(y) (-pypr e 7 -1
2n 111
Z _;'( M My 0) E (I;: )_’_;Z)a 0 1
111
%y Gpy)e © t
2n 111
S —a_(l; My 1) E (Z:Z;E)a 0 1
111
e | (BRR® 0 '

The irreducible representations for this group and the number of
occur in the reducible representation {T(A3;R)} are listed in Table II.

times they
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TABLE II

IRREDUCIBLE MULTIPLIER REPRESENTATIONS OF THE GROUP GO(A)‘

E | Co(x) 9 | 5, n(Ai)
A, |2 1 1 1] 2
pe |1 1 al ol o
YR I -1 1] 2
by | 1] -1 1| 1| 2
Tr T -2 B 2 2

The dynemicel matrix can be

D(F) DIz

D (9) = 1 .

- D(3) D) (30)
where k = 1, 2 denotes positive ion and negative ion, respectively. Next,
taking.2—= A and.g = Oyz and using Eq. (9a) we obtain,

N 7 [~ s o]

Dxx(xx> (mt)D (xx) ]Dxx(xk") -:D wz) Dx\,(xx’)

D (z{x’)b (m«) D%(Kax') = Dax(gw) Da(aax‘) Dﬁ(&?ﬂ’)
4 fa)

LD (}‘Jf) (X)'t') :Da.z(x).(_')-J DH)\ Mﬂ/) -D"]i()f)'f’) ’Dld\.\ (fﬁ')




With R = 0. , however, we obtain
= =yz

.

DXx(aH‘) 'Dxcj(m«(') (

gx (mf’) D&M (-:,m) o)
Qx(mw) :D ( )

-

From these we find:

_'Dxij (MAM') = sz (

D‘du (ﬁm')

and

a
42 (a«x')

21

Q
soet)

(50

e (o )

:

Dxx (SX'> —'Dx% (MAM') ~-'DX‘3(§W)
a(xn‘) ‘Da.g(a(a(’) D s )

o !

: DHX )?a;(') Dﬁ% (;ﬂ') Dtl‘:l (MAM')_J

The remaining elements in G_(A) do not provide any further simplification in

g(q) We may thus write it as

O ® O

&)

X

«*

a“ T

6 & 0 o

C o H J

B o T H (31a)
o D 0 O

¥ o e F

W o F €

avoiding the subscripts. Here A, B, C, D, E, and F are completely real.

The matrix given in (3la) must be consistent with the general requirement

that
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-Dx@(% ) = b*(;?i‘)

o' @

(9c)

As noted earlier, this condition in some instances provides further simplifi-
cations (see remarks after 9b). Iet us explore this possibility.

operation gg(y) takes q to -q if q is along A.* Therefore,
- P - andd -

D("F) = Clw D(E)Culy

(see Eq. (9a)). This together with (31) above gives us

NES

Since C is real, this means

i
O

C

In a similar fashion, we can show

O

=

D (8)=C =D ("¥)=-c¢

Now the

( 9 Q\Ona A)

The element J, however, does not vanish. Noting the additional simplifications

deduced above, we may write (3la) as

AOO &G0
OCBOC O H
_—_ |0 0B o T

D(a =
2 (a) 00 b o
o H*I* 0 ¢
OJ‘*H*QO

*In general, the requirement is that Sq be equal to -q +_E;
—_— A A

(31b)
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Our task now is to block diagonalize the matrix above and for this purpose
we need S(q) Let us first construct the projection operators(Pi1, GDA3 and

b4, Using Eq. (17), the matrices in (27) and (29) and Table II, we get

400;
coo (O
000 .
L 400
]
O !ooo
oNele
ooolt
o 2-2
0-2 2| O
OO0 oo
@, o 2-2
0-2 2
O 0O !
ozz | O
022 |
O 0 O
O 022

Oz 2

(32)

(33)



Using these projection watrices, we obtain the following symmetry vectors.,

|

OC O ©O0 —

cC—= Q0o

Soe

ek

o
O
@)
e,
1/

- 1/Z]

Fo 1o
/\z O
.|z || O
A4. o 5
O s

_ O W

From these we find the transformation matrix §(3) to be,

and the block diagonal form 2'(q) of the dynamical matrix to be

—

/
O
O
®)
O
@)

L

0C —=0¢C ¢

O
I3
_{/vz
O
O
O

| (N e~ -/
A3

a

(

O 0O C)T
O 1z O
O Iz O
O o O
iz O &
-l O g |
A,

__/q . —_
G D © O
B B H-T
— O “ﬁf;I* = O
B H+J
O O H**I* E~

(35)

(36)

(37)
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By diagonalizing successively the three 2 x 2 blocks in (37) above, we may
obtain of(A38,1), af(A3A12), etec. Thus

Vo
2, _ e (200-3) > -
WA Q) = o T o+ M )= Ak ]) ] (388)
where for A,,
(380)
X =A , N, = )°<:2_6— )
for As,
. 8
qll-B)D(LZ:E)%IL:H_T J (BC)
and for A4,
<, =B, X,=E ,o, = H+J . (58)

The index a takes on the values 1 and 2 corresponding to the two occurrences of
each of the representations A;, As, and A4.

