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ABSTRACT

A method of determining the electric mobility in molten metals
is presented. The partial differential equation describing the process
of electrodiffusion is rigorously integrated for the case of a diffusion
channel of finite length with the concentration at one end held constant.
The solution way also be used to interpret thermal diffusion and sedi-
mentation experiments. Tables of the roots of the eigenfunctions and a

discussion of errors are included.






INTRODUCTION

In recent years interest in the experimental measurement of transport
properties in liquids has increased. Thermal and electrodiffusion coefficients
have been measured in a variety of ways. For the past two years the authors
have used a particularly simple method for determining electric mobilities
in molten alloys. During the investigation it was necessary to solve the
partial differential equation describing the process and to investigate the
errors inherent in the method. 8ince this solution has utility in other
areas, for example, thermal diffusion and sedimentation, it is presented as
the basis of this report. The details of the experimental procedure and the
results will be discussed fully in a subsequent report. They will be used
here only to illustrate the method. In addition to the formal solution of
the equation, tables of the roots of the eigenfunctions are included.

The experimental method involves the passage of D.C. current through
a thin capillary of wolten metal of uniform concentration. One end of the
capillary is maintained at constant concentration by keeping it in contact
with a reservoir of the molten alloy (fig. 1). To eﬁd the experiment the
tube is separated from the reservoir and chemically analyzed. The resistivity
of the melt, the current, the time, and the increase (or decrease) of solute
in the tube are known. From these one can calculate the electrical mobility,
u, of the solute atoms from the flux equation (1) by making a mass balance

of solute across the mouth of the tube.

(1) J =ulE *

* Equation 1 is the defining relation for u. For this treatment the reference
frame is the electrodes. This corresponds to the reference frame defined
by zero volume flux only when the partial molar volumes of the two species
are not functions of concentration.



It is sometimes possible to determine the concentration directly
by measuring the resistivity change between probes spaced along the diffusion
channel (1,2)5 This method is suitable for binary systems in which the
resistivity changes markedly with concentration. For multi-component systems
and alloy pairs without large resistivity changes the chemical techulque may
be necessary. In addition, it is not .easy to design and build a suitable cell
for the resistivity method at high temperatures. 6o far we have found it neces-
sary to use the chemical technique in the range from 300 to 800°C. The solution
to the partial differential equation will be of value in interpreting both types
of experiments however.

Since one is simply determining the amount of solute that crosses the
boundary between the tube and the reservoir, the mobility obtained is for the
conditions prevailing at the wmouth of the tube. In other words, no matter what
form the concentration distribution takes inside the tube, all of the solute
that enters (or leaves) the tube must cross the boundary at the entrance to
the reservoir.

At the start of the experiment the first change takes place at the
electrode end of the tube. If the polarity is such that the solute enters the
tube, the concentration will ircrease at the electrode first. As the experi-
ment proceeds,the concentration will gradually increase back down the tube
towards the reservoir. If the polarity is reversed, the concentration first
decreases at the electrode end of the tube. A concentration "wave" moves down

the tube towards the reservoir, broadening as it goes from ordinary diffusion.
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One. can approximate this behavior with the solution to the diffusion

equation for the initial condition

]

C 1 X>0

C

i

0 X< 0

for the boundary conditions of a tube of infinite length in the + X and - X
directions. This solution is well known. By transforming to a coordinate
system that moves with a velocity of uk cm/sec (the average velocity of the
solute atoms) one obtains an approximate solution to the equation. This
solution is best for high solute velocities. For lower velocities the end
effect at the electrode becomes appreciable.

When using equation 1 to calculate the mobility one must be certain that
the experiment has not proceeded to the point where there is a concentration
gradient at the mouth of the tube. If there is, solute will be transported
across the boundary between the tube and the reservoir by ordinary diffusion.
This ordinary diffusion flux will always oppose the flux due to the electric
field. The calculated electrical mobilities will therefore be too low. If
the experiment 1s continued for.a very long time the steady state condition
is approached. At steady state the concentration gradient at the mouth has
increased to the point where the flux caused by electrodiffusion is exactly
offset by the ordinary diffusion flux in the reverse direction.

By running experiments under exactly similar conditions but for different
lengths of time one can test whether back diffusion is introducing errors. If
there is no back diffusion, the mobilities will be the same. If an experiment
has been run too long, the result will be lower than the others. This effect

has been observed by the authors.



o

The formal solution will aild in determining optimum experimental times
and in designing experiments. By applying'the results of the solution to
experiments in which back diffusion has taken place it is possible to

estimate the ordinary diffusion coefficient.
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FORMAL SOLUTION

The one dimensional flux equation including ordinary diffusion is

- _ av ¥
(2) & = uE -D (37)
Differentiating once with respect to distance the partial differential

equation is obtained

() F- 0 A~ A
Here we have introduced the assumption that the electric field strength‘i;
throughout the tube may be approximated by the total voltage drop, V,
divided by the length of the tube a.

Furth (3,4) and DeGroot (5) integrated equation (3) for the boundary
conditions corresponding to a tube closed at both ends i.e. zero solute flux
at each end of the tube. The equation has not been solved for the case of
constant composition at one end and zero flux at the other. Since the
solution is unusual in some respects it is presented in detail.

Make the following substitutions *¥%

* The corresponding flux equations for thermal diffusion and sedimentation
are respectively - , 3N
J=DNgrad T - D (52)

J

]

vi-p (3

/
** TFor thermal diffusion S P.ﬁl and for sedimentation & = ‘-’%

1
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Equation (3) becomes

3 _ 3% 3¢
M %5278 §

Equation (4) is first solved for the homogeneous boundary conditions.

(5) ¢ =0, for x =0, t>0

6) L-s0-0, forx=1, £>0

We let X =0 at the reservoir end of the tube and X = 1 at the
electrode. These boundary conditions do not correspond to the real situation,
but they allow the problem to be solved, The solution is then made to fit the
real boundary conditions. The familiar separation of variables technique is

used.

(1) S,y = X)) T(x)

After separating and equating to A one obtains the two ordinary

differential equations

(8) T* = AT =0

(9) X" -8X' = AX =0
The solution to (8) is simply
(10) T = AeM

From (10) it is apparent that A< O if the time solution is to remain

finite. For (9) the solution of the auxiliary equation is
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2
S S
(11) m = 3+ + A

There are therefore three solutions to (9) depending on whether

2
(12) »+ % = 0

g2

(13) A+3- 2 O
g2

(1%) A+ L O

From (12) the solution of (9) is

s s
X = AeZ2* +Bxe 2%

Applying the boundary conditions (5) and (6) one obtains
(15) A =0
S
(16) (1 -33B = 0
Since if B = O this solution vanishes, one must have S = 2. Therefore

for the case where S = 2 one term of the solution is

(17) (comst.) xe® ¢t

Now consider the second case i.e. equation (13). First define a by the
relation

2
(18) o = a4+

One immediately finds the solution

, 5 x
(19) x = (A& 4 Be*xx) e



Applying the first boundary condition one finds that A = -B. One term
of the solution them must be of the form 5
S % S
2 “(oﬁm_ﬂ)t
L

(20) (const.) (sinh ox) e

Applying the second boundary condition one finds

S
(21) a cotha =3

This equation has a single root for every £>2. For S = 2 the root is zero.
Zz

S
For 5<2 there are no roots. In appendix VIII it is proved that agmﬂ“<ov

Next consider the third case (equation 14). Define B by the relation

2
(22) B2 =+ -

The corresponding solution is

S %

(25) X = (A cospx + B sin px) ¢

Applying the boundary conditions one obtains
(24) A = O

s
(25) BcotB=5

Equation 25 has an infinite number of roots for any S. One now has

S
(26) (consto)(sinﬁnx) e 2™
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Before these solutions are tested against the real boundary conditions
it is necessary to consider the special case where A = O. The solution is
simply
= KeBX + D

(27) C(XO

This is the "steady state" solution since time does not appear. A trial
solution for the real boundary conditions will be constructed for each of
three cases by adding equation 27 to the solution already obtained.