The eigenvectors in each case can be written as

AL<&):‘_/(A3ALI)+ BL(Q_.)E_P(Asdiz) . (39)

Substituting this and the corresponding frequency into Eq. (1), we have

! Aa(a) + X Bg(a) = Luz'(A;Azﬁ)/‘}i(Q)

o~ * - 2
LQ\/& ’L‘)( () 'f"O(ZZ BL‘ {C() = W (A ), A( a) BL’ {CL) . (hOa)
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Also,

[A; (MIZ + fB;(M/L = | (kob)

Solving these for A;(a) and B;(a),

Aila) = — iz - Bla)= — (o), —w*)
‘ J * ~ Arle) (41)
{'°(Q,| C(" LJZ)} e : oo ’qc .

Finally we test for possible extra degeneracies due to time reversal sym-
metry. Since A is within the zone, we apply the criteria of (i), p. 8. The elements
A which send q to -q are Co(2), Co(y), Si'(x), and S4(%). Therefore
— A A = ] - =

Q = z’;x‘“(/qz)

4 4 ' 1
= 3 {x™e - X e« ¥ (G« 2% 0]

1 for Ay
= 0 for As

Thus Az and A4 are related by time reversal symmetry,(z) and as is to be ex-
pected, both occur in {T} the same number of times. By examining the symmetry
vectors, we note that the A; modes are longitudinal while Ag and A4 are trans-
verse.

X: q =2n/a(1,0,0)

The point group Go(q) is isomorphous to the molecular point group V and
has the elements ([0}, {C2(x)]0}, (Ca(¥)[0) (Ca(2)]0), (Sa(x)]0) )IO},
IO} {a- [0}. The T matrices may be written down readily using Table I and
the three d1mens1onal matrlces in (27). The irreducible representations and
- the number of times each occurs in the reducible representation are given in
Table ITI. The dynamical matrix after simplifications has the form
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2 2 0 0 2- 0 0 9
. 0T o T- 0 T- 0 T -0 T- 0 T0 TO Sy
T0 T- 0 TO T- 0 o TI- 0 T 0 I- 0T
0 T- T- T T T T- T~ T x
T T T T- T- T T- T- T '
0 T- T- 1- T- T T T T ex
T T T T T T T T T Ty
I z£ zZ A
((x)u 0 0 (X)<fs (x)*s (x)%0 (£)=0 (2)°0 q

o
(X) D dno¥d HHI J0 SNOIIVINISIHAHY HHITIILTNN ITdIONAIIET

IIT 14Vl
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A OO0 oo.oj
OB O |0OE
00 B |oE O
o000 CO O
o o0E¥ODO
0o 0OD

(42)

while the matrix _§(X) constructed from the symmetry vectors has the form.

Iy

‘co—-000C " X
X

CcoO Co -

CCQO GCG—=0

X

~0O0C 0O0O0
0—0C CGCQ0

000 —0o0

From these two matrices, we obtain the block diagonal form as

o 0

_
0
o

O O{O

*

@,

S

o m
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The frequencies for X and X3 are:

(!
O

W (X5 X,)

z
(.A)(X;X3,)“ A

(45)
The two frequencies for Xs are given by (3%8a) with
>, =B
vaél = £
| (16)
>, = D
The eigenvectors are:
- —~ -
Lo !
L O O
. O
X I ><3 : ©
/ ' @)
O O
N

Those for Xz are given by Eq. (41) with the definitions of ., etc., as in
(L6). Observe that in both X and X5, which occur only once, one species of
atoms is stationary. This is consistent with the general observation of Elliott
and Thorpe(9) that "if a representation occurs only once, then only one species
is involved in that mode." Also note that both X; and X5 refer to longitudinal
modes. The "optic" or the "acoustic" natureof the mode depends upon the rela-
tive values of C and A. The modes belonging to Xg involve motions of both

atoms, and are transverse. Time reversal does not introduce any additional
degeneracies.

A g = n/a(n,n,m) 1 >0 >0

Go(q) is isomorphous to the point group Csy, and its irreducible repre-
sentations are given in Table IV, Also presented in the table are the



occurrences of the irreducible representations in the reducible representation

formed by the T matrices.

TABLE IV

TRREDUCIBLE MULTIPLIER REPRESENTATIONS

OF THE GROUP GO( A)

E Cs(111) c3t(111) T g % o, a(4,)
N 1 1 1 1 1 1 2
Ao 1 1 1 -1 -1 -1 0
N VAR AN VTR DENE RSN VS SN
A 2 "2 2 2 < ) 2 2 22 5
° V31 31 V3 1 V3 1
01 +< - Ve 0 -1 <
2 2 2 2 2.2 22
TrT| 6 0 0 2 2 2
The dynamical matrix for this point can be written as
- . -1
A BB E FF
BEAB FeF
= T leYE*FP*C D D
FYE*F"DC D
F*F*E" DD C

(48)
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while the S matrix has the form

I

(49)

Upon transforming D(A) using S(A), we obtain the block diagonal form D'(A) as

__A-t-ZB E+2F -
O T+« A
N zE™ c+2D © '
A-B e-F
(
o o A-B E-F
< )\ .
€F" C-b hs
. —
(50)

The eigenfrequencies and eigenvectors resulting from these 2 x 2 blocks may as
before be obtained from Egs. (38a) and (41), respectively, with
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X = A+ 2B
x,, = C+2Db

X, = E+2F

(51)
for Ay, and
<, = A-B
X, = C —-D
O(lz.‘: E—F: (52)
for As.

Timereversal does not introduce any additional degeneracies.

L: q = n/a(1,1,1)

The results for the point L which is on the zone boundary in the (111)
direction are identical with those deduced above for A, a general point in the
same direction. This follows from the fact that Go(gg is the same for both points
z: q = 2n/a(1l,n,0) 0 <7 < 0.5

P

The group Go(g) for this point has just two elements, E and Co(y). The
T matrices are readily written down using the rotation matrices in (27) and
the phase factors in Table I.. The character table and the break-up of the re-
ducible representation are shown in Table V.

TABLE V

IRREDUCIBLE MULTIPLIER REPRESENTATTIONS OF THE GROUP GO(Z)

E_co(y) P50
Zq 1 1 3
7o 1 -1 3
Tr T | © 0




The dynamical matrix assumes the form

+in
where K¥ = -e nK,

For 3(2) we have

The resulting block diagonal form is

+1
L¥ = ~e TTT]L, M* =

55

Ao o OkKO
OR O L. o M
L0 0C o N O
AaLYo0 Do o
oMt o 0O F
My e = e+i”’”N.
OO0 | O o0
| O 0 000 |
*‘O O 0 O [ O
1O | O O OO :
O oo oo (
2ol ooo.
Z, Z
BL WM
(D O O
MO F
A OK
O io C N
} KN EL

(5%}

(55)
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The two 3 x 3 matrices above must be diagonalized to obtain the three fre-
quencies belonging to Z; and the three frequencies belonging to 7. Time re-
versal does not introduce any extra degeneracies.
W: q = 2v/a(1,1/2,0)
The point W has higher symmetry than Z, there being four elements in GO( ),

- A
which is isomorphous to S4. The character table and the reduction of the T
matrices are given in Table VI.

TABLE VI

IRREDUCIBLE MULTIPLIER REPRESENTATIONS OF THE GROUP GO(W)

E__ S4(y) sit(y)  co(y) plws)
Wy 1 1 1 1 1
Wo 1 -1 -1 1 2
Wa 1 i -1 -1 2
Wa 1 -1 i -1 1
Tr T 6  (-1+i)  (-1-1) 0

A OO0 0 ko
O BO L oOLF
D(w) =297 oFC
- O Lo DO O
o kY 0oE O
LOL O 00D |

(56)

with K*¥ = -iK, I¥ = -iT,
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The =Sg(W) matrix has the form

(00 0 g o I
Ol 0 o 00
OO0 O -z 0 th

iz 0 iz 0 0 O
o 0 O 0O | O

¥0 s 0 0 0

(1%
&
I

?L/v\/w?

WI Wz WB W4_

(57)
The resulting block diagonal matrix is
D O @, Ol « W,
| B L
O . O O «— w,
| 2L D
Dw) = A fzk
O _ O — W
© e € ?
(58)

The eigenfrequencies for the modes Wy and W, are given simply as

ww,)

i i
RV,

2
L (Wy) (59)
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Those for W, and Wg are found by solving the asppropriate 2 x 2 blocks as in
Eq. (38a), i.e., for W, we take

5
!
v/

and O(’Z = '\}—ZL

(60a)
while for Wy we take
oy = A
Ky = E
and Cxﬁz =42 K
(60b)

Regarding extra degeneracies due to time reversal, Parmenter(z) remarks that
W3 and W, are degenerate. However, application of criterion (ii) on p. 9
shows that for Wg,

QR = -4'7{7(\”3(6;7@) + XWS(CZL(x))
W. ~ ,.
S e |

= 2{a x| = | |
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Thus Wa cannot be related by time reversal degeneracy to any other representa-
tion. The same can be shown to be true for W,. It is worth noting that if Wg
and W, were degenerate, we would expect them to occur the same number of times
in the reducible representation which, as seen in Table VI, they do not.

£: q = 2n/a(n,n,0). O < n < O0.75
~en
The point group G (q) is very simple having just two elements [EIO} and

IO}, and is 1somorphous to the molecular point group C The 1rreduc1ble
re§¥esentatlons and their occurrences in the reducible representatlon furnished

by'g matrices are given in Table VII.