(28) & - 2C(x,t) = (const.)xeXe-t 4 (const.)(sinﬁx)e(s/g)xekt

+ Kesx + D

(29) S>'20(x,t) = (const.)(sink‘noa:)e(S/E)Xe(052"82‘/’“')Jc

+ (const.)(sinﬁx)e(s/2>x e M L xeP* 4D

(30) s8<2
C(x,t) = (conkte)(sinax)e(s/e)x e M 4 geSX 4D
The real boundary conditions are

(31) ¢=1, forx =0, t>0

(32) 7%% -8C =0, forx=1, t>0

In addition one has the final or steady state condition
Sx
(33) C =€, forx=x, t=o0

It is easily shown that for & = 1 and D = O these conditions are met. The
initial condition is

(34) ¢ =1, forx=x, £t =0
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This is satisfied by forming the sum of all the solutions given by equations
25 and 26. The proof of orthogonality and the calculation of the coefficients

is given in the appendix., The final results are

S
(35) s =2 ax S 2*
C(x,t) = e '-%—Ag.(%‘xe”t +z Cn(sinﬁnix.)e e M
n=1
S. s* S,
(36) s>2 o 5% (ozz-”z_‘)t e o "
o(x,t)= e+ Bo(sinh}ax)e e +WZZ:Cn(sinB%)e e’
n=1
52 Sx See

; ® 2" 4
(37) c(x,t) =e + 3 C (sinpX)e e
n=1 '

where
6
A = - &
0
S
1608(coshi)e 2
By = (82-4aP) (8 -2 cosﬂzrx)
16BnS(cos Bn)e‘ %
c. = -
" (52+48 2) (5-2 cos®By)
and g
o (cotha) = 5
S
Bn(cot B,) = B
2
S
o= - (B T)

The solutions were tested by calculating the concentration at t = O,
Figure 2 shows the series converging to C = 1., For 10 terms the sum is cor-

rect within 1.0% for X from 0.0 to 0.9. For X = 1.0 C, = -919.%

¥ For all subsequent calculations the first ten terms were used. Ten
significant figures were carried during the computations. All computations
were carried out on a Bendix G-15 computer.
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DISCUSSION AND APPLICATION OF THE SOLUTION

In order to illustrate the diffusional processes taking place in the
tube the changing concentration profile in the tube was plotted for various
values of 8. These plots are shown in figures 3, 4, and 5. For 80 the
solute enters the tube, for SC O it leaves the tube. In both cases the first
change occurs at X = 1. For S = -20 one can easily see the coucentration
“wave" move towards the mouth of the tube. This behavior has been observed
by Schwarz (1), Mangelsdorf (2), and one of the authors. The experimental
conditions of figure 5 are easily obtainable in practice.

In order to determine the error caused by back diffusion it is necessary
to calculate the mean concentration in the tube as a function of time. This
is done by integrating equations 35, 36 and 37 over the length of the tube.

The integrals may be found in any standard table. The results are given

below.
(38) s=2 1 hpn
zl.8 -t — AL
Cm=o!£—: —l] +Ao.e +%l (32+45n2) Cpe
> ST
(39) 822 e ] 5o @P-T), Mo, a
m’ S —)-1{12 o) n:' (S‘{?"l'h'ﬁne) n
(%0) S<2 S[ -:l g, ,
n=l (52+4p 2) €y

Plots of the mean concentration versus time are given in figures 6
and 7. The curves all have an initial slope of S. The effect of back dif-

fusion is apparent in the departure of the curves from linearity. From these
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curves it is easy to construct plots of the error caused by back diffusion
versus the percent change of concentration in the tube. These are shown in
figures 8 and 9, It can be seen that one radically decreases the error by
running the solute into the tube. For even moderate values of S one can
theoretically increase the concentration at the electrode end to extremely
high values. In general, solid phases will precipitate out before this
happens.,

In addition, the errors caused by the chemical analysis of the tube
must be considered. One uses the difference in the tube and reservoir com-
positions to calculate the total solute flux, Therefore,if there is not a
large change in concentration, one must subtract two numbers of the same
magnitude. For small changes this magnifies the analytical errors considerably.
Figure 10 is a plot showing this (see appendix VIII for details of this
calculation). By using figures 8, 9, and 10 it is possible to design experi-
ments to minimize the analytical and diffusion errors. These are the +two
largest sources of error in this technique.

The final application considered is the calculation of ordinary dif-
fusion coefficients. As the solution now stands D appears in both dimensionless
constants, i.e. uV/D and DO/a2. By choosing the dimensionless time as uV/a®
one can construct plots equivalent to figures 6 and 7. These are shown in
figures 11 and 12. This leaves the diffusion coefficient in only one of the
constants, and eliminates the necessity of a trial and error solution. In
order to .estimate the diffusion coefficient one makes a series of experiments
at progressively longer times. The runs at shorter times should give a con-

stant value for u. This is the true value of the electric mobility. Since
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one now knows u, V, « &,-and the results of an experiment that has gone to
the point where back diffusion takes place, one has both the coordinates of
figure 11 (or 12) specified. This then determines the value of 8 from which
the diffusion coefficient is calculated. The results of our preliminary
experiments are given in table 1 for the Cu~Bi and Ni-Bi systems. The
diffusion coefficients show considerable scatter and are approximately an
order of magnitude larger than what one would expect. This is undoubtedly
due‘to convection. It is possible the convection is caused by thermal gradients
associated with the transfer of the I°R heat from the tube. All other sources
of convection have presumably been eliminated. Thé diffusion channels were
0.5 and 1,0 mm I.D. thin walled pyrex tubes. The tops of the tubes were
kept several degrees hotter than the bottoms. It should be emphasized that
convection does EEE affect the determination of u as long as the experiment
is ended before a concentration gradient forms at the mouth of the tube.

At any time during the experiment the change of the mean concentration
‘in the tube is caused only by the sum of the two diffusion fluxes at the mouth
of the tube. For this reason the diffusion coefficient calculated by this
method is for the reservoir concentration. This method is analogous to the

technique described by De Groot (6) for thermal diffusion.



Cu

Ni

Po

Sn

Observed Biffusion Coefficients in Molten Bismuth¥*

0.48
0.hh

0.53

0.7
0.61

0.99

~1l-

TABLE 1

Cm
0.77
0.76
0.73

0.77
1.48

1.62

0.60
0.75
0.75

0.64
1.15

1.13

D x 10° cm?/sec
22
17
19

13
28

30
6.2 reference 8

k.6 reference 8

* All runs made at 500°C and with 0.5 weight percent solute.
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CALCUIATION OF THE ROOTS OF THE EIGENFUNCTIONS

The roots of the two eigenfunctions (equations 21 and 25) were
obtained on the Bendix G-15 digital computer. The half-interval method
was used. The first ten roots of equation 25 are given in tables 2 and 3
for various values of S. Equation 21 has just one root for each value of
8 > 2; it has no roots for 8<2. The value of this root rapidly approaches
8/2 as S becomes large. The roots of equation 21 are given in table L.
Tables 2, 3, and 4 are photoduplicates of the original computer output.
There has been no intermediate copying of the numbers. Only the first
seven of ten decimal places carried in the computer were typed out. The
number in the seventh place was not rounded off, so it way be 1 x 10-7 too
low in some cases.