TABLE VII

IRREDUCIBLE MULTIPLIER REPRESENTATIONS OF THE GROUP GO(Z)

E OXY' b(f%}
Y 1 1 L
To 1 -1 2
Tr T | 6 2

The dynemical matrix after simplification has the form

(A ¢cD TLM]
C AD L I M
_ -D-DB N N K
E(Z)— TN E & H
[N TENY & £ H

}4

"M HAHF

(61)



+i2mn +i2nn +i2mn

where J* = Je s L¥ =Le = -Me , N* = -Ne , and K¥ = Ke

N i2mm
i .
matrix S which serves to bring Q(Z) above into block diagonal form is found to be

The

(e 0 © o0 1z o |
i © O o ~-Ifi o
o O! o o o
Ol o o o0 &
okt 0 o o -ifE

|00 0 /| o0 o
——— i’

(%)
N
I

z, =,
(62)
The block diagonal matrix is
\Z(a+C) (L) ED WTEM | © o |
Z(T5) wlere) BN IH | © o ;
P> =
/ 2 B o O '
o o o O YZ (4-C) YZ(J -L)
_ o o o o |aE®vie-¢)| T
(63)

The frequencies and eigenvectors for the 2 x 2 block (corresponding to species
£-) may be determined using Egs. (382) and (L41) with

¢, = VZ(A-C) ,

;= N2 (E-6)
o), = 2 (JT-L) . (6L)
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The solutions for the 4 x 4 block are too lengthy to be given here. They may,
however, be found easily for any given problem through the use of a computer.

K: q = 27/2(0.75,0.75,0)

The results deduced above for L are applicable to the point K as well and
indeed beyond K up to the point 2x/a(1,1,0).
8t q = 2n/a(1,n,n)

The results for S are very similar to those just deduced for ¥£. The wave
vector group has two elements [E|0}, [gyzlo}, with the following charscter table.

TABLE VIIT

TRREDUCIBLE MULTIPLIER REPRESENTATIONS OF THE GROUP GO(S)

E |o n(s.)

yz i

S1 1 |1 L

Se |1 }-1 2
e T| 6 | 2

The dynamicel matrix is

A cc ToLL
-C B D N KM
-CDE NMK
TNNY EG &
> "M e FH
"M ET e HF

i
0y
i

(65)

g
with g% = e 727

transformation by the matrix

+i2
* ﬂnN, and after

+i +1
T, I* = e 2L e = T png W = -e



Lo

/[ O O o0 o o

o O 3z o I/E..O
o 0 /g O -z o
C(s) =
= O /! O OO 0
o O O s o Uz
O O O l/rz“_ O “//(7'_
S« Sl.
(66)
assumes the form
A T <7 L@ B
T = NI GE:
-[)l(fS) N S NVZ B+D K+F4%
= Uz -Gz KNH FRHY
B-D k-M
O A 2
B K-M F-H_
(67)

which we note is very similar to that for IT.

I q=1(0,0,0)
=

Finally we turn to the most symmetric point in the Brillouin zone, namely
the center. At this point, the point group is the full tetrahedral group Tg
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having 24 elements. The character table and the decomposition of the reducible
representation are given in Table IX. From this we see that corresponding to

q = O there must be two triplets each belonging to the representation I'Ns. One
OF these corresponds to the acoustic modes of zero frequency. The remaining
triply degenerate mode is the optic frequency. Experimentally, however, in
zinc-blende type crystals two distinct frequencies are seen at q = 0 instead of a
single frequency. It would seem from this that there is some contradiction.

Tt turns out, however, that the splitting that is observed (which incidentally
is due to coulombic effects*) is at values of g which though small are yet not
identically equal to zero. At q = O there is in’fact a triple de eneracy. For
a further discussion of this prABlem, see the article by Warren % and the
references cited therein.

TABLE IX

CHARACTER TABLE FOR THE GROUP G (T)

E |84 | 3¢, | 65,] 60 [p(T3)
ry 1 1 1 1 1 0
T, 1 1 1 -1 -1 0
T | 2 |-1 2 0 0 0
Tis | 3 0 -1 -1 1 2
I'.c | 3 0 -1 1 -1 0
Tr T| 6 0 -2 -2 2

This concludes the discussion of the symmetry of the dynamical matrix at
various symmetry points in the Brillouin zone.

The manner in which the representations change as we move in reciprocal
space is indicated in Table X taken from the work of Parmenter. Using this
table and the rzsults deduced above, we sketch schematically in Figure 6 the
dispersion relations for the zinc-blende structure. In some directions and
points there is more than one way of doing the labelling, and only one of the
possibilities has been indicated in the figure. For example, at X, the top A,
branch could go over to either X; or X3 while the bottom A; goes over to either
X3 or X;. We indicate one of the two possible choices., Similar considerations

*The behavior of the optic modes at small values of g is a topic in itself.<lozll)
A
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Iis

I Z K X

Figure 6. Schematic plot of the dispersion relations for the zinc-
blende lattice. At point X, the labelling of X; and X5 is ambiguous
and is model dependent. Similar ambiguities exist at Z and W.
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TABLE X

COMPATTBILITY TABLES CONNECTING REPRESENTATIONS AT DIFFERENT SYMMETRY POINTS

I' > A A > X X > 7 7 > W
Iy Ay A Xy1,Xs ) S/ Ly Wi, Ws
I's Ao be  X5,X4 Xo In Zo  Wa,Wy
e M1+ 4 Ag} Xs  Zs