Some of these roots are given by Carslaw and Jaeger to four
decimal places. A spot comparison showed a few cases of disagreement of
one unit in the fourth place, For these cases the function B cot B ~S/2
was calculated for their values and ours. The results were much closer to
zero using our roots. For these the function was also calculated using
our roots plus and minus 2 x 10-T, In &ll cases the function changed sign.,

We therefore believe our roots to be correct.
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TABLE 4

ROOTS OF THE EQUATION  Tanu[X] - [2/S]X =0

w

ROOT

1.287839%4
1.9150080
2.4640596
2.9847045
3.4935397
3.9568430
4,4988869
4.9995456
7.4999954
9.9999999
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LIST OF SYMBOLS

Length of diffusion tube cm

Defined by the relation a° = A + g2/ (8>2)
Defined by the relation -p% = A + 52/4
Dimensionless concentration N/N

Ordinary diffusion coefficient cm?/sec
Thermal diffusion coefficient cm?/sec °C

Elastic field strength vector volts/cm

Mass flux vector grams/cmzsec

Separation of variables constant

Concentration grams/cm?

Initisl concentration grams/cm5
Dimensionless solute velocity uV/D
Time sec.

Teuwperature °¢

Dimensionless time DO/a°

Dimensionless time uve/a®
Electrical mobility om®/sec volt
Sedimentation velocity cm/sec
Voltage drop across tube volts
Dimensionless distance Z/a

Distance cm
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Fig. 1. Cell for electrodiffusion experiments.
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MEAN TUBE CONCENTRATION ,(Cm)
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Mean tube concentration versus dimensionless time.
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ERROR MAGNIFICATION FACTOR
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Fig. 10. Error magnification in mobility calculation.
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Appendix I

Prove the orthogonality of the xéx'term, The weight function

for this Sturm Lioville system is e‘sx. The following integral must
therefore vanish.
1
I =£5~e'dx(xex)(sinﬁx)exdx
)
1 1
I= BQ sin B x - Bx cos B x
o]

I 'ég’ sin B - B cos é]

]

but for 8 = 2 sin B = B cos B.
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Appendix II

Prove the orthogonality of (sinh obOe(S/g)x
r (8/2 (8/2)x
a (8/2)x {872
I = ‘j1e'sx(sinhaije ‘ 2sin Bx)e '”3x
o
O R
I =5 J‘e “sinBkdx - 2 fe *5inBxdx
0 o
ax ! % .
5 ez o ] J e o oo
I = 5 la—zﬁe ][5 sin B x cosﬁﬂ Wj[ﬁ sinpx cosﬁﬂ
0 0
B a . i
I = 2 4-32 p sin B cosh @ - cos B sinh O
substituting
B cos B = (S/2)(sin B)
a cosh @ = (8/2)(sinh a)
I = 0
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Appendix III

Prove the orthogonality of the (sin B X) e’(s/e)%(erms,

1
I= fe_sx(sin Bm;x)e(’s/g)f(sin Bn‘x)eﬁs/g)é(x
1

Ssin Bm x sin Pn x dx
o)

=
1

sin(Bm-pn)x _ sin(Bm + Pn)x

1
1 =E(m-mﬁ 2(Bm + Pn) ]O

sin Pm cos Pn - cos Bm sin Bn _ sin Bm cos Pn + sin U cos BN
I = 2(pn - Bn) 2(pm + Bn)
I - Pn sin B s B pm sin B s B:]
= ———5 | Bn sin PBm cos Pn - Pm sin Bn cos Pu
(m - pn)?
but B cos B =(s/2)sin B
I =0

Q.E.D.
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Appendix IV

Calculate the coefficient for the term xe*. Denote the

coefficient by Aj

1
j‘e-EX(-Xex (l_eEX) dx
0

14
fe'2x(xex)2 ax
o

1 1
Xxe'xdx Sxexdx
0 o)

=
i
i
[0)Y
~
)
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Appendix V

. £ (8/2)x
Calculate the coefficient of the (sinh aX)e

the coefficient by Bo

1

Lan (s/2)x
SL SX{sinh ax)e( /2) (lweSX) dx
o

Bo = 77

Sve"?’x(sinhgom)égX dx
o

First evaluate the numerator, N.