X5

15 by + 03 + D4 iV Xg 22
o5 bp + b3 + L4 Xs 71 + Zp

I > A r >3 X > S
Iy N Iy 21 Xy 51
rs Ao r, % Xs 8o
iz A Fie 21 + 2z Xz 51
Fig M + A Fig 25, + 2z Xg B2
Fos Ao + A3 Fog I + 2% X5 81 *+ 52

have been used at Z, W. As noted earlier this ambiguity can be reduced only by
explicit numerical calculations of the dispersion curves based on sultable
force constant models. It is also of some interest to compare the representa-
tions of the zinc-blende lattice with those of two related lattice structures,
viz., face center lattice (space group Oi) and the diamond lattice (space group
OE). Such a comparison has been made by Parmenter and his results are repro-
duced in Table XI.
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TABLE XI

COMPATABILITY TABLES FOR THE REPRESENTATIONS OF THE SINGLE GROUPS
CONNECTING THE ZINC BLENDE (T5) WITH THE FACE-CENTERED-CUBIC
(0p) AND THE DIAMOND (0[) STRUCTURES

5 7
TS Ch TS Oy
ry I or Ist Iy I or I'se
Fg F2 or Fl' FE F2 or Flr
e 1o or Iigt e 12 Or Thot
Is s or Iog: s s or Ias:
Iz2s [2s or I'is: P [g5 or Inst
Aq Aq or Apt Ay Ay  Or Aot
Ao Ao oOr Aq: Ao Ao or Aq
AS AB
A A

Dy } > A4} >
As Ao As A
Mg As As Mg
Zl Z‘l or ZB Zl Zl or Z’B
22 22 or 24 Z’E 22 or 24
Zq Z1 or Zs Zl> 7
Zo 7o Or Zg4 7o *
Xy Xy or Xso Xl} %
Xo Xs or X! Xs *
X3 XS or X4' X2} X
Xy X, or Xs! X4 2
X5 X5 or X5' X5 X3 or X4
Wl Wl or W2 W:L} W
W2 Wl 't or W2' WB 1
WS w2

W
w4> Ws w4} &




CHAPTER V

SELECTION RULES IN OPTICAL SPECTRA

In this chapter, we shall discuss selection rules for two phonon absorp-
tion in zinc-blende type crystals. Several methods(a’lg’lB) for obtaining
these have been reported in the literature. We follow the techniques of MV as
they lead not only to the selection rules but to the complete structure of the
dipocle moment operator as well, Similar techniques for obtaining the structure
of the polarizability tensor which controls Raman scattering are also discussed.

A, INFRARED ABSORPTION

Among the methods frequently employed for the study of phonons in crystals
are infrared absorption and Raman scattering. In an infrared experiment, one
examines the absorption of a thin slice of the crystal as a function of the
frequency of the incident radiation, and looks for resonances in the absorption.
These resonances arise due to the interaction between the photons and phonons,
and are subject to the conservation laws:

Energy of photon hw = algebraic sum of energies of all phonons con-
tributing to the resonance.

Momentum of photon hQ ~ O (for infrared radiation)
= hx(vector sum of wave vectors of all phonons

involved in the resonance).

In a one phonon resonance, for example, we will have

'Rw=‘Rw3(f§)

&)

24

Q
= % (68)

Since in ZnS type crystals there are only two nonzero frequencies at q = O (see
Figure 6), one phonon resonance does not lead to much information. On the
other hand, for two phonon processes the conservation equations take the form

b5
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( sum mode) hw = tw;(gw“ﬁwy(cg,’)

(difference mode) = K W; (§r=hwW;'(§)

@ ~o0
:i-?—%’

(69)

and clearly many combinations are possible. Therefore it should be possible to
say more about the phonon spectrum from a study of two phonon absorption than
from one phonon absorption. Figure T shows the absorption curve for ZnS as
observed by Deutsch.(lu) We see at least six prominent transmission dips, and
the question naturslly arises as to which phonons are responsible for these.

To answer this question, it is necessary to consider briefly the cross section
for photon absorption. This is proportional to

Z | I x* ) MooX, (x) dx /dg({-;hmem-m))
[ n M

o 0
Ave, cuer (70)
Inftial states m

Here Xm(BE,) and Xn<3{\.) denote the crystal vitrational wave functions in the vibra-
tional states m and n respectively, and yl\_is the dipole moment operator. Ex-
pand 7M‘_in a power series of nuclear displacements as follows:

()
_{\_’] (x) = _IV_](O)(X_) + M+ m(z){p ‘e ) (1)
where )
M“ (X)) = Z (Q) U £
< Ak @ M%@ . @(n)
(2) oy 70! . "
M"“{é) - Eﬁxg Mo()@‘( (“M')up(x)ax(}(')

2"y (12)
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(per cent)

Transmission se—s

Wave number ~<¢——= (em™)
100 950 850 750 650 550 450
Ciafe! ok T T e ! ' ' | ]
_ &~7ZnSNo. S v .
"Thickness 0:239cm -
i 77°K _
0 =
- <+——ZnS No. 6 -
- Thickness 0:040 cm ]
- 77°K -
u _
1 L1 I L1 l L1 1 1 ]

| |
10 12 14 16 18 20 22 24
Wavelength s=—3- (microns)
. I : . (1%)
Figure 7. Transmission of zinc sulphide. Data of Deutsch.

(Reproduced from Proc. Internat. Conf. on the Physics of Semicon-
ductors, Exeter, 1962.)
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end so on, w1th‘4§ ) denoting the displacement of the atom at ( ) In two phonon

absorption, we are interested in the part M?(x) of M(x). On actount of the
translational periodicity of the crystal,

0 4'-a=L )
ViBY ( x ! /

L2
MQJ(‘G’ (““') =

X

-£ 0
MV)(W(x ) o (73)

Using this fact and the familiar normal coordinate expansion for U( ) (10)

LyXx(e)
39) @(1)e .

1 J

Iy
X r~
N——

it
M—
100[\/\

where N is the number of primitive cells in the lattice, and Q(%) is the normal
coordinate appropriate to the mode (q,j), we can express MZ as Y
A

(2->__,_ 4 3 ’
M. ,ﬁ M (EE) Q [F)@(]) alg-gY
______/—_ -4 % t, 5 (Tha)

= L -7 3 T/ g )
= 2 3323 M (PR QDY) (7o)

In Eqs. (Tha) and (T4b) above,

U’) ealx,$<) eb,(u',b'g')

i =,¢'Zx1 Mage L [
Kg my My

o QxP Lﬁ'»(:_s_(().’)~l((a)] (75)
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In obtaining them, we have made use of the results (10)

X
Ec (%, 23) = €, (n,-q1)

Q)

Liskﬂ
\/
]

and
Zlexp L g.xle) = Na(q)
< o (76)
Observe that the momentum conservation ( gt q') = 0 expressed in FEo. {69)
~

arises through the A function above.

. - . - . . FRe | , ,
On introducing (74) into (70) and further expressing Q{<) in lLerms of
‘ . r 3

annihilation aznd creation operators a_ . and a ., as
qJ aJj
P

K 2 .
Q ?) = (zwj@) )Cazz‘\*‘}“ﬁzij (77)

and then using the following properties,

j‘j i)j/mj(j)>: V’j(@)'h}(})\/\ )
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, t
fo‘%ﬁ J 0.43,5,3 = gﬂ‘ A(}-ﬁ,) )

=~ |
and. i8> = Lep(RE) ]

we find that the absorption cross section for the difference band, for example,
is

(78)

2
o = IMCEIH > K> + 1] —

231’

<t D<o+ 17}

W; (%) w'(@)

(x) g[-wj(@)-— Wj/ /@) —_ c,uj

o5 Jas (M 2E)<ni> —<nyigpDh

(x) / /

The integration ebove is over a constant frequency surface. A similar expres-
sion may be written down for the summation band.

From Eq. (79) we see the following:
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(i) A given pair of phonons (-q,j) and (q,j') cen combine and contri-
bute to a dlfference band only if there is at least one nonvanishing
element of M( 3>—q) This is the statement of the seleection rule.

(ii) If there is a nonvanlshlng element in M( 2tq,), then the two
branches j and j' can combine for all val&eg of a from the zone
center to the zone boundary resulting in a continuum in the absorp-

tion spectrum,

(iii) The continuous spectrum will have singularities whenever
Vo .
¥l a-a (9)-s( )

In ZnS type crystals IVhﬁ(q)l vanishes at I, L. X, and w(2) (see also
Figure 6). Hence singularities in two phonon absorption spectra may be expected
due to combination of the "critical" point phonons, i.e.., those at I, I, X,

and W. We shall now employ group theoretical considerations to determine the
structure of M at these points.

We note first that

Mx(if@) Md(;‘?'*‘fhm(‘%?) (80)

£ 4 1 1

s result is easily obtained from the deflnltlon of M ( »4A/) as given in

(75) and the properties quoted in 2 Next we obseree that under a space

up operatlonqsnv the triad M vp( ,) transforms as

£ 4~
Mo()(w (x, fl_) = Z S./Hb( Sev M Pkl <>¢ o

WM')M?Q

() S(K)SM[&.J)CS(W,SM (x.])

(81)

where

and
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and the ®'s merely reinforce the fact that the sublattices ®x; and xz go to x and
k', respectively. Also from (82) above we have

=1
X2 =8 x(5)— x (%)
- -
=S X0 +§, X(w)— X (%) (83)

and a similar expression for‘§£22). Therefore using (81) and (83), we can
readily establish that

NS

| e
M"‘( 3 ) ,e%; Mo [ W) (o
ALY

* /
b0 eq (M g4) e, (v g4 ) exp-ige(xtd)-x(4)] ()

— 22? S: P1M Vv (;?ﬂ)
= ux ) 2 ot exp-t S (xt )_xu')}
= AN (m M, )/7- -
*e
r % -
ol Z e OO0 1455,) e, n,@s)j
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If 5, is not & member of the group of the wave vector, then from Eq. (k)

we have
;;F(’*(X‘XL), §: 5, )€, g4 =, (WE34), (8)

which helps us to recast (84b) above in the form

om & G(4) (86a)
or more compactly as

M(-%,3)= S M(-5¢%.S%) - (86)

Compare this with (7) which is a similar relationship for the dynamical matrix.