Y _(s/2) y
N = §e‘- * sinh ax dx - gge(s/a)x sinh of% dx

O

1
-2 S'(sinh a %)(sinh 8/2 %) dx

N =
(0] 3
sinh (@ + 8/2)x _ sinh (a - 8/2)%
=T+ 8/ @-5p2)
_ (8 o cosh o ) e‘8/2

I oP-g°

Now evaluate the denominator, D.

o
Il

1
Ss inh® ax dx
0

1
1 | sinh 20x _ ax
% I 2

T term.

Denote
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sinh 2 O a
2

= -

1
D = &

Combining N and D .and simplifying one has

16 a S(cosh a) e's/gﬁ
B, = (g2.10R)(s - 2coshq)
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Appendix VI

(8/2)x

Calculate the coefficients of the (sin fx)e terms .

1 .
QS;"SX( sin an:)e(s/g) X(l-—e'sx)dx

Cn

Cn

Evaluate the

Evaluate the

No

9

0

1 _
ge-—SX( sin? pux)e™* dx

328111 pnxje™ (S‘/E»xdxtj'x sin Bn.}'c)e‘:‘(s/2 Xy

It

first integral in the numerator, N

1
quin2 Bn x dx

O

1

1 .
= S(Sin Bn x)em(s/g)'X ax

Bne <(s8/2)x

'S‘{—;+ Bn2

Bn

2
§)_‘,_'+ Bn2

P

S

1

— g n . cos Bn X
5B n fn x+ B »

e-S/E( 'é%?f sin pn + cos Bn) - 1

second integral in the numerator, Ng.,

1

o)

i

+ pn

- g(sin Bn X ) e(S/E):‘de

o 9(8/2) -Z-;S&-sin Bn x - cos Pn X
2 .

by
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S
Using the relation fn cos fn = 5 sin fn
pn
N2 = - 2
S 2
T+Bn

Evaluate the denominator, D.

1
D = gsrine Bn X dx
o

1 Bn X sin Bn X cos Bn X
D ="pn 2 )

Bn - sin Bn cos Pn
2 pn

Combine Ny, N,, and D and simplify

-16S Bn cos fn e-(S/E)
(8-2 cos? Bn)(S2 + L4 gn2)
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Appendix VIT

2
S
Show that for A + T~ 2 O the condition A <0 is fulfilled. Suppose

that N\2 0. Then one has

>
]
Q
]
wm
N
~
=

so a>s/2

However for >0 one has

coth a> 1

Therefore

a coth a2 8/2

This is a contradiction so therefore A<O0.



oo

Appendix VIII

In this method the mobility is determined by an equation of the form,

where mf = final mass of solute in tube

original mass of solute in tube
= constant

ER=]
O
[

Normally one makes several determinations of o and only one of m Since

£

the dependent errors in m and m, tend to cancel each other they are ignored.

f

The relation between the standard deviations of mj, me, and u is given by
2 2
s 2 - Sm: du L s o {du 2
u n Smo me Smf

where n = no. of determinations of m, -

Assuming sgm: s

o Ur
Su‘ = Sm 'H 5’5) + 3?5
. S T
ou - 1
oy~ & &)



m 2
L2 o2 |10 1
SU. - S.m k n (m_o-% + m02
. 1
k\|,, % me\’| 2
Su = Sm mo t on -mo

Let em equal the fractional error of the chemical analysis. Then

NS = é mo , where N is the number of standard deviations corresponding
m

to the chosen confidence level. The fractional error in the mobility (&4)

at the confidence level of the chemical analysis is then,

€.

u

e & [

1 (m_f.)ﬂ%
+ n m
(0] d

The coefficient of&mis the factor

the calculation of the mobility.

of error magnification introduced in