_ Ii‘Snlis a member of Go(q) (in which we shall, as in Chapter I, denote it
by(Rm), then (84b) leads to an expression somewhat different from (86). We

recall from Chapter I that

[(4:®,) €54

= QYP*(;?)_'[M{R)'#_X(M)] —}:(@)B)g(@)sm\)

S—

{s
/ {)
=exP-L§LviR+x(m)]J_ Tg\i €l§,s2A0 . (gp

/\'=,

This helps us to write (84b) in the form



5k

=§ Z; ,\/\( ):H: Q)_?M (sa.), s'a'), ) (88)

Results (80) and (88) are applicable to all crystals, and of these the
last one determines the interrelations among the 3 x ( 5n)2 elements of
)M_(-gv,g’) for a given q. Observe that (88) plays a role similar to Eq. (9a)
which determines interrelations between the elements of D.

We will now use Eq. (88) to establish tne structure of M at point X. ILet
us first write

v Dy ~3 g )

*(TFX; Sa),Se ) )= MX (“Aﬁlﬂlz\' ,
L sa 4=X

in the formof the following 6 x 6 (3n x 3n) array, where we have made use of

the Hermitian property (80).

M X, X3 Xsll X302 X2 X 22
X, a’l c‘z; Qza Q-lg Ow§ c"u
xK
X3 Q‘Z' O\'Q_ Q,Q ql" ql4- a'O
S
Xs | Qa0 at? A= Qe Q3 QA q

Xs 12 oy ak Qg Qg Ay Qg

X X *
Xs2l | e ay ay oanp @ a,

Qs
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Next consider one of the operations of G (q) say Co(y). Using the 3 x 3
matrix for Cp(y) as given in Eq. (27) end the irreducible representations found
in Table III in Eq. (88) we may write

Mx(§=x)x.>&) =

B %— (_—C':i—((j)]vx (’ )( l) Mﬁ)(i’.:x)x"xl)

= = r1 ( =X, %X, Xl> = O

In a similar fashion

Mx(‘@:)() XSI‘/YS'!) = G3
Xe
vZCg,.(w]W %}_’C‘C/\A 2(9»][1; N
(x) M»@:X,Xgu,xg/l)

= — M (35X, X1, % 11) =

In this way we finally determine the mstrix M, to be

My X Xz X1l Xl ¥s2) Xs22
X | 0 a0 g o0 )
X & 0 Gg O Qyy @)
il o a% o 4, o as

| af o a% o a, o
¥ x

XSZ’ O Ay 0 Qry O q7

Xs22|af o af o af¥ o
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which we shall write as

My | X Xz XL X X2l X2z
X, lo a« o b o C

x; | & o 4 o e o
xsh o 4 o £ o ¢
2|5 0 £ o h o
% * ok
X2z ¢ O § o g o

there being only 9 nonvenishing elements instead of the 21 we started with. Re-

sults for My and M, are presented below.

It should be noted that while the elements of My and MZ are related among

themselves, they are not related to those of Mk This is a reflection of the

fect that in the group GO(X) there is no element which interchanges x components

of q with y and z components whereas there are elements (e.g., Uyz) which mix

the y and z components.

My | X, X3 Xsil X512 Xs2l Xq22
X, o A =B o -C o)
X3 A" o o -D o -€
Xstf |-B o o F o H
xsl2 ] o D' F o & O
Xs2) |- 0o o & o 73J*
X<22) © " W' o I o
My X X3 Xl Xlo X210 %22
X oA o B 0 C
X3 A0 » o € o
Xsli {0 D o F o &
¥<j2 |B o F* o H ©
X2l |0 E* o HT o I
X2 |c*o0 6 o J o




Results for the points L and W are given in Table XII. Similar but less
detalled results obtained earlier by Birman(B) are summarized in Table XIII.
It can be seen readily that his results are in agreement with ours if one notes
that a combination is allowed (insofar as an unpolarized beam experiment is
concerned) if there is at least one nonzero element corresponding to that com-
bination in any of the three matrices M, My’ M, .

One point worthy of note here is that the structure of M is dependent on
the form of the irreducible representation. For example, the elements of M
My, and M, luvolving Ls depend upon the matrices chosen for that representation.
However, the squares of the elements summed over the degenerate partners (which
is what is relevant to an experiment) must be representation independent. Thus

2

Hx(ﬁrL,L,/)L3)>>lz

>
n
N

2.

A= /Mﬁ(j:L"l—u')Lgl))[

2 | .
=2 M= L0

-
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TABLE XTIIT

SUMMARY OF TWO-PHONON INFRARED ABSORPTION
SELECTION RULES DEDUCED BY BIRMAN(B)

Symmetry Point Species Type

X X1 ® Xs TO(X) + LO(X); TO(X) + LA(X)
Xa ® Xs TA(X) + LO(X); TA(X) + LA(X)
Xs B Xs 2TO(X) s 2TA(X); TO(X) + TA(X)

W wl EWQ
Wi m Wa
Wi ® Wy
Wo ® Wa
Wo B Wy
Wo ® W,
L L ® Iy 2LO(L); 2LA(L); Lo(L) + LA(L)
Iy ® Ly 2TO(L); 2TA(L); TO(L) + TA(L)

Is ® Ly TO(L) + LO(L); TO(L) + LA(L);
TA(L) + LO(L); TA(L) + ILA(L)

as is to be intuitively expected for the (111) direction, and this is precisely
what one finds with another form of the representation Ls given below,

E C5 C3f Txy Tyz Ty

| O SIVEN NN VO w f O W w = e
() GGy

Given a knowledge of such selection ruleg and some idea of the phonon dis-
persion curves based on model calculations or experimental results for a similar
material it is possible to assign features of an absorption curve (such as
Figure 7) to various combination processes and thus to deduce the critical
frequencies. For example, Johnson(l5) deduces the following critical frequencies
for ZnS based on the curve in Figure 7.
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r 10 366 cm *

TO 328

L TO 321
Lo 272

A 227

X TO 305
LO 275

LA 221 (89)

B. RAMAN SCATTERING

We consider now briefly two phonon processes in Raman scattering. We
recall that in a Raman scattering experiment monochromatic light of frequency
o and wave vector ‘g‘(zo) is allowed to be scattered by the crystal and the
scattered beam frequency analyzed. The scattered spectrum shows both lines of
higher (anti-Stokes) and lower (Stokes) frequency due to interaction with
phonons, and as in the case of infrared absorption, the conservation rules are

Change in energy of photon = AQ
= A" - Aw = & (algebraic sum of phonon energies)
(+ anti-Stokes process)
(- Stokes process)
Change in momentum of photon % O
=4 (vector sum of wave vectors of participating phonons).
For two phonon processes this becomes
l_ — + "y Sum  MoDE
Alw'-w) = _thJ{.b)-ij'(@)] {+Ah‘ri~gﬁok(3)—€+ok€g

e
/

= % [w')(i))—~ (,uj/g/i))] [

Dif - € AU oDl
T Ant | - SHek ey, — Stokes
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As in the case of infrared absorption, two phonon processes lead to a
continuum with singularities due to combination of critical phonons.

If radiation with an electric vector F is Raman scattered, and if k denotes
the polarization of the scattered radiation, then the cross section for scattering

L(w et > n,n

O(J@)X) S

Lons EeEs

Y E¥S ¢

(90)

where

1;(3,2:5 = <?%‘(m] P*(;k [n><n] Rslm> S(E,,«EM*‘FQ>(91)

C L Ave over

nitial statcs pm
The tensor 2 above is the polarizability tensor and as with M earlier, may be
expanded in powers of nuclear displacements as follows:

(02 (n ()

(X) + B@ (x)+4 |

E(‘(l()z P a(’)(

~ @ .5) + o

(92)
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The term of interest to us is the second order term given by

(2) '
Rt = 3 37 Ry L) 4,00 450) o9

20 Kt!

Expressed in terms of normal coordinates, this becomes

g T
ae(z):?{l&p("i) Q(f)@(f) (9%)

== F

e (48 it vesieg o

~e 4 =B, .
“Q';(,; (MK Mw)/z
b exp -(_i[-_x(,g)~_)_((..@’):] (95)

Compare with Eq. (75). In arriving at (94), use has been made of translational

invariance analogous to (T3).
)

/ -t - T
B (o) = Pavcly i )

R ors xB¥s | %
= -2 o
E’p,?fg < x A ) (96)

The cross section may now be evaluated in a straight-forward manner by
substituting for the normel coordinates in terms of annihilation and creation
operators and evaluating the thermal average as before. As in the case of
infrared absorption, we have summation and difference bands both in Stokes and
anti-Stokes processes. For example, the cross section for difference band in

anti-Stokes process is proportional to
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(3 / <nitg)>npig> + <y )>}

=W (4)- Wy (g (97)

The selection rules are thus determined by the structure of POLB( -g"gﬁ).

A relation connecting the different elemen%s of P., may now be obtained as
. . y)
Vv 1 Y2
we did earlier for My- We observe that PO@"/E’(KI K2) transforms undersm as

Rovs (W)= 2 S.5,% S B (1Y)

gy P TIRTEE T8 Govpr L

(x) S(K)SN[HJ) S(K’,SMEXL]) . (98)

With the help of (98), we may write down the analogue of (84), i.e.,

Z /4\’ Po-(ux'

(m, M)

\) (3

xw’
T

o exp =S g [x(0)~ xce)] o
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w i = [0, (el g5 500 €5 (X 0 ¢

Lx){?” (1358, ) € 5 4') f
w5 O
(99)
L -3 29
R RS N U > 9)
£ S, &£§G6(3).

FOI‘Sm € GO(&}’ we obtain

-, j_ _ —
- =K,

o

P <S—>\ g/0'//\1

5{:
(x) Z[‘C\)\(% R [, )\\/ﬁﬂQ)j /\J(SC\/\, Sa/\}_)
Py
. (101)
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which is similar in content to Eq. (88, z1d may be employed to determine the
structure of PO(B'
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